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ABSTRACT 

Eukaryotic DNA is wrapped around histone proteins to form nucleosomes, the 
fundamental repeating unit of chromatin. DNA packaging into chromatin both solves 
and creates problems. It allows the centimeters, or even meters, of DNA that constitute 
a eukaryotic genome to fit inside a micrometer-scale cell nucleus. Nucleosomes also 
block access to the DNA, necessitating complex rearrangements to allow for 
transcription, replication, recombination, or repair, while also providing a way to 
regulate these processes. ATP-dependent chromatin remodelers slide, assemble, 
disassemble, and alter nucleosomes to enable and regulate DNA-dependent processes. 
In parallel, topoisomerases relieve the tangles, torsional stress, and supercoils generated 
when DNA is exposed and unwound. Topoisomerases also enable efficient nucleosome 
remodeling. In this thesis, we use genomewide and single-locus techniques to study the 
interplay between DNA topoisomerases, Snf2 family chromatin remodelers, and 
transcription in the fission yeast Schizosaccharomyces pombe. We find that 
topoisomerase activity is essential for transcription elongation and for proper chromatin 
structure at genes, which in turn are required for efficient transcription initiation and 
termination. This is partially mediated by cooperation with chromatin remodelers. We 
also find that the fission yeast Chd1 subfamily remodelers maintain correct gene body 
nucleosome positioning, which inhibits cryptic transcription initiation. Finally, we 
show that the Fun30 subfamily chromatin remodeler Fft2 is involved in centromere 
function and heterochromatic silencing, as well as the full transcription of highly 
transcribed genes. Fft2 and its paralog Fft3 also regulate the transcriptional response to 
stress. As a part of this function, Fft2 and Fft3 repress retrotransposons by a novel 
mechanism, in which they enforce the use of an alternative transcription start site.  
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1 INTRODUCTION 

1.1 AN INTRODUCTION TO CHROMATIN 

All of the information required to build an organism is encoded in its genome. The 
DNA of the human genome is approximately two meters long (Lander et al, 2001; 
Venter et al, 2001), which is more than 300,000 times the diameter of the average 
human cell nucleus. This problem is common to all eukaryotes, with even the 
unicellular baker’s yeast having to compact half a centimeter of DNA (Goffeau et al, 
1996) into a microscopic nucleus. Furthermore, to avoid wasting energy yet be able to 
respond to a changing environment, the thousands of genes encoded by that genome 
have to be under fine regulatory control. A sophisticated packaging system has evolved 
to meet these two challenges. Eukaryotic DNA is wrapped around basic proteins called 
histones, providing both compaction and regulatory control. Together, the DNA and 
histone proteins are called chromatin. The fundamental unit of chromatin, 147 base 
pairs of DNA wrapped 1.7 times around an octamer of histones, is called a nucleosome. 
Two each of the canonical histones H2A, H2B, H3, and H4 build the nucleosome core, 
arranged into an H3/H4 tetramer and two outer H2A/H2B dimers (Figure 1A-C; 
Kornberg, 1974; Luger et al, 1997; Richmond & Davey, 2003). The length of DNA 
between nucleosomes, the linker DNA, varies, and in some species is also bound by the 
linker histone H1. Known variants exist for all histones, and the incorporation of these 
histone variants can have important functional effects on the chromatin (Ahmad & 
Henikoff, 2002; Kamakaka & Biggins, 2005; Probst et al, 2009; Talbert & Henikoff, 
2010; Millar, 2013; Skene & Henikoff, 2013). In addition, both the C- and N-terminal 
tails of histones can be covalently modified; they can for example be methylated, 
acetylated, monoubiquitinated, ADP-ribosylated or sumoylated. By altering the histone 
charge and/or recruiting additional chromatin modifying enzymes and transcription 
factors, histone tail modifications enhance the regulatory versatility of chromatin 
(Kouzarides, 2007; Campos & Reinberg, 2009; Tropberger & Schneider, 2010; 
Zentner & Henikoff, 2013).  
 
Nucleosome positioning is also important for regulation, as DNA that is within a 
nucleosome is far less accessible than unbound DNA (Liu et al, 2006). The precise 
position of a nucleosome can, for example, determine whether transcription factors can 
bind and whether a given gene will be transcribed (Struhl & Segal, 2013). Beyond 
transcriptional regulation, nucleosome positioning and repositioning are important for 
DNA replication, recombination, and repair, as well as for constructing structural 
components of chromosomes like centromeres. Nucleosome spacing also contributes to 
higher-order chromatin compaction. The Snf2 family of ATP-dependent chromatin 
remodelers controls nucleosome positioning and composition, assembling, 
disassembling and sliding nucleosomes as well as performing dimer exchange (Clapier 
& Cairns, 2009). DNA topology, including supercoiling, is an important factor in 
nucleosomal stability and the thermodynamics of ATP-dependent chromatin 
remodeling. Processes like DNA replication and transcription affect local DNA 
topology. The DNA topoisomerases that relieve torsional strain are essential to allow 
these processes and the chromatin fiber to coexist (Vos et al, 2011).  
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In addition, noncoding RNAs can target specific genomic sequences for regulation 
(Sabin et al, 2013). The DNA itself can be covalently modified, with DNA methylation 
being the most studied mark (Yoder et al, 1997; Selker et al, 2003; Law & Jacobsen, 
2010; Smith & Meissner, 2013). All of these processes are engaged in a complex 
cross-talk, wherein one histone modification or stretch of methylated DNA recruits a 
given modifying enzyme or ATP-dependent remodeler, which may exist in a complex 
with other modifiers. The result is a many-layered and sometimes redundant regulatory 
network that plays a vital role in all DNA-based processes.  

Figure 1. Chromatin. A) The DNA molecule, which can be covalently modified with e.g. methyl 
groups, is B) compacted into nucleosomes by wrapping around octamers of histones (blue, green, orange 
circles). Nucleosomes differ due to covalent histone modifications and histone variant (green, orange 
circles) incorporation, which contribute to C) higher order chromatin structure. D) Centromeric, 
telomeric, and other silent chromatin domains are characterized by repressive heterochromatin (red). 
Euchromatin characterizes active regions of the chromosome (black). In preparation for cell division, 
chromosomes become highly compacted, and sister chromatids are joined at the centromere. E) In 
contrast, interphase chromosomes are more diffuse, but still occupy distinct territories in the nucleus.  
 
In very general terms, chromatin can be divided into two types: euchromatin and 
heterochromatin (Figure 1D). Named for their differential staining and appearance by 
microscopy (Heitz, 1928; Brown, 1966), euchromatin is a broad term for active 
chromatin, while heterochromatin is generally inactive (Strålfors & Ekwall, 2011). 
Euchromatin promotes and is shaped by transcription, having a less compact structure 
than heterochromatin and being characterized by ‘active’ histone modifications and 
nucleosome remodeling. Heterochromatin, in contrast, is more compact and generally 
refractory to transcription. Heterochromatin can be further subdivided into constitutive 
and facultative heterochromatin. Structural elements of chromosomes, such as 
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centromeres and telomeres, tend to be composed of repeat elements and are compacted 
into constitutive heterochromatin. Other regions may contain coding genes but be 
transcriptionally repressed under a given developmental program. A distinct facultative 
form of heterochromatin forms at such regions (Trojer & Reinberg, 2007; Wutz, 
2011). Barrier elements prevent the spreading and intermingling of these distinct forms 
of chromatin (Strålfors & Ekwall, 2011; Barkess & West, 2012). Finally, 
chromosomes occupy distinct territories within the nucleus, displaying numerous 
nonlinear intra- and interchromosomal interactions (Figure 1E; Cavalli & Misteli, 
2013).  
 
1.2 THE NUCLEOSOME 

1.2.1 Introduction 

In the eukaryotic nucleus, DNA is wrapped around an octamer of histone proteins to 
form nucleosomes, the repeating unit of chromatin (Kornberg, 1974; Luger et al, 1997; 
Richmond & Davey, 2003). The DNA wrap around the octamer is typically left-
handed, absorbing negative supercoils (Luger et al, 1997). The properties of histone 
proteins vary, but all have a histone fold domain that mediates di- and tetramerization 
(H2A with H2B; H3 with H4) (Arents & Moudrianakis, 1995) and unstructured tails 
that protrude from the nucleosome. Histones can be post-translationally modified, and 
canonical histones can be exchanged for histone variants, lending considerable 
variability to the chromatin fiber (Talbert & Henikoff, 2010; Zentner & Henikoff, 
2013). The most fundamental way in which nucleosomes affect DNA-based processes, 
however, is by their simple presence, or positioning.  

 
Figure 2. Nucleosomes restrict access to the DNA. Nucleosome positioning regulates, and must be 
altered to allow, DNA-based processes. Recombination, in both meiosis and DNA repair, replication fork 
progression, and transcription must all overcome the barrier presented by nucleosomes.  
 
1.2.2 Nucleosome positioning 

Nucleosome positioning has important implications for DNA accessibility and as such 
is subject to regulation (Struhl & Segal, 2013). The machinery of transcription, 
replication, recombination, and repair, as well as the myriad DNA-binding proteins that 
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regulate them, must all access the DNA molecule through its nucleosomal structure 
(Figure 2). As a result, whether or not a binding site is covered by a nucleosome can 
have physiological consequences.  
 
Nucleosome positioning has now been mapped in many organisms (Yuan et al, 2005; 
Lee et al, 2007; Mavrich et al, 2008b; Schones et al, 2008; Shivaswamy et al, 2008; 
Valouev et al, 2008; Lantermann et al, 2010), though most biochemical studies and 
genetic analyses have been conducted in yeast. These studies have shed considerable 
light on where nucleosomes tend to be positioned, how this is altered in response to 
transcriptional changes, and which factors affect positioning. Nucleosome positioning 
refers to the precise 147 bp wrapped around a single histone octamer. What is actually 
measured, however, is generally nucleosome occupancy; that is, the fraction of an 
assayed population of cells that have a nucleosome at a given 147 bp window.  
 
Certain principles of nucleosome occupancy appear to be universal: the transcription 
start and termination sites (TSS and TTS) of transcribed genes tend to be depleted of 
nucleosomes (nucleosome depleted region, NDR), as do enhancer elements (Struhl & 
Segal, 2013). Other aspects are more species-dependent. In budding yeast 
(Saccharomyces cerevisiae), both the -1 nucleosome directly upstream of the TSS and 
the +1 nucleosome directly downstream of the TSS are highly positioned (Mavrich et 
al, 2008a; Shivaswamy et al, 2008). Arrays of regularly spaced nucleosomes then 
extend in both directions from the TSS NDR. In contrast, the fission yeast 
(Schizosaccharomyces pombe) +1 nucleosomes are highly positioned, while positioned 
-1 nucleosomes are only present at some genes. Neither does fission yeast have a 
regular nucleosomal array upstream of the TSS (Figure 3; Lantermann et al, 2010). In 
both cases, TTS nucleosome depletion appears to be more dependent on RNAPII 
elongation and distance to the next promoter than TSS depletion (Fan et al, 2010). 
Gene bodies are generally covered by regularly spaced nucleosomal arrays, with linker 
DNA length (the distance between one nucleosome and the next) varying by species 
(Mavrich et al, 2008b; Shivaswamy et al, 2008; Lantermann et al, 2010; Givens et al, 
2012).  
 
Nucleosome positioning is determined by the combination of sequence favorability, the 
action of nucleosome remodelers, and the binding of transcription factors, the 
transcription machinery, and other DNA-binding proteins (Struhl & Segal, 2013). 
Nucleosome formation favorability ranges over three orders of magnitude based on 
DNA sequence alone (Thastrom et al, 1999). The difference in favorability arises from 
the differing flexibility of DNA sequences, with AT/TA pairs being the most flexible 
and homopolymeric stretches being the least. However, most of the yeast genome 
exhibits the favorable ten-bp periodicity that puts AT/TA pairs on the face of the DNA 
helix that is in contact with the histone octamer. Gene body nucleosomal arrays and the 
strongly positioned +/-1 nucleosomes are not replicated in vitro (Zhang et al, 2009). 
Furthermore, while AT-rich promoter regions can partially account for TSS 
nucleosome depletion, such promoters are uncommon in fission yeast 
(Schizosaccharomyces pombe), in more complex species, and at inducible genes 
(Lantermann et al, 2010; Tsankov et al, 2011). While DNA sequence factors provide 
local energy minima and may help chromatin remodelers to get positioning exactly 
‘right,’ they cannot generate in vivo patterns of nucleosome spacing alone.  
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Figure 3. Nucleosome positioning over an average fission yeast gene. Nucleosome occupancy 
averaged over 4013 genes aligned at the transcription start site. A prominent nucleosome depleted region 
(NDR) is visible directly upstream of the TSS. An array of evenly spaced nucleosomes covers gene body. 
Fission yeast does not have a prominent nucleosomal array upstream of the NDR. Nucleosome 
occupancy signal is relative to genomic DNA signal. Dark pink circles represent positioned nucleosomes; 
light pink circles represent nonpositioned nucleosomes.  
 
There are numerous examples of genetic and biochemical studies describing the 
importance of Snf2-family chromatin remodelers for nucleosome positioning (Alen et 
al, 2002; Walfridsson et al, 2007). Assembling, disassembling and sliding 
nucleosomes along DNA is, after all, a primary function of this diverse group of 
enzymes. Remodeling enzymes are needed for the maintenance of TSS and TTS 
nucleosome depleted regions (Alen et al, 2002; Walfridsson et al, 2007; Whitehouse 
et al, 2007; Badis et al, 2008) and for linking gene body nucleosomal arrays to the +1 
nucleosome (Gkikopoulos et al, 2011; Hennig et al, 2012; Pointner et al, 2012; Shim 
et al, 2012). The loss of individual remodelers or combinations of partially redundant 
remodelers has physiological consequences. In addition to affecting the processes of 
transcription, replication and repair (Seeber et al, 2013), nucleosome positioning by 
chromatin remodelers is essential in maintaining boundary elements, e.g. between 
heterochromatin and euchromatin (Strålfors et al, 2011), and can even affect the 
flexibility and motility of the entire chromatin fiber (Neumann et al, 2012). 
Maintaining a NDR at the TSS of transcribed genes allows the transcription machinery 
to assemble; in cases where the TSS NDR is compromised, highly transcribed genes 
are downregulated (Whitehouse & Tsukiyama, 2006; Whitehouse et al, 2007; Yen et 
al, 2012). In parallel, when the TTS NDR is not maintained transcription termination 
can be compromised, resulting in readthrough transcription (Alen et al, 2002). 
Disruption of the regularly spaced genic array appears to allow for cryptic transcription 
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to initiate in the gene body (Hennig et al, 2012; Pointner et al, 2012; Shim et al, 2012; 
Smolle et al, 2012).  
 
