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ABSTRACT 
 

The human brain incessantly receives a staggering amount of information from all our 

senses. The dynamic integration of relevant multisensory signals is an evolutionarily optimal 

strategy to assist adaptive behavior. Arguably, one physical object stands out as the unique 

recipient of internal and external multisensory signals alike: the body. Recent progress within 

neurology, psychology, and neuroscience has emphasized the role of multisensory mechanisms 

in the construction of a coherent neural representation of the body and its surrounding space. In 

turn, this representation supports essential defensive and goal-directed behaviors, facilitates the 

processing of incoming sensory signals, and may lead to the emergence of the feeling of 

ownership of the body, a foundation of self-awareness. However, the experimental accounts of 

the neural mechanisms underlying the construction of this central multisensory representation 

of the body and its link to self-perception remain unclear. 

 

The aim of the work presented in this thesis was to employ functional magnetic resonance 

imaging to pinpoint the neural multisensory representation of the hand and the space around it. 

Furthermore, this thesis aims at relating these multisensory mechanisms to the self-perception 

of the hand through the interpretation of converging behavioral, neural, and physiological 

measures. In Studies I, II, and V, we used a combination of ecologically valid paradigms and 

setups based on virtual reality technology to characterize a set of interconnected premotor, 

posterior parietal, and subcortical regions that integrate congruent visual, somatosensory, and 

proprioceptive signals from the upper limb. Furthermore, we provided evidence for the idea that 

the representation of the hand forms multisensory predictions about self-specific incoming 

sensory events. In Studies III and IV, we implemented an fMRI-adaptation paradigm to gain 

evidence of the existence of neuronal populations in the hand-related multisensory areas with 

visual receptive fields restricted to the space close to the hand and anchored to the upper limb.  

 

Complementary neural, behavioral, and physiological measures consistently related these 

multisensory mechanisms to the feeling of ownership of the hand, which is contingent upon the 

spatio-temporal congruence of multisensory signals within the perihand space. In conclusion, 

the experiments presented in this thesis describe a set of multisensory brain regions that draw 

from multiple sensory modalities to build a self-specifying representation of the hand and the 

space around it. These results are interpreted with respect to earlier findings in non-human 

primates and humans, and the key functions of this representation, including its role in 

supporting essential behaviors and the multifaceted self-perception of the hand.  
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1 LAYPERSON’S SUMMARY 
 

Few things are as entrenched in our perceptual experience of the world as our 

physical body. The hand is the most common vehicle for our interactions with others 

and with the environment, and yet we don’t often find ourselves consciously pondering 

the question of just how it is that we experience the hand as belonging to our body. 

Likewise, we don’t consciously perceive any boundary between the space close to our 

hands, where we routinely interact with objects, and the space outside of our reach. 

Nonetheless, these questions represent computational problems that the human brain 

has to solve in order to support some evolutionarily crucial aspects of our physical 

existence, such as protecting the body from potential threats and interacting with other 

individuals and with the environment.  

 

The work presented in this thesis is a modest attempt to provide experimental 

evidence in support of theoretical models that explain how the human brain might solve 

these problems. The focus of the work presented here is on the idea that the brain 

continuously combines information from our senses (like vision, touch, and the sense 

of position) to construct and dynamically update a model of the hand and the 

immediate space around it. In turn, this model helps us predict and interpret incoming 

sensory information, guides actions performed with the hand, and possibly even leads 

to the emergence of the feeling of “ownership” of the hand. To test these ideas, we used 

functional magnetic resonance imaging, together with behavioral and physiological 

techniques, to non-invasively measure brain activity in healthy humans evoked by 

sensory stimuli delivered to their right hand and the immediate space around it.  

 

In a series of experiments, we consistently found that the integration of information 

from multiple sensory modalities (i.e., “multisensory” information) underpins the 

construction of a model of the hand and the space around it. Furthermore, our results 

suggest that the feeling of ownership of the hand relies on multisensory signals that 

correspond in time and space, and on the predictions that the brain makes about 

incoming sensory information. These results are important as they contribute to our 

understanding of some fundamental aspects of the experience of our physical self and 

of the clinical conditions in which this experience is significantly disrupted. 
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2 INTRODUCTION 
 

At any given time, the human brain receives a staggering amount of information 

from our senses. The ability to filter and process the sensory signals that are relevant 

for behavior is an essential requirement for any living organism. The combination of 

the inputs to multiple sensory channels is an evolutionarily optimal strategy to facilitate 

adaptive behavior, as implied by the ubiquity of multisensory processes across species, 

including insects (Hengstenberg, 1993; Gilbert and Kuenen, 2008; Frye, 2010), fish 

(González et al., 1999; Gardiner and Atema, 2007; Sankrithi, 2010; Gardiner and 

Motta, 2012), birds (Korzeniewska, 1987; Reches and Gutfreund, 2009; Zahar et al., 

2009), rodents (Fortis-Santiago et al., 2010; Cohen et al., 2011; Gleiss and Kayser, 

2012; Ravassard et al., 2013), cats (Meredith and Stein, 1986; Stein and Stanford, 2008; 

Perrault et al., 2012), non-human primates (Rizzolatti et al., 1981a, 1981b; Duhamel et 

al., 1998; Graziano et al., 2000; Avillac et al., 2005), and humans (Calvert et al., 2004; 

Ernst and Bülthoff, 2004; Driver and Noesselt, 2008; Murray and Wallace, 2012).  

 

Multisensory processes are such a pervasive feature of neuronal processing that 

scientists contemplate whether the entire cortical apparatus is essentially multisensory 

(Ghazanfar and Schroeder, 2006; Driver and Noesselt, 2008). In the midst of our 

multisensory perceptual experience of the world, one physical object stands out as the 

unique locus of convergence of sensory signals: the body (James, 1890; Merleau-Ponty, 

1962; Gibson, 1986; Graziano and Botvinick, 2002; Gallagher, 2006; Heed and Röder, 

2012). Evolution has empowered the brain’s sensory structures with what is arguably 

the most critical aspect of adaptive behavior: the ability to efficiently identify one’s 

own body in the environment. The distinction between the body and the environment is 

a sine qua non prerequisite for evolutionarily relevant behaviors like the protection of 

the body from potential threats (Graziano and Botvinick, 2002) and the ability to 

interact with objects and other individuals (van den Bos and Jeannerod, 2002; Ernst and 

Bülthoff, 2004; Stein and Stanford, 2008), but likely extends, based on converging 

developments in both philosophy and experimental science, to the very foundation of 

our experience as a unified entity in the world (Merleau-Ponty, 1962; Gibson, 1986; 

Bermudez, 1998; Jeannerod, 2004; Gallagher, 2006; Ehrsson, 2007; Blanke and 

Metzinger, 2009; Frith, 2013). 
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Recent developments in psychology and cognitive neuroscience have identified the 

body’s unique status as the locus of convergence of multisensory signals as the origin 

of the mechanisms that support the construction of the corporeal experience of oneself 

in the world (Merleau-Ponty, 1962; Jeannerod, 2004; Gallagher, 2006; Blanke, 2012; 

Ehrsson, 2012). For instance, these theories posit that specific patterns of multisensory 

correlations enable the brain to distinguish the body from the environment (Graziano 

and Botvinick, 2002; Makin et al., 2008) and to discriminate self-initiated actions from 

the motor behavior of others (Blakemore et al., 1998; van den Bos and Jeannerod, 

2002; Jeannerod, 2004; Frith, 2012). Thanks to recent breakthroughs in clinical 

neuropsychology, experimental psychology, and cognitive neuroscience, a consensus 

has emerged for the key role of multisensory mechanisms in leading to the emergence 

of the “feeling of ownership” or “self-attribution” of one’s physical body (Botvinick 

and Cohen, 1998; Ehrsson et al., 2004; Petkova and Ehrsson, 2008; Tsakiris, 2010; 

Blanke, 2012; Ehrsson, 2012), defined as the perceptual experience of the body as 

belonging to oneself, which represents a key feature of self-consciousness.  

 

The above considerations advocate the existence of multisensory mechanisms that 

enable the brain to construct, maintain, and update a central representation of the body. 

This representation draws from multiple sensory modalities, like vision, touch, and the 

sense of position, to support essential behavior, including but not limited to defensive 

and goal-directed interactions with environment. Furthermore, there are strong reasons 

to believe that this multisensory representation of the body may serve as the platform 

for the emergence of higher-level features of the perceptual experience of the body, like 

the conscious feeling of ownership or self-attribution of the body. Despite the evidence 

that has been gathered to portray the scenario illustrated above, the investigation of the 

neural mechanisms underlying the multisensory representation of the body in the brain 

and its link to the self-perception of the body is a surprisingly recent scientific endeavor 

within cognitive neuroscience (Blanke, 2012; Ehrsson, 2012; Heed and Röder, 2012). 

 

The work presented in this thesis is a modest attempt to provide evidence in support 

of theoretical models that attempt to explain how the brain combines information from 

the different sensory modalities to build and maintain a coherent representation of the 

body that supports essential behavioral functions. Furthermore, the work presented here 

aimed at providing experimental support for the notion that the successful integration of 

information from multiple sensory modalities leads to the emergence of the unified 
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self-perception of one’s own body. The object of investigation throughout this thesis is 

the human hand, which serves as an excellent experimental model for converting the 

above ideas into testable hypotheses. The functional significance of the plethora of 

behaviors that are mediated by the hands (Ehrsson et al., 2000; Rizzolatti and Luppino, 

2001; Graziano and Botvinick, 2002; Fogassi and Luppino, 2005; Culham and Valyear, 

2006; Johansson and Flanagan, 2009) is mirrored by the disproportionally large 

resources that the central nervous system devotes to the representation of the hands, as 

opposed to other parts of the body (Penfield and Jasper, 1954; Anon, 1996; 

Mountcastle, 2005; Wilson, 2010). Accordingly, the available evidence that motivated 

the work presented in this thesis is most abundant for the upper limbs than for other 

body parts, permitting the formulation of more specific hypotheses. In the following 

sections, I will synthesize the evidence in favor of the existence of a central 

multisensory representation of the hand that draws from the sensory signals from the 

upper limb and its surrounding space, and how these mechanisms might be related to 

the self-perception of the hand. The following section will begin with a summary of the 

neurophysiological literature that has characterized the multisensory mechanisms for 

the integration of sensory signals from the body and the space around it. Next, I will 

bring together evidence from clinical neuropsychology, behavioral, and neuroimaging 

research in healthy and diseased humans to provide an overview of the current 

knowledge about equivalent multisensory mechanisms in the human brain. In the 

process, I will outline the outstanding open questions that have been translated into the 

specific hypotheses behind the work presented in the thesis. 

 

2.1 MULTISENSORY INTEGRATION: IT ALL STARTED WITH THE CAT’S 
SUPERIOR COLLICULUS 

 
The neuroscientific investigation of the neurophysiological mechanisms underlying 

multisensory integration began with a series of seminal studies of the cat’s superior 

colliculus, a subcortical structure known to play an important role in the sensorimotor 

guidance of behavior (Meredith and Stein, 1986, 1996; Stein and Stanford, 2008; 

Perrault et al., 2012). These studies characterized individual neurons with receptive 

fields in multiple sensory modalities, such as vision, audition, and somatosensation. 

The convergence of information from different sensory channels onto the same nerve 

cells provides a neural substrate for the dynamic integration of the senses, an essential 

requirement for the coordination of ecologically relevant behavior (Ernst and Bülthoff, 
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2004; Stein and Stanford, 2008). The neuronal computations performed by these 

neurons in the superior colliculus have been examined primarily by comparing the 

electrophysiological responses to unisensory signals with the firing rates evoked by 

multisensory stimuli. This has revealed the ability of individual multisensory neurons to 

combine unisensory signals in a variety of operational modes, including linear and non-

linear combinations of the inputs (Meredith and Stein, 1996; Stanford and Stein, 2007; 

Stein and Stanford, 2008). Specifically, additive or subadditive multisensory response 

profiles are characterized by firing rates evoked by multisensory stimuli that do not 

exceed the algebraic sum of the firing rates evoked by the unisensory stimuli presented 

in isolation. Conversely, non-linear (superadditive) firing rates to multisensory stimuli 

significantly exceed the sum of the firing rates evoked by the unisensory stimuli. 

 

The dynamic electrophysiological properties of these neurons, together with the 

spatial alignment of their multisensory receptive fields, enable the efficient filtering of 

afferent sensory information, facilitating the selection of the behaviorally relevant 

signals that are to be integrated. A number of key principles have emerged that regulate 

the neuronal integration of multisensory signals (Stein and Stanford, 2008). The 

temporal principle refers to the increased likelihood for multisensory signals to be 

combined if they occur within a restricted temporal window, whereas the spatial 

principle points to the enhanced integration of signals originating from a common 

region of space. Furthermore, the principle of inverse effectiveness posits that the less 

effective the individual unisensory signals, the greater the behaviorally significant 

advantage obtained from their integration. These principles, first outlined through the 

electrophysiological classification of single neurons in the anesthetized cat’s superior 

colliculus, have been extended to the exploration of multisensory mechanisms in many 

neuroscientific disciplines, playing a pivotal role in experiments ranging from 

neurophysiological studies in non-human primates to behavioral, neuropsychological, 

and neuroimaging research in humans (Ernst and Bülthoff, 2004; Holmes and Spence, 

2005a; Driver and Noesselt, 2008; Murray and Wallace, 2012). 

 
2.2 INSIGHTS FROM NEUROPHYSIOLOGICAL RESEARCH IN NON-

HUMAN PRIMATES 

 
Of particular relevance to the hypotheses that motivated the research presented in 

this thesis are the insights obtained from neurophysiological studies of multisensory 
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integration in non-human primates. In particular, the experimental accounts of how 

sensory inputs from the body and its surrounding space are combined in multisensory 

frontal, parietal, and subcortical brain areas played a major role in shaping the 

theoretical framework against which the present experiments were designed and 

interpreted. Over the past few decades, individual neurons have been described in the 

non-human primate’s brain with tactile receptive fields centered on a body part, such as 

the hand or the head, and with visual receptive fields that encompass the space abutting 

it. These multisensory visuo-tactile receptive fields allow individual neurons to be 

responsive to tactile stimuli applied to the corresponding portion of the monkey’s body, 

to afferent proprioceptive signals from the same body part, and to visual stimuli that 

originate in the space surrounding it. These neurons respond preferentially to visual and 

tactile signals that are spatio-temporally congruent, i.e., that occur within a restricted 

temporal window and originate from a common region of the body and the space 

around it (Duhamel et al., 1998; Avillac et al., 2005, 2007), and are sensitive to 

matching visual and proprioceptive signals concerning the position of that body part in 

space (Graziano, 1999; Graziano et al., 2000). Furthermore, the electrophysiological 

responses of these neurons to congruent multisensory signals exhibit linear and non-

linear response profiles that are reminiscent of the multisensory responses found in the 

cat’s superior colliculus (Meredith and Stein, 1996; Stanford and Stein, 2007). Visuo-

tactile neurons with these properties have been described in a number of cortical and 

subcortical areas, including the ventral intraparietal area (VIP) in the depth of the 

intraparietal sulcus (Colby and Duhamel, 1991; Colby et al., 1993a, 1993b; Duhamel et 

al., 1998; Avillac et al., 2005, 2007), in areas 5 (Sakata et al., 1973; Iriki et al., 1996; 

Graziano et al., 2000) and 7b of the inferior parietal lobe (Hyvärinen and Poranen, 

1974; Hyvärinen, 1981), in the upper bank of the superior temporal sulcus (Bruce et al., 

1981, 1986; Desimone et al., 1984), in the premotor cortex (Rizzolatti et al., 1981a, 

1981b; Graziano et al., 1997; Fogassi et al., 1999; Graziano and Gandhi, 2000), and in 

the putamen (Graziano and Gross, 1993). 

 

The visual RFs of these multisensory neurons are usually restricted to the space 

extending from the body surface to approximately 5-30 cm from the location of the 

tactile receptive fields, forming a single responsive unit that encodes the presence of 

sensory stimuli on a body part and the space surrounding it, known as the peripersonal 

space (Rizzolatti et al., 1981a, 1981b; Fogassi et al., 1999). These neurons also receive 

afferent proprioceptive inputs from the corresponding body part, enabling the spatial 
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remapping of the visual RFs when the body part changes position in space (Andersen et 

al., 1997; Graziano et al., 1997, 2000; Graziano, 1999; Graziano and Botvinick, 2002). 

Thus, the multisensory representation of the peripersonal space is body-part-centered, 

i.e., spatially anchored to the body part, constructing a spatial reference frame distinct 

from those centered on other body parts or on retinotopical and allocentric coordinates 

(Rizzolatti et al., 1981a, 1981b; Andersen et al., 1997; Duhamel et al., 1998; Graziano, 

1999; Graziano et al., 2000; Graziano and Botvinick, 2002; Avillac et al., 2005).  

 

The neuronal populations reviewed above form densely interconnected circuits that 

span frontal, parietal, and subcortical areas. Direct and indirect anatomical connections 

have been described between the anterior and medial segments of the intraparietal 

sulcus (Grefkes and Fink, 2005; Culham et al., 2006), parietal areas 2 and 5 (Pandya 

and Kuypers, 1969; Neal et al., 1988; Andersen et al., 1997), the posterior superior 

parietal gyrus (Mountcastle et al., 1975; Iriki et al., 1996; Graziano et al., 2000), the 

inferior parietal cortex (Hyvärinen and Poranen, 1974; Luppino et al., 1999; Luppino 

and Rizzolatti, 2000), the parietal operculum and the insula (Hyvärinen, 1982; Neal et 

al., 1990a, 1990b), the premotor cortex (Rizzolatti et al., 1981a, 1981b; Fogassi et al., 

1999; Graziano and Gandhi, 2000), the putamen (Künzle, 1978; Weber and Yin, 1984; 

Cavada and Goldman-Rakic, 1991; Parthasarathy et al., 1992; Graziano and Gross, 

1993), and the cerebellum (Murphy et al., 1973; Glickstein et al., 1994; Dum and 

Strick, 2003; Ramnani, 2006; Sultan and Glickstein, 2007). All of the above regions 

also receive direct and indirect inputs from early sensory cortices, including tactile, 

visual, and proprioceptive signals (Graziano and Botvinick, 2002), and send direct and 

indirect projections to the motor cortices (Rizzolatti and Luppino, 2001). Thus, the 

multisensory neuronal populations in the above regions are ideally suited to integrate 

sensory inputs from the body and its surrounding space, maintain their receptive fields 

aligned, and serve as a sensorimotor interface for the planning and performance of 

interactions with objects and other individuals in the environment. 

 

What are the main functions of the multisensory circuits described above? Their 

functional and anatomical properties provide the brain with a mechanism to combine 

sensory information from the body and the external world with vital motor functions. 

From an evolutionary perspective, the multisensory representation of the body and its 

surrounding space appears ideally suited to serve as the neural platform for the 

coordination of two essential functions: the protection of the body from external threats 



 

 8 

and the interaction with objects in the environment (Andersen et al., 1997; Graziano 

and Botvinick, 2002; Fogassi and Luppino, 2005; Culham and Valyear, 2006). 

Dodging potential threats directed towards the head or the arms, for example, requires 

that visual information be combined with tactile and proprioceptive signals to map an 

external event in body-centered reference frames. In turn, this triggers the appropriate 

sensorimotor transformations that select, plan, and execute the required motor plan. 

Indeed, the electrical stimulation of multisensory neurons in the non-human primate’s 

brain leads to the initiation of complex movements compatible with defensive acts 

(Graziano et al., 2002; Cooke and Graziano, 2003; Cooke et al., 2003). Furthermore, 

the dynamic ability to encode the location of an object in body-centered coordinates is 

an essential passage in the cascade of the sensorimotor transformations that allow the 

brain to plan and implement a variety of goal-directed actions towards relevant targets, 

such as reaching, grasping, and manipulating objects in the space surrounding the body 

(Andersen et al., 1997; Johansson et al., 2001; Rizzolatti and Luppino, 2001; Graziano 

and Botvinick, 2002; Flanagan and Johansson, 2003; Culham et al., 2006; Brozzoli et 

al., 2012). Intriguingly, the multisensory properties of these neuronal populations may 

also facilitate the use of tools to extend the repertoire of possible actions and project 

motor affordances to what would otherwise be extrapersonal space (Iriki et al., 1996; 

Maravita and Iriki, 2004; Culham and Valyear, 2006; Cardinali et al., 2009b; Valyear et 

al., 2012; Gallivan et al., 2013). The above considerations support the notion that the 

multisensory representation of the body and its surrounding space has developed to 

facilitate evolutionarily essential behavioral functions. What is known about the 

existence of equivalent mechanisms in the human brain? 

 

2.3 NEUROPSYCHOLOGICAL EVIDENCE IN CLINICAL POPULATIONS 

 
Valuable insights on the neural mechanisms underpinning the integration of sensory 

signals from the body and the peripersonal space and its relationship with the self-

perception of the hand come from the neuropsychological literature. By investigating 

the changes in behavior and physiology that are associated with neurological damage to 

specific regions of the human brain, neuropsychologists have gathered evidence that 

has inspired a wealth of behavioral and neuroimaging research in healthy participants. 

The neuropsychological studies that provided the strongest evidence for the existence 

of a selective multisensory representation of the space near the body have capitalized 

on two syndromes known as spatial neglect and extinction (Bender, 1977; di Pellegrino 
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et al., 1997; Làdavas and Farnè, 2004; Brozzoli et al., 2006; Vallar, 2007; Jacobs et al., 

2012; Karnath and Rorden, 2012).  

 

Spatial neglect is a neuropsychological condition typically associated with damage 

in the right posterior parietal lobe and manifesting as reduced awareness and ability to 

process sensory stimuli presented in the hemisphere contralateral to the lesion site 

(Karnath and Rorden, 2012; Newport and Schenk, 2012). Neglect is typically not 

associated with specific deficits in basic sensory processing and affects selectively 

either the space near the body or the extrapersonal space (Halligan and Marshall, 1991; 

Berti and Frassinetti, 2000; Làdavas and Farnè, 2004; Macaluso and Maravita, 2010). 

This advocates the existence of segmented spatial representations that distinguish 

between the peripersonal and the extrapersonal space, a distinction that is typically not 

the object of conscious awareness. The interaction between visual and proprioceptive 

signals that underlies the use of prism adaptation to alleviate some of the symptoms of 

neglect (Rossetti et al., 1998; Redding and Wallace, 2006; Serino et al., 2007; Newport 

and Schenk, 2012) is further evidence in support of the multisensory nature of the 

representation of the body and the space around it that is damaged in patients suffering 

from this syndrome (Làdavas and Farnè, 2004; Jacobs et al., 2012). 

 

Additional evidence for the selective multisensory representation of the hand and its 

surrounding space comes from studies in patients suffering from extinction. In this 

neurological syndrome, lesions affecting the right cerebral hemisphere lead to a loss of 

awareness with respect to sensory stimuli presented in the contralesional side of space, 

only when these are paired with the simultaneous presentation of another sensory event 

in the ipsilateral hemispace (Bender, 1977; Brozzoli et al., 2006; Nachev and Husain, 

2006; Macaluso and Maravita, 2010; de Haan et al., 2012). In other words, the 

conscious perception of a contralateral sensory stimulus is “extinguished” by the co-

occurrence of an ipsilateral sensory event. Crucially, extinction has been to shown to 

extend to the interaction of signals from different sensory modalities, like vision and 

touch, to be restricted to the space near the hand, and to operate in a reference frame 

that is spatially anchored to the upper limb (di Pellegrino et al., 1997; Làdavas and 

Farnè, 2004; Farnè et al., 2005; Sarri et al., 2006; Kennett et al., 2010). These 

neurological observations provide support for the notion that the human brain builds a 

selective representation of the peripersonal space across multiple sensory modalities, in 

agreement with the correspondent mechanisms in the brain of non-human primates 
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reviewed above. What type of neuropsychological evidence links these multisensory 

mechanisms to the self-perception of the body? 

 

The neurological condition known as somatoparaphrenia is an important source of 

evidence supporting the notion that the self-perception of the body is a central construct 

that relies on unimpaired neural circuits (Gerstmann, 1942; Berti et al., 2005; Arzy et 

al., 2006; Vallar and Ronchi, 2009; Feinberg et al., 2010; Blanke, 2012; Ehrsson, 2012; 

Moseley et al., 2012). Patients diagnosed with somatoparaphrenia suffer from 

monothematic delusions of bodily self-perception and report the lack of ownership over 

a contralesional paralyzed body part, denying that it belongs to their own body even if 

confronted with ample evidence that suggests otherwise (Vallar and Ronchi, 2009). 

