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ABSTRACT 
 
Estrogen plays crucial roles in the pathogenesis of breast cancer. Most of the known 
effects of estrogen signaling are mediated by estrogen receptors (ERs), ERα and ERβ. 
ERα is explored for breast cancer molecular classification and is a target of endocrine 
therapy. The discovery of the second ER (ERβ) including its variants led to a need for 
re-evaluation of the biology of estrogen. This thesis aims to characterize molecular 
aspects of ERβ variants and provide knowledge to elucidate roles of ERβ variants in 
tumorigenesis with focus on breast cancer. 
 
 In PAPER I, we determined the frequency of a novel human ERβ isoform, 
human ERβ548 (hERβ548), which had been demonstrated to display different 
functional characteristics than wild-type ERβ, in several populations including African 
(n = 96), Caucasian (n = 100), and Asian (n = 128) subjects. We did not detect any 
alleles that correspond to hERβ548 in these samples or in additional samples of 
heterogeneous origin. This study concluded, for the first time, that hERβ548 is not a 
common variant in Africans, Caucasians, or Asians. 
 
 In PAPER II, we identified five novel polymorphisms in the ERβ gene in an 
African population. Two of these variants, I3V and V320G were expected to change the 
amino acid sequence of the ERβ protein. Compared to the wild-type ERβ, the V320G 
variant showed significantly decreased maximal transcriptional activity in the ERE 
mediated reporter assay. A pull-down assay and surface plasmon resonance analysis 
revealed that the decreased transcriptional activity of the novel ERβ variant 
hERβV320G was associated with weaker interaction with a co-factor, TIF2. 
 

In PAPER III, we assayed the interaction of several known ligands with mouse 
ERβ1 (mERβ1) and mouse ERβins (mERβ2). A significant difference in ligand binding 
properties was observed. Our results suggest that ligand selectivity and co-activator 
recruitment of ERβ isoforms constitute additional levels of specificity that influence the 
transcriptional response in estrogen target cells in mouse. 

 
In PAPER IV, 202 clinical patient specimens, different non-small cell lung 

cancer (NSCLC) cell lines and transgenic mouse models were used to investigate the 
role of the EGFR signaling pathway for tumorigenesis of NSCLC. We showed that 
activation of the EGFR pathway or hypoxia could promote cell invasion but not 
survival. Furthermore, we demonstrated that the HIF-1α/MET axis is involved in both 
EGFR and hypoxia induced signaling pathways, leading to cancer cell invasiveness.  

 
In PAPER V, a breast cancer cell line BT549 that endogenously expresses the 

hERβ variant hERβ2 in the absence of ERα and wild-type ERβ was used to study the 
effects of hERβ2 signaling on breast cancer cell behavior and associated molecular 
mechanisms. Our data indicate that hERβ2 promotes proliferation and invasion in this 
cell line. A total of 263 genes were identified as hERβ2-upregulated genes and 662 
identified as hERβ2-downregulated genes. hERβ2-regulated genes were involved in 
cell morphology, DNA replication and repair, cell death and survival. Based on our 
data, we hypothesize that effects of hERβ2 on proliferation and invasion were mediated 
via repression of prolyl hydroxylase 3 (PHD3) gene expression and induction of protein 
levels of the hypoxia induced factor 1 (HIF-1α) and MET.  

 
In conclusion, the studies presented in this thesis contribute to the knowledge of 

the function of ERβ variants, and give additional insight into the molecular mechanisms 
underlying cancer cell proliferation and invasion. 
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 INTRODUCTION 1
 

 

 Estrogen receptors  1.1

 

Estrogen plays crucial roles in many tissues in the body, and may be involved in the 

pathogenesis of many endocrine related diseases, such as breast cancer, uterine 

cancer, prostate cancer, autoimmune diseases, osteoporosis and metabolic disorders. 

Most of the effects of estrogen are mediated by the estrogen receptors (ERs). For a 

long time, only one ER was thought to be the receptor that is responsible for 

mediating the effects of estrogen. This receptor is now called ERα. However, in 

1996, another ER, now named ERβ, was reported.  

 

ERs belong to the nuclear receptor (NR) superfamily[1, 2], which includes receptors 

for glucocorticoids, mineralocorticoids, progesterone, androgens, estrogens, thyroid 

hormones, vitamin D and retinoic acid. Upon ligand dependent or independent 

activation, these receptors form dimers and bind to their corresponding response 

element in the regulatory region of their target genes, thus regulating transcription 

[3]. For ERs, the specific sequences of DNA are known as estrogen response 

elements (EREs) [4]. The NRs include four functional domains. The N-terminal 

A/B domain contributes a ligand-independent transcriptional activation function 

(AF-1), a site involved in co-activator binding and transcriptional activation of 

target genes. AF-1 is very active in ERα but has lower activity in ERβ [5]. The 

DNA binding domain (DBD; sometimes referred to as the C-region) contains two 

zinc fingers and mediates sequence specific DNA binding and contributes to 

receptor dimerization. The DBD is linked to the ligand-binding domain (LBD or 

E/F domain) by the D domain or hinge region that is less well conserved and 

characterized. The LBD binds various ligands and is also involved in receptor 

dimerization, nuclear translocation, co-factor binding, and transactivation of target 

gene expression. An activation function 2 (AF-2) localized within this domain 

constitutes a ligand-dependent transactivation function.  
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ERα and ERβ are encoded by separate genes. ERβ has an amino acid identity of 

96% to that of ERα in the DBD, which suggests that ERβ would recognize and bind 

to specific DNA sequences similarly to ERα. The LBD is much less homologous 

between ERβ and ERα, only 59%, also the ligand binding pockets of the two 

receptors are different in structure, indicating the possibility of a different ligand 

spectrum for ERβ versus ERα [6]. The N-terminal AF-1 and C-terminal AF-2 

domains are not well conserved, suggesting that the proteins interacting with ERβ 

for its transcriptional activation functions may be considerably different from those 

interacting with ERα.  

 

The discovery of the second ER, ERβ, led to a need for re-evaluation of the biology 

of estrogen. While the physiological functions of ERβ are still being investigated, 

important insight has been gained, both with regard to its molecular mechanisms of 

action and its role in physiology and disease. At ERE sites, ERβ has weaker 

transcriptional activity than ERα [7-10]. Additionally, there are important DNA 

binding sites for ERs, other than EREs where ERβ shows different, sometimes even 

opposite, effects to those of ERα, e.g. at AP-1 and Sp1 sites [11-14].  

 

The phenotypes displayed by the ERβ knockout (BERKO) animal model, such as 

atretic ovary, hyperplastic prostate and neuronal degeneration, suggest that ERβ 

plays crucial physiological roles. In human, ERα and ERβ show distinct tissue 

distribution. Altered expression of ERβ has been found in several kinds of cancer 

tissues, such as breast cancer, prostate cancer and colon cancer, in which ERβ 

expression is often decreased and sometimes re-gained when the cancer progresses 

to late stage.  

 

Both ERs are widely expressed in different tissues. Notable differences in tissue and 

cellular distribution between ERα and ERβ are shown in Table 1.   
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Table 1   Distribution of ERα and ERβ in human tissues and cells [15-18]  

 ERα ERβ 

Adipose tissue ± ± 

Adrenal + − 

Bladder − + 

Bone + + 

Bone marrow − + 

Brain + + 

Colon − + 

Endometrium + + 

Epididymus − + 

Fallopian tube − + 

Gastrointestinal tract − + 

Heart  + + 

Kidney + + 

Liver + − 

Lung − + 

Muscle  − − 	
  
Breast + + 

Ovarian granulosa cells + ++ 

Ovarian theca cells ++ + 

Pancreatic cancer + + 

Pituitary gland − + 

Prostate  ± ++ 

Small intestine − + 

Testes ± + 

Thymus − + 

Uterus ++ + 

Vagina + − 

Vascular endothelium − + 

 

 

 ER ligands 1.2

 
17β-estradiol (E2) is the primary ligand for ER and is the predominant form of 

estrogen hormone in premenopausal women. Estrone (E1) and estriol (E3) are two 

other common ligands with estrogenic activity. They have weaker agonist effects 

than E2 and are found predominantly in postmenopausal women and pregnant 

women, respectively. 
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Selective estrogen receptor modulators (SERMs) refer to a group of compounds that 

act as either an estrogen agonist or antagonist dependent on the cell type and tissue. 

The commonly used SERMs in breast cancer are tamoxifen, roloxifene and 

toremifene. Three mechanisms have been proposed to account for the mixed 

antagonist/agonist effect of SERMs on ERs: (1) distinct ER conformation upon 

ligand binding; (2) differential expression and binding to the ER of coregulatory 

proteins; and (3) differential expression of ERα and/or ERβ subtypes in a given 

target tissue [19]. Fulvestrant/ICI 182,780 is a selective estrogen receptor down-

regulator (SERD), a complete ER antagonist. It works by binding to ER and 

inhibition of its activity by nuclear export and degradation.  

 

ER subtype-selective ligands have been developed. Propyl pyrazole triol (PPT) is a 

well-characterized synthetic ERα agonist, with a 410-fold relative binding affinity 

for ERα versus ERβ [20]. 2,3-bis (4-hydroxyphenyl)-propionitrile (DPN) is a well-

characterized synthetic ERβ agonist, with a 70–300-fold selectivity for ERβ 

compared to ERα [21-23]. Phyto-estrogens (plant-derived) SERMs have steroid 

structures and estrogen-like properties. Genistein is a phytoestrogen, which has a 

greater binding affinity for ERβ than for ERα [23].  

 

 

 ERβ isoforms 1.3

 

Like many other genes, ERβ is expressed as different isoforms, the functions of 

which need to be addressed, in order to fully understand the physiological functions 

of ERβ. Endogenously expressed ER variants may contribute to the diversity of E2 

actions in different tissues. Multiple ERβ isoforms exist as a result of either deletion 

of one or more coding exons, alternative splicing of the last coding exons, or 

alternative usage of untranslated exons in the 5’ region. To date, five full-length 

isoforms, designated ERβ1-5, have been reported in human (Figure 1). The full-

length ERβ1 mRNA is translated from 8 exons, encoding 530 amino acids, while 

the ERβ2-5 transcripts share identical sequences with ERβ1 from exon 1 to exon 7, 

but have unique sequences in place of exon 8. Functional studies have shown that 

ERβ2 can form heterodimers with ERα and ERβ1 on ERE and negatively regulate 
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the transcriptional activity of ERα, but not of ERβ1. ERβ4 and β5 can 

heterodimerize with ERβ1 and enhance its transcriptional activation function in a 

ligand-dependent manner [24]. The expression of ERβ3 appears to be restricted to 

the testis [25]. The properties of these ERβ variants are shown in Table 2. 

 
 
 
 
 

 
 
Figure 1. Structural and sequence comparisons for the human ERβ gene and protein. For the 
gene, exons are indicated with boxes and introns with lines. The numbers above each box designate 
the size of the exons (bp); the numbers below each line indicates the size of the respective introns 
(bp). For the proteins, numbers indicate the amino acids positions in each protein and kDa. 
Functional domains are marked above the protein structure. ERβ variants are formed from 
alternative splicing of the last coding exon. Amino acid sequences of the unique C terminuses are 
listed at the bottom.  
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Table 2	
  	
  	
  Properties of human ERβ variants  

Isoform ERβ1 ERβ2 ERβ3 ERβ4 ERβ5 

E2 binding[7, 24, 26] + − + ± ± 

ERE binding[1, 27] + ± NA + ± 

Dimer/ERα[1, 8, 25] + + + + + 

Dimer/ERβ1[1, 24] + + + + + 

Homodimers[24] + − NA - - 

Inhibits ERα function [8] + + + NA + 

Enhance  ERβ function*[1]  − NA + + 

Nuclear localization + + NA + + 

Cancers[28-33] CC, BC, 

TC, OC 

BC, PC, EC, 

CC,GC, OC, TC 

  BC, OC 

* Enhance ERβ1-induced transactivation in a ligand-dependent manner 
+, interaction; -, no interaction; NA, information not available; BC, breast carcinoma; PC, prostate 
carcinoma; EC, endometrioid carcinoma; CC, colorectal carcinoma; GC, gastric adenocarcinoma; 
OC, ovary carcinoma; TC, thyroid cancer. 
 

 

More specifically, the following ERβ isoforms have been characterized in this 

thesis.  

 

 

 Potential N-terminus extended variant, human ERβ548 1.3.1

 

Human ERβ (hERβ) cDNA was cloned as a protein of 485 amino acids in length in 

1996 [7, 8]. In 1998, the N-terminus of hERβ was extended with 45 extra amino 

acids. This protein is now referred to as hERβ1 [1, 2]. hERβ1 has been considered 

as the full length hERβ. However, a hERβ cDNA that corresponds to a protein of 

548 amino acids was cloned from human testis cDNA. It was suggested that a 

genomic polymorphism corresponding to an insertion of an extra A-T base pair 

places an upstream ATG in frame with the rest of the coding sequence. The authors 

speculate that this might represent a polymorphism in human populations [34]. 

However, our study of African, Caucasian and Asian populations failed to support 

that human ERβ548 exists [35]. 
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 hERβ2 1.3.2

 

The most studied variant of hERβ, hERβ2, is the result of alternative splicing, 

exchanging exon 8 for an alternative exon which has 26 unique amino acids. hERβ2 

lacks the AF-2 core region and has undetectable affinity for ligands. It acts as a 

dominant-negative inhibitor of ERα [1]. It has been shown that hERβ2 

heterodimerizes with ERα and inhibits ligand induced ERα transcriptional activity 

by inducing proteasome-dependent degradation of ERα [36]. hERβ2 was also 

shown to inhibit recruitment of ERα to estrogen-responsive promoters, leading to 

suppression of the expression of ERα regulated genes including CCND1 and 

CDKN1A.  

 

Evidences suggest that in contrast to hERβ1, hERβ2 has proliferative characteristics 

and is associated with cell proliferation and invasion and aggressive phenotype [37]. 

The expression of hERβ2 is widespread and has been reported to have higher 

expression in cancer tissue compared to normal tissue for breast, colorectal, prostate 

and non-small cell lung cancer [28, 33, 38, 39].  

 

 

 rERβ2 (rERβins) 1.3.3

 

In rodents, many isoforms have been reported. The most well studied isoform of 

rodent ERβ is rodent ERβins (rERβins), which has an 18 amino acid insertion in the 

LBD region. Interestingly, rERβins is expressed in most tissues of rat and mouse. 

Furthermore, it has markedly reduced ligand binding, requiring 100 to 1000 fold 

higher E2 concentrations for maximal activation compared to wild-type ERβ and, at 

physiological E2 concentrations (with the exception of the ovary where E2 

concentrations are higher), it can suppress E2 dependent ERα and ERβ mediated 

activation of gene expression [40-42]. It is interesting to speculate that rERβins is 

designed to activate gene expression only at the high concentrations of E2 present in 

the ovary. Alternatively, it might be designed to respond to other ligands. 
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 Expression of ER variants in association with diseases  1.4

 

ERβ expression has been found in normal breast tissue and breast cancer. In normal 

breast, ERα exists in epithelial cells while ERβ is found in both epithelial and 

stromal cells. ER expression changes during breast cancer progression. ERα levels 

increase while ERβ levels decrease in breast cancer compared to normal breast, and 

ERβ level is negatively correlated with aggressive clinical features of breast cancer. 

In breast cancer expressing both ERs, estrogen could act via ERβ to moderate ERα 

driven proliferation.  

 

Increased expression of ERβ2 correlated with the level of tumor inflammation and 

grade, respectively, in breast cancer [43]. Several studies have indicated that ERβ2 

is associated with poor clinical outcome and poor survival in human cancers. 

Furthermore, ERβ2 expression correlates with aggressive phenotypical features. In 

prostate cancer, ERβ2 was shown to correlate with poor prognosis and could 

promote cancer cell proliferation and invasion [37, 38]. In contrast, one research 

group reported decreased expression of ERβ2 in colon cancer compared with the 

normal colon tissue [30].  

 

 

 ERβ1 expression in correlation to clinical features 1.4.1

 

Many studies indicated that ERβ1 expression is a predictor of favorable outcome. 

Generally higher levels of ERβ1 expression were associated with longer overall 

survival and disease free survival [44-46], better response to anti-estrogen therapy 

such as tamoxifen [47, 48], lower grade, negative lymph-node status and smaller 

tumor size [49-51]. 

 

Twenty nine out of 43 studies showed that ERβ1 is highly expressed in normal 

tissues relative to tumors [28, 31, 52-55] and that lower ERβ1 expression in tumors 

is associated with poor differentiation, invasive properties, metastasis and high 

stage of tumor [33, 43, 56-59]. Consistent with these findings, other studies showed 

that higher expression of ERβ1 is associated with low biological aggressiveness, 
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favorable clinical outcomes, better response to endocrine therapy and better survival 

[15, 29, 44, 46, 48, 50, 51, 60-67]. However, nine studies did not find any 

association between ERβ1 expression and pathology parameters, major clinical 

outcomes or cancer stage [15, 68-75].  

 

Although it seems ERβ1 is a biomarker for favorable clinical outcomes, some 

studies indicated that the ERβ1 expression level is higher in tumors compared to 

normal tissues [76]. One study of 167 invasive breast cancers from postmenopausal 

women showed that high ERβ1 expression was associated with elevated cell 

proliferation and not correlated with clinical outcomes in the absent of ERα [71]. 

Moreover, ERβ1 was found to be positively correlated with aggressive clinical 

features in a study of 926 breast cancer patients [77]. Another study showed the 

enhanced nuclear and cytoplasmic ERβ1 expression was associated with advanced 

stage in colon cancer [76]. ERβ1 expression was also shown to correlate with poor 

cell differentiation and poor overall survival in a Chinese population [78]. 

Furthermore, few studies showed that ERβ1 promotes cell proliferation in ERα-

negative breast cancers [71, 79]. Thus, at present the relation of ERβ1 to 

clinicopathological parameters is unclear and more studies are needed to conclude 

physiological function of ERβ1 in breast cancer.  

 

The function of ERβ1 can be different when it is expressed alone compared to when 

it is co-expressed with other ERs. Additionally, the function of cytoplasmic ERβ 

isoforms may differ from nuclear ERβ isoforms. Furthermore, ERβ isoforms have 

been shown to exert tissue-selective functions and may also connect with hormonal 

status [80].  

 

 

 ERβ2 expression in correlation to clinical features 1.4.2

 

Many recent studies explored the function of ERβ2 in cancer. 22 of the above 41 

studies also examined ERβ2 expression. These studies showed ERβ2 differently 

correlated to clinical features compared with ERβ1. Five out of 22 studies did not 

find a correlation between ERβ2 expression and clinical outcomes or survival. Ten 
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studies showed that ERβ2 correlated to better outcomes. Seven studies showed that 

ERβ2 was highly expressed in tumor, and its expression was increased in advanced 

stages of tumors, associated with invasiveness, metastasis and poor survival [15, 29, 

33, 43, 48, 53, 64, 73, 81] .  

 

Lymphocytes express high levels of ERβ2, which may contribute to the high 

expression level of ERβ2 in tumors with inflammation [43]. The cellular 

localization of ERβ isoforms determines tumor outcomes. Thus nuclear ERβ2 

expression is associated with good outcome whereas cytoplasmic ERβ2 expression 

is associated with worse overall survival [75]. 

 

Most of the studies on the expression of ERβ2 have been analyzed at the mRNA or 

protein levels, in the latter case based on immunohistochemistry (IHC). Different 

ERβ2 antibodies may influence the results. All these have to be taken into account 

when comparing results from different studies. At present the relation of ERβ2 to 

clinical features is still unclear and more studies are needed to make conclusions 

about the contribution of ERβ2 expression in cancer.  

 

 

 ERβ SNPs in association with diseases 1.4.3

 

Around 720 single nucleotide polymorphisms (SNPs) have been identified in the 

ERβ gene [82]. They locate to the 5’UTR, promoter region, introns, 3’UTR, and 

coding regions. SNPs in coding regions and regulatory regions may affect gene 

and/or protein function and SNPs in the 3’UTR may contribute to translatability and 

mRNA transcript stability [83, 84]. rs4986938, rs928554 and rs1256049 are 

frequent ERβ polymorphisms. None of these SNPs change the amino acid sequence 

of the ERβ protein [85-87]. Polymorphisms in ERβ have been correlated to breast 

cancer [85-88], ovulatory dysfunctions [89], bone mineral density [90], 

hypertension [91], bulimic disease [88] and androgen levels [92].  
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 Breast cancer molecular subtypes 1.5

 

Breast cancer is a common cause of cancer death among women. It is a disease 

with different morphological features and clinical behaviors, and 5 subtypes 

(Luminal A, Luminal B, normal breast like, human epidermal growth factor 

receptor 2 (HER2) enriched and basal-like breast cancer) have been defined 

according to microarray gene profiling based classification [93] (Table 3). 

Approximately 60-80% of basal-like breast cancers and 71% of claudin low breast 

cancer correspond to triple negative breast cancers (TNBCs), which are 

characterized by a lack of expression of ER, progesterone receptor (PR) and HER2. 

TNBC, which constitutes 15–25% of all breast cancers, is a cancer with aggressive 

phenotypes and the worst prognosis among breast cancer subtypes. It affects mostly 

in younger age or premenopausal groups and the incident rate is high in African 

American [94]. TNBC lacks effective targeted therapies. Furthermore, TNBC lacks 

any known predictive biomarkers and often develop distant metastasis in tissues 

such as brain and lung.  

 

 
Table 3   Molecular classification of breast cancer 

Subtypes 
[95] 

Markers Incidence 

rate [94, 95] 
Prognosis Therapy  

ER PR HER2 Other markers    

Luminal A + + − Low Ki67 40-62% Good prognosis, 

less 

invasiveness 

Hormonal 

therapy 

Luminal B + ± ± HER2− with high Ki67 9-20% Moderate  Hormonal, 

chemotherapy, 

HER2 blockade 

Basal-like − − − CK5/6+ and/or EGFR+ 8-20% Poor Chemotherapy 

HER2+ − − + ? 4-16% Poor-moderate Chemotherapy, 

HER2 blockade 

Normal like − ? ? ? 6-10% Moderate  ? 

Claudin low  − − − Enrichment for EMT 
markers, immune response 
genes and cancer stem 
cell-like 

7-14% Poor ? 
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 Therapeutic treatment of breast cancer 1.5.1

 

Many factors can influence the effect of therapeutic treatment of breast cancer such 

as the type of breast cancer, the stage of the cancer, the status of ER, PR and HER2, 

patient age, menopausal status, family breast cancer history and the status of ER 

variants.  

 

The main types of treatment for breast cancer are surgery, radiation therapy, 

chemotherapy, hormone therapy and targeted therapy. Among them, surgery and 

radiation therapy are local therapies, which treat the tumor at the local site without 

affecting the whole body. Chemotherapy, hormone therapy and targeted therapy are 

systemic therapies, which will affect cancer cells in the whole body. Sometimes 

breast cancer patients also need neoadjuvant therapy before surgery to make the 

tumor shrink and allow for a less extensive surgery and/or adjuvant therapy after 

traditional treatments in order to prevent cancer cells coming back.  

 

Hormonal therapy is targeted to inhibition of estrogen production and ER action 

(Figure 2). It is used as an adjuvant therapy in ERα-positive breast cancers. 

Tamoxifen is the oldest, most well-known and prescribed SERM, which can 

interfere with estrogen binding to ERs in the breast. Aromatase inhibitors, e.g., 

anastrozole, work by inhibiting estrogen synthesis. An aromatase inhibitor is the 

hormonal therapy to start with for postmenopausal women. Pure antiestrogen such 

as fulvestrant can also be used to block estrogen signaling pathways. Small 

molecules that block co-factor binding or inhibit ERα binding to ERE are 

considered as novel ER inhibitors with significant clinical potential [96, 97].  

 

70% of ERα-positive breast cancer patients response to hormonal therapy. 

However, 30-40% of patients initially responding to hormonal therapy eventually 

relapse as a significant fraction of breast cancers develop endocrine therapy 

resistance. Identifying key regulators and pathways involved in ER signaling in 

resistant breast cancer would provide opportunities for a new generation of 

therapeutic targets in breast cancer. 
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Figure 2. Therapeutic strategies targeting ER action in breast cancer. One treatment option is to 
block ER action by using selective estrogen receptor modulators (SERMs) such as tamoxifen to 
compete with estrogens for binding to ER. Fulvestrant/ICI 182,780 is a complete ER antagonist, 
which binds to the ER and promotes its degradation. Other forms of therapy include using 
aromatase inhibitors to inhibit the synthesis of estrogen production, using small molecules and 
peptides to block co-activator binding to liganded ER, using monoclonal antibodies against HER2 
such as trastuzimab or targeting tyrosine kinases directly by tyrosine kinase inhibitors such as 
gefitinib to inhibit non-ligand activated ER action. 
 

 

 ER signaling pathways 1.6

 

ERs are transcription factors including two transcriptional activation domains. The 

classical ER signaling occurs through ligand binding to the LBD of the receptor and 

induction of ligand specific conformational changes in the ER protein. The 

receptors form dimers and bind to DNA at EREs through their DBD. Most of the 

known estrogen derived effects are mediated via this direct interaction of ERs with 

DNA. Interaction of ERs with DNA is followed by recruitment of co-activators, 

leading to the induction of chromatin remodeling and increased transcription of 

estrogen targeted genes.  

 

The non-classical genomic ER signaling pathway is mediated by the tethering of ER 

to DNA through protein-protein interactions with other transcription factors such as 
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AP-1 and Sp1, a so-called tethering mechanism (Figure 3). This pathway of ER 

action is also called the indirect ER signaling pathway. Furthermore, ER can be 

activated in a ligand independent way. Growth factor signaling or stimulation of 

other signaling pathways leads to activation of kinases that can phosphorylate the 

dimerized intracellular ERs, which subsequently active target genes and trigger 

downstream signal transduction cascades even in the absence of ligand.  

 

ER signaling can also occur through a non-genomic pathway, which refers to that 

ER can regulate gene expression without binding directly to DNA. This action has 

been shown to involve the activation of downstream cascades such as PKC, PKA, 

and MAPK via membrane-localized ERs. In addition, an orphan G protein-coupled 

receptor (GPR30) in the cell membrane has been reported to mediate nongenomic 

ER signaling. The activities of GPR30 in response to estrogen were shown to be 

mediated through its ability to induce expression of ERα36, a novel variant of ERα, 

which in turn acted as an extranuclear ER to mediate nongenomic estrogen 

signaling [98].   
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Figure 3. Schematic models illustrating ER signaling pathways [99]. 1, 2, and 4 illustrate the 
genomic action in the nucleus, while 3 illustrates the non-genomic action in the cytoplasm. 1. 
Estrogen binds to ERs. Liganded ERs form dimers and bind directly to estrogen response elements 
(EREs) in target genes in the nucleus. 2. Ligand/ER complexes tether to other transcription factors, 
bound to their response elements (RE) in target genes, to activate the transcription of non-ERE 
containing genes. 3. Ligand activated membrane bound ERs in complex with other factors functions 
as ‘second messengers’ (SMs) act to activate non-genomic signaling cascades. 4. Growth factor 
(GF) activated protein kinase cascades phosphorylate and activate ERs leading to binding to EREs 
in target genes in the nucleus, resulting in ligand independent activation. 
 

 

 Signaling pathways in cancer biology  1.7

 

Cancer is the result of cell growth and division out of control starting to invade 

neighboring tissues and metastasize. Proliferation potential, cell growth out of 

control (insensitivity to growth inhibitory signals), apoptotic escape, limitless 

replicative potential, angiogenesis and invasion/metastasis are the six hallmarks in 

cancer progression [100]. Many complex signal transduction processes are involved 
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in cell growth and survival. Disruption of those signaling pathways may cause 

cancer. Over 40 pathways have been demonstrated to relate to cancer biology 

including epidermal growth factor receptor (EGFR) signaling, PI3K/AKT signaling, 

Ras/Raf/Mek signaling and MET signaling. Some of these signaling pathways will 

be discussed further below. 

 

In epithelial cancers such as breast cancer, metastasis is thought to occur start with 

epithelial-to-mesenchymal transition (EMT). EMT is a process of loss of epithelial 

phenotypes and gain of new migratory and invasive growth phenotypes by 

cytoskeleton rearrangements and cellular adhesion, structure and morphology 

alternation. Epithelial markers on the cell surface such as E-cadherin or integrins are 

replaced with mesenchymal markers, such as vimentin, N-cadherin, or fibronectin. 

During the process of EMT, cells lose their characteristic epithelial traits and 

instead gain migratory potential and detach from the basal membrane [101].  

 

 

 ER signaling in tumorigenesis  1.7.1

 

Evidence from the clinic, cell line based in vitro models and in vivo animal models 

revealed that estrogen and ERs contribute to tumorigenesis, including breast, 

uterine, colorectal, prostate, lung, pancreatic and ovarian cancers [102-108]. 

Aberrant estrogen signaling results in disruption of the cell cycle, apoptosis and 

DNA repair, which are implicated in cancer initiation and progression and may also 

influence the response to cancer therapy [109, 110]. E2 was reported to enhance 

ovarian cancer migration through ERα mediated EMT. Snail, Slug and E-cadherin 

were identified as transcriptional targets of ER signaling in EMT [111]. 

 

Many studies indicated that ER subtypes play different roles in tumorigenesis and in 

response to cancer therapy. ERβ1 acts as a tumor suppressor in cancer biology 

[103]. Activated ERβ1 signaling by introducing ERβ1 or its agonists has anti-

proliferative effects. Recent evidence showed that overexpression of ERβ1 exerts 

tumor repressive functions in human malignant pleural mesothelioma via EGFR 

inactivation and affects the response to Gefitinib, an EGFR inhibitor [112]. ERβ1 

knockdown in ERβ1 positive cells confers a more invasive phenotype, increases 
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anchorage independent proliferation and elevates the constitutive activation of 

EGFR-coupled signal transduction pathways [112]. In ERα-positive breast cancer 

cells, ERβ1 expression was found to reduce Akt activation through down regulation 

of HER2/HER3 signaling. On the contrary, in one study of prostate cancer cells, 

ERβ2 was shown to increase proliferation and up-regulate factors known to be 

involved in bone metastasis, whereas ERβ1 inhibited these parameters [37].  

