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ABSTRACT 
Type 2 diabetes (T2D) and obesity are highly prevalent disorders reflecting a complex interplay of genetics, 
epigenetics, and environment. They constitute serious health problems and lead to significant morbidity and 
mortality. The overall aim of this thesis was to shed some light on the molecular mechanisms underlying 
pathogenesis of T2D and obesity by studies in rat and man. 
 
In Paper I, adenylyl cyclase 3 (Ac3) mRNA expression levels in pancreatic islets and 
striatum/hypothalamus regions of brain of diabetic Goto-Kakizaki (GK) rats were higher compared with 
control Wistar rats, while its expression was intermediate in islets and brain regions of insulin-treated GK 
rats. This study proposes that increased Ac3 mRNA expression in these tissues is partially a primary and 
inherited defect and not solely secondary to hyperglycaemia, and that AC3 may participate in the regulation 
of glucose homeostasis via insulin secretion and CNS. 
 
In Paper II, protein kinase Cα (PKCα) and PKCζ mRNA expressions in pancreatic islets were decreased in 
GK compared with Wistar rats, with intermediate expressions in the insulin-treated GK group. PKCα and 
phosphorylated PKCα (p-PKCα) protein expressions in islets were diminished in GK compared with 
insulin-treated GK and Wistar rats. Islet PKCζ protein expression was reduced in both GK and insulin-
treated GK compared with Wistar rats, but p-PKCζ was reduced only in GK compared with insulin-treated 
GK and Wistar rats. PKCε was lower in islets of GK compared with insulin-treated GK and Wistar rats, at 
both the mRNA and protein levels. PKCδ and p-PKCδ protein expressions in islets were decreased in GK 
compared with insulin-treated GK and Wistar rats. In liver, PKCδ and PKCζ mRNA expressions were 
decreased in both GK and insulin-treated GK compared with Wistar rats. Hepatic PKCζ protein expression 
was diminished in GK rats with and without insulin treatment compared with Wistar rats. Although PKCδ 
showed no difference at the protein level, p-PKCδ/PKCδ was reduced in liver of GK compared with Wistar 
rats. PKCε mRNA expression in liver was down-regulated in insulin-treated GK compared with non-treated 
GK and Wistar rats. Therefore, this study suggests defects in PKCα and PKCε expressions in pancreatic 
islets of GK rats secondary to hyperglycaemia. In liver, PKCε mRNA expression in liver could be under 
control of insulin. 
 
In Paper III, mRNA expressions, enzyme activities, and protein levels of succinyl-CoA:3-ketoacid-CoA 
transferase (SCOT) and ATP citrate lyase (ATPCL) were decreased in pancreatic islets of GK compared 
with Wistar rats. Two cell lines with the severest knockdown of SCOT enzyme activity and protein, SCOT 
1676 and SCOT 1184, showed the severest reduction in secretagogue-stimulated insulin secretion. This 
study confirms that the mitochondrial pathways involving SCOT, instead of or synergizing with the 
pathway involving ATPCL, are important potentiators of glucose-stimulated insulin secretion (GSIS). 
 
In Paper IV, we studied the association of adrenergic receptor alpha 2A (ADRA2A) genetic polymorphisms 
with obesity and/or T2D in a Swedish cohort. The single nucleotide polymorphism (SNP) rs553668 was 
associated with T2D in men, but this association disappeared after adjusting for age and body mass index 
(BMI). Associations were also detected when comparing obese subjects with normal glucose tolerance 
(NGT) and lean NGT subjects, and in obese but not lean T2D patients. In women, multiple logistic 
regression regarding SNP rs521674 demonstrated an association with T2D when including age as a 
covariant. However, correcting for BMI removed this association. When age was included in the model, the 
increased risk of rs521674 was seen in obese, but not in lean, T2D women. This study provides evidence 
that ADRA2A genetic polymorphisms are mainly associated with obesity and may also relate to T2D in a 
Swedish population. 
 

In conclusion, this thesis has revealed molecular pathogenetic defects related to T2D and obesity, and may 
thus create a basis for more precise and improved therapeutic approaches. 

 

 

ISBN 978-91-7549-283-4     



 
From the Department of Molecular Medicine and Surgery  

Karolinska Institutet, Stockholm, Sweden 

 

FUNCTIONAL AND GENETIC 
STUDIES IN TYPE 2 DIABETES 

AND OBESITY 

Mohammed Hamza Z. E. Seed Ahmed 

 

 
Stockholm 2013 

 
 
  
 
 
 
 
 
 



Principal supervisor: Professor Claes-Göran Östenson 
Department of Molecular Medicine and Surgery 
Karolinska Institutet, Stockholm, Sweden 
 
Co-supervisor: Associate Professor Harvest F. Gu 
Department of Molecular Medicine and Surgery 
Karolinska Institutet, Stockholm, Sweden  
 
Opponent: Professor Peter Bergsten 
Department of Medical Cell Biology 
Uppsala University, Uppsala, Sweden 
 
Examination board: 
Professor Mikael Rydén 
Department of Medicine, Huddinge 
Karolinska Institutet, Stockholm, Sweden 
 
Associate Professor Md. Shahidul Islam 
Department of Clinical Science and Education, Södersjukhuset 
Karolinska Institutet, Stockholm, Sweden 
 
Professor Per-Ola Carlsson 
Department of Medical Cell Biology 
Department of Medical Sciences 
Uppsala University, Uppsala, Sweden 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
All previously published papers were reproduced with permission from the publisher. 
 
Published by Karolinska Institutet. Printed by Universitetsservice US-AB. 
 
© Mohammed Hamza Z. E. Seed Ahmed, 2013 
ISBN 978-91-7549-283-4 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

To my wonderful family  





 

 

ABSTRACT 
Type 2 diabetes (T2D) and obesity are highly prevalent disorders reflecting a complex interplay 
of genetics, epigenetics, and environment. They constitute serious health problems and lead to 
significant morbidity and mortality. The overall aim of this thesis was to shed some light on the 
molecular mechanisms underlying pathogenesis of T2D and obesity by studies in rat and man. 
 
In Paper I, adenylyl cyclase 3 (Ac3) mRNA expression levels in pancreatic islets and 
striatum/hypothalamus regions of brain of diabetic Goto-Kakizaki (GK) rats were higher 
compared with control Wistar rats, while its expression was intermediate in islets and brain 
regions of insulin-treated GK rats. This study proposes that increased Ac3 mRNA expression in 
these tissues is partially a primary and inherited defect and not solely secondary to 
hyperglycaemia, and that AC3 may participate in the regulation of glucose homeostasis via 
insulin secretion and CNS. 
 
In Paper II, protein kinase Cα (PKCα) and PKCζ mRNA expressions in pancreatic islets were 
decreased in GK compared with Wistar rats, with intermediate expressions in the insulin-treated 
GK group. PKCα and phosphorylated PKCα (p-PKCα) protein expressions in islets were 
diminished in GK compared with insulin-treated GK and Wistar rats. Islet PKCζ protein 
expression was reduced in both GK and insulin-treated GK compared with Wistar rats, but p-
PKCζ was reduced only in GK compared with insulin-treated GK and Wistar rats. PKCε was 
lower in islets of GK compared with insulin-treated GK and Wistar rats, at both the mRNA and 
protein levels. PKCδ and p-PKCδ protein expressions in islets were decreased in GK compared 
with insulin-treated GK and Wistar rats. In liver, PKCδ and PKCζ mRNA expressions were 
decreased in both GK and insulin-treated GK compared with Wistar rats. Hepatic PKCζ protein 
expression was diminished in GK rats with and without insulin treatment compared with Wistar 
rats. Although PKCδ showed no difference at the protein level, p-PKCδ/PKCδ was reduced in 
liver of GK compared with Wistar rats. PKCε mRNA expression in liver was down-regulated in 
insulin-treated GK compared with non-treated GK and Wistar rats. Therefore, this study 
suggests defects in PKCα and PKCε expressions in pancreatic islets of GK rats secondary to 
hyperglycaemia. In liver, PKCε mRNA expression in liver could be under control of insulin. 
 
In Paper III, mRNA expressions, enzyme activities, and protein levels of succinyl-CoA:3-
ketoacid-CoA transferase (SCOT) and ATP citrate lyase (ATPCL) were decreased in pancreatic 
islets of GK compared with Wistar rats. Two cell lines with the severest knockdown of SCOT 
enzyme activity and protein, SCOT 1676 and SCOT 1184, showed the severest reduction in 
secretagogue-stimulated insulin secretion. This study confirms that the mitochondrial pathways 
involving SCOT, instead of or synergizing with the pathway involving ATPCL, are important 
potentiators of glucose-stimulated insulin secretion (GSIS). 
 
In Paper IV, we studied the association of adrenergic receptor alpha 2A (ADRA2A) genetic 
polymorphisms with obesity and/or T2D in a Swedish cohort. The single nucleotide 
polymorphism (SNP) rs553668 was associated with T2D in men, but this association 
disappeared after adjusting for age and body mass index (BMI). Associations were also 
detected when comparing obese subjects with normal glucose tolerance (NGT) and lean NGT 
subjects, and in obese but not lean T2D patients. In women, multiple logistic regression 
regarding SNP rs521674 demonstrated an association with T2D when including age as a 
covariant. However, correcting for BMI removed this association. When age was included in 
the model, the increased risk of rs521674 was seen in obese, but not in lean, T2D women. This 
study provides evidence that ADRA2A genetic polymorphisms are mainly associated with 
obesity and may also relate to T2D in a Swedish population. 
 
In conclusion, this thesis has revealed molecular pathogenetic defects related to T2D and 
obesity, and may thus create a basis for more precise and improved therapeutic approaches. 
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1 BACKGROUND 
Type 2 diabetes (T2D) and obesity are chronic disorders, which result from complex 
interactions between genetic, epigenetic, and environmental influences (Drong et al., 
2012). Given the increased global prevalence and disastrous public health aftermath of 
T2D and obesity, substantial research efforts have been devoted to investigate potential 
causes of the development of these disorders. 
 
1.1 GLUCOSE HOMEOSTASIS 
1.1.1 Physiology of plasma glucose regulation 

Glucose homeostasis is the essential process for maintaining constant levels of glucose, 
a principle energy source for the body and the main fuel for the brain and erythrocytes 
(Siems et al., 2000; Tirone and Brunicardi, 2001). The circulatory system maintains 
normal cerebral function by providing a constant supply of glucose, the obligate source 
of energy for the brain under physiological conditions because of the insufficiency of 
alternative fuels (Unger, 1981; Gerich, 2000). In spite of considerable variations in 
glucose flux (input or removal), plasma glucose levels are normally maintained within 
narrow limits that are necessary for the body’s well-being (Gerich, 2000). Thus 
persistent hyperglycaemia has the potential for macro- and micro-vascular 
complications, as in the case of sub-optimally controlled diabetes mellitus (Forbes and 
Cooper, 2013), whilst hypoglycaemia results in brain dysfunction and, if severe and 
prolonged, can lead to permanent brain damage and even death (Cryer and Gerich, 
1985). 
 
The plasma glucose concentration depends on the rates of entry of glucose into the 
circulation and its uptake into the tissues (Gerich, 2000). Glucose entering into the 
circulation is derived from ingested glucose; from the liver by glycogenolysis, which is 
the breakdown of the storage form of glucose, glycogen; and from the liver and kidney 
by gluconeogenesis, the synthesis of new glucose molecules from other precursors 
(mainly lactate, glycerol, and amino acids) (Gerich, 1993; Stumvoll et al., 1997; 
Mitrakou, 2011). 
 
Glucose homeostasis is achieved through the harmonized interactions of hormonal and 
neural networks, the former of which includes the most important glucoregulatory 
factors insulin, glucagon, and catecholamines, which function in a matter of minutes 
(Gerich, 2000). Insulin decreases plasma glucose levels by suppressing hepatic and 
renal glucose production, and promoting glucose uptake and utilization by liver and 
extrahepatic tissues, primarily skeletal muscle and, to a lesser extent, adipose tissue and 
cardiac muscle (Gerich, 2000; Pessin and Saltiel, 2000; Khan and Pessin, 2002; 
Thorens and Mueckler, 2010). Glucagon increases hepatic glucose output, whilst 
epinephrine promotes both hepatic and renal glucose release (Gerich, 2000). Other 
important glucoregulatory hormones, including cortisol, growth hormone, thyroid 
hormone, and angiotensin II, influence glucose levels over a period of hours firstly by 
stimulating hepatic glucose production (Tirone and Brunicardi, 2001); secondly by 
altering the sensitivity of the liver, kidney, adipose tissue, and muscle to insulin, 
glucagon, and catecholamines; and thirdly by affecting the amounts of key enzymes, 
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glycogen stores, and availability of gluconeogenic precursors (Gerich, 2000; Mitrakou, 
2011). 
 
