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ABSTRACT 
The understanding of the function of the nervous system and the brain is one of the major intellectual 
challenges in life sciences. Neurological and psychiatric disorders are in addition major issues for the 
society, and new approaches are needed to learn more about the brain and to develop new treatments. 
The development of the mammalian brain is a highly regulated process that involves extra- and 
intracellular signaling to efficiently regulate gene expression in a precise spatial and temporal manner. 
The understanding of the differentiation mechanisms into neurons, glia and other cell types in the 
developing forebrain however is still incomplete. Studies of embryonic telencephalic neural stem cells 
(NSCs) in vitro may increase the understanding of the molecular mechanisms of brain development, and 
aid in developing new protocols for defined differentiation of stem cells for clinical use. 
 
This thesis is aimed at investigating the mechanisms underlying bone morphogenetic protein (BMP4)-
mediated differentiation of NSCs, and to explore the use of recombinant spider silk protein-based 
matrices in combination with signaling factors, especially BMP4, to generate functional neural cell 
circuits in vitro. 
 
In the first study, we discovered that BMP4 treatment of NSCs resulted in a dramatic increase in the 
expression of the BMP4-inhibitor Noggin. BMP4 mediated non-neural differentiation into 
mesenchymal cells at low seeding densities, neuronal differentiation at high seeding densities, and 
astrocyte differentiation in any condition. As the Noggin levels increased linearly at higher densities, we 
hypothesized that the endogenous Noggin production predominantly mediated an inhibition of 
mesenchymal differentiation. We further observed that BMP4 stimulation induced an AMPA 
responsive neuron population at high seeding densities, and that this population was increased by co-
stimulation of the signaling factor Wnt3a. By applying whole transcriptome sequencing, we aimed at 
elucidating the molecular mechanisms responsible for the increased neuronal differentiation by 
BMP4+Wnt3a. This approach, however, revealed an unexpected increase in the expression of genes 
associated with inhibitory GABAergic neurons, and also functional GABA-responsive neurons in the 
culture. RNA knockdown experiments demonstrated that this GABAergic component was dependent on 
the expression of the neurogenic bHLH factor Hes6. 
 
To apply these novel protocols for differentiation of NSCs into functional neurons, we introduced a 
novel way of culturing NSCs on substrates generated from recombinant spider silk protein (4RepCT). 
Spider silk protein is a promising biomaterial due to its biocompatibility, biodegradability, and 
possibility to use in various forms both in 2D and 3D. NSCs cultured in 2D cultures on 4RepCT “film” 
structures showed no significant differences in cell proliferation, viability, or differentiation potential 
compared to control cultures in optimized conditions. 4RepCT substrates generated as “foam” structures 
could be used for 3D culturing of NSCs, and these NSC cultures differentiated nicely into astrocytes 
and neurons. Calcium imaging assays revealed that BMP4+Wnt3a-treatment of NSCs grown in 3D 
4RepCT-matrices resulted in efficient generation of functional excitatory neurons. 
 
These studies have thus revealed new molecular mechanisms underlying neural differentiation of 
cortical stem cells, and point to the versatility of using spider silk protein-based substrates for stem cell 
cultures. Future studies aim at testing these new concepts in vivo for improved treatment of neurological 
disease. 
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1 INTRODUCTION 
 

1.1 Neural induction 

 

Brain development is a complex process consisting of a series of spatiotemporal events 

that still riddle researchers.  

 

The fertilized egg undergoes several rounds of cell division, cell fate specification and 

cell migration to build a complex organism. Lineage specification and cell migration 

result in the development of the morula, followed by the blastocyst. During 

gastrulation, the cell mass of blastula becomes a multilayered gastrula with all three 

germ layers: ectoderm, mesoderm and endoderm. Further on, cell division results in 

thickening of the ectoderm and creation of the neural plate. The neural plate forms the 

neural tube, which during development will become the brain and spinal cord.  

 

Cell fate depends on morphogens – signaling molecules that are secreted by organizers 

during development (Fig. 1). The organizer concept was introduced in the 1920s by 

Spemann and Mangold (Mangold 1924) and was later followed by identification of the 

neural fate inducing genes noggin, chordin and follistatin (Smith and Harland 1992; 

Piccolo, Sasai et al. 1996; Fainsoda, Deißlerb et al. 1997). BMP is expressed in the 

ventral side of the embryo where the ectoderm is formed, whereas noggin and chordin 

expressed in the dorsal part are involved in neural induction (Hemmati-Brivaniou 1995; 

Sasai, Lu et al. 1995; Weinstein and Hemmati-Brivanlou 1999). In the 90’s Echelard 

described a morphogen that is responsible for ventral patterning of the brain, namely, 

Sonic hedgehog (Shh) (Echelard, Epstein et al. 1993). Expression of Shh in the 

notochord plays an important role in early dorso-ventral patterning of the brain, which 

relies on opposing effects by Shh and dorsally expressed genes - bone morphogenetic 

protein (BMP) and wingless-related integration site (Wnt) (Robertis, Larrain et al. 

2000). Shh induces development of ventral structures, for example, motor neurons, 

BMP stimulates growth of dorsal structures, for example, choroid plexus and the 

hippocampus, whereas Wnt have been shown to be involved in the establishment of 

dorsal cortical structures (Fig.1). The rostro-caudal development of midbrain and 

hindbrain is driven by genes such as Wnt1, engrailed 1(en1) and fibroblast growth 

factor 8 (FGF8) (Lee, Danielian et al. 1997). 
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                          Fig. 1 BMP and Wnt involvement in neural tube closure. 

                    (Modified from Sanes et al. 2004) 

 

Initial neural fate determination is dependent on inhibition of BMP signaling and at 

later stages it regulates CNS development. 

The opposing gradient of BMP and Shh creates dorsoventral patterning of the neural 

tube. BMP proteins are secreted in the developing spinal cord from the roof plate 

(dorsal) opposing ventral Shh secretion from the floor plate. (Ericson, Muhr J. et al. 

1995). Loss of BMP signaling in the spinal cord is associated with absence of Math1 

positive cells, which are the most dorsal cells in the spinal cord (Chesnutt, Burrus et al. 

2004).  
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1.2 BMP and Wnt signaling in telencephalon development 

BMP4 and Wnt3a, two out of many morphogens involved in regional specification of 

the telencephalon are a focus of this thesis.  

 

1.2.1 Bone morphogenetic proteins 

Bone morphogenetic proteins (BMPs) belong to the transforming growth factor β 

(TGFβ) superfamily, which is evolutionarily conserved in vertebrates (Danesh, 

Villasenor et al. 2009). In 1956, Urist showed BMP activity in bone and cartilage 

formation (Urist 1965);  however, the proteins were identified in the late 80’s (Luyten, 

Cunningham et al. 1989; Wozney 1989). Nowadays, the BMP family contains 20 

members and is well known for its involvement in developmental and 

pathophysiological processes (Liu and Niswander 2005).   

 

Signaling by BMPs is mediated by serine-threonine kinase (RSTKs) receptors type I 

and II which are a group of catalytic receptors that includes members of the 

transforming growth factor β (TGFβ) and activin receptors (ALK1-7) (Fig. 2). Binding 

of the ligand to the receptors results in phosphorylation of receptor I mediated by 

receptor II. RSTKs initiate intracellular signaling by activation of Smad proteins 

(Massague 1998; Miyazono 2000; Wu and Hill 2009) that will bind to a common 

mediator, Smad4 (Wrana 2000). This event is followed by Smad4 translocation to the 

nucleus which activates downstream gene transcription regulation (Wrana 2000).  

 

The functions of BMP signaling for development of telencephalon are highlighted 

through the actions of the extracellular BMP antagonists noggin, chordin and gremlin 

(Liu and Niswander 2005). Noggin prevents BMP2, -4 and -7 from binding to its 

receptors (Zimmerman, Jesu s-Escobar et al. 1996). Equilibrium of BMP and noggin 

factors is necessary to maintain normal development.  
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Fig. 2 Signal transduction by TGF-beta family 

 (Attisano and Wrana 2002) 

 

BMP signaling is required for a wide range of neurodevelopmental processes and 

general development (Table. 1). 