 

In prostate cancer, ERβ1 represses basal-like breast cancer EMT transition by 

destabilizing EGFR [113]. In breast cancer, loss of TBK1 was reported to drive 

induction of EMT through down regulating ERα expression in ERα-positive cancer. 

Furthermore, ERβ1 was reported to inhibit EMT and invasion in TNBC in vitro or 

in vivo in a zebrafish model [113]. ERβ1 inhibits EMT through up-regulation of 

miR-200a/b/429 and the subsequent repression of ZEB1 and SIP1, which in turn 

leads to increased expression of E-cadherin [113].  

 

ERα seems to contribute to tumor progression primarily by having a mitogenic role 

to stimulate cell proliferation. ERα promotes breast cancer cell proliferation both in 

vivo and in vitro by increasing the expression of MYC, cyclin D1 (CCND1) to 

facilitate cell cycle progression [114-116]. In the absence of ligand, MAPK- and 

PI3K-driven phosphorylation can enhance ERα transcriptional activity and induce 

breast cancer cell proliferation [117, 118]. ERα also plays a role in EMT. In breast 

cancer cells, ERα interacts with AIB1 (also known as SRC-3), which could bind to 

the ERα-binding site on the Snial1 promoter, resulting in increased expression of 

Snail1 and the subsequent repression of E-cadherin [119, 120]. 

 

Recent studies also found that ERα extranuclear signaling is involved in breast 

cancer cell migration and metastasis through activation of kinase cascades. For 

examples, ERα extranuclear signaling promotes stimulation of the Src kinase, 

MAPK, PI3K, and protein kinase C pathways in the cytosol. Many of these kinases 

activated by ERα extranuclear signaling have been shown to be implicated in breast 

cancer metastasis [121, 122]. However, the molecular mechanisms by which 

extranuclear ER exerts its function remain unclear.  
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 EGFR 1.7.2

 

The epidermal growth factor receptor (EGFR, HER-1, c-erbB-1) is a subfamily of 

four closely related receptor tyrosine kinases (RTKs): EGFR (ErbB-1), HER2/c-neu 

(ErbB-2), Her 3 (ErbB-3) and Her 4 (ErbB-4). These four transmembrane growth 

factor receptors share similarities in structure and function. The HER2 gene is 

amplified and HER2 is overexpressed in 25% to 30% of breast cancers, increasing 

the aggressiveness of the tumor [123]. Lack of response to endocrine therapy, 

together with increased metastasis and poor survival, has been shown to be 

associated with over-expression of EGFR and HER2 in clinical breast cancer [124, 

125]. 

 

There are two major binding ligands, epidermal growth factor (EGF) and 

transforming growth factor-alpha (TGF-α) that can activate EGFR. Ligand binding 

to EGFR results in receptor homo- or hetero-dimerization (with one of the HER 

family of receptor tyrosine kinases) followed by autophosphorylation of the tyrosine 

kinase domain. Phosphorylated tyrosine residues serve as binding sites for the 

recruitment of signal transducers and activators of intracellular substrates. The 

Ras/Raf/MAPK and PI3K/Akt pathways are the major signaling routes for the HER 

family, including EGFR. These pathways control several important biologic 

processes, including cellular proliferation, invasiveness, angiogenesis and inhibition 

of apoptosis [126-128]. EGFR signaling pathways are shown in Figure 4. 

 

Genetic mutations or gene amplifications in RTKs and their downstream factors 

result in aberrant cell signaling often leading to cancer cell growth and/or resistance 

to cancer therapies [129, 130]. The well-studied RTKs mutation is the EGFR-

activating mutation in non-small cell lung cancer (NSCLC). Certain mutations in 

the EGFR tyrosine kinase domain including an amino acid substitution at exon 21 

(L858R) and in-frame deletions in exon 19 were found to be predictors of clinical 

response to EGFR tyrosine-kinase inhibitors (TKIs). EGFR-activating mutations 

represent a subset of NSCLC patients and are predictors of EGFR TKI treatments 

[131].  
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Figure 4. EGFR and MET cell signaling pathways. EGFR activates several major downstream 
signaling pathways, including Ras–Raf–Mek and the pathway consisting of phosphoinositide 3-
kinase (PI3K), Akt, and mammalian target of rapamycin (mTOR), which in turn may have an effect 
on proliferation, survival, invasiveness, metastasis, and tumor angiogenesis. These pathways may 
also be modulated by other receptor tyrosine kinases, such as the HGF/MET signaling pathway.  
 

 

 MET 1.7.3

 

The MET oncogene, encoding for the tyrosine kinase receptor for hepatocyte 

growth factor (HGF) is over expressed in various cancer cells. The MET tyrosine-

kinase receptor is an established mediator of cancer cell invasiveness. MET can 

increase the viability of cancer cells [132]. Cross talk between the EGFR and MET 

has been identified in several tumor types, with HGF being able to transactivate 

EGFR and conversely EGFR ligands activating MET. EGFR inhibitors have been 

shown to attenuate HGF-mediated proliferation, migration and invasion of several 

breast cancer cell lines in vitro. HGF and/or MET expression increase with tumor 

progression and each is independently associated with poor prognosis. HGF/MET 

expression gradually increases during breast cancer progression from normal breast, 

carcinoma in situ to invasive carcinoma [133], suggesting their involvement in the 

malignant progression in breast cancer. Tumor hypoxic areas show MET 

overexpression [134]. The HGF/MET pathway is important in basal-like breast 
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cancer and is considered as a strong candidate target for treating premalignant 

basal-like lesions [135]. MET is also associated with invasion and metastasis in 

breast cancer. Its expression and activation correlate with tumor hypoxia and HIF-

1α activation [136]. When MET is inhibited, hypoxia induced invasive growth was 

prevented [126, 134]. Previous findings also showed that MET levels can be 

regulated by HIF-1α [126].  

 

 

 HIF-1α 1.7.4

 

Tumors are surrounded by a low-oxygen environment, making the hypoxia-induced 

factor HIF-1 signaling important for cell survival. HIF-1 is a heterodimeric protein 

consisting of two subunits, HIF-1α and HIF-1β. HIF-1α, which forms a DNA-

binding heterodimer with the constitutively expressed HIF-1β subunit, is stabilized 

and activated under hypoxia. Upon activation, HIF-1 binds to the hypoxia response 

elements of target genes. The activity of HIF-1 is regulated through the stabilization 

and activation of HIF-1α.  

 

HIF-1α modulates the expression of 1-5% of human genes, including genes 

involved in glycolysis, cell cycle control, proliferation, invasion, angiogenesis and 

metastasis [137]. Aberrant signaling via pathways such as Ras-MAPK, Src, or 

PI3K/mTOR increases HIF-1α expression under normoxic and hypoxic conditions. 

PI3K/AKT activation was also reported to increase HIF-1α stability through 

mTOR, particularly in breast cancer [137]. HIF-1α is associated with poor 

prognosis and therapy resistance in cancer and is also a major determinant of 

invasion and metastasis in a wide variety of tumor types [138].  

 

 

 PHDs 1.7.5

 

Prolyl hydroxylases domain-containing proteins (PHDs) regulate the appropriate 

balance of HIF-1α protein at the post-translation level. PHDs are oxygen sensors 

that can target two proline residues (p402 and p564) in two -Leu-X-X-Leu-Ala-Pro 

sequences in the oxygen-dependent degradation domain of HIF-1α in the presence 
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of oxygen. The hydroxylated HIF-1α can be recognized by the tumor suppressor 

von Hippel-Lindau (pVHL) protein, followed by polyubiquitination by the VHL E3 

ubiquitin ligase, which targets proteins for degradation by the proteasome. β2-

adrenergic receptor, which is a prototypic G protein-coupled receptor, was 

identified as a new hydroxylation substrate of PHD3 [139]. The discovery of this 

new target helps us to better understand the functionality of PHDs and the cellular 

response to oxygen. 

 

In pancreatic cancer, PHD2 exerts tumor-suppressive acitivity [140]. In breast 

cancer, high PHD2 expression has been shown to be associated with better survival 

[141]. Similarly high PHD3 expression is correlated with good clinical prognosis 

markers such as lower tumor grade, smaller tumor size and lower proliferation 

[141]. PHD3 may also be a critical regulator of apoptosis in sympathetic neural 

development and breast cancer [141, 142]. In pancreatic cancer, high PHD2 

expression is associated with lymph node negativity and PHD2 can suppress 

angiogenic cytokines to inhibit angiogenesis mediated tumor growth and invasion 

[140]. Interestingly, ERβ was reported to sustain epithelial differentiation by 

promoting PHD2 expression via direct binding to an ERE in the 5′ UTR of the 

PHD2 gene in prostate cancer cell line [143].  
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 AIMS OF THE THESIS 2
 

 

ERβ is expressed as different isoforms, the functions of which need to be addressed, 

in order to fully understand the physiological functions of ERβ. The overall aim of 

this thesis was to clarify functionality and mechanisms of the ERβ variants, 

focusing on breast cancer. 

 
The specific aims were: 

PAPER I To investigate the frequency of the reported hERβ548 variant in 

human populations. 

PAPER II To identify and characterize hERβ variants in an African American 

population. 

PAPER III To characterize the function of mERβ2. 

PAPER IV To investigate the mechanisms of EGFR signaling involved in cell 

invasiveness in NSCLC. 

PAPER V To investigate the effects of hERβ2 on breast cancer cell 

proliferation and invasion, including characterization of pathways that may 

contribute to the observed phenotypes with specific focus on the PHDs and HIF-1α 

pathways. 
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 METHODOLOGICAL CONSIDERATIONS 3
 

 

 WAVETM technology 3.1

 

WAVETM is a high-performance liquid chromatography (HPLC) based technology 

to detect mutations, based on the resolution of hetero duplexes and homo duplexes 

by HPLC. Individuals who are heterozygous for a mutation or polymorphism have a 

1:1 ratio of wild-type and mutant DNA. A mixture of hetero- and homo-duplexes is 

formed when PCR products are annealed by heating to 95°C and cooling slowly. 

DNA from individuals who are homozygous for a mutant allele is detected by the 

addition of wild-type DNA. Thus, each sample is analyzed both in the presence and 

absence of a wild-type PCR product. The ability of the WAVE method to resolve 

hetero-duplex DNA from homo-duplex DNA in minutes makes it a powerful tool in 

the field of mutation detection. We used this technology in PAPER I to assay a 

suggested polymorphism in the 5’ UTR of hERβ that would generate an upstream 

ATG in frame with the rest of the coding sequence to generate a longer form of 

hERβ, hERβ548. We also used this technology in PAPER II to identify SNPs in 

hERβ in an African population. In the latter study, samples with aberrant HPLC 

profiles were subjected to DNA sequencing and compared with the published 

genomic sequence of the hERβ gene. 

 

 

 Quantitative polymerase chain reaction  3.2

 

Quantitative polymerase chain reaction (qPCR, real-Time PCR) is a widely used 

sensitive method for accurate quantification of mRNA at low throughput. It 

includes double-stranded DNA-binding dyes for detection of amplified DNA 

(SYBR Green dye) or fluorescent dye labeled probe methods for detection of 

amplified DNA (TaqMan probes). In PAPER IV, in order to get accurate results, 

we used the TaqMan probe method, which has both high specificity and 

reproducibility. The primary disadvantage of the SYBR Green dye method is that it 

detects all double-stranded DNA, including non-specific reaction products. In 
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PAPER V, we compared both methods for some experiments and got similar results 

and then mainly used the SYBR Green method in this study.  

 

In qPCR, the accumulation of specific amplified PCR products in “real time” during 

PCR amplification was detected. The first cycle at which point when the fluorescent 

signal is above the background signal is called the “Ct” or threshold cycle, which is 

used to quantify the number of substrates present in the initial template quantity. 

We used comparative CT method to calculate the relative fold change. The amount 

of target, normalized to an endogenous reference and relative to a control, is given 

by: 2-ΔΔCT.  

ΔCT = CT target – CT endogenous house keeping 

ΔΔCT = ΔCT test sample – ΔCT control sample 

 

 

 Gene expression microarray analysis 3.3

 

DNA microarray is a technology that can monitor global gene expression on a 

single array giving researchers the opportunity to get a better picture of the 

interactions among thousands of genes simultaneously.  

 

Two Affymetrix expression array types were used in our studies. In PAPER IV, we 

used the Affymetrix GeneChip Human Genome U133A (HG-U133A) array which 

contains approximately 45,000 probe sets representing more than 39,000 transcripts 

derived from approximately 33,000 well-substantiated human genes.  This array 

was used to perform global gene expression analysis on 53 gene arrays representing 

53 NSCLC cell lines.  

 

In PAPER V, we used the Affymetrix Human Gene 1.1 ST arrays, which contain 

probes for 33299 gene sequences to identify global target genes for hERβ2. A cut-

off fold of 1.5 and p value < 0.05 were used to define regulated genes. The total 

regulated genes were loaded and analyzed using Ingenuity Pathway Analysis 

software (IPA) (Ingenuity), a bioinformatic tool for network, functional and 

pathway analysis. Pathway analysis identifies specific biological processes. Genes 
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were ranked and mapped to networks in IPA. Important networks related to 

biological function are given and scored. The most significantly regulated genes 

were shown and classified upon molecular and cellular function. 

 

 

 Cell lines 3.4

 

Several immortalized cell lines from different tissues have been used in this thesis. 

Cell lines are considered as standard in vitro model systems due to their ease of 

cultivation and manipulation.  

 

In PAPER IV, NSCLC cell lines H3255, H1975, H1993, and HCC827, A549 and 

Calu-6 were used. H3255, H1975 and HCC827 represent cell lines bearing EGFR-

activating mutations. The HCC827 cell line is from a pulmonary adenocarcinoma, 

which harbors an in-frame E746 - A750 deletion in exon 19 in the EGFR tyrosine 

kinase domain. H3255 was initiated from malignant cells isolated from the pleural 

effusion. It carries a L858R point mutation in exon 21 in the EGFR tyrosine kinase 

domain. H1975 was isolated from a lung adenocarcinoma with an L858R EGFR 

activating mutation and a T790M mutation in exon 20, which made it resistant to 

EGFR TKIs. A549 is a human pulmonary adenocarcinoma epithelial cell line, with 

wild-type EGFR and a KRAS mutation. It was used as a cell line with non-EGFR 

mutation in the study. Calu6 is a human pulmonary adenocarcinoma epithelial cell 

line, which is wild-type for EGFR. H1993 is derived from a metastatic site of a 

female pulmonary adenocarcinoma patient with MET gene amplification. NIH-3T3 

cells expressing wild-type EGFR or EGFR bearing the L858R mutation or the 

deletion mutant ΔL747-S752del [144] were obtained from Dr. Jeffrey Engelman 

(Dana-Farber Cancer Institute). 

 

In PAPER V, the breast cancer cell line BT549 was used. BT549 is of epithelial 

origin and derived from invasive ductal carcinoma. BT549 harbors a p53 R249S 

mutation and pTEN mutation. 
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 Generation of artificial mutations  3.5

 

Mutagenesis is the process by which the genetic information is changed. It is an 

important technique in the laboratory to examine the effects of mutations. In this 

thesis, we use the QuickChangeTM XL Site-Directed mutagenesis kit (Stratagene, La 

Jolla, CA) to generate several artificial mutations for further functional studies. The 

sequences of the artificial mutations were confirmed by DNA sequencing. In 

PAPER I, in order to validate the method for screening the novel N terminus 

extended isoform in different populations, hERβ548 plasmid that has the reported 

extra nucleotide of the ERβ gene was generated from hERβ530. In PAPER II, In 

order to study the function of ERβ SNPs existed in African samples, hERβ105AèG 

and hERβ1057TèG plasmids were generated from hERβ530. In PAPER IV, HIF-1α 

mutant with proline to alanine in two positions 402 and 564 (HIF-1α P402A; 

P564A) were generated from the wild-type HIF-1α. This form is stabilized in 

normoxia because of the loss of VHL-mediated polyubiquitination and subsequent 

degradation. Also stable cell lines expressing wild-type EGFR or EGFR bearing the 

L858R mutation or the deletion mutant ΔL747-S752del were used.  

 

 

 Small interfering RNA (siRNA) 3.6

 

SiRNA is also known as silencing RNA or short interfering RNA. It is a double-

stranded RNA, about 20-25 base pairs long, which interferes with the expression of 

genes having the complementary nucleotide sequence. SiRNAs correspond to short 

double-stranded RNAs with phosphorylated 5' ends and hydroxylated 3' ends with 

two overhanging nucleotides. 

 

siRNAs are important tools for validating gene function. siRNAs can be introduced 

into the cell by transient transfection. In PAPER IV, commercial available 

siGENOME Non-Targeting siRNA pool against EGFR, MET, HIF-1α and scramble 

control were introduced by transient transfection to study the effect of EGFR 

signaling and MET-HIF-1α axis in EGFR or hypoxia induced NSCLC cell 

invasiveness. In PAPER V, multiple siRNAs targeting hERβ2 and a scramble 
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control were introduced into a TNBC cell line BT549 to study the function of 

hERβ2.   

 

 

 Cell proliferation assay 3.7

 

The MTT assay is a common used colorimetric assay for determining the number of 

viable cells by measuring the cellular metabolic activity via NAD(P)H-dependent 

cellular oxidoreductase enzymes that reduce the tetrazolium dye, MTT, to its 

insoluble form formazan, giving a purple color. When cells are proliferating, the 

dye accumulates. Cell viability is determined by measuring the absorbance at a 

certain wavelength. MTS and WST assays use alternative dyes to the MTT Assays. 

In this thesis, two cell proliferation assay kits were used. In PAPER IV, we 

detected the effect of EGFR inhibitor and MET inhibitor on cell proliferation of 

NSCLC cell lines A549, HCC827 and H1993. We used the CellTiter 96® AQueous 

Non-Radioactive Cell Proliferation Assay kit, which is based on MTS and an 

electron mediator reagent. The electron mediator reagent together with MTS yields 

a stable solution. In PAPER V, we determined the effect of hERβ2 on cell 

proliferation in a TNBC cell line BT549. We used the WST-1 kit, which contains 

water-soluble tetrazolium salts combined with electron coupling to form a water-

soluble formazan. The insoluble formazan accumulated outside cells, which 

decreases the toxicity to cells. 

 

 

 Cell invasiveness  3.8

 

The ability of cancer cells to invade is directly correlated with tumor metastatic 

potential. The BD BioCoat™ Matrigel Invasion Chamber is a low throughput, 

efficient quantitative measurement for evaluating invasion of tumor cells. In this 

thesis, BD BioCoat™ Growth Factor Reduced Matrigel™ Invasion Chambers were 

used. 2.5 × 104 cells were seeded in the upper chamber with 0% FBS media and 

complete media containing 10% FBS was added to the lower chamber. After 24  h, 

cells in the upper chamber were removed by scraping. Cells that migrated to the 

lower chamber were stained and counted.  
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 RESULTS AND DISCUSSION 4
 

 

 PAPER I 4.1

 

HUMAN ESTROGEN RECEPTOR BETA 548 IS NOT A COMMON VARIANT IN 

THREE DISTINCT POPULATIONS  

 

This study concluded for the first time that hERβ548 is not a common variant in 

Africans, Caucasians, or Asians. 

 

Several isoforms of ERβ have been reported, including variants with different N-

terminal ends. In rodents, two in-frame initiation codons (ATGs) are used to 

produce proteins of 530 and 549 amino acids, respectively. In humans, the upstream 

ATG was out of frame in all clones reported, until human clones with an extra A-T 

base pair placing an upstream ATG in frame with the rest of the coding sequence 

were reported. The authors suggested that this could represent a novel 

polymorphism in the ERβ gene. Because the suggested longer human ERβ548 

(hERβ548) and the previously identified hERβ530 display different functional 

characteristics in vitro, it is of interest to determine if this variant constitutes a 

polymorphism in human populations.  

 

We determined the frequency of this novel isoform in several populations including 

African (n = 96), Caucasian (n = 100), and Asian (n = 128) subjects using 

denaturing HPLC. We did not detect any alleles that correspond to hERβ548 in 

these samples or in additional samples of heterogeneous origin.  

 

We concluded that hERβ548 is not a common variant in Africans, Caucasians, or 

Asians. 
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 PAPER II 4.2

 

IDENTIFICATION OF A FUNCTIONAL VARIANT OF ESTROGEN RECEOTOR 

BETA IN AN AFRICAN POPULATION 

 

The aim of this study was to identify and characterize ERβ variants in an African 

America population. 

 

We identified five novel polymorphisms in the ERβ gene in an African population. 

Two of these variants I3V and V320G are expected to change the amino acid 

sequence of the ERβ protein. The I3V mutation displayed no differences with 

regard to transcriptional activity in a reporter assay, as compared with the wild-type 

receptor. The V320G mutation, however, showed significantly decreased maximal 

transcriptional activity in a reporter assay, although its binding affinity for E2 was 

not affected. A pull-down assay indicated that the interaction of full-length TIF2 

with hERβV320G was weaker than with hERβwt. Moreover, surface plasmon 

resonance analysis revealed reduced interaction of the hERβV320G variant with the 

NR box I and II modules of TIF2. 

 

These results indicate that the decreased transcriptional activity of the novel ERβ 

variant, hERβV320G, is due to the weaker interaction with a co-factor TIF2. This 

novel polymorphism could provide a tool for human genetic studies of diseases in 

the African population. 

 

 

 PAPER III 4.3

 

MOUSE ESTROGEN RECEPTOR BETA ISOFORMS EXHIBIT DIFFERENCES IN 

LIGAND SELECTIVITY AND COACTIVATOR RECRUITMENT 

 

Mouse ERβ1 (mERβ1) corresponds to the wild-type mERβ while the mouse ERβ2 

(mERβ2) is an alternative splice variant with 18 amino acid insertions in the LBD. 

In this study, we have assayed the interaction of several known ligands with mouse 

ERβ1 and mouse ERβ2 for the first time.  
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Our studies showed that mERβ1 and mERβ2 display differences with regard to 

ligand binding. The binding affinity of E2 was mERβ1 selective (14-fold) while 

binding affinity of raloxifene was mERβ2 selective (8-fold). In order to reach 

maximal transcriptional activation, mERβ2 required 10-fold greater E2 

concentrations compared to mERβ1, whereas raloxifene was more potent in 

antagonizing E2-induced gene expression via mERβ2 than mERβ1. Furthermore, 

mERβ2 showed significantly decreased E2-induced maximal transcriptional activity 

as compared to mERβ1. A pull-down assay and surface plasmon resonance analysis 

indicate that decreased E2-induced transcriptional activity of mERβ2 is associated 

with reduced interaction with both TIF2 and RAP250 co-activators compared to 

mERβ1.  

 

These results suggest that ligand selectivity and co-activator recruitment of ERβ 

isoforms constitute additional levels of specificity that influence the transcriptional 

response in estrogen target cells in mouse. 

 

When novel SERMs are tested in animal studies, the isoform dependent ligand 

selectivity in animals needs to be considered.  

 

 

 PAPER IV 4.4

 

EPIDERMAL GROWTH FACTOR RECEPTOR REGULATES MET LEVELS AND 

INVASIVENESS THROUGH HYPOXIA-INDUCIBLE FACOTR-1ALPHA IN NON-

SMALL CELL LUNG CANCER CELLS 

 
NSCLC is the leading cause of cancer-related mortality in the United States. The 

five-year survival rate can be lower than 2% for patients with distant stage. EGFR  

plays an important role in cell survival, cell proliferation, invasion and angiogenesis 

in NSCLC. A subtype of NSCLC patients carrying mutations in the EGFR tyrosine 

kinase domain, which make the EGFR auto activated and sensitive to EGFR TKIs. 

EGFR-activating mutations become a predictor marker of clinical response to 

EGFR TKIs. The aim of this study was to identify the signaling pathway involved 
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in the invasiveness of NSCLC.  

 

In this study, we analyzed 202 clinical patient specimens, different NSCLC cell 

lines and transgenic mouse models to investigate the EGFR signaling pathway in 

relation to tumorigenesis of NSCLC. Our results showed that EGFR-activating 

mutations are associated with elevated HIF-1α and MET levels in NSCLC cell 

lines. An activated EGFR pathway or hypoxia can promote cell invasion, which is 

associated with the increased expression of p-MET, MET, and HIF-1α. The 

invasiveness is MET dependent, and could be diminished by MET inhibitors or 

siRNA. These findings establish that, in the absence of MET amplification, EGFR 

signaling can regulate MET levels through HIF-1α and that MET is a key 

downstream mediator of EGFR-induced invasiveness in EGFR-dependent NSCLC 

cells. 

 

Our results indicated that EGFR- and/or hypoxia-induced tumorigenic effects in 

NSCLC are mediated through promoting cell invasion, which can be regulated via 

HIF-1α/MET axis. MET is the key downstream mediator of cell invasion in NSCLC 

cells. HIF-1α/MET axis involved in both EGFR and hypoxia induced signaling 

pathways suggests that there might be an overlap in the mechanisms that EGFR and 

hypoxia promote malignant feature and therapeutic resistance.  

 

Targeting of the MET pathway together with EGFR pathway may further block the 

tumor invasion beyond the effect of EGFR inhibition alone, may also prevent the 

possible resistance through MET amplification.  

 

 

 PAPER V  4.5
 

ESTROGEN RECEPTOR BETA1 INDUCES PROLIFERATION AND INVASION 

OF BREAST CANCER CELLS; ASSOCIATION WITH REGULATION OF PROLYL 

HYDROXYLASE 3, HYPOXIA INDUCED FACTOR 1 ALPHA AND MET 

 

Many studies indicated that ERβ variant hERβ2 is expressed at higher levels than 
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hERβ1 in breast cancer and that hERβ2 expression is associated with aggressive 

phenotypes in various cancers. We determine the phenotypes and molecular 

mechanisms of hERβ2, independent of ERα and hERβ1, in breast cancer cells. 

 

The TNBC cell line BT549 was used as model system. hERβ2 levels were 

modulated by transient overexpression or knockdown by siRNAs. Cell proliferation 

and invasion were assayed by the WST-1 cell proliferation assay kit and growth 

factor reduced BD MatrigelTM invasion chamber, respectively. GeneChip® Human 

Gene 1.1 ST Affymetrix microarrays were used to assay global gene expression. 

hERβ2 regulation of mRNA and protein levels of selected genes was investigated 

by qPCR and western blot analysis, respectively.  

 

In this study we show that hERβ2 is the dominant ER isoform in the BT549 cell 

line and promotes proliferation and invasion of this cell line. A total of 263 genes 

were identified as hERβ2-upregulated genes and 662 identified as hERβ2-

downregulated genes. hERβ2-regulated genes were involved in cell morphology, 

DNA replication and repair, cell death and survival. We show that hERβ2 represses 

PHD3 gene expression and induces protein levels of HIF-1α and MET.  

 

We concluded that hERβ2 promotes cell proliferation and invasion of BT549 breast 

cancer cells. The invasive phenotype could potentially be mediated through 

transcriptional repression of PHD3, followed by up-regulation of the HIF1α-MET 

pathway. 
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 GENERAL CONCLUSIONS AND FUTURE PERSPECTIVES  5
	
  
	
  

 

 ERβ SNPs in African Americans and disease susceptibility  5.1

 

Compared to white Americans, African-Americans have poor outcome of certain 

diseases such as breast cancer and prostate cancer. The mortality rate of breast 

cancer is three times higher in African American than other populations. Notably, 

the prevalence of TNBC is highest in premenopausal African American women 

[145]. It was reported that 39% of premenopausal African American breast cancer 

patients was diagnosed with TNBC [146]. The prevalence of TNBC among non-

African American is around 15% and the difference was not seen in other breast 

cancer subtype groups [146]. We speculate that African-specific genetic variants 

may be associated with the susceptibility to specific subtypes of cancer. One recent 

report found that the SNP rs10069690 in the TERT gene was significantly 

associated with TNBC in an African ancestry population [147]. We are one of the 

very few groups studying polymorphisms of ERβ genes in African populations. We 

screened the ERβ gene in an African population for polymorphisms. The identified 

polymorphism, particularly a functional polymorphism, would constitute important 

tools for further disease association studies in this population. Future studies should 

address the frequency of the two identified polymorphisms that change the amino 

acid sequence of the ERβ protein in a much larger cohort. It would also be 

interesting to investigate if these SNPs are present, and their frequency, in other 

populations. Finally, further functional studies of these variants could involve 

generating mice strains with the corresponding SNPs in ERβ. 
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 Rodent ERβ2; considerations when performing animal studies using ER 5.2

agonists and antagonists 

	
  

Our studies showed that the binding affinity of E2 was mERβ1 selective while 

raloxifene was mERβ2 selective. mERβ2 required 10-fold greater E2 concentrations 

compared to mERβ1 to reach the maximal transactivity, whereas raloxifene was 

more potent in antagonizing E2-induced gene expression via mERβ2 than mERβ1.  

 

Mouse and rat are commonly used animal models to study ER function in vivo. 

Furthermore, disease models in mouse and rat are used to evaluate the effect of 

compounds with estrogenic or anti-estrogenic properties to improve the disease 

condition. As humans do not have mERβ2, this isoform-dependent ligand 

selectivity, reported for the two rodent ERβs in this study, needs to be considered 

when novel compounds are tested in animal studies. A further complication arises 

from the fact that the relative levels of mERβ1 and mERβ2 likely vary between 

tissues. The development of mice strains lacking expression of mERβ2 would be an 

important development. However, humanized mice, in which the mouse ERβ LBD 

was replaced by human ERβ LBD showed embryo lethality (Per Antonson, personal 

communication).   