Finally, other DNA-binding proteins can compete with nucleosomes for access. 
Transcription factors that can bind DNA despite its being incorporated into a 
nucleosome are called ‘pioneer’ transcription factors (Zaret & Carroll, 2011). Once 
bound, pioneer factors can recruit ATP-dependent chromatin remodelers, which can 
further open the chromatin and allow other transcription factors to access the DNA. The 
strong positioning of the +1 nucleosome immediately after the TSS also suggests the 
influence of transcription machinery binding on nucleosome positioning (Zhang et al, 
2009; Struhl & Segal, 2013).  
 
1.2.3 Histone variants 

The canonical histones H2A, H2B, H3 and H4 are synthesized and incorporated at the 
time of DNA replication (Heintz et al, 1983; Harris et al, 1991). In addition, histone 
variants exist and are incorporated into nucleosomes in place of the canonical histones 
in specific situations, loci or tissues. Histone variants are involved in processes from 
transcriptional regulation to centromere function to sex chromosome condensation. 
Many variants emerged early in eukaryotic evolution and are well-conserved, while 
others appear only in specific lineages. Histone variants add versatility to the chromatin 
fiber by affecting nucleosomal structure, bearing unique post-transcriptional 
modifications, or recruiting effector proteins (Talbert & Henikoff, 2010; Millar, 2013; 
Skene & Henikoff, 2013). Histone incorporation into chromatin, both generally and in 
histone variant exchange, is accomplished by the combined effort of histone 
chaperones and ATP-dependent nucleosome remodelers (Park & Luger, 2008; Burgess 
& Zhang, 2013; Skene & Henikoff, 2013; Torigoe et al, 2013).  
 
A centromeric variant of H3, known as CenH3 (CENP-A in human, Cse4 in budding 
yeast, Cnp1 in fission yeast), is nearly universal among eukaryotes. CenH3 marks the 
site of kinetochore construction and is essential for centromeric identity and function 
(Earnshaw & Migeon, 1985; Stoler et al, 1995; Takahashi et al, 2000; Padeganeh et 
al, 2013a). CenH3 nucleosomes may actually be hemisomes, or DNA wrapped in a 
right-handed turn around a histone tetramer, rather than typical left-handed octameric 
nucleosomes (Dalal et al, 2007; Furuyama & Henikoff, 2009) although this is still 
controversial (Padeganeh et al, 2013b). Arguably the most dramatic example of a 
histone variant altering chromatin properties, this hemisomal chromatin may facilitate 
kinetochore assembly during mitosis (Furuyama & Henikoff, 2009). In contrast with 
CenH3, the H3.3 variant differs from canonical H3 (H3.1) by only a few amino acids. 
Unlike H3.1, which is only incorporated into chromatin during DNA replication or 
repair, H3.3 can be incorporated into chromatin both during and independent of 
replication (Ahmad & Henikoff, 2002). Nucleosome incorporation independent of 
chromatin replication is important for many processes, including chromatinization of 
the male pronucleus after fertilization (Loppin et al, 2005; Konev et al, 2007). Many 
species, including yeasts, have only a single non-centromeric H3 variant, like H3.3 
incorporated at any point in the cell cycle (Talbert & Henikoff, 2010). Despite its 
similarity to H3.1, H3.3 appears to reduce nucleosome stability, with important 
regulatory consequences (Jin & Felsenfeld, 2007; Henikoff, 2009; Kurumizaka et al, 
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2013).  
 
H2A has two highly conserved variants, H2A.Z and H2A.X, as well as numerous more 
lineage-restricted variants (West & Bonner, 1980; Millar, 2013). The former diverged 
early in eukaryotic evolution, while the latter is the result of repeated convergent 
evolution (Malik & Henikoff, 2003). H2A.Z is found in nucleosomes flanking the TSS 
NDR of both active and inactive genes (Raisner et al, 2005), and has been proposed to 
play a role in gene regulation (Halley et al, 2010). The relationship between H2A.Z 
occupancy and gene expression is a complex one, however, varying by developmental 
stage, tissue, and species (Millar, 2013). Reported roles in the full transcription of 
active genes, the induction of repressed genes, and even occasionally gene repression, 
may in part be reconciled by varying post-transcriptional modifications (Bruce et al, 
2005; Millar et al, 2006; Gevry et al, 2007; Halley et al, 2010; Gallant-Behm et al, 
2012; Millar, 2013). The effect of H2A.Z incorporation on the nucleosome could also 
stem from its structure, which may render a nucleosome containing both H2A and 
H2A.Z unstable (Li et al, 1993; Suto et al, 2000; Park et al, 2004; Zhang et al, 2005; 
Thambirajah et al, 2006; Hoch et al, 2007; Higashi et al, 2007; Bonisch & Hake, 
2012). Incorporated by the Swr1 nucleosome remodeling complex SWR-C (Krogan et 
al, 2003) and removed by the Ino80 remodeling complex (Papamichos-Chronakis et 
al, 2011), H2A.Z also plays important roles in development, DNA damage repair, 
heterochromatin and chromatin boundary formation (Millar, 2013). H2A.X, an S139 
phosphorylatable H2A variant, is absent in yeasts and fruit fly (Drosophila 
melanogaster). In yeasts, however, canonical H2A can be phosphorylated and appears 
to have the same functions as H2A.Xph (Pinto & Flaus, 2010; Rozenzhak et al, 2010; 
Szilard et al, 2010; Kitada et al, 2011). H2A.Xph, or γ-H2A.X, marks sites of DNA 
damage, where it recruits repair factors including SWR-C and INO80. SWR-C in turn 
transiently incorporates H2A.Z, which may ease nucleosome eviction proximal to the 
damage site (Papamichos-Chronakis & Peterson, 2013). γ-H2A.X is also associated 
with replication fork collapse and heterochromatin (Rozenzhak et al, 2010; Szilard et 
al, 2010; Kitada et al, 2011). Although H2A.X can be found genomewide (Seo et al, 
2012), its functions beyond damage repair are poorly understood.  
 
While H4 and H2B variants do exist, they are far less common than variants of H3 and 
H2A (Ota et al, 2004; Bonenfant et al, 2006; Wu et al, 2009; Gonzalez-Romero et al, 
2010; Jufvas et al, 2011; Talbert et al, 2012). This is likely due to evolutionary 
constraints on allowing both histones in the core dimers to vary (Gonzalez-Romero et 
al, 2010). Finally, a fifth histone, H1, has been identified in species from ciliates to 
human. Known as the linker histone, H1 binds the DNA where it leaves the core 
nucleosome. Reflecting the diversity of somatic- and gamete-specific H1 variants, the 
linker histone can influence nucleosome spacing, higher order chromatin structure, 
gene expression, and development (Kowalski & Palyga, 2012; Öberg et al, 2012).  
 
1.2.4 Histone modifications 

In addition to serving as the scaffold that allows DNA to be compacted, histones play a 
much-studied regulatory role. Histones can be post-translationally modified, most 
commonly on their protruding tails but also on the globular core domain (Cosgrove et 
al, 2004), with a variety of chemical and protein groups. These include methylation of 
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arginine and lysine residues, acetylation of lysine residues, phosphorylation of serine 
and tyrosine residues, and ubiquitination/sumoylation of lysine residues (Kouzarides, 
2007; Campos & Reinberg, 2009; Tropberger & Schneider, 2010; Zentner & 
Henikoff, 2013). It was once expected that, in combination, these different 
modifications would form a ‘histone code,’ with specific combinations giving rise to 
specific outcomes (Strahl & Allis, 2000). It has since become apparent, however, that 
histone modifications are often redundant (Martin et al, 2004; Dion et al, 2005). 
Rather than modifications forming myriad meaningful combinations, there appears to 
be a more limited number of common combinations associated with different 
chromatin states (Wang et al, 2008; Filion et al, 2010). Though these histone 
modification patterns could still be considered a code, it is a highly redundant, and thus 
highly resilient, one (discussed in Sims & Reinberg, 2008; Campos & Reinberg, 
2009).  
 
Histones are modified by a plethora of enzymes (Kouzarides, 2007). Lysine methyl 
transferases (KMTs), lysine acetyl transferases (KATs), kinases and E3 ubiquitin 
ligases are key enzymes involved in modifying histones. Modifications can also be 
removed, through the action of lysine demethylases (KDMs), histone deacetylases 
(HDACs), deubiquitinases and phosphatases, among others. These enzymes have 
crucial regulatory and signaling roles in all processes that have chromatin as their 
substrate, e.g. transcription and DNA repair. They are also crucial for the maintenance 
of heterochromatin and euchromatin (Dalla Rosa et al, 2009; Zentner & Henikoff, 
2013).  
 
There are two principal ways in which histone modifications can affect nuclear events. 
In the first, modifications can have a general effect on chromatin structure. Acetylation 
and phosphorylation reduce the positive charge of the histone, weakening the 
interaction with the negatively charged DNA backbone and increasing DNA 
accessibility (Hyland et al, 2005; Masumoto et al, 2005; Xu et al, 2005; Rufiange et 
al, 2007; Dawson et al, 2009; Manohar et al, 2009; Neumann et al, 2009). Histone 
tail modifications have been shown to alter higher order chromatin structures, which 
are held together by interactions between histones in different nucleosomes (Simpson, 
1978; Tse et al, 1998; Garcia-Ramirez et al, 1995). For example, H4K16Ac 
antagonizes chromatin compaction (Shogren-Knaak et al, 2006; Robinson et al, 2008), 
as does H2Bub (Fierz et al, 2011). In contrast, histone tail modifications may have 
only minor effects on the stability of individual nucleosomes (Widlund et al, 2000).  
 
Histone modifications can also specifically recruit effector proteins and/or influence the 
activity of those proteins (Tamkun et al, 1992; Bannister et al, 2001; Hon et al, 2009; 
Erdel et al, 2011; Musselman et al, 2012; Zentner & Henikoff, 2013). These proteins, 
alone or accompanied by large complexes, can then modify other histones, remodel 
nucleosomes, alter the chromatin compaction or otherwise influence chromatin-based 
processes. This recruitment is mediated by domains in the recruited proteins that 
recognize different histone modifications. Chromodomains, for example, are able to 
bind methylated lysine residues (Bannister et al, 2001; Eissenberg, 2012), while 
bromodomains bind acetylated lysines (Zeng & Zhou, 2002). Many modifications both 
recruit specific effectors and influence general chromatin properties. The complex 
crosstalk between chromatin modifiers generates a regulatory network, resilient in its 
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redundancy, that influences processes including transcription, DNA repair, 
recombination and replication.  
 
1.3 ATP-DEPENDENT CHROMATIN REMODELERS 

1.3.1 Introduction 

The specific positioning of a nucleosome along the DNA can expose or block 
transcription factor binding sites, as well as contribute to overall DNA topology. 
Furthermore, DNA-based processes like transcription, recombination, DNA repair and 
DNA replication must contend with nucleosomes for access to the DNA molecule. The 
SNF2 family of ATP-dependent helicase-like nucleosome remodelers is responsible for 
assembling and disassembling nucleosomes, exchanging H2A-H2B dimers, histone 
variant incorporation and nucleosome sliding (Clapier & Cairns, 2009; Hargreaves & 
Crabtree, 2011). In addition to ATPase and helicase-like DNA translocase domains 
(Fyodorov & Kadonaga, 2002; Saha et al, 2002; Whitehouse et al, 2003; Singleton et 
al, 2007), chromatin remodelers often have domains by which they can be recruited to 
specific chromatin landscapes (Erdel et al, 2011). SWI/SNF (SNF2), the founding 
member of the family, and its homologs have a bromodomain, which binds to 
acetylated lysine and thus recruits the remodeler to open, active chromatin (Tamkun et 
al, 1992; Zeng & Zhou, 2002). Chromatin remodelers are often active in eponymous 
complexes, the subunits of which can vary by tissue and developmental stage in more 
complex organisms. These other subunits lend further specificity by modulating 
remodeler activity and targeting (Clapier & Cairns, 2009; Hargreaves & Crabtree, 
2011).  
 
Given the importance of Snf2 family chromatin remodelers to so many nuclear 
processes, it is unsurprising that the mutation or loss of these enzymes is associated 
with an array of diseases. In addition to numerous ties to cancer, (Bagchi et al, 2007; 
Wilson & Roberts, 2011), chromatin remodeling defects are associated with neural and 
other developmental abnormalities (Bultman et al, 2000; Boerkoel et al, 2002; Martin, 
2010), some of them lethal. 
 