 

Neurodevelopmental processes: References 

Embryonic cell fate specification: neural or non-

neural ectoderm 

 

 

 

(Chen, Zhao et al. 2004; Liu and 

Niswander 2005; Danesh, 

Villasenor et al. 2009; Inestrosa 

and Arenas 2010) 

 

Neurulation 

Dorso-ventral patterning of the brain and spinal 

cord 

Forebrain and cerebellum development 

Neurite outgrowth 

Synapse formation 

Cell migration 

Cell proliferation 

Apoptosis 

Organogenesis (Hogan 1996; Danesh, Villasenor 

et al. 2009) 

Table. 1 Role of BMP signaling in development 
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BMP4 is expressed in the early developing brain in the most dorsal neuroectoderm and 

dorsal forebrain (Furuta, Piston et al. 1997). The significance of BMP4 protein function 

has been shown in knockdown animals where BMP2 and BMP4 removal resulted in 

early embryonic lethality at E6.5 and E9.5. Severe brain malformations and little or no 

mesoderm were also spotted due to BMP4’s involvement in early embryonic organ and 

tissue development (Winnier, Blessing et al. 1995; Danesh, Villasenor et al. 2009). 

Moreover, BMP4 overexpression in transgenic animals enhance astrocytic 

differentiation and inhibits the generation of oligodendrocytes (Gomes, Mehler et al. 

2003).  

 

In addition to the involvement of BMPs in development, BMP4 signaling has also been 

linked to pathophysiology. Compromised BMP activity results in impaired choroid 

plexus formation (Smith and Harland 1992) and uncontrolled BMP stimulation turns 

cortical primordium into choroid plexus (Panchision, Pickel et al. 2001). BMP4 may be 

involved in Fibrodysplasia Ossificans Progressiva (FOP) pathogenesis of bone 

formation (Duprez, Bell et al. 1996; Kan, Hu et al. 2004). Moreover, BMP signaling 

has been associated with hepatocellular and ovarian cancer (Kan, Hu et al. 2004; 

Kallioniemi 2012). BMP signaling in cancer has dual involvement in the disease 

progression, both promoting due to its regulation of cell proliferation and mobility and 

opposing via regulating differentiation and apoptosis (Kallioniemi 2012).  

 

1.2.2 Wnt signaling / β-catenin signaling pathway in nervous system 

Wnt signaling stands for wingless-related mouse mammary tumor virus (MMTV) 

integration site. The Wnt gene was first identified as a wingless mutation in Drosophila 

melanogaster  (wg-1) (Chopra 1976; Lawrence 1977) and later in 1982 as a proto-

oncogene Int-1 (later called Wnt1) involved in the development of mammary tumors 

(Varmus 1982). Finally in 1987, Rijsweijk et al. showed that wg-1 and Int-1 proteins 

are gene homologs, which gave rise to the new family Wnt–wingless (Rijsewijk, 

Schuermann et al. 1987; Nusse, Brown et al. 1991).  

 

Wnt signaling is initiated by Wnt ligand binding to a Frizzled receptor (MacDonald, 

Tamai et al. 2009). Today 19 different Wnt ligands are known, which can be 

subdivided into two groups:  

1. Canonical/Wnt1 class - eg. Wnt1, Wnt3a, Wnt8a/b. 

2. Non-canonical/Wnt5a class- eg. Wnt4, wnt5a, Wnt11 
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Wnts are know to activate at least three main pathways (Fig. 3): 

1. Wnt/β-catenin pathway 

2. Wnt/PCP pathway 

3. Wnt/Ca2+ pathway 

The second and third pathways do not signal via β-catenin, and are thus known as 

Wnt/β-catenin independent pathways. 

 

 

Fig. 3 Wnt pathways: A. Canonical Wnt/β-catenin pathway, B. Non-canonical 

Wnt/Ca2+ pathway, C. Non-canonical Wnt/PCP pathways (Liebner and Plate 2010) 

 

 

Wnt/β-catenin pathway can be activated in presence or absence of Wnt ligand (Fig. 3). 

In the absence of Wnt-ligand, β-catenin is phosphorylated by kinases from the 

destruction complex, Ck1α and GSK3, and degraded in the proteasome (Fig. 3A. off 

state). Ligand binding to Frizzled and LRP5/6, initiate Dishevelled interaction with 
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Frizzled, followed by phosphorylation of LRP5/6 and inhibition of GSK3, which 

disassemble destruction complex. This allows β-catenin to enter the nucleus and 

regulate gene expression with TCF/LEF (Fig. 3A. on state) (Grove 2011). Cell cycle 

progression/proliferation, cell fate specification, and differentiation are regulated by 

some genes identified in the Wnt/β-catenin pathway (Willert and Nusse 2012). 

Wnt/PCP pathway is involved in neural tube closure and rearrangement of the 

cytoskeleton.  Wnt/Ca2+ signaling pathway uses calcium as a second messenger in 

Wnt/ β-catenin independent signaling.  

 

The canonical Wnts activate the Wnt/β-catenin pathway, which was believed to be 

independent of the non-canonical one (Ciani and Salinas 2005). However, more 

detailed studies have shown that different Wnts interact with variable ligands, which 

leads to activation of the canonical Wnt/β-catenin signaling pathways by the non-

canonical class of Wnts, which is context-dependent (Ciani and Salinas 2005; 

Grumolato, Liu et al. 2010).  

 

The Wnt/β-catenin pathways have been identified to be involved in early nervous 

system development, maintenance and regeneration (Table. 2).  
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Developmental processes: References 

Anterior-posterior neural tube patterning (Robertis, Larrain et al. 2000; Hendrickx, 

Van et al. 2009; Hikasa, Ezan et al. 2010), 

Regionalization of the forebrain (Jang, Bonaguidi et al. 2013), 

 Dorso-ventral forebrain patterning 

Hippocampal development 

Midbrain-hindbrain boundary formation (Himmelstein, Bi et al. 2010 

Hindbrain and neural crest growth (Hari, Brault et al. 2002) 

Dorsalization in the spinal cord (Ciani and Salinas 2005) 

 Neural tube closure 

Tissue organization/polarity (Kleber and Sommer 2004; Kalani, 

Cheshier et al. 2008; Hirabayashi, Suzki et 

al. 2009) 

Cell renewal 

Cell cycle progression/proliferation (Willert and Nusse 2012) 

Cell fate specification and differentiation (Kleber and Sommer 2004(Munji, Choe et 

al. 2011)) 

Oligodendrocytes maturation (Di Pasquale and Brivanlou 2009; 

Feigenson 2011; Steventon and Mayor 

2012) 

Angiogenesis (Daneman, Agalliu et al. 2009) 

Ille and Sommer 2005 

(Ciani and Salinas 2005) 

Apoptosis 

Axon guidance 

Path finding 

Axon remodeling 

Dendrite morphogenesis 

Synapse formation 

Adult neurogenesis (Vanderhaeghen 2009; Inestrosa and 

Arenas 2010) 

Tissue repair (Galliot and Chera 2010; Abo and Clevers 

2012; Faigle and Song 2013) 

Brain vasculature (Liebner and Plate 2010) 

Table. 2 The role of Wnt/β-catenin pathways in development, maintenance and 

regeneration 
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Canonical Wnt/β-catenin pathway and Wnts expression are conveyed in developing 

nervous system starting with neural tube closure followed by blocking of the early 

neural induction of FGFs under the anterior-posterior patterning. Thus, inhibition of 

Wnts is necessary for early forebrain development and diencephalon (Satoh, Kasai et 

al. 2004). 