 

 

 Estrogen signaling, cell proliferation and invasion 5.3

	
  

Estrogens promotes epithelial cell proliferation in both normal and neoplastic breast 

[148] and ER signaling is associated with tumorigenesis, metastasis and therapeutic 

resistance.  

 

In our study we showed that hERβ2 is the predominant endogenously expressed ER 

in a TNBC cell line BT549 and promotes cell proliferation and invasion in this cell 

line. We demonstrate that the invasive phenotype associated with hERβ2 expression 

could potentially be via repressing expression of PHD3 followed by up-regulation 

of the HIF-1α-MET pathway or direct regulation of MET.  

EGFR and HIF-1α-MET signalling pathways are known to play important roles in 

tumorigenesis and therapeutic resistance. Recently PHD3 has been shown to exert 
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tumor-protective functions and to inhibit tumor growth in pancreatic cancer. Our 

study contributes to the understanding of the molecular mechanism of hERβ2 

regulation of cell proliferation and invasion. Future studies should focus on how 

hERβ2 regulates PHD3 and ultimately cell proliferation and invasion. It will be 

important to identify additional cell lines expressing hERβ2 in the absence of other 

ERs to investigate the generality of the observations, both TNBC cell lines and cell 

lines of different origin, including regulation of PHD3 and the HIF-1a-MET 

pathway. Furthermore, it will be important to pursue similar studies in cell lines 

expressing hERβ2 in the presence of ERα and/or hERβ1. The correlation of hERβ2 

with PHD3 or components of the HIF-1α-MET pathway in clinical samples will 

provide evidence for the clinical relevance of our findings. Although, in this thesis, 

we focus on hERβ2 regulation of PHD3 and the HIF-1α-MET pathway, other 

potential mechanisms should be explored. These could be derived from a more 

careful examination of the global gene expression profiling data already obtained. 

Furthermore, the global gene expression profiling data is derived from a single time 

point following inhibition of hERβ2 with siRNA. Performing global gene 

expression profiling at additional time points following siRNA transfection might 

reveal alternative potential targets responsible for the observed phenotypes. Such 

studies could also include identification hERβ2 regulated miRNAs and other non-

coding RNAs. Finally, although hERβ2 does not bind tested ER ligands, it is 

possible that compounds that inhibit its function or target genes can be identified, 

thus providing potential therapeutic agents for breast cancers that express hERβ2.   

 

  



	
  36	
  

 ACKNOWLEDGEMENT 6
 

 

It took me more than a decade to fulfill my PhD dream. Without the guidance and 

support from others I never have finished this study. I would like to express my 

sincere appreciation to all my friends and colleagues who helped me so much 

during the past decade and especially to: 

 

Karin Dahlman-Wright, my supervisor for accepting and re-accepting me as a 

PhD student in your group, for giving me a flexible working environment, for the 

great encouragement, patience, trust and for guiding me through the project and 

scientific field in your characteristic, wise and outstanding way. I am appreciative 

of the excellent working environment you provide for your group. You are the best 

supervisor and a great leader. The time in your group has been a really great period 

of my life. You always helped me to maintain my confidence. Without your 

supervision and constant help this dissertation would not have been possible. You 

made my dream finally come true.    

 

Chunyan Zhao, who joined the KDW group almost at the same time as I did and 

who is now my co-supervisor. You are elegant, smart and always manage to enjoy 

life and science at the same time. Thank you for all your scientific suggestions, 

shared experiences and great supervision as well as your sparkling ideas and all the 

conversations we have had together.  

 

Jan-Åke Gustafsson, my co-supervisor for the support, understanding and 

encouragement you gave me when I joined your group in 2002. I still remember 

how you encouraged me after my first presentation in your big group meeting. 

Thank you for accepting me in your group. Your attitude to science has made a big 

impact on me.  

 

Lennart Nilsson, for guiding me during the public defense application, for your 

willing help and nice smile. 

 



	
   37	
  

My friends in KDW group, I appreciate and have enjoyed the time shared with you. 

Thank all of you for your understanding, support and help. Hui Gao and Lars-Arne 

Haldosén for friendly discussions and for your great consideration and knowledge. 

Jian Zhu and Amirhossein Kharman Biz, for your kindly help and understanding 

and for all the conversations and discussions. Indranil Sinha, for your friendly 

suggestions, for your nice help and smile. Gabor Borbely and Marcela Gonzalez, 

for your enthusiasm, for your gentleness and for your kindly help, especially when I 

need suggestions. Min Jia and Yichun Qiao, for cooperation, for all the help I got 

from you and your willingness to help at any time.  

 

Per Antonson, for your nice help and patience when I needed it during the writing 

of my thesis.  

Anthony Wright, for a nice chat and encouragement at the KI cancer retreat. 

Sam Okrek and his group. Sharif Hasni, Konstantin Yakimchuk and Jiyu Guan, 

for helpful suggestions and discussions in our joint group meeting and for all the 

help in the lab. 

Eckardt Treuter and his group, Saioa Goni and Assadi Ghazaleh (Aida) for your 

smiles and for being very kind and friendly. Rocky Fan and Ning Liang, for the 

great help you gave me, for your great knowledge, for your honest opinions, for 

your humor and for all the happy and enjoyable times we shared together. Zhiqiang 

Huang for your kindness, helpfulness and for all the delicious spicy Chinese food.  

 

Yongtao Xue and Chiounan Shiue, for nice discussions, suggestions and for your 

cheerful personalities. 

My Chinese friends at Bioscience and Nutrition, Yumei Diao, Wenbo Dong, Ting 

Zhuang, Ling Li, Yimeng Yin and You Xu for your kindly help, for making a 

Chinese environment around me, for party times together and for making me feel 

young.  

 

Lennart Harmmarström and Qiang Pan-Harmmarström, for first introducing 

me to your lab when I came to Sweden, for our nice corporations, for all the parties 

together, for nice food and for conversations. 

 



	
  38	
  

The members in Bioinformatics and Expression Analysis Core Facilty (BEA), 

Malin and Marika, for helping me analyze my microarray data. David, for nice 

introduction and discussion. Patrick, for all the small talk, for our over-a-decade-

friendship and for the early morning “Hi” in the lunchroom. 

 

The department’s administration, for warm and endless helps. Lena Magnell, for 

arranging my accommodation in Sweden, for help in extending my resident permit 

as well as your attitude to life. Marie Franzén, thank you for helping me arrange 

my trip to Sweden, for helping to get my thesis application approved, for scheduling 

our group meetings and for reminding us to send the slides for the group meeting. 

Monica Ahlberg, for leading me through the whole process from half time to final 

dissertation, for your kindness and helpfulness and for always being patient. Cecilia 

Tilly, Thomas Tinglöv, Linda Strand, Patricia Degnell, Saucedo Hildebrand 

Vivian, Ylva Svanberg, Eva Nordlander, for all the smiles and for a helpful 

environment. Erik Lundgren and Jonas Sjörström, for computer support. Rikard 

Svärd, for all the help you gave me, for trying to rescue my old computer, for 

software installation and for answering my stupid questions. Anders Lindholm, for 

technical support during my presentations.  

Tiina Skoog, for setting up all cell culture rules and warnings and for always 

keeping the working environment neat and organized. 

Inger, Johan and Christina, for dealing with my orders and deliveries. 

 

All of my friends I met in Sweden, for our over-a-decade friendship and for sharing 

life when we were young. Peipei Zhao, Wenpeng Niu and Qianren Jin for your 

attitudes to life, for your never-ending encouragement and suggestions, for all the 

happiness and all the parties together, for wonderful food and memories, as well as 

for all the help I got from you when I was in the US.  

Guojun Cheng and Jianjing Zheng, for your understanding, honesty and support 

in the past and present, for letting me stay at your house during my interview. 

Shujing Dai, who has been my friend during all these years, for our long lasting 

friendship, for your kindness and straightforward nature, for sharing our life 

experiences, for all the help I got from you.  

 



	
   39	
  

My friends in the United States, Yan Wang, Zheng Li, Qiuyu Wu, Liran Zhou, 

Jing Zhang, Wenhua Lang, Xiaowen Chu and Chu Jun for your friendship, 

kindness, help and for all the support I got from you all these years.  

 

John Heymach, Phoebus Lin, Monique Nilsson, Kathy McKee, Pierre 

Saintigny, Jayanthi Gudikote and many other colleagues at MD Anderson Cancer 

Center in the United States, for scientific discussions and for the helpful lab 

environment.  

 

My best friends in China, Jingli Li and Yan Jin for our over 30 years of friendship. 

Once friends, friends forever, I believe it.  

 

Fengsheng He, one of the best scientists in the occupational medicine field, my first 

supervisor in my scientific career, for your strict attitude towards science, for all the 

basic scientific training I got from you. I hope I will one day fulfill all your 

expectations. 

 

L, for all wonderful moments in my memory, for all the effort, for leading me out of 

mist when I got lost, for being in my heart. 

 

My family in China, my Mom and Dad, for your love, understanding, 

encouragement and your endless support all these years.  

My wonderful son, Weillison Hsu (Xu), for your true love, understanding, for 

reading, drawing or playing the piano beside me when I was working on my thesis 

or preparing presentations, for trying to be independent, for all those suggestions, 

for your wisdom, for sharing life with me, EVEN FOR your short temper and ALL 

THE TROUBLES YOU GAVE ME. You are such a lovely and special boy. I am 

always proud of you and I love you the way you are! 

 

Finally, to my Grandmother who left me many years ago. I just want to say thank 

you. You were so important in my life. You were thoughtful and wise. You 

provided me a flexible, confident, happy and enjoyable childhood. I do hope I could 

be the naïve little girl forever and also hope one day I could be as outstanding as 

you hoped. You are always with me. This thesis is for you and because of you.	
    



	
  40	
  

 REFERENCES    7
 
 
 
1. Ogawa, S., et al., Molecular cloning and characterization of human estrogen 

receptor betacx: a potential inhibitor ofestrogen action in human. Nucleic 
Acids Res, 1998. 26(15): p. 3505-12. 

2. Bhat, R.A., et al., A novel human estrogen receptor beta: identification and 
functional analysis of additional N-terminal amino acids. J Steroid Biochem 
Mol Biol, 1998. 67(3): p. 233-40. 

3. Mangelsdorf, D.J., et al., The nuclear receptor superfamily: the second 
decade. Cell, 1995. 83(6): p. 835-9. 

4. Klein-Hitpass, L., et al., An estrogen-responsive element derived from the 5' 
flanking region of the Xenopus vitellogenin A2 gene functions in transfected 
human cells. Cell, 1986. 46(7): p. 1053-61. 

5. Cowley, S.M. and M.G. Parker, A comparison of transcriptional activation 
by ER alpha and ER beta. J Steroid Biochem Mol Biol, 1999. 69(1-6): p. 
165-75. 

6. Kuiper, G.G., et al., Cloning of a novel receptor expressed in rat prostate 
and ovary. Proc Natl Acad Sci U S A, 1996. 93(12): p. 5925-30. 

7. Mosselman, S., J. Polman, and R. Dijkema, ER beta: identification and 
characterization of a novel human estrogen receptor. FEBS Lett, 1996. 
392(1): p. 49-53. 

8. Cowley, S.M., et al., Estrogen receptors alpha and beta form heterodimers 
on DNA. J Biol Chem, 1997. 272(32): p. 19858-62. 

9. Watanabe, T., et al., Agonistic effect of tamoxifen is dependent on cell type, 
ERE-promoter context, and estrogen receptor subtype: functional difference 
between estrogen receptors alpha and beta. Biochem Biophys Res 
Commun, 1997. 236(1): p. 140-5. 

10. Pettersson, K., et al., Mouse estrogen receptor beta forms estrogen response 
element-binding heterodimers with estrogen receptor alpha. Mol 
Endocrinol, 1997. 11(10): p. 1486-96. 

11. Krishnan, V., X. Wang, and S. Safe, Estrogen receptor-Sp1 complexes 
mediate estrogen-induced cathepsin D gene expression in MCF-7 human 
breast cancer cells. J Biol Chem, 1994. 269(22): p. 15912-7. 

12. Gaub, M.P., et al., Activation of the ovalbumin gene by the estrogen receptor 
involves the fos-jun complex. Cell, 1990. 63(6): p. 1267-76. 

13. Elgort, M.G., et al., Estrogen and estrogen receptor antagonists stimulate 
transcription from the human retinoic acid receptor-alpha 1 promoter via a 
novel sequence. Mol Endocrinol, 1996. 10(5): p. 477-87. 

14. Webb, P., et al., Tamoxifen activation of the estrogen receptor/AP-1 
pathway: potential origin for the cell-specific estrogen-like effects of 
antiestrogens. Mol Endocrinol, 1995. 9(4): p. 443-56. 

15. Gallo, D., et al., Estrogen receptor beta in cancer: an attractive target for 
therapy. Curr Pharm Des, 2012. 18(19): p. 2734-57. 

16. Gustafsson, J.A., Estrogen receptor beta--a new dimension in estrogen 
mechanism of action. J Endocrinol, 1999. 163(3): p. 379-83. 



	
   41	
  

17. Enmark, E., et al., Human estrogen receptor beta-gene structure, 
chromosomal localization, and expression pattern. J Clin Endocrinol Metab, 
1997. 82(12): p. 4258-65. 

18. Ana M. Sotoca, J.V., Ivonne M.C.M. Rietjens and Jan-Åke Gustafsson, 
Human ERα and ERβ Splice Variants: Understanding Their Domain 
Structure in Relation to Their Biological Roles in Breast Cancer Cell 
Proliferation, , in Biochemistry, D. Ekinci, Editor 2012. p. 141-160. 

19. Dutertre, M. and C.L. Smith, Molecular mechanisms of selective estrogen 
receptor modulator (SERM) action. J Pharmacol Exp Ther, 2000. 295(2): p. 
431-7. 

20. Stauffer, S.R., et al., Pyrazole ligands: structure-affinity/activity 
relationships and estrogen receptor-alpha-selective agonists. J Med Chem, 
2000. 43(26): p. 4934-47. 

21. Carroll, V.M., et al., Diarylpropionitrile (DPN) enantiomers: synthesis and 
evaluation of estrogen receptor beta-selective ligands. J Med Chem, 2012. 
55(1): p. 528-37. 

22. Meyers, M.J., et al., Estrogen receptor-beta potency-selective ligands: 
structure-activity relationship studies of diarylpropionitriles and their 
acetylene and polar analogues. J Med Chem, 2001. 44(24): p. 4230-51. 

23. Minutolo, F., et al., Estrogen receptor beta ligands: recent advances and 
biomedical applications. Med Res Rev, 2011. 31(3): p. 364-442. 

24. Leung, Y.K., et al., Estrogen receptor (ER)-beta isoforms: a key to 
understanding ER-beta signaling. Proc Natl Acad Sci U S A, 2006. 103(35): 
p. 13162-7. 

25. Moore, J.T., et al., Cloning and characterization of human estrogen receptor 
beta isoforms. Biochem Biophys Res Commun, 1998. 247(1): p. 75-8. 

26. Poola, I., et al., Estrogen receptors beta4 and beta5 are full length 
functionally distinct ERbeta isoforms: cloning from human ovary and 
functional characterization. Endocrine, 2005. 27(3): p. 227-38. 

27. Mott, N.N. and T.R. Pak, Characterisation of human oestrogen receptor 
beta (ERbeta) splice variants in neuronal cells. J Neuroendocrinol, 2012. 
24(10): p. 1311-21. 

28. Iwao, K., et al., Quantitative analysis of estrogen receptor-beta mRNA and 
its variants in human breast cancers. Int J Cancer, 2000. 88(5): p. 733-6. 

29. Fujimura, T., et al., Differential expression of estrogen receptor beta 
(ERbeta) and its C-terminal truncated splice variant ERbetacx as prognostic 
predictors in human prostatic cancer. Biochem Biophys Res Commun, 
2001. 289(3): p. 692-9. 

30. Campbell-Thompson, M., I.J. Lynch, and B. Bhardwaj, Expression of 
estrogen receptor (ER) subtypes and ERbeta isoforms in colon cancer. 
Cancer Res, 2001. 61(2): p. 632-40. 

31. Dong, W., et al., Differential expression patterns of estrogen receptor (ER)-
beta splice variants between papillary thyroid cancer and nodular thyroid 
goiter. Med Sci Monit, 2012. 18(9): p. BR351-5. 

32. Suzuki, F., et al., Loss of estrogen receptor beta isoform expression and its 
correlation with aberrant DNA methylation of the 5'-untranslated region in 
human epithelial ovarian carcinoma. Cancer Sci, 2008. 99(12): p. 2365-72. 

33. Wong, N.A., et al., ERbeta isoform expression in colorectal carcinoma: an 
in vivo and in vitro study of clinicopathological and molecular correlates. J 
Pathol, 2005. 207(1): p. 53-60. 



	
  42	
  

34. Wilkinson, H.A., et al., Identification and characterization of a functionally 
distinct form of human estrogen receptor beta. Endocrinology, 2002. 143(4): 
p. 1558-61. 

35. Xu, L., et al., Human estrogen receptor beta 548 is not a common variant in 
three distinct populations. Endocrinology, 2003. 144(8): p. 3541-6. 

36. Zhao, C., et al., Estrogen receptor beta2 negatively regulates the 
transactivation of estrogen receptor alpha in human breast cancer cells. 
Cancer Res, 2007. 67(8): p. 3955-62. 

37. Dey, P., et al., Estrogen receptors beta1 and beta2 have opposing roles in 
regulating proliferation and bone metastasis genes in the prostate cancer 
cell line PC3. Mol Endocrinol, 2012. 26(12): p. 1991-2003. 

38. Leung, Y.K., et al., Estrogen receptor beta2 and beta5 are associated with 
poor prognosis in prostate cancer, and promote cancer cell migration and 
invasion. Endocr Relat Cancer, 2010. 17(3): p. 675-89. 

39. Liu, Z., et al., The expression of estrogen receptors beta2, 5 identifies and is 
associated with Prognosis in non-small cell lung cancer. Endocrine, 2013. 

40. Maruyama, K., et al., A novel isoform of rat estrogen receptor beta with 18 
amino acid insertion in the ligand binding domain as a putative dominant 
negative regular of estrogen action. Biochem Biophys Res Commun, 1998. 
246(1): p. 142-7. 

41. Lu, B., et al., Functional characteristics of a novel murine estrogen 
receptor-beta isoform, estrogen receptor-beta 2. J Mol Endocrinol, 2000. 
25(2): p. 229-42. 

42. Hanstein, B., et al., Functional analysis of a novel estrogen receptor-beta 
isoform. Mol Endocrinol, 1999. 13(1): p. 129-37. 

43. Leygue, E., et al., Expression of estrogen receptor beta1, beta2, and beta5 
messenger RNAs in human breast tissue. Cancer Res, 1999. 59(6): p. 1175-
9. 

44. Honma, N., et al., Clinical importance of estrogen receptor-beta evaluation 
in breast cancer patients treated with adjuvant tamoxifen therapy. J Clin 
Oncol, 2008. 26(22): p. 3727-34. 

45. Nakopoulou, L., et al., The favourable prognostic value of oestrogen 
receptor beta immunohistochemical expression in breast cancer. J Clin 
Pathol, 2004. 57(5): p. 523-8. 

46. Chan, K.K., et al., Estrogen receptor subtypes in ovarian cancer: a clinical 
correlation. Obstet Gynecol, 2008. 111(1): p. 144-51. 

47. Fleming, F.J., et al., Differential recruitment of coregulator proteins steroid 
receptor coactivator-1 and silencing mediator for retinoid and thyroid 
receptors to the estrogen receptor-estrogen response element by beta-
estradiol and 4-hydroxytamoxifen in human breast cancer. J Clin 
Endocrinol Metab, 2004. 89(1): p. 375-83. 

48. Iwase, H., et al., Clinical significance of the expression of estrogen 
receptors alpha and beta for endocrine therapy of breast cancer. Cancer 
Chemother Pharmacol, 2003. 52 Suppl 1: p. S34-8. 

49. Koda, M., et al., Expression of ERalpha, ERbeta and Ki-67 in primary 
tumors and lymph node metastases in breast cancer. Oncol Rep, 2004. 
11(4): p. 753-9. 

50. Jarvinen, T.A., et al., Estrogen receptor beta is coexpressed with ERalpha 
and PR and associated with nodal status, grade, and proliferation rate in 
breast cancer. Am J Pathol, 2000. 156(1): p. 29-35. 



	
   43	
  

51. Rosa, F.E., et al., Evaluation of estrogen receptor alpha and beta and 
progesterone receptor expression and correlation with clinicopathologic 
factors and proliferative marker Ki-67 in breast cancers. Hum Pathol, 2008. 
39(5): p. 720-30. 

52. Park, B.W., et al., The changes of estrogen receptor-beta variants 
expression in breast carcinogenesis: Decrease of estrogen receptor-beta2 
expression is the key event in breast cancer development. J Surg Oncol, 
2006. 93(6): p. 504-10. 

53. Esslimani-Sahla, M., et al., Increased estrogen receptor betacx expression 
during mammary carcinogenesis. Clin Cancer Res, 2005. 11(9): p. 3170-4. 

54. Girault, I., et al., Altered expression pattern of alternatively spliced estrogen 
receptor beta transcripts in breast carcinoma. Cancer Lett, 2004. 215(1): p. 
101-12. 

55. Hsiao, W.C., et al., Quantitative profile of estrogen receptor 
variants/isoforms in Taiwanese women with breast cancer. Eur J Surg 
Oncol, 2006. 32(5): p. 492-7. 

56. Treeck, O., et al., Effects of exon-deleted estrogen receptor beta transcript 
variants on growth, apoptosis and gene expression of human breast cancer 
cell lines. Breast Cancer Res Treat, 2008. 110(3): p. 507-20. 

57. Azizun, N., et al., Comparison of ER, PR and HER-2/neu (C-erb B 2) 
reactivity pattern with histologic grade, tumor size and lymph node status in 
breast cancer. Asian Pac J Cancer Prev, 2008. 9(4): p. 553-6. 

58. de Giorgi, V., et al., Estrogen receptor expression in cutaneous melanoma: 
a real-time reverse transcriptase-polymerase chain reaction and 
immunohistochemical study. Arch Dermatol, 2009. 145(1): p. 30-6. 

59. Nose, N., et al., Association between estrogen receptor-beta expression and 
epidermal growth factor receptor mutation in the postoperative prognosis of 
adenocarcinoma of the lung. J Clin Oncol, 2009. 27(3): p. 411-7. 

60. Borgquist, S., et al., Oestrogen receptors alpha and beta show different 
associations to clinicopathological parameters and their co-expression 
might predict a better response to endocrine treatment in breast cancer. J 
Clin Pathol, 2008. 61(2): p. 197-203. 

61. Maehle, B.O., et al., Estrogen receptor beta--an independent prognostic 
marker in estrogen receptor alpha and progesterone receptor-positive 
breast cancer? APMIS, 2009. 117(9): p. 644-50. 

62. Mandusic, V., et al., Expression of estrogen receptor beta wt isoform 
(ERbeta1) and ERbetaDelta5 splice variant mRNAs in sporadic breast 
cancer. J Cancer Res Clin Oncol, 2007. 133(8): p. 571-9. 

63. Sugiura, H., et al., Expression of estrogen receptor beta wild-type and its 
variant ERbetacx/beta2 is correlated with better prognosis in breast cancer. 
Jpn J Clin Oncol, 2007. 37(11): p. 820-8. 

64. Omoto, Y., et al., Evaluation of oestrogen receptor beta wild-type and 
variant protein expression, and relationship with clinicopathological factors 
in breast cancers. Eur J Cancer, 2002. 38(3): p. 380-6. 

65. Omoto, Y., et al., Clinical value of the wild-type estrogen receptor beta 
expression in breast cancer. Cancer Lett, 2001. 163(2): p. 207-12. 

66. Batistatou, A., et al., Estrogen receptor beta (ERbeta) protein expression 
correlates with BAG-1 and prognosis in brain glial tumours. J Neurooncol, 
2006. 77(1): p. 17-23. 



	
  44	
  

67. Park, B.W., et al., Expression of estrogen receptor-beta in normal mammary 
and tumor tissues: is it protective in breast carcinogenesis? Breast Cancer 
Res Treat, 2003. 80(1): p. 79-85. 

68. Davies, M.P., et al., Correlation of mRNA for oestrogen receptor beta splice 
variants ERbeta1, ERbeta2/ERbetacx and ERbeta5 with outcome in 
endocrine-treated breast cancer. J Mol Endocrinol, 2004. 33(3): p. 773-82. 

69. Jarzabek, K., et al., Distinct mRNA, protein expression patterns and 
distribution of oestrogen receptors alpha and beta in human primary breast 
cancer: correlation with proliferation marker Ki-67 and clinicopathological 
factors. Eur J Cancer, 2005. 41(18): p. 2924-34. 

70. Choi, Y. and M. Pinto, Estrogen receptor beta in breast cancer: 
associations between ERbeta, hormonal receptors, and other prognostic 
biomarkers. Appl Immunohistochem Mol Morphol, 2005. 13(1): p. 19-24. 

71. O'Neill, P.A., et al., Wild-type oestrogen receptor beta (ERbeta1) mRNA and 
protein expression in Tamoxifen-treated post-menopausal breast cancers. Br 
J Cancer, 2004. 91(9): p. 1694-702. 

72. Stefanou, D., et al., Estrogen receptor beta (ERbeta) expression in breast 
carcinomas is not correlated with estrogen receptor alpha (ERalpha) and 
prognosis: the Greek experience. Eur J Gynaecol Oncol, 2004. 25(4): p. 
457-61. 

73. Green, A.R., et al., The expression of ERalpha, ERbeta and PR in lobular 
carcinoma in situ of the breast determined using laser microdissection and 
real-time PCR. Histopathology, 2009. 54(4): p. 419-27. 

74. Fuqua, S.A., et al., Estrogen receptor beta protein in human breast cancer: 
correlation with clinical tumor parameters. Cancer Res, 2003. 63(10): p. 
2434-9. 

75. Shaaban, A.M., et al., Nuclear and cytoplasmic expression of ERbeta1, 
ERbeta2, and ERbeta5 identifies distinct prognostic outcome for breast 
cancer patients. Clin Cancer Res, 2008. 14(16): p. 5228-35. 

76. Tzelepi, V., et al., Estrogen signaling in colorectal carcinoma 
microenvironment: expression of ERbeta1, AIB-1, and TIF-2 is upregulated 
in cancer-associated myofibroblasts and correlates with disease 
progression. Virchows Arch, 2009. 454(4): p. 389-99. 

77. Novelli, F., et al., A divergent role for estrogen receptor-beta in node-
positive and node-negative breast cancer classified according to molecular 
subtypes: an observational prospective study. Breast Cancer Res, 2008. 
10(5): p. R74. 

78. Qui, W.S., et al., Co-expression of ER-beta and HER2 associated with 
poorer prognosis in primary breast cancer. Clin Invest Med, 2009. 32(3): p. 
E250-60. 

79. Tonetti, D.A., et al., Stable transfection of an estrogen receptor beta cDNA 
isoform into MDA-MB-231 breast cancer cells. J Steroid Biochem Mol Biol, 
2003. 87(1): p. 47-55. 

80. Mandusic, V., et al., Different associations of estrogen receptor beta 
isoforms, ERbeta1 and ERbeta2, expression levels with tumor size and 
survival in early- and late-onset breast cancer. Cancer Lett, 2012. 321(1): p. 
73-9. 

81. Skrzypczak, M., et al., Evaluation of mRNA expression of estrogen receptor 
beta and its isoforms in human normal and neoplastic endometrium. Int J 
Cancer, 2004. 110(6): p. 783-7. 



	
   45	
  

82. Riva, A. and I.S. Kohane, A SNP-centric database for the investigation of 
the human genome. BMC Bioinformatics, 2004. 5: p. 33. 

83. Chen, J.M., C. Ferec, and D.N. Cooper, A systematic analysis of disease-
associated variants in the 3' regulatory regions of human protein-coding 
genes I: general principles and overview. Hum Genet, 2006. 120(1): p. 1-21. 

84. Wang, Z. and J. Moult, SNPs, protein structure, and disease. Hum Mutat, 
2001. 17(4): p. 263-70. 

85. Alcazar, L.P., et al., Estrogen receptor polymorphism and its relationship to 
pathological process. Am J Med Sci, 2010. 340(2): p. 128-32. 

86. Yu, K.D., et al., A systematic review of the relationship between 
polymorphic sites in the estrogen receptor-beta (ESR2) gene and breast 
cancer risk. Breast Cancer Res Treat, 2011. 126(1): p. 37-45. 

87. Maguire, P., et al., Estrogen receptor beta (ESR2) polymorphisms in familial 
and sporadic breast cancer. Breast Cancer Res Treat, 2005. 94(2): p. 145-
52. 

88. Nilsson, M., et al., Association of estrogen receptor beta gene 
polymorphisms with bulimic disease in women. Mol Psychiatry, 2004. 9(1): 
p. 28-34. 

89. Sundarrajan, C., et al., Association between estrogen receptor-beta gene 
polymorphisms and ovulatory dysfunctions in patients with menstrual 
disorders. J Clin Endocrinol Metab, 2001. 86(1): p. 135-9. 

90. Ogawa, S., et al., Association of estrogen receptor beta gene polymorphism 
with bone mineral density. Biochem Biophys Res Commun, 2000. 269(2): p. 
537-41. 

91. Ogawa, S., et al., Association of estrogen receptor beta (ESR2) gene 
polymorphism with blood pressure. J Hum Genet, 2000. 45(6): p. 327-30. 

92. Westberg, L., et al., Polymorphisms of the androgen receptor gene and the 
estrogen receptor beta gene are associated with androgen levels in women. 
J Clin Endocrinol Metab, 2001. 86(6): p. 2562-8. 