The Snf2 family chromatin remodelers can be subdivided in a variety of ways, ranging 
from the historical to the structural. Table 1 reflects a mixed classification, retaining the 
common group names while still clustering subfamilies according to the sequence and 
structure of the helicase-like domain, a division that appears to parallel functional 
differentiation (Flaus et al, 2006). The Snf2 ATPases have been reviewed extensively 
elsewhere (Clapier & Cairns, 2009; Flaus & Owen-Hughes, 2011; Hargreaves & 
Crabtree, 2011; Ryan & Owen-Hughes, 2011). Importantly, there are many more 
members of the Snf2 family than are outlined in Table 1. Many of these enzymes do 
not have nucleosomes as their primary substrate, however, and translocate DNA for 
other purposes (Flaus et al, 2006; San Filippo et al, 2008; Viswanathan & Auble, 
2011) 
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Table 1. ATP-dependent Snf2 Family Chromatin Remodelers. A subset of the Snf2 family ATPases, 
encompassing the better characterized chromatin remodeling groups, and their homologs in humans, 
Arabidopsis thaliana, and two yeasts. The first three groups (blue), Swi/Snf, Iswi, and Chd, can be further 
clustered as distinct from the more distantly related Ino80-like remodeling subfamilies (purple). (Flaus et 
al, 2006)  
Group Subfamily Name in 

Fission 
Yeast 

Name in 
Budding 
Yeast 

Name in 
Arabidopsos 
thaliana 
(Thale Cress) 

Name in Human 

Swi/Snf Swi/Snf Snf22 
Snf21 

SNF2 
(SWI/SNF) 
STH1 (RSC) 

CHR12; CHR23; 
CHR3/SPLAYED
; CHR2/BRM  

SMARCA4/BRG1 
SMARCA2/BRM 

Lsh - IRC5 DDM1 SMARCA6/ 
HELLS 

Iswi Iswi - ISW1; ISW2 CHR11; CHR17 SMARCA1/SNF2L 
SMARCA5/SNF2H 

ALC1 - - CHR10/ASG3 CHD1L/ALC1 
Chd Chd1 Hrp1; Hrp3 CHD1 CHR5 CHD1; CHD2 

Mi-2 Mit1 - CHR4/PKR1; 
CHR6/CHD3/ 
PICKLE; 
CHR7/PKR2 

CHD3/Mi2-α; 
CHD4/Mi2-β; 
CHD5 

Chd7 - - - CHD6; CHD7; 
CHD8/HELSNF1; 
CHD9 

Ino80-
like 

Fun30 Fft1; Fft2; 
Fft3 

FUN30 CHR19/ETL1 SMARCAD1 

Ino80 Ino80 INO80 INO80 INO80 
Swr1 Swr1 SWR1 PIE1 SRCAP 
EP400 - - - EP400 

 
The exact mechanism by which remodelers translocate DNA around nucleosomes is 
still under discussion, and is likely to differ between different subfamilies (Flaus & 
Owen-Hughes, 2011). Any manipulation of the nucleosome that requires breaking the 
interactions between the positive histones and negative DNA requires ATP-dependent 
remodeling activity. This includes nucleosome sliding, assembly, disassembly, and 
histone dimer exchange (Figure 4). Chromatin is assembled by the combined effort of 
histone chaperones and Snf2-family chromatin remodelers. First, chaperones deposit 
histones on the DNA in an ATP-independent manner (Das et al, 2010; Burgess & 
Zhang, 2013). The result is a histone-DNA complex that resembles a nucleosome, but 
does not supercoil DNA like a mature nucleosome and is more vulnerable to digestion 
by micrococcal nuclease (Torigoe et al, 2013). Next, the Snf2-family remodeler 
assembles the histone-DNA complex into a canonical nucleosome in a process that 
utilizes ATP (Torigoe et al, 2013). This nucleosome assembly, or maturation, is 
distinct from the remodeler’s other functions such as spacing the nucleosomes (Torigoe 
et al, 2013).  
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Figure 4. DNA translocation by a Snf2 family chromatin remodeler. A) An ATP-dependent 
chromatin remodeler can expose DNA that is obscured by a nucleosome. B-D) This may happen in a 
series of enzymatic cycles, in which the remodeler pulls/pushes DNA into the nucleosome, disrupting 
histone-DNA interactions. This would allow E) nucleosome sliding, F) eviction, or G) dimer exchange. 
Histones, blue/yellow; Remodeler, purple; Transcription factor, green; Chaperone, orange.  
 
ATP-dependent chromatin remodeling is involved throughout the process DNA 
damage repair. There are many kinds of DNA damage, repaired by a wide variety of 
mechanisms (Branzei & Foiani, 2008), of which double stranded break (DSB) repair 
involves the most interaction with chromatin (Papamichos-Chronakis & Peterson, 
2013; Price & D'Andrea, 2013). The role of chromatin remodeling is perhaps most 
critical in DSB repair via homologous recombination, although nonhomologous end 
joining repair also involves Snf2 family chromatin remodelers (Ogiwara et al, 2011). 
The role of ATP-dependent chromatin remodeling in DNA damage repair likely 
follows the classic Access-Repair-Restore model (Smerdon, 1991): after DSBs are 
detected, repair proteins need assistance to access the lesion. Remodeling is further 
required to allow resectioning, the creation of a single-stranded DNA (ssDNA) 
intermediate capable of homologous recombination, and to restore normal chromatin 
after repair is completed.  
 
Upon detection of a DSB, the RSC complex (catalytic subunit Snf21) is immediately 
recruited to the site, where it slides or ejects immediately proximal nucleosomes (Chai 
et al, 2005; Shim et al, 2005; 2007; Kent et al, 2007). Ino80 and Fun30 are recruited 
more slowly, and while remodeling by Fun30 is redundant with the activity of Ino80 
and RSC proximal to the DSB, it is required for extensive resection (Papamichos-
Chronakis et al, 2006; Tsukuda et al, 2009; Chen et al, 2012; Costelloe et al, 2012; 
Eapen et al, 2012; Neumann et al, 2012). Swr1c is also recruited to DSBs, where it 
transiently stimulates the incorporation of H2A.Z, possibly easing nucleosome ejection 
(van Attikum et al, 2007; Kalocsay et al, 2009; Rosa et al, 2013). How essential these 
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remodeling activities are for efficiency of DSB repair by homologous recombination is 
still unclear. In addition to apparent interspecies variation, studies disagree on the 
amount of nucleosome loss and the importance of remodeling for the kinetics of 
recombination DSB repair (discussed in Papamichos-Chronakis & Peterson, 2013). 
Once the ssDNA intermediate has been formed it seeks homologous sequence with 
which to recombine, requiring increased chromosome flexibility and mobility (Kruhlak 
et al, 2006; Soutoglou et al, 2007; Torres-Rosell et al, 2007; Chiolo et al, 2011; Dion 
et al, 2012; Mine-Hattab & Rothstein, 2012). This may also be enhanced by ATP-
dependent chromatin remodelers, as Ino80c has been demonstrated to enhance 
chromosomal flexibility and locus mobility, perhaps by disrupting a chromosomal 
anchor (Neumann et al, 2012).  
 
Meiotic homologous recombination, which involves many of the same principles as 
DSB repair recombination, also involves Snf2 ATPases (Colas et al, 2008; Kim et al, 
2012; Rosa et al, 2013). Chromatin remodeling plays crucial roles in DNA replication, 
a process in which nucleosomes must be not only circumvented but also reassembled in 
such a way as to preserve the chromatin state on both daughter chromatids. In budding 
yeast, INO80 travels with the replication fork and evicts H2A.Z (Papamichos-
Chronakis et al, 2011). In the absence of INO80, stalled replication forks are more 
prone to collapse, perhaps because of excess H2A.Z (Papantonis et al, 2008; Shimada 
et al, 2008). In humans and budding yeast, SNF2H/ISW2 facilitates replication through 
heterochromatin (Collins et al, 2002; Vincent et al, 2008), while human SMARCAD1 
recruits HDACs to the replication fork (Rowbotham et al, 2011). This is important 
because histones are acetylated before incorporation, and without the action of HDACs 
chromatin can become hyperacetlyated, leading to a loss of heterochromatin. 
Chromatin remodeling is also essential for transcription. Remodelers give RNA 
polymerases access to the DNA template, reassemble chromatin behind the 
polymerases, and prevent inappropriate (‘cryptic’) transcription initiation. This is 
discussed further in section 1.6.2.  
 
Unsurprisingly, chromatin remodeling is heavily involved in developmental regulation. 
The diversity of chromatin remodeling enzymes and complexes that supports situation-
appropriate transcriptional programs in unicellular organisms is also essential to 
multicellular development. Snf2 enzymes are active from the earliest stages of egg 
fertilization (Konev et al, 2007) to the determination of differentiated cell fate 
(Aichinger et al, 2009; Yoo & Crabtree, 2009; Ronan et al, 2013). Chromatin 
remodelers are also important for the maintenance of an undifferentiated state 
(Aichinger et al, 2009; Gaspar-Maia et al, 2009). The molecular and developmental 
functions of two remodeler subfamilies, Chd1 and Fun30, are discussed in detail in the 
next sections.  
  
1.3.2 The Chd1 subfamily of chromatin remodelers 

Mouse Chd1 was the first member of the Chd group of remodelers to be discovered 
(Delmas et al, 1993). Named for their Chromodomains, Helicase domains, and DNA 
binding, early characterization suggested that Chd1 is a euchromatic factor, binding the 
active interbands and puffs of fruit fly polytene chromosomes (Stokes et al, 1996). 
Furthermore, the remodeler was observed to be expressed at different levels in different 
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human tissues, with expression high in placenta and skeletal muscle but almost absent 
from brain tissue (Woodage et al, 1997).   
 
Since their initial characterization, the Chd1 remodelers have been studied extensively 
both in vivo and in vitro. Unlike many other Snf2 family remodeling enzymes, Chd1 is 
not found in stable complexes, but rather functions as a monomer or perhaps 
homodimer (Tran et al, 2000; Lusser et al, 2005). Chd1 is capable of assembling and 
sliding nucleosomes (Lusser et al, 2005), and cooperates with the Nap1 histone 
chaperone both in vivo (Walfridsson et al, 2007) and in vitro (Lusser et al, 2005). 
Chd1 slides end-positioned nucleosomes toward the middle of DNA fragments in vitro 
(Stockdale et al, 2006), a process that is dependent on the DNA binding domain 
(McKnight et al, 2011; Ryan & Owen-Hughes, 2011). Chd1 may also slide 
nucleosomes toward its own position on longer extranucleosomal DNA, making the 
DNA binding domain important for sliding directionality (McKnight et al, 2011; Patel 
et al, 2013).  
 
The function of the tandem Chd1 chromodomains has been more difficult to determine. 
Chromodomains are found in all studied eukaryotes and mediate protein-protein or 
protein-nucleic acid interactions (Eissenberg, 2012). Human CHD1 has a strong 
affinity for H3K4 di- and trimethylation in vitro (Sims et al, 2005) and in vivo (Sims et 
al, 2007), where the chromodomains are important for Chd1 interaction with chromatin 
(Kelley et al, 1999). In contrast, fruit fly chromodomains appear to be dispensable for 
Chd1 recruitment to active chromatin in vivo and for H3K4me2 affinity in vitro 
(Morettini et al, 2011), while budding yeast CHD1 shows no in vitro affinity for 
methylated H3K4 (Sims et al, 2005). Rather than being important for recruitment of 
Chd1 to chromatin, fruit fly Chd1 chromodomains appear to be essential for full 
enzymatic function (Morettini et al, 2011). This makes sense in light of mechanistic 
studies that revealed the regulatory control of chromodomains over Chd1 ATPase 
activity (Hauk et al, 2010). This study shows that in addition to perhaps helping to 
target Chd1 in some species, in the absence of nucleosomes the chromodomains block 
DNA from accessing and activating the ATPase motor, allowing Chd1 to restrict its 
activity to nucleosomal DNA. Similarly, a NegC domain between the DNA binding 
domain and the ATPase/DNA translocase domains appears to inhibit remodeling in the 
absence of extranucleosomal DNA (Patel et al, 2011; Sharma et al, 2011).  
 
In vivo, Chd1 has diverse, context-dependent functions. The remodeler is implicated in 
all stages of transcription, from initiation to termination. At fission yeast gene 
promoters, Chd1 remodelers are associated with maintaining the NDR, as H3 
occupancy increases in their absence (Walfridsson et al, 2007). Budding yeast CHD1 
is important for clearing the promoter of nucleosomes during PHO5 gene activation, 
particularly in the absence of ISW1 (Ehrensberger & Kornberg, 2011). Both budding 
yeast and fruit fly Chd1 remodelers increase the turnover of histone H3 at the 5’ end of 
genes (Radman-Livaja et al, 2012). The Mediator complex, which triggers assembly of 
the RNAPII PIC, interacts physically with both fission yeast Hrp1 and human Chd1, 
coordinating remodeler recruitment with PIC assembly (Khorosjutina et al, 2010; Lin 
et al, 2011). However, the relationship between Chd1 promoter remodeling and 
transcription level is ambiguous. Although Chd1 is required for the proper expression 
of some genes under certain conditions (Belden et al, 2011; Ehrensberger & Kornberg, 
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2011; Lin et al, 2011; Raduwan et al, 2013), genomewide correlations are weak (Tran 
et al, 2000; Walfridsson et al, 2007; Khorosjutina et al, 2010). The NDRs of gene 
promoters may also provide a convenient base of operations for Chd1 activity in the 
gene body. Because Chd1 remodeling requires a longer stretch of naked DNA than the 
standard internucleosomal linker, it may first bind the stable promoter NDR and then 
hop to the more transient nucleosome depleted regions that form in the wake of the 
elongating RNAPII (Zentner et al, 2013).  
  