 

The Wnt/β-catenin pathways are essential for gene transduction due to the fact that 

Wnt3a knockdown animals are missing the hippocampus and are often lethal at 

embryonic stage (Amerongen and Berns 2006). Moreover, overexpression or 

abnormalities in Wnt signaling are related to brain pathophysiology, such as mood 

disorders (Duman and Aghajanian 2012) and cancer (Polakis 2000; Polakis 2012).  

 

1.2.3 BMP and Wnt crosstalk 

The human body is built from numerous amounts of cell types that require 

communication with each other. BMPs and Wnts are two out of several signaling 

pathways involved during early development towards sustainability (Rajan, Panchision 

et al. 2003; Inestrosa and Arenas 2010) of the nervous system and its regeneration.   

Both pathways depend on cell-surface receptors and reach the nucleus by interchanging 

their cytoplasmic components. Often, these proteins work as opposing forces to each 

other, as in brain and spinal cord development. Their involvement in cell fate 

determination, proliferation and synaptic physiology (Inestrosa and Arenas 2010) 

makes them a subject of interest. Hence, studying their full functions demands further 

research.  

 

In our studies, we used BMP4 and Wnt3a to treat cortical cell cultures due to their 

direct involvement in cerebral cortex development. 

 

BMP4 and Wnt3a are the main signaling centres of the telencephalon development at 

mid-gestation stage (Rubenstein 2001) together with fibroblast growth factor 8 (FGF8) 

and Shh (Fig 4 A). The opposing gradient of morphogens in dorsoventral patterning of 

the telencephalon creates different zones of neuronal progenitors that have definite 

localization and properties (Rubenstein 2001). TGF-beta and Wnt activities coordinate 

regulation of neural tube patterning and closure (Chesnutt, Burrus et al. 2004).  

Moreover, previous studies in the lab demonstrated C-X-C motif chemokine 5 (CxxC5) 

involvement in interaction between BMP4 and Wnt3a. BMP4 stimulation of NSCs 
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increase Cxxc5 expression that is putative inhibitor of Wnt and modulates Wnt-

signaling in a cell density (Andersson, Södersten et al. 2009) dependent manner. 

The cross talk between BMPs and Wnts and their involvement in patterning of cerebral 

cortex have been describe before (Shimogori, Banuchi et al. 2004; Andersson, 

Södersten et al. 2009). However, the key events in this cross talk have not been fully 

identified. 

However, it is known that BMP, FGF, WNT signaling are involved in early cortical 

development by interacting with empty spiracles homolog 2 (Emx2). In early cortical 

primordium Emx2 regulates BMP activity by inhibiting noggin (Shimogori, Banuchi et 

al. 2004). This resulted in Wnt signaling inhibition by repression of FGF8/17, which is 

involved in anterior-posterior axis formation of neocortex development (Fig. 4 B).  

 

Moreover, studies showed that BMP4 signaling is required for the canonical Wnt 

signaling to be involved in oligodendrocyte development in the spinal cord and 

suggested that Wnt signals upstream of BMP (Feigenson 2011). 

 

  

Fig. 4 A. Bmp4 and Wnt3a expression in the developing mouse telencephalon, 

modified from (Rubenstein 2001); B. Preliminary model of signalling interaction that 

pattern the mouse cerebral cortex, from  (Shimogori, Banuchi et al. 2004) 
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1. 3 Stem cells 

The self-renewing ability and the capacity to differentiate into specialized cell types are 

the major characteristics of stem cells. The 21st century discoveries in the stem cell field 

and the Nobel in Physiology or Medicine awarded to Yamanaka and Gordon in 2012 

for induced pluripotent stem cells (iPSC), still leave an open arena for further research. 

Stem cells are promising tools for basic research, however, better understanding of its 

molecular properties and application to regenerative medicine need to be investigated. 

 

Stem cells can be categorized into:  

1. Embryonic stem cells – totipotent cells derived from early stage embryos (from 

morula to blastocyst) and can generate all cells in the body including extraembryonic 

tissue. 

2. Fetal stem cells – pluripotent cells derived from the fetus and are tissue specific. 

3. Adult stem cells – undifferentiated cells derived from adult organisms and are 

lineage-restricted depending on their origin that can be multipotent and unipotent 

 

Potency of stem cells can be classified into subgroups: 

1. Totipotent – differentiate into all cell types, only embryonic stem cells 

2. Pluripotent – differentiate into cells of all three germ layers except extra-

embryonic tissue. 

3. Multipotent – also called progenitor cells, can differentiate into multipotent 

cells from the same germ layer origin. 

4. Unipotent – have self-renewing properties of their own cell population. 

 

1.3.1 Neural stem cells 

Neural stem cells (NSCs) are multipotent cells derived from nervous system that have 

been identified in rodent and humans (McKay 1997; Gage 2000). NSCs can be found 

in embryonic, mammalian adult CNS (Temple 2001; Miller and Gauthier-Fisher 2009) 

and the peripheral nervous system (PNS) (Anderson 1992) (Table. 3). Dorsal 

telencephalon derived NSCs differentiate into neurons, astrocytes and oligodendrocytes 

(Teixeira, Duckworth et al. 2007). NSCs originating from the neural crest generate 

Schwann cells, sympathetic and sensory neurons of the PNS (Anderson 1992).  
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Location NSC location  

CNS embryo Basal forebrain, cerebral cortex, hippocampus, cerebellum, neural 

crest, spinal cord 

CNS adult Nasal epithelium, olfactory bulbs, subventricular zone, hippocampus, 

retina, spinal cord 

PNS Neural crest 

Table. 3 Neural stem cell location in embryonic and adult nervous system. 

From (Anderson 1992; McKay 1997; Gage 2000; Miller and Gauthier-Fisher 2009) 

 

In our studies we used primary, telencephalon stem cells (NSCs) cultured in vitro as 

adherent monolayers (Hermanson, Kristen et al. 2002). During embryonic development 

neural stem cells are located just above the ventricles and anterior to the neural tube. 

The cells can be cultured in vitro in well-defined media without fetal bovine serum 

(FBS) and maintain in multipotency under fibroblast growth factor 2 (FGF2) addition. 

When FGF2 is withdrawn and cells are exposed to the signaling factors BMP4, ciliary 

neurotropic factor (CNTF), triiodothyronine (T3), NSCs differentiate into neurons, 

astrocytes and oligodendrocytes respectively (Fig. 5). 

 

 Fig. 5 Neural stem cell differentiation in vitro  

 Modified from (Teixeira, Duckworth et al. 2007) 
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Additionally, smooth muscle cells can be obtained by FBS treatment (Tsai and 

McKaym 2000; Teixeira, Duckworth et al. 2007). Also, BMP4 and Wnt3a co-treatment 

leads to neuronal differentiation and proliferation (Kleber and Sommer 2004; Lee, 

Kleber et al. 2004; Kleber, Lee et al. 2005; Leao, Reis et al. 2010; Andersson, 

Duckworth et al. 2011; Lewicka, Hermanson et al. 2012).  

 

NSCs have shown promising results in preclinical regenerative medicine studies on a 

rat traumatic brain injury model (Lundberg, Södersten et al. 2012). The NSCs can 

contribute to adult neurogenesis when they are appropriately stimulated by its 

neurogenic environment (Ninkovic and Gotz 2007; Miller 2008; Miller and Gauthier-

Fisher 2009), thus making them excellent tool in regenerative medicine.   

 

1.3.2 Neural stem cells in cerebral cortex development 

In cortical development and the stem cell surrounding it, several key factors such as 

FoxP2 (Tsui, Vessey et al. 2013) and CxxC5 (Andersson, Södersten et al. 2009), 

influence the destiny of neurons during neurogenesis. Moreover, a balance between 

intrinsic developmental events and environmental signaling defines the neuronal or 

glial fates in the developing cortex (Miller and Gauthier 2007).  