Glucose is a hydrophilic molecule and, therefore, its bidirectional diffusion across the 
cell membrane is facilitated by glucose transporter (GLUT) proteins. Fourteen GLUTs 
have been hitherto identified in humans and besides glucose, they transport other 
substrates including fructose, myoinositol, and urate (Thorens and Mueckler, 2010). 
One or more GLUT proteins are expressed in nearly every cell type, and GLUTs 1-5, 
the best characterized isoforms, are either insulin-independent or insulin-dependent; 
however, GLUT5 is a fructose transporter and its participation in glucose homeostasis 
is minimal (Mueckler and Thorens, 2013). In summary, GLUT1 is the major glucose 
transporter in the brain and erythrocytes, and is insulin-independent; GLUT2 is also 
insulin-independent, and is principally located in pancreatic β-cells and hepatocytes; 
GLUT3, an insulin-independent transporter, is present in neurons, intestine, testicles, 
and kidneys; and GLUT4, which is the main insulin-dependent isoform, mediates 
glucose transport activity in skeletal and cardiac muscle, and in adipose tissue (Tirone 
and Brunicardi, 2001; Thorens and Mueckler, 2010; Wu and Garvey, 2010; Mueckler 
and Thorens, 2013). 
 
1.1.2 Control of glucose homeostasis 

The islets of Langerhans, which are the endocrine compartment of the pancreas, 
constitute a major centre for the control of glucose homeostasis via the secretion of two 
hormones essential in the regulation of plasma glucose, namely insulin and glucagon 
from the β- and α-cells, respectively. Besides the α- and β-cells, the islets of 
Langerhans also consist of somatostatin-expressing δ-cells, pancreatic polypeptide-
expressing cells, and ghrelin-expressing ε-cells (In't Veld and Marichal, 2010; Jones 
and Persaud, 2010). 
 
1.1.2.1 Insulin biosynthesis and storage 

The biosynthesis of insulin by the β-cells of the pancreatic islets commences by 
synthesizing preproinsulin on polyribosomes associated with the rough endoplasmic 
reticulum (Uchizono et al., 2007; Jones and Persaud, 2010). Preproinsulin, guided by 
the N-terminal signal peptide, is quickly translocated to the lumen of the rough 
endoplasmic reticulum, where the signal peptide is cleaved by proteolytic enzymes, 
forming proinsulin (Uchizono et al., 2007). Proinsulin, comprising the A and B chains 
of insulin joined by the C peptide, is then transported to the Golgi apparatus, where it is 
packaged into membrane-bound vesicles known as insulin secretory granules or β-
granules (Jones and Persaud, 2010). The C peptide chain is enzymatically removed 
from proinsulin in maturing secretory granules, yielding insulin with its A and B chains 
correctly aligned. There are at least two populations of insulin secretory granules, the 
readily releasable pool (1-5% of total granules), which is responsible for the acute first 
phase of glucose-stimulated insulin secretion (GSIS), and the reserve pool (95-99% of 
the granules), which is responsible for the sustained second phase of GSIS (Bratanova-
Tochkova et al., 2002; Hou et al., 2009). Young newly formed granules are 
preferentially selected for secretion over older granules, which remain in the storage 
pool for 3-5 days and are then subject to intracellular degradation (Uchizono et al., 
2007). Amongst many nutrients, glucose is the most physiologically relevant regulator 
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of proinsulin biosynthesis (Taylor et al., 2004; Uchizono et al., 2007). When insulin 
secretion is triggered, proinsulin biosynthesis is also increased; however, the threshold 
(2-4 mmol/l glucose) for the stimulation of insulin biosynthesis is lower than that for 
insulin secretion (4-6 mmol/l glucose) to ensure that insulin stores and, consequently, 
tight glycaemic control are maintained (Ashcroft et al., 1978; Ashcroft, 1980). 
 
1.1.2.2 Insulin secretion 

1.1.2.2.1 Nutrient control of insulin secretion 

The secretion of insulin is initiated by the influx of glucose, the most prominent 
physiological stimulus of insulin secretion, into pancreatic β-cells by facilitated 
diffusion through specific glucose transporters (GLUT1 and GLUT3 in humans; 
GLUT2 in rodents) (De Vos et al., 1995; Newsholme et al., 2010; McCulloch et al., 
2011; Rorsman and Braun, 2013). Intracellular glucose is first metabolized via 
glycolysis to pyruvate, which is then metabolized in mitochondria, generating 
adenosine triphosphate (ATP) that is exported to the cytosol, in conjunction with a 
concomitant decrease in adenosine diphosphate (ADP) levels (Ashcroft et al., 1994). 
The increase in the cytoplasmic ATP/ADP ratio leads to closure of ATP-sensitive K+ 
(K+

ATP) channels, resulting in depolarization of the β-cell plasma membrane. This in 
turn culminates in the opening of voltage-dependent Ca2+ channels, and an influx of 
extracellular Ca2+, with subsequent elevation of cytosolic free Ca2+ ([Ca2+]i) levels. 
Increased [Ca2+]i triggers insulin release from the β-cells by the process of exocytosis 
(Figure 1), which involves fusion of the secretory granule membrane and plasma 
membrane, together with the opening of a fusion pore connecting the two membranes 
(Kasai et al., 2010). Pancreatic islets are also characterized by the intrinsic property of a 
biphasic insulin secretory response to a glucose challenge, in which there is a rapidly 
rising but transient first phase lasting a few minutes (4-10 min), followed by a sustained 
second phase of secretion, which continues as long as hyperglycaemia persists (Cerasi, 
1975a; Cerasi, 1975b; Nesher and Cerasi, 2002). 
 
In addition to glucose, other nutrients including amino acids and fatty acids play 
important roles in insulin release, and their cooperation is fundamental in regulating 
appropriate insulin secretion after a mixed carbohydrate/protein/lipid meal (Nolan and 
Prentki, 2008; Newsholme et al., 2010). In spite of being poor insulin secretagogues 
individually, most amino acids require glucose or need to act in certain combinations 
with each other in order to serve their insulin secretory function (Nolan and Prentki, 
2008; Jones and Persaud, 2010); nevertheless, some of them such as leucine, alanine, 
and arginine can increase insulin release in the absence of glucose (Henquin and 
Meissner, 1986). Although free fatty acids (FFAs) are essential for efficient GSIS 
(Stein et al., 1996; Nolan et al., 2006a) and clearly augment it (Corkey et al., 1989; 
Prentki et al., 1992; Haber et al., 2003; Roduit et al., 2004), long-term exposure to 
FFAs may have lipotoxic effects on the β-cells (Sako and Grill, 1990; Zhou and Grill, 
1994; Haber et al., 2006). 
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Figure 1. Schematic overview of the triggering and amplifying pathways in the regulation of insulin 
secretion. GLUT, glucose transporter (GLUT1 and GLUT3 in humans, GLUT2 in rodents); ATP, 
adenosine triphosphate; ADP, adenosine diphosphate; K+

ATP channel, ATP-sensitive K+ channel; [Ca2+]i, 
cytosolic free Ca2+; GPCR, G protein-coupled receptor; AC, adenylyl cyclase; cAMP, cyclic adenosine 
monophosphate; PKA, protein kinase A; EPAC, exchange protein activated by cAMP; PLC, 
phospholipase C; PIP2, phosphatidylinositol bisphosphate; IP3, inositol triphosphate; DAG, 
diacylglycerol; ↑, increased; +, stimulation; −, inhibition. The various GPCRs differently influence the 
signalling pathways in the β-cell according to the activated G protein where Gq activates PLC, while Gs 
and Gi stimulates and inhibits the formation of cAMP, respectively. (This figure is taken from Henquin 
(2009), and has been modified with permission of the author.) 
 
 
1.1.2.2.2 Non-nutrient regulation of insulin secretion 

Nutrient-induced insulin secretion is modulated by other non-nutrient factors including 
numerous hormones and neurotransmitters, many of which act through the activation of 
G protein-coupled receptors (GPCRs) in the β-cell membrane (Ahren, 2009). 
Therefore, effective second-messenger systems operating through a number of 
intracellular effector systems are required to transduce extracellular neurohormonal 
signals into an insulin secretory response. In this context, the adenylyl cyclase 
(AC)/protein kinase A (PKA) and phospholipase C (PLC)/protein kinase C (PKC) 
pathways form the two most important signalling systems within the β-cell (Zawalich 
et al., 1997; Furman et al., 2010; Newsholme et al., 2010). Agonists known to 
stimulate AC (e.g. glucagon, glucagon-like peptide 1 (GLP1), glucose-dependent 
insulinotropic polypeptide (GIP), pituitary adenylyl cyclase activating polypeptide 
(PACAP)) potentiate insulin secretion via catalysis of the conversion of ATP to cyclic 
adenosine monophosphate (cAMP), which activates PKA and exchange proteins 
activated by cAMP (EPACs) (Straub and Sharp, 1996a; Straub and Sharp, 1996c; 
Straub and Sharp, 1996b; Straub and Sharp, 2002; Efendic and Portwood, 2004; 
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Drucker, 2006; Dyachok et al., 2008; Szaszak et al., 2008). Other receptor agonists 
(e.g. acetylcholine (ACh), cholecystokinin (CCK), arginine vasopressin (AVP)) 
activate PLC, which promotes the cleavage of phosphatidylinositol bisphosphate (PIP2) 
into inositol triphosphate (IP3) and diacylglycerol (DAG). IP3 stimulates Ca2+ release 
from the endoplasmic reticulum leading to increased [Ca2+]i, and DAG activates some 
isoforms of PKC, both of which enhance insulin secretion (Jones and Persaud, 1998; 
Gilon and Henquin, 2001; Yamazaki et al., 2010). In contrast, some agents (such as 
islet somatostatin and ghrelin hormones) inhibit insulin secretion through inhibition of 
AC activity and decreased cAMP production (Sharp, 1996; Jones and Persaud, 2010; 
Dezaki and Yada, 2012), via activation of K+

ATP channels in the β-cell membrane and a 
consequent hyperpolarization-induced fall in [Ca2+]i, and by blocking exocytosis at a 
late step in the stimulus-secretion coupling (Nilsson et al., 1989; Sharp, 1996; Dezaki et 
al., 2008; Jones and Persaud, 2010). 
 
Whereas the major parasympathetic neurotransmitter, ACh, stimulates insulin 
secretion, the major sympathetic neurotransmitter, norepinephrine (noradrenaline), as 
well as circulating catecholamines secreted by the adrenal medulla (mainly epinephrine 
(adrenaline)) can exert both stimulatory and inhibitory influences on insulin secretion 
depending on the subtype of adrenergic receptors that are activated (Jones and Persaud, 
2010). The stimulatory effects are mediated via β2-adrenergic receptors through 
augmentation of cAMP formation by AC (Kuo et al., 1973; Ahren and Lundquist, 
1981; Ahrén, 2000; Massarsky et al., 2011), while inhibitory effects are brought about 
by α2-adrenergic receptors through activation of K+

ATP channels that results in a 
reduction of [Ca2+]i, by inhibition of AC-dependent cAMP generation, and via distal 
attenuation of exocytosis (Hermann and Deckert, 1977; Yamazaki et al., 1982; Ullrich 
and Wollheim, 1984; Sharp, 1996; Ahrén, 2000; Zhao et al., 2008; Massarsky et al., 
2011; Straub and Sharp, 2012). 
 
Adipocyte-derived hormones (adipokines) such as adiponectin, leptin, and resistin are 
also reported to influence insulin secretion (Jones and Persaud, 2010). Adiponectin 
induces insulin secretion (Gu et al., 2006; Okamoto et al., 2008) and protects against β-
cell apoptosis (Rakatzi et al., 2004); however, although adiponectin receptors are 
expressed in human and rat pancreatic β-cells (Kharroubi et al., 2003; Gu et al., 2006; 
Okamoto et al., 2008), the signalling pathways and functional effects induced by their 
activation in β-cells have not yet been fully clarified. In addition, adiponectin has been 
shown to enhance insulin sensitivity (Yamauchi et al., 2001), and low plasma 
adiponectin levels are found to be closely associated with obesity-related illnesses 
including T2D, atherosclerotic cardiovascular diseases, hypertension, and lipid 
disorders (Hotta et al., 2000; Maeda et al., 2002; Gil-Campos et al., 2004; Okamoto et 
al., 2006; Mojiminiyi et al., 2007; Lu et al., 2008; Matsuzawa, 2010). On the other 
hand, leptin exerts inhibitory effects on insulin secretion (Cases et al., 2001; Marroqui 
et al., 2012) via activation of β-cell K+

ATP channels accompanied by a marked lowering 
of [Ca2+]i (Kieffer et al., 1997; Lupi et al., 1999), by activation of c-Jun N-terminal 
kinases (Maedler et al., 2008), or through a central effect on the hypothalamus via 
melanocortin receptors (Muzumdar et al., 2003). Moreover, pancreas-specific knockout 
of Ob-Rb leptin receptors is associated with enhanced insulin secretion (Morioka et al., 
2007). Leptin may also contribute to β-cell mass reduction (Morioka et al., 2007; 
Maedler et al., 2008). Like leptin, resistin also impairs GSIS in mice (Nakata et al., 
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2007) and induces apoptosis of rat β-cells (Gao et al., 2009). However, resistin is 
shown not to be associated with insulin sensitivity, and its function is unknown in 
humans (Arner, 2005; Utzschneider et al., 2005). Rather, it might have paracrine 
effects on β-cell function, since it has been expressed in human pancreatic islets (Minn 
et al., 2003). 
 