Over gene bodies Chd1 remodelers are involved in linking the regularly spaced 
chromatin array to the highly positioned +1 nucleosome (Gkikopoulos et al, 2011; 
Hennig et al, 2012; Pointner et al, 2012; Shim et al, 2012). The placement of 
nucleosomes over coding regions appears to be important for preventing the initiation 
of transcription from cryptic promoters in the gene body (Hennig et al, 2012; Pointner 
et al, 2012; Shim et al, 2012; Smolle et al, 2012), rather than correlating with changes 
in sense transcription. In budding yeast, CHD1 is partially redundant with ISWI 
remodelers in maintaining these genic nucleosomal arrays. At the same time CHD1, 
with ISW1 and ISW2, prevents the exchange of gene body histones with newly 
synthesized histones during transcription in budding yeast (Smolle et al, 2012). This is 
important to maintain H3K36me and hypoacetylation at gene bodies, which also 
prevents cryptic transcription. In agreement with this finding, in fruit fly and budding 
yeast CHD1 represses H3 turnover at the 3’ end of gene bodies, particularly in long 
genes. The particular vulnerability of long genes to elevated H3 turnover may have to 
do with DNA topology (Durand-Dubief et al, 2010) and is further discussed in section 
1.5. Indeed, Chd1 association with the long genes of fruit fly polytene chromosomes 
was noted quite early in its characterization (Kelley et al, 1999). Chd1 recruitment to 
active gene bodies is likely mediated by its physical association with elongation factors 
like PAF1, SPT4-SPT5 and FACT (Kelley et al, 1999; Simic et al, 2003). Finally, 
human CHD1 has been implicated in recruiting the spliceosome for pre-mRNA 
processing (Sims et al, 2007), while budding yeast CHD1 remodels the TTS with Isw1 
and Isw2 for proper transcription termination (Alen et al, 2002). 
 
Beyond transcription, Chd1 remodelers have a role in the heterochromatin/euchromatin 
balance in the genome. Chd1 opposes excessive heterochromatin formation in fruit fly 
(Bugga et al, 2013), while fission yeast Chd1 remodelers Hrp1 and Hrp3 are required 
for proper silencing of pericentromeric and silent mating type region heterochromatin 
(Yoo et al, 2000; Walfridsson et al, 2007). Chd1 mutants have chromosome 
segregation defects (Yoo et al, 2000), and in fission yeast, chicken and human Chd1 
remodeling is required for WT levels of the centromeric H3 variant CENP-A.  
 
Finally, Chd1 is essential in the early stages of both mammalian and insect 
development. Experiments in flies uncovered a requirement for Chd1, in cooperation 
with the HIRA histone chaperone, in unpacking the male pronucleus upon egg 
fertilization (Konev et al, 2007). Chd1 incorporates H3.3 into the paternally 
contributed chromosomes, which is essential if these chromosomes are to participate in 
mitosis (Konev et al, 2007). In silk worm (Bombyx mori), Chd1 remodels nucleosomes 
at the promoters of developmental genes, leading to transcription factor binding and 
transcription (Papantonis et al, 2008). Chd1 is also essential for mouse ESC 
pluripotence. Without Chd1, heterochromatic foci form and the stem cells are pushed 



 

 15 

toward the neural lineage, while becoming incapable of endodermal differentiation 
(Gaspar-Maia et al, 2009).  
 
It is surprising that, although studies have observed either increased promoter H3 
occupancy or decreased promoter H3 turnover in Chd1 mutants (Walfridsson et al, 
2007; Ehrensberger & Kornberg, 2011; Radman-Livaja et al, 2012), MNase digestion 
in the same mutants does not indicate any decrease in NDR depth (Gkikopoulos et al, 
2011; Hennig et al, 2012; Pointner et al, 2012; Shim et al, 2012). This discrepancy 
may in part be explained by observations that in vitro, Chd1 both slides nucleosomes 
and ‘matures’ the disorganized histone-DNA complex that is the result of histone 
deposition by chaperones (Torigoe et al, 2013). Such products of chaperone deposition 
are more vulnerable to MNase digestion than are mature nucleosomes, and could 
explain the differences observed between H3-ChIP and MNase digestion experiments 
(Torigoe et al, 2013). It is likely that maintaining the promoter NDR is a highly 
redundant process involving many remodelers, any of which could mature randomly 
deposited histones into nucleosomes and slide them away or expel them from the NDR. 
Loss of Chd1 remodeling reduces the efficiency of this process such that ‘immature’ 
nucleosome occupancy is elevated in the NDR, but this is not detected by MNase 
digestion. Furthermore, if these histones do not efficiently block access to the DNA 
then they may be of little functional importance at constitutively active genes, 
explaining the puzzling lack of genomewide correlation between elevated promoter H3 
occupancy and transcriptional changes in the absence of Chd1 (Walfridsson et al, 
2007).  
 
1.3.3 The Fun30 subfamily of chromatin remodelers 

The Fun30 (Function Unknown 30) subfamily of chromatin remodelers are relatively 
poorly characterized. The single budding yeast homolog, Fun30, was the first member 
of the subfamily discovered (Clark et al, 1992), and mutants were observed to be 
resistant to UV radiation (Barton & Kaback, 1994). The mouse Fun30 homolog, Etl1, 
is expressed from the 2-cell stage of embryonic development and then throughout 
embryogenesis, with especially high levels in the ICM, throughout the embryo during 
gastrulation, and in the fetal CNS, epithelia and thymus (Soininen et al, 1992; Schoor 
et al, 1993). Despite this and continued expression throughout the adult mouse, Etl1 
knockout mice are viable and Etl1 is not required for normal proliferation in mESC. 
Knockout mice do, however, exhibit growth retardation, skeletal dysplasias and 
reduced fertility (Schoor et al, 1999). Although not yet linked to more serious 
conditions, a splicing mutation of the human homolog SMARCAD1 can cause 
adermatoglyphia, or absence of fingerprints. Adermatoglyphia is a rare condition 
causing inconvenience to sufferers when they pass through immigration controls 
(Nousbeck et al, 2011).  
 
More recent purification and in vitro characterization of the budding yeast Fun30 
reveals that the remodeler exists primarily as a homodimer and that it performs both 
histone dimer exchange and whole nucleosome sliding (Awad et al, 2010; Byeon et al, 
2013). In addition to ATPase and helicase-like domains, the Fun30 family has a 
conserved CUE motif (Neves-Costa et al, 2009). CUE motifs are known to interact 
with ubiquitin, but budding yeast FUN30 did not show a preference for ubiquitinated 
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HeLa histones in vitro (Awad et al, 2010).  
 
In vivo studies in budding yeast show that deletion of FUN30, or inactivation of its 
ATPase domain, leads to loss of silencing at telomeres, rDNA repeats and the HMR 
mating type locus. In support of a direct effect, Fun30 binds both the HMR locus and 
the HMR boundary element, at which it alters chromatin structure (Neves-Costa et al, 
2009). Fission yeast has three Fun30 subfamily remodelers, Fft1, Fft2 and Fft3 (Fission 
yeast FunThirty 1-3). Of these, Fft3 is the best characterized. Fft3 binds insulator 
elements and has a role in maintaining the boundaries between euchromatin and 
heterochromatin at centromeres and subtelomeres. In the absence of Fft3, euchromatin 
invades subtelomeres and the centromeric central core, alleviating gene silencing and 
causing mitotic defects (Strålfors et al, 2011). Budding yeast Fun30 is also important 
for centromeric function, maintaining proper chromatin at and around the centromeric 
nucleosome and preventing mitotic segregation defects (Durand-Dubief et al, 2012). In 
human, SMARCAD1 physically interacts with heterochromatin proteins and HDACs, 
localizes to DNA replication forks, and is required to deacetylate histones incorporated 
during replication (Rowbotham et al, 2011). SMARCAD1-depleted cells have elevated 
histone acetylation, reduced centromeric H3K9 methylation, and mild mitotic defects 
(Rowbotham et al, 2011).  
 
Members of the Fun30 subfamily may also play a more direct role in gene regulation. 
Budding yeast Fun30 remodels nucleosomes at gene TSSs, with a generally repressive 
result (Byeon et al, 2013). This may be conserved in humans, as SMARCAD1 has also 
been observed to bind the TSS of several genes (Okazaki et al, 2008). Finally, Fun30 
and SMARCAD1 have recently been found to have corresponding functions in the 
repair of double stranded DNA breaks (DSBs). DSBs can be repaired by homologous 
recombination, which requires ‘resectioning,’ or the production of a single stranded 
DNA intermediate from DNA that is embedded in chromatin. Although Fun30 
remodeling is redundant with that of INO80 and RSC immediately adjacent to the 
DSB, it is required for extensive resectioning, and without it cells become sensitive to 
DSB-inducing agents (Chen et al, 2012; Costelloe et al, 2012; Eapen et al, 2012).  
 
1.4 NONCODING RNA 

The days of thinking of RNA molecules as coming in three principal flavors, mRNA, 
tRNA, and rRNA, are over. Instead, it has become clear that an astonishing variety of 
non-protein-coding RNAs regulate gene expression at all levels. This is hardly 
surprising in light of the ‘RNA World’ hypothesis, which suggests that the DNA-RNA-
protein life system arose from a system in which RNA performed both data storage and 
catalytic functions (Gilbert, 1986). There are over 100 potentially reversible 
modifications for RNA nucleotides, contributing an additional layer of complexity and 
regulation to the transcriptome (Kellner et al, 2010; Squires et al, 2012). Functional 
RNAs can be divided into two categories based on their length: long noncoding RNAs 
(lncRNAs; Mercer & Mattick, 2013) and small RNAs (sRNAs; Sabin et al, 2013). Of 
the two, various species of sRNA have been the objects of far more study.  
 
The arrival of deeper sequencing techniques has revealed that the majority of the 
human and mouse genomes is transcribed at some level (Okazaki et al, 2002; Carninci 
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et al, 2005; Kapranov et al, 2007). Surprisingly, the non-protein-coding transcription 
appears to be more cell-type specific than that of coding genes (Cabili et al, 2011; 
Derrien et al, 2012). lncRNAs are typically regulated and transcribed like mRNAs, by 
RNAPII, with active gene marks at their TSSs and polyadenylation of their transcripts 
(Guttman et al, 2009). Indeed, many lncRNAs are also coding mRNAs, with dual roles 
in the cell. lncRNAs can interact with other molecules either by base pairing or via their 
secondary structure, in the manner of a folded protein (Plath et al, 2003; Lescoute & 
Westhof, 2006; Cruz & Westhof, 2009). This versatility opens several routes to 
influence gene transcription and cellular processes in general. lncRNAs can regulate 
histone modifications, for example Xist recruitment of the Eed-Ezh2 Polycomb 
complex to methylate H3K27 on the inactive X chromosome (Plath et al, 2003). They 
can also prevent transcription factors from entering the nucleus by binding directly to 
specific importin proteins (Willingham et al, 2005). After transcription, lncRNAs can 
base pair with mRNAs and influence their fates, targeting them for amplification 
(Carrieri et al, 2012) or destruction (Gong & Maquat, 2011). lncRNAs are also 
involved in chromosomal interactions (Shevtsov & Dundr, 2011; Wang et al, 2011) 
and in telomere maintenance (Azzalin et al, 2007; Schoeftner & Blasco, 2008).  
 
In contrast with lncRNAs, most sRNAs function through a limited number of effector 
protein complexes. sRNAs are typically cleaved from longer RNA molecules by a 
Dicer class protein, after which they target Argonaute class proteins to complementary 
sequences. This process is often amplified by an RNA-directed RNA polymerase 
(RdRP), and can silence targets at either the chromatin or mRNA level (Sabin et al, 
2013). The precursor RNA molecule can be of either endogenous or exogenous origin, 
with the origin of the pathway hypothesized to be as a defense against transposable 
elements and other genomic parasites (Wong & Choo, 2004; Werren, 2011). In post-
transcriptional gene silencing (PTGS), sRNAs guide Argonaute complexes to 
complementary mRNAs in the cytoplasm, which are then either cleaved or 
translationally repressed. Here the focus will be on transcriptional gene silencing 
(TGS), in which sRNAs guide effector complexes to alter chromatin and repress 
transcription.  
 
Transcriptional silencing at fission yeast pericentromeric heterochromatin (Volpe et al, 
2002; Motamedi et al, 2004) and other genomic loci (Djupedal & Ekwall, 2009; 
Yamanaka et al, 2013) is mediated by small interfering RNAs (siRNAs: ~20-23 nt). 
These siRNAs are produced from target locus primary transcripts, which are first made 
double stranded by the fission yeast RdRP (Rdp1) and then cleaved by the fission yeast 
Dicer protein (Dcr1). The siRNAs are finally loaded into the fission yeast Argonaute 
protein (Ago1), targeting it to the target locus nascent transcripts. Ago1 is part of the 
RNA induced initiation of transcriptional silencing (RITS) complex, which contains 
other heterochromatic proteins that contribute to TGS. RITS binding also leads to the 
recruitment of Clr4, the fission yeast H3K9 methyltransferase (Zhang & Pommier, 
2008). A similar system operates in the germ lines of several species, including flies 
and humans, to defend against transposon activation (O'Donnell & Boeke, 2007). The 
Piwi (P-element induced wimpy testes) clade of Argonaute proteins, which tend to be 
essential for gamete production and fertility, are targeted to transposons by Piwi-
interacting RNAs (piRNAs: ~23-29 nt). Piwi argonautes guided by piRNAs are able to 
cleave transposon transcripts (Brennecke et al, 2007; Gunawardane et al, 2007), and 
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also support TGS via H3K9 methyltransferase recruitment (Shpiz et al, 2011; Wang et 
al, 2011; Sienski et al, 2012; Le Thomas et al, 2013; Rozhkov et al, 2013).  
 
Noncoding RNAs are also capable of directing DNA methylation. Although some 
species, including fission yeast and fruit fly, have lost the ability to methylate DNA, 
this dynamic modification has key regulatory functions in many species. DNA is 
methylated by de novo and maintenance DNA methyltransferases, and often leads to 
gene silencing (Law & Jacobsen, 2010; Smith & Meissner, 2013). RNA directed DNA 
methylation (RdDM) was first discovered in tobacco (Wassenegger et al, 1994; 
Pelissier et al, 1999), though the mechanism has been elucidated in A. thaliana and 
mouse (Zhang & Zhu, 2011; Sabin et al, 2013). In A. thaliana, transposon-rich 
repetitive regions near centromeres are transcribed by a specialized polymerase, RNA 
Pol IV. The long resultant transcripts are made double stranded by the RdRP RDR2, 
diced into siRNA by DCL3, and used by Argonaute AGO4 to target the transposons 
and repeats. AGO4 in turn recruits DRM2, a de novo DNA methyltransferase, leading 
to transcriptional silencing (Mette et al, 2000; Aufsatz et al, 2002; Onodera et al, 
2005; Castel & Martienssen, 2013; Sabin et al, 2013). In mice, the piRNA guided 
system targets transposable elements for DNA methylation and TGS in male germ cells 
(Carmell et al, 2007; Kuramochi-Miyagawa et al, 2008).   
 