 

During mid-embryogenesis, the cerebral cortex is formed from neuroepithelial stem 

cells located at the telencephalic vesicles.  NSCs are located on periventricular 

generative zones and give rise to neurons and radial glia followed by astrocytes and 

oligodendrocytes. BMPs play an important environmental role in developmental events 

together with FGFß and Shh, which are involved in NSC expansion, self-renewal, 

restriction and incipient lineage commitment (Mehler 2002). The telencephalon 

formation starts at around E10.5 in the mouse embryo from the uniformed ventricle in 

the caudal part of the telencephalic vesicles and can be subdivided into cortex (the 

dorsla pallium) and basal ganglia (ventral subpallium). The neurogenesis occurs during 

mice E12 to E18, followed by astrocytes around E16 and oligodendrocytes formation 

starts postnatal. Cortex develops from ventricular zone in the dorsocaudal part of the 

telencephalic vesicles (Sur and Rubenstein 2005).   

 

Asymmetric division of progenitor cells in the epithelium results in thickening of the 

neural tube (McKay 1997) that give rise to neural progenitors (NPs) in the ventricular 

zone (VZ).  NPs undergo symmetric divisions and generate two daughter cells. The 
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symmetric expansion creates the subventricular zone (SVZ) just above VZ. Many of 

the neocortical projection neurons are generated from terminal division of the dorsal 

telencephalon at the VZ and SVZ (Kwan, Sestan et al. 2012). The earliest neurons 

appear around E10.5 in the mouse and some NPs become radial glia cells (RGC). 

RGCs can function as progenitors, undergo neurogenic asymmetric divisions in the VZ 

and give rise to intermediate progenitors (IPs) that will migrate away from VZ to the 

SVZ to undergo further neurogenic divisions. Moreover RGCs provide support for the 

radial migration of the cells to their destination in the mantle layers in the neocortex. 

Studies have shown that progenitor RGC will give rise to glutamatergic pyramidal-

projection neurons in the cortex (Kriegstein, Castañeda-Castellanos et al. 2004; Noctor, 

Martinez-Cerdeno et al. 2008). 

The first rounds of mitosis generate the first post mitotic neurons, called preplate 

neurons (PP) a superficial part of the cerebral wall.  The preplate will be divided into 

superficial layer (marginal zone) and subplate (Kwan, Sestan et al. 2012) by inward 

radial migration of the cortical neurons and the new cortical plate layer is formed. The 

inside-out mechanism of cortical neuronal growth results in the earliest born neurons 

being located in the deep layer 6 and the latest born neurons in the superficial layer 2 

(Kriegstein, Castañeda-Castellanos et al. 2004; Noctor, Martinez-Cerdeno et al. 2008) 

(Fig. 6).   

Accumulation of IPs and newborn neurons form the cortical plate, and cell division, 

migration and maturation result in an increase in the cerebral cortex surface area and 

finally the folding of the cortex (Molyneaux, Arlotta et al. 2007).  
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Fig.  6 Neuron generation and migration in the mouse cortex (Kwan, Sestan et al. 2012) 
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1. 4 Stem cells microenvironment 

 

1.4.1 Stem cell niche  

The human body is built from four types of primary tissue:  

1. Epithelial – eg. skin 

2. Connective – eg. blood, ligaments and tendons 

3. Muscle – cardiac, skeletal, smooth 

4. Nervous – neurons and glia. 

 

All four types of tissue stated above are controlled directly by physical, chemical and 

biological processes. Stem cell population originates in a “niche” – defined by elements 

of local environment regulating the stem cell state by architectural components, 

physical engagement between cells, cell-cell and ECM-cell signaling, paracrine and 

endocrine stimuli, neural input and metabolic products of tissue activity (Scadden 

2006). Moreover the niche can influence tissue generation, maintenance and repair. 

 

In 1907, Ross Harrison established cell culture and years after, altered animal research 

models to study cells in petri dishes in two dimensions (2D)(Landecker 2007). 

However, cells in traditional culture can only proliferate in x-y direction in contrast to 

in vivo events, which are happening in 3D x-y-z axis (Discher, Mooney et al. 2009; 

Schwartz 2010). Stem cells grown on polystyrene (PS) culture dishes in 2D are 

deprived of their normal environment. To make the experimental design resemble in 

vivo conditions, it is important to mimic some of the cells' natural habitat, for example 

by using extracellular matrix (ECM) components (Badylak, Freytes et al. 2009; Chen 

2010).  

 

When culturing cells in vitro, the following factors are important to consider: 

1. Chemical and biochemical environmental factors: cell adhesion molecules 

(ECM), cytokines, integrins, hormones and growth factors. 

2. Physical environmental factors: force, stiffness and rigidity. 

3. Spatial and temporal environmental factors. 

 

All these factors influence cellular adhesion, migration, proliferation, differentiation, as 

well as signaling pathways (Schmeichel and Bissell 2003; Engler, Sen et al. 2006; 

Scadden 2006; Widhe, Bysell et al. 2010; Brizzi, Tarone et al. 2012). The stem cell 
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niche controls NSC behaviour and defines their function (Miller and Gauthier-Fisher 

2009). 

 

Endo and colleagues have shown that the matrix protein anosmin is necessary for 

cranial neural crest formation together with FGF, BMP, and Wnt modulation (Endo, 

Ishiwata-Endo et al. 2012). Their data support the importance of the in vivo niche 

environment.   

 

Extrinsic environmental factors can influence neural precursor cell proliferation during 

embryonic central nervous system development (Bartkowska, Paquin et al. 2007).  

Further, the importance of cell and ECM molecule interactions can be observed in brain 

impairments such as schizophrenia, memory impairment, sarcoma tumor (Brennaman, 

Kochlamazashvili et al. 2011; Bartus, James et al. 2012; Berretta 2012; Cui, Freeman et 

al. 2013; Fong, Lamhamedi-Cherradi et al. 2013). 

 

Incorporating 3D cell substrate in in vitro experiments became possible after Elsale and 

Bard’s pioneer experiment in 1972. They used collagen I matrices polymerized in vitro 

to study 3D fibrous network. Since then, 3D scaffolds have become popular for 

studying cell behavior and physiology in a more physical environment. Yet, there are 

only few simple and reproducible protocols to generate stable 3D scaffolds compatible 

for stem cell cultures. 

 

1.4.2 Biomaterials for tissue engineering 

The aim of tissue engineering is to develop biocompatible materials to restore, maintain 

and improve human health (Vacanti 1993). A biomaterial is any material, substrate or 

compound that interacts with a biological system. They can be natural polymers, 

including collagen I, fibrin, matrigel and silk; synthetic polymers, such as polyglycolic 

acid, polylactic acid and polyethylene glycol; or ceramics, metals and semiconductors 

(Widhe, Bysell et al. 2010). The advantage of natural materials is their biomimetic 

properties. However, the unknown composition and having animal or cancer origin, 

does not allow for full experimental control. Synthetic substrates allow tailor made 

design and structure characterization depending on the requirements.  

 

Early steps in the biomaterials field, were initiated by Romans, Chinese and Aztecs 

more than 2000 years ago where they established the usage of gold in dentistry 
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implants. Nowadays, we take dental, orthopedic and cardiovascular implants for 

granted, just like contact lenses and surgical sutures, even though it took a long time to 

obtain such knowledge.  

 

Depending on the need, biomaterials require specific physical or chemical properties 

eg. flexibility, strength, non-toxicity, and biodegradability. 

 

The alternatives of 3D scaffolds for tissue engineering on the market are vast due to its 

physiological relevance (Pampaloni, Reynaud et al. 2007; Dutta and Dutta 2009; 

Justice, Badr et al. 2009). Its microenvironment can alter the cell phenotype by being a 

stimulus, effecting proliferation, viability and differentiation (Teixeira, Hermanson et 

al. 2010; Wojcik-Stanaszek, Gregor et al. 2011) due to changes in stiffness (Teixeira, 

Ilkhanizadeh et al. 2009), mechanotransduction (Vogel 2006; Hoffman, Grashoff et al. 

2011) or material functionalization (Pashuck and Stevens 2012; Widhe, Johansson et al. 