1.1.2.2.3 Triggering and amplifying pathways in the regulation of insulin secretion 

GSIS is regulated by so-called triggering and amplifying pathways since, in addition to 
its ability to stimulate insulin secretion via induction of a triggering Ca2+ signal 
(triggering pathway), glucose can also augment the action of triggering Ca2+ on 
exocytosis (metabolic amplifying pathway) (Figure 1) (Henquin, 2000; Westerlund et 
al., 2001; Henquin, 2011). Furthermore, glucose potentiates Ca2+-triggered insulin 
secretion induced by non-metabolized agents, like arginine and sulfonylureas, by two 
mechanisms: augmentation of the triggering Ca2+ signal and amplification of the 
efficacy of this signal on exocytosis (Ishiyama et al., 2006). Another amplifying signal 
is generated in the neurohormonal amplifying pathway, which mediates the potentiation 
effects of neurotransmitters (e.g. ACh) and hormones (e.g. GLP1) on nutrient-induced 
insulin secretion mainly through amplification of Ca2+-induced exocytosis (Figure 1) 
(Henquin, 2009). 
 
1.1.2.2.4 Role of mitochondrial signalling in modulating insulin secretion 

β-cell mitochondria serve as fuel sensors and play a pivotal role in coupling nutrient 
metabolism to insulin secretion (Maechler et al., 2010). In the mitochondria, glucose-
derived pyruvate, which is the terminal product of the glycolytic pathway, is either 
decarboxylated by pyruvate dehydrogenase (PDH) to produce acetyl-CoA for the 
glucose oxidation pathway, or carboxylated by pyruvate carboxylase (PC) to 
oxaloacetate in the anaplerosis (the replenishment of tricarboxylic acid (TCA) cycle 
intermediates)/cataplerosis (the exit of anaplerotic products from the mitochondria) 
pathway (Maechler and Wollheim, 2001; Nolan and Prentki, 2008). In the glucose 
oxidation pathway, acetyl-CoA enters the TCA cycle and is oxidized via mitochondrial 
oxidative phosphorylation to generate ATP, which is necessary for the elevation of 
[Ca2+]i with the successive induction of insulin exocytosis (Maechler et al., 2010). 
Anaplerotic and cataplerotic (mainly NADPH, malonyl-CoA, and glutamate) products 
can act as important signals for insulin secretion (Farfari et al., 2000; Maechler and 
Wollheim, 2001; MacDonald et al., 2005; Hasan et al., 2008; Jensen et al., 2008; Nolan 
and Prentki, 2008; Jitrapakdee et al., 2010; Maechler et al., 2010). 
 
1.1.2.3 Insulin action 

Insulin is exclusively synthesized in, and secreted from, pancreatic β-cells in response 
to dietary nutrients (mainly glucose) and non-nutrient stimuli (Newsholme et al., 2010). 
Insulin is an anabolic hormone that regulates whole-body fuel homeostasis via its 
actions in the liver, skeletal muscle, and adipose tissue, in which it enhances synthesis 
and reduces degradation of glycogen, lipid, and protein (Wu and Garvey, 2010). The 
ultimate effect of insulin is to lower plasma glucose levels by decreasing hepatic 
glucose output and facilitating glucose uptake and utilization by the target tissues 
(Gerich, 2000). In liver, insulin inhibits glycogenolysis and gluconeogenesis, and 
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stimulates glycogen synthesis and lipogenesis. Secreted insulin binds to insulin 
receptors in skeletal muscle and adipose tissue, triggering glucose uptake by these 
tissues with sequential anabolic effects, which include increased glycogen and protein 
syntheses in skeletal muscle, and the augmentation of lipogenesis and inhibition of 
lipolysis in adipose tissue (Nordlie et al., 1999; Pessin and Saltiel, 2000; Radziuk and 
Pye, 2001; Khan and Pessin, 2002; Stumvoll et al., 2005; Wu and Garvey, 2010). 
 
 
1.2 TYPE 2 DIABETES 

This form of diabetes was previously referred to as non-insulin-dependent diabetes 
mellitus (NIDDM) or adult-onset diabetes (Alberti and Zimmet, 1998; American 
Diabetes Association, 2013). 
 
1.2.1 Definition and description of type 2 diabetes 

T2D is a heterogeneous disorder with a complex aetiology caused by the combined 
effects of genetic inheritance and environmental factors, yet the precise molecular 
mechanisms underlying the roles of these effects are not unequivocally established (Qi 
et al., 2008). This disorder is characterized by chronic hyperglycaemia, which is 
principally due to impaired insulin secretion (insulin deficiency) from the pancreatic β-
cells, as well as decreased insulin sensitivity (insulin resistance) in the liver and 
extrahepatic tissues, mainly skeletal muscle and adipose tissue (Gerich, 1998; 
Surampudi et al., 2009; Amed et al., 2010; Marchetti et al., 2012). Insulin deficiency in 
T2D is relative, rather than absolute, in the sense that patients secrete insulin, but not 
enough to overcome insulin resistance (Alberti, 2010; American Diabetes Association, 
2013). Considerable debate exists as to the primacy and relative contribution of insulin 
deficiency versus insulin resistance in the development of T2D; however, impaired 
insulin release is the sine qua non for the hyperglycaemia to occur, and the prevailing 
current view depicts T2D as the result of a genetic β-cell defect that limits 
compensation for, in most instances, obesity-induced insulin resistance (Polonsky et al., 
1996; Gerich, 1998; Kahn, 2001; Ostenson, 2001; Pratley and Weyer, 2001; Gerich, 
2003; Alsahli and Gerich, 2010). 
 
The global prevalence of diabetes is rapidly increasing and is regarded as one of the 
most challenging threats to human health in the 21st century (Guariguata et al., 2011). 
The prevalence of diabetes worldwide was estimated to be 366 million people in the 
year 2011, and is expected to reach 552 million by 2030 (Whiting et al., 2011), among 
whom almost 90-95% are accounted for by T2D (Nolan et al., 2006b; American 
Diabetes Association, 2013; WHO, 2013a). Diabetes has emerged as a pandemic, with 
enormous and serious health and socioeconomic burdens in the form of increased 
morbidity and disability, reduced quality and span of life, altered social roles and 
family structure, and high economic costs (Ali et al., 2010). Diabetes was 
internationally estimated to be the fifth leading cause of death (Roglic et al., 2005), and 
it amply contributes to premature adult mortality (Roglic and Unwin, 2010). 
 
Diabetes evolves through pre-diabetes, also referred to as impaired glucose regulation, 
which is an intermediate stage of altered glucose metabolism between normal glucose 
levels and T2D (Alberti and Zimmet, 1998). Pre-diabetes, defined as impaired fasting 



 

8 

glucose (IFG) and/or impaired glucose tolerance (IGT), is associated with an increased 
risk for the development of diabetes and cardiovascular disease (Bergman, 2010; 
Buysschaert and Bergman, 2011). About 70% of pre-diabetic subjects have been 
reported to eventually develop diabetes (Nathan et al., 2007). The term ‘intermediate 
hyperglycaemia’ over the term ‘pre-diabetes’ has been recommended by a joint World 
Health Organization (WHO) and International Diabetes Federation (IDF) technical 
advisory group, because the latter term misleadingly implies that everyone with pre-
diabetes develops diabetes, and it might also underestimate the significant association 
with increased cardiovascular risk (WHO/IDF, 2006). 
 
Diagnosis of diabetes and intermediate hyperglycaemic conditions (IFG and IGT) is 
established by measuring the plasma glucose concentration in a venous sample. T2D 
diagnostic criteria consist of values of fasting plasma glucose ≥7.0 mmol/l (126 mg/dl) 
and/or 2-hour post-glucose load ≥11.1 mmol/l (200 mg/dl). Diagnosis of IFG and IGT 
involves fasting plasma glucose levels of 6.1-6.9 mmol/l (110-125 mg/dl), and 2-hour 
post-glucose load levels of 7.8-11.0 mmol/l (140-199 mg/dl), respectively (WHO/IDF, 
2006; Alberti, 2010; American Diabetes Association, 2013). 
 
T2D is associated with a number of acute and chronic complications. Hyperosmolar 
hyperglycaemia is a life-threatening metabolic condition, which complicates poorly 
treated or undiagnosed T2D (Kitabchi et al., 2006; Hansen and Møller, 2010). Chronic 
hyperglycaemia in T2D leads to devastating long-term vascular consequences, 
specifically macro-vascular (cerebrovascular disease, coronary heart disease, and 
peripheral vascular disease) and micro-vascular (retinopathy, nephropathy, and 
neuropathy) complications (Bailes, 2002; Coccheri, 2007; Kaul et al., 2012; Forbes and 
Cooper, 2013; WHO, 2013a). 
 
1.2.2 Pathogenesis of type 2 diabetes 

T2D is a polygenic disorder, which results from a complex interplay of multiple genes, 
each of individually small effect, with numerous pre-natal and post-natal environmental 
factors, the combination of which leads to impairment in insulin secretion and 
resistance to insulin action (Lander and Schork, 1994; Busch and Hegele, 2001; 
Hansen, 2003; Wolford and Vozarova de Courten, 2004; Malecki, 2005; Vaxillaire and 
Froguel, 2010; Kota et al., 2012). In addition, epigenetic modifications are important 
players in the pathogenesis of T2D (Drong et al., 2012; Dayeh et al., 2013; Simmons, 
2013). 
 
1.2.2.1 β-cell defects 

Pancreatic β-cells respond to decreases in tissue insulin sensitivity by increasing their 
function in an effort to maintain glucose homeostasis, up to a point at which they fail 
and hyperglycaemia becomes manifest (Alsahli and Gerich, 2010). T2D is 
characterized by progressive deterioration of β-cell function and mass (Wajchenberg, 
2010). The β-cell mass is found to be decreased by 35% in T2D patients (Sakuraba et 
al., 2002), and this reduction in β-cell mass is attributable to increased levels of 
apoptosis, which are not compensated for by adequate β-cell regeneration (Butler et al., 
2003). Defective β-cell function in T2D includes decreased first phase insulin release, 
dampened insulin pulsatility during the sustained second phase of GSIS, and impaired 
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insulin biosynthesis (Bergsten et al., 1998; Bergsten, 2000; Wajchenberg, 2007). 
Nevertheless, neither alone is enough for the development of T2D, and defects in both 
β-cell mass and function are required for the disorder to become manifest (Kahn et al., 
2009). 
 
Several acquired factors, together with a background of a genetic predisposition, can 
adversely affect β-cell function and survival (Alsahli and Gerich, 2010; Marchetti et al., 
2010). Among these factors, chronic exposure to increased concentrations of glucose 
(hyperglycaemia) and FFAs (hyperlipidaemia) can have detrimental impact, 
respectively termed glucotoxicity and lipotoxicity, on the β-cells leading to increased 
apoptosis, decreased GSIS, and various molecular changes (Marchetti et al., 2012). 
While glucotoxicity occurs independently of hyperlipidaemia, hyperglycaemia is 
required for the consequences of chronic hyperlipidaemia to ensue (Poitout and 
Robertson, 2002); hence the term glucolipotoxicity, instead of lipotoxicity, is proposed 
as being more appropriate to describe the toxic effects of lipids on the β-cells (Prentki 
et al., 2002; Poitout and Robertson, 2008). 
 
1.2.2.2 Insulin resistance 

Insulin resistance can be defined as the inability of insulin to produce its usual 
biological actions at circulating concentrations that are effective in normal subjects 
(Yki-Järvinen, 2010); thence, higher than normal levels of plasma insulin are required 
to maintain normoglycaemia. Insulin resistance is a common feature of several 
complex disorders comprising obesity, T2D, metabolic syndrome, non-alcoholic fatty 
liver disease, lipid disorders, hypertension, atherosclerotic cardiovascular disease, and 
polycystic ovary syndrome (Cohn et al., 2005; Savage et al., 2005; Yki-Järvinen, 2010; 
Koleva et al., 2013). In the context of glucose homeostasis, insulin resistance leads to 
impaired inhibition of the production of hepatic glucose and very low density 
lipoprotein, resulting, respectively, in hyperglycaemia and hypertriglyceridaemia (Yki-
Järvinen, 2010). Additionally, insulin resistance is implicated in decreased peripheral 
uptake of glucose by skeletal muscle and adipose tissue (Petersen and Shulman, 2002). 
Insulin-resistant states such as obesity are associated with reduced suppression of 
lipolysis in adipose tissue, which results in increased plasma FFA concentrations and 
ectopic fat deposition in liver and skeletal muscle, contributing to insulin resistance in 
these tissues (Perseghin et al., 2003; Donnelly et al., 2005; Frayn et al., 2006). 
Glucotoxicity and lipotoxicity as the consequences of prolonged hyperglycaemia and 
hyperlipidaemia, respectively, can directly contribute to the development of insulin 
resistance and further deteriorate insulin sensitivity in skeletal muscle (Yki-Järvinen, 
1992; Ostenson, 2001; Krook et al., 2004). 
 