Somatoparaphrenia is a striking neurological syndrome that goes beyond deficits in 

basic sensory processing (such as hemianesthesia, an impairment in the processing of 

somatosensory stimuli from a contralesional body part) and associated syndromes like 

asomatognosia that are characterized by the temporarily reversible failure to identify 

the contralesional limb as belonging to one’s body (Vallar and Ronchi, 2009; Feinberg 

et al., 2010). Neuroanatomically, somatoparaphrenia and related syndromes have been 

associated with widespread lesions spanning the frontal, parietal, and temporal cortices, 

predominantly in the right hemisphere (Berti et al., 2005; Vallar and Ronchi, 2009; 

Feinberg et al., 2010; Blanke, 2012), though the experimental findings tend to diverge, 

with emphasis been placed on several brain structures, including the right temporo-

parietal cortex (Halligan et al., 1995; Vallar and Ronchi, 2009; Feinberg et al., 2010), 

the right posterior insula (Karnath et al., 2005; Baier and Karnath, 2008; Karnath and 

Baier, 2010; Heydrich and Blanke, 2013), the orbitofrontal cortex (Feinberg et al., 

2010), the premotor cortex (Arzy et al., 2006; Zeller et al., 2011), and subcortical and 

white matter structures (Gandola et al., 2012; Invernizzi et al., 2013).  

 

The description of neuropsychological conditions like spatial neglect, extinction, and 

somatoparaphrenia supports (1) the existence of a multisensory representation of the 

body and its surrounding space, and (2) the notion that the feeling of ownership of 

one’s body is a central construct maintained by the unimpaired state of the higher-order 

association cortices. However, the neuropsychological observations recapped above are 

fragmented, usually involve large lesions that span multiple cortical, subcortical, and 

white matter structures, and are not informative about the specific neural mechanisms 

that are impaired in these syndromes. In light of this, it becomes essential to scrutinize 
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the behavioral and neuroimaging literatures in healthy humans to be able to formulate 

more specific hypotheses concerning the multisensory mechanisms, as well as the 

corresponding brain structures and functions, that support the unimpaired self-

perception of one’s own body. 

 

2.4 BEHAVIORAL EVIDENCE IN HEALTHY HUMANS 

 
Multisensory mechanisms are a pervasive feature of brain function and play a key 

role in facilitating adaptive behavior and shaping our perception of ourselves and the 

environment (Ernst and Bülthoff, 2004; Driver and Noesselt, 2008; Stein and Stanford, 

2008). The associated behavioral literature is vast and spans many domains of cognitive 

science (Calvert et al., 2004; Murray and Wallace, 2012). In the following paragraphs, I 

will summarize the behavioral evidence that is most pertinent to the investigation of the 

mechanisms associated with the integration of visual, tactile, and proprioceptive signals 

from the hand, and how these mechanisms may support the self-perception of the hand. 

 
A behavioral paradigm that has provided valuable insights on the interaction of 

visual and tactile signals from the hand, as well as on the existence of a hand-centered 

representation of the perihand space, is the crossmodal congruency effect (Spence et 

al., 2004b; Shore et al., 2006; Spence, 2011). In the original version of this paradigm, 

the participant receives somatosensory (typically vibrotactile) stimuli at one of two 

different target locations on the hand, and a simultaneous task-irrelevant visual stimulus 

presented in the vicinity of one of the target locations. The behavioral effect, expressed 

as the reaction time to a detection task associated with the spatial location of the tactile 

stimulus, differs significantly between trials in which the task-irrelevant visual stimulus 

is presented at a location congruent, as opposed to incongruent, to the location of the 

tactile stimulus. The crossmodal congruence effect, calculated as the difference in the 

average reaction time between the incongruent and the congruent trials, serves as a 

proxy of the degree of interaction between visual and tactile signals from the hand 

(Holmes et al., 2004; Spence et al., 2004b; Macaluso and Maravita, 2010; Brozzoli et 

al., 2012). The observations that the crossmodal congruence effect decreases as a 

function of the distance between the visual and the tactile stimuli (Spence et al., 2004a), 

and that it operates in a hand-centered coordinate system (Spence et al., 2004b), 

constitute indirect behavioral evidence for the existence of a representation of the space 

close to the hand, restricted in spatial extent and centered on the upper limb (Macaluso 
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and Maravita, 2010; Brozzoli et al., 2012). Furthermore, behavioral research employing 

prism adaptation or mirrors has stressed the role of visual and proprioceptive signals in 

localizing the hand in space, providing additional behavioral evidence in support of the 

existence of a central multisensory representation of the hand that draws from multiple 

sensory modalities (Lackner and DiZio, 2000; Spence et al., 2004b; Holmes and 

Spence, 2005b; Holmes et al., 2006; Snijders et al., 2007) to support behaviorally 

relevant sensorimotor mechanisms. 

 

Recent behavioral evidence has reinforced the notion that visual and tactile stimuli 

in the space near the hand are represented in a reference frame that is centered on the 

upper limb and that serves as a functional interface to guide interactions with objects 

within reach of the hand (Brozzoli et al., 2012; Makin et al., 2012). Using transcranial 

magnetic stimulation, Makin and colleagues described how the appearance of a visual 

stimulus within the space close to the hand modulates the corticospinal excitability in a 

way that is compatible with the automatic generation of a defensive motor program 

encoded in hand-centered coordinates (Makin et al., 2009). This observation provides 

evidence for how the selective representation of objects within the perihand space may 

facilitate protecting the body from incoming threats, in accordance to the analogous 

mechanisms described in non-human primates (Cooke and Graziano, 2003; Cooke et 

al., 2003). Furthermore, Brozzoli and colleagues provided evidence for hand-centered 

visuo-tactile interactions anchored to the planning and execution of grasping actions 

performed with the hand (Brozzoli et al., 2009, 2010), corroborating the putative role of 

the representation of the perihand space as a relevant sensorimotor interface (Graziano 

and Botvinick, 2002; 2012; Makin et al., 2012). The evidence illustrated above informs 

us on the existence of multisensory integrative processes that combine sensory signals 

from the hand and its surrounding space to facilitate behavior. How are these lines of 

behavioral evidence connected to the study of the multisensory mechanisms supporting 

the self-attribution of the hand in healthy humans? 

 

A breakthrough in the behavioral investigation of the multisensory nature of bodily 

self-perception came with the description of a striking perceptual illusion known as the 

rubber hand illusion (Botvinick and Cohen, 1998). In this paradigm, the delivery of 

temporally synchronous tactile stimuli to the participant’s hand, hidden from view, and 

visual stimuli on a rubber hand placed in an anatomically compatible posture in direct 

view of the participant elicits the referral of somatic sensations to the corresponding 
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skin surface of the rubber hand. This is accompanied, in the majority of participants, by 

a subjectively reported feeling of ownership of the rubber hand (Botvinick and Cohen, 

1998). The embodiment of the artificial limb is also associated with a remapping of the 

perceived location of the hand toward the position of the artificial limb, termed 

proprioceptive drift, which ranges between 10 and 20% of the distance between the 

veridical and artificial hands (Botvinick and Cohen, 1998). Furthermore, threats 

directed toward the rubber hand evoke psychophysiological responses that mirror the 

illusory embodiment of the limb (Armel and Ramachandran, 2003; Ehrsson et al., 

2007; Guterstam et al., 2011). The seminal report of the rubber hand illusion offered an 

unprecedented tool to overcome one of the major limitations in the study of the 

psychological and neural mechanisms of bodily self-perception in healthy volunteers, 

that is the challenge of inducing changes in the self-perception of the body in an 

controlled experimental setting.  

 

Since the original report by Botvinick and Cohen, a very large number of behavioral 

studies have been published on the rubber hand illusion paradigm and variations 

thereof. Researchers have characterized in-depth the perceptual rules that govern the 

illusory embodiment of the limb, including the anatomical hand-centered congruence 

between the visual and tactile stimuli (Costantini and Haggard, 2007), the temporal 

window of integration within which the illusion can be elicited (Shimada et al., 2005, 

2009), the spatial boundaries of the illusion (Lloyd, 2007), the humanoid shape of the 

embodied object (Tsakiris et al., 2010a), and so forth. The rubber hand illusion 

paradigm has also been adapted to the investigation of the relationship between 

embodiment and the sense of agency (Tsakiris et al., 2010b; Kalckert and Ehrsson, 

2012), the boundaries of the plastic representation of the body in healthy volunteers 

(Slater et al., 2008; Hohwy and Paton, 2010; Newport and Preston, 2010; Guterstam et 

al., 2011, 2013), upper limb amputees (Ehrsson et al., 2008; Schmalzl and Ehrsson, 

2011; Schmalzl et al., 2011), and patients (Fiorio et al., 2011; Morgan et al., 2011; 

Ramakonar et al., 2011; Thakkar et al., 2011; Ferri et al., 2013b), the role of 

interoceptive signals (Tsakiris et al., 2011) and expectations (Ferri et al., 2013a), and 

even the social implications of the illusory embodiment of a body part of a different 

color and race (Farmer et al., 2012; Maister et al., 2013).  

 

Researchers have also collected evidence and speculated on the neurophysiological 

consequences that the illusory embodiment of an artificial limb may have on the 
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representation of the real hand. Moseley and colleagues revealed that the experience of 

the rubber hand illusion is associated with a drop in the skin temperature of the real 

hand (Moseley et al., 2008), as well as to increased levels of histamine reactivity in the 

real arm (Barnsley et al., 2011). These physiological observations have been interpreted 

as signs that the brain may “disembody” the real hand when illusorily embodying an 

artificial limb, but this outstanding question remains at the center of experimental 

debate (Folegatti et al., 2009; de Vignemont, 2011; Guterstam et al., 2011; Guterstam 

and Ehrsson, 2012; Moseley et al., 2012; Salomon et al., 2013). In the light of the 

neurophysiological evidence discussed previously, a perhaps more relevant question 

refers to the possibility to experimentally induce a feeling of “disownership” of the real 

arm, a phenomenon that would bear closer resemblance to the disturbances in the self-

attribution of the hand experienced by certain clinical populations (Sacks, 1998; Berti 

et al., 2005; Vallar and Ronchi, 2009; Feinberg et al., 2010; de Vignemont, 2011; 

Gandola et al., 2012). Intriguingly, a recent behavioral experiment employed virtual 

reality techniques to introduce violations of the multisensory expectations related to the 

self-perception of the hand, and reported that the failure to integrate visual, tactile, and 

proprioceptive signals from the real upper limb led to the transient loss of ownership of 

the hand (Newport and Gilpin, 2011). This observation hints at the intriguing 

possibility to be able to induce changes in the self-attribution of the veridical hand by 

experimentally manipulating the congruence of the sensory signals from the upper 

limb. These findings suggest a potential new avenue for the research on the 

multisensory mechanisms of bodily self-attribution, where changes in the latter are 

studied in relation to the real body, the “one that is always there” (James, 1890), as 

opposed to resorting to the limiting, albeit very informative, use of perceptual illusion 

(Botvinick, 2004; Moseley, 2011; Newport and Gilpin, 2011).  

 

The multisensory integrative principles that support the embodiment of a limb have 

been extended to the embodiment of the entire body (Petkova and Ehrsson, 2008; Slater 

et al., 2009; Petkova et al., 2011b; van der Hoort et al., 2011). Petkova and colleagues 

revealed that congruent visuo-tactile signals delivered to the participant’s body and to 

the body of a humanoid mannequin observed from the first person perspective induce a 

feeling of ownership of the artificial body (Petkova and Ehrsson, 2008; Petkova et al., 

2011b). Similar multisensory effects seem to support the spatial localization of the 

physical self, as demonstrated by the striking perceptual induction of so-called “out-of-

body” experiences in healthy volunteers (Ehrsson, 2007; Lenggenhager et al., 2007; 
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Guterstam and Ehrsson, 2012). In these paradigms, healthy volunteers are exposed to 

temporally synchronous tactile stimuli on their veridical body and visual stimuli 

presented via head-mounted displays from a first person perspective other than that of 

the veridical body. As a consequence, most participants report a vivid sense of being 

located “outside” their veridical body (Ehrsson, 2007; Guterstam and Ehrsson, 2012), 

possibly experiencing disownership of the latter (Guterstam and Ehrsson, 2012). These 

behavioral paradigms stress the role of multisensory mechanisms in supporting another 

key aspect of bodily awareness, that is the perceived spatial location of one’s own 

physical self (Serino et al., 2013). The behavioral literature reviewed above, inspired by 

neuropsychological observations in clinical populations, provides considerable 

evidence in favor of the pivotal role played by multisensory mechanism in the 

representation of the body and the peripersonal space, as well as in the emergence of 

the multifaceted corporeal experience of the self. What is known about the putative 

neural mechanisms that support these fundamental aspects of bodily self-perception? 

 
2.5 NEUROIMAGING EVIDENCE IN HUMANS 

 
Over the past decade, the use of neuroimaging methods like fMRI has been gaining 

substantial momentum in attempting to characterize multisensory integrative processes 

in the human brain (Ernst and Bülthoff, 2004; Driver and Noesselt, 2008; Murray and 

Wallace, 2012). Research efforts have been particularly fruitful in the investigation of 

themes like auditory-visual integration and speech processing (Calvert et al., 2000, 

2001; Noesselt et al., 2007; Stevenson et al., 2007; van Atteveldt et al., 2010; Werner 

and Noppeney, 2010, 2011; Marchant et al., 2012; Nath and Beauchamp, 2012), visuo-

haptic integration for the representation of objects (Amedi et al., 2001; Amedi, 2002; 

Sathian, 2005; Lacey et al., 2007, 2009; Tal and Amedi, 2009; Naumer et al., 2010), 

visuo-proprioceptive integration for the planning and performance of goal-directed 

actions (Culham et al., 2006; Rice et al., 2007; Bernier and Grafton, 2010; Cavina-

Pratesi et al., 2010; James et al., 2011; Monaco et al., 2011), and crossmodal attentional 

mechanisms (Macaluso et al., 2000, 2005; Macaluso and Driver, 2005; Talsma et al., 

2010). Besides describing the convergence of signals from different sensory modalities 

in higher-order association areas, human neuroimaging studies have described how the 

interplay between the senses seems to be a pervasive feature of neuronal computations 

spanning higher-order areas as well as primary sensory cortices. Where does the 

knowledge derived from the human neuroimaging literature stand when it comes to the 
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mechanisms underpinning the integration of signals from the body and the peripersonal 

space and its role in the self-perception of the body? 

 

Several neuroimaging studies have presented evidence for the convergence of visual 

and tactile signals onto frontal, parietal, and subcortical brain regions (Hadjikhani and 

Roland, 1998; Banati, 2000; Lloyd et al., 2003; Saito et al., 2003; Blake et al., 2004; 

Sereno and Huang, 2006; Sarri et al., 2006; Makin et al., 2007; Nakashita et al., 2008; 

Beauchamp et al., 2010; Huang et al., 2012). The detailed comparison of human 

neuroimaging data with the neurophysiological findings in non-human primates is 

inherently limited by the difficulties in establishing homological relations (Grefkes and 

Fink, 2005; Culham and Valyear, 2006). A few studies have suggested that visual and 

tactile signals from the face converge in regions of the parietal cortex that seem to be 

analogous to those described in non-human primates. Bremmer and colleagues 

(Bremmer et al., 2001) demonstrated significant overlap of the BOLD responses 

evoked by the delivery of air puffs to the face, two-dimensional digital visual stimuli 

moving toward the head, and signals conveying auditory motion around the head in a 

regions of the intraparietal sulcus that is the putative human equivalent of the VIP 

region in monkeys (Colby and Duhamel, 1991; Duhamel et al., 1998; Avillac et al., 

2007). This finding was extended by the studies of Sereno, Huang, and colleagues that 

described multisensory neuronal populations with visual and tactile receptive fields 

located on the head and in spatial alignment with each other (Sereno and Huang, 2006; 

Huang et al., 2012). More recently, two neuroimaging studies have corroborate the role 

of the putative human VIP in the processing of visual and tactile signals from the face 

(Cardini et al., 2011; Apps et al., 2013).  

 

Similarly, a few neuroimaging studies have gathered evidence for the convergence 

of visual and tactile signals from the hand in fronto-parietal areas (Lloyd et al., 2003; 

Makin et al., 2007; Nakashita et al., 2008; Beauchamp et al., 2010; Longo et al., 

2012b). Lloyd and colleagues identified brain regions where visual and tactile signals 

converge to represent the spatial location of the hand (Lloyd et al., 2003). However, the 

authors did not describe the responses to unisensory and multisensory stimuli to shed 

light on the nature of the integrative processes in these areas. Moreover, Beauchamp 

and others described how hand-related visual and tactile signals are processed in the 

posterior parietal cortices to facilitate detection and discrimination tasks (Saito et al., 

2003; Nakashita et al., 2008; Beauchamp et al., 2010; Pasalar et al., 2010). Finally, 



 

 17 

Makin and colleagues provided additional evidence for the convergence of visual and 

tactile signals from the hand in a region of the anterior intraparietal cortex (Makin et al., 

2007). However, the authors did not compare the responses to unisensory stimuli with 

those to multisensory stimuli, nor did they relate the BOLD responses to the sensory 

stimuli delivered to the hand to the self-perception of the upper limb.  

 

The same neuroimaging study (Makin et al., 2007) was the first to attempt to 

provide evidence in favor of the existence of a representation of the perihand space in 

the human brain (Makin et al., 2007; see also Serino et al., 2011 for a study using 

TMS), and suggested that regions in the posterior parietal and premotor cortices exhibit 

BOLD responses that are selective to visual stimuli presented close to, as opposed to 

far from, the hand. However, the previous study did not provide evidence for a 

representation of near space that is anchored to the hand, i.e., remapped when the arm 

changes position in space, nor did it link multisensory processing in the perihand space 

to the self-perception of the hand. Another neuroimaging study revealed that the BOLD 

response profile in a region of the posterior parieto-occipital cortex is tuned to near 

viewing, i.e., shows a preference for visual stimuli viewed close to, as opposed to far 

from, the head (Quinlan and Culham, 2007). Moreover, two recent studies found that 

the same region in the superior parieto-occipital cortex displays BOLD responses 

selective to the visual presentation of objects within reach of the participants’ hand 

(Gallivan et al., 2009, 2011). The neuroimaging research reviewed above provides 

encouraging support for the notion that multisensory processes analogous to those that 

have been described in non-human primates are associated with the combination of 

sensory signals from the body and the space around it. Yet, some outstanding questions 

remain open that motivated the neuroimaging studies presented in this thesis. What 

human brain areas, BOLD response profiles, and spatio-temporal principles underlie 

the integration of visual, tactile, and proprioceptive signals from the upper limb? Are 

multisensory neuronal populations in these areas equipped with hand-centered visual 

RFs restricted to the perihand space? Perhaps more importantly, how are these 

mechanisms related to the self-perception of the hand?  

 

  Valuable insights to the latter question are found in recent neuroimaging studies 

that have employed perceptual illusions to investigate the neural mechanisms of bodily 

self-perception (Tsakiris et al., 2010b; Blanke, 2012; Ehrsson, 2012). A seminal study 

by Ehrsson and colleagues adapted the rubber hand illusion paradigm (Botvinick and 
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Cohen, 1998) to a neuroimaging setting. This study revealed that the experience of 

ownership of an artificial hand is associated with increased activity in parts of the 

intraparietal, premotor, and cerebellar cortices (Ehrsson et al., 2004), and depends on 

the detection and integration of congruent visuo-tactile signals. Moreover, subsequent 

studies revealed that the embodiment of an artificial limb is mediated by multisensory 

processes that are not merely an effect of visual capture over touch and proprioception 

(Ehrsson et al., 2005), and is associated with emotional responses to threats directed 

toward the embodied artificial limb (Ehrsson et al., 2007; see also Lloyd et al., 2006). 

Furthermore, a positron emission tomography study of the rubber hand illusion 

emphasized the possible role of the posterior insular cortex in mediating the position 

sense of the upper limb (Tsakiris et al., 2007). The neuroimaging literature relating 

multisensory processes to bodily self-perception extends beyond the multiple 

experimental variations on the rubber hand illusion (Guterstam et al., 2013). In a recent 

study, we demonstrated that the self-attribution of a whole body is associated with the 

integration of congruent multisensory signals in the posterior parietal and premotor 

cortices and in the putamina (Petkova et al., 2011a). Furthermore, Ionta and colleagues 

identified a region in the bilateral superior temporal cortices whose BOLD responses 

reflect the subjectively reported spatial self-location of the body (Ionta et al., 2011b). 

Intriguingly, recent neuroimaging research also suggests that multisensory mechanisms 

may support the plastic self-perception of the face (Cardini et al., 2011; Apps et al., 

2013). The multisensory literature summarized above has contributed to the large 

number of theoretical accounts reviewing the role of multisensory mechanisms in 

underpinning bodily self-attribution and self-location (Makin et al., 2008; Tsakiris, 

2010; Aspell et al., 2012; Blanke, 2012; Ehrsson, 2012; Moseley et al., 2012; Apps and 

Tsakiris, 2013; Serino et al., 2013).  

 

By synthesizing the evidence presented above, these theoretical models have put 

forward theoretical accounts describing how the human brain integrates information 

from all the sensory modalities, both exteroceptive and interoceptive, to support the 

construction and maintenance of a plastic and coherent representation of the bodily self. 

Despite the rich body of evidence they are built on, these models rely on a number of 

fundamental assumptions that are in need of experimental support (Botvinick, 2004; 

Moseley, 2011). Importantly, these assumptions trace back to the questions that were 

outlined when reviewing the evidence related to the multisensory integration of visual, 

tactile, and proprioceptive signals within a reference frame centered on a body and 
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restricted to the peripersonal space. Specifically, multisensory models of bodily self-

attribution attribute a pivotal role to visuo-tactile-proprioceptive integration in frontal, 

parietal, and subcortical areas. However, do these multisensory mechanisms underlie 

the integration of sensory signals from one’s real body, or are they exclusive to the 

often unusual perceptual experiences associated with illusions of body ownership and 

self-location? Furthermore, the neuroimaging evidence for the existence of a body-part-

centered representation of the peripersonal space, within which these multisensory 

mechanisms are thought to operate, is limited (Makin et al., 2007), and its link to the 

self-perception of the body remains unexplored. These considerations are indicative of 

the need of collecting neuroimaging evidence to substantiate the claims that form the 

bases for current models of bodily self-perception.  

 

2.6 MULTISENSORY INTEGRATION AND PREDICTIVE CODING 

 
The evidence reviewed above speaks in favor of the pivotal role that the integration 

of peripheral signals from the body and its surrounding space plays in the construction 

of a coherent representation of the body. Nevertheless, strong reasons exist to believe 

that the bottom-up integration of inter-related exteroceptive sensory information is not 

sufficient to produce a coherent sense of bodily self (Botvinick, 2004; Tsakiris, 2010; 

Moseley, 2011). Factors like the known visual appearance of the body (Tsakiris et al., 

2010a; but see Guterstam et al., 2013), its morphological configuration (Ehrsson et al., 

2004; Costantini and Haggard, 2007; Lloyd, 2007; Guterstam et al., 2011; Kalckert and 

Ehrsson, 2012), and its associated first-person perspective (Slater et al., 2009; Ionta et 

al., 2011b; Petkova et al., 2011a, 2011b) are illustrations of the significance of the 

interplay between incoming sensory signals and pre-existing higher-order implicit and 

explicit representations of the body (Cardinali et al., 2009a; Tsakiris et al., 2010a; Ionta 

et al., 2011a; Longo et al., 2012a; Apps and Tsakiris, 2013). Specifically, it remains to 

be explained how the brain interprets the incoming sensory information against the 

compilation of innate and acquired knowledge of the morphological, functional, and 

perceptual attributes of the body. A promising theoretical framework within which to 

pose and interpret these questions is offered by a unifying theory of perception known 

as predictive coding (Friston, 2009, 2010, 2013; Hohwy and Paton, 2010; Seth et al., 

2011; den Ouden et al., 2012; Apps and Tsakiris, 2013; Clark, 2013; Limanowski and 

Blankenburg, 2013; Schwartenbeck et al., 2013). 
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The predictive coding account of the structural and functional organization of the 

brain’s perceptual systems focuses on perception as a collection of active, rather than 

passive, inferential mechanisms. In a nutshell, these theories postulate that perceptual 

systems operate by continuously comparing predictions concerning incoming sensory 

information with the actual inputs (Friston, 2009, 2010, 2013). The former take the 

shape of prediction signals, generated dynamically by higher-order areas and fed back 

to lower-level areas, whereas the latter take the form of prediction error signals, fed 

forward from early areas to higher-order areas with information concerning the 

discrepancies between the predicted and the received inputs (Rao and Ballard, 1999; 

Friston, 2009; den Ouden et al., 2012; Clark, 2013). By iteratively adapting its 

predictive parameters, the brain aims at minimizing the difference between the 

predicted and the actual states of the environment, attaining a state of perceptual 

stability and coherence that is essential for behavior (Ernst and Bülthoff, 2004; Friston, 

2010). A growing body of neuroimaging literature has gathered support for the role of 

predictions and prediction errors in perceptual mechanisms, focusing primarily on the 

visual (Summerfield et al., 2008; Egner et al., 2010; den Ouden et al., 2012; Kok et al., 

2012; de Gardelle et al., 2013a, 2013b) and auditory (Garrido et al., 2008; Todorovic et 

al., 2011; Wacongne et al., 2011; Sanmiguel et al., 2013; Sanmiguel et al., 2013) 

modalities, whereas the neuroimaging evidence in favor of the existence and function 

of multisensory predictions remains meager.  