1.5 TOPOISOMERASES 

1.5.1 Introduction 

The nature of the DNA double helix is such that, while allowing for duplication and 
transmission of the genetic material, local changes in the number of twists in the DNA 
will result in topological changes such as supercoiling. This happens whenever the 
DNA is unwound or the strands are separated by a tracking protein like RNAPII. The 
supercoils will remain in a chromosome until relieved, as even linear eukaryotic 
chromosomes are too encumbered by chromatin, DNA-binding proteins, and 
interactions with the nuclear membrane and other chromosomes to twist freely. The 
polymerase is also often restricted from rotating around the DNA as it progresses, for 
example due to drag from the nascent mRNA and associated pre-mRNA processing 
complexes. In the case of a progressive polymerase, positive supercoils will accumulate 
ahead of the polymerase while negative supercoils will form behind, in what are known 
as Twin Supercoiled Domains (Liu & Wang, 1987; Wu et al, 1988). Local supercoil 
accumulation has functional consequences for chromatin composition and gene 
expression. Because the formation of a nucleosome absorbs one negative supercoil  
(Worcel et al, 1981), negatively supercoiled chromatin favors nucleosome formation 
while positively supercoiled chromatin disfavors nucleosome formation. The 
accumulation of supercoils can also impede the progress of RNA or DNA polymerases 
(Kim & Wang, 1989; Gartenberg & Wang, 1992; Hiasa & Marians, 1994; Postow et 
al, 2001; Peter et al, 2004; Durand-Dubief et al, 2010). DNA molecules can become 
tangled and interlocked (catenanes) during processes such as replication, repair, and 
meiotic recombination. If this is not relieved before chromosome condensation and cell 
division, genome instability and cell death will follow (Vos et al, 2011).  
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1.5.2 Classification 

The solution to all of these topological problems, from supercoiling to catenation, lies 
in the activity of topoisomerases. Topoisomerases are essential to all DNA-based life, 
and are even common in DNA viruses (Forterre et al, 2007). Topoisomerases are 
generally divided into four groups, Types IA, IB, IIA, and IIB (Forterre et al, 2007; 
Vos et al, 2011). Although all topoisomerases sever one or both DNA strands by 
nucleophilic attack, the topoisomerase subfamilies do not appear to have a common 
origin. It has been hypothesized that they developed independently at the transition 
from RNA- to DNA-based genomes, in the common ancestor of bacteria, archaea and 
eukaryotes (Forterre et al, 2007). Type I topoisomerases sever a single strand of DNA 
and, with one exception (Kikuchi & Asai, 1984; Perugino et al, 2009), do not utilize 
ATP. These topoisomerases relax superhelical tension and resolve single stranded 
catenanes. Type I is further subdivided into Type IA enzymes capable of relaxing only 
negative supercoils and Type IB enzymes, which can relax both positive and negative 
supercoils. Type IA topoisomerases actively pass the intact strand through the severed 
one (Brown & Cozzarelli, 1981), while Type IB topoisomerases allow the severed 
strand to rotate freely until tension is released (Champoux & Dulbecco, 1972; Koster 
et al, 2005). The Type IA topoisomerase TopIII is also important for resolving single 
strand catenanes, such as are formed during homologous recombination (Wallis et al, 
1989; Hiasa & Marians, 1994).  
 
Type II topoisomerases, in contrast, sever both strands of their target DNA molecule 
(Mizuuchi et al, 1980; Collins et al, 2009). This ability is essential for untangling the 
interlocked knots and catenanes formed during DNA replication and recombination. 
Type II topoisomerases, which function as ATP-dependent multimers, are also capable 
of relaxing positive and negative supercoils (Wigley et al, 1991; Berger et al, 1996; 
McClendon et al, 2005). Type IIA topoisomerases are ubiquitous and essential 
throughout the tree of life. In contrast, Type IIB topoisomerases have so far only been 
found in archaea, which lack Type IIA, in plants, and in some bacteria and algae 
(Bergerat et al, 1994; Malik et al, 2007). The plant TopVI is important for 
endoreduplication (Sugimoto-Shirasu et al, 2005), the process by which polyploid 
tissues are formed. Two less common topoisomerases are actually able to induce 
supercoils. The bacterial Type IIA topoisomerase DNA gyrase induces negative 
supercoils (Gellert et al, 1976), while thermophilic archaea and some bacteria have a 
Type IA topoisomerase capable of increasing positive supercoiling, reverse gyrase 
(Kikuchi & Asai, 1984; Forterre et al, 1985). Although there is considerable 
redundancy between topoisomerases, there is also evidence of specialization. For 
example, Type IB enzymes can detect and preferentially bind supercoiled substrates 
(Patel et al, 2010). Some Type IB enzymes show a preference for binding and relieving 
positive supercoils (Frohlich et al, 2007), while some Type IIA topoisomerases 
recognize and preferentially resolve DNA crossovers and positively supercoiled DNA 
(Dong & Berger, 2007; Baxter et al, 2011).  
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Table 2. Topoisomerase classification, cellular function, and distribution. (Forterre et al, 2007) 
Topoisomerase 

Type 
Role Selected Members 

IA 1. ATP-independent 
2. Cut one DNA strand 
3. relax negative supercoils 
4. single strand decatenation 

Eukaryotic TopIII (α and β) 
Bacterial TopoI and TopoIII 

Archaeal TopoI 
Archaeal/Bacterial Reverse 

Gyrase 
IB 1. ATP-independent 

2. Cut one DNA strand 
3. relax supercoils (‘swivelase’) 

Eukaryotic TopoI 
Mitochondrial TopoI 

Bacterial TopoIB 
Poxvirus TopoIB 

IIA 1. ATP-dependent 
2. Cut both DNA strands 
3. Relax supercoils 
4. resolve knots 
5. decatenation 

Eukaryotic TopoII (α and β) 
Bacterial gyrase 

Bacterial TopoIV 
Bacteriophage T4 TopoIIA 

Archaeal gyrase 
IIB 1. ATP-dependent 

2. Cut both DNA strands 
3. Relax supercoils 
4. resolve knots 
5. decatenation	
  

plant TopoVI 
archaeal TopoVI 

 
1.5.3 Function 

The cellular roles of topoisomerases are diverse and are discussed in many reviews 
(Forterre et al, 2007; Vos et al, 2011). As this thesis is mainly concerned with the role 
of topoisomerases in eukaryotic transcription, only a brief overview of topoisomerase 
function in DNA replication, condensation, recombination, and repair is presented here. 
Topoisomerases are needed for the initiation of DNA replication, with TopoIB and 
TopoIIα binding replication origins and assisting with their firing. During DNA 
polymerase elongation, the polymerase must either rotate around the DNA axis, 
resulting in interlocked sister chromatids, or it must push DNA twist ahead of it, 
resulting in the buildup of positive supercoils. In either of these scenarios, 
topoisomerase activity is required to allow for progressive replication. Both type I and 
II topoisomerases relieve the positive supercoiling (Kim & Wang, 1989; McClendon et 
al, 2005; Bermejo et al, 2007), and without them replication of longer chromosomes is 
delayed (Kegel et al, 2011). Top2 (TopoII), with its ability to pass one DNA strand 
through another, is crucial to disentangling the sister chromatids (Adams et al, 1992; 
Baxter & Diffley, 2008). Sister chromatids that are left interlinked will tear during 
mitosis. The eukaryotic host-encoded Type IB mitochondrial topoisomerase is essential 
for replication of the mitochondrial genome (Zhang & Pommier, 2008; Dalla Rosa et 
al, 2009). TopoIII also plays a role, with its ability to resolve single stranded catenanes 
possibly unlinking the hemicatenanes that form when two replication forks meet (Nurse 
et al, 2003). Finally, at least budding yeast TopoII (TOP2) is involved in replication 
fork termination at genomic pausing elements (Fachinetti et al, 2010).  
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Figure 5. Model of DNA topology and topoisomerases in transcription. Top: In WT fission yeast 
cells, topoisomerases 5’ of the gene relieve the negative supercoiling generated upstream of the 
elongating RNAPII. Snf2 family remodelers are then able to keep the promoter NDR clear, resulting in 
normal transcription levels. At the 3’ end of the gene body, Type IIA topoisomerase Top2 relieves 
positive supercoiling, allowing the RNAPII to progress to the end of the gene. This results in positive 
supercoiling at the TTS, destabilizing nucleosomes and contributing to the maintenance of an NDR there. 
Bottom: In the absence of topoisomerase activity, negative supercoils accumulate at the TSS. This shifts 
the chromatin balance toward nucleosome assembly, and highly transcribed genes are downregulated. 
Positive supercoils accumulate ahead of elongating RNAPII molecules, reducing their ability to reach the 
end of genes, particularly long genes. Because fewer RNAPII reach the TTS, there are fewer positive 
supercoils to support nucleosome depletion. With the TTS NDR compromised, transcription termination 
is affected and readthrough transcription increases. Reprinted with permission from Durand-Dubief et al 
(2011) 
 
In addition to decatenating sister chromatids (Gasser et al, 1986; Rose et al, 1990; 
Charron & Hancock, 1991), topoisomerases contribute to cell division at the level of 
chromatin condensation and centromere structure. There is evidence that TopoII 
promotes mitotic chromatin condensation by clamping strands together (Hizume et al, 
2007), while the fission yeast Top3 maintains proper topology at centromeres. In the 
absence of Top3, levels of centromeric H3 variant CENP-A rise, possibly contributing 
to mitotic defects (Norman-Axelsson et al, 2013). Topoisomerases, particularly 
TopoIII, are also involved in resolving the double Holliday junction tangles that result 
from homologous recombination. As decatenation by TopoIII avoids the exchange of 
longer stretches of DNA between homologous chromosomes, this may be the preferred 
method during DNA repair in mitotic cells, rather than dominating meiotic homologous 
recombination (Wu & Hickson, 2003; Chang et al, 2005; Plank et al, 2006).  
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Transcription, like DNA replication, involves a progressive polymerase passing 
between the DNA strands, pushing positive supercoils ahead and leaving negative 
supercoils behind (Liu & Wang, 1987; Wu et al, 1988). There are functional 
consequences of these ‘Twin Supercoiled Domains’ at both the DNA and chromatin 
levels (Figure 5; Vos et al, 2011). First, if the positive supercoils ahead of the 
elongating RNA polymerase are not relieved, the polymerase may fail to reach the end 
of the gene (Gartenberg & Wang, 1992; Merino et al, 1993; Mondal et al, 2003; 
Durand-Dubief et al, 2010). This effect is stronger on long genes, comparable to the 
increased difficulty of replicating longer chromosomes in the absence of TopoI (Kegel 
et al, 2011). Both TopoI and TopoII are involved in relieving positive supercoils during 
transcriptional elongation, although TopoII may have a special role at long genes 
(Durand-Dubief et al, 2010). Underwound DNA behind the polymerase can hybridize 
more easily with RNA molecules (Drolet et al, 1994), which can lead to DNA damage 
(Tuduri et al, 2009). Supercoiling can also affect nucleosome stability, which is 
enhanced by negative supercoils and reduced by positive supercoils (Worcel et al, 
1981; Clark & Felsenfeld, 1991; Negri et al, 1994; Hizume et al, 2004). ATP-
dependent chromatin remodelers regulate gene body and gene-proximal nucleosome 
occupancy in sometimes redundant concert (Petty & Pillus, 2013). However, there is 
considerable evidence that DNA topology can interfere with the kinetics of the 
remodeling reaction (Almouzni & Mechali, 1988). When topoisomerase activity, 
particularly that of TopoI, is removed or reduced, negative supercoils accumulate 
upstream of the TSS. Excess negative supercoiling in a region that is normally depleted 
of nucleosomes can reduce the ability of chromatin remodelers to remove nucleosomes, 
which in turn reduces the transcription of highly transcribed genes (Durand-Dubief et 
al, 2010). Interestingly, some transcriptionally generated supercoiling may have a 
normal physiological role. The NDR at the TTS of many genes seems to depend on 
positive supercoils. When, under conditions of reduced topoisomerase activity, the 
RNAPII reaches the end of the gene less frequently, the TTS NDR becomes less 
defined and polymerases that do reach the gene end are more prone to readthrough 
transcription (Durand-Dubief et al, 2011). The diversity of topoisomerases in 
multicellular eukaryotes may contribute to the developmental program by fine-tuning 
gene activation and repression (Thakurela et al, 2013). 
 
Because Topoisomerases are so essential to dividing cells, they are attractive 
therapeutic targets in the fights against cancer and bacterial infection. Poisoned 
topoisomerases, unable to religate the strands they have cleaved, induce DNA damage 
while failing to resolve supercoils and catenanes. Inhibiting topoisomerase activity will 
also inhibit cell replication. Several of the most effective anti-cancer therapies, 
including camptothecin and etoposide, target topoisomerase activity (Vos et al, 2011; 
Kathiravan et al, 2013).  
 
1.6 TRANSCRIPTION 

1.6.1 General mechanisms 

Transcription is the process of producing an RNA molecule from a DNA template, and 
is highly conserved from yeast to humans. RNA molecules play a wide variety of roles, 
from influencing chromatin structure to regulating other RNA molecules to composing 
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much of the protein-constructing ribosome. Perhaps the best understood RNA function, 
however, is that of messenger RNA (mRNA). mRNA molecules are transcripts of 
protein coding genes, and after their production by RNA polymerase II (RNAPII) they 
exit the nucleus and are translated into protein by the ribosomal machinery. Only a 
fraction of possible gene products are needed at a given time in a given cell, and so the 
process of transcription is tightly regulated (Zhou et al, 2012; Liu et al, 2013; Luse, 
2013; Mischo & Proudfoot, 2013).  
 