1.2.3 Risk factors for type 2 diabetes 

Several risk factors are known to be associated with increased risk for T2D including 
genetic as well as behavioural and environmental risk factors (Ma and Tong, 2010). 
 
1.2.3.1 Genetic factors 

Ethnic variation, familial aggregation, and concordance between identical twins 
provides strong evidence for a genetic component in T2D (Barroso, 2005). Ethnic 
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variability in the prevalence of T2D provides robust support for the contribution of 
genetic factors, although part of this ethnic variation can be ascribed to the concomitant 
role of environmental and cultural factors (Abate and Chandalia, 2003; Barroso, 2005; 
Carulli et al., 2005; Adeyemo and Rotimi, 2010; Chen et al., 2012). Positive family 
history of T2D is a major independent risk factor that increases the chance for 
developing T2D in young people by two- to four-fold, depending on the number and 
degree of relativity of the affected family members, due to both shared genes and 
shared environment (Grill et al., 1999; Arslanian et al., 2005; Hilding et al., 2006; 
Ghosh et al., 2010; Heideman et al., 2011). Twin studies have further supported the 
strong genetic predisposition to T2D, with higher concordance rates detected in 
monozygotic than in dizygotic twins (Newman et al., 1987; Japan Diabetes Society, 
1988; Kaprio et al., 1992; Medici et al., 1999; MacGregor et al., 2000; van Tilburg et 
al., 2001). 
 
To date, more than 64 common genetic variants with low effect sizes have been 
identified in genome-wide association (GWA) studies as strongly associated with T2D 
(Kwak and Park, 2013). However, the added effect of the variants identified so far 
explains only approximately 10% of the T2D heritability (Manolio et al., 2009; Voight 
et al., 2010; Kwak and Park, 2013). Most of the identified T2D-related variants are 
involved in β-cell function rather than in insulin resistance (Florez, 2008; Groop and 
Lyssenko, 2009; Stolerman and Florez, 2009; Herder and Roden, 2011; Petrie et al., 
2011; Wheeler and Barroso, 2011). The strongest associations with T2D are found for 
gene variants in the loci TCF7L2 (transcription factor 7-like 2) and KCNQ1 (K+ 
voltage-gated channel, KQT-like subfamily, member 1) (Vaxillaire and Froguel, 2010; 
Herder and Roden, 2011), both of which are associated with reduced β-cell function 
(Cauchi and Froguel, 2008; Petrie et al., 2011; Ali, 2013). 
 
1.2.3.2 Early determinants 

Maternal and early life environmental factors can have profound effects on health in 
adulthood through developmental programming. Fetal under-nutrition and/or rapid 
post-natal growth, as well as fetal over-nutrition, are associated with an increased risk 
to develop T2D later in life (Berends and Ozanne, 2012; Vignini et al., 2012). 
Furthermore, birth weight has a U-shaped relationship with lifelong risk of T2D, where 
both low and high birth weights are linked with an excess risk for T2D (Harder et al., 
2007; Whincup et al., 2008). 
 
1.2.3.3 Behavioural and environmental factors 

The environmental factors known to impact the development of T2D often relate to 
lifestyle behaviour, and include physical inactivity, obesity, and tobacco use (Persson et 
al., 2000; Fulton-Kehoe et al., 2001; Patja et al., 2005; Willi et al., 2007; Venables and 
Jeukendrup, 2009). Other environmental risk factors comprise high-fat diet, dietary 
supplements, exposure to organic pollutants, psychological distress, and work-related 
stress (Agardh et al., 2003; Norberg et al., 2007; Cosgrove et al., 2008; Eriksson et al., 
2008; Murea et al., 2012). Obesity, especially if centrally distributed and of long 
duration, is the most potent environmental driver of T2D (Wild and Byrne, 2006). It is 
connected to T2D through induction of systemic insulin resistance, which is mainly 
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mediated by persistently elevated concentrations of FFAs (Boden, 2001; Boden and 
Shulman, 2002; Kahn et al., 2006; Ye, 2013). 
 
 
1.3 GOTO-KAKIZAKI RATS 

The Goto-Kakizaki (GK) rat is considered as one of the best available rodent strains for 
the study of inherited T2D, and this explains its extensive use in experimental diabetes 
research (Ostenson and Efendic, 2007; Portha et al., 2012). The GK rat was developed 
in Sendai, Japan, by repeated breeding of Wistar rats selected at the upper limit of the 
normal distribution for glucose tolerance (Goto et al., 1976). Repetition of this selective 
breeding of glucose-intolerant Wistar rats over numerous generations led to the 
generation of a non-obese diabetic rat strain, named GK, which develops 
hyperglycaemia in early life. Thereafter, several GK rat colonies with breeding pairs 
from Japan were initiated in Paris, France; Dallas, USA; Stockholm, Sweden; Cardiff, 
UK; Coimbra, Portugal; and Tampa, USA (Portha et al., 2012). Glucose intolerance 
and impairment of GSIS have been reported as constant features in the different GK rat 
colonies; however, other properties like β-cell number, insulin content, and islet 
metabolism seem to differ between some of the various colonies, perhaps reflecting 
newly introduced genetic modifications and/or differences in the local breeding 
environments (Portha et al., 2010). 
 
Glucose intolerance in the GK rat results from impaired GSIS due to a β-cell deficit, 
which is most likely the primary defect leading to T2D in the context of a polygenic 
background (Abdel-Halim et al., 1993; Ostenson et al., 1993; Abdel-Halim et al., 1994; 
Hughes et al., 1994; Abdel-Halim et al., 1995; Miralles and Portha, 2001; Ostenson 
and Efendic, 2007; Portha et al., 2009). Insulin resistance has been demonstrated in 
liver, some skeletal muscles, and adipose tissue of the GK rat (Bisbis et al., 1993). 
Insulin action in skeletal muscle of GK rats was fully restored after correction of 
hyperglycaemia by phlorizin treatment, suggesting that impaired insulin action in the 
GK rat, at least in skeletal muscle, is secondary to hyperglycaemia (Krook et al., 1997). 
 
 
1.4 OBESITY 

Overweight (defined as a body mass index (BMI) ≥ 25 kg/m2) and obesity (BMI ≥ 30 
kg/m2) are conditions of abnormal or excessive fat accumulation, due to the presence of 
an energy imbalance between calories consumed and calories expended, that may 
impair health (WHO, 2013b). However, the BMI cut-off points that connect overweight 
and obesity with the associated health risk must be population-specific, since the 
relationship between percent body fat and BMI is different amongst different ethnic 
groups (Deurenberg et al., 1998; Razak et al., 2007). The prevalence of overweight and 
obesity is dramatically rising worldwide at an alarming rate in both developed and 
developing countries (WHO, 2000). From 1.46 billion overweight and 502 million 
obese adults in the year 2008 (Finucane et al., 2011), the global projection for the 
corresponding numbers by 2030 is estimated to be 2.16 billion and 1.12 billion adults, 
respectively (Kelly et al., 2008). In addition to reduced life expectancy, increased BMI 
is a major risk factor for T2D, cardiovascular diseases, musculoskeletal disorders, and 
some cancers (Haslam and James, 2005). 
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Common obesity is induced by environmental triggers on a strong yet poorly dissected 
genetic basis, with the extent of heritability estimated to range from 40% to 70% 
(Herrera et al., 2011). The most obvious drivers of this observed obesity epidemic are 
environmental and reside in the food system, including: an increased availability of 
cheap, palatable, energy-dense foods; improved distribution systems to make food 
much more accessible and convenient; and more convincing and widespread 
commercial food promotion (Swinburn et al., 2011). By the same token, low physical 
activity is a conspicuous determinant of the obesity epidemic (Bray, 2010; Hauner, 
2010). Indeed, it is not just confined to ‘diet and exercise’, and other plausible 
aetiological factors contributing to the obesity epidemic comprise infections, epigenetic 
and intrauterine imprinting, increasing maternal age, greater fecundity among people 
with higher adiposity, assortative mating, decreased sleep, toxic chemicals, drugs, and 
reduction in variability of ambient temperatures (McAllister et al., 2009). 
 
It is estimated that more than 100 genes, with a small effect for each, contribute to body 
weight regulation (Hinney et al., 2010). From GWA studies, genetic variation within 
the FTO (fat mass and obesity associated) gene shows the strongest association with 
obesity, though the functional mechanism is not yet perfectly determined (Korner et al., 
2008; Hinney et al., 2010). Like T2D, epigenetic mechanisms greatly contribute to the 
aetiology and development of obesity (Campion et al., 2009; Youngson and Morris, 
2013). The important pathophysiological aspects of obesity are related, firstly, to 
metastatic (ectopic) fat deposition in pancreatic islets, liver, and muscle; secondly, to 
fat as a tissue releasing a huge number of active signalling molecules including 
adiponectin, leptin, and resistin, as well as FFAs; and thirdly, to adipose tissue 
inflammation with elevated levels of macrophage infiltration and expression of pro-
inflammatory cytokines (Roth et al., 2004). 
 
 
1.5 FUNCTIONAL AND GENETIC STUDIES IN TYPE 2 DIABETES AND 

OBESITY 

The spotlight of this thesis is focused on the molecular aspects of the pathogenesis of 
T2D and obesity. The investigated targets are described in the same order as in the list 
of publications. 
 
1.5.1 Adenylyl cyclase 3 

ACs are enzymes that catalyze the conversion of ATP to cAMP, which is an important 
intracellular second messenger potentiating nutrient-induced insulin secretion by the 
pancreatic β-cells (Seino, 2012). There are at least nine mammalian membrane-bound 
ACs sharing a common structure of two trans-membrane regions TM1 and TM2, each 
containing six membrane-spanning helices and two cytoplasmic regions (Halls and 
Cooper, 2011). Adenylyl cyclase 3 (AC3) has been characterized as one of the 
Ca2+/calmodulin-regulated isoforms (Cooper, 2003). It has been reported that Ac3 over-
expression, due to the presence of a functional double-point mutation in the promoter 
region of the Ac3 gene, is associated with reduced GSIS in GK rats (Abdel-Halim et al., 
1998). Additionally, an increased immunoreactivity of AC3 protein has been detected 
in β- and α-cells of GK rats (Guenifi et al., 2000). Moreover, liver AC activity is 
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enhanced in the membranes of obese ob/ob mice compared with lean control mice 
(Begin-Heick, 1994). These findings support a role for AC3 in the pathogenesis of T2D 
and obesity. 
 
1.5.2 Protein kinase C 

PKC is the name given to a family of protein kinase enzymes that are involved in 
controlling the functions of other proteins through the phosphorylation of hydroxyl 
groups of serine and threonine amino acid residues on those proteins. PKC isoforms are 
involved in a wide range of cellular processes, from fundamental activities such as cell 
growth and differentiation, proliferation, gene expression, signal transduction, secretion 
and exocytosis, and smooth muscle contraction, to higher functions such as memory 
(Nishizuka, 1986; Sun and Alkon, 2006). The various PKC isoforms translocate from 
one subcellular compartment to another when activated by neurotransmitters, 
hormones, or growth factors, and they differ in structure, expression pattern, subcellular 
localization, activation, and function (Kanashiro and Khalil, 1998). 
 
According to their enzymatic properties, PKC isoforms have been grouped into smaller 
subfamilies: conventional PKCs (cPKCs), which comprise α, β1, β2, and γ isoforms, 
are activated by phosphatidylserine (PS), Ca2+, and diacylglycerol (DAG); novel PKCs 
(nPKCs), which consist of δ, ε, θ, and η isoforms, are activated by PS and DAG but not 
Ca2+; atypical PKCs (aPKCs), consisting of ζ and ι\λ isoforms, require neither Ca2+ nor 
DAG for activation; and PKC-related kinases (PRKs), encompassing at least three 
members (PRKs 1-3), are insensitive to both Ca2+ and DAG (Nishizuka, 1988; Mellor 
and Parker, 1998). In both pancreatic islets and liver, PKC isoforms appear to have 
important roles in the regulation of glucose homeostasis (Pugazhenthi and Khandelwal, 
1995; Biden et al., 2008). In the GK rat pancreas, diminished expression of at least four 
different PKC isoenzymes, namely PKCα, PKCε, PKCθ, and PKCζ, has been indicated 
by immunohistochemical staining (Warwar et al., 2006). Recently, PKCδ has been 
presented to be implicated in insulin sensitivity (Bezy et al., 2011). In addition to its 
previously suggested role in treatment of insulin resistance, inhibition of PKCε has 
been proposed to act as a positive regulator of insulin availability (Schmitz-Peiffer and 
Biden, 2008). 
 