2013).  In a context dependent manner – cell type, tissue, and organism - we need to 

custom make cell-material interactions. The spatial and temporal control of a cell’s 

physical and chemical niche is an important (Lutolf, Gilbert et al. 2009) driving force 

of biomaterials research (Huebsch and Mooney 2009), presenting a complex range of 

applications in humans (Place, Evans et al. 2009). 

 

1.4.3 Spider silk protein  

Humans have used silk polymers from silkworms and spiders for a long time. About 

5000 years ago, Chinese started farming the silkworm Bombyx mori for cloth 

production and it was boosted in the 18th century by stocking and glove manufacturing. 

Moreover, the extraordinary properties of the nests of orb weaving spiders (Araneidae) 

led to their use in fishing as well as in medical applications, to stop hemorrhage or for 

wound healing. The mechanical and chemical assets of spider silk became of interest 

for regenerative medicine and triggered the production of the recombinant spider silk 

on an industrial scale.  

 

All spiders produce silk in the major ampullate gland that is strong, extensible, 

lightweight, viscoelastic and biodegradable (Omenetto and Kaplan 2010; Eisoldt, Smith 

et al. 2011; Widhe, Johansson et al. 2012). These properties makes spider silk superior 

to most man-made fibers (Table. 4).  
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Material Strength, Gmax 

(GPa) 

Extension εmax Toughness  

(MJ m-3) 

Dragline silk 0.8-1.5 0.15-0.39 96-230 

Bombyx mori silk  0.6 0.18 70 

Tendon collagen 0.15 0.12 7.5 

Kevlar 49 fiber 3.6 0.027 50 

Elastin 0.002 1.5 2 

High tensile steel 1.5 0.008 6 

Table. 4 Tensile properties of the materials, modified from (Omenetto and Kaplan 

2010) 

 

Genetic research revealed variability in silk protein among different species and 

prioritized recombinant silk spidroins production from certain spiders. The solubility of 

silk aggregates allows us to construct different scaffold formats, eg. fibers, meshes, 

films, foams, gels, sponges, textiles and hydrogels that are thermally and chemically 

stable (Omenetto and Kaplan 2010; Widhe, Johansson et al. 2012) (Table. 5) 
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Spider silk formats Features Publication 

Films Smooth surface with small 

granules (∼10µm), 2µm 

thick, coherent and flexible 

Widhe et a., 2010 

Foams Heterogeneous mounds 

and craters (30-200µm in 

diameter), 1-2mm thick 

Widhe et a., 2010;  

Fibers Fiber bundles of varying 

thickness, 0,1-20µm 

irregular grooves and 

ridges  

Widhe et a., 2010; 

Meshes Fiber bundles of varying 

thickness, 10-70µm 

irregular grooves and 

ridges 

Widhe et a., 2010; 

Gels: hydrogels, porous 

sponges 

High water content, 

nonlinear viscoelastic 

material response, low 

stiffness and strength 

Kluge et al., 2008 

Spheres/capsules Stable thin polymer shell Kluge et al., 2008 

Textiles Fibers 10-60µm in 

diameter 

Kluge et al., 2008 

Table. 5 Spider silk biomaterial formats 

 

Moreover, the silk proteins can self-assemble into functional materials (Kluge, 

Rabotyagova et al. 2008; Widhe, Bysell et al. 2010), which make them suitable for cell 

culture experiments. Spider silk proteins thus allow surface modification, eg. addition 

of Arg-Gly-Asp (RGD) peptides, a cell-binding domain that reportedly increases 

oligodendrocyte differentiation; Ile-Lys-Val-Ala-Val peptides (IKVAV) – that 

reportedly stimulates differentiation towards astrocytes (Kluge, Rabotyagova et al. 

2008; Widhe, Johansson et al. 2013). Moreover, spider silk protein could be used as a 

drug delivery carrier, for instance as microcapsules.  
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Previous evidence demonstrated the applicability of spider silk protein in regenerative 

medicine. There is no tissue response to the material: it is well accepted by the host and 

does not cause chronic inflammation (Brown and Phillips 2007; Fredriksson, 

Hedhammar et al. 2009; Rising 2013). Moreover, migration of new cells into the 

wound has been observed.  

 

In the present studies (Paper III and IV), spider silk protein was therefore chosen due to 

its ideal biomaterial properties and satisfactory qualities for regenerative medicine 

(Vepari and Kaplan 2007; Widhe, Bysell et al. 2010). The recombinant spider silk 

(4RepCT) used in the study, was produced by SpiberTM. The protein was obtained from 

the spider Euprosthenops australis, which makes one of the strongest and most 

extensible draglines (Rising, Johansson et al. 2007; Hedhammar, Rising et al. 2008).  
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2  AIMS OF THE THESIS 
 

 

The present thesis focuses on understanding of the molecular mechanisms of stem cell 

differentiation into mature and functional cortical cell populations. The nature and 

structure of the cortex motivated us to verify new materials for stem cell culture and 

perform part of the study in a more physiologically relevant 3D environment. 

 

Specific aims: 

 

o Understanding the mechanisms underlying cell density-dependent BMP4-

mediated differentiation of NSCs (Paper I). 

 

o Understanding the mechanisms underlying BMP4 and Wnt3a-mediated 

neuronal differentiation of NSCs (Paper II). 

 

o Identifying novel biocompatible substrates for efficient culturing of neural stem 

cells (Paper III).  

 

o Generating functional neuronal circuits from neural stem cells on 3D substrate 

generated from recombinant spider silk protein (Paper IV). 
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3  RESULTS AND DISCUSSION 
 

3.1 Paper I: Noggin and Wnt3a enable BMP4-dependent differentiation of 

telencephalic stem cells into GluR-agonist responsive neurons. 

 

Signaling factors such as BMP, Wnt, FGF and Shh regulate spatial and temporal 

development of the telencephalon. In vitro experiments have shown that cortical stem 

cell differentiation relies on signaling as well as on contact dependent mechanisms 

(Tsai and McKaym 2000; Andersson, Duckworth et al. 2011). In both cases the BMP4 

involvement is not well understood.  

 

We investigated BMP4 signaling mechanism on neural stem cells in high-density (HD) 

and low-density (LD) plating. Bone morphogenetic protein 4 (BMP4) stimulation of 

NSCs plated at HD resulted in increased neuronal differentiation. However, NSCs 

plated at LD responded differently, and did not show any increased neuronal 

differentiation but instead significantly increased numbers of mesenchymal smooth 

muscle cells. At both conditions, BMP4 induced astrocytic differentiation. Gene 

expression profiling studies using microarrays 3h after BMP4 stimulation revealed a 

dramatic increase in the expression of the BMP4 antagonist noggin, in addition to 

increased expression of other factors such as the Wnt-signaling inhibitor CXXC5 with 

links to DNA methylation, and Spark like 1.   

 

Studies using noggin inhibitor together with conditioned media experiments indicated 

that noggin was produced by NSCs stimulated with BMP4 and the levels of noggin in 

the media correlated with the seeding density. Theses results suggested that high 

noggin levels in the cell culture media in HD cultures inhibited predominantly the 

mesenchymal differentiation, but did not explain the increase in neuronal 

differentiation. 

 

We further observed differences when NSCs were co-treated with Wnt3a in addition to 

BMP4. Co-treatment resulted in increased yield of mature neurons and their 

physiological activity. Physiological activity was assessed by calcium imaging studies, 

stimulation with ATP and the glutamate receptor (GluR) agonist AMPA. Only around 
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5% of BMP4-induced neurons responded to glutamate receptor (GluR) agonist 

compared to over 25% after BMP4+Wnt3a treatment.   

Ca2+ studies and immunocytochemistry results showed increase neuronal maturation of 

the BMP4+Wnt3a co-treated cells that were expressing markers for postmitotic neurons 

MAP2 and synaptotagmin - a membrane protein of synaptic vesicles.   