93. Peddi, P.F., M.J. Ellis, and C. Ma, Molecular basis of triple negative breast 
cancer and implications for therapy. Int J Breast Cancer, 2012. 2012: p. 
217185. 

94. Clarke, C.A., et al., Age-specific incidence of breast cancer subtypes: 
understanding the black-white crossover. J Natl Cancer Inst, 2012. 104(14): 
p. 1094-101. 

95. Prat, A., et al., Phenotypic and molecular characterization of the claudin-
low intrinsic subtype of breast cancer. Breast Cancer Res, 2010. 12(5): p. 
R68. 

96. Kretzer, N.M., et al., A noncompetitive small molecule inhibitor of estrogen-
regulated gene expression and breast cancer cell growth that enhances 
proteasome-dependent degradation of estrogen receptor {alpha}. J Biol 
Chem, 2010. 285(53): p. 41863-73. 

97. Mao, C., et al., A new small molecule inhibitor of estrogen receptor alpha 
binding to estrogen response elements blocks estrogen-dependent growth of 
cancer cells. J Biol Chem, 2008. 283(19): p. 12819-30. 

98. Zhao, C., K. Dahlman-Wright, and J.A. Gustafsson, Estrogen signaling via 
estrogen receptor {beta}. J Biol Chem, 2010. 285(51): p. 39575-9. 

99. Morani, A., M. Warner, and J.A. Gustafsson, Biological functions and 
clinical implications of oestrogen receptors alfa and beta in epithelial 
tissues. J Intern Med, 2008. 264(2): p. 128-42. 



	
  46	
  

100. Hanahan, D. and R.A. Weinberg, The hallmarks of cancer. Cell, 2000. 
100(1): p. 57-70. 

101. Mallini, P., et al., Epithelial-to-mesenchymal transition: What is the impact 
on breast cancer stem cells and drug resistance. Cancer Treat Rev, 2013. 

102. Deroo, B.J. and K.S. Korach, Estrogen receptors and human disease. J Clin 
Invest, 2006. 116(3): p. 561-70. 

103. Pearce, S.T. and V.C. Jordan, The biological role of estrogen receptors 
alpha and beta in cancer. Crit Rev Oncol Hematol, 2004. 50(1): p. 3-22. 

104. Elbanna, H.G., et al., Potential value of estrogen receptor beta expression in 
colorectal carcinoma: interaction with apoptotic index. J Gastrointest 
Cancer, 2012. 43(1): p. 56-62. 

105. Jassam, N., et al., Loss of expression of oestrogen receptor beta in colon 
cancer and its association with Dukes' staging. Oncol Rep, 2005. 14(1): p. 
17-21. 

106. Konstantinopoulos, P.A., et al., Oestrogen receptor beta (ERbeta) is 
abundantly expressed in normal colonic mucosa, but declines in colon 
adenocarcinoma paralleling the tumour's dedifferentiation. Eur J Cancer, 
2003. 39(9): p. 1251-8. 

107. Rath-Wolfson, L., et al., Expression of estrogen receptor beta1 in colorectal 
cancer: correlation with clinicopathological variables. Oncol Rep, 2012. 
27(6): p. 2017-22. 

108. Konduri, S. and R.E. Schwarz, Estrogen receptor beta/alpha ratio predicts 
response of pancreatic cancer cells to estrogens and phytoestrogens. J Surg 
Res, 2007. 140(1): p. 55-66. 

109. Thomas, C. and J.A. Gustafsson, The different roles of ER subtypes in 
cancer biology and therapy. Nat Rev Cancer, 2011. 11(8): p. 597-608. 

110. Pedram, A., et al., Estrogen inhibits ATR signaling to cell cycle checkpoints 
and DNA repair. Mol Biol Cell, 2009. 20(14): p. 3374-89. 

111. Park, S.H., et al., Estrogen regulates Snail and Slug in the down-regulation 
of E-cadherin and induces metastatic potential of ovarian cancer cells 
through estrogen receptor alpha. Mol Endocrinol, 2008. 22(9): p. 2085-98. 

112. Pinton, G., et al., Estrogen receptor beta exerts tumor repressive functions 
in human malignant pleural mesothelioma via EGFR inactivation and 
affects response to gefitinib. PLoS One, 2010. 5(11): p. e14110. 

113. Thomas, C., et al., ERbeta1 represses basal-like breast cancer epithelial to 
mesenchymal transition by destabilizing EGFR. Breast Cancer Res, 2012. 
14(6): p. R148. 

114. Dubik, D. and R.P. Shiu, Mechanism of estrogen activation of c-myc 
oncogene expression. Oncogene, 1992. 7(8): p. 1587-94. 

115. Castro-Rivera, E., I. Samudio, and S. Safe, Estrogen regulation of cyclin D1 
gene expression in ZR-75 breast cancer cells involves multiple enhancer 
elements. J Biol Chem, 2001. 276(33): p. 30853-61. 

116. Planas-Silva, M.D., et al., AIB1 enhances estrogen-dependent induction of 
cyclin D1 expression. Cancer Res, 2001. 61(10): p. 3858-62. 

117. Levin, E.R., Bidirectional signaling between the estrogen receptor and the 
epidermal growth factor receptor. Mol Endocrinol, 2003. 17(3): p. 309-17. 

118. Driggers, P.H. and J.H. Segars, Estrogen action and cytoplasmic signaling 
pathways. Part II: the role of growth factors and phosphorylation in 
estrogen signaling. Trends Endocrinol Metab, 2002. 13(10): p. 422-7. 



	
   47	
  

119. Wang, M., et al., AIB1 cooperates with ERalpha to promote epithelial 
mesenchymal transition in breast cancer through SNAI1 activation. PLoS 
One, 2013. 8(6): p. e65556. 

120. List, H.J., et al., Ribozyme targeting demonstrates that the nuclear receptor 
coactivator AIB1 is a rate-limiting factor for estrogen-dependent growth of 
human MCF-7 breast cancer cells. J Biol Chem, 2001. 276(26): p. 23763-8. 

121. Chakravarty, D., et al., Extranuclear functions of ER impact invasive 
migration and metastasis by breast cancer cells. Cancer Res, 2010. 70(10): 
p. 4092-101. 

122. Bjornstrom, L. and M. Sjoberg, Mechanisms of estrogen receptor signaling: 
convergence of genomic and nongenomic actions on target genes. Mol 
Endocrinol, 2005. 19(4): p. 833-42. 

123. Slamon, D.J., et al., Use of chemotherapy plus a monoclonal antibody 
against HER2 for metastatic breast cancer that overexpresses HER2. N 
Engl J Med, 2001. 344(11): p. 783-92. 

124. Nicholson, R.I., et al., Relationship between EGF-R, c-erbB-2 protein 
expression and Ki67 immunostaining in breast cancer and hormone 
sensitivity. Eur J Cancer, 1993. 29A(7): p. 1018-23. 

125. Nicholson, R.I., et al., Epidermal growth factor receptor expression in 
breast cancer: association with response to endocrine therapy. Breast 
Cancer Res Treat, 1994. 29(1): p. 117-25. 

126. Xu, L., et al., Epidermal growth factor receptor regulates MET levels and 
invasiveness through hypoxia-inducible factor-1alpha in non-small cell lung 
cancer cells. Oncogene, 2010. 29(18): p. 2616-27. 

127. Eccles, S.A., The epidermal growth factor receptor/Erb-B/HER family in 
normal and malignant breast biology. Int J Dev Biol, 2011. 55(7-9): p. 685-
96. 

128. Lenz, H.J., Anti-EGFR mechanism of action: antitumor effect and 
underlying cause of adverse events. Oncology (Williston Park), 2006. 20(5 
Suppl 2): p. 5-13. 

129. Lemmon, M.A. and J. Schlessinger, Cell signaling by receptor tyrosine 
kinases. Cell, 2010. 141(7): p. 1117-34. 

130. Engelman, J.A., et al., MET amplification leads to gefitinib resistance in 
lung cancer by activating ERBB3 signaling. Science, 2007. 316(5827): p. 
1039-43. 

131. Gazdar, A.F., Activating and resistance mutations of EGFR in non-small-
cell lung cancer: role in clinical response to EGFR tyrosine kinase 
inhibitors. Oncogene, 2009. 28 Suppl 1: p. S24-31. 

132. Sadiq, A.A. and R. Salgia, MET as a possible target for non-small-cell lung 
cancer. J Clin Oncol, 2013. 31(8): p. 1089-96. 

133. Jedeszko, C., et al., Fibroblast hepatocyte growth factor promotes invasion 
of human mammary ductal carcinoma in situ. Cancer Res, 2009. 69(23): p. 
9148-55. 

134. Pennacchietti, S., et al., Hypoxia promotes invasive growth by 
transcriptional activation of the met protooncogene. Cancer Cell, 2003. 
3(4): p. 347-61. 

135. Casbas-Hernandez, P., et al., Role of HGF in epithelial-stromal cell 
interactions during progression from benign breast disease to ductal 
carcinoma in situ. Breast Cancer Res, 2013. 15(5): p. R82. 



	
  48	
  

136. Chen, H.H., et al., Hypoxia-inducible factor-1alpha correlates with MET 
and metastasis in node-negative breast cancer. Breast Cancer Res Treat, 
2007. 103(2): p. 167-75. 

137. Ward, C., et al., New strategies for targeting the hypoxic tumour 
microenvironment in breast cancer. Cancer Treat Rev, 2013. 39(2): p. 171-
9. 

138. Semenza, G.L., Targeting HIF-1 for cancer therapy. Nat Rev Cancer, 2003. 
3(10): p. 721-32. 

139. Xie, L., et al., Oxygen-regulated beta(2)-adrenergic receptor hydroxylation 
by EGLN3 and ubiquitylation by pVHL. Sci Signal, 2009. 2(78): p. ra33. 

140. Su, Y., et al., Prolyl hydroxylase-2 (PHD2) exerts tumor-suppressive 
activity in pancreatic cancer. Cancer, 2012. 118(4): p. 960-72. 

141. Peurala, E., et al., Expressions of individual PHDs associate with good 
prognostic factors and increased proliferation in breast cancer patients. 
Breast Cancer Res Treat, 2012. 133(1): p. 179-88. 

142. Lee, S., et al., Neuronal apoptosis linked to EglN3 prolyl hydroxylase and 
familial pheochromocytoma genes: developmental culling and cancer. 
Cancer Cell, 2005. 8(2): p. 155-67. 

143. Mak, P., et al., Estrogen receptor beta sustains epithelial differentiation by 
regulating prolyl hydroxylase 2 transcription. Proc Natl Acad Sci U S A, 
2013. 110(12): p. 4708-13. 

144. Shimamura, T., et al., Epidermal growth factor receptors harboring kinase 
domain mutations associate with the heat shock protein 90 chaperone and 
are destabilized following exposure to geldanamycins. Cancer Res, 2005. 
65(14): p. 6401-8. 

145. Kaplan HG, M.J., Atwood MK, Impact of triple negative phenotype on 
breast cancer prognosis. Poster presented at: 29th Annual San Antonio 
Breast Cancer Symposium, 2006. December 14–17,  San Antonio, TX. 

146. Lakhani, S.R., et al., The pathology of familial breast cancer: predictive 
value of immunohistochemical markers estrogen receptor, progesterone 
receptor, HER-2, and p53 in patients with mutations in BRCA1 and BRCA2. 
J Clin Oncol, 2002. 20(9): p. 2310-8. 

147. Palmer, J.R., et al., Genetic susceptibility loci for subtypes of breast cancer 
in an African American population. Cancer Epidemiol Biomarkers Prev, 
2013. 22(1): p. 127-34. 

148. Pike, M.C., et al., 'Hormonal' risk factors, 'breast tissue age' and the age-
incidence of breast cancer. Nature, 1983. 303(5920): p. 767-70. 

 
 



	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
  

	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
        I 



 



Human Estrogen Receptor � 548 Is Not a Common
Variant in Three Distinct Populations

LI XU, QIANG PAN-HAMMARSTRÖM, ASTA FÖRSTI, KARI HEMMINKI, LENNART HAMMARSTRÖM,
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Several isoforms of estrogen receptor (ER) � (also known as
NR3A2) have been reported, including variants with different
N-terminal ends. In rodents, two in-frame initiation codons
(ATGs) are used to produce proteins of 530 and 549 amino
acids, respectively. In humans, the upstream ATG is out of
frame in all clones reported, until recently, when human
clones with an extra A-T base pair placing the upstream ATG
in frame were reported. The authors suggested that this could
represent a novel polymorphism in the ER� gene. Because
human ER�548 (hER�548) and hER�530 display different

functional characteristics in vitro, it is of interest to deter-
mine if this variant constitutes a polymorphism in human
populations. We therefore determined the frequency of this
novel isoform in several populations including African (n �
96), Caucasian (n � 100), and Asian (n � 128) subjects using
denaturing HPLC. We did not detect any alleles that corre-
spond to hER�548 in these samples or in additional samples
of heterogeneous origin. It is concluded that hER�548 is not
a common variant in Africans, Caucasians, or Asians. (Endo-
crinology 144: 3541–3546, 2003)

MOST OF THE effects of estrogen are mediated by es-
trogen receptors (ERs). ERs belong to the steroid

hormone receptor gene superfamily of ligand-activated tran-
scription factors.

For many years, one ER was thought to mediate all cellular
effects of estrogen. This receptor is now referred to as ER�
(NR3A1). However, in 1995 another ER, named ER�
(NR3A2), was cloned from rat prostate (1). Several isoforms
of ER� have subsequently been reported, including variants
with differing N-terminal ends. The ER� gene cloned from
rat prostate (1) encodes a protein of 485 amino acids. Three
years later, a rat prostate ER� cDNA sequence was submitted
to GenBank, which differs from the initial sequence by the
addition of one nucleotide upstream of the start codon. The
extra nucleotide removes the in-frame stop codon upstream
of the start codon initially reported (1), resulting in a cDNA
that encodes 64 additional amino acids at the N terminus (2).
This form is now referred to as rER�549 and is considered to
be the long form or full-length rodent ER�.

The first human ER� (hER�) cloned encompassed 477
amino acids (3). The N terminus of hER� has since then been
extended. Ogawa et al. (4) cloned a longer hER� that has been
considered as the full-length ER�, consisting of 530 amino
acids, hER�530. There is an initiation codon (ATG) at a sim-
ilar position in human clones as that encoding the full-length
rodent rER�549 (Fig. 1, A and B). However, in all human
clones originally reported, this ATG is out of frame with the
rest of the coding sequence.

Recently, an N-terminally extended hER� variant, corre-
sponding to hER�548, was cloned from human testis cDNA

and genomic DNA (5). An additional A-T base pair shifts the
out of frame ATG to be in frame (Fig 1C). In the following,
the allele representing the extra A-T base pair and expected
to encode hER�548, is referred to as the �A allele. Interest-
ingly, hER�548 appears more robust than hER�530 with
regard to transcriptional activation via an estrogen response
element in response to 17�-estradiol. Furthermore, both ta-
moxifen and raloxifen showed significant agonist activity via
hER�548, which was not observed via hER�530. The authors
suggested that this extra nucleotide might represent a poly-
morphism. If this is true, it is of obvious interest to determine
the frequency of hER�548 in different populations.

Materials and Methods
Samples

Blood samples were taken from blood donors for the following pop-
ulation groups: Africans (n � 96, Gambian, from Banjul) and Asians (n �
128 Han Chinese, from Beijing). The Caucasian samples were from
Finland (n � 100, which included 50 breast cancer patients).

Information for additional samples analyzed from diverse origins is
shown in Table 1. Studies were approved by ethical committees.

PCR

Primer ER�-5� untranslated region (UTR) 5�: TTATACTTGCCCAC-
GAATCTTT and primer ER�-5�UTR3�: CTTGCTTCACACCAGG-
GACTCT were used to amplify part of hER� exon 1. PCR amplifications
were performed in a total volume of 25 �l containing 250 �m de-
oxynucleotide triphosphates, 10–50 ng of template DNA, 0.5 �m each of
primers, 1.25 U AmpliTaq Gold DNA polymerase (PE Applied Biosys-
tems, Foster City, CA), in 1� reaction buffer [10 mm Tris HCl (pH 8.3);
50 mm KCl; and 2.5 mm MgCl2]. PCR amplification was carried out at
94 C for 10 min and then cycled 35 times at 94 C for 30 sec, 57 C for 30
sec and 72 C for 45 sec, followed by 10 min at 72 C.

Abbreviations: DHPLC, Denaturing HPLC; hER�, human ER�; UTR,
untranslated region.
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Generation of an artificial hER�548 clone

A standard ER�530 plasmid contains the 5�UTR where the ATG
encoding hER�548 is out of frame. An artificial hER�548 plasmid that
has the reported extra nucleotide of the ER� gene that generates
hER�548 (Ref. 5; and Fig. 2B) was created from the standard hER�530
plasmid using the QuikChange XL Site-Directed mutagenesis kit (Strat-
agene, La Jolla, CA). The sequences of these two clones were confirmed

by DNA sequencing. DNA fragments amplified by PCR (using the same
pair of primers as used in amplifying genomic DNA) from these plas-
mids served as controls throughout the experiments and are named
hER�530st and hER�548art, respectively. The sequences of these PCR
products were confirmed by DNA sequencing.

Denaturing HPLC (DHPLC)

Samples were denatured at 95 C and then cooled to 25 C over 45 min
to enable the formation of heteroduplexes. Samples were analyzed with
DHPLC using a Wave Fragment Analysis System (Transgenomics,
Omaha, NE) and DNASep Column as described (6) using the suggested
temperature 58 C.

Results
Generation of an artificial clone encoding hER�548

hER�530 has been considered to be the full-length hER�.
The sequences of the N-terminal region of the hER� gene
including that generating the recently reported hER�548 are
shown in Fig. 1. The sequence of a plasmid encoding
hER�530 is shown in Fig. 2A. This plasmid and subsequent
PCR products generated from it are referred to as hER�530st.
An artificial plasmid encoding hER�548 was generated in-
cluding the extra A-T base pair as reported (5). This plasmid
and subsequent PCR products generated from it are referred
to as hER�548art.

FIG. 1. Nucleotide and deduced amino acid sequences of the N-terminal region of hER�. The amino acids sequence is given in the one letter
code. A, The sequence that encodes hER�530. The upstream ATG is out of frame with the rest of the coding region. The GenBank accession
no. is AB006590. B, The sequence that encodes full-length mouse ER�549. The additional 19 amino acids that are specific to mER�549 are
underlined. The GenBank accession no. is AF067422. C, The sequence that encodes hER�548. The extra A that places the upstream ATG in
frame with the rest of the coding sequence is marked by *. The additional 18 amino acids that are specific to hER�548 are underlined. The
GenBank accession no. is AX029400.

TABLE 1. Wave Fragment Analysis System analysis of diverse-
origin samples that were negative for hER�548

Genomic DNA Number of chromosomes
analyzed (2n)

Diverse geographical samplesa

Mixed European descent 88
Near East and North Africa 94
Caucasian subjects with

female infertility
130

cDNA Number of samples
analyzed (n)

English subjects with breast
cancer

6

Human testis Marathon-ready
cDNA (CLONTECH)

1

a DNA samples of European, Near-Eastern, and North-African
origin, representing a variety of regions and populations, were ob-
tained on nonnominative basis from consenting adults providing in-
formation about their ethnic, linguistic, and geographic origins or
were purchased from Coriell Institute for Medical Research (Cam-
den, NJ).
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Validation of DHPLC for detection of the �A allele

DHPLC is based on the differential adsorption of homo-
and hetero-duplexes to a hydrophobic matrix on a chro-
matographic column. Amplified products with a mismatch
will form hetero-duplexes that have decreased interaction
with the matrix and will be eluted earlier than the normal
homo-duplexes. Figure 3 shows that the �A allele can be
detected with DHPLC using the employed conditions. To
detect possible homozygotes for the �A allele, PCR products
from analyzed individuals were mixed with the hER�530st.
To detect heterozygotes for the �A allele, samples were
analyzed without mixing. The sensitivity of DHPLC in de-
tecting the presence of an extra nucleotide was evaluated
with PCR fragments derived from hER� 530st and hER�
548art, respectively. When the amounts of hER�530st and
hER�548art differ less than 10-fold, the �A allele can be
detected (Fig. 3). This shows that it is not absolutely critical
for the analysis that the amounts of target and hER�530st
PCR products, respectively, are identical.

Screening of genomic DNA from different populations

In total, 96, 100, and 128 DNA samples from African,
Caucasian, and Asian subjects, respectively, were screened
by DHPLC. Figure 4A shows, from the top, representative
DHPLC profiles obtained from analysis of genomic DNA
from Caucasian (n � 100), African (n � 96), and Asian (n �
128) populations, analyzed after mixing with hER�530st.
Similar profiles were obtained when samples were analyzed
without prior mixing with hER�530st. No heteroduplex

peak, indicative of the presence of hER�548art, could be
identified in any of the samples. The presence of hER�548
would have been seen as a heterduplex as shown in Fig. 4B
where the samples were mixed with hER�548art. This figure
also shows that the hER�530 variant can be detected in these
samples.

In addition, we have also screened a number of additional
samples for the hER�548 variant. These data are summarized
in Table 1. We have analyzed genomic DNA from individ-
uals from a very diverse geographical sampling and from
individuals with syndromes related to infertility. cDNA has
been analyzed from breast cancer patients and from a com-
mercial source. We did not identify hER�548 in these
samples.

From these results, we conclude that the human 548-
amino-acid ER� does not represent a common allele.

Discussion

Knowing that a single gene might generate several protein
products, researchers need to address an additional level of
complexity in understanding the function of any gene and its
encoded protein product. The ER� gene is an example of a
gene from which several protein products are derived. This
occurs through alternative RNA splicing (7–19) or through
the utilization of different translation start codons in the 5�
flanking region, generating several N-terminally variable
ER� proteins. In this report, we focus on the frequency of the
recently reported hER� 548 isoform (5). We developed a
DHPLC assay for screening of the �A allele and showed that
it was robust with regard to detection of samples heterozy-

FIG. 2. DNA sequence flanking the artificial extra A nu-
cleotide producing the � A allele. A, Sequence of
hER�530st. B, Sequence of hER�548art, which was cre-
ated by mutagenesis. The artificially inserted A (boxed) is
indicated by an arrow.
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gous and homozygous for the �A allele. This report focuses
on the screening of samples from 128 Asian, 96 African, and
100 Caucasian individuals for the �A allele encoding hER�
548. Notably and surprisingly, we did not identify any single
allele corresponding to the �A allele. Moreover, analysis of
further samples of different origin did not reveal a single �

A allele. The reason why we did not detect hER�548 in
human testis Marathon-ready cDNA (CLONTECH Labora-
tories, Inc., Palo Alto, CA), where it was identified in Ref. 5,
is presently unclear. The lot number is not indicated in Ref.
5. Without knowledge about the lot number, CLONTECH
Laboratories, Inc. cannot track if the lots are derived from

FIG. 3. DHPLC profiles obtained from a wide range of ratios between ER�530st and ER�548art. When the ratio is no less than 1:10, the
heteroduplex peak could be detected.
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identical RNA sources (information from CLONTECH Lab-
oratories, Inc.).

In this paper, we demonstrate that a potential polymorphic
ER� variant encoding hER�548 is, if it at all exists, a rare
variant in African, Caucasian, and Asian populations. How-
ever, there is still the interesting possibility that this allele
could exist in special populations and/or that it could be
specifically associated with certain syndromes.
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In this study, we identified five novel polymorphisms in the
estrogen receptor beta (ERb) gene in an African popula-
tion. Interestingly, two of these variants are expected to
change the amino acid sequence of the ERb protein. These
changes correspond to an isoleucine to valine substitution
at amino acid position 3 (I3V) and a valine to glycine sub-
stitution at position 320 (V320G), respectively. The func-
tional consequences of these amino acid substitutions were
determined in different in vitro assays. The I3V mutation
displayed no differences with regard to transcriptional
activity in a reporter assay, as compared with the wild-
type receptor. The V320G mutation, however, showed sig-
nificantly decreased maximal transcriptional activity in
a reporter assay, although its binding affinity for 17b-
estradiol was not affected. A pull-down assay indicated
that the interaction of full-length TIF2 with hERbV320G
was weaker than with hERbwt. Moreover, surface plas-
mon resonance analysis revealed reduced interaction of the
V320G ERb variant with the NR box I and II modules of
TIF2. To our knowledge, this represents the first identi-
fication of a functional polymorphism in the ERb gene.
This novel polymorphism provides a tool for human
genetic studies of diseases in the African population.

Introduction

Estrogen receptors (ERs) belong to the steroid/retinoid
receptor gene superfamily, which contains the receptors for
glucocorticoids, mineralocorticoids, progesterone, androgen,
thyroid hormone, vitamin D and retinoic acid. As a family,
its members share some structural and functional similarities
including four functional domains. From the N-terminus to the
C-terminus of the receptor molecule, these are: the A/B region
that contributes to the transcriptional activation function; the
C-region, or the DNA-binding domain, that harbors the DNA-
binding function mediating specific DNA binding; the hinge
region followed by the ligand-binding domain (the LBD or the
E/F domain). The LBD harbors the ligand-binding pocket as
well as sites for co-factor binding, transactivation, nuclear
localization and interactions with heat shock proteins (1).

Upon ligand-dependent or -independent activation, these
receptors form dimers and modulate transcription by binding
to their corresponding hormone response elements (for example
ERE, estrogen response element) in the promoter region of
target genes (2). There are two estrogen receptors, ERa and
ERb. These two receptors show high homology, particularly in
the DNA-binding domain. The receptors are expressed in a
distinct but sometimes over-lapping mode and display func-
tional similarities as well as differences, sometimes even
opposite actions (3).

Polymorphisms in ER genes, the major mediators of estro-
gen signaling, are associated with some endocrine related
disorders. Polymorphisms in ERa are associated with breast
cancer (4--6), endometrial cancer (7), lupus nephritis (8), men-
strual disorder (9), Alzheimer’s disease (10), osteoporosis (11)
and coronary artery disease (12). Polymorphisms in the ERb
gene have been correlated to other pathological states as com-
pared with ERa polymorphisms, such as ovulatory dysfunc-
tions (9), hypertension (13), bone mineral density (14) and
androgen levels (15). No data are available regarding poly-
morphisms in ER genes in African populations.

Several genetic differences have been described between
African Americans and white Americans, which may account
for the higher incidence of certain diseases in the former popu-
lation. For example, estrogen metabolism appears to vary
according to race, with a higher ratio of inactive:active meta-
bolites in whites compared with blacks (16). Polymorphisms in
some steroid hormone nuclear receptors have been shown to
correlate with race related endocrine diseases. For example,
short CAG repeat lengths in the androgen receptor gene were
found in African Americans and possibly associated with a
higher stage of prostate cancer (17). Polymorphisms in the
vitamin D receptor gene are associated with bone mass differ-
ences between African Americans and white Americans (18).

In this investigation we screened the ERb gene in an African
population for polymorphisms. Any identified polymorphism,
particularly a functional polymorphism, would constitute
important tools for further association with diseases.

Materials and methods

Samples

Nigerian healthy blood donors (n ¼ 96 from Banjul, Gambian) were included
in the study. Genomic DNA was isolated using standard phenol--chloroform
extraction followed by ethanol precipitation. The studies were approved by the
ethical committee of the Karolinska Institute.

PCR

PCR amplifications were performed in a total volume of 25 ml containing
200 mM dNTPs, 10--50 ng of template DNA, 0.4 mM each of primers, 1.25 U
Taq DNA polymerase (Roche, Mannheim, Germany), in 1� reaction buffer
(10 mM Tris--HCl pH 8.3, 50 mM KCl, 2.5 mM MgCl2). Primer sequences to
amplify the ERb gene were designed based on the published GenBank ERb
gene sequence NT_025892 (Table I). PCR amplification was carried out at
94�C for 10 min followed by 35 cycles (94�C for 30 s, 57--60�C for 30 s and
72�C for 45 s), and finally 10 min at 72�C.

Abbreviations: ER, estrogen receptor; ERE, estrogen response element;
LBD, ligand-binding domain; SPR, surface plasmon resonance.
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Denaturing high-performance liquid chromatography (DHPLC)

PCR products from amplification of genomic DNA from all individuals were
analysed using DHPLC on a WAVE DNA Fragment Analysis System (Trans-
genomic, Cheshire, UK) and DNASep Column as described (19) using the
temperature suggested by the WAVEMAKERTM Software package (Trans-
genomic, Crewe, UK). Prior to DHPLC analysis, PCR products were denatured
at 95�C for 5 min and then cooled to 25�C over 45 min to enable the formation
of heteroduplexes. Aliquots of 5 ml were automatically loaded on the DNAsep
column for heteroduplex analysis.

Samples with aberrant HPLC profiles were subjected to DNA sequencing
using ABI Prism� BigDyeTM Terminator Cycle Sequence Ready Reaction Kit
(Applied Biosystems) and compared with the publishedgenomic sequence of the
ERb gene. In certain cases, Restriction Fragment Length Polymorphism ana-
lysis was used to confirm polymorphisms. FokI was used to score 105A!G,
RsaI was used to score 1082G!A, AluI was used to score1730G!A and
Van91I was used to score 1057T!G.

Generation of human ERb plasmids containing the 105A!G or 1057T!G
mutations

A wild-type pSG5-hERb plasmid was a gift from Dr Michel Tujague at the
Department of Biosciences, Karolinska Institute. hERb plasmids that incorp-
orate the identified amino acid changes of the ERb gene were created from the
wild-type hERb530 plasmid using the QuickChangeTM XL Site-Directed
mutagenesis kit (Stratagene, La Jolla, CA) according to the instruction manual.
DNA sequencing confirmed the sequences of the mutant clones. The resulting
plasmids are named hERb105A!G and hERb1057T!G, respectively.