 

How can the multisensory mechanisms of body self-perception reviewed above be 

contextualized within predictive coding theories of perception? Within this framework, 

interoceptive and exteroceptive afferent sensory information is combined with prior 

knowledge to maintain and update a coherent representation of the body. In order to 

promote stability and coherence, this representation is suitably plastic and can be 

updated to project the feeling of embodiment onto artificial limbs and whole bodies, as 

implied by the plethora of existing perceptual illusions of body ownership (Hohwy and 

Paton, 2010; Ehrsson, 2012; Apps and Tsakiris, 2013; Limanowski and Blankenburg, 

2013). In turn, this central representation of the body allows specific sensory and motor 

predictions to be formulated with respect to the incoming sensory information and to 

the sensory consequences of one’s own actions (Blakemore et al., 1998, 1999, 2000; 

Frith, 2012). A well-known example of the role of these self-specific predictions is the 

neural processing of the sensory stimulation generated by a self-produced action that 

results in the inability to “tickle oneself” (Blakemore et al., 1998, 1999, 2000). The 
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significance of the proficiency to form accurate multisensory predictions concerning 

incoming sensory events is also evident with respect to one of the essential behavioral 

functions of the multisensory circuits that integrate information from the body and its 

surrounding space. Namely, the ability to protect the body from incoming threats 

identified through vision requires that somatosensory predictions be accurately formed 

concerning the body-centered location of the potential impact zone (Duhamel et al., 

1998; Avillac et al., 2005). In turn, these multisensory predictions allow the planning 

and performance of appropriate motor sequences (Cooke and Graziano, 2003; Cooke et 

al., 2003; Sambo et al., 2012b; Sambo and Iannetti, 2013). Despite the theoretically 

relevant interpretation of the multisensory mechanisms of body self-perception within 

the framework of predictive coding, the question of how self-specific multisensory 

predictions contribute to the maintenance of a coherent representation of the body is in 

need of experimental support. 

 

According to models that are centered on the interplay between the integration of 

afferent sensory signals from the hand and higher-order representations of the hand 

itself, the multisensory fronto-parietal areas generate predictions concerning incoming 

sensory signals. In order to be self-specifying, these predictions need to distinguish 

sensory information that is self-related, i.e., attributed to one’s own hand, from sensory 

information that is not labeled as “self”. However, this key tenet remains in need of 

experimental support. How can the existence of self-specific multisensory predictions 

be tested using neuroimaging? Again according to the models outlined above, the 

multisensory predictions generated by the higher-order representation of the hand are 

continuously compared to the afferent sensory inputs processed in the corresponding 

early sensory cortices. If an unpredictable discrepancy is detected between the expected 

and the afferent inputs, the early sensory cortices generate prediction error signals that 

higher-order areas can employ to dynamically update the multisensory expectations in 

light of changes in the sensory environment. Hence, the introduction of unexpected 

violations of these multisensory expectations and the measurement of the evoked neural 

responses would constitute an experimental probe for the existence of self-specifying 

multisensory predictions.  

 

In order to test these ideas, it becomes essential to first gather evidence in favor of 

the basic mechanisms that support the construction of the central representation of the 

hand. In the experiments presented in the thesis, we sought to provide evidence for the 
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convergence and integration of visual, tactile, and proprioceptive inputs from the upper 

limb in frontal, parietal, and subcortical human brain regions. The neuroanatomical 

hypotheses were grounded on the neurophysiological, behavioral, neuropsychological, 

and neuroimaging evidence reviewed above. Furthermore, we tested the hypothesis that 

these areas contain neuronal populations that are selective to the presence of an object 

in the immediate space around the hand. This finding would provide evidence for the 

existence of the hand-centered central representation of the perihand space. Then, we 

employed complementary neural, behavioral, and psychophysiological measures to 

relate the above mechanisms to the self-perception of the hand, focusing on the feeling 

of ownership and the sense of position of the upper limb. Finally, we capitalized on the 

evidence obtained from the preceding experiments to investigate the hypothesis that the 

central representation of the hand forms multisensory predictions concerning incoming 

sensory signals. In particular, we envisaged that these predictions would be unique to 

the self-attribution of the hand, and would reflect the self-specific neuronal processing 

of the sensory inputs to one’s own hand. 

 
2.7 SPECIFIC HYPOTHESES 

 
The preceding sections brought together multiple scientific disciplines, including 

neurophysiology, neurology, psychology, and cognitive neuroscience, to synthesize the 

evidence in favor of the existence of a central multisensory representation of the hand 

and the space around it. Furthermore, the above evidence supports the notion that this 

dynamic multisensory representation of the hand is related to the self-perception of the 

upper limb. A number of outstanding open questions were identified, establishing a 

background for the hypotheses that motivated the experiments presented in this thesis. 

The overarching hypotheses can be formulated as follows: 

 

(1) Frontal, parietal, and subcortical human brain regions integrate visual, tactile, 

and proprioceptive signals from one’s own hand to construct and maintain a 

coherent representation of the upper limb in space; 

 

(2) This multisensory representation of the hand is associated with a selective 

representation of the space around it, the perihand space, that encodes visual 

stimuli in hand-centered coordinates; 
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(3) The multisensory representation of the hand and the perihand space is related 

to the self-perception of the hand, that depends on the congruence of the 

sensory inputs to the upper limb; 

 

(4) The self-perception of the hand is also associated with the dynamic formation 

of multisensory predictions that reflect the self-specific neuronal processing 

of the sensory inputs to one’s hand. 
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3 AIMS 
 

The foremost objective motivating the studies presented in this thesis was twofold: 

(1) to characterize the neural correlates of the integration of multisensory signals from 

the hand, and (2) to provide evidence for the existence of a central representation of the 

space around the hand in the human brain. The overarching purpose was to attempt to 

relate the above mechanisms to the neural and psychological phenomena associated 

with the self-attribution of the hand. The following list contains a brief overview of the 

aims specific to each of the studies included in the thesis: 

 

I. Study I was aimed at characterizing the BOLD responses to visual, 

tactile, and combined visuo-tactile stimuli delivered to one’s own right hand. 

By analyzing the BOLD responses to unisensory and multisensory stimuli, we 

identified candidate cortical and subcortical areas that perform the integration 

of these sensory signals. 

 

II. Study II was designed to characterize the integration of multisensory 

signals from the hand by manipulating their spatio-temporal congruence. This 

study also explored the relationship between the multisensory representation 

of the hand and the hand’s self-attribution, employing neural, subjective, and 

psychophysiological measures. 

 

III. Study III was designed to provide neuroimaging evidence for the 

existence of a selective representation of the perihand space in frontal, 

parietal, and subcortical regions of the human brain. 

 

IV. Study IV examined the hand-centered spatial properties of the central 

representation of the perihand space and its relationship with the feeling of 

ownership and the position sense of the hand. 

 

V.  Study V tested the hypothesis that the coherent central representation of 

the hand is associated with the formation of self-specific predictions concerning 

upcoming stimuli from multiple sensory modalities. 
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4 METHODOLOGICAL CONSIDERATIONS 
 

The aim of this section is to provide an overview of the experimental procedures 

associated with the studies featured in the thesis. The methodological procedures are 

introduced together with a description of the rationale behind their choice and a critical 

discussion of their advantages and inherent limitations. For a detailed description, the 

reader is referred to the full version of the corresponding article or manuscript. 

 
4.1 PARTICIPANTS AND ETHICAL CONSIDERATIONS 

 
All of the participants were healthy human volunteers, recruited primarily through 

advertising the experiments among the student population in the Stockholm region. The 

participants had normal or corrected-to-normal vision and no history of neurological, 

psychiatric, or sensory disorders, and received monetary compensation for their 

participation. The participants’ handedness was logged through self-reports. The 

experiments were performed in accordance to the highest ethical standards for research 

involving healthy human volunteers. The Ethical Review Board of Stockholm 

approved the experiments, and the participants provided their written informed consent 

prior to taking part in the studies. The volunteers were screened to ensure total safety in 

their participation in the fMRI scanning session and were given a detailed description 

of the experimental setup and relevant instructions about the study. A total of 24 

participants took part in Study I (5 females, mean age ± standard deviation, 25±4 

years), 30 in Study II (15 in Experiment 1, 4 females, 27±3 years; 15 in Experiments 2 

and 3, 5 of whom had taken part in Experiment 1; 5 females, 26±3 years), 22 in Study 

III (5 females, 26±5 years), 42 in Study IV (26 in Experiment 1, 4 females, 29±6 

years; 16 in Experiment 2, 9 of whom had taken part in Experiment 1; 5 females, 31±8 

years), and 23 in Study V (11 females, 27±5 years). 

 

4.2 FUNCTIONAL MAGNETIC RESONANCE IMAGING 

 
The common thread between all the studies in the thesis is the use of the 

neuroimaging technique known as functional magnetic resonance imaging (fMRI). In 

2003, Paul Lauterbur and Peter Mansfield were awarded the Nobel Prize in Physiology 

or Medicine for their discoveries concerning MRI, a technique that has revolutionized 
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clinical practice around the world. It was with the introduction of a new image contrast, 

termed Blood Oxygenation Level Dependent (BOLD; Ogawa et al., 1990; Kwang et 

al., 1992; Logothetis et al., 2001), that the use of MRI for functional brain imaging 

gained substantial momentum, setting off an era of technological developments that has 

turned fMRI into a pillar of modern cognitive neuroscience. A simple query using the 

single keyword fmri on PubMed (US National Library of Medicine, National Institutes 

of Health, USA; http://www.ncbi.nlm.nih.gov/pubmed/?term=fmri), performed on 

October 30th, 2013, yielded over 340k hits.  
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Figure 1. The neurophysiological origins of the BOLD signal are a cascade of complex events that map 
dynamic changes in brain function to variations in the image intensity of MRI scans. 

 

The BOLD image contrast, as the name implies, arises from the different magnetic 

properties ascribed to oxygenated and deoxygenated blood. Through a complex and not 

yet fully understood chain of events, dynamic changes in neuronal activity trigger a 

cascade of metabolic and physiological effects that result in changes in blood flow, 

volume, and oxygenation in the vicinity of the active neuronal populations. Because 

changes in blood oxygenation have an impact on the uniformity of the local magnetic 

field surrounding the active neuronal populations, the MRI signal measured by the 

scanner changes as a consequence of brain activity. Thus, a connection is established 

between dynamic changes in neuronal activity and temporal variations in the MRI 

signal that accounts for the term functional in fMRI. This overly simplified description 

of the neurophysiological mechanisms underlying the BOLD image contrast, together 

with the astounding success of fMRI in cognitive neuroscience, belies the sheer 

complexity of the technique and begs for a critical evaluation of its benefits and pitfalls. 
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4.3 BENEFITS AND PITFALLS WITH THE USE OF FMRI 

 
The paramount benefit with the use of fMRI in neuroscience rests with its ability to 

non-invasively monitor changes in brain activity as healthy and diseased animals (from 

rodents to non-human primates and humans) receive sensory stimuli or engage in 

behavioral and cognitive tasks. The possibility to capture fluctuations in activity across 

the whole brain, with relatively high spatial specificity, and relate them to ongoing 

behavior offers a unique tool to investigate the functional organization of the human 

brain. Despite these evident benefits, a number of limitations are inherent to the use of 

fMRI and must be kept in mind when designing experiments and interpreting the 

findings. Arguably, the most important drawback with fMRI is its intrinsically indirect 

and correlative nature. The complex chain of events that links changes in neuronal 

activity to variations in the BOLD image contrast renders the findings obtained with 

fMRI an indirect measurement of brain function, the latter essentially being defined as 

the electrical activity of individual neurons and the circuits they form. Furthermore, the 

BOLD signal measured across the brain provides only a correlative panorama of the 

neuronal activity associated with a specific function, making any inference on the 

causal role of brain areas inconclusive, unless coupled with complementary techniques 

such as transcranial magnetic stimulation, neurological studies, pharmacological 

interventions, and so forth. A second drawback with the use of fMRI worth mentioning 

here is its inherent boundaries in spatio-temporal resolution. First, the BOLD signal 

associated with a spatial unit of functional MRI data, or voxel, reflects the contribution 

of hundreds of thousands, if not more, individual neurons, curtailing the inferential 

power on the role of single neurons and local microcircuits. Nevertheless, numerous 

developments in both hardware (for instance, the potential for ultra-high spatial 

resolution with increasing field strength) and analysis methods (such as BOLD-

adaptation – see Studies II and III – and multivariate pattern analysis; see Petkova et al., 

2011a) have been boosting the spatial sensitivity of fMRI, as evident from the progress 

in reliably identifying complex structures such as cortical columns, thought to be a 

widespread principle of brain organization (Yacoub et al., 2008). Second, the time 

required to collect a full volume of data, ranging in most current studies from 2 to 3 

seconds, limits the temporal resolution of fMRI. Hence, the description of the temporal 

dynamics of brain function obtained with fMRI is restricted to a time domain that is 

several orders of magnitude wider than that associated with the electrophysiological 

activity of neurons and microcircuits (Logothetis, 2008).  
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Despite the intrinsic limitations briefly reviewed here, the perks with the use of 

fMRI remain vast. With respect to the work described in this thesis, two main 

advantages come to mind: (1) the possibility to non-invasively and reliably map the 

functional properties of regions of the human brain related to specific mechanisms, 

such as the integration of sensory signals from the body and the representation of the 

space around it, and, perhaps even more importantly, (2) the potential to investigate the 

link between brain responses in behaving humans and particular aspects of complex 

psychological phenomena, such as the self-attribution of the hand. 

 
4.4 CHARACTERIZING MULTISENSORY INTEGRATION USING FMRI 

 
The seminal studies that propelled the development of research on the integration of 

the senses were neurophysiological investigations performed on cats and non-human 

primates (Rizzolatti et al., 1981a, 1981b; Graziano and Botvinick, 2002; Stein and 

Stanford, 2008). These studies benefited from the opportunity to record the electrical 

activity of individual neurons exposed to stimuli from multiple sensory modalities, and 

led to the development of the fundamental principles of multisensory integration that 

are still central to modern psychological and neuroscientific research in humans (Driver 

and Noesselt, 2008; Stein and Stanford, 2008; Noppeney, 2012). The advent of non-

invasive neuroimaging techniques like fMRI spurred an ongoing era of studies 

attempting to characterize multisensory integration in behaving humans (Calvert et al., 

2000, 2001). Indeed, one of the aims of the present thesis was to provide evidence for 

the existence of multisensory integrative processes concerning the sensory signals from 

the hand. Because of the inherent limitations of human neuroimaging discussed 

previously, the extension of the basic neurophysiological principles to fMRI is far from 

straightforward (Calvert and Thesen, 2004; Beauchamp, 2005; Laurienti et al., 2005; 

Goebel and van Atteveldt, 2009; Stevenson et al., 2009; Noppeney, 2012).  

 

Among the criteria that have been put forward in neuroimaging investigations of 

multisensory integration, the most direct involves the comparison of the BOLD 

response to a multisensory stimulus to the responses to unisensory stimuli presented in 

isolation. The corresponding statistical criteria applied to the multisensory BOLD 

responses vary in their stringency and inferential power. A graphic summary of some 

of these criteria is presented in Figure 2A.  
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Figure 2. (A) Overview of some of the statistical criteria employed to characterize multisensory BOLD 
responses. The bar charts display the responses of a sample voxel to visual (V) stimuli, tactile (T) stimuli, 
and combined visuo-tactile (VT) stimuli, together with their mean, the maximum of the unisensory 
responses, and their sum. (B) A sample voxel containing separate non-interacting visual and tactile 
neurons. (C) A non-linear superadditive response to VT stimuli strongly suggests that the voxel contains 
multisensory neurons that integrate the unisensory signals. 

 

The criterion of the mean, for example, classifies a BOLD response as multisensory 

if greater than the average of the responses to the unisensory stimuli, whereas the 

criterion of the maximum takes into account the most responsive unisensory condition. 

Both constitute examples of a subadditive BOLD signal, a response profile whose 

analogous in neurophysiology belongs to the range of the observed responses to 

multisensory stimuli (Laurienti et al., 2005; Avillac et al., 2007; Stein and Stanford, 

2008). However, given the spatial resolution of fMRI data, where an individual voxel 

contains hundreds of thousands or more neurons, these response profiles cannot be 

disentangled from the case of a voxel that contains populations of non-interacting 

modality-specific neurons (Figure 2B). The most conservative of these basic criteria, 

the criterion of superadditivity, relies instead on a significant difference between the 

BOLD response to the multisensory condition and the sum of the responses to the 

unisensory conditions (Figure 2A). If the criterion is met, a strong argument can be 

made in favor of the existence of multisensory neuronal populations within the voxel 

(Figure 2B), whose non-linear response profile cannot be accounted for by the 

existence of non-interacting modality-specific neurons. Instead, a non-linear interaction 

between the sensory inputs is necessary to elicit a superadditive response, be it at the 

level of neuronal firing rates or synaptic activity (Logothetis et al., 2001; Logothetis, 

2008). In light of this, the superadditivity criterion arguably ranks first in terms of 
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inferential power, and has successfully been adopted in several neuroimaging studies of 

multisensory integration (Calvert et al., 2001; Ehrsson et al., 2004; Stevenson et al., 

2007; Werner and Noppeney, 2010, 2011; Petkova et al., 2011a; Tubaldi et al., 2011; 

Tyll et al., 2013). Nevertheless, a number of caveats must be taken into account when 

interpreting the results of the application of the superadditivity criterion to BOLD 

fMRI. Some of these factors trace back to the neurophysiological principles of 

multisensory integration, whereas others are intrinsic to the use of fMRI. First, 

superadditivity is not the only operational profile of multisensory neurons, and 

computations that are subadditive or linear in nature have been observed consistently 

and deemed relevant for neuronal processing and behavior (Laurienti et al., 2005; 

Stanford and Stein, 2007). Second, the occurrence of superadditive responses may vary 

based on the efficacy of the unisensory stimuli, a phenomenon that has been termed the 

principle of inverse effectiveness (Holmes and Spence, 2005a; Stein and Stanford, 

2008; Noppeney, 2012). In other words, the benefit of a non-linear combination of the 

sensory inputs may decrease with the increased effectiveness (neuronal and behavioral) 

of the unisensory signals. Third, the superadditivity criterion is likely to increase the 

incidence of false negatives in fMRI analyses because of the complex physiological 

dynamics underlying the BOLD signal, such as vascular ceiling effects (Buxton et al., 

2004). All of the above factors contribute to making the superadditive criterion perhaps 

too conservative, and certainly not exhaustive. Nevertheless, the detection of a non-

linear BOLD response represents very strong evidence in favor of the existence of 

multisensory processes, and is particularly powerful, for instance, when applied in the 

context of well controlled factorial experimental designs (Ehrsson et al., 2004; Tsakiris 

et al., 2007; Petkova et al., 2011a). In summary, the selection of the statistical criteria to 

evaluate BOLD responses to multisensory stimuli can have a large impact on the 

interpretation of the findings, and must always be kept in mind when presenting and 

discussing the findings (Beauchamp, 2005; Holmes and Spence, 2005a; Laurienti et al., 

2005; Goebel and van Atteveldt, 2009; Stevenson et al., 2009; Noppeney, 2012). 

 

Numerous other analysis techniques have been developed to address the issue of 

multisensory integration in fMRI. Worth mentioning here are the use of BOLD-

adaptation paradigms (see next section), which tap into the sub-voxel selectivity profile 

of neuronal populations, and the manipulation of the congruence (spatial, temporal, 

semantic, etc.) of the stimuli (Calvert et al., 2001; Macaluso and Driver, 2005; Noesselt 

et al., 2007; Noppeney, 2012). The latter has the advantage to restrict statistical 
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comparisons to multisensory conditions, overcoming some of the limitations typical of 

the criteria reviewed above. Congruence manipulations have been key to numerous 

neuroimaging investigations of the multisensory mechanisms underpinning the sense of 

body ownership (Ehrsson et al., 2004, 2005, 2007; Tsakiris et al., 2007, 2010b; Ionta et 

al., 2011b; Petkova et al., 2011a; Longo et al., 2012b; Guterstam et al., 2013). 

However, the effects of the manipulation of multisensory congruence can be dependent 

upon the cognitive and attentive state of the participant, the type and predictability of 

the stimuli used, and on the task (if any) the participant is engaged in during the 

experiment (Corbetta and Shulman, 2002; Zimmer and Macaluso, 2007; Talsma et al., 

2010; Noppeney, 2012). In conclusion, the characterization of multisensory integrative 

processes using fMRI demands careful considerations, particularly when selecting the 

stimuli, defining the experimental design, and selecting the statistical criteria to 

evaluate the BOLD responses to the multisensory conditions. 

 

4.5 BOLD-ADAPTATION: MAKING STRONGER INFERENCES ON 
NEURONAL SELECTIVITY 

 
Recent developments in fMRI analysis methods have boosted the sensitivity to 

detect effects that may otherwise elude conventional analysis techniques. One such 

method that has proven particularly fruitful is BOLD-adaptation, also known as fMRI-

adaptation or repetition suppression (Grill-Spector and Malach, 2001; Avidan et al., 

2002; Krekelberg et al., 2006; Weigelt et al., 2008; Malach, 2012; Davis and Poldrack, 

2013). The use of BOLD-adaptation is predicated on the neurophysiological 

phenomenon of neural adaptation, whereby the responsiveness of single neurons 

selective to particular stimulus features declines with the continued repetition of those 

features (Li et al., 1993; Miller et al., 1993; Miller and Desimone, 1994; Sobotka and 

Ringo, 1996; Sawamura et al., 2006). This basic principle has been successfully 

extrapolated to the analysis of the BOLD signal, where it enhances the sensitivity to 

make inferences on the selectivity of neuronal populations to a widespread range of 

neural processes, such as the encoding of object properties (Grill-Spector et al., 1999; 

Sayres and Grill-Spector, 2006; Tal and Amedi, 2009), processing of object attributes 

for reaching and grasping (Rice et al., 2007; Króliczak et al., 2008; Bernier and 

Grafton, 2010; Monaco et al., 2011), spatial representations (Doeller et al., 2010), tool 

use (Valyear et al., 2012), audio-visual integration (Doehrmann et al., 2010; van 

Atteveldt et al., 2010), processing of faces (Loffler et al., 2005), representation of 
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abstract events (Schapiro et al., 2013), language (Menenti et al., 2012) and so forth. By 

tapping into the selectivity profile of neuronal populations likely to be intermingled 

within a single fMRI voxel with neurons with different response properties, BOLD-

adaptation has been described as attaining sub-voxel resolution (Grill-Spector, 2006; 

Malach, 2012). However, the intrinsic complexity of the neural adaptation 

phenomenon, exacerbated by the complex and not yet fully understood dynamics 

underlying the emergence of the BOLD response, requires that caution be exercised 

when drawing inferences from BOLD-adaptation analyses (Krekelberg et al., 2006; 

Sawamura et al., 2006; Summerfield et al., 2008; Larsson and Smith, 2012). In 

particular, different models have been proposed that account for the neurophysiological 

mechanisms underpinning the BOLD-adaptation effect (Grill-Spector et al., 2006; 

Epstein et al., 2008). For instance, the repeated presentation of a stimulus can lead to 

(1) fatigue effects on neuronal processing, (2) sharpening of the neuronal population 

response, with fewer neurons being recruited, and/or (3) facilitation of neuronal 

processing, requiring less temporal and metabolic resources. These different models 

would all account for the decrease in the neuronal response to the repeated presentation 

of a stimulus that underpins the use of BOLD-adaptation (Grill-Spector et al., 2006). 

Furthermore, the experimental observation of the opposite phenomenon, indicated as 

repetition enhancement, in conjunction with or instead of repetition suppression, 

clarifies that the basic principles underlying BOLD-adaptation may not apply, or at 

least not exclusively, to the processing of repeated stimuli and cognitive tasks (de 

Gardelle et al., 2013a, 2013b; Segaert et al., 2013).  
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Figure 3. Overview of the logic behind the use of BOLD-adaptation. If a sample voxel contains two 
distinct neuronal populations sensitive to two different types of stimuli, the direct comparison of the 
BOLD responses evoked by the presentation of the two stimuli has little inferential power on neuronal 
selectivity. In an adaptation analysis, on the other hand, the repetition of the stimulus feature of interest 
enhances the statistical power to detect the existence of neuronal populations tuned to that feature. 
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The above considerations recommend caution when interpreting the findings from 

BOLD-adaptation studies. Nevertheless, the use of these paradigms has been validated 

in many domains of cognitive neuroscience and provides the possibility to overcome 

some of the limitations imposed by the spatial resolution of fMRI data on conventional 

analysis techniques (Figure 3). In the following, the discussion focuses on the rationale 

and the advantages associated with the employment of BOLD-adaptation in the 

investigation of the mechanisms underlying the representation of the perihand space in 

the human brain. 