 

This study improved our understanding of the roles for BMP4, Wnt3a and noggin in 

telencephalic stem cell differentiation.  It should be noted that noggin and cell contact 

in HD culture are not solely the key factors for the switch between mesenchymal and 

neuronal fate. Certain transcriptional co-factors could be involved as well, such as CBP 

(Wang, Gallagher et al. 2012) that regulates chromatin structure. 

  

The involvement of Wnt3a in the BMP4-induced differentiation to mature and 

functional pyramidal-like neurons emphasized the importance of spatial organization of 

signalling factors, as the complementary expression pattern of BMP4 and Wnt3a in 

vivo, required for proper development of hippocampal pyramidal neurons, thus could 

be at least to an extent mimicked by in vitro administration of the two factors. 
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3.2 Paper II: BMP4-induced neuronal differentiation of cortical stem cells 

involves a Hes6-dependent GABAergic component. 

 

The co-dependence of BMP4 and Wnt3a signaling plays important roles throughout the 

development of the telencephalon. However mechanisms underlying the differentiation 

events still need further investigation. To study the molecular differentiation program 

of cortical development in vitro, we continued to use embryonic cortical stem cells and 

growth factors Bmp4 and Wnt3a that regulate the development of the telencephalon in 

vivo. While our previous study suggested that levels of noggin and other factors may 

inhibit mesenchymal differentiation by BMP4 signaling, the factors or mechanisms 

underlying the increased neuronal differentiation by BMP4 alone and co-treatment with 

BMP4 and Wnt3a remained unidentified. 

 

Whole transcriptome sequencing by RNA-seq of NSCs stimulated with BMP4 or 

BMP4+Wnt3a for 3 weeks showed that markers representing all cortical layers were 

expressed to a significant extent in these cultures (Tbr1, Cux2, Lhx2, Lmo4, Otx1, 

Tle4, Lxn etc). 

  

Moreover, excitatory neuronal markers Glud1, Gria2, Grina, Grm3 were also observed, 

in line with the finding that BMP4 and BMP4+Wnt3a could induced differentiation 

into glutamate receptor agonist-responsive neurons. Surprisingly, markers for inhibitory 

(GABAergic) neurons were also observed in the RNA-Seq (Gabarap, CCK, NPY, 

Dlx5). 

 

To investigate if this gene expression correlated with an increase in GABAergic cells 

we used calcium imaging experiments. While we found few cells to be GABA-

responsive after 2-3 weeks of differentiation, we found a transient population of 

GABA-responsive cells at days 5-7 of treatment which diminished with further 

differentiation.  

 

This observation was validated with gene expression studies that confirmed the 

increased and many times transient expression of genes specific for GABAergic 

neurons: Dlx2, DLX5, CCK, NPY, GAD1. 
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To investigate the factors underlying the facilitated neuronal differentiation after BMP4 

and BMP4+Wnt3a treatment in more general terms, we first investigated the expression 

of REST, a DNA binding protein and a well known transcriptional repressor of 

neuronal genes. The expression of REST, however, did not correlate with neuronal 

differentiation (Hermanson 2008). Although REST is a well-studied factor, it is well-

known from the literature that many different factors can influence balance between 

intrinsic development and niche formation, resulting in changing of the cell fate 

(Bartkowska, Paquin et al. 2007; Miller and Gauthier 2007; Wang, Weaver et al. 2010; 

Wang, Gallagher et al. 2012; Tsui, Vessey et al. 2013). 

 

To further focus on the mechanisms underlying BMP4 or BMP4+Wnt3a involvement 

in the GABAergic differentiation, we implicated siRNA-mediated knockdown of Dlx5, 

identified in the RNA-Seq experiments, and Spark like 1, identified in the early 

microarray experiments, but no differences in GABAergic gene expression were 

observed after such knockdowns compared to control cultures (Itaba-Matsumoto, 

Maegawa et al. 2007) (Gongidi, Ring et al. 2004)  

 

We noted an enrichment in the neurogenic bHLH-factor Hes6 (Jhas, Ciura et al. 2006; 

Methot, Hermann et al. 2013) in our RNA-Seq experiments, and a temporal study of 

the expression of Hes6 at several points after BMP4 and BMP4+Wnt3a treatment 

revealed a reproducible increase with around 100% of Hes6 mRNA compared to 

control cultures. Indeed, Hes6 siRNA knockdown resulted in a decrease in the 

expression of GABAergic associated genes (Dlx2, Gad1) after 24h treatment with 

BMP4 or BMP4+Wnt3a. 

 

Hes6 pro-neurogenic involvement in cortical GABAergic neuron differentiation in in 

vitro cell cultures highlighted the importance of niche signaling. For further 

understanding of GABAergic cells growth during development available animal 

models could be used. This will elicit our understanding of human diseases related to 

the cortical malformations such as microcephaly and lissencephaly.  
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3.3 Paper III: Recombinant spider silk matrices for neural stem cell cultures. 

 

The mechanical and physical properties of recombinant spider silk protein suggest it to 

be an ideal biomaterial. We decided to conduct biocompatibility studies and culture 

NSCs on spider silk protein (4RepCT) to determine the possible application of 

substrate usage in preclinical therapeutic application.  

 

In standard/control experiment, NSCs are cultured on culture plates pre-coated with 

Poly-L-ornithine (P) and fibronectin (F). Plates with 4RepCT were initially pre-coated 

similar to controls, but also not pre-coated, only rinsed twice with PBS and pre-

incubated with DMEM/F12 media at 370C, were used. 

Surprisingly, we found that 4RepCT substrate is as efficient to culture NSCs in 2D 

without any additional coating. Since the recombinant spider silk protein, generated as 

a thin “film” substrate, did not cover the whole petri dish, we noted a sharp line of 

NSCs on the edge of the spider silk substrate but no NSCs grew on the uncoated 

polystyrene plastic. The result suggested that the recombinant spider silk protein 

4RepCT generated as a film substrate supported NSC survival and expansion.  

 

NSCs seeded on 4RepCT substrates expanded well in presence of the FGF2 for 48h 

however they appeared to be in lower numbers compared to control. The cells 

expressed nestin that is a well-known marker for undifferentiated NSCs and low 

(astrocytes) or no staining for other markers (neurons and oligodendrocytes) were 

detected. To quantify the observations, we performed proliferation studies with EdU 

assay. Observations showed no changes between the control and experimental matrices 

after 72h-96h, pointing to differences in time for cell adhesion rather than proliferation. 

Cells cultured on spider silk substrates showed no significant differences in cell 

viability compared to control in Live/Dead assay studies as well as through 

microscopic observation under of DAPI stained cells, presenting condensed or pyknotic 

nuclei.  

 

To investigate whether the NSCs retained the multipotent phenotype when grown on 

4RepCT film structures, we stimulated the cultures with various differentiation-

inducing factors. NSCs stimulated with CNTF differentiated into astrocytes on 4RepCT 

similar to controls. Similarly, NSCs stimulated with BMP4 or BMP4+Wnt3a on 
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4RepCT showed neuronal differentiation potential as efficient as the controls as 

assessed by markers and morphology. 

 

NSCs stimulation with T3 for 7 days to obtain oligodendrocytes on spider silk protein 

showed lower proportion (p<0.05) of MBP+ cells compared to control matrices.  

 

As efficient as in standard protocols, biocompatibility of spider silk protein with NSCs 

opens new frontiers towards novel biocompatibility applications for other types of stem 

cells, such as embryonic stem (ES) and induced pluripotent stem (iPS) cells. It should, 

however, be noted that the underlying mechanism for the survival and self-renewal of 

the NSCs demonstrated when grown on uncoated 4RepCT structures is still unknown. 

It is tempting to hypothesize that the 4RepCT substrate stimulated the NSCs to produce 

extracellular matrix components allowing attachment to the scaffold. Future 

experiments may investigate whether 4RepCT exposure triggers changes in gene 

expression in the undifferentiated NSC population. 