Transient transfection assays and western blot analysis

HEK293 cells were cultured in a 1:1 mixture of Ham’s Nutrient mixture
F12 (Invitrogen) and DMEM (Invitrogen) supplemented with 5% FBS and
100 U penicillin/ml and 100 mg streptomycin/ml. For transfection, the cells
were seeded at a density of 1 � 104 cells/well in 96-well plates and
co-transfected with 2� ERE TK luciferase reporter plasmid (0.4 mg) (20)
and the respective ER expression vectors (0.016 mg). A pRL-TK control
plasmid, which contains a Renilla luciferase gene, was included to control for
differences in transfection efficiencies. The medium was replaced with a phenol
red-free mixture of F12 and DMEM containing 5% dextran-coated charcoal-
treated FBS and 100 U penicillin/ml and 100 mg streptomycin/ml upon trans-
fection. 17b-Estradiol (0.1, 1, 10, 100 nM) or vehicle (in 0.1% ethanol) was
added just after transfection. The cells were harvested 24 h after transfection
and luciferase activities were determined using the Dual Luciferase Reporter
Assay System (Promega) according to the manufacturer’s instructions.

Western blotting was done according to the protocol as described (21). ERb
was detected with an ERb LBD rabbit polyclonal antibody produced by us
as described previously (22). As a positive control, the recombinant human
ERb530 protein purchased from Panvera (Madison, WI) was used.

Cloning and expression of hERbwt and hERb1057T!G LBDs

The LBDs (R254 to Q530) were obtained by PCR using full-length cDNAs as
templates and primers that contained appropriate restriction sites. hERbwt and
hERb1057T!G were cloned into pET15b (Novagen, Madison, WI) to gen-
erate proteins with N-terminal His-tags. The sequences of all constructs were
verified by DNA sequencing.

Cultures (500 ml) of the Escherichia coli strain BL21, transformed with the
appropriate expression plasmids, were cultivated overnight in LB supplemen-
ted with 100 mg/ml of ampicillin at 37�C. When the OD600 reached 1.0,
IPTG was added to a final concentration of 1 mM and incubation continued
for 3 h at 25�C. The cells were pelleted and the supernatant was discarded. The
pellet was suspended in 5 ml (one-tenth of the culture volume) of extraction
buffer [complete EDTA-free, Roche Diagnostics, Germany, 0.3 M NaCl,
20 mM Tris (pH 8.0), 0.01 mg/ml DNase, 0.01 mg/ml RNase, 10 mM
MgCl2, 0.25 mg/ml lysozyme, 1 mM b-ME and protease inhibitor cocktail
tablet]. The samples were sonicated for 4 min at 50% duty (total sonication
time 2 min). The homogenate was centrifuged at 13 000 g for 20 min at 4�C.
The supernatant was applied to a TALON metal affinity column (Clontech
Laboratories, Palo Alto, CA). Fractions containing the purified protein were
dialyzed against 20 mM Tris (pH 8), 150 mM NaCl, 1 mM DTT and frozen at
�80�C. The purified protein was 495% pure as determined from Coomassie
stained SDS--PAGE gels. The protein concentrations were measured using the
Coomassie Protein Assay Kit (Pierce, IL) according to the manufacturer’s
instructions.

Scintillation proximity assay

The assay was performed in 96-well microplates (PerkinElmer Life Sciences,
MA). Polyvinyltoluene copper-loaded his-tag beads were purchased from
Amersham. The reaction mixture (60 ml/well) containing assay buffer (1 mM
EDTA, 0.9 M KH2PO4, 0.1 M K2HPO4, 20 mM Na2MoO4 and 0.05% mono-
thioglycerol), beads (30 mg/well) and purified ERb LBD (final concentration
of 20 nM) was incubated at 4�C for at least 1 h. For saturation ligand-binding
analysis, a sample of various concentrations of [3H]17b-estradiol (S.A. ¼
95 Ci/mmol) in the presence or absence of a 300-fold excess of unlabeled
17b-estradiol was then added. The assay plates were sealed, allowed to settle
overnight and subsequently counted on a Wallac 1450 micro-b counter. The
dissociation constant (Kd) was calculated as the free concentration of radio-
ligand at half-maximal specific binding by fitting data to the Hill equation and
by linear Scatchard transformation (23). Curve fitting was done in Prism
(GraphPad Software).

For ligand competition studies, purified ERb LBDs (20 nM) were incubated
overnight at 4�C with a range of test compound concentrations. A final
concentration of 1.5 nM [3H]17b-estradiol (30 ml/well) was used. The ligands
were tested three times with similar results. Curve fitting was performed using
Prism (GraphPad Software) and the IC50s determined. IC50 values were con-
verted to Ki using the Cheng-Prusoff equation, Ki ¼ IC50/(1þ D/Kd), where D
is the concentration of the radioligand (24).

Pull-down assay

For pull-down assays, purified His-tagged ERb LBDs (100 mg) were bound to
60 ml of Talon resin and then equilibrated in 50 mM Tris--HCl, pH 7.4, 100 mM
NaCl, 1 mM MgCl2, 10% glycerol and 0.5% NP-40 (equilibration buffer). The
gel slurry was then divided into two equal aliquots and to each tube, 2.5 ml
of in vitro translated, 35S-labeled (TNT coupled reticulocyte lysate system,
Promega), full-length TIF2 was added in a total volume of 150 ml equilibration
buffer containing 1.5% BSA. Estradiol or vehicle (ethanol) was added as
indicated. As control, TIF2 was mixed with Talon gel without bound ERb.
All samples were incubated for 2 h with gentle shaking at 4�C. After washing
three times with equilibration buffer, bound proteins were eluted with
SDS--PAGE sample buffer and separated on a 12% polyacrylamide gel. The
gel was stained with Coomassie Blue, followed by determination of 35S using a
PhosphoImager instrument.

Surface plasmon resonance (SPR) analysis

All SPR measurements were performed on a BIAcore 2000 instrument (BIA-
core AB, Uppsala, Sweden). All experiments were performed at 25�C, and at a
flow rate of 5 ml/min. Research grade streptavidin sensor chips were obtained
from BIAcore AB. The streptavidin chips were first treated with three 1-min
pulses of 50 mM NaOH and 1 M NaCl at a flow rate of 5 ml/min. N-terminally
biotinylated peptides (495% purity) were purchased from Interactiva
(Germany). The human TIF2 LXXLL peptide sequences were as follows:
Box 1 (residues 636--649), KGQTKLLQLLTTKS and Box 2 (residues
685--698), EKHKILHRLLQDSS. Peptides were immobilized on individual
surfaces to 200 RU responses. Samples of purified hERbwt-LBD or
hERbV320G-LBD in the presence or absence of estradiol were then injected
over each surface. After injection stop, the surfaces were washed with buffer to
monitor the dissociation phase. The buffer used was 50 mM Tris--HCl, pH 7.4,

Table I. Primers for PCR amplification of the ERb gene fragments

Exon Primer sequences Product
size

50 UTR Forward 50 TTATACTTGCCCACGAATCTTT 30 419 bp
Reverse 50 CTTGCTTCACACCAGGGACTCT 30

1 Forward 50 CTTAATTCTCCTTCCTCCTAC 30 387 bp
Reverse 50 GTGATTTGAGAAATGGCTAGC 30

2 Forward 50 GCTTTGCTGTATCAGATTTCCGGG 30 407 bp
Reverse 50 ATTTCTGCCAAGTCATCTCTGC 30

3 Forward 50 TGGCTTTGTACCTGTACTGGTCAT 30 473 bp
Reverse 50 GCCAAAATCTGCCTCCCATAATC 30

4 Forward 50 GTCGTTGGTTTTGCTAGTACGG 30 567 bp
Reverse 50 CCAGCTGAGGACCTGTTAAATA-

TCTAGGC 30

5 Forward 50 GTTGCGCAGCTTAACTTCAAAGT-
TTTCTTC 30

456 bp

Reverse 50 TGAAGGAGCTGATGCTATCATC 30

6 Forward 50 GTTTCCTGAAGCTATGTTCCT 30 242 bp
Reverse 50 CGCTAGTTGTAGAAACAGCAT 30

7 Forward 50 TGCATTAGGCCAGGCTTCTCTTCT 30 562 bp
Reverse 50 GTGCCCATCTTTGCTTACAGGTG 30

8 Forward 50 GTAGACTGGCTCTGAGCAAAGA-
GAGCC 30

405 bp

Reverse 50 CCAAGCCTGCCATCACCAAATGAG 30

cx Forward 50 GAGCAAACCAGCTTAAAGGCCC 30 473 bp
Reverse 50 CTCATGGGTGAGACATCTGCAAGC 30
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150 mM NaCl, 1 mM EDTA, 0.05% Tween 20. For the kinetic measurements,
various concentrations of hERbwt-LBD and hERbV320G-LBD (from 0.25 to
2 mM) were injected over the chip surfaces. The BIAevaluation software
version 3.1 was used for evaluation. Different binding models (different rate
equations) were tested in the global curve fitting procedure, and the model best
describing the experimental data was a 1:1 binding with drifting baseline
model. The apparent Kd values are calculated as described (25).

Results

ERb polymorphism screening in an African population

We screened genomic DNA from 96 Nigerians to identify
polymorphisms in the ERb gene in an African population.
Analysis of the coding exons and flanking intron sequences
revealed several known but also novel variants. The results are
summarized in Table II. Three variants (1082G!A, 1505-
4A!G and 1730A!G) that have been reported previously
in Caucasian populations (26,27) were also found in the
African population but with different frequencies. None of
these polymorphisms change the amino acid sequence of the
ERb protein. Five novel polymorphisms in the coding region
of the ERb gene were found in the African population.
Interestingly, as shown in Table II, two of these novel
polymorphisms change the amino acid sequence of the ERb
protein. The novel amino acid changes are 105A!G
[changing amino acid 3, isoleucine (I)!valine (V)] in exon 1
and 1057T!G [changing amino acid 320, valine (V)!glycine
(G)] in exon 5. These two ERb variants are, in the following,
referred to as hERbI3V and hERbV320G, respectively.

hERbV320G shows reduced transcriptional activation in a
transactivation assay

To test if the identified receptor variants displayed any differ-
ences compared with the wild-type receptor with regard to
transcriptional activation, a reporter assay was used. We gen-
erated plasmids expressing either hERbI3V or hERbV320G
under control of the SV40 promoter. The transcriptional activ-
ities of the variants were compared with that of the wild-type
ERb using an ERE-luciferase reporter system. No differences
with regard to transcriptional activation were observed for the
hERbI3V variant (Figure 1A). However, hERbV320G showed
significantly decreased maximal transcriptional activity com-
pared with wild-type ERb (Figure 1A). To confirm equivalent
ERb expression, extracts from HEK293 cells transfected with
equal amounts of the expression vectors for hERbwt,
hERbV320G, or hERbI3V were separated by SDS--PAGE
and analysed for ERb expression by western blot (Figure 1B).

This analysis shows that the different ERb derivatives are
expressed at similar levels. The observed reduction in maximal
transcriptional activity could imply that hERbV320G is defec-
tive for interactions with co-factors. Interestingly, as shown in

Table II. Polymorphisms in the ERb gene in an African population

Nucleotidea Amino acid Frequency

Reported (26,27) (Caucasian) African (n ¼ 96)

Heterozygotes Homozygotes Heterozygotes Homozygotes

Exon 1 105A!G 3I!V 0.052 (n ¼ 5) 0
143C!T Silent 0.042 (n ¼ 4) 0

Exon 2 566A!T Silent 0.01 (n ¼ 1) 0
Exon 5 1057T!G 320V!G 0.031 (n ¼ 3) 0

1100T!G Silent 0.01 (n ¼ 1) 0
1082G!A Silent 0.03--0.16 0.004 0.33 (n ¼ 32) 0.02 (n ¼ 2)

Exon 8- 1505-4A!G 0.06--0.16 0.004 0.32 (n ¼ 31) 0.02 (n ¼ 2)
30 UTR 1730A!G 0.43--0.52 0.11--0.13 0.25 (n ¼ 24) 0.07 (n ¼ 7)

aSee ref. (49) for numbering of genomic sequences.
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Fig. 1. hERbV320G has decreased maximal transcriptional activity
compared with hERbwt or hERbI3V. (A) Transcriptional activity of ERb
wild-type and variant proteins assayed on 2� ERE TK luciferase reporter.
HEK293 cells were transfected with the 2� ERE TK luciferase reporter
plasmid and expression plasmids encoding wild-type (̂ ) or mutated-type
ERb (hERbI3V ¼ D, hERbV320G ¼�), respectively. Cells were treated
with vehicle (ethanol) or indicated concentrations of 17b-estradiol. Values
represent the mean� SD of three independent experiments. (B) Western blot
of identical amounts (150 mg protein) of whole cell extracts from HEK293
cells transfected with equal amounts of the expression vectors for hERbwt,
hERbV320G or hERbI3V. Recombinant human ERb530 protein was used
as positive control. The blot was stripped and probed for b-actin. The bands
were quantified by densitometric scanning and the amount of ERb
normalized to b-actin. Data are the value (in pixels) for ERb divided by the
value (in pixels) for b-actin and normalized to the hERbwt expression level,
which was set to 1. The bar graph shows the mean � SD of the three
separate experiments.

Functional variant of estrogen receptor beta

2069

 at K
arolinska Institutet U

niversity L
ibrary on A

ugust 12, 2013
http://carcin.oxfordjournals.org/

D
ow

nloaded from
 

http://carcin.oxfordjournals.org/


Figure 2, the amino acid changed in hERbV320G is located
on the surface of the receptor protein, quite distant from the
ligand-binding pocket.

hERbwt and hERbV320G bind ligands with similar affinity

To facilitate a biochemical characterization of hERbV320G,
and particularly to compare it to hERbwt, the LBDs of these
two proteins were expressed in E.coli and the recombinant
proteins were purified. In Figure 3A and B, the results of
saturation ligand-binding assays with tritiated estradiol
are shown. The measured Kd values were 1.50 nM for hERbwt
wt and 1.79 nM for hERbV320G (Figure 3). Affinities for
estradiol, tamoxifen and raloxifen, as determined in a competi-
tion assay, were also similar for hERbwt and hERbV320G.
Thus, the Kis of estradiol, tamoxifen and raloxifen for hERbwt
were 0.25, 5.45 and 9.45 nM and for hERbV320G they were
0.33, 5.33 and 10.11 nM, respectively. This is consistent with
the position of the variant amino acid distant from the ligand-
binding pocket (Figure 2).

hERbV320G shows reduced co-factor interaction

Having demonstrated that hERbV320G binds ligands with
similar affinity as hERbwt, yet shows significantly reduced
maximal transactivation in a reporter assay, we hypothesized
that hERbV320G is defective for co-factor interactions. This is
consistent with the position of the V320G amino acid change,
on the surface of the receptor protein in a region postulated to
be involved in co-factor interactions (Figure 2). To test this
hypothesis, we performed pull-down assays using purified
His-tagged ERb LBDs and 35S-labeled full-length TIF2 in the
presence or absence of estradiol. As shown in Figure 4, TIF2
bound to hERbwt and hERbV320G in a ligand-dependent
manner. Furthermore, the interaction of TIF2 with
hERbV320G was weaker than with hERbwt.

To more quantitatively examine TIF2 interaction to
hERbV320G and hERbwt, we used the SPR analysis, where

biotinylated 14mer peptides containing NR box motifs
(LXXLL) from TIF2 were captured via streptavidin to the
chip surface. Figure 5 illustrates the binding of hERbV320G
and hERbwt in the presence or absence of estradiol to the NR
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Fig. 3. Saturation and Scatchard analyses for [3H]17b-estradiol binding to
hERbwt and hERbV320G. hERbwt and hERbV320G LBDs (20 nM) were
incubated with increasing concentrations (0--20 nM) of [3H]17b-estradiol
at 4�C overnight. The inset shows linear transformation of the data
by Scatchard analysis.

Fig. 2. Modeled structure of human ER-b LBD complexed with 17b-
estradiol and the TIF2 co-activator peptide [PBD accession number 1QKM
(29) and human ER-a complexed with 17b-estradiol and the TIF2 co-
activator peptide (1GWR) (50)]. The protein is depicted by a green ribbon/
tube while the ligand estradiol is represented by white and red spheres
(carbon and oxygen atoms, respectively). Helix-12 and the TIF2 co-activator
peptide are depicted in cyan and red, respectively. The positions of the
Lys-314 and Val-320 sidechains are shown as magenta tubes. This figure
was produced using the PyMOL program (http://www.pymol.org).
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t 

E2 − + − + − +

1 2 3 4 5 6

Fig. 4. Analysis of TIF2 intercation with hERbwt and hERbV320G by
pull-down assay. In vitro translated TIF2 was incubated with hERbwt (lanes
4 and 5) and hERbV320G (lanes 6 and 7), with or without estradiol (E2) as
indicated. Non-specific binding of TIF2 to Talon beads is shown in lanes 2
and 3. Input corresponds to 0.5 ml of the in vitro translation mixture. The
experiment was repeated three times with similar results.
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box of TIF2. The result showed that binding of estradiol to
ERb enhances the affinity of ERb-peptide interaction. Binding
studies were made for the different TIF2 NR box peptides
using five to six different concentrations of hERbwt-LBD or
hERbV320G-LBD unliganded or liganded with estradiol ran-
ging from 0.25 to 2 mM. Affinity determination analysis was
then performed using BIAevaluation software. The curve fit-
ting analysis showed that the model best describing the experi-
mental data was a 1:1 binding with drifting baseline model.
The Kd for binding to TIF2 box1 was 0.23� 0.04 mM (mean�
SD) and 0.52 � 0.05 mM and Kd for binding to TIF2 box2 was
0.39 � 0.1 mM and 0.79 � 0.1 mM for hERbwt-LBD and
hERbV320G-LBD liganded with estradiol, respectively. The
determined affinities show that hERbV320G displays reduced
affinity for TIF2 as compared with that of wild-type ERb.
Reduced affinity for TIF2 was also seen with unliganded
hERbV320G-LBD as compared with unliganded hERbwt-
LBD (data not shown).

Discussion

In this paper we identify five novel polymorphisms in the
hERb gene in an African population. Interestingly, two of
these polymorphisms are expected to change the correspond-
ing amino acid of the encoded ERb protein. These polymorph-
isms have not been identified in any of the published reports
that describe the characterization of polymorphisms in the
ERb gene in both Caucasians (n ¼ 502) (27) and Asians (n ¼
184) (28). In Africans, the variant protein hERbV320G,
encoded by one of these polymorphic ERb genes, displays
lower maximal transcriptional activity compared with wild-
type ERb. To our knowledge, this represents the first example
of a functional polymorphism in the ERb gene.

The hERbV320G change results in the amino acid sub-
stitution of valine for glycine in helix 4 of the LBD. Helix 4
does not participate directly in binding of the ligand (29).
However, it forms part of the surface that interacts with co-
activators (30). The hERbV320G side chain is in close
proximity to K314, which forms half of the charge-clamp of

the co-activator-binding pocket. Therefore, the hERbV320G
may perturb the conformation of K314, which in turn perturbs
cofactor interactions. Consistent with this, we did not find any
changes in ligand-binding affinity of hERbV320G. However,
this variant displays decreased interaction with the co-activator
TIF2. We propose that reduced co-factor interaction is the cause
for the observed reduced maximal transactivation.

Several endocrine-related diseases show population-based
differences in terms of disease incidence and/or disease pro-
gression but the reason for this racial difference is unclear.
When compared with white American women, African
American women have a higher incidence of breast cancer
before the age of 40 years, and the prognosis after a diagnosed
breast cancer is reported to be poorer at all ages (31). Studies
have suggested that higher plasma levels of insulin-like growth
factor-1 (IGF-1) may account for African American women
having higher risk of premenopausal breast cancer than white
women and may also be an important determinant of breast
cancer risk in postmenopausal women (32--34). A prolonged
exposure to estrogens has been repeatedly found to be asso-
ciated with an increased risk for breast cancer. Racial dispar-
ities in conditions such as postmenopausal obesity, early
menarche and late menopause that all increase endogenous
levels of estrogens may put an African American woman at a
greater risk for breast cancer (35). African American men
present a higher stage of prostate cancer and a worse outcome
of this disease than non-African American men (36). The
increased frequency of prostate cancer among African Amer-
ican men has been attributed to either greater plasma levels of
testosterone (37) or an increased dihydrotestosterone/testoster-
one ratio (38) in this population. Previous studies also revealed
that the plasma level of IGF-1 might be a predictor of prostate
cancer risk (39,40). Some of these racial differences could be
attributed to population differences in genetic polymorphisms.
Polymorphisms involving genes coding for the androgen
receptor, phase I/II enzymes and vitamin D receptor have
been associated with an increased risk of prostate cancer
(41). Polymorphisms that are associated with breast cancer
risk have been identified in the genes involved in a wide
variety of functions including steroid hormone metabolism,
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Fig. 5. SPR analyses of hERbwt and hERbV320G binding to TIF2. The real-time binding sensogram shows injection of 1 mM hERbwt and 1 mM
hERbV320G in the presence or absence of estradiol over a surface immobilized with 200 RU of TIF2 NR box1.
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detoxification of environmental carcinogens and tumor sup-
pressor genes (42).

In this study, we have identified one novel polymorphism in
the ERb gene in an African population that showed decreased
transcriptional activity. Dysregulation of ERb expression has
been reported to be associated with progressions of breast and
prostate cancer (43--46), indicating that ERb functions as a
tumor suppressor gene. The hyperplastic prostate (47) and
dedifferentiated mammary gland (48) phenotypes displayed
by ERb knockout mice support a role for ERb in control of
mammary and prostate growth. Further association studies are
required to determine whether this polymorphism is involved
in the increased incidence of prostate and breast cancers
in Africans.
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estrogen receptor beta in the regulation of growth of the ventral prostate.
Proc. Natl Acad. Sci. USA, 98, 6330--6335.

48.Forster,C., Makela,S., Warri,A., Kietz,S., Becker,D., Hultenby,K.,
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ABSTRACT: Estrogens exert their physiological effects through two estrogen receptor (ER) subtypes, ERR
and ERâ. In mouse, the cloning of an alternative splice variant of the wild-type ERâ (mERâ1), mERâ2,
which contains an 18 amino acid insertion in the ligand binding domain, contributed an additional level
of complexity to estrogen signaling. In this study we have assayed the interaction of several known ligands
with mERâ1 and mERâ2. The binding affinity of estradiol was 14-fold higher for mERâ1 than for mERâ2.
In contrast, raloxifene was dramatically (8-fold) mERâ2 selective. The selectivity for mERâ2 was abolished
when the 2-arylbenzothiophene core of the raloxifene molecule was tested for binding affinity,
demonstrating that the 3-aroyl side chain of raloxifene plays an important role in contributing to its mERâ2
selectivity. The opposite isoform selectivity found for estradiol and raloxifene in our ligand binding assay
was also reflected in the transactivation assay system. That is, mERâ2 required 10-fold greater estradiol
concentrations for maximal activation compared to mERâ1, whereas raloxifene was more potent in
antagonizing estradiol-induced gene expression via mERâ2 than mERâ1. The raloxifene core behaved as
a pure agonist. Furthermore, mERâ2 showed significantly decreased estradiol-induced maximal
transcriptional activity as compared to mERâ1. A pull-down assay indicated that the interactions of TIF2
and RAP250 with mERâ2 were weaker than with mERâ1. To assess TIF2 and RAP250 interactions with
ERs more quantitatively, we examined the interaction of LXXLL containing peptides derived from TIF2
and RAP250 with mERâ1 and mERâ2 using surface plasmon resonance analysis. Our results indicate
that mERâ2 interacts with both coactivators with lower affinity, which may explain its reduced
transcriptional activity. Taken together, these results suggest that ligand selectivity and coactivator
recruitment of the ERâ isoforms constitute additional levels of specificity that influence the transcriptional
response in estrogen target cells.

Estrogens exert their physiological effects through two
estrogen receptor (ER)1 subtypes, ERR and ERâ, that belong
to a large family of transcription factors, the nuclear receptor
family (1). ERR and ERâ contain characteristic sequence
motifs associated with transactivation, DNA binding, and
hormone binding (2). They share high homology within the
DNA binding domain and modest homology within the
ligand binding domain (LBD). The LBD is multifunctional
and, in addition to harboring the ligand binding pocket,
encompasses regions for receptor dimerization and ligand-
dependent (AF-2) transactivation (3). Hormone binding to
the ER LBD induces a conformational change in the receptor
that initiates a series of events that culminate in the activation
or repression of responsive genes (4). Although the precise
mechanism by which ER affects gene transcription remains
to be determined, it appears to be mediated, at least in the
case of AF-2 activation, via nuclear receptor coregulators
that are recruited by the DNA-bound receptor (5).

To date, a number of ERâ mRNA isoforms, generated by
alternative mRNA splicing, have been described in human,
mouse, and rat. In mouse, the originally described wild-type
form has been named mERâ1 (6). mERâ2 is an alternative
splice variant where an additional exon is spliced in-frame
between exons 5 and 6 to generate a protein with an 18 amino
acid insertion in the LBD (7). The inserted amino acid
sequence shares significant (16 out of 18 amino acids)
homology with the respective insert in the rat ERâ2 (rERâ2)
isoform (8). It was found that mERâ1 and mERâ2 are
expressed at similar relative levels in some tissues such as
the ovary and lung. However, in a range of tissues such as
liver, pancreas, gut, and bone, mERâ2 mRNA is more
abundant (7, 8). In ligand binding assays ERâ2 binds
estradiol with a lower affinity than ERâ1 (9-12). In a
reporter assay, ERâ2 shows lower transcriptional activity
than ERâ1 and acts as a negative regulator when it is
coexpressed with ERR or ERâ1 (12). The physiological role
of rodent ERâ2 remains to be determined. It was shown that
rERâ2 protein was upregulated during the lactation period,
suggesting that rERâ2 may play a role in silencing of ERR
function during lactation in rat mammary gland (13).
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Ligand-dependent interaction of nuclear receptors and
coactivators is a critical step in nuclear receptor-mediated
transcriptional regulation. The most studied coactivators for
nuclear receptors belong to the steroid receptor coactivator
1 (SRC-1) family, which contains three related members,
referred to as SRC-1, SRC-2/GRIP1/TIF2, and SRC-3/p/CIP/
RAC3/ACTR/AIB1/TRAM1 (14). Critical for the function
of these coactivators is the central nuclear receptor interaction
domain consisting of three equally spaced conserved LXXLL
motifs, also called nuclear receptor boxes. Nuclear receptor-
activating protein 250 (RAP250), also called ASC-2, PRIP,
TRBP, and NRC, was recently cloned and described as a
novel nuclear receptor coactivator consisting of two LXXLL
motifs, of which only the N-terminal motif interacts with
nuclear receptors in general (15).

In this paper we address the characteristics of two mouse
ERâ isoforms, mERâ1 and mERâ2, with regard to ligand
selectivity and transcriptional activation.

EXPERIMENTAL PROCEDURES

Materials.17â-Estradiol, 4-OH-tamoxifen, genistein, and
raloxifene were from Sigma-Aldrich Sweden AB. ICI-182,-
780 was obtained from Tocris, Inc. The raloxifene core [2-(4-
hydroxyphenyl)benzo[b]thiophen-6-ol] was prepared at Karo
Bio AB (Sweden) according to the method of Jones et al.
(16). The radioligand [3H]-17â-estradiol was purchased from
PerkinElmer Life Sciences Inc.

Plasmids, Transient Transfection Assays, and Western Blot
Analysis.The pSG5-mERâ1 expression plasmid was a gift
from Dr. K. Pettersson at the Department of Biosciences,
Karolinska Institutet. This expression vector includes the
cDNA that encodes the full-length murine ERâ (549 aa) (17).
The murine ERâ2 expression plasmid (pSG5-mERâ2) was
constructed by replacement of the murine ERâ1 cDNA
sequences spanning nucleotides 841-1200 (GenBank,
U81451) with the corresponding region of the murine ERâ2
generated by RT-PCR, usingSacI/BstBI restriction sites. The
sequences of the plasmids were verified by DNA sequencing.

HEK293 cells were cultured in a 1:1 mixture of Ham’s
nutrient mixture F12 (Invitrogen) and DMEM (Invitrogen)
supplemented with 5% FBS, 100 units of penicillin/mL, and
100 µg of streptomycin/mL. For transfection, cells were
seeded at a density of 5× 104 cells/well in 24-well plates
and cotransfected with 2× ERE TK luciferase reporter
plasmid (0.8µg) together with pSG5-mERâ1 or pSG5-
mERâ2 (0.016µg) expression plasmids. A pRL-TK control
plasmid, which contains aRenilla luciferase gene, was
included to control for differences in transfection efficiencies.
Transfections using the Superfect reagent (Qiagen) were
performed according to the manufacturer’s protocol. The
medium was replaced with a phenol red-free mixture of F12
and DMEM containing 5% dextran-coated charcoal-treated
FBS, 100 units of penicillin/mL, and 100µg of streptomycin/
mL upon transfection. Estradiol, raloxifene, the raloxifene
core, or vehicle (in 0.1% ethanol) was added immediately
after transfection. The cells were harvested 24 h after
transfection, and luciferase activities were determined using
the dual luciferase reporter assay system (Promega) according
to the manufacturer’s instructions.

Western blotting was done according to the protocol as
described (13). ERâ was detected with an ERâ LBD rabbit

polyclonal antibody produced by us as described previously
(18).

Cloning and Expression of mERâ1 and mERâ2 Ligand
Binding Domains.The LBDs of murine ERâ1 (R209 to
Q485, GenBank, U81451) and the corresponding region of
murine ERâ2, containing the 18 aa insertion, were generated
by PCR using pSG5-mERâ1 and pSG5-mERâ2 as templates,
respectively, and primers that contained appropriate restric-
tion sites. The LBDs of mERâ1 and mERâ2 were cloned
into pET15b (Novagen, Madison, WI) to generate proteins
with N-terminal His tags. The sequences of the constructs
were verified by DNA sequencing.