1.5.3 Succinyl-CoA:3-ketoacid-CoA transferase and ATP citrate lyase 

The biosynthesis of compounds within mitochondria using carbon derived from insulin 
secretagogues (anaplerosis) and their export to the cytosol (cataplerosis), such as for the 
synthesis of short chain acyl-CoAs and for metabolite shuttles, seem to be essential for 
the stimulation and support of insulin secretion by pancreatic β-cells (MacDonald et al., 
2005). In this context, the pathways involving two enzymes, succinyl-CoA:3-ketoacid-
CoA transferase (SCOT) and ATP citrate lyase (ATPCL), are intriguing. ATPCL plays 
a key role in the pyruvate citrate shuttle, as well as in the synthesis of short chain acyl-
CoAs and lipids. It catalyzes the cytosolic formation of oxaloacetate from citrate 
(Jensen et al., 2008). Besides oxaloacetate, ATPCL also forms acetyl-CoA from citrate 
in the cytosol, and this acetyl-CoA can be converted to three other short chain acyl-
CoAs (Figure 2). The pathway that supports GSIS and involves SCOT is one in which 
the decarboxylation of glucose-derived pyruvate, catalyzed by PDH, forms acetyl-CoA 
in the mitochondria. This acetyl-CoA is converted to acetoacetyl-CoA by either 
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acetyl-CoA acetyltransferase 1 (ACAT1) or acetyl-CoA acyltransferase 2 (ACAA2) 
(MacDonald et al., 2007). SCOT then catalyzes the conversion of acetoacetyl-CoA plus 
succinate to succinyl-CoA and acetoacetate. The succinyl-CoA can then be converted 
to succinate by either the GTP or the ATP succinyl-CoA transferase resulting in a 
regenerative cycle for succinate. The acetoacetate can be exported from the 
mitochondria to the cytosol, where it can be transformed into the same four short chain 
acyl-CoAs (Figure 2). Levels of SCOT and ATPCL have been reported to be decreased 
in the islets of the few humans studied (MacDonald et al., 2009b). 
 

 
 
Figure 2. Schematic representation of the roles of SCOT and ATPCL in glucose- or MMS+HB-
stimulated insulin secretion. SCOT, succinyl-CoA:3-ketoacid-CoA transferase; ATPCL, ATP citrate 
lyase; MMS+HB, monomethylsuccinate-plus-β-hydroxybutyrate. For a detailed description, see the text. 
 
 
1.5.4 Adrenergic receptor alpha 2A 

Insulin secretion from pancreatic β-cells is inhibited when α2-adrenergic receptors are 
activated by circulating catecholamines or stimulation of sympathetic pancreatic nerves 
(Ahrén, 2000). Thus, increased expression of α2-adrenergic receptors in β-cells could 
contribute to the aetiology of T2D (Devedjian et al., 2000; Wess, 2010). α2A-
adrenergic receptor-deficient mice exhibit increased plasma insulin levels, reduced 
blood glucose levels, and improved glucose tolerance (Savontaus et al., 2008). Recent 
data indicate that obesity is characterized by sympathetic nervous activation, which, in 
the long term, may contribute to the development of obesity-related disorders including 
hypertension, insulin resistance, heart failure, and renal impairment (Lambert et al., 
2010). Polymorphisms in the human α2A-adrenergic receptor (ADRA2A) gene have 
been reported to associate with obesity (Ukkola et al., 2001; Lima et al., 2007), fat 
content and distribution (Oppert et al., 1995; Garenc et al., 2002), elevated glucose 
levels (Rosmond et al., 2002), and reduced insulin secretion and increased risk of T2D 
(Rosengren et al., 2010). 
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2 AIMS AND SIGNIFICANCE 
The overall aim of this thesis was to elucidate the molecular pathogenetic defects 
related to T2D and obesity. Therefore, identification of susceptibility genes and their 
potential pathomechanisms would pave the way for preventative and therapeutic 
applications in the future. 
 
Specific aims in the individual papers were: 
 
Paper I – AC3  

• To examine AC3 expression in pancreatic islets and in the central nervous 
system (CNS) of diabetic GK rats, with and without insulin treatment, to 
evaluate the association of altered AC3 expression with glucose regulation. 

 
Paper II – PKC 

• To investigate the expression levels of PKC isoforms (PKCα, PKCδ, PKCε, and 
PKCζ) in pancreatic islets and liver of GK rats, with and without insulin 
treatment, for the evaluation of their association with glucose homeostasis. 

 
Paper III – SCOT and ATPCL 

• To measure the levels of transcripts that encode SCOT and ATPCL, their 
protein levels, and also their enzyme activities in pancreatic islets of GK rats. 

• To discern the necessity for SCOT in insulin secretion by studying insulin 
release in four cell lines developed with various levels of knockdown of SCOT 
protein and enzyme activity. 

 
Paper IV – ADRA2A 

• To investigate the association of ADRA2A genetic polymorphisms with obesity 
and/or T2D. 

• To study ADRA2A mRNA expression in pancreatic islets isolated from T2D 
patients and non-diabetic control subjects. 
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3 MATERIALS AND METHODS 
This section provides a brief summary of the major methods used in this thesis. For 
more detailed methodological descriptions, please refer to the individual papers. 
 
3.1 MATERIALS 
3.1.1 Animals 

All animal experiments were approved by the regional ethics committees. 
 
3.1.1.1 Wistar rats 

Normal Wistar rats used as non-diabetic controls (Papers I, II, and III) were purchased 
from a local commercial breeder (B&K Universal, Sollentuna, Sweden). 
 
3.1.1.2 Goto-Kakizaki rats 

The GK rats used in this thesis (Papers I, II, and III) were obtained from our colony at 
Karolinska University Hospital (Stockholm, Sweden). 
 
3.1.2 Sustained release insulin implants 

Half of the GK rats (Papers I and II) were implanted with sustained release insulin 
implants containing 26 ± 2 mg/implant of insulin in microrecrystallized palmitic acid 
(LinShin Inc., Ontario, Canada) for 14 days. 
 
3.1.3 Subjects 

A total of 1,177 individuals were included in the study described in Paper IV, and all 
of them were selected from the population-based cohort of Stockholm Diabetes 
Prevention Programme (SDPP) investigated in both a baseline study and a follow-up 
study 8–10 years later, as described previously (Eriksson et al., 2008). The individuals 
are unrelated and of Swedish origin. The subjects were randomly selected healthy 
controls with normal glucose tolerance (NGT) and BMI of ≤ 26 kg/m2 and without 
family history of diabetes (n = 580; 394 men and 186 women), obese subjects with 
NGT and BMI ≥ 30 kg/m2 (n = 198 men, since we did not have access to samples from 
obese women with NGT), and T2D patients with BMI between 18.4 to 58.6 kg/m2 (n = 
399; 235 men and 164 women). T2D patients were diagnosed according to criteria from 
WHO (1998), and the standard definition of obesity was used according to the Centre 
for Disease Control (CDC, 1998) (Alberti and Zimmet, 1998; National Heart, 1998). 
For T2D patients diagnosed between baseline and follow-up studies, baseline data were 
used to avoid the influence of lifestyle changes and/or anti-diabetic treatment on 
phenotypes. All participants gave their informed consent to be included in the study, in 
accordance with the declaration of Helsinki II, and as approved by the local ethics 
committee. 
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3.1.4 Human islets 

With support from the Nordic Network for Clinical Islet Transplantation, human 
pancreatic islets, from both T2D patients and from non-diabetic controls, were isolated 
from brain-dead, heart-beating, multi-organ donors. The study in Paper IV was 
approved by the Human Research Ethics Committee of Karolinska Institutet. 
 
3.1.5 INS-1 832/13 cell line 

The INS-1 832/13 cell line used in the study described in Paper III was obtained from 
Hans Hohmeier and Christopher Newgard. The 832/13 cell line clone was derived from 
INS-1 cells, which have been stably transfected with a plasmid containing the human 
proinsulin gene. Such a modification resulted in the generation of cell lines that 
evidently demonstrate increased and stable responsiveness to both glucose and several 
of its known potentiators (Hohmeier et al., 2000). 
 
 
3.2 METHODS 
3.2.1 Isolation of rat islets 

Isolation of rat islets (Papers I, II, and III) was performed as previously described 
(Seed Ahmed et al., 2012). Briefly, pancreata were removed after retrograde injection 
into the pancreatic duct of 24 mg or 9 mg collagenase in 10 ml Hank’s solution (SVA, 
Uppsala, Sweden) in GK or Wistar rats, respectively. After 24 min of incubation at 
37°C in a water-bath, the tissue was homogenized and then washed three times in 
Hank’s solution. Enriched islet fractions were prepared on Histopaque gradients by 
mixing the digested tissue with 1119 and 1077 Histopaque solutions (Sigma-Aldrich, 
Ayrshire, UK). Following centrifugation of the gradients at 2000 rpm for 20 min, islets 
were collected from the border of the upper two layers and transferred to Hank’s 
medium. Some of the islets were stored in RNAlater solution (Ambion, Austin, USA) 
at -20°C for total RNA extraction, and the remaining islets were processed for insulin 
release measurement. 
 
3.2.2 Insulin release from isolated rat islets 

Some of the isolated islets (Papers I and II), in batches of three islets each, were 
incubated for 60 min at 37°C in a slowly shaking water-bath, in 300 µl Krebs-Ringer 
bicarbonate (KRB) buffer solution with 3.3 or 16.7 mmol/l glucose. After incubation, 
200 µl was aspirated to new tubes, which were kept at -20°C until insulin release was 
measured using radioimmunoassay  (RIA) (Herbert et al., 1965). 
 
3.2.3 RNA extraction and real-time RT-PCR 

In rats (Papers I, II, and III) and human islets (Paper IV), total cellular RNA was 
extracted using RNeasy mini kits, following the manufacturer’s protocol for tissues 
(Qiagen, Hilden, Germany). To minimize the risk of RNA degradation, samples were 
kept on ice when not performing the extraction, and all working surfaces and tools were 
cleaned with RNase Away solution (Sigma, Buchs, Switzerland) before use. Reverse-
transcription for cDNA from mRNA samples was performed using QuantiTect reverse 
transcription kits (Qiagen). 
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Real-time RT-PCR (reverse transcriptase-polymerase chain reaction) was performed 
with TaqMan gene expression assays specific to the target genes, with an ABI 7300 
real-time PCR system (Applied Biosystems, Foster City, USA). All genes were 
normalized to 18S, β-actin, or GAPDH. The probes for all of the TaqMan gene 
expression assays employed were labeled with carboxyfluorescein (FAM) as a reporter 
dye, and tetramethylrhodamine (TAMRA) as a quencher dye. Amplifications were 
performed using the 5′-nuclease TaqMan method with a two-step PCR protocol (95°C 
for 10 min, followed by 40 cycles of 95°C for 15 sec and 60°C for 1 min) in an ABI 
7300 real-time PCR system (Applied Biosystems). Experiments were replicated at least 
twice. Gene expression data were analyzed using the relative quantification method 
based upon the standard curve. 
 
3.2.4 Western blot 

Western blotting is a robust and widely exploited technique used to identify and 
quantify proteins from various types of samples, with the help of specific antibodies. It 
involves the sequential steps of gel electrophoresis to separate the proteins in the 
sample, transfer to a membrane, blocking, and detection with specific antibodies 
targeting the proteins of interest (Renart et al., 1979; Towbin et al., 1979). 
 
The proteins were extracted in the samples (Papers II and III) using lysis buffers 
containing protease inhibitors. The protein concentrations were measured with the 
Bradford assay using bovine serum albumin (BSA) as a standard. Proteins in the lysates 
were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-
PAGE) and electrotransferred to nitrocellulose or polyvinylidene fluoride (PVDF) 
membranes. After blocking with 5% fat-free milk, membranes were probed for the 
target proteins using suitably diluted primary antibodies. Appropriate horseradish 
peroxidase (HRP)-conjugated secondary antibodies were used for detection. Proteins 
were visualized using an enhanced chemiluminescence procedure. Quantification was 
carried out using Luminescent Image Analyzer (Image Reader LAS-100 Pro v1.0, 
Fujifilm) and ImageJ software (v1.47b, National Institute of Health). 
 