 

Substrates generated from recombinant spider silk protein, such as 4RepCT, are 

incredibly strong and modifiable, and offer a variety of possibilities to generate new 

structures such as 3D sponges for stem cell culture and pre-clinical optimization 

studies. Spider silk protein features and NSCs applicability in medical and therapeutic 

application such as drug screening make those an ideal tool for regenerative medicine 

studies (Rising 2013). Usage of spider silk protein in cell culture studies has been a 

growing trend. New formats of material design – foams, hydrogels – as well as other 

promising properties, strengthens its application in regenerative medicine studies. 
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3.4 Paper IV: Building brains in spider webs: Stem cell-derived GluR- agonist 

responsive neurons grown in 3D matrices of recombinant spider silk protein. 

 

The two dimensional structure (2D) of cell culture dishes create obstacles for neuronal 

outgrowth, axonal branching, cell-cell interactions and cell-ECM interactions. Further, 

its mechanical and physical properties do not mimic the in vivo environment. The 

future of regenerative medicine relies on 3D-designed biomaterial substrates that reflect 

the in vivo environment. Moreover, it is important to use 3D scaffolds in preclinical 

application for better understanding of the ontogeny of neurons, signaling mechanisms 

and cell activity (Schmeichel and Bissell 2003; Nam, Onodera et al. 2010; Ribeiro, 

Vargo et al. 2012). 

 

We therefore investigated the physiological activity of NSCs differentiated with BMP4 

and BMP4+Wnt3a for 3 weeks on 3D scaffolds generated from recombinant spider silk 

protein (4RepCT) and shaped in a “foam” (sponge-like) structure. These experiments 

showed an increased Ca2+ activity of AMPA-responsive neurons differentiated on the 

3D 4RepCT matrix. NSCs treated with Bmp4+Wnt3a on foam were in average actually 

two times more active than on plastic, although the variation of the results excluded 

statistical significance. 

 

Immunocytochemistry studies revealed a 37% increase in mature MAP2+ neurons 

differentiated with BMP4+Wnt3a on 3D spider silk protein compared to cells cultured 

on 2D polystyrene plates. During BMP4 differentiation, we observed a 43% increase of 

neurons cultured on foam compared to plastic. 

 

Our data highlight the possibilities of 3D substrates in enhancing differentiation and 

possibly the formation of neuronal networks in vitro. Moreover we further believe that 

a 3D substrate microenvironment promotes the neuronal activity, cell-cell interactions 

and cell-ECM interactions, which result in cell morphology and function closer to the 

one observed in vivo. It is possible that this 3D approach could help us understand 

several diseases that involve dysfunctional neuronal networks such as mood related and 

other psychiatric disease and apply this technique in drug screening to improve 

treatment in personalized medicine. 
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4 MATERIALS AND METHODS 

 

Stem cell culture 

Neural stem cells (NSCs) were isolated from cerebral cortices of timed pregnant 

Sparque Daley E15 rat embryos and cultured as described before  (Brunkhorst et al., 

2005; Hermanson et al., 2002; Johe et al., 1996). Briefly, NSCs were mechanically 

dissociated in well-defined, serum free DMEM/F12 medium (Gibco) enriched with N2 

supplements. Cells were seeded in adherent monolayers on dishes pre-coated with 

poly-L-ornithine and fibronectin (Sigma-Aldrich). Cells used in the experiments were 

from the second passage at a density of 10 000cells/cm2  (high density) and 500 

cells/cm2  (low density). The cells were maintained in proliferative state and/or 

expanded using 10ng/ml FGF2 (R&D). During differentiation, FGF2 was withdrawn 

from the culture and replaced with differentiation factors: BMP4 -/+ Wnt3a (R&D, 

10ng/ml) to obtain neurons; CNTF (R&D, 10ng/ml), T3 for astrocytic differentiation 

(R&D, 10ng/ml) and FBS to obtain smooth muscle (Sigma-Aldrich). Cultures were 

treated with BMP4 and CHAPS (Wnt3a control, Sigma-Aldrich) then growth factor(s) 

were added every 24h while fresh media was replaced every 48h. 

 

Ethical protocols 

Northern Stockholm’s animal research ethics committee granted ethical permission for 

all experiments including tissues and animals. 

 

siRNA knowdown by nucleofection 

Neural stem cells were nucleofected using ON-TARGETplus rat siRNA smartPOOL 

(Thermo Scientific). Experiment was performed with a Nucleofector (LONZA) using 

Rat NSC nukleofector kit (cat: # VPG 1005) according to manufacturer’s instructions. 

Cells were expanded to 90% confluency and 2 x 3 x 100 mm plates were used per 

nucleofection. Cells were nucleofected with 1-3 ug of siRNA (depending on siRNA) 

using program A-33. Thus, 10’000 cells / cm2 were seeded with FGF2 for 24h before 

the differentiation starts, followed by collection at time points of interest. Control 

siECEFP experiments with same siRNA concentration of interest were performed to 

each experiment then used for results normalization. Titration of siRNA was performed 

at the beginning to assess the optimal concentration and efficiency of nucleofection was 

measured by gene expression for each independent experiment.  
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Immunocytochemistry 

Cell cultures were rinsed once in Phosphate-Buffered Saline (PBS) 

(Sigma-Aldrich) and then fixed with 10% Formalin (Sigma-Aldrich) for 20 min at 

room temperature (RT) followed by permeabilization for 3 X 5 min with PBS/0.1% 

Triton-X 100 (Sigma Aldrich). Primary antibodies were diluted in PBS/0.1% Triton-X 

100/1% bovine serum albumin (BSA; Sigma Aldrich) then incubated overnight at 4°C. 

Primary antibodies sources and dilutions were as follows: rabbit polyclonal anti-glia 

fibrillary acidic protein (GFAP; 1:500; DAKO), mouse monoclonal anti-Neuronal 

Class III B-Tubulin (TuJ1; 1:500; Covance), mouse anti-intermediate filament protein 

nestin (1:500; BD Pharmingen), rat anti-MBP monoclonal (MAB386; 1:250; 

Chemicon). The cells were washed 6 X 5 min each with PBS/0.1% Triton-X 100. 

Secondary antibodies were incubated in PBS/0.1% Triton-X 100/1% BSA at room 

temperature for 1h. Secondary antibodies were species-specific labeled with Alexa-488 

or Alexa-594 (1:500; Molecular Probes). Next, the samples were washed 3 X 5 min 

each in PBS and mounted with Vectashield including DAPI (Vector Laboratories, Inc) 

or excluding DAPI. Fluorescent images were acquired with Axioskop software using 

Zeiss Axioskop2 microscope coupled to an MRm (Zeiss) camera at a 10X and 20X 

magnification. 

 

Viability assay 

After second passage, NSCs were seeded at a density of 10’000cells/cm2 in 35 mm 

plates pre-coated dishes and expanded in N2 media + FGF2 for 24h. The NSCs were 

then differentiated with BMP4 or BMP4+Wnt3a for 5, 7 and 14 days. Cell viability was 

assessed using a Live/Dead kit on 35mm dishes (Cat: #04511, Sigma). Briefly, NSCs 

were washed twice with RT PBS and a control setup incubated with 70% ethanol was 

used in parallel to each experiment. NSCs were incubated with 500 µl of 10x (Ethidium 

bromide + Calcein in PBS) solution for 5 min at 37°C then rinsed shortly with RT PBS. 

Quantification of the dead cells relative to the number of live cells from five 

independent locations on each plate was calculated manually and presented as mean 

with +/-S.E.M. 

 

Proliferation studies 

EdU assay. NSCs were incubated for 30 min in EdU (Click-iT EdU Kit, Invitrogen) 

according to manufacturers recommendations. Briefly, NSCs were fixed for 20 min 
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with 10% formalin, permeabilized 3 X 5 min with 0.5% Triton-X 100 followed by two 

washes in PBS with 3% BSA. 0.5 ml Click-iT reaction cocktail (1X Click-iT reaction 

buffer, CuSO4, Alexa Fluor azide, reaction buffer additive) was added to each well 

followed by 30 min incubation at RT. Finally, cells were washed twice with PBS, 

stained 10 min with Hoechst then mounted for visualization. Quantifications of the 

fractions of EdU-positive cells relative to the number of Hoechst-stained cells was 

presented on a chart as a mean with +/- S.E.M. 