In general, transcription of protein coding genes (Thomas & Chiang, 2006; Hahn & 
Young, 2011) is initiated when activator proteins bind upstream of the promoter. The 
transcriptional machinery and many transcription factors are unable to bind 
nucleosomal DNA, so early ‘pioneer’ factors that can bind nucleosomal DNA are 
essential to begin the activation of a gene. These activators then recruit the mediator 
complex and factors that modify histones and remodel nucleosomes, preparing the 
promoter DNA for the general transcription machinery. The general transcription 
machinery consists of RNAPII itself and several transcription factors (TFIIA, TFIIB, 
TFIID, TFIIE, TFIIF, and TFIIH) (Liu et al, 2013). Once these have assembled into the 
Pre-Initiation Complex (PIC), Rad25 (in humans, the XBP of TFIIH) unwinds the 
transcription start site so that the active site of RNAPII can bind a single stranded 
template. At the same time, Ser5 of the C-terminal domain (CTD) of Rpb1, the largest 
subunit of RNAPII, is phosphorylated. This allows for some early elongation, but 
subsequent phosphorylation of Ser2 leads to the recruitment of several additional 
factors and efficient elongation (Luse, 2013). These factors aid in elongation, 
termination, and mRNA processing, and include histone modifiers and nucleosome 
remodelers (Zhou et al, 2012; Mischo & Proudfoot, 2013). Newly formed RNA 
molecules are generally stabilized by either polyadenylation or binding to specific 
proteins. This stabilization is linked to RNAPII termination (Millevoi & Vagner, 2010; 
Kuehner et al, 2011).  
 
1.6.2 Interaction with chromatin 

As is touched upon in the previous section, chromatinization of the DNA template 
complicates every stage of transcription (Figure 6; Clapier & Cairns, 2009; Smolle & 
Workman, 2013). Assembling the components of the PIC and granting them access to 
the DNA are prerequisites for transcription initiation. This process involves 
nucleosome remodeling and histone modification by a wide range of enzymes. KAT 
coactivator complexes like SAGA and NuA3 acetylate promoter-region histones (Grant 
et al, 1999), stimulating the recruitment of other proteins by their bromodomains. The 
Snf2 ATPases at the heart of the SWI/SNF and RSC remodeling complexes both have 
bromodomains, and remodel promoter-region nucleosomes to both repress and promote 
transcription in different contexts (Whitehouse et al, 1999; Bruno et al, 2003; Vicent 
et al, 2004; Monahan et al, 2008; Parnell et al, 2008). However, inactivation of Snf21, 
the catalytic subunit of the RSC complex, did not affect NDR depth in fission yeast 
(Pointner et al, 2012). It is unclear whether this is due to redundancy with other 
remodelers or insufficiently harsh inactivation.  
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Figure 6. Transcription in the Context of Chromatin. A non-comprehensive illustration of some of the 
chromatin-related factors involved in transcription.  
 
Trimethylation of H3K4 by Set1 is also characteristic of active promoters, while di- and 
monomethylation are found over gene bodies. H3K4me, which is dependent on a 
complex cascade of prior events including H2B ubiquitination, in turn recruits other 
chromatin modifiers (Smolle & Workman, 2013). Human Chd1 and NURF (an Iswi 
subfamily remodeling complex), as well as the budding yeast SAGA and NuA3 KATs, 
are recruited to promoters by H3K4me3 (Flanagan et al, 2005; Sims et al, 2005; Li et 
al, 2006; Taverna et al, 2006; Vermeulen et al, 2010). Chd1 is also recruited to 
promoters by interactions with Mediator (Khorosjutina et al, 2010; Lin et al, 2011). 
Chd1 is known to be important for gene activation and maintenance of open chromatin 
( Gaspar-Maia et al, 2009; Morettini et al, 2011), moving the +1 nucleosome away 
from budding yeast promoters in concert with ISW1b (Yen et al, 2012). Conversely, 
budding yeast ISW1a and ISW2 move the +1 nucleosome into the promoter and are 
associated with gene repression (Whitehouse & Tsukiyama, 2006; Whitehouse et al, 
2007; Yen et al, 2012). Histone chaperones like Nap1 are also involved in regulating 
promoter-region chromatin (Walfridsson et al, 2007).  
 
In contrast to promoter regions, where nucleosomes are depleted to allow the assembly 
of the transcription machinery, gene body nucleosomes are dense and regularly spaced. 
Here, the need to accommodate passage of the elongating RNAPII must be balanced 
with the need to prevent cryptic mid-gene transcription initiation. Either irregularly 
spaced nucleosomes or the loss of appropriate histone modifications appears to allow 
cryptic transcription initiation (Hennig et al, 2012; Pointner et al, 2012; Shim et al, 
2012; Smolle et al, 2012; Smolle & Workman, 2013). Although RNAPII cannot 
transcribe through a full histone octamer, it is able to pass through hexamers in vitro 
(Kireeva et al, 2002; Belotserkovskaya et al, 2003). Dismantling the entire octamer 
appears only to happen at highly transcribed genes (Thiriet & Hayes, 2005; Dion et al, 
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2007), while at more weakly transcribed genes H2A-H2B dimer removal is sufficient. 
Removal of histone dimers or entire octamers ahead of the elongating polymerase, and 
their replacement behind, is mediated by histone chaperones like FACT, Asf1, Nap1, 
and Spt6 (Belotserkovskaya et al, 2003; Robinson & Schultz, 2003; Adkins & Tyler, 
2004; Schwabish & Struhl, 2006; Walfridsson et al, 2007). Chromatin remodelers of 
the Iswi and Chd1 subfamilies then remodel the nucleosomes so that they are regularly 
spaced and linked to the +1 nucleosome (Gkikopoulos et al, 2011; Hennig et al, 2012; 
Pointner et al, 2012; Shim et al, 2012). The combined activity of chaperones and 
remodelers is important to ensure that histones are recycled rather than exchanged for 
new ones, as this helps maintain histone modification patterns (Hennig et al, 2012; 
Shim et al, 2012; Smolle et al, 2012). Set2 interacts directly with the elongating 
polymerase (Krogan et al, 2003; Li et al, 2003; Kizer et al, 2005) and methylates 
H3K36 in the gene body. H3K36me is needed for the deacetylation activity of the 
budding yeast RPD3S (fission yeast Clr6c) (Carrozza et al, 2005; Li et al, 2007; 
Venkatesh et al, 2012), without which chromatin becomes hyperacetylated and 
permissive of transcription initiation (Carrozza et al, 2005; Li et al, 2007). Budding 
yeast ISW1b and CHD1 also have an affinity for H3K36me (Smolle et al, 2012). There 
is some evidence that Isw1 and Chd1 have differing affinities or importance for genes 
of different length or transcriptional strength, though there is considerable overlap in 
their functions (Radman-Livaja et al, 2012; Shim et al, 2012; Smolle et al, 2012). 
Finally, gene body H2Bub stabilizes nucleosomes and is linked to high expression 
levels (Robzyk et al, 2000; Henry et al, 2003; Wood et al, 2005; Pavri et al, 2006; 
Minsky et al, 2008; Kim et al, 2009). Loss of Chd1 decreases the level of H2Bub (Lee 
et al, 2012), and loss of either Chd1 or H2Bub results in lower gene body nucleosome 
occupancy (Batta et al, 2011; Lee et al, 2012).  
 
Isw1, Isw2, and sometimes Chd1, remodel nucleosomes to ensure correct transcription 
termination in budding and sometimes in fission yeast (Alen et al, 2002; Yen et al, 
2012). Finally, this complex balance of nucleosome occupancy, modification, and 
recycling is supported at all times by the activity of topoisomerases, which relieve the 
supercoiling generated by transcription and nucleosome remodeling (see section 1.5). 
The numerous redundancies and highly interconnected crosstalk of transcriptional 
regulation by chromatin indicates the importance of this level of control.  
 
1.7 TRANSPOSONS 

1.7.1 Introduction 

Genomes are made up of more than an organism’s own coding genes. In addition to 
structural and regulatory elements, parasitic DNA elements can make up a significant 
fraction of a cell’s genetic material (Kidwell & Lisch, 2000). These elements, 
transposons, use a wide variety of techniques to replicate and spread within the 
genomes of their hosts, driving the hosts to develop equally varied regulatory arsenals 
to keep them in check (Wong & Choo, 2004; Werren, 2011). This struggle, as well as 
successful transposition events and recombination between homologous transposon 
sequences in nonhomologous loci, are powerful drivers of evolution (Kidwell & Lisch, 
2000; Houle & Nuzhdin, 2004; Hedges & Batzer, 2005; Wang & Kirkness, 2005; 
Gentles et al, 2007; Cordaux & Batzer, 2009; Hollister & Gaut, 2009). Transposons 
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can be divided into two major types: retrotransposons and DNA transposons (Wicker et 
al, 2007). DNA transposons spread by being cut out of the genome and pasted into a 
new location by their own transposase or that of another transposon. Retrotransposons, 
in contrast, spread via an RNA intermediate. They either encode a reverse transcriptase 
and endonuclease or, in the case of nonautonomous retrotransposons like the human 
SINE elements, utilize the enzymes of autonomous retrotransposons. LTR 
retrotransposons, which are flanked by Long Terminal Repeats (LTRs), are believed to 
be the ancestors of retroviruses (Malik et al, 2000). In addition to reverse transcriptase 
and endonuclease, these retrotransposons encode a capsid protein and form virus-like-
particles as a step in their transposition process. LTR retrotransposons appear to be 
present in all eukaryotic genomes (Huang et al, 2012).  

 
Table 3. Transposable element content, type and activity in six fungal, plant and animal species. 
(Goffeau et al, 1996; The Arabidopsis Genome Initiative, 2000; Lander et al, 2001; Venter et al, 2001; 
Waterston et al, 2002; Wood et al, 2002; Schnable et al, 2009; Beck et al, 2010) 

Species DNA 
transposons 

LTR 
retrotransposons 

Non-LTR 
retrotransposons 

Total 

Saccharomyces 
cerevisiae 

(budding yeast) 

0 3% 
active 

0 3% 

Schizosaccharomyces 
pombe 

(fission yeast) 

0 0.35% 
active 

0 0.35% 

Arabidopsis thaliana 
(thale cress) 

6.7% 
active 

3.1% 
active 

1.2% 
quiescent 

11% 

Zea mays 
(maize) 

8.6% 
active 

74.6% 
active 

1% 84% 

Mus musculus 
(mouse) 

0.9% 
(defective 

copies) 

9.9% 
active 

27.4% 
active 

38% 

Homo sapiens 
(human) 

3% 
(defective 

copies) 

8.6% 
Recently active 

34.6% 
active 

46% 
 

 
1.7.2 Host-transposon interaction 

The potential disadvantages to the host of allowing free transposition are obvious. 
Transposons can insert into exons, affecting protein activity or introducing a premature 
stop codon, as exemplified by a human hemophilia allele (Sukarova et al, 2001). 
Transposition can also affect splicing or disrupt promoters and enhancers, altering 
transcript composition and quantity (Rebollo et al, 2011; Huang et al, 2012), while 
rearrangements during transposition or meiotic recombination can dramatically alter the 
genome (McClintock, 1951). The results of somatic cell transposition events can have 
results as harmless as kernel color variation in maize (McClintock, 1951; Wessler, 
1988) or as detrimental as cancer (Miki et al, 1992; Iskow et al, 2010). Finally, the 
genomes of many species contain a high fraction of transposon sequence (Table 3). The 
simple cost of replicating so much excess DNA is nontrivial. This being the case, it is 
unsurprising that host species have evolved layers of overlapping, even redundant, 
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strategies to regulate their transposons. These strategies frequently differ between 
somatic and germline cells, and even at different stages of development.  
 
DNA methylation and targeting by small ncRNAs are two of the most common 
mechanisms of transposon silencing. Regulatory methylation of cytosine residues in 
DNA to form 5-methyl-cytosine is common in flowering plants, vertebrates and some 
fungi. DNA methylation often silences transcription, and transposable elements are 
major, in some species the primary, targets of this silencing (Yoder et al, 1997; Selker 
et al, 2003). DNA methylation has been known for decades to silence transposable 
elements in maize (Chandler & Walbot, 1986; Fedoroff et al, 1995). Transposon 
promoters are hypermethylated in normal human cells (Thayer et al, 1993; Lees-
Murdock et al, 2003), and in the fungus Neorospora crassa DNA methylation is 
involved in TE silencing in both somatic and germ cells. In many species, loss of DNA 
methylation allows TE transcription and, in mice, is associated with derepression of 
TEs and meiotic failure in male germ cells (Bourc'his & Bestor, 2004). The genome-
wide hypomethylation associated with many cancers appears to derepress transposable 
elements, allowing for de novo transposition in, e.g., non-small-cell lung tumors (Iskow 
et al, 2010) and breast carcinomas (Belancio et al, 2010). Although the mechanisms by 
which mammalian TEs are targeted for DNA methylation are poorly understood, 
targeting in flowering plants is better characterized (Law & Jacobsen, 2010). In both 
cases, targeting by noncoding RNAs plays an essential role (see section 1.4). 
Chromatin remodeling by the LSH/HELLS/DDM1 subfamily is also known to promote 
DNA methylation (Huang et al, 2004). Histone deacetylation, nuclear organization, 
and antisense transcription are among the multiple additional silencing mechanisms that 
target transposable elements (Durand-Dubief et al, 2007; Cam et al, 2008; Matsuda & 
Garfinkel, 2009).  
 