 

The use of BOLD-adaptation proved to be particularly well suited to the exploration 

of one of the key hypotheses motivating the work described in this thesis. In Studies 

III and IV, we set out to gather evidence for the existence of neuronal populations in 

the human brain that construct a hand-centered representation of the space around the 

hand (perihand space). To achieve this goal, we experimentally tapped into one of the 

fundamental properties of such neuronal populations, well documented by research in 

non-human primates: visual receptive fields (RFs) restricted to the space immediately 

surrounding the hand, and anchored to the hand when the upper limb changes position 

in space (Graziano, 1999; Graziano et al., 2000). Accordingly, we needed to 

demonstrate (1) the selectivity of these neuronal populations to visual stimuli presented 

close to, as opposed to far from, the hand, and (2) the spatial remapping of the visual 

RFs as the hand changes position in space. Because neuronal populations with these 

properties may be intermingled with neurons selective to different stimulus features 

(such as eye-centered RFs, body-centered RFs, motion selectivity, etc.), conventional 

analyses might not be sensitive enough to detect their existence (Grill-Spector and 

Malach, 2001; Malach, 2012; but see Makin et al., 2007). Hence, we designed BOLD-

adaptation paradigms where the stimulus features changed along the desired dimension, 

i.e., the relative position of a three-dimensional object with respect to the participants’ 

right hand. We were then able to formulate a straightforward prediction: if neuronal 

populations exist that respond selectively to an object presented close to the hand, then 

stronger BOLD-adaptation is expected if the object is repeatedly presented in the 

vicinity of the hand, as opposed to far from it. This approach controls for the selectivity 

to a number of stimulus features, such as motion, retinotopic or spatiotopic coordinates, 

low-level visual features, etc., and returns evidence for the existence of neuronal 

populations selective to an object presented close to the hand, possibly at the level of 

sub-voxel resolution.  
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The decision to employ BOLD-adaptation to probe the existence of a representation 

of the perihand space in the human brain was further supported by the observations 

reported by researchers investigating similar mechanisms in monkeys. Interestingly, the 

neurophysiological work of both Rizzolatti and colleagues (Rizzolatti et al., 1981a) and 

Graziano and colleagues (personal communication) remarked on the tendency of 

perihand neurons to adapt (i.e., decrease their firing rate) to the repeated presentation of 

an object in the vicinity of the upper limb. These observations reinforced our estimates 

concerning the aptness of the use of BOLD-adaptation to identify neuronal populations 

sensitive to visual stimuli within the perihand space.  

 

In summary, we capitalized on the potential offered by BOLD-adaptation to identify 

neuronal populations with distinct selectivity to the stimulus feature that best fitted our 

hypothesis, i.e., the relative location of an object with respect to the hand. In turn, this 

led to stronger inferences concerning the existence of a representation of the perihand 

space in the human brain, adding to plentiful neurophysiological data and more recent 

behavioral and neuropsychological observations in humans. 

 

4.6 FUNCTIONAL MRI DATA ACQUISITION AND PREPROCESSING 

 
All of the fMRI data presented in this thesis were acquired using the Siemens TIM 

Trio 3T scanner located at the Karolinska University Hospital in Huddinge, Sweden. 

An appropriate acquisition protocol was set up for each study, offering coverage of the 

whole brain, a spatial resolution of 3 mm isotropic, and a temporal resolution of 2.5-3 

seconds. Suitable tests were carried out prior to the onset of each study to ensure that 

the image quality would not be affected by the introduction of specific hardware 

components, such as MR-compatible head mounted displays, eye-tracking cameras, or 

force sensors, and to minimize the effects generated by movement, both of the 

participants’ head and of the experimenters delivering visual and tactile stimuli inside 

the MRI scanner. Specific hardware modules were deemed compatible with the 

experimental setup if the relative increase in background noise associated with their 

usage did not exceed 5%. The participants were extensively reminded about the 

importance of minimizing head movements, and further precautions were taken in this 

direction by using foam pads to stabilize the participant’s head. The fMRI data were 

screened for potential issues with image quality both by visual inspection and with the 
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help of image analysis tools such as the ART toolbox (Massachusetts Institute of 

Technology, Cambridge, MA, USA). No datasets were discarded because of problems 

with the quality of the images. Prior to any statistical analysis, the fMRI data underwent 

a series of spatio-temporal preprocessing steps. The software used for these analyses 

was the version 8 of SPM (Statistical Parametric Mapping, Wellcome Center for 

Neuroimaging, University College London, UK), in conjunction with custom-made 

Matlab (The MathWorks Inc., Natick, MA, USA) scripts.  
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Figure 4. Average estimated realignment parameters for all the participants in all the experiments 
presented in the thesis. The average translations in the x, y, and z direction were always well within the 
illustrative margin of the voxel size. The six realignment parameters were added as regressors of no 
interest in the first-level general linear models to account for residual effects of head motion. 

 

In brief, the fMRI data were realigned in space to compensate for head movements, 

and interpolated in time to account for inter-volume differences in acquisition time. The 
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motion corrected data were scrutinized for excessive head motion, and six linear 

regressors containing the realignment parameters (translation in the x, y, and z 

directions, as well as the estimated changes in the pitch, roll, and yaw angles over time) 

were added to the first-level general linear model for each participant. As a reference, 

special attention was paid to abrupt head movements (as opposed to slow, monotonic 

variations), and translations that were of comparable extent to, or exceeding, the size of 

the image voxels (3 mm isotropic in all experiments). As displayed in Figure 4, the 

average estimated head motion parameters (relative to the reference scan) across all the 

experimental sessions were within the margin defined by the voxel size. The 

realignment regressors accounted for the variance in the data related to the residual 

effects of head motion in the datasets. The functional data were co-registered with a 

high-resolution structural scan of the participant’s brain and normalized to a standard 

space (the MNI template, Montreal Neurological Institute, Canada) to enable group 

analyses and inter-study comparisons. Finally, the fMRI data were spatially smoothed 

with a Gaussian filter with a full-width-at-half-maximum of 8 mm isotropic, a passage 

that helps lessen the impact of inter-individual anatomical variability and conforms to 

the requirements of random field theory, the theoretical framework underlying the 

computations required to build statistical parametric maps of fMRI data (Friston, 2007). 

 

4.7 GENERAL LINEAR MODELS FOR THE ANALYSIS OF FMRI DATA 

 
The fMRI data from all the studies in the thesis were analyzed by building standard 

univariate general linear models including the experimental conditions of interest, the 

appropriate nuisance regressors (such as motion correction parameters), and behavioral 

covariates (such as subjective ratings or physiological responses). All the regressors in 

the model were defined based on the onset time and duration of each condition. The 

synchronization of the different stimulus presentation tools and data acquisitions 

devices with the MRI scanner guaranteed the accuracy of the timing information. To 

account for the temporal lag of the hemodynamic response, the regressors in the general 

linear model were convolved in time with the standard hemodynamic response function 

implemented in SPM8. The corresponding statistical model for each experiment was 

therefore a massively univariate general linear model defined for each voxel in the 

brain volume, recapped by the following equation: 

 

Y = X β + E 
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where Y contains each voxel’s time series, X is the design matrix,  contains the 

regressor parameters to be estimated, and E contains the error terms, assumed to be 

Gaussian, independent, and identically distributed. A process that minimizes the sum of 

the squared error terms was used to yield the model parameter estimates: 

 

βmodel = (XT X)-1 XT Y 

 

for each voxel in the brain volume and each regressor in the design matrix. The 

estimated model parameters were combined linearly to form contrasts of interest: 

 

[c1 c2 … cp] βmodel = cT βmodel 

 

where ci represents the contrast weight for the i-th regressor included in the linear 

contrast. The T statistics were then derived for each voxel b taking into account the 

variance associated with the contrast and the corresponding p values were used for 

significance testing. The experimental procedures behind the statistical inference for 

fMRI data are complex and deserve a critical discussion in the following. 

 

4.8 STATISTICAL INFERENCE AND CORRECTIONS FOR MULTIPLE 
COMPARISONS 

 
Statistical parametric maps encompassing the whole brain follow from the 

application of massively univariate linear models to each volume element (voxel) in the 

fMRI dataset. As a consequence, univariate statistical inference typically involves a 

very large number of tests (typically student-T tests), applied separately to each voxel. 

In other words, the hypothesis testing procedures associated with a specific linear 

contrast are carried out independently and in parallel for each voxel in the fMRI 

dataset. Hence, a sizable multiple comparisons problem emerges that calls for 

appropriate corrections to substantiate the inferences drawn from the analysis. Without 

a correction for multiple comparisons, the incidence of false positives (or type I errors), 

i.e., voxels invalidly labeled as active with respect to the contrast of interest, would 

severely undermine the validity of the conclusions (Friston, 2007; Bennett et al., 2009; 

Poldrack, 2012). As a reference, in an fMRI dataset comprising ≈100k voxels, a 

statistical parametric map with α=5% would contain ≈5k false positives. With respect 
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to univariate fMRI analysis, two main strategies to correct for multiple comparisons 

have been refined in recent years and implemented in analysis packages such as SPM: 

family-wise error rate corrections and false discovery rate corrections.  

 

Family-wise error (FWE) rate statistical corrections are in keeping with the 

Bonferroni correction for multiple statistical tests, whereby the significance level for 

each individual test is set to α/n, where n is the total number of tests performed 

(Nichols and Hayasaka, 2003). Consequently, the probability of one or more false 

positive out of n tests equals α. Given the spatial auto-correlation of fMRI data – a 

consequence of both the intrinsic nature of the data and the spatial preprocessing – the 

number of independent tests performed does not simply equal the number of voxels in 

the dataset. Rather, FWE corrections implemented within the framework or random 

field theory take into account the spatial smoothness of the data and reflect the number 

of independent resolution elements (or resels) in the dataset, typically much smaller 

than the total number of voxels (Worsley et al., 1996; Poline et al., 1997; Friston, 

2007). In a representative dataset included in this thesis, a total of ≈170k voxels 

resampled to a size of 2 mm isotropic and spatially smoothed by a Gaussian filter with 

FWHM 8 mm isotropic, yields ≈820 resels. Univariate hypothesis testing and the FWE 

corrections recapped above can be applied either to individual voxels (peak statistics) 

or to groups of voxels (cluster statistics). While being the most rigorous approach to 

tackle the multiple comparisons problem, whole-brain FWE corrections can be overly 

conservative and result in a high rate of false negatives (or type II errors, i.e., voxels 

invalidly labeled as non active with respect to the contrast of interest) and reduced 

statistical power. This can often be mitigated by appropriately combining a priori 

hypotheses on the expected neuroanatomical correlates of the effects of interest with 

the required corrections for multiple comparisons. To avoid biases and statistical 

circularities (Kriegeskorte et al., 2009; Poldrack and Mumford, 2009; Poldrack, 2012; 

Vul and Pashler, 2012), regions of interest can be identified by (1) fully orthogonal 

contrasts from the same dataset, (2) peaks of activation from other relevant studies and, 

(3) anatomical segmentation (manual, automated, or atlas-based) of cortical and 

subcortical regions (Friston et al., 2006; Saxe et al., 2006; Poldrack, 2007). The ensuing 

statistical small volume corrections (SVC), or corrections for multiple comparisons 

restricted to a region of interest or to a volume of voxels centered around a relevant 

location, lead to an increase in statistical power that reflects the advantage of well 

formulated a priori hypotheses. All the studies presented in this thesis were hypothesis-
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driven. As a result, specific predictions on the neuroanatomical correlates of the effects 

of interest could be formulated and employed to increase statistical power. Thus, small 

volume corrections for multiple comparisons were applied by taking into account either 

an orthogonal contrast from the same dataset or the coordinates of several peaks of 

activation from other relevant studies. SVCs were performed across all the voxels 

contained in a 6-10 mm diameter sphere centered on the relevant peak. This procedure 

was applied to all the statistical parametric maps for both linear contrasts and multiple 

regression analyses and ensured that all the statistical tests were unbiased and not 

circular. 

 

An alternative method to correct for multiple comparisons in whole brain activation 

maps rests on the control of the false discovery rate (Benjamini and Hochberg, 1995). 

FDR corrections result in a proportion α of false negatives, leading to a less 

conservative correction than FWE methods and increased statistical power. In all the 

studies featured in this thesis, we inspected the whole brain activation maps for peaks 

of activations that passed the significance threshold set by the topological (related to the 

activation peaks) FDR implemented in SPM (Genovese et al., 2002; Chumbley et al., 

2010). This ensured that the whole brain activation maps would be fully accounted for, 

including potentially significant results that were not expressed in the a priori 

hypotheses. For all the predicted effects, small volume corrections for multiple 

comparisons were performed according to the procedure described above. In 

conclusion, all the reported datasets were analyzed following established procedures 

and the rigorous application of statistical inference methods for fMRI data. 

 

4.9 EXPERIMENTAL SETUPS: STRIVING FOR IMPROVED ECOLOGICAL 
VALIDITY 

 
The spatial and technological constraints imposed by the MRI scanner often hamper 

attempts to design experiments that attain a sufficiently high level of ecological 

validity. As a result, the general validity of the conclusions drawn from the data can be 

limited by the nature of the experimental setups. These considerations strike as 

particularly apt when considering fMRI experiments including basic sensory stimuli or 

motor tasks. For instance, the investigation of the sensorimotor mechanisms that guide 

reaching and grasping hand actions requires that appropriate experimental setups be 

constructed to replace simulated and computer-based tasks with real-world movements 
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with superior ecological validity (Quinlan and Culham, 2007; Gallivan et al., 2009, 

2011; Bernier and Grafton, 2010; Cavina-Pratesi et al., 2010; Monaco et al., 2011; 

Snow et al., 2011). Similarly, the delivery of naturalistic visual and/or tactile stimuli to 

the participants in the MRI scanner represents a methodological challenge when 

keeping ecological validity in mind. In light of the above, we endeavored to adopt 

experimental setups offering the best possible compromise between stimuli that elicit 

robust BOLD responses and the overall ecological validity of the setup.  

 

In all the studies presented in the thesis, visual and tactile stimuli were delivered to 

the participants’ right hand using a realistic three-dimensional object. In Studies I, III, 

and IV, the participants’ head was tilted forward to allow them to look directly at their 

hand, which was placed on a custom-made inclined support, and at the visual and 

tactile stimuli (Figure 5). This arrangement allowed us to bypass the use of stimuli with 

a weaker degree of ecological validity, such as visual stimuli presented on a computer 

screen and/or viewed indirectly via a mirror (Bremmer et al., 2001; Makin et al., 2007; 

Beauchamp et al., 2010), and tactile stimuli delivered via piezoelectric stimulators or 

air puffs (Macaluso et al., 2000; Sereno and Huang, 2006; Huang et al., 2012; 

Takahashi et al., 2013). The overall ecological validity of the setups was further 

increased by having the participants look directly at their hand and at the three-

dimensional object moving in the vicinity of the hand and/or touching it (see for 

example Gallivan et al., 2009; Snow et al., 2011). Numerous pilot experiments, as well 

as all the key results, revealed that these stimuli induced robust and reliable BOLD 

responses in the majority of the participants. In Studies III and IV, we characterized 

the central representation of the space around the hand by using three-dimensional 

visual stimuli moving either close to or far from the participants’ right hand. The 

participants maintained their gaze on a fixation point but had a direct view of both their 

hand and the visual stimuli. This setup was used successfully in a recently published 

study where we found evidence for the existence of a shared representation of the space 

around one’s hand and another person’s hand (Brozzoli et al., 2013).  

 

Improving the ecological validity of the setups also contributed to reducing the gap 

between the experiments presented here and the neurophysiological investigations on 

primates on which our neuroanatomical and functional hypotheses were predicated. 

Although air puffs and visual stimuli presented on computer screens have been used 

successfully with non-human primates (Duhamel et al., 1998; Cooke and Graziano, 
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2003; Avillac et al., 2007), numerous studies have capitalized on the efficacy of 

naturalistic, three-dimensional visual and/or tactile stimuli presented in direct view of 

the animals (Rizzolatti et al., 1981a, 1981b; Graziano and Gross, 1998; Graziano, 1999; 

Graziano et al., 2000). These observations contributed to the selection of the sensory 

stimuli in our neuroimaging experiments.  

 

Left  eye Right  eye

 
Figure 5. Top panel: in Studies I, III, and IV, we employed an ecologically valid setup where the 
participants had their head tilted forward to allow them to look directly at their right hand, placed on a 
tilted support above their waist, and at the visual and tactile stimuli (sketch adapted from Brozzoli et al., 
2013). Middle panel: in Studies II and V, we developed a setup based on virtual reality technology to 
manipulate the self-attribution of the participants’ right hand. Bottom panel: three-dimensional videos 
were presented to the participants through MRI-compatible head-mounted displays. 

 

As part of the effort to improve the ecological validity of the setups, the visuo-tactile 

stimuli to the participants’ hand were delivered manually using three-dimensional 

objects. This required that supplementary cautionary procedures be taken to ensure that 

the aggregate amount and the relative timing of the stimuli would be well controlled 

and consistent across the experimental conditions and the participants. In all the studies, 

the experimenters followed appropriate metronomes to time the presentation of the 

visual and/or tactile stimuli. In pilot experiments for Study II, as well as in all the 

acquisition sessions for Study V, the manually delivered tactile stimuli were tracked 

using an instrumented probe. In Study V, a force sensor was mounted on the three-

dimensional object used to deliver the tactile stimuli. This allowed the registering of 

data concerning the timing, force, and duration of each tactile stimulus (see Figure 6 for 
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an example). The pooled data from all the experiments revealed that the average timing 

error for the tactile stimuli, computed against the corresponding visual stimuli, was 

smaller than 100 milliseconds. Importantly, none of the participants reported any 

perceived delay between the visual and tactile stimuli when the latter two were 

supposed to be synchronous. This is consistent with previous studies that have shown 

that the perceptual binding of visual and tactile signals from the hand is drastically 

reduced if a delay larger than roughly 200-300 milliseconds is introduced between the 

two sensory streams (Shimada et al., 2005, 2009). Additional analyses revealed that the 

average time error, as well as the duration and force associated with each manually 

delivered stimulus, did not differ significantly between the experimental conditions. 

The above remarks clarify that the choice to have the stimuli delivered manually by the 

experimenters, contributing to the ecological validity of the setups, did not compromise 

the accuracy of the presentation of the stimuli and did not introduce any significant 

difference between the experimental conditions that may have confounded the analyses.  
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Figure 6. (A) Example or the raw, unfiltered data recorded with an MRI-compatible force sensor in 
Study V (see the corresponding manuscript for details). The time course corresponds to the force 
recorded as a function of time while the tactile stimuli were delivered manually by the experimenter to 
the participants’ right hand in the scanner. (B) Example of the quantitative information extracted from the 
representative time course for a tactile stimulus. 
 

In light of all the above considerations, we set out to design fMRI experiments with 

the goal of maximizing the ecological validity of the setups without forfeiting the high 

sensitivity in detecting BOLD responses to naturalistic sensory stimuli delivered to the 

participants’ hand. We propose that the methodological features summarized above 

constitute a straightforward yet significant advancement compared to previous studies. 

Furthermore, they help reduce the gap between the rich body of neurophysiological 

research in non-human primates and the more recent neuroimaging studies in humans 

that were reviewed in the Introduction. 
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4.10 A VIRTUAL REALITY SETUP TO INVESTIGATE THE SELF-
ATTRIBUTION OF THE HAND 

 
In order to extend the investigation of the mechanisms underlying multisensory 

integration and the representation of the peripersonal space to encompass the 

psychological and neural phenomena associated with the self-attribution of the hand, 

we developed a setup based on virtual reality techniques that allowed the use of more 

complex experimental conditions. Despite the advantages associated with the simple, 

ecologically valid setups described above, the specific experimental manipulations in 

Studies II and V required the introduction of an appropriate virtual reality platform. 

Explicitly, the manipulation of the spatio-temporal congruence of the multisensory 

signals from the upper limb, as well as the introduction of unexpected sensory 

omissions that was crucial to the design of Study V, would not have been possible with 

the experimental setups we adopted in Studies I, III, and IV.  

 

In order to overcome these limitations, we set out to develop a platform based on 

virtual reality tools that would deviate as little as possible from the ecologically valid 

setups described above. Specifically, we chose to adopt pre-recorded visual stimuli that 

featured the participants’ own right hand, a step that allowed us to gain insights on the 

link between multisensory integrative mechanisms and the self-attribution of one’s own 

hand, as opposed to an artificial body part or object (Botvinick, 2004; Moseley, 2011; 

Ehrsson, 2012). The visual stimuli were custom-made and consisted of high-quality 

stereoscopic videos that were presented to the participants in the MRI scanner via a pair 

of head-mounted displays placed right next to their eyes (Nordic Neuro Lab, Bergen, 

Norway; see also Petkova et al., 2011). All the other aspects of the experimental setups 

for Studies II and V were kept as similar as possible to the other studies. Namely, the 

participants had their head tilted forward and their right hand placed on the same 

inclined support, while looking at the three-dimensional videos through the head-

mounted displays (Figure 5). Furthermore, the tactile stimuli associated with the videos 

were delivered manually by the experimenter following the same procedures described 

in the other studies. Special care was taken to ensure that the position of the 

participants’ hand in the scanner matched as closely as possible the position of the hand 

in the videos. As mentioned previously, this arrangement allowed us to introduce a 

number of experimental manipulations that would not have been feasible without the 

virtual reality platform.  
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In Study II, we significantly disrupted the perceptual binding of visual, tactile, and 

proprioceptive signals from the upper limb by introducing highly noticeable temporal 

delays, spatial incongruences, or mismatches between the seen and felt postures of the 

hand. Thus, we were able to relate the degree of the neural integration of the 

multisensory signals to the strength of the self-attribution of the hand, as indexed by 

subjective measures of visuo-tactile-proprioceptive perceptual binding and the sense of 

limb ownership. Furthermore, the use of pre-recorded videos permitted the introduction 

of effective threat stimuli (a kitchen knife sliding just above the pre-recorded video 

image of the hand), which allowed the recording of threat-evoked psychophysiological 

and neural responses. The latter measures served as complementary evidence for 

changes in the self-attribution of the hand as a function of the congruence between the 

multisensory signals. All the participants reported a vivid feeling of ownership toward 

the video image of their right hand only in the presence of congruence between visual, 

tactile, and proprioceptive signals. The participants’ subjective reports, corroborated by 

the complementary objective measures, confirmed the effectiveness of the experimental 

manipulations, particularly with respect to the marked reduction in the perceptual 

binding induced by the incongruences between the sensory signals in the control 

conditions. Taken together, these observations validated the virtual reality setup as a 

tool to induce changes in the self-attribution of the hand as a function of the congruence 

between the sensory signals from the upper limb. 

 

The virtual reality setup was perhaps even more crucial to the design of Study V. In 

that study, we combined the manipulation of the multisensory congruence of signals 

from the hand employed in Study II with the introduction of unexpected omission 

trials. In the latter, one of the components of a multisensory event was unpredictably 

omitted, with the goal of unveiling the existence of multisensory predictions concerning 

self-attributed stimuli. The unpredictable omission of a visual or tactile stimulus, while 

maintaining the non-omitted stimulus intact, would have proven to be a severe 

methodological challenge without the use of the virtual reality setup. With the use of 

the latter, we were instead able to (1) change the self-attribution of the hand as a 

function of the congruence between the signals, and (2) introduce unexpected sensory 

omission events in multiple sensory modalities. In summary, we developed a setup 

based on virtual reality tools for use in fMRI studies that significantly extended the 

potential of introducing more sophisticated experimental manipulations to investigate 
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how the integration of signals from multiple sensory modalities relates to the 

representation and self-attribution of one’s hand. 