 

BrdU assay. 50µM Bromodesoxyuridine (BdrU, BD PharmigenTM) was added to cells 

media and incubated for 1h at 37°C followed by media aspiration, two washes with 

PBS (Gibco) and fixation with 10% Formalin (Sigma-Aldrich) for 20 min at room 

temperature (RT). Next, cells were washed 3 X 5 min with cold PBS and incubated on 

a shaker 60 min in 1 M HCl at RT. Further, plates were washed twice with PBS, 

permeabilized for 3 X 5 min with PBS/0.1% Triton-X 100 (Sigma-Aldrich) then 

incubated with primary anti-BrdU antibody (Abcam, 1/500 cat: # 6326) in PBS/0.1% 

Triton-X 100/1% bovine serum albumin (BSA; Sigma-Aldrich) overnight at 4°C. 

Subsequently, six washes 5 min each with PBS/0.1% Triton-X 100 and secondary 

antibodies incubation in PBS/0.1% Triton-X 100/1% bovine serum albumin (BSA; 

Sigma-Aldrich) for 1h at RT. Secondary antibodies were washed out 3 X 5 min with 

PBS and cells were covered with mounting media Vectashield including DAPI (Vector 

Laboratories, Inc). Fluorescent images were acquired with Axioskop software using 

Zeiss Axioskop2 microscope coupled to an MRm (Zeiss) camera at a 10X and 20X 

magnifications. . Quantifications of the fractions of BrdU-positive cells relative to the 

number of DAPI-stained cells was presented on a chart as a mean with +/- S.E.M. 

 

RNA isolation and quantitative/semi quantitative RT-PCR 

RNA was isolated using RNeasy kit (Qiagen) standard protocol. DNA contamination 

was removed using RNase free DNase I (Qiagen). First strand cDNA was obtained 

using High Capacity cDNA Reverse Transcription kit (Applied Biosystems). For 

quantitative RT-PCR, Platinum SYBR green mix (Invitrogen) was used and run on 

Applied Biosystems 7300 Real Time PCR system . Primers used for the quantitative 

RT-PCR were designed to span introns whenever possible. To further exclude DNA 

contamination, -RT (no reverse transcriptase) samples were done as controls. Data were 

analyzed using standard curve method and house keeping TATA-binding protein 

 (TBP) was used to normalize the results for each experiment.  
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Gene expression profiling using whole genome transcriptome (RNA-Seq) approach. 

Total RNA was extracted from NSCs stimulated with BMP4 or BMP4+Wnt3a for 3 

weeks. We used the TrueSeq RNA sample Preparation kit (Catalog # RS-122 2001) to 

generate mRNA libraries from total RNA. Triplicates of each sample were sequenced 

and analyzed by Solexa/Illumina Hi-seq. After pre-filtering the raw data by removing 

sequenced adapters and low quality reads, the sequence tags were aligned to the rat 

genome (rn4) with Bowtie alignment tool (Langmead, Trapnell et al. 2009). We used 

rpkmforgenes program to estimate the expression of each gene. 

 

Statistics 

For every experiment in all studied conditions, 5 random pictures obtained at 

20X magnification with the Zeiss Axioskop2 microscope were picked for manual 

quantification. The nucleus was stained with DAPI/Hoechst, each micrograph depicted 

around 150 to 1000 cells in fields of a diameter of around 500 mm. GraphPad Prism 4.0 

(GraphPad Software, San Diego, California) was used for statistical analysis of the 

data. One-way ANOVA followed by unpaired t-test were used for cell counts in wells. 

P-values < 0.05 were considered significant. 

 

Production of protein matrices 

The recombinant miniature spider silk protein 4RepCT was produced in Escherichia 

coli and purified as described previously (Hedhammar, Rising et al. 2008) including 

depletion of lipopolysaccharides (LPS). The protein was purified and sterilized by 

passage through 0.22 mm filter and concentrated to 3 mg/mL by ultrafiltration (Amicon 

Ultra, Millipore) before preparation of matrices. The protein was assembled in two 

different formats: film and foam (Widhe, Bysell et al. 2010). The matrices were air 

dried over night at RT under sterile conditions and stored at RT. Before the matrices 

were used in experiments they were washed twice with sterile PBS and pre-incubated 

with serum-free DMEM:F12 media (Gibco) for 1 h at 37 °C with 5% CO2. For more 

detail information about surface morphology, scanning electron micrographs and in 

depth analysis of the substrates, please see (Widhe, Bysell et al. 2010). 

 

Calcium recordings 

All Calcium measurement experiments on neurons and astrocytes derived from NSCs 

were carried out in Kreps-Ringer buffer with or without Ca2+ at 37°C in a heat-
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controlled chamber (Warner Instruments). Cells were incubated with Ca2+sensitive 

fluorescence indicator Fluo-3/AM (5 µM, Life Technologies) mixed with 0.1% 

Pluronic f-127 (Life Technologies) in Krebs solutions. The solution was added for 20 

min to the cells medium at 37°C. All Ca2+measurements were carried out in Krebs-

Ringer with a cooled EMCCD QuantEM 512:SC camera (Photometrics) combined 

with an upright microscope (Zeiss Axio Examiner.D1) set with a W-Plan apochromat 

20X/1.0 objective (Carl Zeiss). Filter wheel (Sutter Instrument) was used to obtain 

excitation at 495 nm at sampling frequency 0.5 Hz. MetaFluor (Molecular Devices) 

was used to control all devices and to analyze acquired images. Cells were constantly 

perfused (1 ml/min) with Krebs–Ringer's solution using a peristaltic pump (Ismatec). 

The drugs used for Ca2+ recordings were AMPA (10 μM; Tocris) and ATP (10 μM; 

Sigma) and applied in the bath as describe in previous protocol (Andersson, 2011). The 

MATLAB (The MathWorks Inc.) software was used to determinate response to AMPA 

and ATP as described previously (Uhlen, 2004). Response more then 30% compared 

with the baseline was considered as a response. 
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5  CONCLUSIONS 
 

- BMP4-mediated differentiation of NSCs involved a regulation of the BMP-inhibitor 

noggin that may underlie the different outcomes of BMP4-stimulation in low versus 

high density-seeded cultures. (Paper I)  

 

- Wnt3a acted with BMP4 in a synergistic way in neuronal differentiation process, and 

increased the fraction of glutamate receptor agonist-responsive neurons in NSC 

cultures. (Paper I) 

 

- BMP4 treatment of NSCs further induced a GABAergic differentiation event with or 

without Wnt3a that required intact expression of the neurogenic transcription factor 

Hes6. (Paper II) 

 

- Matrices generated from recombinant spider silk protein were found to be almost 

completely biocompatible with NSC cultures, with or without coating of extracellular 

matrix proteins, and except for a slight negative effect on oligodendrocyte 

differentiation, NSCs seemed to retain full differentiation potential when expanded on 

these substrates in the presence of FGF2. (Paper III) 

 

- 3D matrices generated from recombinant spider silk protein provided an excellent 

substrate for BMP4+Wnt3a-mediated differentiation of NSCs into functional neurons. 

(Paper IV) 

 

We propose that the improved technical protocols and increased understanding for 

BMP4-mediated differentiation of NSCs in vitro will contribute to improved models for 

drug development. For example, NSCs derived from patients (e.g., by iPS cells) can in 

relatively short time form neuronal 3D circuits that possibly more reliably and 

accurately mimic neuronal activity in vivo. We aim at in the very near future investigate 

the appropriateness of the spider silk-based 3D NSC cultures and BMP4+Wnt3a-

induced neuronal cultures in vivo by transplantations in animal models of stroke and 

irradiation damage. 
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