Despite the dangers of allowing uncontrolled transposition, it has long been suspected 
that host cells could harness these processes to adapt to stressful situations 
(McClintock, 1984). Active transposition has, for example, been observed in response 
to DNA damage (McClintock, 1950), compromised telomeric stability (Morrish et al, 
2007), and oxygen or nutrient starvation (Dai et al, 2007; Sehgal et al, 2007). 
Furthermore, in some cases this increase in transposition is demonstrably under host 
control (Dai et al, 2007), suggesting that host cells may leverage transposition for rapid 
genetic change and stress adaptation. Indeed, S. pombe LTR retrotransposons are 
upregulated by stress (Chen et al, 2003; Sehgal et al, 2007) and tend to integrate into 
the promoters of stress-response genes (Guo & Levin, 2010). Similarly, heavy metals 
stimulate human LINE-1 retrotransposition (Kale et al, 2006). In addition to being a 
stress response, somatic transposition in the brain is suggested to enhance neural 
plasticity (Singer et al, 2010; Baillie et al, 2011). Transposable elements can also be 
coopted by the host genome for regulatory purposes. Melon species use the chromatin 
silencing associated with a transposon insertion for sex determination (Martin et al, 
2009). In other species, the transposon-derived CENP-B proteins have become 
essential regulators of genome stability (Casola et al, 2008) and even cluster 
transposon sequences for regulatory purposes (Cam et al, 2008; Lorenz et al, 2012).  
 
Transposable elements form essential chromosomal structural components in several 
species. Fruit fly telomeres are composed of TART, HeT-A, and TAHRE non-LTR 
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retrotransposons, which integrate near chromosome ends when they replicate 
(Biessmann et al, 1992; Levis et al, 1993; George et al, 2010). This process, also seen 
in the silk worm Bombyx mori, appears to function in place of telomerase in 
maintaining chromosome ends (Fujiwara et al, 2005). The Penelope clade of non-LTR 
retrotransposons, which includes the human LINE elements, are also present at 
telomeres (Morrish et al, 2002; 2007). Finally, the centromeres of many species are 
also derived from transposable elements (Wong & Choo, 2004).  
 
1.7.3 The retrotransposons of budding yeast 

Budding yeast has five families of LTR retrotransposons, Ty1-5 (Goffeau et al, 1996). 
Several of these families have mechanisms of insertion that avoid major detriment to 
the host cell. Both Ty1 and Ty3 integrate upstream of PolIII transcribed sequences 
(Devine & Boeke, 1996; Sandmeyer, 2003). In contrast, Ty5 integrates into 
heterochromatin under normal circumstances (Zou et al, 1996; Zhu et al, 2003). The 
Ty5 integrase (IN) protein bears a Targeting Domain that tethers the integrase to Sir4p 
(Gai & Voytas, 1998; Xie et al, 2001), an element of budding yeast heterochromatin. 
The interaction with Sir4p is dependent on phosphorylation of the IN targeting domain, 
however, and under stress conditions this phosphorylation is reduced, transforming Ty5 
into a powerful mutagen (Dai et al, 2007). Budding yeast lacks both DNA methylation 
and RNAi, both of which are involved in controlling TEs in other species. However, 
antisense transcripts from Ty1 elements are capable of post-translationally reducing the 
quantity of Ty1-derived reverse transcriptase and integrase (Matsuda & Garfinkel, 
2009).  
 
1.7.4 The retrotransposons of fission yeast 

The relatively compact fission yeast genome is only 0.35% composed of intact 
transposable elements (Wood et al, 2002). Two families of transposons, both LTR 
retrotransposons belonging to the gypsy family, have been identified in the fission yeast 
genome (Levin et al, 1990). Called Tf1 and Tf2 (transposon of fission yeast 1 and 2), 
Tf2 is the only family present in the sequenced 972 strain (Wood et al, 2002). The tf 
retrotransposons of fission yeast were the first to be identified as being able to self-
prime the reverse transcription step of their life cycle (Figure 7; Levin, 1995). Both Tf1 
and Tf2 are known to target the promoters of PolII transcribed genes (Guo & Levin, 
2010), and Tf1 targeting involves the transcription factor Atf1 (Activating transcription 
factor 1) (Majumdar et al, 2011). Next generation sequencing used to track thousands 
of new integration events has confirmed that Tf1 integrates upstream of ORFs, 
particularly those of stress-induced genes (Guo & Levin, 2010). Furthermore, Tf1 
elements are able to stimulate the transcription of adjacent genes (Leem et al, 2008) 
and environmental stress causes upregulation of Tf2 elements (Chen et al, 2003; 
Sehgal et al, 2007). Taken together, it seems likely that fission yeast, like budding 
yeast, activates transposition to improve fitness in the face of stress (Levin & Moran, 
2011).  
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Figure 7. The lifecycle of fission yeast tf retrotransposons. A) Genomic DNA: Tf2 retrotransposons are 
flanked by LTRs, which are composed of U3, R, and U5 sequences. B) mRNA is transcribed from within 
the LTR. C) A self-primer in the R region hybridizes to the Primer Binding Site (PBS) in the U5. D) The 
tf2-encoding reverse transcriptase (RT) cleaves the self-primer from the rest of the mRNA and generates 
cDNA complementary to the U5 and R sequences while digesting the mRNA template. E) The RT and 
short cDNA transcript are able to hybridize at the 3’ end of the mRNA, continuing reverse transcription 
and eventually producing a double stranded cDNA capable of reintegration into the genome. 
 
Fission yeast, like other species, employ a variety of overlapping and partially 
redundant mechanisms to control Tf2 transcription. Tf2 transcripts are generally 
targeted for degradation by the exosome. When the exosome is inactivated, however, 
the RNAi machinery causes heterochromatinization of the retrotransposon genes 
(Yamanaka et al, 2013). Furthermore, the fission yeast CENP-B proteins Abp1, Cbh1 
and Cbh2 have been shown to bind and repress Tf2 elements. Abp1 in particular is a 
crucial recruiter of HDACs Clr3 and Clr6, and via its dimerization domain is also 
important for clustering the retrotransposons into ‘Tf2 bodies’ (Cam et al, 2008). Other 
histone modifying enzymes, including the HDACs Hst2 and Hst4 and the H3K4 
methyltransferase Set1 have also been implicated in maintaining Tf2 clustering and 
transcriptional repression (Durand-Dubief et al, 2007; Lorenz et al, 2012). Deletion of 
the Abp1 dimerization domain does not cause significant transcriptional upregulation 
(Cam et al, 2008), however, and loss of chromatin modifiers can cause declustering 
(Lorenz et al, 2012), highlighting the importance of chromatin context.  
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2 METHODS 

2.1 FISSION YEAST 

Schizosaccharomyces pombe, the fission yeast species most commonly used as a model 
organism, is named after the African millet beer from which it was first isolated (Egel, 
2004). S. pombe, called fission yeast in this thesis and in the scientific literature, has a 
12.57 Mbp sequenced genome divided between 3 chromosomes and containing 5123 
protein coding genes (Wood et al, 2002). The fission yeast lineage diverged from that 
of Saccharomyces cerevisiae, the more familiar budding (brewer/baker’s) yeast, 
approximately 1,140 million years ago (Hedges, 2002). Thus, although both S. pombe 
and S. cerevisiae are unicellular fungi capable of converting sugar to alcohol (Lin & Li, 
2011), they also differ in many ways. Like budding yeast, fission yeast has an easily 
manipulable genome and short (~2.5 hours) generation time. However, fission yeast 
has large centromeres surrounded by pericentromeric heterochromatin, similar to 
mammals and totally unlike the single nucleotide point centromere of budding yeast 
(Fishel et al, 1988; Clarke, 1990). Fission yeast also has ‘typical’ heterochromatin and 
the full RNAi apparatus (Aravind et al, 2000; Volpe et al, 2002), which budding yeast 
lacks. Finally, the fission yeast cell cycle differs from that of budding yeast or most 
mammalian cell types in that roughly 70% of the cell cycle is spent in G2 (Figure 8; 
Egel, 2004).  
 

Figure 8. The fission yeast cell cycle.  
 
2.2 CHROMATIN IMMUNOPRECIPITATION 

Chromatin Immunoprecipitation (ChIP), is a method for determining where in the 
genome a protein of interest binds. A method for using ChIP in fission yeast is 
described in Durand-Dubief & Ekwall (2009). Briefly, cells are crosslinked by a gentle 
formaldehyde fixation (1% w/v final concentration). After the fixation has been 
quenched with glycine, cells are lysed with glass beads in the presence of protease 
inhibitors and chromatin is fragmented by sonication to approximately 400-500 bp 
fragments. This chromatin extract can then be incubated with an antibody against the 
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protein of interest and the antibody-chromatin complex captured by protein A-coated 
beads. After washing, elution from the beads, and protease digestion, the captured 
DNA can be quantified by PCR, microarray hybridization, or sequencing. Other ChIP 
methods can use different methods of fixation and chromatin fragmentation, e.g., 
enzymatic digestion.  
 
It is important to compare ChIPed DNA with relevant controls. In the papers in this 
thesis, up to four types of control comparisons have been made. First, an antibody-free 
quality control (protein A beads only) is always run in parallel with ChIP samples and 
assayed by PCR. If ChIP signal is not sufficiently elevated over this background then 
the samples are discarded. Second, whenever possible we perform a ‘no-antigen 
control’ ChIP to determine the level of background and cross-reactivity of our 
antibody. Third, unprecipitated chromatin extract (input) is useful to control for 
differences in fragmentation and chromatin concentration. Finally, mutants are always 
compared to the relevant WT strain.  
 
2.3 NUCLEOSOME POSITION MAPPING 

DNA that is incorporated into nucleosomes is protected from cleavage. This allows the 
mapping of in vivo nucleosome positions by enzymatic or chemical digestion of 
chromatin by agents that will efficiently cleave linker DNA. One of the most common 
choices for nucleosome mapping is digestion by micrococcal nuclease (MNase), which 
is used in Paper III of this thesis. The method is described in Lantermann et al (2009). 
Briefly, cells are gently fixed with formaldehyde (0.5%), after which the cell wall is 
digested with zymolyase to produce spheroplasts. The chromatin is then partially 
digested with MNase, which can enter the spheroplasts. The purified DNA can be 
probed by southern blot, or mononucleosomes can be hybridized to microarrays or 
sequenced. The digestion product can also simply be visualized by agarose gel to 
screen for bulk nucleosome spacing alterations. In Paper III we use DNaseI-fragmented 
genomic DNA as a control for normalization.  
 
2.4 MICROARRAYS 

Microarrays are a densely spotted collection of probes, generally corresponding to 
genomic loci, to which fragmented DNA or cDNA can be hybridized. For example, an 
array can have one probe for each unique cDNA for a given organism. In tiling 
microarrays, short, slightly overlapping probes cover an entire region or even genome, 
allowing for high resolution mapping of RNA or, commonly, ChIPed DNA. The 
microarray Affymetrix GeneChip S. pombe Tiling 1.0FR Array was used in all papers 
in this thesis. This array covers the entire S. pombe genome with 25 bp probes. These 
probes overlap by 5 bp, providing an approximately 20 bp resolution. By labeling the 
ChIP or cDNA sample, it is possible to measure the hybridization signal strength for 
each probe. The raw data can then be normalized, visualized, and further analyzed 
using a combination of Tiling Analysis Software (TAS) and IGB from Affymetrix, 
R/Bioconductor, and Podbat (Sadeghi et al, 2011).  
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2.5 FLUORESCENCE IN SITU HYBRIDIZATION 

Fluorescence in situ hybridization (FISH) allows the visualization of a DNA locus of 
interest in the nucleus. This method has been described in (Ekwall et al, 1996). Briefly, 
cells are fixed with paraformaldehyde solution. Chromosomal DNA is then denatured 
by incubations with saline sodium citrate (SSC) buffer and formamide and probed. The 
probe can be a large PCR product or cosmid, digested to an average length of 
approximately 200 bp and labeled with, in this thesis, Digoxigenin-11-dUTP. Here we 
used anti-digoxigenin-fluorescein Fab fragments to highlight the probe, and confocal 
microscopy to visualize the cells. FISH can be combined with standard 
immunofluorescence.  
 
2.6 PAPER II 

In Paper II of this thesis, microarray data from Paper I was normalized in TAS 
(Affymetrix) as described in Paper I and analyzed in Podbat (Sadeghi et al, 2011). 
Total RNA was prepared by hot acid phenol extraction. Briefly, logarithmically 
growing cells were harvested by centrifugation, immediately resuspended in TES 
buffer (10mM TrisHCl, pH 7.5, 10mM EDTA, 0.5% SDS), and vortexed with 65°C 
acid phenol for 45 minutes. RNA was then purified by phenol/chloroform extraction 
and precipitated. Reverse transcription was performed with gene and strand specific 
primers and SuperScript II Reverse Transcriptase (Invitrogen) before quantification of 
normal and readthrough transcript by qPCR.  
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3 RESULTS AND DISCUSSION 

3.1 PAPER I: TOPOISOMERASE I REGULATES OPEN CHROMATIN 
AND CONTROLS GENE EXPRESSION IN VIVO 

Processes that involve exposing or unwinding the DNA molecule, like transcription, 
DNA replication, repair, and recombination, generate torsional stress. DNA 
topoisomerases are essential to these processes, relieving torsional stress and 
supercoiling, as well as decatenating tangled strands of DNA (Almouzni & Mechali, 
1988; Mondal et al, 2003). Unrelieved, torsional stress affects chromatin structure. The 
assembly of one nucleosome absorbs one negative supercoil, so while negative 
supercoils ease nucleosome formation, positive supercoils promote nucleosome 
disassembly (Clark & Felsenfeld, 1991; Negri et al, 1994; Hizume et al, 2004). 
Several studies have shown the importance of topoisomerase activity to transcription 
and chromatin structure both in vitro and in vivo (Stewart & Schutz, 1987; Schultz et 
al, 1992; Kretzschmar et al, 1993; Collins et al, 2001). 
 