 

4.11 MONITORING THE PARTICIPANTS’ ALERTNESS: CATCH TRIALS 
AND EYE MOVEMENTS 

 
In order to ensure that participants remained as alert as possible during the fMRI 

acquisition sessions, we used a combination of simple catch trials and eye-tracking 

methods. The catch trials were designed to be fully orthogonal to the experimental 

manipulations of interest, and required a button press with the left hand whenever the 

target stimulus occurred. For instance, in Studies III and IV, the catch trials consisted 

of replacing the moving visual stimulus (the three-dimensional objects moving close to 

or far from the participants’ right hand) with a static stimulus (non-moving object). The 

catch trials were uniformly distributed among the experimental conditions, and did not 

require the participants to assess the relative position of the visual stimulus with respect 

to the position of their right hand. In Studies II and V, the catch trials consisted of 

replacing the moving visual or tactile stimuli with corresponding static stimuli, or 

briefly changing the color of the visual stimulus (the object touching the hand). Again, 

the distribution of the catch trials was identical for all conditions and was fully 

orthogonal to the manipulation of the self-attribution of the participants’ right hand. All 

of the participants performed with high accuracy with respect to the catch trials, which 

were included in the general linear model as regressors of no interest. 

 

To further monitor the participants’ alertness throughout the experimental sessions, 

we employed an MRI-compatible video camera (acquisition frequency 60 Hz; MRC 

Systems, Heidelberg, Germany) to track movements of the left eye. In Studies II and 

V, the camera was mounted next to the left head-mounted display (see Figure 7 for an 

example), whereas in Studies III and IV the camera was mounted on the head coil and 

placed next to the participants’ left eye. The recordings were monitored online by an 

experimenter in the MRI control room, and examined offline to evaluate the 

participants’ overall alertness. Furthermore, the monitoring of the participant’s left eye 

allowed us to rule out the possibility that systematic differences in condition-specific 

patterns of eye movements would contribute to the BOLD responses in the vicinity of 

the brain regions of interest. Abundant evidence – ranging from electrophysiological 

studies in non-human primates to human neuroimaging studies – supports the existence 
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of neuronal populations in the frontal and parietal lobes that are specialized in the 

planning, performance, and control of eye movements. Two regions, the frontal eye 

fields and the intraparietal sulcus, are key nodes in the brain circuits devoted to the 

control and execution of eye movements, with an emphasis on object-directed eye 

movements that help guide the use of the hands to interact with objects (Johansson et 

al., 2001; Flanagan and Johansson, 2003; Grefkes and Fink, 2005; Culham et al., 2006; 

Andersen and Cui, 2009).  
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Figure 7. Examples of the eye-tracking data acquired to monitor the participants’ alertness. The data 
display the raw data from all scanning sessions for three representative participants in Study V. The 
participants were instructed to maintain their gaze around the location of the hand and the visual stimulus 
that appeared just above the hand and came in contact with it. Each red circle represents the x and y 
position of the participant’s left pupil averaged over a period of 500 ms (the data were sampled at 60 Hz) 
and overlaid onto the left frame of the videos presented to the participants. 
 

In light of the above, two main reasons emerge to support the use of basic eye 

monitoring techniques in the experiments described in the thesis. First, we were able to 

ensure that the BOLD responses we consistently observed in regions of the frontal and 

posterior parietal lobes would not be confounded by systematically different patterns of 

eye movements between the experimental conditions. Second, with particular relevance 

to Studies III and IV, we were able to characterize the hand-centered properties of the 

neural representation of the perihand space by ensuring that the relative position of a 

visual stimulus would vary only with respect to the location of the participants’ hand 

and not with respect to their eyes, which they were required to maintain on a central 

fixation point. In summary, through a combination of simple catch trials and eye 

monitoring techniques, we were able to assess the participants’ overall alertness during 
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the fMRI acquisition sessions. Importantly, the monitoring of the participants’ eye 

movements also contributed to strengthening all the conclusions drawn from the 

neuroimaging experiments, with a prominent role in the studies that characterized the 

hand-centered representation of the space around the upper limb. 

 

4.12 POST-SCAN EXPERIMENTS: CONNECTING BEHAVIORAL AND 
BOLD MEASURES 

 
A considerable advantage associated with performing neuroimaging experiments 

with human volunteers is the unique opportunity to link psychophysiological and neural 

responses to the subjective experience of complex psychological phenomena. This 

benefit stands out against similar experiments performed on other animals and non-

human primates that, despite the potential for greatly enhanced spatio-temporal 

resolution, fall short of capitalizing on the exquisitely human ability to report on 

complex behavioral experiences using language and other implicit or explicit channels. 

These general considerations apply especially well to the investigation of the 

psychological and neural mechanisms underlying the sense of ownership experienced 

over one’s body parts. Starting with the seminal report by Botvinick and Cohen 

(Botvinick and Cohen, 1998), a plethora of studies have capitalized on the accessibility 

to the subjective experience of body ownership granted by human research volunteers 

(Costantini and Haggard, 2007; Ehrsson, 2007; Lenggenhager et al., 2007; Petkova and 

Ehrsson, 2008; Slater et al., 2008; Barnsley et al., 2011; Tsakiris et al., 2011). More 

recently, neuroimaging investigations of bodily self-perception have consistently 

demonstrated a tight link between the BOLD responses to multisensory stimuli and the 

strength of the subjective experience of ownership of a limb or a whole body (Ehrsson 

et al., 2004; Ionta et al., 2011b; Petkova et al., 2011a; Guterstam et al., 2013).  

 

In light of the above, we employed an array of behavioral measurements to assess 

the participants’ subjective experience of the experimental conditions of interest, with a 

focus on the self-attribution of the upper limb. In Studies II, IV, and V, the participants 

were presented with additional repetitions of the experimental conditions following the 

completion of the fMRI acquisition sessions. Immediately after each repetition, the 

participants were asked to rate a number of statements that were aimed at probing their 

subjective experience associated with the experimental conditions. Several statements 

targeted the subjective experience of ownership of the hand (a three-dimensional video 
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image of the participants’ right hand in Studies II and V, and a prosthetic hand in Study 

IV), and were adapted from previous behavioral and neuroimaging studies (Botvinick 

and Cohen, 1998; Ehrsson et al., 2004; Tsakiris et al., 2007; Dieguez et al., 2009). The 

remaining statements served as control for the potential effects of task demands and 

suggestibility. The subjective ratings were collected via verbal reports and logged for 

offline analysis. Through unbiased multiple regression analyses, we were able to test 

for potential relations between the BOLD responses to the experimental conditions of 

interest and the subjective reports. Such analyses offer a powerful tool to capture inter-

individual variability in both brain responses and subjective experiences, constructing a 

straightforward albeit indirect model describing the link between the neural and 

behavioral correlates of the self-attribution of the upper limb. One possible caveat, 

pertaining to the interpretation of the findings from post-scan behavioral experiments, 

deserves further comments. In all the post-scan behavioral tests, the subjective rating to 

the various experimental conditions were collected only once per participant. As such, 

they are interpreted to reflect the participants’ overall subjective experience of each 

experimental condition, failing to capture the trial-by-trial variability that could be 

associated with the high number of repetitions typically included in neuroimaging 

experiments. Notwithstanding this limitation, the post-scan behavioral experiments 

cash in on the existing inter-individual differences and provide sufficient statistical 

power to detect robust correlations between the neural and behavioral measures of the 

sense of ownership of the hand (Ehrsson et al., 2004, 2005, 2007; Tsakiris et al., 2007; 

Petkova et al., 2011a; Guterstam et al., 2013). 

 

In Study IV, the post-scan behavioral experiments included an additional test to 

quantify the changes in the perceived location of one’s own hand. Following periods of 

congruent visuo-tactile stimulation, the participants began to refer somatic sensations 

and the subjective feeling of ownership to a prosthetic hand placed close to their hidden 

right hand (the rubber hand illusion; Botvinick and Cohen, 1998). These changes in the 

self-attribution of the prosthetic hand are often accompanied by a recalibration of the 

perceived location of the hand toward the prosthetic hand, termed proprioceptive drift, 

that typically ranges between 10 and 20% of the total distance between the veridical 

and artificial hands (Botvinick and Cohen, 1998; Tsakiris et al., 2007; Guterstam et al., 

2011; Kalckert and Ehrsson, 2012). The proprioceptive drift, measured by simple inter-

manual pointing tasks, is interpreted within the framework of existing models of bodily 

self-perception as reflecting the recalibration of the perceived location of the hand that 
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accompanies the integration of congruent visual signals from the prosthetic hand and 

tactile signals from the real hand (Makin et al., 2008; Tsakiris, 2010; Blanke, 2012; 

Ehrsson, 2012). However, a number of recent studies have put into questions the 

assumption that the proprioceptive drift and the subjective sense of ownership are two 

manifestations of the same neuronal mechanisms (Holmes et al., 2006; Folegatti et al., 

2009; Rohde et al., 2011). The proprioceptive drift, considered to rely primarily on 

visuo-proprioceptive integration, resembles the changes in the perceived location of the 

hand that arise from a resolvable conflict between visual and proprioceptive signals, as 

is the case with prism adaptation (Redding et al., 2005; Folegatti et al., 2009; Newport 

and Schenk, 2012) or mirrors (Holmes and Spence, 2005b; Holmes et al., 2006; 

Snijders et al., 2007). In the above examples, the recalibration of hand position is not 

accompanied by changes in the self-attribution of the hand. Therefore, caution should 

be exercised when making inferences on the self-attribution of the hand based on data 

obtained exclusively from proprioceptive drift measurements (Folegatti et al., 2009; 

Rohde et al., 2011). Conversely, the co-assessment of the subjective sense of ownership 

and the proprioceptive drift opens a window for the investigation of two potentially 

separate neural mechanisms that can be turned into an advantage by appropriately 

designing the experimental paradigms. With this in mind, we devised the post-scan 

behavioral experiments in Study IV to include measurements of both the subjective 

feeling of ownership and the proprioceptive drift. While the former were used to 

quantify changes in the self-attribution of the prosthetic hand, the latter were employed 

only to assess the recalibration of the perceived hand position. We then exploited the 

likely dissociation between the two types of measures to test for differences in their 

relation to the spatial remapping of the representation of the space around the hand.  

 

In summary, we took advantage of the above considerations, extracted from a rich 

body of literature, to maximize the gains specific to neuroimaging studies featuring 

human volunteers by collecting a variety of subjective indices quantifying the self-

perception of the hand that we could relate to the corresponding BOLD responses. We 

extended this line of reasoning further to encompass additional measurements that 

would enrich the description of the multifaceted phenomena associated with the self-

perception of one’s own body. 
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4.13 RECORDING AND ANALYSIS OF SKIN CONDUCTANCE 
RESPONSES DURING FMRI 

 
The skin conductance response (SCR), also known as electrodermal activity or 

galvanic skin response, originates primarily from the increased activity of sweat glands 

regulated by the sympathetic nervous system in response to states of 

psychophysiological arousal (Malmivuo and Plonsey, 1995; Critchley, 2002). The SCR 

reflects small changes in the electrical conductance of the skin that can be measured by 

monitoring the flow of a steady current between two electrodes. The sensitivity of the 

SCR in detecting fluctuations in arousal induced by the presentation of emotional 

stimuli has contributed to its widespread use in psychology and cognitive neuroscience. 

With respect to investigating the perception of limbs and whole bodies as belonging to 

one’s physical self, measuring the SCR to threats directed toward a body part serves as 

an objective measure of the sense of body ownership, preferably in complement to 

subjective (questionnaire ratings) and other objective (BOLD activity) indices, as 

described in the preceding section. Numerous studies have validated the use of the SCR 

to test the hypothesis that threats directed toward a self-attributed body part would lead 

to augmented psychophysiological arousal compared to the same threats directed 

toward body parts or objects that are not perceived as belonging to one’s physical self 

(Armel and Ramachandran, 2003; Ehrsson, 2007; Ehrsson et al., 2008; Petkova and 

Ehrsson, 2008; Newport and Preston, 2010; van der Hoort et al., 2011; Guterstam et al., 

2011, 2013; Newport and Gilpin, 2011; Tajadura-Jiménez et al., 2012; Farmer et al., 

2012; Ferri et al., 2013a). To the best of our knowledge, no previous neuroimaging 

study on the sense of body ownership has recorded SCRs and linked them to the 

measured BOLD responses underlying the self-attribution of limbs or whole bodies.  

 

In both Study II and Study V, we employed an MRI-compatible SCR recording 

device to register the participants’ psychophysiological responses to threat events 

directed toward a virtual seen hand that was perceived either as belonging to one’s 

physical self or not. In both studies, the pre-recorded threat stimulus consisted of a 

kitchen knife moving into the field of view of the head-mounted displays and sliding 

swiftly just above the virtual image of the participants’ right hand. The duration of each 

threat stimulus was roughly 2 seconds. Similar threat stimuli have been used and 

validated in previous behavioral and neuroimaging investigations of the sense of body 
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ownership (Lloyd et al., 2006; Ehrsson et al., 2007; Petkova and Ehrsson, 2008; 

Guterstam et al., 2013). 

 

Given the technical constraints imposed by the strong magnetic field, special 

hardware is necessary to acquire high-quality SCR data during fMRI. Prior to the onset 

of the scanning sessions, two electrodes were attached to the index and middle fingers 

of the participants’ left hand. Once the participants were positioned inside the MRI 

scanner, the electrodes were attached to an MRI-compatible signal amplifier 

(BrainAmp ExG MR, Brain Products, Gilching, Germany), placed next to the 

participants’ body. The signal was then carried to the MRI control room via a fiber 

optics connection and sampled at a frequency of 5 kHz using a computer running the 

Brain Vision Recorder software (Brain Products). The recordings were synchronized 

with the acquisition of the fMRI data to ensure accurate timing information for offline 

analysis. The SCR data for each participant were loaded into Matlab and low-pass 

filtered (the cutoff frequency was set to 10 Hz) using the eeglab toolbox (Delorme and 

Makeig, 2004). In keeping with previous work (Dawson et al., 2007; Ehrsson, 2007; 

Petkova and Ehrsson, 2008; Guterstam and Ehrsson, 2012), the threat-evoked SCR data 

were analyzed as follows.  
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Figure 8. In Studies II and V, we recorded threat-evoked SCRs during fMRI as psychophysiological 
evidence for changes in the self-attribution of the hand. The SCR to each occurrence of the threat 
stimulus was analyzed by defining a 5-second window aligned to the event onset and subtracting the 
minimum value from the maximum value within that time window.  

 
For each repetition, experimental condition, and participant, we extracted the signal 

corresponding to a 5-second time window aligned to the onset of the threat event. We 

then calculated the amplitude of the SCR as the difference between the maximal and 

minimal values identified within that time window (Figure 8). The average response 

was then computed for each condition and each participant, and the data were imported 
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into SPSS (IBM Corporation, Armonk, NY, USA) for further statistical analysis. The 

SCR data from Study II passed the Kolmogorv-Smirnoff test for normality and were 

analyzed using a 2x2 repeated-measures analysis of variance (Interaction term: Visuo-

tactile congruence x Visuo-proprioceptive match), whereas the data from Study V were 

not normally distributed and were analyzed using a non-parametric paired two-tailed 

Wilcoxon Signed Ranks test (Congruent vs. Incongruent).  

 

Besides granting the opportunity to record SCR data as an objective evidence for the 

self-attribution of the hand, an additional advantage with the presentation of threat 

events to the participants during fMRI resides in the potential to measure the 

corresponding threat-evoked changes in the BOLD response. Several neuroimaging 

studies have demonstrated that the anticipation and the emotional response associated 

with nociceptive stimuli delivered to the hand induce reliable changes in the BOLD 

signal in regions of the anterior cingulate and insular cortices (Critchley et al., 2003; 

Singer et al., 2004; Wager et al., 2004; Farrell et al., 2005; Lloyd et al., 2006; Ehrsson, 

2007). In light of this, in Study II we presented the changes in the BOLD response 

evoked by the threat stimuli, alongside the corresponding SCR data. Furthermore, we 

performed independent multiple regression analyses to relate the psychophysiological 

SCRs to the BOLD indices quantifying the integration of multisensory signals from the 

hand. Together with the subjective ratings obtained from the post-scan questionnaires, 

these psychophysiological (SCR) and neural (BOLD) objective measures contributed to 

shape the battery of complementary tests that we adopted to quantify the psychological 

phenomena associated with the self-attribution of the hand. 
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5 RESULTS AND SHORT DISCUSSION 
 

The aim of this section is to recapitulate the main findings from the studies 

presented in the thesis, in conjunction with a short discussion of the strengths and 

weaknesses associated with their interpretation. For in-depth details, the reader is 

referred to the attached articles and manuscripts. 

 

5.1 STUDY I: VISUO-TACTILE INTEGRATION IN CORTICAL AND 
SUBCORTICAL BRAIN REGIONS 

 
The purpose of Study I was to identify cortical and subcortical brain regions that 

perform the integration of visual and tactile signals from one’s own hand. In light of the 

abundant evidence from neurophysiological research in non-human primates (Graziano 

and Botvinick, 2002), as well as more recent neuropsychological and neuroimaging 

studies in humans (Driver and Noesselt, 2008; Heed and Röder, 2012; Murray and 

Wallace, 2012), we hypothesized the existence of multisensory neuronal populations in 

frontal, parietal, and subcortical human brain regions that are sensitive to both visual 

and tactile signals from the hand and display a response profile to congruent visuo-

tactile stimuli compatible with multisensory integrative mechanisms. We employed an 

ecologically valid experimental setup whereby the participants received visual, tactile, 

and combined visuo-tactile stimuli while looking directly at their right hand during the 

fMRI acquisition sessions. 

 

In an fMRI experiment with twenty-four healthy human volunteers, we compared 

the BOLD responses to unisensory visual and tactile stimuli with the responses to 

congruent visuo-tactile stimuli delivered to the participants’ right hand (Figure 9A). A 

conjunction analysis of the BOLD responses to the unisensory signals revealed areas of 

significant overlap in the left posterior and inferior parietal cortices, encompassing the 

anterior intraparietal sulcus, close to the junction with the postcentral sulcus and the 

superior parietal gyrus, and, more inferiorly, the supramarginal gyrus and the parietal 

operculum. In the frontal lobe, significant overlap was found in the ventral and dorsal 

portions of the left premotor cortex. At a lower threshold, the same effect was identified 

in the right inferior parietal cortex, and, subcortically, in the left putamen and in Lobule 

VI of the right lateral cerebellum. Hence, these results characterized a set of brain 
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regions where the BOLD responses to visual and tactile stimuli to one’s own hand 

converge significantly within the same voxels. These initial findings fit well with the 

extensive body of neurophysiological evidence reviewed in the Introduction, and 

served as a starting point for the characterization of the multisensory BOLD responses. 
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Figure 9. Summary of the main findings from Study I. (A). We compared the BOLD responses to 
ecologically valid tactile, visual, and congruent visuo-tactile stimuli delivered to the participants’ right 
hand. The activation maps represent the responses to the unisensory and the multisensory conditions 
relative to a common baseline, thresholded at a p<0.001 and overlaid onto a representative inflated 
cortical surface of the left (contralateral) hemisphere. (B) Frontal, parietal, and cerebellar regions 
displayed non-linear superadditive BOLD responses to the visuo-tactile (VT) stimuli, i.e., responses that 
were significantly greater that the sum (V+T) of the BOLD responses to the unisensory tactile (T) and 
visual (V) conditions presented separately. Coordinates are given in MNI space. **p<0.01 corrected for 
multiple comparisons. *p<0.05 corrected.   

 

In order to characterize the BOLD response profiles evoked by the combined visuo-

tactile stimuli, we implemented a 2x2 factorial design controlling the presence or 

absence of the stimulation in either the visual or tactile modalities. The key findings 

emerged from the investigation of the positive interaction contrast obtained from the 

factorial design. With R being defined as the appropriate common baseline for all 

conditions, the factorial interaction contrast was expressed as (VT-V) - (T-R) > 0, where 

VT indicates the BOLD response to the congruent visuo-tactile stimuli, and V and T the 

unisensory BOLD responses to the visual and tactile stimuli, respectively. Simply 
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rearranging the terms of the contrast yields the expression (VT-R) > (V-R) + (T-R), 

which clearly identifies it as a statistical test for superadditive VT responses. In other 

words, this contrast revealed voxels whose BOLD responses to the congruent visuo-

tactile stimuli exhibited a superadditive profile that cannot be accounted for by non-

interacting responses to the visual and tactile stimuli. Specifically, the superadditive 

responses necessarily reflect a non-linear interaction between the two sensory signals 

that is strongly indicative of multisensory integrative mechanisms. Superadditive 

responses to the visuo-tactile stimuli were found in the anterior segment of the left 

intraparietal sulcus, close to the junction with the postcentral sulcus, in the left posterior 

insula in the inferior parietal lobe, and in the left dorsal section of the premotor cortex 

in the frontal lobe (Figure 9B). At a lower threshold, superadditive responses were 

found in regions of the right inferior parietal cortex. Subcortically, the same response 

profile was identified in the left putamen, and, at a lower threshold, in the right 

cerebellum. Despite the caveats associated with the interpretation of the superadditive 

responses (see discussion in Methodological considerations), these results, obtained 

from a simple, ecologically valid set of experiments, demonstrate high neuroanatomical 

specificity and fit well with the a priori hypotheses. These findings identify fronto-

parietal-subcortical brain areas that are likely to host the multisensory mechanisms 

underpinning the integration of visual and tactile signals from the hand.  

 

To complement the results from the interaction contrast, we examined the two main 

effects derived from the factorial design. The conjunction of the main effects of visual 

and tactile stimulation revealed voxels whose BOLD response profile to the combined 

visuo-tactile stimuli is additive with respect to the responses to the unisensory signals. 

Such additive responses to the visuo-tactile stimuli were found in regions of the left 

posterior parietal cortex, encompassing the superior parietal gyrus, the postcentral 

sulcus, the supramarginal gyrus, and the parietal operculum. In the right parietal lobe, 

similar responses were found in the vicinity of the parietal operculum and the 

supramarginal gyrus. In the frontal lobe, the additive responses were found in the 

ventral and dorsal portions of the left premotor cortex. Subcortically, the same response 

profile was identified in the left ventrolateral thalamus and in Lobules VIIIa and VIIIb 

of the right cerebellum. Importantly, the examination of the main analyses in individual 

participants revealed that the findings were highly reproducible and consistent across 

individuals. Again, these results converge onto a set of parietal, frontal, and subcortical 

brain regions whose BOLD response profiles to the multisensory stimulation of the 
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right hand suggest the existence of neuronal populations that integrate the signals from 

the upper limb across multiple sensory modalities. 

  

The findings from Study I offer an important conclusion for the work presented in 

the thesis. The participants in this study were presented with visual, tactile, and visuo-

tactile stimuli to their own right hand in direct view. Thus, the multisensory integration 

of visuo-tactile stimuli from one’s own hand, in the absence of any recalibration of the 

position sense of the hand, illusory feelings of ownership toward artificial limbs, virtual 

reality tools, or task-related effects, results in the robust engagement of widespread 

frontal, parietal, and subcortical brain regions. 

 
5.2 STUDY II: THE HAND’S SELF-ATTRIBUTION DEPENDS ON 

MULTISENSORY CONGRUENCE 

 
The purpose of Study II was to describe the relation between the multisensory 

mechanisms underpinning the integration of visual, tactile, and proprioceptive signals 

from the upper limb and the self-attribution of the hand. To this aim, we developed a 

setup based on virtual reality techniques that allowed the introduction of experimental 

manipulations that would not have been possible with the setup used in Study I. During 

the fMRI acquisition sessions, the participants watched high-quality stereoscopic 

videos of their right hand being touched by a three-dimensional object, while receiving 

tactile stimulation on their right hand inside the MRI scanner. The virtual reality setup 

permitted the manipulation of the spatio-temporal congruence of the visual, tactile, and 

proprioceptive stimuli. By matching the visuo-tactile stimuli in time and space (or by 

introducing noticeable temporal delays or spatial incongruences), we were able to 

induce strong (or significantly break down) perceptual binding of the sensory signals 

from the hand. Furthermore, the participants’ right hand was positioned in one of two 

different postures in the MRI scanner, allowing us to test for a three-way interaction 

between congruent visual, tactile, and proprioceptive signals from the upper limb. We 

hypothesized that the multisensory areas in the frontal, parietal, and subcortical regions 

identified in Study I would be sensitive to the congruence of the visual, tactile, and 

proprioceptive inputs. Furthermore, we predicted that the self-attribution of the hand 

would depend on the congruence of the inputs, with vivid self-attribution present only 

under conditions of congruence between the sensory inputs from the upper limb. 
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In two fMRI experiments on a total of thirty healthy human volunteers, we found 

that regions in the bilateral posterior parietal cortices, encompassing peaks located in 

the anterior segments of the intraparietal sulci and in the supramarginal gyri, were 

sensitive to the three-way congruence of visual, tactile, and proprioceptive signals from 

the hand. This ensued from a significant interaction in a 2x2 factorial design where we 

manipulated the congruence of visual and tactile signals from the hand, in conjunction 

with the match between visual and proprioceptive signals concerning hand position. 