Cultures (500 mL) of theEscherichia colistrain BL21,
transformed with the appropriate expression plasmids, were
cultivated overnight in LB supplemented with 100µg/mL
ampicillin at 37°C. When the OD600 reached 1.0, IPTG was
added to a final concentration of 1 mM and incubation
continued for 3 h at 25°C. The cells were pelleted, and the
supernatant was discarded. The pellet was suspended in 5
mL of extraction buffer (0.3 M NaCl, 20 mM Tris-HCl, pH
8.0, 0.01 mg/mL DNase, 0.01 mg/mL RNase, 10 mM MgCl2,
0.25 mg/mL lysozyme, 1 mMâ-mercaptoethanol, and
protease inhibitor cocktail tablet). The samples were soni-
cated for 4 min at 50% duty (total sonication time 2 min).
The homogenate was centrifuged at 20000g for 20 min at 4
°C. The supernatant was applied to a TALON metal affinity
column (Clontech Laboratories, Inc., Palo Alto, CA). Frac-
tions containing the purified protein were dialyzed against
20 mM Tris-HCl (pH 8.0), 150 mM NaCl, and 1 mM DTT
and frozen at-80 °C. The purified protein was more than
95% pure as determined from Coomassie-stained SDS-
PAGE gels. The protein concentrations were measured using
the Coomassie protein assay kit (Pierce, Rockford, IL)
according to the manufacturer’s instructions.

Scintillation Proximity Assay (SPA).The assay was
performed in 96-well microplates (PerkinElmer Life Sciences
Inc., Boston, MA). Polyvinyltoluene (PVT) copper-loaded
His-tag beads were purchased from Amersham Corp. The
reaction mixture (60µL per well) containing assay buffer
(1 mM EDTA, 0.9 M KH2PO4, 0.1 M K2HPO4, 20 mM Na2-
MoO4, and 0.05% monothioglycerol), beads (30µg/well),
and purified ERâ LBD (final concentration of 5 nM) was
incubated at 4°C for at least 1 h. The concentration of active
receptors that are able to bind ligand was 0.6 nM, calculated
from Bmax (the maximal density of receptor sites). For
saturation ligand binding analysis, a sample of various
concentrations of [3H]-17â-estradiol (SA) 95 Ci/mmol) in
the presence or absence of a 300-fold excess of unlabeled
17â-estradiol was then added. The assay plates were sealed,
allowed to settle overnight, and subsequently counted on a
Wallac 1450 micro-â-counter. The dissociation constant (Kd)
was calculated as the free concentration of radioligand at
half-maximal specific binding by fitting data to the Hill
equation and by linear Scatchard transformation (19). Curve
fitting was done in Prism (GraphPad Software Inc.).

For ligand competition studies, purified ERâ LBDs (5 nM)
were incubated overnight at 4°C with a range of test
compound concentrations. A final concentration of 1.5 nM
[3H]-17â-estradiol (30µL per well) was used. The ligands
were tested three times with similar results. Curve fitting
was performed using Prism (GraphPad Software Inc.), and
the IC50s were determined. IC50 values were converted toKi
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using the Cheng-Prusoff equation,Ki ) IC50/(1 + D/Kd),
whereD is the concentration of the radioligand (20).

Surface Plasmon Resonance (SPR) Analysis for Raloxifene
Binding. SPR analyses were performed according to the
protocol as described (21). Research grade CM5 sensor chips
were obtained from BIAcore AB. Penta-His antibody (Qiagen)
surfaces were prepared using standard amine coupling
procedures.

Plasmids and Pull-Down Assay.TIF2 and RAP250 for in
vitro translation were expressed from the previously de-
scribed plasmids, pSG5Gal4-RAP250 (aa 819-1096) (15)
containing the first LXXLL motif and pBKCMV-TIF2 (22)
containing full-length TIF2, respectively.

For pull-down assays, purified His-tagged ERâ LBDs (100
µg) were bound to 60µL of Talon resin and then equilibrated
in 50 mM Tris-HCl, pH 7.4, 100 mM NaCl, 1 mM MgCl2,
10% glycerol, and 0.5% NP-40 (equilibration buffer). The
gel slurry was then divided into two equal aliquots, and to
each tube was added 2.5µL of in vitro translated,35S-labeled
(TNT coupled reticulocyte lysate system, Promega), TIF2
or RAP250 in a total volume of 150µL of equilibration
buffer containing 1.5% BSA. Estradiol or vehicle (ethanol)
was added as indicated. As control, TIF2 or RAP250 was
mixed with Talon gel without bound ERâ. All samples were
incubated for 2 h with gentle shaking at 4°C. After washing
three times with equilibration buffer, bound proteins were
eluted with SDS-PAGE sample buffer and separated on a
12% polyacrylamide gel. The gel was stained with Coo-
massie blue, followed by determination of35S using a
Phosphoimager instrument.

Surface Plasmon Resonance (SPR) Analysis for Coacti-
Vator Binding.All SPR measurements were performed on a
BIAcore 2000 instrument (BIAcore AB, Uppsala, Sweden).
All experiments were performed at 25°C and at a flow rate
of 5 µL/min. Research grade streptavidin sensor chips were
obtained from BIAcore AB. The streptavidin chips were first
treated with three 1-min pulses of 50 mM NaOH and 1 M
NaCl at a flow rate of 5µL/min. N-Terminally biotinylated
peptides (>95% purity) were purchased from Interactiva
(Germany). LXXLL peptide sequences were as follows:
TIF2 Box1 (residues 636-649), KGQTKLLQLLTTKS;
TIF2 Box2 (residues 685-698), EKHKILHRLLQDSS; TIF2
Box3 (residues 742-755), KENALLRYLLDKDD; RAP250
Box1 (residues 882-895), LTSPLLVNLLQSDI. Peptides
were immobilized on individual surfaces to 200 RU re-
sponses, and a non-LXXLL peptide was immobilized on a
control surface for on-line reference subtraction. Samples
of purified mERâ1 LBD or mERâ2 LBD were then injected
over each surface. After injection stopped, the surfaces were
washed with buffer to monitor the dissociation phase. The
buffer used was 50 mM Tris-HCl, pH 7.4, 150 mM NaCl, 1
mM EDTA, and 0.05% Tween 20. For the kinetic measure-
ments, various concentrations of mERâ1 LBD or mERâ2
LBD (from 20 to 100 nM) were injected over the chip
surfaces. The BIAevaluation software version 3.1 was used
for evaluation. Different binding models (different rate
equations) were tested in the global curve fitting procedure,
and the model best describing the experimental data was a
conformational change model. The apparentKD values are
calculated as described (23).

RESULTS

mERâ1 and mERâ2 Display Isoform SelectiVity with
Regard to Ligand Binding.The C-terminal regions containing
the LBD of mERâ1 and mERâ2 were expressed inE. coli,
and the recombinant proteins were purified. Ligand binding
to purified proteins was measured using a scintillation
proximity assay. In Figure 1, the results of saturation ligand
binding assays with tritiated estradiol are shown. The
measuredKd values were 0.8 nM for mERâ1 and 5-fold
higher (Kd ) 4.2 nM) for mERâ2. We next compared the
binding affinities of mERâ1 and mERâ2 to a set of ER
ligands using a competition assay. Table 1 shows theKis of
these compounds. As expected, the selectivity of estradiol
was higher for mERâ1 than for mERâ2 (14-fold). Interest-
ingly, raloxifene was dramatically (8-fold) mERâ2 selective.
When the raloxifene core was tested in the ligand binding
assays, the selectivity for mERâ2 was abolished, confirming
that the selectivity for mERâ2 was due to, at least in part,
the 3-aroyl side chain of raloxifene. No striking differences
in the binding affinities for 4-OH-tamoxifen, ICI-182,780,
or genistein between mERâ1 and mERâ2 could be detected.
These data indicate that ER ligands exhibit distinct selectivity
for mouse ERâ isoforms.

To further confirm the higher binding affinity of mERâ2
compared to mERâ1 for raloxifene, we used SPR analysis
to directly assay binding affinities. Figure 2 depicts the
binding responses obtained for the concentration series of
raloxifene injected across the mERâ1 or mERâ2 surface. It
is clear from a visual inspection of the data that raloxifene
dissociates from the mERâ1 faster than the mERâ2 isoform.
The measuredKD values were 0.31µM for mERâ1 and 10-
fold lower (KD ) 0.03 µM) for mERâ2, confirming that
raloxifene has a higher affinity for mERâ2 as compared to
mERâ1.

mERâ1 and mERâ2 Isoform SelectiVity Is Maintained in
Transcriptional Regulation.Estradiol and raloxifene exhib-
ited different isoform selectivity with regard to ligand binding
for the mouse ERâ. Next, we examined how this selectivity
was translated into modulation of transcriptional activity.
Estradiol induced a concentration-dependent activation of
mERâ1 and mERâ2 from a 2× ERE driven reporter gene
in transiently transfected HEK293 cells (Figure 3A). Notably,
mERâ1 had higher estradiol-induced activity than mERâ2.

FIGURE 1: Saturation analyses for [3H]-17â-estradiol binding to
mERâ1 and mERâ2. mERâ1 (b) and mERâ2 (O) LBDs were
incubated with increasing concentrations (0-30 nM) of [3H]-17â-
estradiol at 4°C overnight. Nonlinear regression in Prism (GraphPad
Software) of the data gives aKd of 0.8 nM for mERâ1 and aKd of
4.2 nM for mERâ2.
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Thus, maximal transcriptional activation by mERâ1 was
observed at 1 nM estradiol, whereas maximal transactivation
by mERâ2 was observed at 10 nM estradiol, at only 60% of
the maximal level seen with mERâ1. Raloxifene showed only
antagonist activity on both mERâ1 and mERâ2. As shown
in Figure 3B, raloxifene was more potent in antagonizing
estradiol-induced gene expression with mERâ2 than with
mERâ1, which is in agreement with its higher relative
binding affinity to mERâ2 than to mERâ1. In contrast to
raloxifene, the raloxifene core behaved as a pure agonist for
both mERâ1 and mERâ2 (Figure 3C). To confirm equivalent
ERâ expression, extracts from HEK293 cells transfected with
equal amounts of the expression vectors for mERâ1 or
mERâ2 used in transient transfection assays were separated
by SDS-PAGE and analyzed for ERâ expression by
Western blot (Figure 3D). This analysis shows that mERâ1
and mERâ2 are expressed at similar levels.

mERâ2 Has Reduced Interaction with CoactiVators. As
shown in Figure 3A, mERâ2 displayed significantly de-
creased estradiol-induced maximal transcriptional activity as
compared to mERâ1. Because the interaction of ER with
coactivators is believed to determine the magnitude of
transcriptional activity of the receptor, we compared the
affinities of mERâ1 and mERâ2 to the coactivators TIF2
and RAP250. We performed pull-down assays using purified
His-tagged ERâ LBDs and35S-labeled TIF2 or RAP250 in
the presence or absence of estradiol. As shown in Figure 4,
the binding of TIF2 and RAP250 to mERâ1 and mERâ2
appeared to be enhanced by the presence of estradiol.

Furthermore, the interactions of TIF2 and RAP250 with
mERâ2 were weaker than with mERâ1.

To examine interactions of TIF2 and RAP250 with ERs
more quantitatively, we used SPR analysis, where biotiny-
lated 14-mer peptides containing NR-box motifs (LXXLL)
from TIF2 or RAP250 were captured via streptavidin to the
chip surface. Figure 5A demonstrates overlaid sensorgrams
of injections of unliganded mERâ2 or mERâ2 liganded with
estradiol, 4-OH-tamoxifen, genistein, ICI-182,780, or raloxi-
fene assayed for binding to the TIF2 NR-Box2 peptide. These
results indicate that binding of ER agonists, estradiol and
genistein, to mERâ2 enhances the mERâ2-peptide interac-
tion, whereas 4-OH-tamoxifen, ICI-182,780, and raloxifene
decrease the affinity. Similar differences in binding, depend-
ing on ligand status, were seen with mERâ1 and also with
RAP250 interaction (data not shown). These data suggest
that conformational changes, induced by ligand binding,
impose different affinities for receptor-coactivator interac-
tions. In Figure 5B, the concentration-dependent association
of estradiol-bound mERâ2 to RAP250 NR-Box1 or TIF2
NR-Box2 is shown together with the best calculated fit.
Similar binding studies between mERâ1 and all the different
TIF2 and RAP250 NR-box peptides were also performed
(data not shown). Using BIAevaluation software, the affinity
of receptor-peptide interaction was determined. The best

Table 1: Binding Affinity of Selected Ligands for mERâ1 and
mERâ2

FIGURE 2: Kinetic analysis of raloxifene binding to mERâ1 and
mERâ2. Raloxifene was injected at concentrations of 0.03125,
0.0625, 0.125, 0.25, and 0.5µM over captured mERâ1 (A) and
mERâ2 (B). The data were best described using a simple 1:1
interaction model, yielding aKD of 0.31µM for mERâ1 and aKD
of 0.03 µM for mERâ2.
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fit for all peptide-ER interactions tested was obtained using
a conformational change model. The apparent affinities listed
in Table 2 show that the TIF2 peptides have higher affinity
for mERâ1 and mERâ2 than the RAP250 peptide. The data
also show that both TIF2 and RAP250 have binding
preferences for mERâ1. In comparison to mERâ1, the lower

affinity of mERâ2 to coactivators may account for its reduced
maximal transcriptional activity.

DISCUSSION

Since 1997, when a new isoform of the rat ERâ gene
named ERâ2 was identified (8), only a few studies have
addressed the function of this variant (9-12). It has been
shown that ERâ2 binds estradiol with a lower affinity than
ERâ1. ERâ2 can form heterodimers with ERâ1 as well as
with ERR. Further, transient coexpression of ERâ2 and ERR
or ERâ1 in cell lines results in ERâ2-induced reduction of
ERR and ERâ1 activity. In this paper, we have addressed
the effect of ligand binding selectivity and ligand-induced
recruitment of coactivators on the transcriptional activation
profiles of mouse ERâ1 and ERâ2.

It is predicted that the 18 amino acid insertion of ERâ2
lies within helix 6 of the receptor (24). Given that the
insertion is right after theâ-sheet that contains Phe-356,
which makes direct contact with the ligands, and in close
proximity to helix 5, known to have direct interactions with
coactivators, the inserted amino acids might affect both
ligand binding and coactivator interactions. We have com-
pared the binding affinities of mERâ1 and mERâ2 to a set
of ER ligands. In accordance with previous studies, our
results show that the binding affinity of estradiol for mERâ1
was much higher than for mERâ2. On the contrary, ralox-
ifene was found to be dramatically mERâ2 selective. The
differences found for estradiol and raloxifene in our ligand
binding assay were also reflected in the transactivation assay.
This observation suggests that raloxifene could act as a potent
antagonist of ERâ2 actions and that this differential ralox-
ifene sensitivity may represent a way to dissect the physi-
ological importance of ERâ2. Furthermore, we demonstrated
that the raloxifene core behaved as an agonist, showing that
the selective antagonist potency of raloxifene for mERâ2 is
due to its 3-aroyl side chain. Raloxifene but not 4-OH-
tamoxifen or ICI has been shown to be a higher affinity
ligand and a more potent estrogen antagonist for human ERR
than ERâ (25). Therefore, the mERâ2 binding selectivity
for these three ligands more closely resembles that of ERR
than of mERâ1. In the present study, we also observed that
mERâ2 showed significantly decreased estradiol-induced
maximal transcriptional activity than mERâ1. We therefore
evaluated the affinities of mERâ1 and mERâ2 for coacti-
vators TIF2 and RAP250. Our results indicate that mERâ2
interacts with both coactivators with lower affinity than
mERâ1, which may explain why the transcriptional activity
of mERâ2 is lower than that of mERâ1.

A detailed understanding of why raloxifene is selective
for mERâ2 over mERâ1 is not possible since no crystal-
lographic structure of the ERâ2 isoform is currently avail-
able. However, a comparison of the existing raloxifene
structures complexed with hERR (26) (PDB accession code
1ERR) and rERâ1 (27) (PDB accession code 1QKN) is
instructive. As mentioned above, the raloxifene binding
characteristics of mERâ2 more closely resemble ERR than
ERâ1. As shown in Figure 6A, Phe-322 in the ERâ/
raloxifene crystallographic structure is pointed toward the
ligand forcing the 2-aryl group of raloxifene upward. As a
consequence, the hydrogen bond between His-430 and the
4′-hydroxyl group of raloxifene is weakened (O‚‚‚H-N angle

FIGURE 3: Transcriptional activity of mERâ1 and mERâ2 proteins
assayed on 2× ERE TK luciferase reporter. HEK293 cells were
transfected with the 2× ERE TK luciferase reporter plasmid and
expression plasmids encoding mERâ1 or mERâ2. (A) Cells were
treated with vehicle (ethanol) or the indicated concentrations of
17â-estradiol. (B) Antagonist potency of raloxifene for mERâ1 and
mERâ2 in the presence of 10 nM 17â-estradiol. Cells were treated
with vehicle (ethanol) or the indicated concentrations of raloxifene.
Values obtained from cells treated with only 10 nM 17â-estradiol
were arbitrarily set to 100. (C) Cells were treated with vehicle
(ethanol) or the indicated concentrations of the raloxifene core.
Values represent the mean( SD of three independent experiments.
(D) Western blot analysis of ERâ andâ-actin. Identical amounts
(100 µg of protein) of whole cell extracts from nontransfected
control HEK293 cells or cells transfected with equal amounts of
expression vectors for mERâ1 and mERâ2, respectively, were
analyzed. The bands were quantified by densitometric scanning,
and the amount of ERâ was normalized toâ-actin.
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) 145° vs 180° for an ideal hydrogen bond). In contrast,
the corresponding Phe-425 is pointed away from the ligand
in the ERR crystallographic structure, allowing more flex-
ibility for positioning of the ligand in the binding cavity,
and consequently the hydrogen bond between His-524 and
the 4′-hydroxyl group is stronger (O‚‚‚H-N angle) 165°
in 1ERR). Hence the conformation of Phe-322 is an
important determinant of the affinity of the various ER
isoforms for raloxifene. Now turning to ERâ2, the insert
between Arg-364 and Asp-365 on helix 6 is very close to

Phe-322 (Figure 6A) and therefore could easily influence
the preferred conformation of this phenylalanine residue. The
ERâ2 insert may perturb the conformation of Phe-322 so
that it behaves more like in ERR, making more room for
the 2-aryl group of raloxifene so that in turn the 4′-hydroxyl
group can form a stronger hydrogen bond to His-430. This
would account for the increased affinity of raloxifene for
ERâ2. The explanation for why raloxifene but not the
raloxifene core is ERâ2 selective can be understood by
comparing the crystallographic structure of ERR complexed

FIGURE 4: Analysis of TIF2 (A) and RAP250 (B) interactions with mERâ1 and mERâ2 by pull-down assay. In vitro translated TIF2 or
RAP250 was incubated with mERâ1 (lanes 3 and 4) and mERâ2 (lanes 5 and 6), with or without estradiol (E2) as indicated. Nonspecific
binding of TIF2 or RAP250 to Talon beads is shown in lanes 1 and 2. Input corresponds to 0.5µL of the in vitro translation mixture. The
amount of loaded mERâ1 (lanes 3 and 4) and mERâ2 (lanes 5 and 6) was examined by Coomassie blue staining (middle panel). The bar
graph shows the relative binding of mERâ1 (lanes 3 and 4) and mERâ2 (lanes 5 and 6) to TIF2 or RAP250 compared to the amount of
loaded protein, as determined by densitometric scanning. The relative binding of mERâ1 to TIF2 or RAP250 in the absence of estradiol
was set to 1. Nonspecific binding of TIF2 or RAP250 to a 6× His control protein, which does not interact with coactivators, could not be
detected using the experimental conditions employed (data not shown).
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with the raloxifene core (PDB accession code 1GWQ) (28)
to the two raloxifene structures, 1ERR and 1QKN (see Figure
6B). The raloxifene core binds to ER in a flipped orientation
relative to raloxifene. In this binding mode, the 6-hydroxyl
group of the raloxifene core forms a strong hydrogen bond
to His-524 (O‚‚‚H-N angle) 179°). Also, in this flipped
orientation, the distance between the raloxifene core and
Phe-425 is larger so that it is less sensitive to the conforma-
tion of this phenylalanine residue. In contrast, the 3-aroyl
side chain forces the benzothiophene moiety of raloxifene
to bind in a flipped orientation relative to the raloxifene core
and pushes the 2-aryl group toward Phe-322.

The biological significance of the existence of two main
ERâ isoforms in rat and mouse is presently unclear. Given

that ERâ2 suppressed the ERR-mediated transcriptional
response, one possibility is that ERâ2 acts as a negative
regulatory partner of ERR under specific physiological
conditions. It has been demonstrated that ERâ1 acts as
modulator of ERR-mediated gene transcription in mouse
uterus (29). Furthermore, it was found that the ERâ2 protein
is upregulated and the colocalization of ERâ2 with ERR is
increased during the lactation period in rat mammary gland,
indicating a possible role of ERâ2 as a dominant repressor
of ERR (13). Our study and those of others demonstrate that
the two receptor isoforms show differences in response to
estradiol and other ligands. It is thus also possible that
regulation of receptor isoform expression could govern the
tissue effects of specific estrogenic agents. The other
possibility is that ERâ2 provides a cellular mechanism to
respond to elevated estradiol levels, e.g., achieved in the
ovary during pregnancy or the periovulatory phase, higher
than those required to fully activate ERR and ERâ1. In
addition, it cannot be excluded that there exist phyto- or
xenoestrogens that act preferentially at ERâ2. ERâ2 may
also have other functions. For example, it was shown that,
in the presence of estradiol or raloxifene, ERâ2 can activate
the transforming growth factorâ promoter as efficiently as
ERR and ERâ1 (11).

In mouse and rat, the tissue distribution and/or the relative
levels of ERâ1 and ERâ2 mRNA seem to be quite different,
that is, high expression in liver, pancreas, uterus, breast, and
brain for ERâ2 and in nervous system for ERâ1 (30),

FIGURE 5: SPR analysis of LXXLL peptide binding to mERâ2.
(A) Overlaid sensorgrams showing injections of 100 nM unliganded
mERâ2 and mERâ2 liganded with estradiol, genistein, ICI-182,-
780, raloxifene, or 4-OH-tamoxifen, respectively, over a surface
captured with 200 RU of TIF2 NR-Box2 peptide. Ligand concen-
trations of 1µM were used. (B) Overlaid sensorgrams showing
injections of mERâ2 liganded with 1µM estradiol at protein
concentrations of 20, 40, 60, 80, and 100 nM over a surface captured
with 200 RU of RAP250 NR-Box1 peptide or TIF2 NR-Box2 (solid
lines) and best calculated fit using a conformational change model
(dotted lines).

Table 2: Apparent Dissociation Constants and Rate Constants for
Interactions between TIF2 or RAP250 NR-Box Peptides and
Estradiol-Bound mERâ1 and mERâ2a

TIF2 RAP250

mERâ1 Box1 Box2 Box3 Box1

KD (nM) 7.3( 2.9 4.2( 0.8 12.7( 4.1 41.5( 6.9
ka1 × 104

(M-1 s-1)
12.1( 1.0 35.3( 2.3 15.1( 0.6 10.9( 0.3

kd1 × 10-3

(s-1)
3.4( 0.6 3.6( 0.8 3.3( 0.9 6.1( 0.1

ka2 × 10-3

(s-1)
1.9( 0.1 1.2( 0.2 1.8( 0.2 2.3( 0.1

kd2 × 10-3

(s-1)
0.5( 0.1 0.5( 0.1 1.0( 0.3 1.7( 0.2

TIF2 RAP250

mERâ2 Box1 Box2 Box3 Box1

KD (nM) 66.3( 23.2 63.7( 21.2 120.8( 30.5 272.3( 82.4
ka1 × 104

(M-1 s-1)
4.6( 1.2 4.5( 0.6 3.4( 0.3 6.0( 0.8

kd1 × 10-3

(s-1)
6.2( 0.8 5.1( 0.6 5.6( 1.0 32.3( 2.6

ka2 × 10-3

(s-1)
2.0( 0.2 1.8( 0.1 1.5( 0.1 4.5( 1.0

kd2 × 10-3

(s-1)
1.0( 0.1 1.0( 0.1 1.1( 0.2 2.3( 0.4

a The apparentKD values were obtained from SPR-generated data
using the curve fitting analysis program BIAevaluation. The data were
best described using a conformational change model according to
equation

A + B y\z
ka1

kd1
AB y\z

ka2

kd2
AB*

The receptor (A) first forms an unstable complex (AB) with the peptide
(B) and then undergoes a conformational change that leads to a more
stable complex (AB*).KD ) (kd1/ka1)(kd2/ka2). Values represent the mean
( SD of three independent experiments.
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implying a specific mechanism regulating expression of one
or the other splice variant. In humans, tissue-specific
expression of the ERR gene has been shown to be regulated
by multiple promoters (31). Further studies, including cloning
and characterization of putative promoters, should help to
elucidate the regulatory mechanisms of ERâ isoform expres-
sion. Interestingly, the expression of ERâ2 mRNA has been
demonstrated in various human cancer cell lines (9). A
variant of ERR, analogous to ERâ2, which contains an in-
frame insertion between exons 5 and 6 that encodes an
additional 23 amino acids in the LBD has been reported in
human breast cancers (32). In breast, raloxifene acts as a
classical antiestrogen to inhibit the growth of mammary
carcinoma (33). Our findings that raloxifene binds prefer-
entially to ERâ2 imply that the varying expression of ERâ
isoforms under certain conditions might have important
pharmacological implications.

Selective estrogen receptor modulators (SERMs) are
developed to display either agonist or antagonist activity in
a tissue-selective manner and are likely to provide novel and
improved therapeutic strategies. Although the mechanisms
by which these ligands accomplish tissue-selective activity
remain to be fully elucidated, multiple ERs provide op-
portunities for the synthesis of receptor-selective ligands as
one class of SERMs. However, isoform-dependent ligand
selectivity, reported for the two rodent ERâs in this study,
needs to be considered when novel compounds are tested in
animal studies.
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Epidermal growth factor receptor regulates MET levels and invasiveness

through hypoxia-inducible factor-1a in non-small cell lung cancer cells
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Recent studies have established that amplification of the
MET proto-oncogene can cause resistance to epidermal
growth factor receptor (EGFR) tyrosine kinase inhibitors
(TKIs) in non-small cell lung cancer (NSCLC) cell lines
with EGFR-activating mutations. The role of non-
amplified MET in EGFR-dependent signaling before
TKI resistance, however, is not well understood. Using
NSCLC cell lines and transgenic models, we demonstrate
here that EGFR activation by either mutation or ligand
binding increases MET gene expression and protein levels.
Our analysis of 202 NSCLC patient specimens was
consistent with these observations: levels of MET were
significantly higher in NSCLC with EGFR mutations than
in NSCLC with wild-type EGFR. EGFR regulation of
MET levels in cell lines occurred through the hypoxia-
inducible factor (HIF)-1a pathway in a hypoxia-independent
manner. This regulation was lost, however, after MET
gene amplification or overexpression of a constitutively
active form of HIF-1a. EGFR- and hypoxia-induced
invasiveness of NSCLC cells, but not cell survival, were
found to be MET dependent. These findings establish that,
absent MET amplification, EGFR signaling can regulate
MET levels through HIF-1a and that MET is a key
downstream mediator of EGFR-induced invasiveness in
EGFR-dependent NSCLC cells.
Oncogene (2010) 29, 2616–2627; doi:10.1038/onc.2010.16;
published online 15 February 2010

Keywords: EGFR; MET; non-small cell lung cancer;
HIF-1a; invasiveness

Introduction

Non-small cell lung cancer (NSCLC) is the leading cause
of cancer death in the United States. Epidermal growth
factor receptor (EGFR)-activating mutations have been
described in a subset of NSCLC patients, and activated
EGFR is known to influence tumor cell survival,
proliferation, angiogenesis, and invasiveness (Lynch
et al., 2004; Paez et al., 2004; Pao et al., 2004; Janne
et al., 2005; Pao and Miller, 2005; Ciardiello and
Tortora, 2008). EGFR tyrosine kinase inhibitors (TKIs)
such as erlotinib and gefitinib are clinically active in
10–20% of NSCLC patients (Fukuoka et al., 2003; Kris
et al., 2003; Shepherd et al., 2005; Thatcher et al., 2005).
Activating mutations within the EGFR tyrosine kinase
domain including an amino acid substitution at exon 21
(L858R) and in-frame deletions in exon 19 were found
to be predictors of clinical response to EGFR TKIs
(Lynch et al., 2004; Paez et al., 2004; Pao et al., 2004).

Recent evidence suggests that in NSCLC cells
activating EGFR mutations or amplification of the
MET proto-oncogene caused acquired resistance to
EGFR TKIs by driving activation of the PI3K pathway
(Engelman et al., 2007). The role of MET in EGFR-
dependent signaling before the emergence of TKI
resistance is not well understood; however, MET is
regulated by hypoxia and hypoxia-inducible factor-1a
(HIF-1a) and is thought to contribute to invasive tumor
growth (Pennacchietti et al., 2003). The MET protein is
a receptor tyrosine kinases whose activation can cause
malignant transformation and tumorigenesis (Cooper
et al., 1986; Park et al., 1987; Stabile et al., 2004). Upon
ligand binding, MET activates downstream signaling
molecules including PI3K, Src, and signal transducer
and activator of transcription-3 (Rosario and Birchmeier,
2003), triggering the key metastatic steps of cell
dissociation (Qiao et al., 2002), migration (Yi et al.,
1998), and invasion (Bredin et al., 2003). MET is
overexpressed in multiple malignancies and is associated
with aggressive disease (Peruzzi and Bottaro, 2006). In
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NSCLC, MET levels are elevated in resected tumors
compared with normal tissue (Liu and Tsao, 1993;
Ichimura et al., 1996; Olivero et al., 1996), and high
expression of the MET ligand hepatocyte growth factor
(HGF) is associated with aggressive disease and a poor
prognosis (Siegfried et al., 1998).