3.2.5 Insulin release from stable cell lines 

Insulin release from stable cell lines derived from INS-1 832/13 cells and expressing a 
short hairpin RNA (shRNA) targeting Scot mRNA was measured (Paper III) as 
previously described (MacDonald et al., 2007). One day before an insulin release 
experiment was to be performed, the medium was replaced with fresh medium 
modified to contain 5 mmol/l glucose. Two hours before the experiment, the medium 
was replaced with KRB buffer containing 3 mmol/l glucose and 0.5% BSA. Cells were 
washed once with this solution, and insulin release was studied in 1 ml of this same 
solution containing secretagogues or non-secretagogues as controls. After one hour at 
37°C, samples of incubation solution were collected, centrifuged to sediment any cells 
floating in the incubation solution, and an aliquot of the supernatant fraction was 
removed and saved for insulin measurements by RIA. The plates were then washed 
once with Krebs-Ringer solution containing no added protein. Water was added to the 
plates and the mixture containing the cells was removed and saved for estimation of 
total protein by the Bradford method, using a dye reagent from Bio-Rad. 
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3.2.6 Enzyme activities 

Enzyme activities were measured (Paper III) in supernatant fractions of whole-cell 
homogenates or mitochondria from pancreatic islets or cell lines prepared as previously 
described (MacDonald et al., 2007). Briefly, cells and islets were homogenized in 
KMSH solution, and then fractionated by differential centrifugation as previously 
described (MacDonald et al., 2007; MacDonald et al., 2009a). SCOT was measured at 
30°C in Tris-chloride buffer containing sodium acetoacetate, succinyl-CoA, and 
MgCl2. The rate of acetoacetyl-CoA formation was followed by measuring the increase 
in absorbance at 310 nm. After the background rate was obtained, the reaction was 
started with the addition of acetoacetate. The background rate was subtracted from the 
total rate to give the rate attributable to the enzyme. ATPCL was measured in the 
presence of citrate, coenzyme-A, ATP, MgCl2, NADH, dithiothreitol, and malate 
dehydrogenase in Tris-chloride buffer, at 37°C. The formation of oxaloacetate was 
measured by the oxidation of NADH. After the background rate was measured in the 
presence of enzyme source, the enzyme reaction was started with the addition of citrate. 
Cytosolic malic enzyme (ME1) was measured spectrophotometrically by monitoring 
NADPH formation at 340 nm in Tris-chloride buffer containing malate, NADP, MgCl2, 
and DTT, at 37°C, as previously described (MacDonald et al., 2009a). 
 
3.2.7 SCOT knockdown by siRNA 

In vivo expression of short interfering RNAs (siRNAs) was accomplished (Paper III) 
using hygromycin selectable DNA vectors that express shRNA. Four regions of the 
Scot gene (Scot 68, Scot 713, Scot 1676, and Scot 1184) were targeted with shRNA in 
INS-1 832/13 cells resulting in cell lines with varying degrees of knockdown of SCOT 
protein. Pools of cells stably transfected with each plasmid vector targeting one Scot 
mRNA target were used for measurements of SCOT and control enzymes, and to study 
insulin release. 
 
3.2.8 Insulin content measurement 

The insulin content of the cell lines was measured (Paper III) by RIA in acid-ethanol 
extracts of the cells. In brief, one hour after adding acid-ethanol to each well containing 
cells, the cell extract was removed and vortexed vigorously and frozen until use, when 
a portion of it was diluted in potassium phosphate buffer containing 0.5% BSA before 
insulin was measured. 
 
3.2.9 Genotyping 

Genotyping was performed (Paper IV) using TaqMan allelic discrimination (ABI 
7300, Applied Biosystems). This is a probe technology which is dependent upon the 5′-
nuclease activity of the enzyme Taq DNA polymerase (Holland et al., 1991) and two 
single-stranded fluorogenic probes, one for each allele. The fluorescent probe is a dual-
labeled oligonucleotide with a 5′-reporter dye and a 3′-quencher dye. 
Tetrachlorofluorescein (TET) is covalently linked to the 5′ end of the probe for the 
detection of allele 1 and FAM is covalently linked to the 5′ end of the probe for the 
detection of allele 2. Both reporters are quenched by TAMRA, which is attached at the 
3′ end of each probe. When the probe is intact, the fluorescence of the reporter is 
quenched due to its proximity to the quencher. The TaqMan probe hybridizes to a 
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target sequence of DNA within the PCR product, which is determined by forward and 
reverse primers that hybridize during PCR to specific sequences within the target DNA. 
During the extension step of the amplification reaction, the 5′-nuclease activity of the 
Taq DNA polymerase cleaves off the reporter. Therefore, the reporter is separated from 
the quencher and the resulting fluorescence signal is proportional to the amount of 
amplified product in the sample (Figure 3) (Lyamichev et al., 1993; Applied 
Biosystems, 2010). 
 

 
 
Figure 3. TaqMan allelic discrimination. The 5′-nuclease activity of Taq DNA polymerase during the 
extension phase of PCR is depicted. (This picture is taken from TaqMan Allelic Discrimination, 
Demonstration Kit Protocol, no. 4303267E released by Applied Biosystems (2010).) 
 
 
3.2.10 Statistical analysis 

In Papers I, II, and III, data were presented as means ± standard error of the mean 
(SE) for normally distributed variables, or as geometric means (95% confidence 
interval (CI)) for non-normally distributed variables. To normalize the skewed 
distribution, natural logarithmic transformation was applied before analysis when 
needed. The comparisons of continuous variables between independent groups were 
performed by unpaired Student’s t-test, or by one-way ANOVA (analysis of variance) 
followed by Tukey or Newman-Keuls post-hoc tests. P-values of 0.05 or less (p ≤ 0.05) 
were considered significant. Data were analyzed using PASW version 18, IBM SPSS 
Statistics version 20 (IBM SPSS, Chicago, IL, USA), and GraphPad Prism version 6.0 
(GraphPad Software Inc., La Jolla, CA, USA). 
 
In Paper IV, data were presented as means (95% CI) or means ± SE for normally 
distributed variables, or as geometric means (95% CI) for non-normally distributed 
variables, which have been logarithmically transformed before analysis. 
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Hardy-Weinberg equilibrium was tested by χ2-test (Weir, 1996; Mayo, 2008). Allele 
distributions were compared between cases and controls, and odds ratios (ORs) and 
95% CIs were calculated to test for associations. Multiple logistic regression analysis, 
with results expressed as ORs (95% CI), was performed to study genotype distribution 
differences between cases and controls after adjustments for potential confounders. 
Comparisons were carried out in men and women separately. The homeostasis model 
assessment was used to assess insulin resistance (HOMA-IR). Based on the fasting 
glucose and insulin levels, HOMA-IR was calculated according to the following 
equation: fasting plasma glucose (mmol/l) × fasting plasma insulin (mU/l)/22.5 
(Matthews et al., 1985). The unpaired Student’s t-test was used to compare the 
differences between two independent groups. P ≤ 0.05 was considered significant. All 
statistical analyses were performed using SAS version 9.2 (SAS Institute, Cary, NC, 
USA) and PASW version 18 (IBM SPSS, Chicago, IL, USA) software. 
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4 RESULTS AND DISCUSSION 
 
4.1 INCREASED EXPRESSION OF ADENYLYL CYCLASE 3 IN 

PANCREATIC ISLETS AND CENTRAL NERVOUS SYSTEM OF 
DIABETIC GOTO-KAKIZAKI RATS: A POSSIBLE REGULATORY 
ROLE IN GLUCOSE HOMEOSTASIS (PAPER I) 

In this study, we investigated Ac3 mRNA expression levels in pancreatic islets and 
regions of striatum/hypothalamus of diabetic GK rats with and without insulin 
treatment. In addition, in order to ascertain whether AC3 co-localizes and interacts with 
regulator of G protein signalling 9 (RGS9) in brain, we examined Ac3 expression in 
striatum and hypothalamus dissected from Rgs9 knockout (Rgs9-/-) and wild-type 
(Rgs9+/+) mice, because it has been shown that RGS9 is enriched in the striatum region 
of brain (Chen et al., 2000; Waugh et al., 2011). 
 
We have found that Ac3 mRNA expression levels in pancreatic islets and regions of the 
striatum/hypothalamus of brains from GK, insulin-treated GK, and control Wistar rats 
were different (Figure 4A and B). Ac3 mRNA expression was increased in islets of GK 
compared with Wistar rats (p = 0.016, Figure 4A), while its expression was 
intermediate in insulin-treated GK rat islets. This Ac3 expression pattern was also 
observed in the striatum/hypothalamus from the three groups of rats, i.e. Ac3 mRNA 
expression levels in the striatum/hypothalamus of GK rats were increased compared 
with Wistar rats (p = 0.021, Figure 4B). Furthermore, similar levels of expression of 
Ac3 were observed in the striatum and hypothalamus of Rgs9 knockout mice compared 
with wild-type mice. 
 
A                                                                B 

     

 
 
Figure 4. Ac3 mRNA expression levels in pancreatic islets (A) and striatum/hypothalamus regions of 
brain (B). Ac3 mRNA expression levels in both islets and striatum/hypothalamus of GK rats were 
increased compared with Wistar rats (p = 0.016 and p = 0.021, respectively). Data are means ± SE. P-
value from one-way ANOVA is given in the figure. Pairwise comparisons were performed by Tukey post-
hoc test. 
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We applied insulin treatment to normalize blood glucose levels in GK rats for two 
weeks. Comparison analyses between Wistar, GK rats with and without insulin 
treatment provided us with the opportunity to investigate whether over-expression of 
Ac3 is a primary defect, or secondary to the diabetic state (hyperglycaemia). Data in the 
present study indicate that Ac3 is over-expressed in pancreatic islets of GK compared 
with Wistar rats, a finding consistent with a previous observation from our laboratory in 
which increased Ac3 expression was suggested to account for impaired GSIS (Abdel-
Halim et al., 1998). In addition, we have shown that the Ac3 gene is over-expressed in 
the striatum/hypothalamus of GK rats compared with Wistar rats. Interestingly, the Ac3 
expression patterns in islets and striatum/hypothalamus are similar. Thus, Ac3 
expression levels in both islets and striatum/hypothalamus of insulin-treated GK rats 
were intermediate between the expression levels in GK and Wistar rats. This shows that 
normalization of plasma glucose levels in GK rats with insulin treatment tended to 
decrease the augmented levels of Ac3 mRNA expression in this strain. Since Ac3 is 
expressed in striatum and hypothalamus tissues from Rgs9 knockout mice, it seems 
unlikely that the Ac3 and Rgs9 genes interact. Our attempts to analyze AC3 expression 
at the protein level with Western blotting technique failed, mainly due to the high 
homologies of AC3 with other AC isoforms, and because of the lack of specific high-
affinity antibodies (Hanoune and Defer, 2001). Moreover, several reports demonstrate 
that neuronal signalling, consisting of both afferent and efferent autonomic nerves, 
plays important roles in inter-organ metabolic communication and systemic 
homeostasis (Yamada et al., 2008; Katagiri et al., 2009). Based upon our observations, 
Ac3 is over-expressed not only in islets but also, in a similar pattern, in 
striatum/hypothalamus of GK rats, suggesting the existence of a functional link 
between CNS and pancreatic islets via AC3 regulation. 
 
It has been demonstrated that AC3 genetic polymorphisms are associated with obesity 
in Swedish men with and without T2D (Nordman et al., 2008). This association was 
replicated in an adult Chinese population (Wang et al., 2010). Furthermore, Ac3 
knockout mice exhibit obesity as they age, mainly due to decreased locomotor activity, 
hyperphagia, and leptin insensitivity (Wang et al., 2009). Thus, AC3 appears to be of 
genetic and biological relevance in the regulation of body weight and glucose 
homeostasis (Gu, 2010). In the current study, body weights of GK rats with and without 
insulin treatment were lower compared with Wistar rats. Taken together with the 
aforementioned studies, AC3 is proposed to play an important role in body weight 
regulation, which could be mediated by CNS. 
 
In conclusion, this study provides evidence that Ac3 mRNA expression is increased in 
pancreatic islets and striatum/hypothalamus of GK rats, at least partly due to the 
diabetic state. AC3 may participate in the regulation of glucose homeostasis via insulin 
secretion and CNS, without obvious interaction with RGS9. In addition, it may have a 
primary role in regulating body weight through CNS. 
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4.2 EXPRESSION OF PROTEIN KINASE C ISOFORMS IN PANCREATIC 
ISLETS AND LIVER OF GOTO-KAKIZAKI RATS, A MODEL OF TYPE 
2 DIABETES (PAPER II) 

In this study, we examined the expression levels of PKC isoforms, namely PKCα, 
PKCδ, PKCε, and PKCζ, in pancreatic islets and liver of GK rats with and without 
insulin treatment. 
 
We have shown that PKCα and PKCζ mRNA expression levels were under-expressed 
in pancreatic islets of GK compared with Wistar rats (p < 0.05 and p < 0.01, 
respectively), while their expressions in insulin-treated GK rats were intermediate 
between those in GK and Wistar rats (Figure 5A and D). PKCα and phosphorylated 
PKCα (p-PKCα) protein expressions were decreased in islets of GK compared with 
insulin-treated GK (p < 0.001 and p < 0.05, respectively) and Wistar rats (p < 0.05) 
(Figure 6A and E). Furthermore, PKCα protein expression was enhanced in islets of 
insulin-treated GK compared with Wistar rats (p < 0.01). However, the ratio of p-PKCα 
to PKCα (p-PKCα/PKCα) in islets did not show any difference between the three 
groups of rats. Whereas PKCζ protein expression in islets was diminished in both GK 
and insulin-treated GK compared with Wistar rats (p < 0.05), p-PKCζ was decreased 
only in GK compared with insulin-treated GK (p < 0.01) and Wistar rats (p < 0.05) 
(Figure 6D and H). With regard to PKCε mRNA expression in islets, it was down-
regulated in GK compared with insulin-treated GK (p < 0.05) and Wistar rats (p < 0.01) 
(Figure 5C). At the protein level, the expressions of PKCε and p-PKCε were reduced in 
GK compared with insulin-treated GK (p < 0.05) and Wistar rats (p < 0.05) (Figure 6C 
and G). In spite of being unchanged at the mRNA level, PKCδ protein expression was 
lower in islets of GK compared with insulin-treated GK (p < 0.01) and Wistar rats (p < 
0.01) (Figure 6B). Moreover, islet p-PKCδ protein expression was decreased in GK 
rats, to the extent that it was non-quantifiable (Figure 6F). 