In papers I and II, we sought to understand the genomewide interplay between 
transcription, chromatin structure, and relief of torsional stress by topoisomerases. We 
studied the loss of topoisomerase function in a fission yeast double mutant with the 
Type IB topoisomerase top1 gene deleted and with a temperature sensitive allele of the 
Type IIA topoisomerase top2 gene (top2-191). Top1 and Top2 are both able to relieve 
both positive and negative supercoils and are able to substitute for one another 
(Uemura & Yanagida, 1984). Nevertheless, we found evidence of specialization in 
vivo.   
 
Using ChIP-chip, we found that both Top1 and Top2 bind to intergenic regions (IGRs). 
However, only Top1 IGR binding strength showed a positive correlation with gene 
transcription level. Furthermore, we noted that intergenic histone H3 levels are elevated 
in top1Δ top2-191, which is associated with the downregulation of the most highly 
transcribed genes. Using the drug camptothecin, we were able to trap active Top1 and 
demonstrate that Top1 is active at the promoters of affected genes. We hypothesized 
that topoisomerases, particularly Top1, relieve promoter-region supercoiling to ease the 
kinetics of the nucleosome remodeling reactions that keep these regions nucleosome 
depleted. Without topoisomerase activity, H3 levels increase and transcription initiation 
is inhibited. There is a strong correlation between the biding patterns of Top1 and Top2 
and that of the Chd1 subfamily chromatin remodeler Hrp1. This, in combination with 
the similar effects on IGR H3 levels in top1Δ top2-191 and in hrp1Δ, led us to 
hypothesize that Hrp1 is one of the Snf2 chromatin remodelers to depend on 
topoisomerase activity for its full activity.  
 
We also observe a special role for Top2 in RNAPII elongation over long genes. Top2, 
but not Top1, is enriched in the gene body of genes over 2000 bp long. This appears 
support the RNAPII in progressing to the end of the gene, as the level of RNAPII at the 
3’ end of long genes is depleted in top1Δ top2-191 relative to in WT. We propose that, 
although both TypeIB and Type IIA topoisomerases are capable of relieving either 
positive or negative supercoils, they have preferential specialties in vivo. Although they 
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can substitute for each other, Top1 specializes in removing the negative supercoils 
generated upstream of RNAPII, particularly at highly transcribed genes. This supports 
open promoters and efficient transcription initiation. Top2, in contrast, specializes in 
relieving the positive supercoils that accumulate ahead of the elongating polymerase. 
This allows the polymerase to reach the end of even the longest genes. We also propose 
that Hrp1 is a major beneficiary of topoisomerase activity. Chd1, the mouse homolog 
of Hrp1, is required to maintain open chromatin and pluripotency in embryonic stem 
cells (Gaspar-Maia et al, 2009). Top1 is also required for early multicellular 
development. Our findings suggest a role for topoisomerases in supporting 
developmental transcriptional programs, perhaps in cooperation with Chd1.  
 
3.2 PAPER II: TOPOISOMERASES, CHROMATIN AND TRANSCRIPTION 

TERMINATION 

In this paper, we continued our study of the role of topoisomerases on nucleosome 
occupancy and transcription genomewide, using the newly available Podbat analysis 
tool (Sadeghi et al, 2011). Nucleosomes are known to be depleted at gene transcription 
termination sites in a manner that is dependent on transcription (Fan et al, 2010; 
Lantermann et al, 2010). In Paper I, we observed enriched topoisomerase occupancy at 
the 3’ NDR of RNAPII transcribed genes. This enrichment was particularly strong 3’ of 
highly transcribed genes. We wondered whether topoisomerases could also be involved 
in maintaining the 3’ NDR.  
 
We found that in the top1Δ top2-191 mutant, nucleosome occupancy in the 3’ NDR is 
increased. This effect was particularly strong for genes that end at least 1000 bp from 
the next known transcript. The loss of the 3’ NDR has physiological consequences. 
Transcription termination is reduced, such that RNAPII occupancy and RNA 
production beyond the transcription termination site (TTS) are increased in top1Δ top2-
191. This effect was particularly visible at convergent genes; we were able to measure a 
two-to-four-fold increase in readthrough transcription at two target pairs by PCR.  
 
Altered chromatin structure at the TTS NDR are known to cause a termination defect in 
budding yeast. In that system, Iswi subfamily members regulate TTS nucleosome 
depletion, which promotes pausing of the polymerase and its separation from the 
mRNA (Alen et al, 2002; Ehrensberger & Kornberg, 2011). Hrp1 has been implicated 
in transcriptional termination of a reporter gene in fission yeast, although that role may 
not be widespread (Alen et al, 2002). We propose that at the TTS, the positive 
supercoils generated ahead of the elongating RNAPII support nucleosome eviction by 
Snf2 family chromatin remodelers. In the absence of topoisomerase activity, however, 
the fraction of elongating polymerases that reach the end of the gene is reduced. The 
result is that, while positive supercoiling ahead of the polymerase is increased without 
topoisomerase activity, the supercoiling accumulates in the gene body rather than at the 
TTS. This in turn shifts the nucleosome incorporation/eviction balance at the TTS NDR 
in the direction of incorporation, reducing the NDR depth and permitting readthrough 
transcription.  
 
3.3 PAPER III: CHD1 REMODELERS REGULATE NUCLEOSOME 

SPACING IN VITRO AND ALIGN NUCLEOSOMAL ARRAYS OVER 



 

 35 

GENE CODING REGIONS IN S. POMBE 

Nucleosome positioning, which affects access to the underlying DNA molecule, has 
now been mapped in several species. The mechanisms that establish nucleosome 
positioning are still under active study, however. DNA sequence, while influencing the 
favorability of nucleosome incorporation, cannot alone establish in vivo positioning 
patterns. Rather, competition from DNA-binding proteins and remodeling by Snf2 
family enzymes contributes much of the specificity of in vivo nucleosome positioning. 
In paper III, we try to understand the contribution of different Snf2 family chromatin 
remodelers to nucleosome positioning in fission yeast. We use a combined approach, 
comparing nucleosome positioning mapped by MNase digestion with transcriptomic 
data and in vitro characterization.  
 
The highly positioned nucleosomes following or flanking the TSS NDR tend to be 
enriched for H2A.Z, a histone variant incorporated by the Swr1 remodeler (Mizuguchi 
et al, 2004; Raisner et al, 2005; Buchanan et al, 2009). In budding yeast, H2A.Z 
deposition is dependent on NDR formation, but the reverse is not true (Hartley & 
Madhani, 2009). More important for NDR formation is the activity of the RSC 
remodeling complex, catalyzed by the Snf2 protein STH1 (Badis et al, 2008; Parnell et 
al, 2008; Hartley & Madhani, 2009). We found that in fission yeast, as in budding 
yeast, H2A.Z is unimportant for positioning the typically H2A.Z-enriched +1 
nucleosome. This was true even at genes where H2A.Z is normally enriched, and at 
genes with altered transcription in the absence of H2A.Z. In contrast to budding yeast, 
however, we did not observe any role for the STH1 homolog Snf21 in positioning 
nucleosomes at fission yeast genes. Snf21, like STH1, is essential, and so its function 
was studied in a conditional loss of function system. It is possible that our conditions 
did not completely eliminate Snf21 remodeling function, but our results may indicate 
that other remodelers can support promoter-region nucleosome depletion in fission 
yeast.  
 
We also looked at the importance of chromatin remodeling for regularly spaced gene 
body nucleosomal arrays. In budding yeast, these arrays are dependent on the combined 
remodeling activity of Isw1, Isw2, and Chd1. Fission yeast lacks the Iswi subfamily but 
has three Chd-type remodelers: Mit1, of the Mi-2 subfamily, and Hrp1 and Hrp3 of the 
Chd1 subfamily. Although our groups had previously published that Mit1 is important 
for gene body nucleosomal arrays (Lantermann et al, 2010), with improved 
methodology we found little effect in a mit1Δ mutant. Rather, Hrp1 and Hrp3 have an 
additive role in nucleosome spacing and in linking genic arrays to the +1 nucleosome. 
Regular genic arrays appear to be important to prevent cryptic transcription initiation, 
as antisense transcripts were elevated in the single and double Hrp deletion mutants. 
We also show for the first time that Hrp1 and Hrp3 have ATP-dependent nucleosome 
spacing activity in vitro. Our study demonstrates considerable evolutionary divergence 
between budding yeast and fission yeast, with the same key functions being performed 
by different combinations of chromatin remodelers in the two species. We also provide 
a partial explanation for how fission yeast survives without Iswi subfamily remodelers 
Our findings highlight the importance of maintaining regular genic nucleosomal arrays, 
as both yeast species have redundant remodelers performing the task.  
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3.4 PAPER IV: CONTROLLING RETROTRANSPOSONS AND 
MAINTAINING GENOME INTEGRITY: FUN30 REMODELER 
COOPERATION 

The Fun30 chromatin remodelers have, until recently, been extremely poorly 
characterized. Although they are now implicated in heterochromatin maintenance, 
centromere function, chromatin boundaries, DNA damage repair, and transcriptional 
regulation (Rowbotham et al, 2011; Strålfors et al, 2011; Chen et al, 2012; Costelloe 
et al, 2012; Durand-Dubief et al, 2012; Eapen et al, 2012; Byeon et al, 2013), Fun30 
enzymes are still not as well understood as most chromatin remodelers. Interestingly, 
fission yeast has three Fun30 subfamily members, while most species have only one 
(Flaus et al, 2006). This expansion in fission yeast has paralleled the disappearance of 
the Iswi subfamily (Rhind et al, 2011). In paper IV, we characterize the novel 
chromatin remodeler Fft2 (Fission yeast Fun Thirty 2) and demonstrate its role in a new 
mechanism of retrotransposon regulation.  
 
Fft2 has a generally repressive role genomewide. Like budding yeast Fun30, it is 
required for proper transcriptional silencing at telomeric, rDNA repeat, and silent 
mating type heterochromatic loci (Neves-Costa et al, 2009). Fft2 also cooperates with 
Fft3 to repress several categories of stress and nutrient deprivation response genes 
under optimal growth conditions. In contrast to Fft3, however, Fft2 can also support 
gene activity: Fft2 is required for the full transcription of the most strongly transcribed 
genes.  
 
One of the most interesting features of Fft2 and Fft3 binding patterns genomewide is 
the way that one can compensate for the absence of the other. As a result, the most 
dramatic phenotypes are exposed in the double mutant. Both Fft2 and Fft3 bind the 
centromere and associated heterochromatin. The remodelers redistribute in single fft2Δ 
or fft3Δ mutants and can at least partially replace each other. The double fft2Δ fft3Δ 
mutant, in contrast, has a severe mitotic defect. This compensatory redistribution is 
visible at other genomic loci as well. LTRs and tf2 retrotransposons are a striking 
example, with loss of both Fft2 and Fft3 leading to dramatic tf2 upregulation. We found 
that not only are the retrotransposons upregulated in fft2Δ fft3Δ, but the transcripts are 
longer. Like most LTR retrotransposons, the tf2 lifecycle is dependent on reverse 
transcription primed from a site in the LTR sequence (Levin, 1995). In WT cells, 
however, tf2 transcription initiates 5’ of the LTR, producing reverse transcriptionally 
incompetent RNA that will never be able to transpose. In fft2Δ fft3Δ cells, however, tf2 
transcripts include this crucial primer binding site, as well as a self-primer. Transposon 
activation is a common stress response in many species, and is often under host cell 
control (Levin & Moran, 2011). Given the role of Fft2 and Fft3 in repressing other 
stress response genes, and the fact that these remodelers are downregulated in response 
to stress (Chen et al, 2003), we propose that tf2 retrotransposition is induced as part of 
the fission yeast stress response. This mechanism of regulation, with Fun30 remodelers 
enforcing transcription from an alternative transcription start site, would allow for rapid 
retrotransposon activation. Finally, we speculate that the ability of LTRs to function as 
remodeler-dependent boundary elements (Strålfors et al, 2011) may have evolved as a 
result of remodeler affinity for and repression of retrotransposons.  
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4 CONCLUSION 

This thesis explores the ways in which nucleosome positioning and occupancy, as 
regulated by DNA topoisomerases and chromatin remodelers, affect transcription. We 
show that topoisomerases, in addition to relieving supercoils ahead of elongating 
RNAPII, are important for nucleosome depletion 5’ and 3’ of genes. At the 5’ NDR, 
elevated nucleosome occupancy limits the rate at which transcription can initiate, 
leading to the downregulation of highly transcribed genes. At the 3’ NDR, elevated 
nucleosome occupancy increases the level of readthrough transcription, perhaps by 
interfering with the RNAPII pausing that is associated with termination. We 
hypothesize that relief of supercoils by topoisomerases is needed for efficient 
nucleosome eviction by chromatin remodelers at the 5’ NDR, and suggest that Hrp1 is 
key to this disassembly. In contrast, the positive supercoils generated ahead of an 
elongating RNA polymerase normally destabilize nucleosomes in the 3’ NDR, 
supporting their eviction by remodelers. In the absence of topoisomerase activity, 
however, fewer RNAPII reach the end of the gene and positive supercoils are 
mislocalized to the gene body rather than the termination site.  
 
While nucleosome depletion at the transcription start and termination sites support 
transcription initiation and termination, gene body nucleosomal arrays are required to 
prevent cryptic transcription initiation. In the absence of the Chd1 subfamily 
remodelers Hrp1 and Hrp3, gene body nucleosome positioning becomes disordered and 
permissive of cryptic antisense transcription. Finally, the Fun30 chromatin remodelers 
Fft2 and Fft3 regulate the transcription of stress response genes. In particular, Fft2 and 
Fft3 control retrotransposons by a novel regulatory mechanism in which they enforce 
retrotransposon transcription from an alternative, nonproductive transcription start site. 
Taken together, these studies expand our understanding of the interplay between 
transcription, nucleosome positioning, and the chromatin remodelers and DNA 
topoisomerases that regulate them.  
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