 

 
Figure 10. Overview of the main findings from Study II. (A) The manipulation of the congruence of the 
sensory signals from the hand revealed a three-way interaction between congruent visual, tactile, and 
proprioceptive signals in frontal, parietal, and cerebellar regions consistent with the findings from Study 
I. The corresponding activation map, thresholded at p<0.001 uncorrected for display purposes, is shown 
overlaid onto the representative inflated cortical surfaces of the left (LH) and right (RH) hemispheres. (B) 
Significant (all p<0.05 corrected) interactions between congruent visuo-tactile signals in the context of 
matching visuo-proprioceptive signals concerning hand position. 

 

A similar response profile was found in portions of the bilateral ventral and dorsal 

premotor cortices in the frontal lobe, and, subcortically, in the right lateral cerebellum 

(Figure 10). A significant modulation of the BOLD response evoked by congruent 

multisensory signals from the hand was also observed in portions of the bilateral lateral 

occipito-temporal cortices. Furthermore, independent psychophysiological interaction 

analyses revealed that the effective connectivity between a seed region in the left 

anterior intraparietal cortex and the brain regions listed above varied as a function of 

the congruence between the multisensory signals from the hand, indicating that these 

areas work in concert to process the multisensory information from the hand. Finally, a 
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separate control experiment revealed that the basic multisensory integrative effects are 

dissociated from the effects related to endogenous attention. Taken together, the main 

results summarized above, further replicated in Study V (see below for details), extend 

the findings from Study I and characterize a set of interconnected multisensory areas 

that integrate spatio-temporally congruent sensory stimuli from the upper limb. 

 

The overarching aim of Study II was to relate the multisensory integration of visual, 

tactile and proprioceptive signals from the hand to the self-perception of the hand. As 

mentioned previously, the use of the virtual reality setup allowed us to manipulate the 

relative multisensory congruence of the signals from the participants’ right hand and 

examine the ensuing neuronal and perceptual correlates.  
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Figure 11. The self-attribution of the hand depends on multisensory congruence. (A) The post-scan 
experiments revealed that the participants experienced vivid self-attribution of the hand seen through the 
head-mounted displays only in the context of congruence between vision, touch, and proprioception. 
***p<0.001, *p<0.05. (B) The threat-evoked SCRs revealed a significant interaction between visuo-
tactile and visuo-proprioceptive congruence, displaying an enhanced psychophysiological response to the 
threat directed toward the hand when the latter was perceived as belonging to one’s physical self. (C) The 
self-attribution index obtained from the subjective ratings significantly predicted the BOLD index of 
multisensory integration in key multisensory frontal and parietal regions.  
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We collected a battery of complementary subjective, psychophysiological, and 

neural measurements to link the multisensory integrative mechanisms to changes in the 

self-attribution of the hand seen through the head-mounted displays. Crucially, the 

post-scan behavioral experiments revealed that the participants experienced a strong 

feeling of ownership over the virtual image of their right hand only under conditions of 

congruence between the visual, tactile, and proprioceptive signals (Figure 11A). In 

other words, breaking down the congruence between the multisensory signals led to a 

feeling of disownership of the seen hand. The strength of the subjectively rated self-

attribution of the hand correlated positively with the BOLD index of multisensory 

integration in key frontal and parietal areas, linking the neuronal processing in these 

regions to the experience of the seen hand as part of one’s physical self (Figure 11C).  

 

A direct prediction of the observed changes in the self-attribution of the hand relates 

to differences in the response to threat stimuli directed toward the virtual image of the 

hand. To test this hypothesis, we recorded the psychophysiological responses to threat 

stimuli directed toward the hand during the fMRI sessions and observed a significantly 

stronger threat-evoked skin conductance response in the context of the self-attribution 

of the hand, compared to the contexts characterized by the incongruent multisensory 

stimulation (Figure 11B). The magnitude of the threat-evoked psychophysiological 

responses scaled significantly with the BOLD measures of multisensory integration in 

key frontal and parietal areas, relating basic multisensory processing to the self-

attribution of the hand. Furthermore, the BOLD responses to the threat-events indicated 

a differential engagement of areas related to the anticipation of noxious stimuli directed 

toward the hand (including the anterior cingulate and insular cortices; Ehrsson et al., 

2007) and to the triggering of defensive movements aimed at protecting the body from 

incoming threats (including the premotor cortex and the cerebellum). The level of the 

activation of these circuits was greater following the congruent multisensory 

stimulation, further confirming that the seen hand was perceived as one’s own only in 

the context of congruence between the sensory signals. In conclusion, complementary 

BOLD, subjective, and psychophysiological measures converge to indicate that the 

experience of the seen hand as part of one’s physical body is intimately linked to the 

dynamic integration of multisensory signals originating from the upper limb. 
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5.3 STUDY III: THE CENTRAL REPRESENTATION OF THE PERIHAND 
SPACE  

 
The aim of Study III was to provide neuroimaging evidence for the existence of a 

selective representation of visual stimuli presented in the space near to, as opposed to 

far from, the right hand. With this in mind, we developed an ecologically valid fMRI-

adaptation paradigm whereby three-dimensional objects were presented close to (≈2 

cm), or far from (100 cm), the participants’ right hand. The right hand, always in direct 

view, was placed in one of two different postures across the experimental sessions, 

allowing us to dissociate the hand-centered responses to the visual stimuli from other 

spatial reference frames whose coordinate systems for the encoding of visual stimuli 

are not centered on the upper limb. We predicted stronger BOLD-adaptation to the 

stimuli presented in a spatial location within, as opposed to outside, the visual receptive 

fields of the putative perihand neuronal populations (Figure 12A).  

 

The key finding of Study III the identification of frontal, parietal, and subcortical 

brain regions exhibiting BOLD-adaptation selective to the presence of an object in the 

perihand space. This finding is compatible with the existence of neuronal populations 

with visual receptive fields limited to the perihand space, revealing a mechanism for the 

selective representation of visual stimuli close to the hand. Neuronal populations with 

such properties were discovered in both cortical and subcortical brain regions and 

exhibited statistically significant BOLD-adaptation to the visual stimuli presented 

within the perihand space (Figure 12B). In the parietal lobe, neuronal populations with 

perihand RFs were found in the anterior segments of the bilateral intraparietal sulci, 

close to the junction with the postcentral sulcus, and at a more inferior location, with 

peaks encompassing the supramarginal gyrus in the left hemisphere. In the frontal lobe, 

we found evidence that portions of the bilateral ventral and dorsal premotor cortices 

contain neuronal populations with perihand RFs. Subcortically, the same was found in 

lobule VI of the left lateral cerebellum and, at a lower statistical threshold, in the right 

putamen. The above findings were obtained through two separate BOLD-adaptation 

analyses that proved to be more sensitive than a conventional analysis.  

 

The selectivity of the above responses to the visual stimuli in the space near the hand 

was corroborated through two important observations. First, no statistically significant 

hand-centered BOLD-adaptation ensued from the presentation of the visual stimuli 
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outside the perihand space, at a distance of 100 cm from the participants’ right hand. 

Second, the statistically significant BOLD-adaptation obtained when the hand was 

positioned in the vicinity of the object was abolished when the participants’ right hand 

was retracted away from that same spatial location. 

 

 
Figure 12. Overview of the main findings from Study III. (A) We found increased BOLD-adaptation to 
the presentation of a three-dimensional visual stimulus within, as opposed to outside, the perihand space 
representations. (B) We contrasted the BOLD responses to the first and second parts of the presentation 
of the visual stimulus both when the hand was present and when it was retracted. A significant interaction 
was found in regions of the frontal, parietal, and cerebellar cortices, revealing selective BOLD-adaptation 
to the presentation of the object within the visual receptive fields of perihand neuronal populations, in 
keeping with neurophysiological data from non-human primates. 

 

Taken together, the above results advocate the existence of a set of frontal, parietal, 

and subcortical human brain regions that contain neuronal populations with visual RFs 

centered on the hand and restricted to the space immediately surrounding the upper 

limb. Furthermore, the neuroanatomical convergence between the set of brain regions 
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identified in Studies I and II and the findings from Study III constitutes further support 

for the notion that the multisensory neuronal populations that integrate visual, tactile, 

and proprioceptive signals from the limb are equipped with visual receptive fields that 

are restricted to the immediate space around the hand. 

 
5.4 STUDY IV: THE PERIHAND SPACE AND ITS LINK TO THE SELF-

PERCEPTION OF HAND 

 
The motivation behind Study IV was twofold. First, we sought to extend the 

findings of Study III and demonstrate that the selectivity for objects in the perihand 

space is anchored to the hand, i.e., the perihand space representation is remapped when 

the hand changes position in space. Second, we aimed at providing evidence for a 

connection between the perihand space representation and the feeling of ownership and 

the position sense of the hand.  

 

In a first experiment on twenty-six healthy human volunteers, we adapted the 

BOLD-adaptation paradigm developed in Study III and characterized the hand-centered 

properties of the perihand space representation. A 2x2 factorial design was 

implemented, with factors related to the two spatial locations of the participants’ right 

hand and of the three-dimensional object. In other words, this design manipulated the 

relative spatial proximity of the participants’ right hand to the object, while controlling 

for all effects other than the presence of a visual stimulus in the visual RFs of the 

perihand neuronal populations (Figure 13A). The positive interaction contrast obtained 

from this design allowed us to identify brain regions exhibiting BOLD-adaptation 

responses selective to the presence of an object in the perihand space, regardless of the 

absolute spatial location of the upper limb. This finding would be compatible with the 

existence of neuronal populations that remap their visual RFs as the upper limb changes 

position in space, providing a selective mechanism for the encoding of visual stimuli in 

a hand-centered coordinate system. 

 

In strong agreement with the findings from Study III, we found a significant 

interaction in the bilateral anterior and medial segments of the intraparietal sulci in the 

parietal lobes, and in ventral and dorsal portions of the bilateral premotor cortices in the 

frontal lobes (Figure 13C). At a lower threshold, the same was found in the right 

inferior parietal cortex and, subcortically, in the right putamen. Thanks to the nature of 
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the factorial design, we were able to dissociate the hand-centered encoding of the visual 

stimulus from other spatial reference frames, such as the one defined in eye-centered 

retinotopic coordinates. These results extend the findings from the previous study and 

demonstrate that the perihand representation is updated dynamically when the upper 

limb moves in space, i.e., the perihand space representation is anchored to the hand. 
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Figure 13. Overview of the main findings the first experiment in Study IV. (A) We employed a 2x2 
factorial design where we manipulated the spatial locations of a three-dimensional visual stimulus and of 
the participants’ right hand. (B) We found a marked gradient of hand-centered encoding of the visual 
stimulus in frontal and parietal areas identified in Study III. (C) The interaction contrast from the factorial 
design revealed voxels showing enhanced BOLD-adaptation for the presence of a visual stimulus within 
the visual RFs of the perihand neuronal populations, independently of the spatial location of the hand. 
This effect was found in regions of the posterior parietal and frontal cortices, including the intraparietal 
sulcus and the premotor cortex. **p<0.01 corrected for multiple comparisons. *p<0.05 corrected.  

 

In a second fMRI experiment on sixteen healthy human volunteers, we tested the 

hypothesis that the central representation of the perihand space would be related to the 

feeling of ownership and the sense of position of the hand. To this aim, we employed 

the rubber hand illusion paradigm (Botvinick and Cohen, 1998; Ehrsson et al., 2004) to 

experimentally manipulate both the self-attribution of a prosthetic hand (the subjective 

sense of ownership) and the perceived spatial location of the hand (the position sense of 

the hand). In the post-scan experiments, the participants reported a significantly 

stronger feeling of ownership over the artificial hand when exposed to congruent, as 

opposed to incongruent, visual and tactile stimuli delivered to the artificial and veridical 

hands, respectively (Figure 14A). An inter-manual pointing task employed to assess the 

perceived location of the hand revealed a significantly larger drift toward the prosthetic 

hand in the illusion condition as opposed to the control condition (Figure 14B). The 

subjective and objective measures of the vividness of the rubber hand illusion were 
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accompanied by an increase in the BOLD-response to the temporally congruent, as 

opposed to incongruent, visuo-tactile stimuli (Figure 14C). This was found in the 

anterior segment of the right intraparietal sulcus, in the bilateral inferior parietal lobes 

(with peaks centered on the supramarginal gyri), and in the bilateral ventral premotor 

cortices. The above results confirmed that the participants experienced a stronger sense 

of limb ownership following periods of congruent visuo-tactile stimulation. 

 

 
Figure 14. Overview of the main findings from the second fMRI experiment in Study IV. (A) The post-
scan behavioral experiments confirmed that the participants experienced the artificial hand as belonging 
to their body more vividly following the synchronous, as opposed to the asynchronous, visuo-tactile 
stimuli. **p<0.01. (B) Following the induction of the illusion, the participants remapped the perceived 
location of their right hand towards the position of the artificial hand, as shown by a larger proprioceptive 
drift in the synchronous, as opposed to the asynchronous, condition. ***p<0.001. (C) Activity in 
multisensory regions of the posterior parietal and premotor cortices was greater for the synchronous, as 
opposed to the asynchronous, visuo-tactile stimuli, providing neural evidence for the embodiment of the 
artificial limb. *p<0.05 corrected for multiple comparisons. (D) The embodiment of the artificial hand 
was associated with a remapping of the perihand visual RFs to encompass its surrounding space. (E) 
Significant effects were found in the frontal and parietal areas identified before, as well as, subcortically, 
in the putamina. (F) The perihand spatial remapping in the posterior parietal cortex was related to the 
proprioceptive drift toward the artificial hand when the latter was embodied, whereas the subjective 
feeling of ownership correlated with the perihand spatial remapping in the ventral premotor cortex. 

 

The BOLD-adaptation paradigm used in the first experiment was then employed to 

test the extent of the remapping of the perihand space representation to incorporate the 

artificial hand. Importantly, we found that a visual stimulus appearing and moving 

close to the artificial hand was encoded as within perihand space only when the hand 
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was experienced as belonging to one’s physical self (Figure 14D). In other words, we 

found significantly stronger BOLD-adaptation to the visual stimulus presented close to 

the artificial hand following the congruent, as opposed to the incongruent, visuo-tactile 

stimulation. This effect was identified in the anterior segment of the right intraparietal 

sulcus, in the bilateral ventral premotor cortices, and, subcortically, in the bilateral 

putamina (Figure 14E). At a lower threshold, the same response profile was found in 

the left anterior intraparietal sulcus, and in portions of the bilateral inferior parietal 

cortices. These results establish that the remapping of the perihand space representation 

occurs in conjunction with the dynamic changes in the self-attribution and localization 

of the hand in space. As such, they provide the first neuroimaging evidence linking the 

representation of the perihand space to the feeling of ownership and the sense of 

position of the hand. This observation represents an important conclusion towards the 

aims that motivated the work presented in this thesis. 

 

We further corroborated the above observations by directly relating the extent of the 

spatial remapping of the perihand space, as indexed by the BOLD-adaptation measures, 

to the subjective and objective indices of the self-perception of the hand obtained in the 

post-scan experiments. Independent and anatomically unbiased multiple regression 

analyses revealed two main findings. First, we found a significant positive correlation 

between the strength of the subjective feeling of ownership over the artificial hand and 

the BOLD-adaptation index in the ventral premotor cortex that assesses the remapping 

of the perihand space representation toward the artificial hand (Figure 14F). Second, we 

observed a significant positive correlation between the relative proprioceptive drift 

toward the artificial hand and the same BOLD-adaptation index in a region of the right 

posterior parietal cortex, centered on the supramarginal gyrus. These results suggest a 

potential dissociation between the parietal mechanisms, underpinning the multisensory 

spatial localization of the upper limb, and the premotor mechanisms, reflecting the 

subjective feeling of ownership of the hand.  

 

In a separate fMRI control experiment on nine volunteers, we reproduced the above 

findings in a paradigm where we varied the distance between the visual stimulus and 

the artificial hand. The participants always received synchronous visuo-tactile stimuli 

to the real and artificial hand, which led to the illusory embodiment of the latter, as 

confirmed by the same type of subjective (questionnaires) and objective (proprioceptive 

drift) data collected in the main experiment. Following the induction of the ownership 
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illusion, the three-dimensional object was presented either close to the embodied rubber 

hand, as in the previous experiment, or 100 cm away from it, the same control distance 

used in the design of Study II (Figure 15). The comparison of the BOLD-adaptation 

effects following the presentation of the objects at the two spatial locations relative to 

the artificial hand revealed greater adaptation in the key areas identified in the main 

experiments, including the anterior and medial segments of the bilateral intraparietal 

sulci and portions of the bilateral ventral premotor cortices (unpublished data from a 

fixed effects model on nine participants; Figure 15). 

 

 
Figure 15. The perihand spatial remapping is restricted to the space close to, as opposed to far from, the 
embodied limb (unpublished data). Specifically, we found increased BOLD-adaptation to the presentation 
of an object close to, as opposed to far from, the artificial hand in the regions of the posterior parietal and 
premotor cortices identified before. † uncorrected for multiple comparisons. 

 

Besides serving as an important replication of the behavioral and BOLD findings 

obtained in the main experiment, these additional findings have two main implications. 

First, they confirmed that the dynamic remapping of the perihand space representation 

to incorporate the artificial hand is selective to the space immediately surrounding the 

embodied artificial limb, as expected from the properties of the perihand visual RFs. 

Second, these findings ruled out the option that the BOLD-adaptation effects measured 

in the main experiments could be confounded by differences in the neural processing 

associated with the two different modes of visuo-tactile stimulation (synchronous vs. 

asynchronous) employed to elicit the illusion or to serve as control. 

 

Taken together, the findings from Study IV characterize the hand-centered nature of 

the representation of the perihand space and relate this representation to the feeling of 

ownership and the sense of position of the hand. These findings also advance important 

questions for future studies. Arguably, the most relevant question refers to the cause-
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and-effect relationships among the spatial position sense of the hand, the representation 

of the perihand space, and the feeling of ownership of the hand.  

 
 
5.5 STUDY V: SELF-SPECIFIC MULTISENSORY PREDICTIONS IN THE 

HUMAN BRAIN 

 
The aim of Study V was to test the hypothesis that the central representation of the 

hand forms self-specific multisensory predictions concerning incoming sensory signals. 

In order to create an experimental probe to gather evidence for this hypothesis, we 

investigated the BOLD responses evoked by the unexpected omission of a sensory 

stimulus (visual or tactile) to the hand. Such responses would reflect the violation of a 

multisensory expectation and, as a consequence, the existence of these multisensory 

predictions. To characterize the self-specific nature of these multisensory predictions, 

we adapted the setup based on the virtual reality tools used in Study II to change the 

self-attribution of the hand. This was achieved through the experimental manipulation 

of the congruence of the visual, tactile, and proprioceptive signals from the upper limb.  

 

 
Figure 16. (A) Using a setup based on virtual reality, we manipulated the congruence of visual, tactile, 
and proprioceptive stimuli to the participants’ right hand. Visuo-tactile stimuli represented approximately 
80% of the events in each context (congruent vs. incongruent). (B) The participants experienced self-
attribution of the hand only when the multisensory signals were congruent. ***p<0.001. (C) The changes 
in the self-attribution of the hand were confirmed by significantly greater threat-evoked skin conductance 
responses after periods of congruent, as opposed to incongruent, multisensory stimulation. **p<0.01. 

 

This led to the design of two experimental contexts, one characterized by the vivid 

self-attribution of the seen hand, and the other by a significant reduction in the 

embodiment of the limb. In the former, the majority of the multisensory stimuli to the 

participants’ hand were synchronous in time, congruent in space, and occurred within a 

match between the seen and felt postures of the hand. In the latter, the stimuli were 

synchronous in time but incongruent in space and in terms of the match between vision 
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and proprioception, creating a conflict between the modalities that broke down the 

perception of the hand in view as one’s own (Figure 16A).  

 

As expected, the post-scan behavioral experiments confirmed the subjective and 

objective differences in the self-attribution of the hand between the two experimental 

contexts. Namely, the participants subjectively reported vivid self-attribution of the 

hand only in the context of congruence between the sensory signals (Figure 16B). This 

observation was further corroborated by the analysis of the threat-evoked skin 

conductance responses recorded during the fMRI sessions. In keeping with the 

subjective data, the psychophysiological recordings revealed stronger threat-evoked 

SCRs in the context of the self-attribution of the hand (Figure 16C).  
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Figure 17. (A) The comparison of the BOLD responses to the congruent, as opposed to the incongruent, 
multisensory stimuli to the right hand revealed significant differences in frontal, parietal, and subcortical 
areas identified in the previous studies. † uncorrected for multiple comparisons. (B) The subjectively 
rated self-attribution of the hand was related significantly to the BOLD index of multisensory integration 
(congruent vs. incongruent) in key nodes of the multisensory areas described previously. 
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Moreover, the comparison of the BOLD responses evoked by the multisensory 

stimuli revealed stronger activations for the congruent, as opposed to the incongruent, 

visuo-tactile-proprioceptive stimuli. In agreement with the findings from Studies I and 

II, this response profile was observed in regions of the bilateral posterior parietal 

cortices, encompassing the intraparietal sulci and the supramarginal gyri, and in 

portions of the ventral and dorsal aspects of the bilateral premotor cortices (Figure 

17A). Furthermore, an effect was found in the right and, at a lower threshold, in the left 

lateral occipito-temporal cortices. Subcortically, significant activations were found in 

the bilateral cerebellar lobes, and, at a lower threshold, in the bilateral superior 

collicula. The self-attribution index, derived from the subjective ratings, correlated 

positively with the BOLD index of multisensory integration (computed as the relative 

difference in activation between the two contexts) in regions of the premotor, inferior 

parietal, and lateral occipito-temporal cortices (Figure 17B). Taken together, the above 

findings corroborate the notion that the self-attribution of the hand changed 

significantly as a function of the relative congruence of the multisensory stimuli, as 

demonstrated by the converging neural, behavioral, and psychophysiological measures 

described above. 

 

 
Figure 18. (A) To test the existence of self-specific multisensory predictions, we embedded unexpected 
omission trials in the experimental design, accounting for approximately 20% of the events in each 
context (congruent vs. incongruent). In the tactile omission trials, the tactile component of a visuo-tactile 
stimulus was unexpectedly omitted, whereas the opposite was true for the visual omission trials. (B) The 
unexpected omission of a self-specific tactile stimulus was associated with a feeling of numbness on the 
corresponding part of the hand***p<0.001 corrected. (C) We found that the stronger the self-attribution 
of the hand, the more intense the feeling of numbness associated with the omission of a tactile stimulus. 
 

The key experimental manipulation consisted in the introduction of unexpected 

sensory omission in the two contexts of self-attribution of the hand. Embedded in the 

event-related experimental design, a minority of the stimuli in each context consisted of 

omission trials. In these, one of the components of the visuo-tactile stimulus was 

randomly omitted, either the tactile (tactile omission), or the visual (visual omission) 

component (Figure 18A). The occurrence of the omission trials was fully matched in 

terms of the type and the incidence across the two experimental contexts. Therefore, the 
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only difference between the omission trials in the two contexts was the state of the self-

attribution (present or absent) of the hand in which they occurred. Notably, the post-

scan behavioral experiments revealed significant differences in the way the participants 

perceived the omission trials across the two contexts. 

 

Interestingly, we found that the unpredictable occurrence of the tactile omission 

trials in the context of the self-attribution of the hand was associated with a feeling of 

numbness on the corresponding part of the hand, consistent with the existence of a self-

specific somatosensory prediction originating from the appearance of the visual 

stimulus (Figure 18B). Interestingly, the subjective intensity of this feeling of 

numbness could be significantly predicted from the subjective strength of the self-

attribution of the hand (Figure 18C). In other words, the stronger the feeling of 

ownership of the seen hand, the stronger the perceptual correlate associated with the 

sudden and unexpected violation of a self-specific visuo-tactile prediction. These 

results demonstrate a difference in the perception of the omission trials between the two 

contexts at the behavioral level, further investigated in the analysis of the BOLD 

responses evoked by the omission trials in the congruent and incongruent experimental 

conditions. 
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Figure 19. (A) The unexpected omission of a tactile stimulus to the hand evoked BOLD prediction error 
responses in regions of the bilateral somatosensory cortices, only when the hand was perceived as one’s 
own in the context of multisensory congruence. (B) Conversely, the rare omission of a visual stimulus 
induced BOLD prediction error responses in regions of the posterior parietal and occipital cortices 
devoted to visual processing, only when the hand was self-attributed.  
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We hypothesized that the unexpected occurrence of the omission trials would lead to 

the generation of prediction error responses in the corresponding sensory cortices that 

signal the violation of multisensory-driven expectations. If such expectations differ 

between events that are self-attributed or not, then the corresponding prediction error 

signals should contain information concerning the self-specificity of the expectations. 