 
Figure 5. mRNA expression levels of PKCα (A), PKCδ (B), PKCε (C), and PKCζ (D) in pancreatic 
islets of Wistar, insulin-treated GK, and non-treated GK rats. Data are means ± SE for all PKC 
isoforms, except for PKCε, for which data have been shown as geometric means (95% Cl). *p < 0.05, 
**p < 0.01 vs. Wistar rats; #p < 0.05 vs. GK rats. 
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Figure 6. Representative immunoblots and densitometric analyses of PKCα (A), PKCδ (B), PKCε (C), 
PKCζ (D), p-PKCα (E), p-PKCε (G), and p-PKCζ (H) protein expressions in pancreatic islets of 
Wistar, insulin-treated GK, and non-treated GK rats. The relative expression of p-PKCδ (F) was too low 
for densitometric analysis, thus p-PKCδ expression is presented with three different representative 
Western blots. Calculation of the ratio of phosphorylated protein to total protein allowed for assessing 
the sensitivity of proteins in islets from the three groups of rats (I-K). Data are means ± SE. *p < 0.05, 
**p < 0.01 vs. Wistar rats; #p < 0.05, ##p < 0.01, ###p < 0.001 vs. GK rats. 
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In liver, PKCδ and PKCζ mRNA expressions were decreased in both GK (p < 0.001) 
and insulin-treated GK rats (p < 0.01 and p < 0.001, respectively) compared with 
Wistar rats (Figure 7B and D). Hepatic PKCζ protein expression was diminished in 
both GK rats with and without insulin treatment compared with Wistar rats (p < 0.05) 
(Figure 8D). Although PKCε mRNA expression was down-regulated in liver of insulin-
treated GK compared with non-treated GK (p < 0.01) and Wistar rats (p < 0.05) (Figure 
7C), it displayed no difference in expression at the protein level. Also, PKCα in liver 
exhibited no difference between the three groups of rats either at the mRNA or protein 
levels. 
 

 
 
Figure 7. mRNA expression levels of PKCα (A), PKCδ (B), PKCε (C), and PKCζ (D) in livers of 
Wistar, insulin-treated GK, and non-treated GK rats. Data are means ± SE. *p < 0.05, **p < 0.01, ***p 
< 0.001 vs. Wistar rats; ##p < 0.01 vs. GK rats. 



 

  27 

 
Figure 8. Representative immunoblots and densitometric analyses of PKCα (A), PKCδ (B), PKCε (C), 
PKCζ (D), p-PKCα (E), p-PKCδ (F), p-PKCε (G), and p-PKCζ (H) protein expressions in livers of 
Wistar, insulin-treated GK, and non-treated GK rats. Calculation of the ratio of phosphorylated protein 
to total protein allowed for assessing the sensitivity of proteins in livers from the three groups of rats (I-
L). Data are means ± SE. *p < 0.05 vs. Wistar rats. 
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In the GK rat, diminished expression of four different PKC isoenzymes, namely PKCα, 
PKCε, PKCθ, and PKCζ, has been demonstrated in pancreatic islets by 
immunohistochemical staining (Warwar et al., 2006). PKCα is proposed to play a role 
in glucose-induced insulin granule recruitment for exocytosis and insulin secretion 
(Ganesan et al., 1990; Calle et al., 1992; Ganesan et al., 1992; Yedovitzky et al., 1997; 
Yaney et al., 2002; Zhang et al., 2004; Warwar et al., 2006), and its expression is 
shown to be modulated by hyperglycaemia (Nesher et al., 2001; Warwar et al., 2006). 
This is congruent with our finding in the present study in which islet PKCα was 
decreased in GK compared with Wistar rats, with an intermediate expression in insulin-
treated GK rats suggesting a partial contribution of hyperglycaemia to the decreased 
expression of PKCα in GK rat islets. Notably, GSIS was enhanced in islets from 
insulin-treated versus non-treated GK rats, suggesting at least a partial restoration of 
insulin exocytosis. 
 
PKCδ is reported to have a non-redundant role in GSIS from pancreatic β-cells (Uchida 
et al., 2007). Inconsistently, the overexpression of kinase-negative PKCδ in pancreatic 
β-cells protects mice from high-fat diet-induced glucose intolerance and β-cell 
dysfunction (Hennige et al., 2010). These seemingly conflicting findings could be 
explained by the difference between the whole-body knockout in contrast with the β-
cell-specific inhibition of PKCδ performed in these two studies, respectively. 
Additionally, the latter study examined the effect of PKCδ in glucose homeostasis after 
high-fat feeding. Moreover, Frangioudakis et al. have found that deletion of PKCδ 
protects against high-fat diet-induced glucose intolerance and improves glucose 
tolerance in chow-fed mice (Frangioudakis et al., 2009). Data from the present study 
showed that islet PKCδ mRNA expression was not affected in non-treated GK rats. 
Notwithstanding this, the protein expressions of PKCδ and p-PKCδ were reduced in 
GK rat islets, but the insulin-treated GK group exhibited increased protein expression 
levels, which were comparable to those of Wistar rats. In liver, PKCδ is suggested to 
regulate hepatic insulin sensitivity and hepatosteatosis in mice and men (Bezy et al., 
2011). Global or liver-specific inactivation of PKCδ results in improved glucose 
tolerance and insulin sensitivity. Also, liver-specific over-expression of PKCδ leads to 
hepatic insulin resistance. Furthermore, PKCδ expression is enhanced in livers of obese 
and T2D obese subjects (Bezy et al., 2011). In the current study, hepatic mRNA 
expression of PKCδ was under-expressed in the GK rat, which is a non-obese diabetic 
model. Even though hepatic PKCδ was not affected in GK rats at the protein level, the 
p-PKCδ/PKCδ was decreased in GK compared with Wistar rats (p < 0.05) (Figure 8J); 
and this is consistent with the fact that insulin resistance is not the main, but a 
contributory, pathophysiological feature in the diabetic state in GK rats (Bisbis et al., 
1993; Ostenson and Efendic, 2007). 
 
In many cell types, PKCε has been identified to be implicated in the regulation of 
survival pathways via activation of Akt, which is also known as protein kinase B 
(Matsumoto et al., 2001). Also, PKCε protects islets and improves their survival during 
the phase of isolation, contributing to preserved islet cell mass (Kvezereli et al., 2008). 
Incidentally, deletion of PKCε, in a milieu of lipid oversupply, improves glucose 
stimulated insulin secretion and prevents glucose intolerance in mice (Schmitz-Peiffer 
et al., 2007). In the present study, islet PKCε was reduced in GK rats at the mRNA and 
protein levels. In addition, islet p-PKCε/PKCε was reduced in GK compared with 
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insulin-treated GK (p < 0.01) and Wistar rats (p < 0.05) (Figure 6J), which could be due 
to very low expression of p-PKCε (Figure 6G). In liver, PKCε mRNA, but not protein, 
was decreased in insulin-treated GK rats, suggesting the involvement of insulin in the 
control of PKCε expression, at least at the mRNA level. 
 
PKCζ, through mTOR activation, is essential for growth factor-induced pancreatic β-
cell proliferation with a concomitant improvement in β-cell function (Buteau et al., 
2001; Vasavada et al., 2007; Velazquez-Garcia et al., 2011). Of note, GK rats at fetal 
stage from the Paris colony display a reduction in pancreatic β-cell mass, which is 
maintained in the adult animal and apparently predates the onset of diabetes 
(hyperglycaemia) at about three or four weeks of age (Movassat et al., 1997). In 
contrast, in the Stockholm colony, β-cell density and the relative volume of islet 
endocrine cells were alike in two- to three-month-old GK and control Wistar rats 
(Ostenson and Efendic, 2007). Additionally, GK pups from the Stockhom colony were 
already hyperglycaemic at the first week of age (Abdel-Halim et al., 1994). In the 
present study, although PKCζ protein expression, in comparison with Wistar rats, was 
reduced in islets of GK and insulin-treated GK rats, the latter group demonstrated 
considerable enhancement in the levels of phosphorylated PKCζ, and the p-
PKCζ/PKCζ was increased in insulin-treated GK compared with both non-treated GK 
and Wistar rats (p < 0.05) (Figure 6K). In hepatocytes, PKCζ mediates the 
phosphatidylinositol 3-kinase (PI3K) effect on insulin internalization in a Rab5-
dependent manner (Fiory et al., 2004). Given that defective insulin internalization and, 
consequently, hyperinsulinaemia may also cause secondary insulin resistance in animal 
models (Poy et al., 2002), PKCζ activation could be important for improving insulin 
sensitivity. Though hepatic PKCζ protein expression was diminished in both GK rats 
with and without insulin treatment compared with Wistar rats in the current study, the 
p-PKCζ and p-PKCζ/PKCζ were not different amongst the three groups of rats, and that 
could be explained by the fact that the GK rat is not a severely insulin-resistant model. 
Collectively, enhancing PKCζ activity may be of value as a therapeutic strategy for the 
treatment of diabetes. 
 
In conclusion, data from the pancreatic islets of GK rats in this study suggest that 
defects in PKCα and PKCε expressions are secondary to hyperglycaemia, since the 
expression pattern was restored after insulin treatment. Furthermore, insulin treatment 
increased islet p-PKCζ expression. In liver, PKCε mRNA expression in liver could be 
under control of insulin. Moreover, the capacity of hepatic PKCδ to be phosphorylated 
is diminished in GK rats. 
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4.3 LOWER SUCCINYL-COA:3-KETOACID-COA TRANSFERASE (SCOT) 
AND ATP CITRATE LYASE IN PANCREATIC ISLETS OF A RAT 
MODEL OF TYPE 2 DIABETES: KNOCKDOWN OF SCOT INHIBITS 
INSULIN RELEASE IN RAT INSULINOMA CELLS (PAPER III) 

In this study, we measured the levels of transcripts that encode SCOT and ATPCL, 
their protein levels, and their enzyme activities in pancreatic islets of GK rats. Further, 
we studied whether insulin secretion was decreased in proportion to SCOT knockdown 
in four cell lines with varying degrees of knockdown of SCOT protein. 
 
We have found that SCOT and ATPCL mRNA expressions were decreased (p < 0.001) 
and their enzyme activities were lower (p < 0.01 and p < 0.001, respectively) in 
pancreatic islets of GK compared with Wistar rats. In addition, SCOT and ATPCL 
protein levels were diminished in islets of GK compared with Wistar rats. 
 
Four regions in the Scot gene were targeted with shRNA in INS-1 832/13 cells 
resulting in cell lines with varying degrees of knockdown of SCOT protein and enzyme 
activity in whole-cell homogenates and mitochondria compared with the parent INS-1 
832/13 cell line and the CHS cell line that contains a non-targeting insert. The two cell 
lines, SCOT 1676 and SCOT 1184, with about 75% knockdown of whole-cell SCOT 
protein and SCOT enzyme activity, as well as mitochondrial SCOT activity, showed 
70-80% reductions in glucose- or monomethylsuccinate-plus-β-hydroxybutyrate 
(MMS+HB)-stimulated insulin release compared with the control cell lines (Figure 9). 
Less inhibition of insulin release was observed with the two cell lines, SCOT 713 and 
SCOT 68, in which the extent of SCOT knockdown was less. The cell line with the 
least knockdown of SCOT activity and protein, SCOT 713, showed only about 25% 
decreases in glucose- and MMS+HB-stimulated insulin release. The SCOT 68 cell line 
showed about a 50% decrease in SCOT levels, and a 50% decrease in GSIS, but no 
decrease in MMS+HB-stimulated insulin release (Figure 9). To make sure that the 
decreases in secretagogue-stimulated insulin release in SCOT-targeted cell lines were 
not due to an off-target effect, the activities of ME1 and ATPCL were measured as 
control enzymes in these cell lines; these were not different from those of the control 
cell line. The insulin content of the cell lines with severely decreased secretagogue-
stimulated insulin release, SCOT 1676 and SCOT 1184, was lower than that of the 
control CHS cell line. In contrast, the other two cell lines with moderately decreased 
insulin release, SCOT 713 and SCOT 68, showed no differences in insulin content from 
that of the CHS cell line. However, since only 2-5% of the total insulin content of the 
cell lines was secreted during the 1-hour period of stimulation, it is improbable that 
these reductions in insulin content were big enough to be the reason for the diminished 
insulin release. The lower insulin content might indicate that the SCOT reaction in 
some way affects insulin biosynthesis. 
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Figure 9. Decreased glucose- or MMS+HB-stimulated insulin release is proportional to knockdown of 
SCOT enzyme activity in cell lines derived from INS-1 832/13 cells. Data are means ± SE. ap < 0.05, bp 
< 0.001 vs. the INS-1 832/13 control or the CHS control cell line transfected with a non-targeting shRNA 
insert. 
 