Recent studies have suggested a link between EGFR
signaling and MET. Expression and phosphorylation of
EGFR and MET correlate in multiple malignancies
(Weinberger et al., 2005). Aberrant EGFR activation
results in elevated MET phosphorylation in thyroid
carcinoma cells (Bergstrom et al., 2000). EGFR function
has been implicated in HGF-induced hepatocyte pro-
liferation (Scheving et al., 2002) and is required for
MET-mediated colon cancer cell invasiveness (Pai et al.,
2003). Recent studies of phosphoprotein networks
reveal an association between EGFR and MET activa-
tion (Huang et al., 2007; Guo et al., 2008), and have
reported direct crosstalk between EGFR and the MET
(Jo et al., 2000; Huang et al., 2007).

A plausible link between the EGFR and MET
pathways is HIF-1, which has two subunits (HIF-1a
and HIF-1b), and is known to contribute to tumor cell
motility and invasiveness. EGF has been shown to
modulate HIF-1a levels in prostate, breast, and lung
cancer cell lines (Zhong et al., 2000; Phillips et al., 2005;
Peng et al., 2006), and positive correlations between
EGFR and HIF-1a expression have been observed in
NSCLC (Hirami et al., 2004; Swinson et al., 2004).

Here, we have used clinical specimens, transgenic
mouse models, and cell lines to investigate the hypo-
thesis that EGFR signaling may regulate MET levels
through HIF-1a but that MET amplification, which
occurs in EGFR TKI resistance, would uncouple MET
levels from EGFR regulation. We hypothesized further
that EGFR-induced invasiveness, like hypoxia-induced
invasiveness, is mediated downstream at least in part by
the HIF-1a/MET axis.

Results

EGFR-activating mutations are associated with elevated
levels of MET in NSCLC clinical samples
To investigate a possible association between EGFR
activation and MET in clinical specimens, we evaluated
MET levels by immunohistochemistry and assessed
EGFR mutations in 202 human NSCLC clinical speci-
mens. Out of 202 samples, 22 had detectable EGFR
mutations. Specimens were immunostained for MET
and scored based on an intensity score (0, 1, 2, or 3)
and an extension percentage. The final score was the
product of these two values. The mean score for MET
expression was 39.46±64.52. Therefore, a score of 40
was considered the cutoff for classifying low and
high levels of MET expression. The mean MET
expression score was significantly higher in specimens
with mutated EGFR (73.64±70.68) than in specimens
with WT EGFR (48.72±71.72; P¼ 0.04; Figure 1a).
Furthermore, 37% of NSCLC tumors with WT EGFR

expressed high levels of membranous MET, whereas
68% of NSCLC tumors with mutated EGFR expressed
high levels of membranous MET (P¼ 0.005; Figure 1b).
Among adenocarcinomas with EGFR-activating muta-
tions, we did not observe any association between
EGFR expression and survival. However, considering
the small sample size, no definitive conclusions can
be drawn.

EGFR activation modulates MET expression
in transgenic murine models of NSCLC
We investigated whether a similar association between
EGFR-activating mutations and MET expression
occurred in murine models of NSCLC. We used
transgenic mice with lung tumors driven by lung-
specific mutated K-RAS or activating EGFR mutation
(Forsythe et al., 1996; Johnson et al., 2001). Lung
tumor sections were immunostained for MET and
scored as described above. K-RAS-driven lesions had an
average score of 6.75, whereas tumors with EGFR-
activating mutations had an average staining score of
40.65 (Figure 1c; Po0.001). Treatment of mice bearing
EGFR-driven lung tumors with the EGFR TKI
erlotinib (50mg/kg/day) for 48 h abolished MET,
providing evidence that MET levels were regulated by
EGFR activation.

EGFR-activating mutations are associated with elevated
HIF-1a and MET levels in NSCLC cell lines
Given our finding that tumors with EGFR mutations
exhibit higher MET expression, we investigated MET
regulation by EGFR and its role in EGFR-mediated
NSCLC invasiveness. We evaluatedMET RNA levels in
NSCLC cell lines by performing gene expression
analysis on gene arrays of 53 previously characterized
NSCLC lines (eight lines with mutated EGFR) (GEO
4824) (Zhou et al., 2006). MET RNA levels were
significantly higher in EGFR-mutated cell lines than in
NSCLC cell lines expressing WT EGFR (Figure 2a;
P¼ 0.002); however, MET expression levels in cell lines
with K-RAS mutations were not significantly different
compared with cell lines with WT K-RAS. Moreover, we
observed a significant association between EGFR gene
copy number (44 copies using RT–PCR) and levels of
MET expression (P¼ 0.03, Figure 2b).

We evaluated MET protein levels in NSCLC with or
without EGFR-activating mutations and observed con-
stitutive EGFR phosphorylation in cell lines with
mutated EGFR, which was associated with increased
phosphorylated MET (p-MET) and MET expression
(Figure 2c). Cell lines with EGFR-activating mutations
were positive for HIF-1a expression in normoxia.
HCC827 cells, which exhibited the most robust expres-
sion of p-EGFR, produced the highest levels of HIF-1a,
p-MET, and MET. Western data are supported by
ELISA analysis showing higher levels of p-EGFR,
p-MET, and HIF-1a in cell lines with EGFR-activating
mutations compared with cells with WT EGFR
(Figures 2d–f).
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Activated EGFR modulates p-MET, MET, and HIF-1a
We treated HCC827 cells with 1 mM of erlotinib for
12 h and evaluated p-MET, MET, and HIF-1a levels.
Erlotinib reduced p-MET and MET protein (Figure 3a).
EGFR inhibition resulted in diminished HIF-1a levels.
p-MET, MET, and p-EGFR were further analyzed
by ELISA assay (Figure 3b). Consistant with data
obtained by western blot, erlotinib decreased p-EGFR
(P¼ 0.009), p-MET (P¼ 0.1), and MET (P¼ 0.001)
levels. As HIF-1a is known to regulate MET transcrip-
tion, we determined whether mutated EGFR would
regulate MET mRNA levels. We treated HCC827 cells

with or without erlotinib (1 mM) for 12 h and collected
RNA for RT–PCR to evaluate changes in MET mRNA
relative to GAPDH RNA. Inhibition of EGFR activity
resulted in approximately a 50% decrease in MET RNA
compared with control levels (Figure 3c).

To further show that EGFR signaling modulates
HIF-1a and MET protein expression, we transfected
HCC827 cells with control siRNA and EGFR-, HIF-1a-,
and MET-targeting siRNA. Knockdown of EGFR
decreased p-MET, MET, and HIF-1a levels. HIF-1a-
targeting siRNA did not alter EGFR expression but
reduced MET expression and activation, whereas MET
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Figure 1 Elevated MET and HGF expression correlates with EGFR-activating mutations in NSCLC tumor samples. NSCLC clinical
specimens (n¼ 202) were immunostained with anti-MET ab and scored (a). EGFR-activating mutations correlated with elevated levels
of MET. Bars, s.e.m.; *Po0.05. (b) Data are presented as the percentage of tumors with high MET expression; **Po0.005.
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siRNA reduced MET but not EGFR or HIF-1a
levels (Figure 3d), indicating that HIF-1a and MET
are downstream of EGFR. Similar results were ob-
tained by HIF-1a ELISA assay. siRNA directed against
EGFR but not MET decreased HIF-1a levels (P¼ 0.009;
Figure 3e).

MET amplification has been described in a subset of
NSCLC patients (Zhao et al., 2005; Engelman et al.,
2007). To determine whether MET amplification would
result in MET expression that was independent of
EGFR, we treated H1993 NSCLC cells, which harbor
an amplified MET allele (Engelman et al., 2007;
Lutterbach et al., 2007), with erlotinib, and evaluated
p-EGFR, EGFR, p-MET and MET levels. In contrast
to the EGFR-dependent cell lines tested, pharmacolo-
gical inhibition of EGFR did not diminish MET
expression in this cell line (Figure 3f).

Previous studies suggested that activated EGFR
can directly induce phosphorylation of MET (Bergstrom
et al., 2000; Jo et al., 2000). To evaluate the effect of
EGFR activation on MET in NSCLC, we stimulated
A549 cells with EGF with or without erlotinib.
Phosphorylated EGFR was detected 30min after ligand

stimulation, and EGFR activation was inhibited with
erlotinib (Figure 3g). EGFR levels decreased 12 h after
the addition of EGF, which may have been a result of
receptor internalization. EGF stimulation triggered rises
in p-MET levels at 30min, suggesting that EGFR
directly activated MET. p-MET levels remained detect-
able 6 h after EGF stimulation. Prolonged exposure
(24 h) to EGF resulted in increased levels of MET
protein (Figure 3h).

EGFR-mediated invasion of NSCLC cells is MET
dependent
To show that MET activation increases invasiveness in
NSCLC and that this can be abrogated with the MET
TKI, PHA-665752, we treated A549 and HCC827
tumor cells with the MET ligand HGF alone or with
PHA-66752. Cell invasion was measured using Matrigel-
coated Boyden chambers. In both cell lines, HGF
stimulation resulted in a significant increase in invasive-
ness, and this was inhibited with the addition of PHA-
665752 (Po0.05; Figure 4a). As EGFR activation has
been shown to modulate tumor cell invasion in multiple
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Figure 2 EGFR-activating mutations are associated with elevated MET and HIF-1a levels in NSCLC cell lines. (a) Gene expression
analysis was performed on gene arrays of 53 NSCLC lines. MET expression was elevated in NSCLC cell lines harboring
EGFR-activating mutations; *P¼ 0.002. (b) MET expression in 53 NSCLC cell lines with high EGFR gene copy number (44 copies)
vs low copy number (o4 copies); *P¼ 0.03. (c) Western blot was used to evaluate pEGFR, EGFR, p-MET, MET, and HIF-1a
expression in NSCLC cell lines expressing WT EGFR or mutationally activated EGFR. The presence of EGFR-activating mutations
was associated with increased levels of p-MET, MET, and HIF-1a. (d–f) ELISA assay was used to analyze levels of p-EGFR (d),
p-MET (e), and HIF-1a (f) in NSCLC cell lines expressing WT EGFR or mutationally activated EGFR. # indicates samples that were
out of range.

Activated EGFR regulates MET through HIF-1a
L Xu et al

2619

Oncogene



cell types including NSCLC (Hamada et al., 1995;
Damstrup et al., 1998), we investigated whether EGFR
activation’s effect on tumor cell invasion is MET
mediated. We stimulated A549 cells with EGF alone
or with erlotinib or the MET TKI, PHA-665752. EGF
induced a twofold increase in cell invasion compared
with control (Po0.05; Figure 4b). The addition of
erlotinib or PHA-665752 reduced the number of
invading cells to control levels, indicating that EGFR-
driven cell invasion is MET dependent. In a similar
experiment using HCC827 cells, in which EGFR is

constitutively activated, EGF stimulation did not in-
crease tumor cell invasiveness compared with control
levels; however, pharmacological inhibition of EGFR or
MET activation significantly reduced the number of
invading cells (Figure 4c; Po0.05).

To further elucidate the mechanism by which
EGFR-activating mutations drive tumor cell invasion,
we transfected HCC827 cells with EGFR-, HIF-1a-, or
MET-targeting siRNA and evaluated cell invasion.
Knockdown of EGFR, HIF-1a, or MET resulted in
decreased invasive capacity (Figure 4d; Po0.001),
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whereas control siRNA did not affect invasive capacity.
To confirm that decreases in the number of invasive cells
after erlotinib or siRNA treatment was indeed do to
changes in the invasive capacity of tumor cells and not
because of changes in cell viability or proliferation, we
separately performed a similar study in which the
number of invasive cells was normalized to the number
of cells that did not invade through the chamber
(Supplemental Figure 1). These data were in agreement
with the findings shown above.

To determine whether MET inhibition impacted
cellular growth, we conducted MTS (3-(4,5-dimethylthia-
zol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-
2H-tetrazolium, inner salt) assays in the presence of
increasing concentrations of erlotinib or PHA-665752.
HCC827 cells were sensitive to the EGFR inhibitor
erlotinib (IC50 o10nM), whereas H1993 and A549 cells
were less sensitive (Supplemental Figure 2). None of the
three cell lines were sensitive to PHA-665752 at
concentrations as high as 10mM. This suggested that
invasiveness but not cell survival was MET dependent in
these cell lines.

Hypoxia-induced invasiveness of NSCLC cells
is MET dependent
Previous studies show that hypoxia increases the
invasive capacity of tumor cells (Cuvier et al., 1997).
Therefore, we investigated whether MET activation
mediates hypoxia-induced invasiveness of tumor cells.
A549 cells were plated in Matrigel-coated Boyden
chambers and incubated in normoxia (21% oxygen) or
hypoxia (0.1% oxygen) with or without erlotinib or
PHA-665752. Hypoxia enhanced tumor cell invasion
more than 2.5-fold (Po0.001). Erlotinib caused a
moderate decrease in tumor cell invasiveness, whereas
MET inhibition reduced hypoxia-induced tumor cell
invasion to levels below baseline (Figure 5a; Po0.001).

To examine the role of HIF-1a in this pathway, we
stably transfected A549 cells with a variant form of
HIF-1a (HA- HIF-1a P402A;P564A) that is constitu-
tively stabilized in normoxia because of proline to
alanine substitutions at the VHL binding site critical for
HIF-1a polyubiquitination and degradation (Masson
et al., 2001; Hu et al., 2003; Kim et al., 2006). Expression
of the HIF-1a variant augmented MET production

EGF
Erlotinib 

PHA-665752 

N
um

be
r 

of
 In

va
si

ve
 C

el
ls

R
el

at
iv

e 
to

 C
on

tr
ol

0

0.5

1

1.5

2

2.5

3 A549 * **

*

*

*

0

1

2

3

4

5

N
um

be
r 

of
 In

va
si

ve
 C

el
ls

R
el

at
iv

e 
to

 C
on

tr
ol

*

*

*

*
*

HGF
PHA-665752

EGF
Erlotinib 

PHA-665752

HCC827

0

0.4

0.8

1.2

1.6

**

*

N
um

be
r 

of
 In

va
si

ve
 C

el
ls

R
el

at
iv

e 
to

 C
on

tr
ol

HCC827

0

0.2

0.6

1.0

1.4

C
on

tr
ol

C
on

tr
ol

si
R

N
A

E
G

F
R

si
R

N
A

H
IF

-1
α

si
R

N
A

M
E

T
si

R
N

A

*
*

*

N
um

be
r 

of
 In

va
si

ve
 C

el
ls

R
el

at
iv

e 
to

 C
on

tr
ol

++
+

+

+

+

+-
-

--

---

--

--+
+

+
+

- -
--

+
+

+
+

- -
--

HCC827A549

+

+
+

---
-
- -

- -
-

Figure 4 MET is required for EGFR-driven invasiveness of NSCLC cell lines. (a) A549 and HCC827 cells were seeded onto Matrigel-
coated invasion chambers. Cells were treated with HGF (40 ng/ml) with or without PHA-663225 (1mM) and incubated for 48 h.
Migrating cells were quantified by bright-field microscopy. Bars, % s.d.; *Po0.05. (b) A549 cells were seeded onto Matrigel-coated
invasion chambers. Cells were treated with EGF (60 ng/ml), erlotinib (1mM), or PHA-663225 (1mM) and incubated for 24 h. EGF
significantly enhanced cell invasion, and EGFR and MET inhibitors abrogated EGF-induced invasion. Bars, % s.d.; *Po0.05;
**Po0.001. (c) HCC827 cells were treated with EGF, erlotinib, or PHA-663225 and tumor cell invasion was evaluated by Boyden
chamber assay. Bars, % s.d.; *Po0.05; **Po0.001. (d) HCC8827 cells were transfected with control siRNA or siRNA-targeting
EGFR, HIF-1a, or MET, and tumor cell invasion was evaluated by Boyden chamber assay. Bars, % s.d.; *Po0.001.

Activated EGFR regulates MET through HIF-1a
L Xu et al

2621

Oncogene



(Figure 5b) and was associated with enhanced tumor cell
invasion (Po0.05; Figure 5c). PHA-665752, but not
erlotinib, reduced the number of invading cells to below
baseline values (Po0.05). These findings were consistent
with MET being a downstream mediator of HIF-1a-
mediated invasiveness in thse cells.

We examined the impact of WT and mutated EGFR,
and the role of MET, on invasiveness in NIH-3T3 cells.
NIH-3T3 cells were stably transfected with control GFP
plasmid, WT EGFR or EGFR bearing the L858R
mutation or the deletion mutant DL747-5752del. A
greater than twofold increase in HIF-1a levels was
observed in cells bearing the DL747-5752del deletion
(P¼ 0.02) or the L858R mutation (P¼ 0.01) compared
with GFP transfected controls (Figure 5d). RT–PCR
analysis revealed that NIH-3T3 cells expressing L858R
expressed increased MET mRNA levels compared with
GFP transfected controls (P¼ 0.02; Figure 5e). NIH-
3T3 cells stably transfected with control GFP plasmid,

WT EGFR, or EGFR bearing the L858R mutation or
the deletion mutant DL747-5752del were allowed to
invade Matrigel-coated Boyden chambers with or with-
out PHA-66752. Cells expressing WT or activated
EGFR had enhanced invasive capacity compared with
cells transfected with GFP vector, and inhibition of
MET significantly reduced the number of invasive cells
to near baseline values (Figure 5f).

Discussion

This study offers new insights into the mechanisms by
which EGFR mediates its tumorigenic effects and
provides new evidence that the HIF-1a/MET axis is
critical to regulating invasiveness induced not only by
hypoxia but by EGFR as well, thus illustrating the
convergence of two pathways known to drive invasive
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Figure 5 Hypoxia-induced tumor cell invasion is MET dependent. (a) A549 cells were seeded onto growth factor-reduced Matrigel-
coated invasion chambers and incubated in normoxia or hypoxic (1% O2) conditions with or without erlotinib (1mM) or PHA-663225
(1mM) for 24 h, and the number of invading cells was quantified. Hypoxia-induced invasion was MET dependent but EGFR
independent. Bars, % s.d.; *Po0.05; **Po0.001. (b) A549 cells were transfected to overexpress a degradation-resistant HIF-1a
variant (HA- HIF-1a P402A;P564A), as shown by immunoblot. Increased HIF-1a was associated with enhanced MET expression.
(c) A549 cells and A549 cells transfected with empty vector (EV) or plasmid containing the HIF1a mutant were evaluated for changes
in invasive capacity in media with or without erlotinib (1mM) or PHA-663225 (1mM). After 24 h the number of invading cells was
quantified. Bars, % s.d.; *Po0.05; **P¼ 0.006. (d) NIH-3T3 cells expressing GFP, WT EGFR, or EGFR bearing the L858R mutation
or the deletion mutant DL747-S752del were evaluated for HIF-1a levels by ELISA. *Po0.05. (e) MET mRNA expression was
evaluated by RT–PCR in NIH-3T3 cells expressing WT EGFR and EGFR-activating mutations. *Po0.05. (f) NIH-3T3 cells
expressing GFP, WT EGFR, or EGFR bearing the L858R mutation or the deletion mutant DL747-S752del were allowed to migrate
through Matrigel-coated invasion chambers for 24 h with or without PHA-663225 (1 mM). Bars, s.d.; *Po0.05.
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tumor growth. In NSCLC cells, we showed that EGFR
activation, by either EGFR kinase mutations or ligand
binding, increased MET levels through a hypoxia-
independent mechanism involving expression of HIF-
1a. MET was uncoupled from EGFR regulation,
however, in a cell line with MET amplification, a
finding consistent with the recently described role of
MET amplification in EGFR TKI resistance (Engelman
et al., 2007). Overexpression of a constitutively active
form of HIF-1a also abrogated the regulation of MET
levels by EGFR. Therefore, though this study shows
that EGFR signaling can regulate MET levels and that
MET can be downstream mediator of EGFR-induced
invasiveness, it also suggests that there are ways by
which this pathway may be bypassed.

We initially investigated MET levels in tumor speci-
mens from 202 NSCLC patients by immunohistochem-
istry and observed increased levels of MET in tumors
with EGFR-activating mutations compared with tumors
with WT EGFR. Consistent with these findings, we
observed elevated levels of MET in a previously
described transgenic murine model of NSCLC with
lung-specific expression of an EGFR-activating muta-
tion. MET levels decreased significantly after treatment
with the EGFR inhibitor erlotinib. We also observed
that NSCLC cell lines expressing mutated EGFR
exhibited elevated MET gene expression and protein
levels compared with cells with WT EGFR, and these
levels could be reduced by pharmacologically inhibiting
EGFR or with siRNA directed against EGFR. The
addition of an EGFR inhibitor decreased MET mRNA,
indicating that in NSCLC cells, EGFR-activating muta-
tions augment MET expression at the transcriptional
level. Collectively, these results provide evidence that
activated EGFR has a critical role in regulating MET
expression in NSCLC tumor cells.

MET amplification has been described in the setting
of gastric cancers (Smolen et al., 2006) and NSCLC
(Engelman et al., 2007). Engelman et al. (2007) reported
that among lung cancers with EGFR-activating muta-
tions, MET amplification occurred in 22% of tumors that
developed resistance to gefitinib or erlotinib. Overall,
MET amplification occurs in only 4% of all NSCLC cases
(Zhao et al., 2005), whereas high levels of MET and
p-MET are detectable in 36 and 21% of NSCLC cases,
respectively (Nakamura et al., 2007). MET expression
also has been shown to be regulated by hypoxia
(Pennacchietti et al., 2003). Here, we found evidence that
EGFR is a key regulator of MET levels in cells without
MET amplification, and that this occurs through hypoxia-
independent regulation of HIF-1a. By contrast, in H1993
cells bearing MET gene amplification, EGFR blockade
did not result in a reduction in MET levels, suggesting
that MET amplification resulted in an uncoupling of
MET protein levels from EGFR regulation.

Ligand-induced phosphorylation of EGFR has been
shown to induce rises in HIF-1a in a cell type-specific
manner. We observed that HIF-1a levels were elevated
in NSCLC cell lines bearing EGFR mutations even in
the absence of added ligand, and that treatment with
an EGFR inhibitor diminished HIF-1a expression.

Although this study did not specifically address the
regulation of angiogenic factors such as VEGF, these
findings are consistent with recent studies that EGFR
regulates angiogenic factors, at least in part, through
HIF-1a-dependent mechanisms (Swinson et al., 2004;
Luwor et al., 2005; Pore et al., 2006; Swinson and
O’Byrne, 2006). Studies designed to elucidate the
mechanism by which EGFR-activating mutations reg-
ulate HIF-1a levels are ongoing.

In addition to enhancing MET levels, EGFR activa-
tion resulted in increases in MET receptor phosphoryla-
tion within 30min of EGF stimulation, an effect
blocked by erlotinib. Similar observations have been
made with other cell types (Bergstrom et al., 2000; Jo
et al., 2000); these and other published data support the
idea that EGFR may directly phosphorylate MET
(Bergstrom et al., 2000; Jo et al., 2000). Hypoxia is a
known regulator of HGF, presumably through HIF-1a
(Ide et al., 2006). It is feasible that EGFR-activating
mutations promote HGF production through HIF-1a.
Collectively, these data suggest that EGFR/HIF-1a
activation may not only regulate MET levels, but may
also impact MET signal transduction through other
mechanisms.

We investigated the consequences of EGFR-regulated
MET. We observed that the invasiveness (Figure 4)
but not survival (Supplemental Figure 2) of NSCLC
cells bearing EGFR-activating mutations was MET de-
pendent, as pharmacological inhibition or siRNA
directed against MET abrogated cell invasion. Invasive-
ness and MET levels were reduced by siRNA knock-
down of HIF-1a, whereas EGFR levels were unaffected;
indicating that MET is downstream of HIF-1a and
EGFR. We observed that EGF- and hypoxia-induced
invasiveness were both MET dependent, and that
heterologous expression of a constitutively active form
of HIF-1a induced invasiveness that was independent
of EGF stimulation but remained MET dependent
(Figure 5). Furthermore, heterologous expression of
wild-type or mutated EGFR in NIH 3T3 fibroblasts
increased invasiveness in an MET-dependent manner,
providing further evidence that EGFR-mediated
invasiveness is mediated at least in part by MET. These
results support a model in which either hypoxia or
EGFR activation can drive invasiveness by converging
on a common HIF/MET pathway, which appears to
be separable from EGFR-induced survival and proli-
feration. MET amplification appears to provide one
route for circumventing this pathway. Others will
likely emerge, and these findings do not exclude the
likelihood that other pathways contribute to the
invasive phenotype.

Our findings that EGFR can regulate MET levels
through hypoxia-independent regulation of HIF-1a,
and that MET is a downstream mediator of both
EGFR- and hypoxia-induced invasivenss, have impor-
tant clinical and biological implications. Even for
tumors thought to be primarily driven by the EGFR
pathway (that is with activating EGFR mutations),
targeting of the MET pathway in combination with
EGFR blockade may further reduce tumor invasiveness
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beyond the effect of EGFR inhibition alone, in addition
to the previously noted potential benefit of preventing
the emergence of resistance through MET amplification
(Engelman et al., 2007). It also raises the question of
whether other tyrosine kinases may regulate MET in a
similar manner in NSCLC and other diseases. Finally,
the observation that the EGFR and hypoxia converge
on the HIF-1a/MET axis suggests that there may be
additional overlap in the mechanisms by which EGFR
and hypoxia promote malignant behavior and thera-
peutic resistance.

Materials and methods

Cell lines
Drs John Minna and Adi Gazdar (UT Southwestern Medical
School, Dallas, TX, USA) provided H3255, H1975, H1993,
and HCC827 cells. A549 and Calu-6 were obtained from the
ATCC (Rockville, MD, USA). NIH-3T3 cells expressing WT
EGFR or EGFR bearing the L858R mutation or the deletion
mutant DL747-S752del (Shimamura et al., 2005) were obtained
from Dr Jeffrey Engelman (Dana-Farber Cancer Institute) and
were maintained in 10% FBS DMEM containing 1mg/ml
puromycin.

Mice
Animals were treated in accordance with the guidelines of the
US Department of Agriculture and the NIH. KrasLA1 mice
(Johnson et al., 2001) were obtained from Dr Tyler Jacks
(Massachusetts Institute of Technology, Cambridge, MA,
USA). CCSP-rtTA transgenic mice (obtained from J Whitsett
at The University of Cincinnati, Cincinnati, OH, USA) were
bred with Tet-op-hEGFR L858R-Luc to yield mice with lung
tumors driven by EGFR activation (Ji et al., 2006). At 6
months of age, lungs were collected. Animals bearing EGFR-
driven lung tumors were treated with vehicle (1% Tween-80;
Sigma-Aldrich, St Louis, MO, USA), or erlotinib (50mg/kg/
day) by gavage for 48 h.

Gene expression analysis
Affymetrix GeneChip Human Genome U133A (HG-U133A)
was used to perform gene expression analysis on 53 gene arrays
of NSCLC cell lines prepared by John Minna and colleagues
(UT Southwestern, Dallas, TX, USA; (Zhou et al., 2006).
CEL-type data files were obtained from NCBI-GEO dataset
GSE4824 (NCBI-GEO, 2007). CHIP (2007) software (http://
biosun1.harvard.edu/complab/dchip/) was used to generate probe-
level gene expression, median intensity, percentage of probe set
outliers, and percentage of single probe outliers (Lin et al., 2004).
Information files, including the HG-U133A gene information
files and Chip Description Files, were downloaded from the
Affymetrix web site. CEL and other data files were extracted.
Array images were inspected for contamination and bad
hybridization. Normalization was performed using the invar-
iant-set normalization method (Li and Hung Wong, 2001).
Model-based expression and background subtraction using the
5th percentile of region (perfect match only) was completed by
checking for single, array, and probe outliers. In the array
analysis and clustering, array outliers were treated as missing
values and no log transformation was performed. Comparison
within dCHIP of the WT EGFR vs mutated EGFR groups
using a more than 1.2-fold change in gene expression, a 90%
confidence interval for fold change, and a 90% present call

yielded one probeset for MET (203510_at). Data were further
analyzed using GraphPad software (version 5, GraphPad
Software Inc., La Jolla, CA, USA).

Detection of HIF-1a, MET, and EGFR
Protein lysates were extracted using RIPA buffer (50mM Tris–
HCl, pH 7.4, 150mM NaCl, 1mM EDTA, 1% Triton X-100,
1% sodium deoxycholate, and 0.1% SDS, and protease
inhibitors. Protein (60 mg) was used for western blotting.
Antibodies against EGFR (Y1068, Cell Signaling Technology
Inc., Danvers, MA, USA), EGFR (Santa Cruz Biotechnology
Inc., Santa Cruz, CA, USA) MET (Santa Cruz), HIF-1a
(Pharmingen, San Diego, CA, USA), b-actin (Sigma), and
vinculin (Sigma) were used. HIF-1a, p-EGFR, MET, and
p-MET ELISAs were obtained from R&D systems
(Minneapolis, MN, USA).

RNA isolation and RT–PCR
HCC827 cells were treated with complete media with or
without 1mM erlotinib for 12 h. Total RNA was extracted
using Trizol (Life Technologies, Carlsbad, CA, USA), and
purified with the RNeasy kit (Qiagen, Hilden, Germany). We
used SuperScriptTM III RNase H-Reverse Transcriptase
(Invitrogen, Carlsbad, CA, USA) to convert RNA into cDNA.
The oligonucleotide primers used were published previously
(Shimazaki et al., 2003).