The analysis of the BOLD responses provided support for this hypothesis. The rare 

omission of an expected tactile event in the context of self-attribution of the hand was 

associated with increased BOLD responses in portions of the bilateral somatosensory 

cortices, encompassing parts of the postcentral gyri and sulci and the parietal opercula, 

as well as, subcortically, in the right cerebellum and in the left putamen (Figure 19A). 

Conversely, the omission of an expected visual event in the context of self-attribution 

of the hand, as opposed to the context of incongruent multisensory stimulation and 

reduced self-attribution of the hand, led to stronger BOLD responses in portions of the 

bilateral posterior intraparietal sulci and the lateral occipito-temporal cortices, together 

with a cluster in the left precuneus in the medial posterior parietal cortex and in the left 

lingual gyrus in the occipital lobe (Figure 19B). Both types of responses were selective 

to the context of self-attribution of the hand, suggesting the existence of self-specific, 

modality-oriented sensory predictions. Finally, we performed a conjunction analysis 

between the BOLD responses evoked by the omission of visual and tactile events 

specific to the context of self-attribution of the hand. This analysis revealed that the rare 

omission of an expected stimulus to one’s hand, irrespectively of its sensory modality, 

was associated with increased activity in higher-order multisensory areas of the 

posterior parietal, inferior parietal, and premotor cortices. This finding is consistent 

with the notions that the prediction error signals in the early sensory cortices interact 

with the neuronal processing in the higher levels of the cortical hierarchy that construct 

the dynamic multisensory representation of the hand. 

 

Two multiple regression analyses indicated that the magnitude of the prediction 

error responses described above were proportional to the subjectively rated self-

attribution of the hand, in a fashion that was both self-specific and modality-specific. In 

other words, the tactile prediction error signal in somatosensory areas mirrored the self-

attribution of the hand. Conversely, the strength of the self-attribution of the hand was 

related to the visual prediction error signals in regions of the posterior parietal cortex 

(Figure 20). In conclusion, the fMRI analyses followed on the tracks of the behavioral 
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findings and suggested the existence of self-specific multisensory predictions via the 

detection of omission responses to rare violations of these predictions. 
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Figure 20. (A) The self-attribution of the hand was significantly related to the magnitude of the BOLD 
prediction error responses to the omission of a self-specific tactile stimulus to the hand in regions of the 
somatosensory, inferior parietal, and anterior insular cortices. (B) Instead, the self-attribution of the hand 
mirrored the amplitude of the BOLD prediction error signals to the unexpected omission of self-specific 
visual stimuli to the hand in regions of the posterior parietal and occipital cortices. *uncorrected.  
 
 

Taken together, the findings from Study V support the hypothesis that the central 

multisensory representation of the hand generates self-specific predictions concerning 

incoming sensory signals. The results suggested the involvement of both primary and 

secondary early sensory areas and higher-order multisensory regions in the association 

cortices. This fits with the notion that the neuronal processing of sensory stimuli to 

one’s own hand is dynamically related to the interplay between different levels of the 

cortical hierarchy. These preliminary findings raise important questions for future 

experiments, including the functional role of the multisensory prediction error signals, 

the exact nature of the predictions that are formed by the higher-order association areas, 

and the dynamics of the interplay between the different levels of the cortical hierarchy.  
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6 GENERAL DISCUSSION 
 

This section aims at bringing together the main findings of the studies presented in 

the thesis in a general, overarching interpretation of their relevance to the investigation 

of the mechanisms underpinning the neural representation of the hand and the perihand 

space. For in-depth discussion of the findings from each study, the reader is referred to 

the preceding Results section, as well as to the attached articles and manuscripts. 

Further relevant findings are also factored in to extend the main conclusions and help 

identify outstanding open questions and relevant directions for future research. 

 

6.1 THE MULTISENSORY REPRESENTATION OF THE HAND 

 
A major aim of the studies included in the thesis was to gather evidence for a central 

multisensory representation of the hand that draws from the integration of congruent 

visual, tactile, and proprioceptive signals from the upper limb. Moreover, we collected 

complementary behavioral, psychophysiological, and BOLD measures to support the 

notion that this multisensory representation might be related to the multifaceted self-

perception of the hand itself. Using a combination of ecologically valid experimental 

setups and sensory stimuli, as well as setups based on virtual reality tools, we obtained 

consistent evidence for the convergence of multisensory signals from the upper limb in 

regions of the posterior parietal and premotor cortices, as well as in subcortical 

structures like the cerebellum and the putamen. In these regions, the BOLD responses 

evoked by visuo-tactile stimuli applied to the participants’ right hand carried linear and 

non-linear signatures of multisensory integration, and they were sensitive to the 

congruence of the sensory inputs, including matching visual and proprioceptive signals 

concerning the position of the hand. The neuroanatomical and functional characteristics 

of the findings were consistent with the earlier neurophysiological evidence in non-

human primates and the neuropsychological, behavioral, and neuroimaging studies in 

humans recapped in depth in the Introduction.  

 

Despite the caution that must be exercised when drawing homologies between brain 

regions in the non-human primate and human brains (especially with respect to the 

fronto-parietal association cortices; Bremmer et al., 2001; Grefkes et al., 2002; Grefkes 

and Fink, 2005; Culham et al., 2006), the anatomical locations of the candidate brain 
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regions that combine visual, tactile, and proprioceptive signals to build a multisensory 

representation of the hand fit well with the neurophysiological data in monkeys, as well 

as with the neurological observations in patients suffering from brain damage resulting 

in impairments in the multisensory representation of the body. Two brain regions of 

particular interest are the posterior parietal cortex and the premotor cortex, whose well-

known role in assisting key behavioral functions is examined in the following sections.  

 

The fMRI experiments reported consistent peaks of activations located in the 

intraparietal sulcus and in regions of the superior and inferior parietal lobes that are 

separated by this sulcus. Neurophysiological research in non-human primates has 

characterized multiple subdivisions of the cortex lining the intraparietal sulcus, 

including anterior (AIP), ventral (VIP), medial (MIP), and lateral (LIP) partitions, each 

with a set of well-defined receptive field properties and functions (Colby and Duhamel, 

1991; Luppino et al., 1999; Grefkes and Fink, 2005; Culham et al., 2006). Because of 

the difficulties in establishing homological relations, we labeled the activation peaks 

found in the fMRI experiments based on their location relative to clearly identifiable 

anatomical landmarks (see for reference the atlas of Duvernoy and Parratte, 1999). For 

instance, we regularly employed the label “anterior intraparietal sulcus” (aIPS) to 

describe activation peaks located in the anterior segment of the intraparietal sulcus, 

often in the vicinities of the junction with the posterior bank of the postcentral sulcus. 

This label should not be confused with the label AIP used for non-human primates. 

Nevertheless, as remarked before, the neuroanatomical distribution of the findings from 

the fMRI experiments presented in the thesis fits well with the distribution of neuronal 

populations with similar properties in monkeys. These areas included peaks in the 

supramarginal gyrus, possibly corresponding to inferior parietal area 7b/PF in monkeys 

(Hyvärinen and Poranen, 1974; Krams et al., 1998), parts of the postcentral sulcus and 

the superior parietal lobule suggestive of the analogous areas 2 and 5 in monkeys 

(Sakata et al., 1973; Graziano et al., 2000), portions of the precentral gyri and 

precentral and inferior frontal sulci (PMv and PMd; see areas F2, F4, F5, and F7 in the 

monkey's frontal lobe; Graziano and Gandhi, 2000; Luppino and Rizzolatti, 2000), the 

cerebellar hemispheres (Dum and Strick, 2003; Sultan and Glickstein, 2007), and in the 

putamina (Graziano and Gross, 1993). As described in detail in the Introduction, the 

above regions of the monkey’s brain contain multisensory neurons that are responsive 

to congruent sensory inputs to the limb and that support a hand-centered representation 

of the perihand space (see next section). Hence, the above considerations entail that the 
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multisensory representation of the hand in humans investigated with fMRI bears 

remarkable neuroanatomical and functional similarity to the representation of the upper 

limb in non-human primates. 

 

A remarkable advantage associated with the performance of neuroimaging 

experiments in healthy humans is the possibility to relate measures of brain activity to a 

variety of indicators that reflect psychological phenomena such as the self-perception 

of one’s own hand. In the experiments presented in the thesis, we capitalized on this 

advantage by deploying a battery of subjective and objective means to quantify 

different aspects of the self-perception of the hand, such as the feeling of ownership of 

the hand and the perceived position of the upper limb.  

 

Throughout all of the experiments, we found evidence in support of the hypothesis 

that the feeling of ownership of the hand is contingent upon the congruence of visual, 

tactile, and proprioceptive inputs from the upper limb. Even when presented with a 3D 

image of their own right hand see through the head-mounted displays, the participants 

in our experiments reported a vivid percept of the seen hand as their own only in the 

context of congruence between the multisensory signals. These subjective reports were 

bolstered by the observation that threats directed toward the hand led to differential 

psychophysiological and BOLD responses that echoed the feeling of ownership of the 

hand. Moreover, these subjective and objective indices of self-attribution mirrored the 

changes in the BOLD signal in key premotor and parietal nodes of the circuits that 

support the multisensory representation of the hand outlined above. These findings 

provide support for the hypothesis that the multisensory representation of the hand, 

constructed with the help of the integration of congruent sensory signals from the upper 

limb and the space around it (see next section for further discussion on the 

representation and role of the perihand space), might lead to the emergence of the 

feeling of ownership of the hand. This contributes significantly to current accounts of 

bodily self-perception that associate multisensory mechanisms in the regions of the 

parietal and premotor cortices described above to the self-attribution of the limb (see 

Makin et al., 2008; Tsakiris, 2010; Blanke, 2012; Ehrsson, 2012 for recent reviews). 

Support to these models has been hitherto derived almost exclusively from studies 

linking the illusory ownership of artificial limbs (Ehrsson et al., 2004, 2007; Tsakiris et 

al., 2007) to brain activity in the multisensory frontal, parietal, and subcortical regions 

described above. However, these studies cannot fully rule out the contribution of 
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factors that might be inherently tied to the (often unusual) experience of perceptual 

illusions of ownership of non-corporeal objects, such as attentional arousal, task 

demands, visuo-proprioceptive spatial recalibrations, and so forth (Botvinick, 2004; 

Moseley, 2011). In light of this, the findings that the integration of multisensory stimuli 

to one’s own hand, particularly with the use of an ecologically valid experimental setup 

in the absence of spatial recalibrations, unusual illusory sensations, complex and/or 

indirect vision (such as via mirrors or setups based on virtual reality technology), or 

task-related effects, results in the robust engagement of specific premotor, posterior 

parietal, and subcortical brain regions provides key support to models of bodily self-

perception (Makin et al., 2008; Tsakiris, 2010; Blanke, 2012; Ehrsson, 2012). 

 

It is important to bear in mind that, despite the converging evidence from neural, 

behavioral, and psychophysiological measurements, the experiments discussed here do 

not provide any information on the spatio-temporal dynamics and on the causal role 

that the different neural nodes of the multisensory representation of the hand play in 

supporting the self-perception of the limb. Interpreted against the background of 

neurophysiological studies in non-human primates and behavioral and neuroimaging 

research in humans, our findings contribute to the pool of knowledge that can guide 

future research with techniques like electroencephalography, electrocorticography, and 

transcranial magnetic stimulation. These methodologies have the potential to build on 

early neuroimaging and neuropsychological findings in order to significantly advance 

our understanding of the causal mechanisms. 

 

The investigation of the multisensory neural representation of the hand and its role 

in supporting the self-perception of the limb are also of relevance to current theoretical 

accounts that attempt to contextualize models of bodily self-perception within broader 

theories of perception, such as those anchored on the notion of predictive coding (see 

Introduction, as well as Rao and Ballard, 1999; Apps and Tsakiris, 2013; Clark, 2013; 

Limanowski and Blankenburg, 2013; Seth, 2013 for recent reviews). These theories 

posit that the self-perception of one’s body emerges from the dynamic interplay of prior 

knowledge and bottom-up sensory signals that are constantly being compared with each 

other. Hence, one of the principal tenets of these theories is the concept that the neural 

representation of the body in the association cortices forms multisensory predictions 

concerning incoming sensory signals. Similarly, these theories postulate that the neural 

processing in primary and secondary sensory areas reflect the dynamic comparison of 
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the afferent inputs to their prior expectations, which in turn generates prediction error 

signals that reflect the degree of deviation between predictions and inputs. These 

sensory prediction errors can then be employed by higher-order areas to dynamically 

update the multisensory representation of the hand and the associated predictions 

concerning incoming stimuli. This constant interplay between predictions and afferent 

inputs appears to be ideally suited to support the self-specific processing of sensory 

signals generated or received by one’s body (Blakemore et al., 1998; Seth et al., 2011; 

Apps and Tsakiris, 2013). Despite the theoretical appeal of the extension of predictive 

coding principles to existing models of bodily self-perception, experimental support is 

meager, especially with respect to neuroimaging data.  

 

Importantly, we provided preliminary experimental support for the hypothesis that 

the multisensory representation of the hand forms self-specific predictions concerning 

incoming sensory events. Specifically, we measured BOLD responses to unexpected 

omissions of a sensory event that were consistent with the generation of a prediction 

error signal in response to a violation of prior multisensory expectations. These BOLD 

responses were specific to the context of self-attribution of the hand, they reflected the 

modality-specific nature of the violation of existing multisensory predictions, and they 

scaled with the subjectively rated self-attribution of the hand. Intriguingly, we also 

found preliminary evidence for a measurable perceptual correlate of the violation of 

these self-specific predictions. Namely, we discovered that the unexpected omission of 

a tactile event, predicted from a congruent visual stimulus approaching the hand in the 

context of self-attribution of the hand, was associated with a feeling of numbness on the 

corresponding part of the hand, as reported subjectively by the participants in our fMRI 

experiments. Conversely, in the condition in which the majority of the multisensory 

stimuli were incongruent, the self-attribution of the hand lessened significantly and the 

(equally rare and unexpected) omissions did not evoke prediction error responses with 

self-specific information. In conclusion, these preliminary findings offer encouraging 

backing to the notion that the self-attribution of the hand is associated with the interplay 

between higher-order self-specific multisensory predictions and afferent sensory inputs. 

However, much remains to be investigated concerning this theoretical account. The 

experiments presented here did not submit any evidence for the mechanisms that might 

support this interplay, nor did they inform us on the precise nature of these self-specific 

multisensory predictions. The inherent limitations of fMRI did not permit any 

conclusion to be drawn regarding the spatio-temporal dynamics associated with the 
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generation and the processing of these prediction and prediction error signals, 

respectively. New studies also need to address the central issue of how the multisensory 

neural representation of the hand takes into account prediction error signals to update, if 

required, its prior expectations concerning the sensory environment.  

 

In summary, the experiments presented in the thesis characterized multiple aspects 

of the central multisensory representation of the hand. Using fMRI, we put forward that 

neuronal populations in anatomically connected frontal, parietal and subcortical areas 

integrate congruent multisensory stimuli from the hand. The RF properties of these 

neuronal populations allow them to integrate tactile stimuli to the hand with spatio-

temporally congruent visual stimuli within the perihand space (see next section). 

Furthermore, the convergence of proprioceptive inputs onto these neuronal populations 

anchors the visuo-tactile integrative mechanisms to a reference frame centered on the 

upper limb. Using complementary behavioral and physiological measurements, we 

proposed that the perceived ownership of the hand is intimately related to the neuronal 

mechanisms responsible for the construction of the multisensory representation of the 

hand. Within this framework, a vivid sense of ownership of the hand and a coherent 

central multisensory representation of the limb are, arguably, essentially equivalent. 

Finally, we obtained preliminary evidence in support of the notion that the link between 

the multisensory representation of the hand and the self-perception of the hand itself 

might be extended and sophisticated to include the interplay of prior multisensory 

expectations concerning self-specific sensory events and the processing of afferent 

sensory inputs. The above observations are associated with a number of outstanding 

open questions that should be the object of future studies. 

 

 
6.2 THE PLASTIC REPRESENTATION OF THE PERIHAND SPACE 

 
One of the major aims of the experiments presented in this thesis was to provide 

neuroimaging evidence for a representation of the space immediately surrounding the 

hand, or perihand space, that is spatially anchored to the upper limb. Using ecologically 

valid stimuli and a sensitive analysis technique, we gathered evidence that suggests the 

existence of neuronal populations in frontal, parietal, and subcortical areas with visual 

RFs properties that are ideally suited to support such a representation. Furthermore, the 

effect of proprioceptive inputs from the arm onto these neuronal populations allows the 
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spatial remapping of the visual RFs, yielding a representation of the perihand space that 

is anchored to the upper limb (Graziano et al., 2000). These results are in keeping with 

the literature in non-human primates and the neuropsychological and behavioral 

research in humans reviewed in depth in the Introduction (see Introduction and Results, 

as well as the included articles and manuscripts, for extensive details). Of special 

interest to the present general discussion are related findings that further extend our 

knowledge of the functional properties of the representation of the peripersonal space. 

In particular, the following paragraphs examine two interesting aspects of this 

representation: its “mirror-like” properties that were the focus of a recently published 

study (Brozzoli et al., 2013), and its inherent functional plasticity, as exemplified by the 

observation of the effects of limb amputation and the use of tools. 

 

In a recent series of experiments, we employed the BOLD-adaptation paradigms 

described in Studies III and IV to test the hypothesis that the neural representation of 

the perihand space might extend to represent the space around another person’s hand 

(Brozzoli et al., 2013), in a manner analogous to the seminal description of visuo-motor 

mirror neurons in the brain of non-human primates and humans (di Pellegrino et al., 

1992; Rizzolatti and Craighero, 2004; Caggiano et al., 2009; Kilner et al., 2009; 

Mukamel et al., 2010). Moreover, this hypothesis was also predicated on a recent study 

that described visuo-tactile neurons in the monkey’s posterior parietal cortex with 

mirror properties, i.e. visuo-tactile neurons that are also responsive to stimuli delivered 

to the corresponding body part of another individual (Ishida et al., 2010). In two 

separate fMRI experiments involving forty-six healthy volunteers, we identified a 

region in the human left ventral premotor cortex that encodes the presence of an object 

in both the space around one’s own hand and the space around the hand of another 

individual (Brozzoli et al., 2013). This effect was specific to another person’s hand, as 

opposed to an artificial humanoid hand, was restricted to the perihand space of the 

participant’s and the other person’s hand, and was independent of the spatial location of 

the other’s hand, i.e. exhibited hand-centered properties (Figure 21).  

 

What is the putative role of this shared representation of the perihand space? We put 

forward that this specific property might serve as the basic mechanism providing the 

brain with a common spatial reference frame that encodes the presence of objects in the 

vicinity of one’s own hand and of the hand of other individuals in the environment 

(Brozzoli et al., 2013). In turn, this basic mechanism might help coordinate complex 
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social behaviors that involve interactions with others. These results are important as 

they point to an avenue for future research that may bridge the basic mechanisms under 

investigation in the thesis with the research on the foundations of socially relevant 

behaviors (Heed et al., 2010; Brozzoli et al., 2013; Teneggi et al., 2013). 

 

 
Figure 21. The representation of the perihand space in the ventral premotor cortex is also selective to 
visual stimuli presented in the perihand space of another individual (Brozzoli et al., 2013). (A) We found 
increased BOLD-adaptation in the left ventral premotor cortex to the presentation of an object in the 
vicinity of another person’s hand, as opposed to an artificial hand, regardless of the absolute spatial 
location of the hand. (B) The BOLD-adaptation effect was bidirectional, further corroborating the nature 
of the shared representation of the perihand space in the ventral premotor cortex. 

 

Valuable insights on the properties of the representation of the perihand space come 

from the investigation of the consequences of the amputation of the upper limb. The 

majority of amputees report an array of sensations associated with the experience of 

their missing limb, indicated by the umbrella term “phantom limb” experiences, the 

most clinically relevant of which is the “phantom pain” associated with the missing 

limb (Flor et al., 1995; Ramachandran et al., 1995; Ramachandran and Hirstein, 1998; 

Ehrsson et al., 2008; Schmalzl and Ehrsson, 2011; Makin et al., 2013). What happens 

to the representation of the perihand space following the loss of the upper limb? In a 

recent study, Makin and colleagues (Makin et al., 2010) described how amputees suffer 

from symptoms resembling those related to spatial neglect (Halligan and Marshall, 

1991; Jacobs et al., 2012; Karnath and Rorden, 2012), limited to the space surrounding 

the stump. These findings are compatible with the idea that the loss of the limb limits 

the range of potential interactions with objects in the corresponding part of space, 

thereby affecting the representation of the perihand space in a manner that is consistent 

with its function as a sensorimotor interface (Makin et al., 2010; see next section). 

Similarly, a study by Canzoneri and colleagues described how the loss of the limb leads 

to a contraction of the spatial boundaries of the perihand space, an effect that was partly 



 

 81 

reversed by the use of a prosthesis (Canzoneri et al., 2013). These results shed light on 

the properties of the perihand space representation by informing us on how limb 

amputation reshapes it. 

 

What evidence other than the effects of the amputation of the upper limb points to 

the inherent plasticity of the representation of the perihand space? A fruitful line of 

research has focused on the use of tools, an essential ability to extend the repertoire of 

possible interactions with objects in the environment (Iriki et al., 1996; Berti and 

Frassinetti, 2000; Maravita and Iriki, 2004; Culham and Valyear, 2006; Cardinali et al., 

2009b; Valyear et al., 2012). Neurophysiological research in non-human primates and 

behavioral and neuroimaging studies in humans have suggested that dexterous tool use 

might be supported by parts of the neural infrastructure in place to integrate sensory 

signals from the body and the peripersonal space (Iriki et al., 1996; Johnson-Frey, 

2004; Maravita and Iriki, 2004; Farnè et al., 2005; Culham and Valyear, 2006; Bonifazi 

et al., 2007; Làdavas and Serino, 2008; Cardinali et al., 2009b). However, the ability to 

use tools also entails access to specific knowledge related to the properties, functions, 

and previous experience with tools (Johnson-Frey, 2004; Culham and Valyear, 2006; 

Valyear et al., 2012).  In essence, the functional use of tools extends the repertoire of 

possible interactions with objects in what would otherwise be extrapersonal, out-of-

reach space. However, the exact nature of the plastic reshaping of the perihand space 

representation induced by tool use is the object of experimental debate (see for example 

Holmes, 2012). The BOLD-adaptation experiments described in this thesis could be 

readily adapted to contribute to such debate (Bekrater-Bodmann and Foell, 2013).  

 

The above considerations significantly enrich the account of the basic mechanisms 

underpinning the multisensory representation of the perihand space provided by the 

studies included in the thesis. This representation is multifaceted: it is linked to the 

localization and self-attribution of the hand, it possesses mirror-like properties, and it is 

affected by the loss of the upper limb and, possibly, by the use of tools. However, much 

remains to be investigated concerning the neural representation of the perihand space. 

An outstanding open question relates to the spatial extent of this representation in 

humans. The BOLD-adaptation data presented in the thesis suggest that the visual RFs 

of the neuronal populations that are responsive to an object in the vicinity of the hand 

are limited in their spatial extent. These data also suggest that the perihand space 

representation is distinct from a representation of the reaching space (see in particular 
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Study IV). In all the experiments, changes in the relative distance between the position 

of the participant’s hand and the three-dimensional object were always confined within 

the boundaries of the participants’ reaching space. Nevertheless, we consistently found 

evidence in support of the existence of neuronal population with visual RFs that are 

selective to the presence of an object in the immediate vicinity of the hand, as opposed 

to objects farther from the hand but still within the limits of reaching space. This points 

to a distinction between the representation of the perihand space under investigation 

here and a more general representation of objects within reach of the hands. However, 

no neuroimaging evidence is available to date that informs us on the spatial extent of 

the perihand space representation. The perihand visual RFs described in non-human 

primates typically extend up to a distance of roughly 30 cm  (in a few cases, up to 1 m) 

from the location of the corresponding tactile RFs (Rizzolatti et al., 1981a, 1981b; 

Graziano et al., 1997). Moreover, neuropsychological and behavioral studies in humans 

seem to converge on a spatial boundary located roughly 30 to 45 cm from the body 

surface (Làdavas et al., 1998; Farnè et al., 2003; Lloyd, 2007; Makin et al., 2009; 

Canzoneri et al., 2012). These observations indicate the need for future research to 

provide an in-depth characterization of the visuo-tactile RFs associated with the 

neuronal populations that represent the perihand space.  