 
The findings in the present study, which demonstrate decreased mRNA expressions, 
protein levels, and enzyme activities of SCOT and ATPCL in pancreatic islets of GK 
rats, have confirmed the results obtained from a small number of isolated human 
pancreatic islets in a previous study (MacDonald et al., 2009b). The under-expression 
of SCOT and ATPCL at the mRNA level in pancreatic islets of GK rats in this study is 
most likely a primary contribution to the impaired insulin secretion and abnormal islet 
function seen in GK islets, since insulin treatment of GK rats did not increase 
expression of the mRNA transcripts that encode SCOT and ATPCL (unpublished data). 
 
Two previous studies, in which siRNA or shRNA were used to knockdown ATPCL in 
pancreatic islets or cell lines, showed that GSIS is not inhibited (Joseph et al., 2007; 
MacDonald et al., 2007), while one study describing siRNA knockdown of the enzyme 
in INS-1 832/13 cells showed that insulin release is inhibited (Guay et al., 2007). In the 
current study, knockdown of SCOT with shRNA lowered GSIS in the INS-1 832/13 
cell line. The pathway involving SCOT is redundant with the pathways involving 
ATPCL with respect to the supply of carbon precursors of short chain acyl-CoAs to the 
cytosol (Figure 2), and this may be why knockdown of ATPCL does not usually inhibit 
insulin release. The reason why knockdown of SCOT alone inhibits insulin release is 
unclear at present, but might be because SCOT is located inside the mitochondria and 
may be necessary for mitochondrial homeostasis, in addition to its role in the supply of 
acetoacetate for export to the cytosol for formation of short chain acyl-CoAs. The two 
cell lines with the severest knockdown of SCOT enzyme activity and protein, SCOT 
1676 and SCOT 1184, showed the most prominent reductions in insulin secretion 
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stimulated by glucose or MMS+HB. The two cell lines with lesser levels of knockdown 
of SCOT protein and SCOT enzyme activity, SCOT 713 and SCOT 68, showed a 
lowering of glucose- and/or MMS+HB-stimulated insulin release, which was of less 
magnitude and of greater variability. 
 
When MMS+HB are applied to the cells to stimulate insulin secretion (Figure 2), the 
pathway that involves SCOT begins with the conversion of β-hydroxybutyrate to 
acetoacetate by β-hydroxybutyrate dehydrogenase. Acetoacetate can be exported to the 
cytosol to directly form short chain acyl-CoAs as described above. Exogenously 
derived acetoacetate can also react with succinyl-CoA from the TCA cycle, to generate 
acetoacetyl-CoA and succinate in a reaction catalyzed by SCOT. The added succinate 
derived from the exogenously added methyl succinate, via a mass action effect, can 
also increase succinyl-CoA to feed the SCOT reaction and in addition, the succinate 
can replenish other four-carbon intermediates of the TCA cycle. Either ACAT1 or 
ACAA2 can split the resulting acetoacetyl-CoA into two acetyl-CoA molecules, which 
can condense with oxaloacetate to form citrate for metabolism in the TCA cycle, in 
order to generate energy for the stimulation of insulin release; alternatively, citrate is 
exported to the cytosol to be further processed by ATPCL as described above. 
 
In conclusion, this study verifies that the mitochondrial pathways involving SCOT, 
instead of or in concert with the pathway involving ATPCL, are important potentiators 
of GSIS. 
 
4.4 GENETIC ASSOCIATION OF ADRENERGIC RECEPTOR ALPHA 2A 

WITH OBESITY AND TYPE 2 DIABETES (PAPER IV) 

In this study, we investigated the association of ADRA2A genetic polymorphisms with 
obesity and/or T2D in a Swedish cohort. In addition, we studied ADRA2A mRNA 
expression in isolated human pancreatic islets. 
 
The single nucleotide polymorphism (SNP) rs553668 in the ADRA2A gene revealed an 
association between T2D patients and lean NGT subjects in men (OR = 1.47; 95% CI = 
1.08-2.01; p = 0.015; Table 1), but this association was lost after adjusting for age and 
BMI in the multiple logistic regression model. Carriers with the A/A genotype had an 
increased risk of disease. However, male T2D patients had BMIs ranging from 18.4-
45.6 kg/m2. To determine whether this polymorphism is associated with T2D or 
obesity, we analyzed obese NGT and lean NGT subjects, and found an association for 
the A allele with obesity (OR = 1.49; 95% CI = 1.07-2.07; p = 0.017). We also 
compared lean T2D patients versus lean NGT subjects, but no association was found. 
However, when comparing obese T2D male patients with lean NGT male subjects, a 
difference was observed (OR = 1.62; 95% CI = 1.06-2.49; p = 0.026). Using multiple 
logistic regression analysis for SNP rs553668, and including age in the model, we 
compared obese NGT and lean NGT groups, and detected an association (OR = 2.82; 
95% CI = 1.03-7.74; p = 0.044). There was no association when comparing lean T2D 
and lean NGT, but when looking at obese T2D and lean NGT subjects, we found an 
association (OR = 4.17; 95% CI = 1.02-17.00; p = 0.046). For a summary of the 
comparisons for SNP rs553668 in men, see Table 1. 
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Table 1. SNP rs553668: genotype distribution and association in men 
 

 
 

MAF, minor allele frequency; OR, odds ratio; T2D, type 2 diabetes; NGT, normal glucose tolerance. 
Genotype data on SNP rs553668 are missing for two subjects with T2D and three lean subjects with 
NGT. aReference group; bAdjusted for age; cAdjusted for age and body mass index (BMI). 
 
Multiple logistic regression analysis was carried out for SNP rs521674 in women. 
When including age in the model, comparison of T2D patients with lean NGT subjects 
showed that A/A genotype carriers had an increased OR compared with T/T genotype 
carriers (OR = 7.61; 95% CI = 1.70-34.17; p = 0.008; Table 2). Correction for BMI 
removed this association. The T2D group in women includes subjects with BMIs 
ranging from 19.7-58.6 kg/m2. Comparing lean T2D and lean NGT groups did not 
show any association, although we detected a risk in obese T2D versus lean NGT (OR 
= 10.89; 95% CI = 1.11-107.10; p = 0.041). We also found an association between lean 
and obese T2D versus lean NGT (OR = 5.10; 95% CI = 1.13-22.98; p = 0.034). With 
regard to A/T genotype carriers compared with T/T genotype carriers at SNP rs521674 
in women, multiple logistic regression analysis including age in the model revealed an 
increase in the OR, when comparing T2D patients with lean NGT subjects (OR = 6.35; 
95% CI = 1.39-29.10; p = 0.017). Adding BMI into the model removed this 
association. There was no association when comparing lean T2D and lean NGT, but 
when looking at obese T2D and lean NGT subjects, we found an association (OR = 
10.50; 95% CI = 1.06-104.21; p = 0.045). Moreover, we detected an association 
between lean and obese T2D versus lean NGT (OR = 4.91; 95% CI = 1.07-22.50; p = 
0.040). For a summary of the comparisons for SNP rs521674 in women, see Table 2. 
 
Table 2. SNP rs521674: genotype distribution and association in women 
 

 
 

MAF, minor allele frequency; OR, odds ratio; T2D, type 2 diabetes; NGT, normal glucose tolerance.  
Genotype data on SNP rs521674 are missing for four subjects with T2D and six lean subjects with NGT. 
aReference group; bAdjusted for age; cAdjusted for age and body mass index (BMI). 
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Although ADRA2A mRNA expression was detectable in isolated human pancreatic 
islets, no differences were found between the diabetic and control groups. 
 
In the present study, comparison analyses were carried out in men and women 
separately because gender seems to be an important player when analyzing the genetics 
of obesity and its related disorders. Differences demonstrated in other genes among 
men and women include receptor protein tyrosine phosphatase sigma (RPTPσ) 
(Langberg et al., 2007), angiotensin-converting enzyme (ACE) (O'Donnell et al., 1998), 
low-density lipoprotein-related protein-associated protein 1 (LRPAP1), 
thrombospondin I (THBS1), acetyl-Coenzyme A acetyltransferase 2 (ACAT2), integrin 
beta 3 (ITGB3), coagulation factor II (F2), P-selectin (SELP), prolylcarboxypeptidase 
(PRCP) (McCarthy et al., 2003), and neuropeptide Y (NPY) (Nordman et al., 2005). 
 
SNP rs553668 is a tagSNP and is located in the 3′ region of the ADRA2A gene. Genetic 
variations in the 3′ region can be involved in regulating message stability. Alteration in 
this region of the ADRA2A gene can result in altered expression levels, due to the 
increased stability of the ADRA2A mRNA (Michel et al., 1999). SNP rs553668 has 
been reported to be associated with the risk for obesity (Ukkola et al., 2001; Lima et 
al., 2007), hypertension in blacks (Lockette et al., 1995; Li et al., 2006), cardiovascular 
diseases (Flordellis et al., 2004), platelet aggregation (Freeman et al., 1995), childhood 
attention deficit hyperactivity disorder (ADHD) (Park et al., 2005), and endurance in 
athletes of Caucasian origin (Wolfarth et al., 2000). Having completed the current 
study, it was reported that rs553668 is associated with reduced insulin secretion and 
increased risk of T2D in a population from Finland and southern Sweden (Rosengren et 
al., 2010). This association was verified at the functional level in human pancreatic 
islets. Risk allele carriers showed over-expression of ADRA2A in islets, decreased 
insulin secretion, and reduced number of docked insulin granules in vitro. These effects 
were corrected by ADRA2A-antagonism (Rosengren et al., 2010). Although ADRA2A 
mRNA expression was detectable in the isolated human pancreatic islets used in the 
present study, no difference in expression was detected between the diabetic and 
control groups. These divergent results may be explained by the fact that T2D is a 
complex disease with many different entities and the involvement of multiple genes, as 
well as epigenetic and environmental factors. Also, in the study by Rosengren et al., the 
individuals were not categorized into diabetic and control groups, as has been done in 
this study. 
 
SNP rs521674 is situated in the 5′ region of the ADRA2A gene. This polymorphism has 
previously been described and used as a genetic marker because of its location (Belfer 
et al., 2005; Kurnik et al., 2006). Genetic variants found in the 5′ flanking region could 
be involved in transcription binding sites in the promoter region and may therefore 
influence gene expression. Responsivity to α2-adrenergic stimulation differs noticeably 
between individuals. This could be due to receptor regulatory processes (Brodde and 
Bock, 1984; Michel et al., 1991) or due to hereditary inter-individual variability in α2-
adrenergic receptor responsiveness (Luthra et al., 1991). Our results in the current study 
suggest that SNP rs521674 might be associated with obesity and possibly also to T2D. 
This association was seen in obese and not lean T2D when age was included in the 
multiple logistic regression model. We did not have access to samples from obese 
women with NGT, and therefore could not compare this group with the lean NGT 
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female group. We found an association between the combined group of lean and obese 
T2D patients and lean NGT subjects after adjusting for age, and were not able to 
exclude a link to T2D. 
 
In conclusion, our data in this study support the notion that ADRA2A plays an important 
role in the pathogenesis of obesity, and might also modify the progression to T2D. Data 
indicate that SNP rs553668 is mainly associated with obesity in men. For women, SNP 
rs521674 might be associated with obesity and possibly also with T2D.  
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5 THESIS SUMMARY 
Paper I – This study demonstrates that Ac3 is over-expressed not only in pancreatic 
islets but also similarly in striatum/hypothalamus of GK rats, supporting the existence 
of a functional link between the CNS and pancreatic islets via AC3 regulation. The 
increased levels of Ac3 mRNA expression in these tissues is partially a primary and 
inherited defect and not solely secondary to hyperglycaemia. AC3 may participate in 
regulating glucose homeostasis via insulin secretion and the CNS. Also, AC3 may have 
a primary role in body weight regulation through CNS control. 
 
Paper II – This study suggests defects in the expression of PKCα and PKCε in 
pancreatic islets of GK rats secondary to hyperglycaemia. Also, insulin treatment 
increased the islet p-PKCζ. In liver, PKCε mRNA expression in liver could be under 
control of insulin. Furthermore, the capacity of hepatic PKCδ to be phosphorylated is 
decreased in GK rats. 
 
Paper III – This study further supports the notion that mitochondrial pathways 
involving SCOT, which supply acetoacetate for export to the cytosol, instead of or in 
combination with the pathway involving ATPCL that converts citrate exported from 
mitochondria to acetyl-CoA, are important for the potentiation of insulin secretion by 
the pancreatic β-cell. 
 
Paper IV – This study provides evidence that ADRA2A genetic polymorphisms are 
mainly associated with obesity and may also relate to T2D in a Swedish population. 
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