Plasmids and transfections
HIF-1a cDNA (OriGene Technologies Inc., Rockville, MD,
USA) was subcloned into the pcDNA3.1 vector with a flag
tagged in the N-terminal, and the HIF-1a mutant with proline
to alanine substitutions positions 402 and 564 (HA- HIF-1a
P402A;P564A), which are known VHL-binding sites, was
constructed as described (Kim et al., 2006). This form is
stabilized in normoxia because of the loss of VHL-mediated
polyubiquitination and subsequent degradation (Masson et al.,
2001; Hu et al., 2003). For siRNA transfections, HCC827 cells
were transfected with siRNA targetting EGFR, MET, HIF-1a
and control siRNA at a final concentration of 100 nM using
Dharmafect 1 transfection reagent (Dharmacon, Lafayette,
CO, USA). Protein was isoloated after 72 h. Transfected cells
were plated for invasion assays after 48 h.

Invasion assay
We seeded 2.5� 104 cells in the upper chamber of 24-well BD
Biocoat growth factor reduced Matrigel invasion chambers
(8.0 mm pore, Becton Dickinson, Bedford, MA, USA) with 0%
FBS media and added media containing 10% FBS to the lower
chamber. After 24 h, cells in the upper chamber were removed
by scraping. Cells that migrated to the lower chamber were
stained and counted using bright-field microscopy under a
low-power (� 40) objective. PHA-663225 was obtained
from Pfizer (New York, NY, USA).

Clinical specimens
Tissue specimens from 202 surgically resected lung carcinomas
were obtained from the Lung Cancer Specialized Program of
Research Excellence (SPORE) Tissue Bank at The University
of Texas MD Anderson Cancer Center (Houston, TX, USA).
Two hundred and two specimens had known EGFR status.
Microarrays for each specimen were created with three cores
from formalin-fixed, paraffin-embedded blocks. All specimens
were of pathologic TNM stages I–IV according to the revised
International System for Staging Lung Cancer (Beadsmoore
and Screaton, 2003).
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Immunohistochemistry staining
Using paraffin-embedded tissue sections, antigen retrieval was
performed by steaming in citrate buffer (pH 6.0). Endogenous
peroxidases were blocked using 3% H2O2. After protein
blocking, slides were incubated with anti-HGFR (1:50; R&D
Systems), washed, and incubated with a Universal
LSABþKit/HRP, visualization kit (DakoCytomation, Car-
pinteria, CA, USA). For tumor sections from transgenic
animals, antigen retrieval and blocking was performed as
above. Slides were incubated in 1:100 anti-mouse MET
antibodies (Santa Cruz) and then in secondary antibody
(Jackson Research Laboratories, Bar Harbor, ME, USA).
NSCLC specimens were used as positive controls for MET
staining. As a negative control, we followed the above
procedure omitting the primary antibodies. For quantifica-
tion, each specimen was evaluated using an intensity score
(0, 1, 2, or 3) and an extension percentage (Yang et al.,
2008). The final staining score was the product of these two
values. An average from the three cores was obtained for
each specimen.

Statistics
Student’s t-tests were performed using two-tailed tests with
unequal variance for Gaussian distributed data. For statistical
analysis of clinical specimens, Wilcoxon rank-sum tests were
used when comparing continuous variables between mutation
groups. To correlate mutation and other discrete covariates,

we used a chi-square test or Fisher’s exact test. Two-sided
P-values p0.05 were considered significant.

Accession numbers
SNP and CGH raw data are available in the Gene Expression
Omnibus (GEO) database: GEO accession GSE4824 (http://
www.ncbi.nlm.nih.gov/geo/).
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ABSTRACT 

BACKGROUND: Estrogens exert physiological effects through two estrogen receptor (ER) 

subtypes, ERα and ERβ, which belong to the nuclear receptor family of ligand-activated 

transcription factors. The human ERβ variant ERβ2 is expressed at higher levels than ERβ1 

in many breast cancer cell lines and breast tumours. Increasing evidence supports the 

hypothesis that ERβ2, in contrast to ERβ1, is associated with aggressive phenotypes of 

various cancers. In this manuscript we determine phenotypes and molecular mechanisms of 

ERβ2, independent of ERα and ERβ1, in breast cancer cells. 

METHODS: The triple negative breast cancer (TNBC) cell line BT549 was used as model 

system. ERβ2 levels were modulated by transient overexpression or knockdown by small 

interfering RNA. Cell proliferation and invasion were assayed by the WST-1 cell proliferation 

assay kit and growth factor reduced BD MatrigelTM invasion chamber, respectively. 

GeneChip® Human Gene 1.1 ST Affymetrix microarrays were used to assay global gene 

expression. ERβ2 regulation of mRNA and protein levels of selected genes was investigated 

by qPCR and western blot analysis, respectively.  

RESULTS: In this study we show that ERβ2 is the dominant ER isoform in the BT549 cell 

line and promotes proliferation and invasion of this cell line. A total of 263 genes were 

identified as ERβ2-upregulated genes and 662 identified as ERβ2-downregulated genes. 

ERβ2-regulated genes were involved in cell morphology, DNA replication and repair, cell 

death and survival. We show that ERβ2 represses prolyl hydroxylase 3 (PHD3) gene 

expression and induces protein levels of the hypoxia induced factor 1 (HIF-1α) and MET.  

CONCLUSION: ERβ2 promotes cell proliferation and invasion of BT549 breast cancer 

cells. The invasive phenotype could potentially be mediated through transcriptional repression 

of PHD3, followed by up-regulation of the HIF1α-MET pathway. 
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INTRODUCTION 

Breast cancer is a common cause of cancer death among women. Estrogen plays crucial roles 

in breast cancer with most of the effects of estrogen mediated by estrogen receptors (ERs). 

For a long time, only one ER was thought to be the receptor that is responsible for mediating 

the effects of estrogen. This receptor is now called ERα [1]. However, in 1996, another ER, 

now named ERβ, was discovered [2]. Both receptors belong to the nuclear receptor 

superfamily [3, 4]. Like many other genes, ERβ is expressed as different isoforms, the 

functions of which need to be further studied in order to understand the physiological 

functions of ERβ. ERβ1 is considered as the full length ERβ. The most studied variant of 

ERβ, ERβ2, is the result of alternative splicing, the last 61 amino acids of ERβ1 being 

replaced by 26 unique amino acids from an alternative exon. ERβ2 lacks the intact ligand 

binding domain and activation function 2 (AF-2) core region. Since ERβ2 has an intact DNA-

binding domain and an intact N-terminal domain, including the AF-1 domain, ERβ2 could be 

directly involved in gene regulation.  

 

Several lines of evidence suggest that ERβ2 is associated with proliferation and invasion of 

cancer cells. This is in contrast to ERβ1, which is suggested to have anti-proliferative 

characteristics [5]. In breast, ovarian, prostate and non-small cell lung cancer, it was reported 

that the expression of ERβ2 is widespread and higher in cancer tissue compared to normal 

tissue [6-8]. Furthermore it was found that the expression of ERβ2 correlates with aggressive 

phenotypical features in breast, prostate and colon cancer [6, 9, 10]. Negative ERβ2 status is 

significantly correlated to longer overall survival time in case of the luminal subtype of breast 

cancer [10]. ERβ2 was correlated with poor prognosis and could promote cancer cell 

proliferation and invasion of prostate cancer [6, 11]. In line with the differential role of ERβ1 
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and ERβ2 with regard to cancer cell proliferation and invasion, ERβ2 increased proliferation 

and up-regulated factors involved in bone metastasis while ERβ1 inhibited these factors [5].  

 

HIF-1α is a major determinant of invasion and metastasis in a wide variety of tumor types. Its 

expression is regulated through modifications at the posttranslational level. In the presence of 

oxygen, three prolyl hydroxylase enzymes (PHD), PHD1, PHD2 and PHD3, can hydroxylate 

two proline residues (p402 and p564) of HIF-1α in the oxygen-dependent degradation 

domain. Hydroxylated HIF-1α can by recognized by the tumour suppressor von Hippel-

Lindau protein, which targets HIF-1α for degradation [12]. Tumour hypoxic areas show MET 

overexpression [13]. When MET is inhibited, hypoxia induced invasive growth was 

prevented [14]. The MET tyrosine-kinase receptor is an established mediator of cancer cell 

invasiveness. MET can increase the viability of cancer cells [14]. Previous findings showed 

that HIF-1α can regulate MET levels, with MET being an established mediator of cancer cell 

invasiveness [15].  

 

In this study, we focus on the role of ERβ2 for breast cancer cell proliferation and invasion 

using the BT549 cell line as a model that expresses endogenous ERβ2 but no ERα or ERβ1. 

We demonstrate that ERβ2 promotes cell proliferation and invasion in this model. We 

investigate ERβ2 dependent global effects on gene expression and suggest a model by which 

ERβ2 affects invasiveness of cells.  
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MATERIALS AND METHODS 

RNA isolation and cDNA synthesis 

Total RNA was extracted using the RNeasy kit (Qiagen, Hilden, Germany) according to the 

manufacturer’s protocol. cDNA was synthesized from 1 µg of total RNA with Taqman 

Reverse Transcription reagents according to the standard protocol (Roche).  

 

qPCR 

Real-time PCR was performed with the SYBR Green I dye master mix (Applied Biosystems, 

Foster City, CA). qPCR reactions were performed using a 7500 Fast Real-Time PCR System 

(Applied Biosystems) applying the following conditions: 50°C for 2 min, 95°C for 10 min, 

followed by 40 cycles at 95°C for 15 sec and 60°C for 50 sec. mRNA expression levels were 

normalized relative to GAPDH or 36B4 internal control.  

 

Plasmids and transfection 

The ERβ2 cDNA was subcloned into the pcDNA3.1 vector with a flag tag at the N-terminus. 

For ERβ2 siRNA transfection, BT549 cells were transfected with siRNA targeting ERβ2 with 

a sequence 5’-GAAUGAAGAUGGAGACUCUUU-3’ (Thermo) or control siRNA (Sigma) at 

a final concentration of 100  nM using INTERFERinTM siRNA transfection reagent (Polyplus). 

For ERβ2 cDNA transfection, BT549 cells were transfected with pcDNA3-flag-ERβ2 or 

control pcDNA3-EV using lipofectamine®2000 according to manufacturer’s instructions 

(Invitrogen). 

 

Western blot analysis and ELISA assay 

Protein lysates were extracted using RIPA buffer (Sigma Aldrich). 30 mg of protein was used 

for western blot and ELISA analysis. Antibodies against MET (Santa Cruz Biotechnology 
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Inc., Santa Cruz, CA, USA), HIF-1α (Pharmingen, San Diego, CA, USA) and β-actin (Sigma) 

were used. HIF-1α ELISA was performed using a kit from R&D systems (Minneapolis, MN, 

USA). 

 

Immunohistochemistry staining 

Immunohistochemistry staining was performed as described previously [11]. 

 

Cell proliferation assay 

1000 cells per well were seeded onto 96-well plates. Cell proliferation was measured using a 

WST-1 kit (Roche Applied Science). 

 

Invasion assay 

24 hours after the transfection, approximately 2.5 × 104 cells were seeded in the upper 

chamber of 24-well BD Biocoat growth factor reduced Matrigel invasion chambers (8.0  µm 

pore, Becton Dickinson, Bedford, MA, USA) with 0% FBS media. Medium containing 10% 

FBS was added to the lower chamber. For ERβ2 siRNA and control siRNA transfection, cells 

in the upper chamber were removed by scraping after 30h; for ERβ2 cDNA and control 

transfection, cells in the upper chamber were removed after 24h. Cells that migrated to the 

lower chamber were fixed, stained and counted under a microscope.  

 

Gene Expression Microarray Analysis 

Total RNA from three biological replicates were hybridized to Affymetrix Human Gene 1.1 

ST arrays, which contain probes for 33299 gene sequences. Experimental steps such as probe 

synthesis, hybridization and scanning were done according to the Affymetrix protocol 

(www.affymetrix.com). Pre-processing for background correction/normalization was 
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performed in the Affymetrix Expression Console using the Robust Multichip Average (RMA) 

method[16]. Two-tailed Student's t-test was used to derive p-values, and the false discovery 

rates were estimated using the q-value. A cut-off fold change of at least 1.5 and p value < 0.05 

were used to define differentially regulated genes. The q-value, representing the false 

discovery rate, was less or equal to 0.1.  

To derive genes as input for pathway analysis the following cut-offs were applied; fold 

change of ≥ 2, p value < 0.05 and q value ≤ 0.1. The Ingenuity Pathway Analysis (IPA) 

software (www.ingenuity.com) was used for this analysis. The entire IPA core analyses was 

performed based on information in the Ingenuity Pathway Knowledge Base (IPKB), which 

derives information from known relationships of molecules, functions and interactions of 

genes published in the literature.  

IPA analysis identified pathways that were most significantly changed upon ERβ2 knock 

down. Associated network functions and molecular functions are two of the categories used 

for enrichment testing within IPA. Biological functions were ranked according to the 

significance of that function to the network.  

Fisher’s exact test was used to derive the p-values in IPA. 

 

Statistics 

Student's t-tests were performed using two-tailed tests with unequal variance. 

 

RESULTS 

The TNBC cell line BT549 expresses high levels of ERβ2  

We screened the expression of ERβ2 in a panel of 8 breast cancer cell lines, including 2 ER-

positive luminal (MCF-7 and MDA-MB-175), 3 HER2-positive (SK-BR-3, HCC1569, and 

MDA-MB-453) and 3 TNBC (MDA-MB-231, BT549 and Hs578T) cell lines. The ERβ2 
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mRNA was highly expressed in the 2 TNBC cell lines, BT549 and MDA-MB-231. The 

highest level of endogenous ERβ2 expression was observed in the BT549 cell line (Figure 1). 

The mRNA expression levels of ERβ1 and ERα in this cell line is undetectable (data not 

shown).  

 

Depletion of ERβ2 inhibits cellular proliferation and invasion in vitro 

We used siRNA to silence ERβ2 expression. Successful knockdown of ERβ2 was confirmed 

at both the mRNA and protein levels (Figures 2A and 2B). Furthermore, this experiment 

revealed that ERβ2 is mainly localized to the cytoplasm of cells (Figure 2B, Left panel). 

Interestingly, ERβ2 knockdown inhibited cell proliferation of BT549 cells (Figure 2C). 

Moreover, ERβ2 silencing decreased the number of invading cells per 20 × field from 34.6 ± 

9.0 in the control siRNA group to 13.4 ± 5.5 in the ERβ2 siRNA treated group (Figure 2D) (p 

< 0.05).  

 

ERβ2 overexpression confers a more proliferative and invasive phenotype in vitro 

To further confirm the effect of ERβ2 on cellular proliferation and invasion, we investigated 

these phenotypes after exogenous ERβ2 overexpression. Successful overexpression of ERβ2 

was confirmed by western blot analysis (Figure 3A). Importantly, ERβ2 overexpression 

promoted cell proliferation in BT549 cells (Figure 3B). Additionally, BT549 cells 

overexpressing ERβ2 displayed a more invasive phenotype with 55.0 ± 5.0 cells migrating 

through the chamber compared to 9.2 ± 2.7 cells for the control cells (Figure 3C) (p < 0.001). 

These results further support the link between ERβ2 expression and the cellular proliferation 

and invasion.  
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ERβ2 influences global gene expression  

To gain insight into ERβ2 regulated transcriptional networks, we determined gene expression 

profiles for BT549 cells upon ERβ2 knockdown. We identified 662 genes, applying a false 

discovery rate of less or equal to 0.1, as up regulated (fold change equal or greater than 1.5, p 

< 0.05) while the expression of 263 genes was repressed (fold change equal or less than 1.5, p 

< 0.05) upon ERβ2 knockdown. Network analysis revealed the top three ranked networks 

regulated by endogenous ERβ2 in BT549 cells as cell morphology, DNA replication and 

repair, cell death and survival and cell morphology (Table 1A). Molecular and cellular 

functional classification analysis in IPA shows how the alterations of gene expression were 

predicted to disrupt various molecular and cellular functions. For our data set, the top 5 

highlighted molecular and cellular functions were cell cycle, cell death and survival, 

morphology, development and organization, which were represented by 4 to 8 genes with p-

values between 1.94× 10− 3–4.57× 10− 2 and 1.94× 10− 3–3.63× 10− 2 after ERβ2 knockdown 

(Table 1B).  

 

Consistent with the anti-proliferative effect of ERβ2 depletion, Cyclin E/A (CCNE2/CCNA2) 

were down regulated by 1.3 and 1.4 fold, respectively, with a concomitant increase in the 

expression of p21WAF1/CIP1 (CDKN1A) by 1.5 fold.  

 

Validation of gene expression profiling data by qPCR  

qPCR analysis was performed to confirm changed expression of 6 genes (HOXA7, GAB1, 

RECK, TGFB3, E2F2 and PHD3) identified as being regulated by ERβ2 in the gene 

expression profiling analysis. qPCR results were consistent with the microarray data, thus 

demonstrating the accuracy of the array approach (Figure 4). 
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ERβ2 promotes BT549 cell invasion potentially through repressing PHD3 followed by 

up-regulation of the HIF-1α-MET pathway  

One of the genes, the expression of which was up-regulated, by knockdown of ERβ2 was 

PHD3 (Figure 5A, Left Panel). Importantly, the PHD3 mRNA level was reduced by 

overexpression of ERβ2 (Figure 5A, Right Panel), further establishing a link between ERβ2 

and PHD3. As PHD3 has been shown to regulate HIF-1α stability [17], we next determined if 

the HIF-1α - MET pathway was regulated by ERβ2 as the HIF-1α - MET pathway has been 

shown to mediate cellular invasion in other systems [15]. Interestingly, knockdown of ERβ2 

decreased HIF-1α levels while overexpression of ERβ2 increased HIF-1α and MET levels 

(Figure 5B). Changes in HIF-1α protein levels were further confirmed by ELISA (Figure 5C).  

 

DISCUSSION 

 

Breast cancer is a disease with different morphological features and clinical behaviours, and 6 

intrinsic subtypes (Luminal A, Luminal B, normal breast like, HER2 enriched, basal-like 

breast cancer and Claudin low breast cancer) have been defined according to microarray 

based classification [18]. Approximately 60-80% of basal-like breast cancers correspond to 

TNBC, which are characterized by a lack of expression of ERα, progesterone receptor (PR) 

and HER2 overexpression. In our present study, we used BT549 due to the high endogenous 

ERβ2 expression. BT549 is a TNBC cell line. TNBC constitutes 10–25% of all breast 

cancers, has aggressive phenotypes and displays the worst prognosis among breast cancer 

subtypes. It affects mostly younger age groups and there is a lack of effective targeted 

therapies. TNBC lacks predictive biomarkers and often develop distant metastases in distant 

tissues such as brain and lung. In the present study, we demonstrate that ERβ2 is highly 

expressed in TNBC cells and promotes cell proliferation and invasion, which is in line with 
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the aggressive behavior of TNBC.  

Estrogen signalling via ERs has been linked to the promotion of breast cancer. While ERα 

has been shown to generally promote proliferation in breast cancer, ERβ1 has been suggested 

to display anti-proliferative properties including in breast cancer [19]. Less is known about 

the role of the ERβ2 variant in breast cancer. One reason for this lack of knowledge is that 

ERβ2 is only expressed in humans and primates and but not in rodents, making it difficult to 

study it in the context of an animal model. The focus of this study was to elucidate the role of 

ERβ2 in breast cancer cells. Furthermore, since cross talk between ERα and ERβ1 and ERβ2 

signalling has been demonstrated, we focused on the role of ERβ2 expressed alone. 

Expression of ERβ variants in breast cancer has been analyzed at the mRNA or protein level 

in several clinical materials. However, the extent to which breast tumours express ERβ2 

alone is still unclear. Studies of ERβ1 and ERβ2 in cell lines have been limited by difficulties 

in identifying cell lines that express endogenous ERβ. In this study we identify a breast 

cancer cell line that exclusively expresses endogenous ERβ2.  

 

The data shown in this study relies on a single siRNA against ERβ2. However, we observed 

the opposite phenotypes in a system where ERβ2 was overexpressed, supporting the 

connection between ERβ2 and proliferation and invasion. Furthermore, effects on PHD3 

mRNA levels as well as HIF-1α protein levels were opposite between ERβ2 siRNA treated 

and ERβ2 overexpressing cells, strengthening their connection to ERβ2 signalling. For MET, 

the effect of knock down of ERβ2 was less clear. In addition, transfection of two siRNA 

oligos from Sigma targeting both ERβ1 and ERβ2 inhibited proliferation and invasion of 

BT549 cells compared to transfection with control siRNA (data not shown). As the mRNA 

level of ERβ1 is undetectable in this cell line (data not shown), those siRNA oligos should 

target ERβ2 in this system. 
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We used gene expression profiling to approach the molecular mechanisms associated with the 

proliferative and invasive properties of ERβ2 and identified changes in pathways and 

molecular classes associated with cancer, cell cycle, cell survival and cell death compatible 

with a role of ERβ2 in cellular proliferation and invasion. Our data shows that endogenous 

ERβ2 is mainly localised to the cytoplasm of BT549 cells (Figure 2B, Left panel). This 

suggests that ERβ2 effects on gene regulation are indirect. How ERβ2 exerts its effects in 

BT549 cells, and other cell lines where ERα and ERβ1 are not expressed, remain to be 

determined. In systems where ERβ2 is co-expressed with ERα we have shown that ERβ2 

induces proteasome-dependent degradation of ERα, presumably through the formation of 

ERβ2/ERα heterodimers [20]. In this case ERβ2-mediated degradation of ERα is one 

mechanism whereby expression of ERβ2 inhibits recruitment of ERα to the estrogen-

responsive promoters, leading to suppression of ERα-regulated gene expression. We are only 

aware of one published study addressing changes in gene expression profiles in response to 

expression of ERβ2 alone [21]. In this study, Hs578T TNBC cells were engineered to express 

ERβ2. This study reported that expression of ERβ2 had no effects on gene expression [21]. 

Furthermore, we have observed that ERβ2 does not modulate gene expression in HEK293 

cells engineered to stably express ERβ2 alone (unpublished data).  

 

Pathway analysis can serve as a biological verification of non-random biological differences, 

especially if the results are supported by an experimental hypothesis and additional data. 

Additionally, based on IPA analysis, new hypothesis can be derived. Our IPA analysis 

showed that ERβ2 is involved in cell morphology, cell cycle, cell death and survival. In 

general, the gene expression profiling revealed changed expression of a very limited number 

of genes that could be causative for the observed phenotypes (data not shown). However, as 

our studies focused on a snapshot of gene expression, it is possible that we missed genes, the 
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changed expression of which, influence the phenotype. Future studies should address changes 

in gene expression at additional time points following knock down of ERβ2.  ERβ2 promoted 

cell proliferation could be caused by the observed down-regulation of CCNE2/CCNA2 and 

up-regulation of CDKN1A. Knockdown of ERβ2 also down regulates the Wilms tumor-1 

(WT-1) mRNA which is a transcription factor that plays an important role in cellular 

development, cell survival and angiogenesis [22]. 

 

In this study we propose that the invasive phenotype associated with ERβ2 expression could 

potentially be via repressing of PHD3 followed by up-regulation of the HIF-1α-MET pathway 

or by directl regulation of MET（Figure 6). In line with this, PHD3 has been shown to exert 

tumour-protective functions and inhibits tumour growth in pancreatic cancer [23]. In a recent 

study, Thomas et al shows that ERβ1 represses basal-like breast cancer epithelial to 

mesenchymal transition by destabilizing epidermal growth factor receptor (EGFR) where the 

mesenchymal state represents a state of invasion [24]. In our system, we observe that ERβ2 

increases EGFR protein levels (data not shown). Since the HIF-1α-MET pathway is known to 

be regulated by EGFR, this might represent an alternative mechanism for ERβ2 regulation of 

the HIF-1α-MET pathway and subsequent invasion [15].  

 

In summary, we demonstrate that ERβ2 promotes cell proliferation and invasion when 

expressed in the absence of ERβ1 and ERα. To further our understanding of the clinical 

relevance of ERβ2, the role of ERβ2 needs to be examined in human breast cancer specimens. 

It will be important to generate mouse models that express ERβ2 in different tissues. 

Furthermore, although ERβ2 does not bind tested ER ligands, it is possible that compounds 

that inhibit its function or target genes can be identified, thus providing potential therapeutic 

agents for breast cancers that express ERβ2.   
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FIGURE LEGENDS 

 

Figure 1. The TNBC cell line BT549 has the highest endogenous expression of ERβ2 

Analysis of ERβ2 mRNA levels in ER+/PR+/HER2- breast cancer cell lines (MCF-7 and 

MDA-MB-175), ER-/PR-/HER2+ breast cancer cell lines (SK-BR-3, HCC1569 and MDA-

MB-453) and TNBC cell lines (MDA-MB-231, BT549 and Hs578T) by qPCR. mRNA levels 

are normalized to GAPDH and mRNA levels are presented as means ± of relative fold with 

SD, with one corresponding to expression level in MCF-7 cells. 

 

Figure 2. Depletion of ERβ2 inhibits cellular proliferation and invasion. (A) ERβ2 siRNA 

down-regulates ERβ2 mRNA in BT549 cells. ERβ2 mRNA levels were determined by qPCR 

after transfection with control siRNA or siRNAs against ERβ2. Data are normalized to 36B4 

and shown as relative fold compared to siControl with SD.*p < 0.05. (B) ERβ2 siRNA down-

regulates ERβ2 protein in BT549 cells. Immunohistochemistry staining showing that the 

ERβ2 is located to the cytoplasm in BT549 cells and that the level is reduced after 

transfection with siRNA targeting ERβ2. (C) ERβ2 depletion reduces proliferation in BT549 

cells. BT549 cells were transfected with siRNA against ERβ2 or control siRNA. WST-1 

assays of cell metabolic activity as a measure of cellular proliferation were carried out at the 

indicated time points after siRNA transfection. Data are shown as means with SD. **p<0.01, 

***p < 0.001. Experiments were repeated twice. One representative experiment in shown. (D) 

ERβ2 depletion reduces invasion in BT549 cells. BT549 cells were transfected with siRNA 

against ERβ2 or control siRNA, and cell invasion was evaluated by the BD Biocoat growth 

factor reduced Matrigel invasion chambers assay. Data represent means with SD. *p < 0.05. 

Experiments were repeated twice. One representative experiment in shown.  
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Figure 3. ERβ2 overexpression confers a more proliferative and invasive phenotype in 

vitro. (A) Western blot analysis showing increased protein levels of ERβ2 after transient 

transfection with flag tagged ERβ2.  ERβ2 was detected by an anti-flag antibody. β-actin was 

used as a loading control. The arrow indicates the position of the overexpressed ERβ2 

protein. (B) ERβ2 overexpression promotes cell proliferation in BT549 cells. WST-1 assays 

of cell metabolic activity as a measure of cell proliferation were carried out at the indicated 

time points after transfection of flag tagged ERβ2 or empty vector, respectively. Ratio of 

absorbance to day2 is calculated. Data are shown as means of relative absorbance with SD. 

*p < 0.05, **p<0.01. Experiments were repeated twice. One representative experiment in 

shown. (C) ERβ2 overexpression promotes cell invasion in BT549 cells BT549 cells were 

transfected with flag tagged ERβ2 or empty vector, and cell invasion was evaluated by BD 

Biocoat growth factor reduced Matrigel invasion chambers assay. Data represent means with 

SD. ***p < 0.001. Experiments were repeated twice. One representative experiment in 

shown.  

 

Figure 4. Validation of gene expression profiling data by qPCR  

Real-time PCR analysis for a subset of genes from the same RNA as was used for the 

microarray analysis. mRNA levels are normalized to 36B4 and mRNA levels are presented as 

means ± of relative fold with SD, relative to control siRNA-treated cells. Fold changes 

derived from microarray analysis is presented as numbers below the bars. 

 

Figure 5. ERβ2 modulates levels of PHD3, HIF1α and MET in BT549 cells. (A) Top 

panel, BT549 cells were transfected with siRNA against ERβ2 or control siRNA, 

RNA was collected after 48h, and PHD3 levels were determined by qPCR assay, mRNA 

levels are normalized to 36B4, **P<0.005. Bottom panel, BT549 cells were transfected with 
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pcDNA3-flag tagged ERβ2 or an empty control vector. RNA was collected after 48h, and 

PHD3 levels were determined by qPCR assay, mRNA levels are normalized to 36B4. (B) 

BT549 cells were transfected with siRNA against ERβ2, a control siRNA, 

pcDNA3-flag tagged ERβ2 or an empty control vector. Protein lysates were collected and 

MET, and HIF-1α levels were evaluated by western blot analysis. β actin was probed as a 

loading control. (C) BT549 cells were transfected with siRNA against ERβ2, a non-targeting 

control siRNA, pcDNA3-flag tagged ERβ2 or an empty control vector. Protein lysates were 

collected and HIF-1α levels were evaluated by ELISA assay. **P<0.005.  

 

Figure 6. Proposed model of ERβ2 promoting cell proliferation and invasion in BT549 

ERβ2 abrogates the expression of PHD3. We hypothesize that the phenotypes associated with 

ERβ2 expression could potentially be via repressing of PHD3 followed by up-regulation of 

the HIF-1α-MET pathway or direct up-regulation of MET. 
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Table 1A Changed networks after knockdown of ERβ2 in BT549 cells 

 

 

Table 1B Changed molecular functions after knockdown of ERβ2 in BT549 cells 

Name p-value #Molecules 

Cell Cycle 1.94E-03-4.01E-02 5 

Cell Death and Survival 1.94E-03-4.46E-02 5 

Cell Morphology 1.94E-03-4.57E-02 8 

Cellular Development and Organization 1.94E-03-3.63-02 7 

Cellular Development 1.94E-03-3.79-02 4 

 

 

 

Top Networks  

ID  Associated Network Functions Score 

1 Cell Morphology, DNA Replication, Recombination and Repair, 

Developmental Disorder 
32 

2 Cancer, Reproductive System Disease, Cell Dearth and Survival 24 

3 Cell Morphology, Dermatological Diseases and Conditions, 

Developmental Disorder 
24 
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