 

6.3 A MULTISENSORY INTERFACE FOR DEFENSIVE AND GOAL-
DIRECTED ACTIONS 

 
The findings from the experiments presented in the thesis converged to corroborate 

the existence of a multisensory representation of the hand and the immediate space 

around it, in keeping with data from neurophysiological investigations in non-human 

primates, and neuropsychological and behavioral research in humans. Complementary 

behavioral, psychophysiological, and BOLD measures further supported the hypothesis 

that these multisensory mechanisms lead to the emergence of the feeling of ownership 

of the hand. From an evolutionary perspective, the role of these multisensory processes 

in supporting the self-perception of the hand is, arguably, secondary to the development 

of their contribution to essential behavioral functions (Graziano and Botvinick, 2002; 

Fogassi and Luppino, 2005; Brozzoli et al., 2012; Makin et al., 2012). However, none 

of the experiments in the thesis provided data that link the multisensory representation 

of the hand and the perihand space to the planning and performance of essential goal-

directed behaviors. Rather, they provided insights on the role of basic multisensory 
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integrative mechanism in supporting the central representation of the hand. In turn, this 

neural infrastructure may support the well-known sensorimotor functions of the frontal, 

parietal, and subcortical brain regions involved in the performance of goal-directed 

actions. In the following paragraphs, the main findings from the experiments included 

in the thesis are contextualized within the literature covering the investigation of the 

essential sensorimotor functions that rely on the integration of signals from the hand. 

 

As mentioned previously, an evolutionarily compelling account of the development 

of the multisensory representation of the body and the peripersonal space emphasizes 

its role in the protection of the body from potential threats, an essential requirement for 

survival (Graziano and Botvinick, 2002; Cooke et al., 2003; Graziano and Cooke, 

2006). Namely, the body-part-centered representation of the peripersonal space allows 

the brain to encode the location of a potential threat in a spatial coordinate system that 

takes the body itself as the reference. The multisensory receptive fields of the neuronal 

populations in frontal, parietal, and subcortical areas combine visual inputs with tactile 

and proprioceptive information to form accurate predictions concerning the potential 

impact zone on the body surface (Colby et al., 1993a; Duhamel et al., 1998; Rind and 

Simmons, 1999; Avillac et al., 2005). In turn, this information is employed to rapidly 

plan and perform the sequence of movements required to dodge a harmful object and 

protect the body from the associated threat. Indeed, the electrical stimulation of 

multisensory neurons in the non-human primate brain initiates complex movement 

sequences that are compatible with defensive actions (Cooke and Graziano, 2003; 

Cooke et al., 2003; Graziano and Cooke, 2006). In behavioral studies in humans, the 

defensive role of the representation of the peripersonal space has also been emphasized. 

Using transcranial magnetic stimulation, Makin and colleagues described how the 

entrance of a potentially harmful object in the perihand space leads to changes in the 

corticospinal excitability that are compatible with the automatic generation of defensive 

motor sequences (Makin et al., 2009, 2012). Similarly, the studies of Sambo and others 

have linked reflexive defensive actions to the processing of sensory stimuli in the 

peripersonal space (Sambo et al., 2012a, 2012b; Sambo and Iannetti, 2013). Our results 

fit with the basic mechanisms described above. Specifically, we found multisensory 

neuronal populations in posterior parietal, premotor, and subcortical areas with visual 

RFs properties that are suitable to carry out the computations required to plan defensive 

movements. These neurons have visual RFs limited to the perihand space and spatially 

anchored to the hand, potentially facilitating the rapid translation of the visual inputs 
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concerning a potential threatening object into hand-centered coordinates. Moreover, we 

found that threats directed toward the hand evoked selective BOLD responses in 

regions of the premotor and cerebellar cortices. Speculatively, these responses might 

reflect the engagement of automatic defensive reactions aimed at protecting the hand 

from the incoming threat. Moreover, the multisensory properties of the central 

representation of the hand inferred from the work presented in the thesis fit well with 

the idea that this representation allows the formation of accurate predictions concerning 

incoming stimuli. As remarked above, these predictions are essential in guiding 

defensive movements in response to potentially harmful objects. Future research along 

these lines should focus on determining whether the multisensory neuronal populations 

identified in the present experiments possess the sensorimotor properties required to 

coordinate defensive movements, in keeping with the neuropsychological data in non-

human primates and the behavioral research in humans reviewed above. 

 

Besides coordinating defensive actions, the multisensory representation of the hand 

and the perihand space is ideally suited to act as an interface for essential goal-directed 

actions (Jeannerod et al., 1995; Andersen et al., 1997; Ehrsson et al., 2000; Luppino 

and Rizzolatti, 2000; Rizzolatti and Luppino, 2001; Culham and Valyear, 2006). The 

apparent simplicity of goal-directed movements such as reaching for and grasping a 

piece of food belies the complexity of the sensorimotor transformations required for 

their successful completion. For example, these simple goal-directed movements 

require the dynamic coordination of the eyes and the hands as the action unfolds in time 

(Andersen et al., 1997; Johansson et al., 2001; Crawford et al., 2004; Fogassi and 

Luppino, 2005; Culham and Valyear, 2006). This relies on the complex interplay 

between distinct spatial reference frames, such as those centered on retinal coordinates 

that encode the location of a target object, and those centered on the motor effectors 

that partake in the action (Andersen et al., 1997; Graziano, 2001, 2006; Culham et al., 

2006; Pesaran et al., 2006; Andersen and Cui, 2009). A vast literature consisting of 

both neurophysiological studies in monkeys and research in humans has tackled the 

complex issue of the spatial reference frames employed in the coordination of goal-

directed actions (Jeannerod et al., 1995; Battaglini et al., 1996; Andersen et al., 1997; 

Graziano, 2001; Culham et al., 2003, 2006; Galletti et al., 2003; Fogassi and Luppino, 

2005; Fattori et al., 2009). Our findings contribute significantly to this topic by offering 

neuroimaging evidence for a spatial reference frame centered on the upper limb, in 

neuroanatomical and functional agreement with the literature mentioned above. The 
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multisensory representation of the hand characterized in the thesis is well suited to 

support goal-directed actions by providing the sensorimotor programs with critical 

sensory data required to plan and execute the action (Andersen et al., 1997; Culham and 

Kanwisher, 2001; Grefkes and Fink, 2005). 

 

As remarked above, the existence of a multisensory representation of the hand in 

fronto-parietal areas is consistent with the known role of these regions in translating 

visual and tactile signals from the hands and from the target object into the required 

motor plan to for successful interactions (Jeannerod et al., 1995; Ehrsson et al., 2000; 

Culham and Valyear, 2006; Johansson and Flanagan, 2009). Neuroimaging evidence in 

humans, for example, has followed on the tracks of neurophysiological research in non-

human primates to emphasize the role of the posterior parietal cortex in processing the 

inputs from the hand and from the target object required for reaching and grasping 

actions, such as the size, shape, and relative position of the target object with respect to 

the eyes and the hands (Ehrsson et al., 2000; Culham et al., 2003; Grefkes and Fink, 

2005; Culham and Valyear, 2006; Rice et al., 2007; Króliczak et al., 2008; Naito et al., 

2008; Bernier and Grafton, 2010; Cavina-Pratesi et al., 2010). Furthermore, 

neurophysiological research in patients suffering from damage to the posterior parietal 

lobes has emphasized the essential role of areas like the anterior intraparietal sulcus in 

guiding hand-object interactions (Binkofski et al., 1998; Grefkes and Fink, 2005; 

Karnath and Perenin, 2005; Pisella et al., 2009). Our results fit well with these notions 

by characterizing the convergence of visual, tactile, and proprioceptive signals from the 

hand in the regions of the posterior parietal cortex found consistently in the literature 

cited above. Again, the visual RFs of the neuronal populations identified in these areas 

are ideally suited for the encoding of the position of an object in hand-centered 

coordinates, one of the key passages in the sensorimotor transformations required for 

hand-object interactions. Despite the remarkable neuroanatomical similarities between 

the representation of the hand and the perihand space presented in the thesis and the 

well-known brain circuits that utilize multisensory signals from the hand to guide 

relevant behavior, we did not provide any experimental support to probe their 

functional connection (or possibly their equivalence). This represents an observation of 

major relevance for future research. Indeed, neuroimaging paradigms that combine the 

basic multisensory effects described in the thesis could be integrated with the 

investigation of defensive and goal-directed actions performed in the perihand space, 

whereas techniques like transcranial magnetic stimulation could be employed to shed 
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light on the causal role of the fronto-parietal nodes of the multisensory representation of 

the hand and the perihand space.  

 
6.4 THE CONTRIBUTION OF INTEROCEPTIVE SIGNALS 

 
The studies presented in the thesis, as well as the other relevant studies that have 

hitherto contributed to the general discussion, have concentrated on the role that visual, 

tactile, and proprioceptive signals take in the construction of a representation of the 

hand and the perihand space. However, the theoretical and experimental accounts that 

portray the neural mechanisms supporting the integration of multisensory signals from 

the body would fall short of being comprehensive if they didn’t embrace a whole class 

of sensory inputs that constantly reach the brain carrying information about the current 

physiological state of the body. These sensory inputs, sometimes referred to as 

interoceptive (Craig, 2003), convey information such as temperature, pain, visceral, 

vascular and other physiological sensations, and sensory information loaded with 

emotional content, such as pleasant touch (Björnsdotter et al., 2010; Olausson et al., 

2010; Craig, 2011; Morrison et al., 2011). Interoceptive signals converge onto cortical 

regions such as the insular complex (Craig, 2003, 2011; Björnsdotter et al., 2009; 

Olausson et al., 2010), where they can be combined with exteroceptive signals to 

construct a representation of the body that draws from both interoceptive and 

exteroceptive signals, accounting for the multifaceted range of sensory experiences 

associated with the self-perception of one’s body (Craig, 2002, 2010; Tsakiris et al., 

2007; Tsakiris, 2010; Seth, 2013).  

 

Recent behavioral studies have attempted to address the issue of how interoceptive 

signals interact with exteroceptive signals in the induction of illusory experiences of 

bodily self-perception. For example, the degree of awareness over one’s own heartbeat 

(Tsakiris et al., 2011) and the felt pleasantness of touch (Crucianelli et al., 2013) have 

been shown to interact with the integration of visual, tactile, and proprioceptive signals 

that leads to the induction of the rubber hand illusion. In spite of the recent upsurge in 

theoretical accounts linking the integration of interoceptive and exteroceptive signals to 

the self-perception of one’s body (Craig, 2010; Apps and Tsakiris, 2013; Limanowski 

and Blankenburg, 2013; Seth, 2013), little is known about the associated multisensory 

neural mechanisms. As clarified previously, the experiments presented in the thesis 

focused on the contribution of the multisensory integration of exteroceptive inputs from 
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vision, touch, and proprioception in constructing a representation of the hand that might 

support the self-perception of the hand itself. The threat-evoked psychophysiological 

and BOLD responses tapped into the array of emotional experiences associated with 

the self-perception of one’s own body. However, the present studies were not 

informative about the putative neural mechanisms whereby these exteroceptive inputs 

interact with interoceptive signals in constructing the multisensory representation of the 

body. This question represents an important direction for future research: experimental 

designs that both manipulate the emotional value of visuo-tactile stimuli and factor in 

interoceptive signals related to the psychophysiological state of the body might help 

shed light on the neural mechanisms discussed above. 

 
6.5 BEYOND THE HAND: THE MULTISENSORY REPRESENTATION OF 

THE WHOLE BODY 

 
The studies hitherto discussed have focused on the upper limb, providing converging 

evidence for the multisensory integrative mechanisms that assist the construction and 

maintenance of a coherent central representation of the hand that, in turn, may support 

the feeling of ownership of the hand itself. Nevertheless, it goes without saying that 

these self-specifying multisensory mechanisms must extend to the self-attribution of the 

whole body. However, it wasn’t until very recently that experimental paradigms were 

available that demonstrate the role of multisensory processes in the self-attribution of 

the whole body (Petkova and Ehrsson, 2008; Slater et al., 2009; Petkova et al., 2011b; 

van der Hoort et al., 2011). 

 

In a recent sequence of experiments, Petkova and colleagues showcased a behavioral 

paradigm that extends the principles first outlined in the description of the rubber hand 

illusion (Botvinick and Cohen, 1998) to the self-perception of the whole body (Petkova 

and Ehrsson, 2008; Petkova et al., 2011b). In this paradigm, the dynamic integration of 

synchronous visual and tactile stimuli delivered to the body of a humanoid mannequin 

seen from the first person perspective and to the participant’s real body, respectively, 

elicits the feeling of ownership of the mannequin’s body (Petkova and Ehrsson, 2008). 

In summary, the principles that support the feeling of ownership of the whole body 

closely resemble those that underpin the self-attribution of the hand, discussed in-depth 

in the studies presented in the thesis. Does that same relationship hold true with respect 

to the underlying neural mechanisms? 
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Figure 22. (A) The integration of visuo-tactile signals in multisensory areas of the premotor and parietal 
cortices is selective for spatio-temporally congruent signals originating from a humanoid body, as 
opposed to incongruent signals and/or signals originating from an object that does not resemble a human 
body (Petkova et al., 2011a). (B) The above multisensory integrative mechanisms operate in a body-part-
centered reference frame that requires the first person visual perspective (1PP), as opposed to the third 
person perspective (3PP). † uncorrected for multiple comparisons. (C) The perception of an entire body, 
as opposed to the anatomically implausible condition depicting an artificial detached hand, is essential for 
the integration of congruent visuo-tactile signals that leads to the self-attribution of the whole body. 
 

In a series of three fMRI experiments on healthy volunteers (Petkova et al., 2011a), 

we recently demonstrated that the self-attribution of the whole body is associated with 

the integration of visual, tactile, and proprioceptive signals in a set of frontal, parietal, 

and subcortical brain regions (Figure 22). The neuroanatomical and functional features 

of these findings bore a compelling similarity to those from the experiments presented 

in this thesis, hinting at a neural representation of the whole body other than the 

collection of the segmented representation of its parts, such as the limbs (Blanke and 

Metzinger, 2009; Tsakiris, 2010; Petkova et al., 2011a; Ehrsson, 2012). This 

observation solicits an obvious follow-up question: is there something to the neural 

mechanisms underpinning the self-attribution of the whole body that goes beyond the 

sum of its individual parts? In other words, how can the emergence of the perceptual 

whole body gestalt be related to the neural mechanisms described above? 

 

An intriguing hypothesis concerning the basic mechanisms that might facilitate the 

formation of a multisensory whole-body gestalt traces back to the neurophysiological 
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evidence summarized in the Introduction. Amongst the multisensory neurons identified 

in the posterior parietal and premotor cortices of the non-human primate brain, specific 

populations are equipped with visuo-tactile receptive fields that span multiple body 

segments or, in some cases, encompass the entire body and its surrounding peripersonal 

space (Rizzolatti et al., 1981a, 1981b; Fogassi et al., 1996; Duhamel et al., 1998; 

Graziano and Gandhi, 2000; Graziano et al., 2000). The partaking of these neuronal 

populations in the integration of multisensory bodily signals might constitute the neural 

mechanism that enables the construction of a unified representation of the body, which 

in turn results in the self-attribution of the whole body (Petkova et al., 2011a). 

Interestingly, recent behavioral and neuroimaging evidence supports the hypothesis 

presented above (Petkova and Ehrsson, 2008; Petkova et al., 2011a; Gentile et al., 

unpublished data in preparation).  
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Figure 23. (A) Left: the setup employed to induce the self-attribution of a whole body in the study of 
Petkova and Ehrsson (Petkova and Ehrsson, 2008; adapted from Ehrsson, 2012). Right: we conducted a 
series of behavioral and neuroimaging experiments where the self-attribution of a whole body was 
induced via the delivery of congruent visuo-tactile stimuli to the hand, abdomen, or leg of a humanoid 
mannequin and to the corresponding part of the participant’s body, respectively. (B) The feeling of 
ownership of the stimulated body part spreads to encompass the non-stimulated body parts, in line with 
the existence of a multisensory body gestalt. *p<0.05, **p<0.01. (C) The more vivid the self-attribution 
of the stimulated body part, the stronger the feeling of ownership that encompasses the other body parts. 
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 First, the subjective experience of ownership of a single stimulated body-part 

spreads to encompass the whole body (Petkova et al., 2008; Gentile et al., in 

preparation; see Figure 23). Second, multivoxel pattern analyses of the neuroimaging 

data summarized above revealed that the patterns of BOLD activity within a region of 

the ventral premotor cortex contain information about the integration of visuo-tactile 

stimuli from a self-attributed body that generalizes across two different body segments, 

the hand and the abdomen (Petkova et al., 2011a). These results were further extended 

in a recent study that provided two additional conclusions (Gentile et al., in 

preparation). First, we identified neuronal populations in a region of the ventral 

premotor cortex with receptive fields large enough to encompass three different body 

parts, namely the abdomen, the hand, and the leg.  
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Figure 24. (A) We performed an fMRI experiment on sixteen healthy volunteers and we induced the 
illusory self-attribution of a mannequin’s body by delivering synchronous, as opposed to asynchronous, 
visuo-tactile stimuli to the hand (H), abdomen (A), and leg (L). We employed multivoxel pattern analysis 
(Björnsdotter et al., 2011; Petkova et al., 2011a) to identify patterns of BOLD activity that distinguish 
between self-attributed multisensory stimuli, as opposed to the asynchronous control condition, and that 
generalize significantly across all three body segments (Gentile et al., in preparation). (B, C) A region in 
the ventral premotor cortex, centered on the inferior segment of the precentral sulcus (PrCS), generalized 
significantly across all body parts, but only in the context of an intact body, as opposed to the condition 
featuring an anatomically implausible detached hand (dH).  
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Crucially, the multivoxel patterns of the BOLD signal measured in this region were 

specific for the congruent visuo-tactile signals deriving from a self-attributed body part 

and generalized significantly across all body segments (Figure 24), consistently with 

their role in the construction of a whole body perceptual gestalt. Importantly, this 

generalization was significantly abolished if the multisensory stimuli were incongruent 

and/or if they appeared to originate from the virtual image of an artificial detached hand 

(Figure 24). Conversely, we found preliminary evidence for the existence of neuronal 

populations in different segments of the premotor and the posterior parietal cortices, as 

well as the putamen, that integrate multisensory signals in a body-part-specific fashion 

(Gentile et al., in preparation), in keeping with the existence of multisensory neurons 

with visuo-tactile receptive fields restricted to a specific body segments (Rizzolatti et 

al., 1981a, 1981b; Graziano and Gandhi, 2000; Graziano and Botvinick, 2002).  

 

These initial findings suggest that neuronal populations in frontal, parietal, and 

subcortical areas integrate multisensory signals from the body in a body-part-specific 

fashion, supported by the properties of their visuo-tactile receptive fields. Conversely, 

putative multisensory neuronal populations in the ventral premotor cortex equipped 

with visuo-tactile receptive fields encompassing multiple segments of the body may be 

decisive in the formation of the whole-body perceptual gestalt that underlies the 

behavioral effects summarized above. Future research should expand on these initial 

findings to characterize the visuo-tactile receptive fields of multisensory neurons, as 

well as their causal role in the emergence of a multisensory representation of the whole 

body and the associated perceptual gestalt. 

 
 
6.6 HOW MALLEABLE IS THE REPRESENTATION OF THE BODY?  

 
The existence of perceptual illusions like the rubber hand illusion (Botvinick and 

Cohen, 1998), the “third arm” illusion (Guterstam et al., 2011), the whole-body illusion 

(Petkova and Ehrsson, 2008), the “enfacement effect” (Paladino et al., 2010; Sforza et 

al., 2010), and the “out-of-body” illusion (Ehrsson, 2007; Lenggenhager et al., 2007) 

reveals that the central representation of the body is considerably more plastic than 

what was previously thought. The interplay of multisensory integration and higher-

order representations preserves and, if necessary, updates the representation of the body 

to attain coherence by incorporating artificial limbs or whole bodies and by remapping 
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the perceived spatial boundaries of the self. However, higher-order representations set 

limits to the malleability of the bodily self that reflect innate and acquired knowledge of 

the morphology and appearance of the human body (Tsakiris et al., 2010a; Apps and 

Tsakiris, 2013). But just how far do the plastic boundaries of the bodily self extend? 

 

 In a recent set of experiments, we described an uncanny perceptual illusion whereby 

healthy participants refer somatic sensations to and embody a discrete volume of empty 

space (Guterstam et al., 2013). In this “invisible hand” illusion, the integration of visual 

and tactile signals that are congruent in time and in hand-centered coordinates is so 

powerful that it overrides the ostensibly obvious fact that no hand is present in the 

space in direct view of the participant (Figure 25). The experience of the illusion is 

associated with increased activity in the multisensory regions of the premotor, posterior 

parietal, and cerebellar cortices characterized in the studies presented here (Figure 25).  
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Figure 25. The integration of temporally synchronous and anatomically congruent tactile signals from 
the occluded right hand and visual signals from the empty space in direct view of the participants leads to 
the uncanny referral of somatic sensations to the empty space, which is felt as part of one’s physical body 
(the “invisible hand” illusion). This phenomenon was characterized using converging behavioral, 
psychophysiological, and BOLD measures. Adapted from (Guterstam et al., 2013). 

 

These findings offer an important conclusion: when the multisensory criteria of 

spatial and temporal congruence within the perihand space are met, the bottom-up 

integration of the sensory signals plays a formidable role in redefining the spatial 

boundaries of the body. Nevertheless, at a first glance these findings appear to be at 

odds with the notion that prior knowledge about the structure and appearance of the 
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body poses a limit to the plasticity of the neural representation of the body itself 

(Petkova and Ehrsson, 2008; Tsakiris, 2010; Tsakiris et al., 2010a; Petkova et al., 

2011a). How can the description of this perceptual illusion be reconciled with the role 

of higher-order multisensory predictions that should, intuitively, prevent the remapping 

of the spatial boundaries of the body to incorporate a portion of empty space?  

 

An insight concerning the answer to this question comes from the observation that 

the peripersonal space embraces the array of anatomically plausible locations of the 

limbs, with the exception of the spatial locations that are occupied by non-corporeal 

objects (Guterstam et al., 2011, 2013). Furthermore, the spatial localization of the hand 

relies on mechanisms that are not exclusively tied to the dominance of visual inputs. 

The spatio-temporal correlation between many different pairs of sensory modalities, 

like visuo-proprioceptive (Lackner and Shenker, 1985; Lackner and DiZio, 2000; 

Walsh et al., 2011), tactile-proprioceptive (Ehrsson et al., 2005; Petkova et al., 2012), 

and visuo-motor (Tsakiris, 2010; Tsakiris et al., 2010b; Kalckert and Ehrsson, 2012), 

have all been shown to play a key role in localizing and self-attributing the hand in 

space. Hence, it is conceivable that the patterns of multisensory correlations associated 

with the invisible hand illusion might engage one of the mechanisms that operate to 

help localize the limbs in space; save the case of clear anatomical implausibility, the 

perceived location of the limb can then be remapped to a portion of the empty 

peripersonal space, alongside the updating of the higher-order predictions that 

dynamically assign weights to the different sensory inputs (Ernst and Banks, 2002; 

Fetsch et al., 2012; Apps and Tsakiris, 2013; Guterstam et al., 2013). The above 

speculations signal the need for further research aimed at shedding light on the 

interplay between bottom-up sensory inputs and top-down multisensory expectations. 

As suggested in the interpretation of the findings from Study V and the associated 

theoretical accounts (Friston, 2009; den Ouden et al., 2012; Apps and Tsakiris, 2013; 

Clark, 2013; Limanowski and Blankenburg, 2013), this functional interplay plays a key 

role in maintaining and updating the multisensory neural representation of the body. 

However, much remains to be investigated about these mechanisms, as exemplified by 

the open questions raised by phenomena like the “invisible hand illusion”. 
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6.7 CONCLUDING REMARKS 

 
In conclusion, the work presented in this thesis has attempted to gather evidence in 

support of the notion that the human brain constructs a coherent central representation 

of the hand in space by integrating congruent visual, tactile, and proprioceptive signals. 

Moreover, the studies were designed to offer evidence of the relationship between the 

multisensory representation of the hand and the feeling of ownership of the limb. The 

methodologies, particularly with respect to the use of functional magnetic resonance 

imaging, psychometric, and psychophysiological measurements, were summarized and 

discussed critically, outlining the strengths and weaknesses of the studies. The results 

from functional magnetic resonance imaging experiments in healthy humans suggested 

that the human brain constructs a representation of the hand by integrating congruent 

visual, somatosensory, and proprioceptive signals in regions of the posterior parietal 

and premotor cortices, and, subcortically, in the cerebellar hemispheres and in the 

putamina. Furthermore, the data advocated the notion that the above brain regions 

contain neuronal populations with visual RFs restricted to the immediate space around 

the hand and spatially anchored to it, providing a mechanism for the representation of 

the perihand space. Converging behavioral, physiological, and neural data proposed a 

role for the multisensory representation of the hand in space in supporting the feeling of 

ownership of the hand. The results were discussed in conjunction with other pertinent 

findings to position them within the broader context of existing relevant knowledge in 

neurophysiology, neurology, experimental psychology, and cognitive neuroscience, and 

to help identify outstanding open questions for future research. 
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