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ABSTRACT 

Angiogenesis is a complexly regulated process activated to assure cells with normal supplies of 
nutrients and oxygen. Playing such an essential role in homeostasis of the tissues it is critical to 
understand its physiology and pathology to be able to design therapies for several diseases where 
angiogenesis is dysregulated (either excessive or diminished). 
We aim to better characterize the angiogenesis during chronic complications of diabetes and 
tumors, focusing on the roles of two pathogenic factors common for both diseases: hypoxia 
inducible factor (HIF) and insulin-like growth factor (IGF).  
 
Chronic complications of diabetes significantly increase the mortality and morbidity in patients 
with diabetes and lack for the moment efficient therapies. Hypoxia along with hyperglycemia 
has been relatively newly identified as a pathogenic factor for complications in diabetes. We 
have therefore investigated in our studies the cross-talk between hyperglycemia and hypoxia and 
we have demonstrated that cells fail to properly adapt to hypoxia due to repression of HIF’s 
stability and function in the presence of high glucose. Moreover we have shown that 
hyperglycemia leads to HIF destabilisation through a VHL-mediated mechanism and complexly 
affects the HIF transactivation. In agreement with the in vitro data, we have detected repressed 
HIF in ulcers of diabetic mice. Local stabilization of HIF, either pharmacologically or by 
adenovirus mediated transfer, improves wound healing rate in diabetic mice, which indicates the 
pathogenic relevance of the hyperglycemia-induced HIF repression for diabetes complications. 
We further studied the consequences of the HIF repression in diabetes and identified that it is 
also responsible for increased mitochondrial radical oxygen species (ROS), which are essential 
for the development of chronic complications of diabetes. In consequence the stabilization of 
HIF is followed by normalization of ROS production, both in vitro and in vivo, even under the 
persistence of the high glucose concentrations.  
 

In a third study we investigated the role of IGF-I for diabetic wound healing. IGF-I, a growth 
factor and regulator of angiogenesis, is secreted into the blood stream by the liver but also 
produced locally in the tissues. The relative contributions of local vs systemic IGF for wound 
healing is still unclear. This is even more relevant for diabetic wounds where reduced IGF-I 
levels were detected. We demonstrated here that liver-derived IGF-I does not affect wound 
healing in mice with or without diabetes. This indicates that local therapy with IGF-I is sufficient 
for improving wound healing in diabetes, avoiding the potential side effects of a systemic 
therapy.  

 

Dysregulated angiogenesis is also essential for tumor development. Kaposi’s sarcoma (KS) is a 
highly vascularized tumor and its biology is dependent on angiogenic stimuli. We demonstrated 
here that the vascularized phenotype characteristic for KS is highly dependent on the interplay 
between IGF-I and HIF. We showed that IGF-I induced accumulation of both HIF-1α and HIF-
2α paralogues. IGF increased also HIF activity as demonstrated by the HRE reporter gene assay 
and by induction of VEGF(classic target gene of HIF). We have further described that IGF 
induces HIF accumulation by increasing the translation of the HIF-α subunits. The biological 
relevance of the HIF signaling in KS biology was highlighted by its expression through all the 
characteristic progressive stages of the disease. Moreover, we demonstrated that blocking the 
IGF-IR signaling decreases HIF accumulation and blunts the VEGF expression, offering a 
promising therapeutic option in the management of KS. 

 

In conclusion, we identified new mechanisms of dysregulated angiogenesis in diabetes and 
tumors and proposed new therapeutic strategies based on our findings.  
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“We shall not cease from exploration and the end of all our 

exploring will be to arrive where we started and know the 

place for the first time” 
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1 RATIONALE FOR THE PROJECT 

Angiogenesis, the formation of new blood vessels, is essential for the survival of the 

new tissue formed during regenerative or proliferative processes. Moreover 

dysregulation of angiogenesis plays an important role in pathology. It is therefore 

essential to have a good understanding of its physiology and pathology for designing 

more effective therapies. 

Diabetes and tumors are two diseases with high prevalence, resulting in significant 

morbidity and mortality.  Even though big steps have been taken in the last years in the 

management of these diseases, unsolved issues still remain, including lack efficient 

strategies for development and treatment of chronic complications of diabetes and 

control of metastatic potential of tumors.  

Both diseases are characterized by dysregulated angiogenesis.  

The angiogenic phenotype in these diseases covers a large range. At one extreme, there 

are the tumors where the hypoxia signal generates a cascade of events resulting in 

increased angiogenesis. At the other, hypoxia signal could be inefficiently transduced 

due to hyperglycemia resulting in impaired angiogenesis. IGF and HIF are two 

important regulators of angiogenesis and are also factors relevant for pathogenic 

mechanisms of both diseases.  

We aim in this thesis to characterize new pathogenic mechanisms responsible for the 

dysregulation of angiogenesis based on IGF and HIF signaling and to suggest potential 

therapeutic targets that could enter clinical research for the benefit of the patients.  
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2 BACKGROUND 

2.1 ANGIOGENESIS 

The normal function of cells in organisms is dependent on blood flow which provides 

the nutrients and oxygen and also removes the products resulting from metabolic 

processes. The distance of a cell from the blood vessel is limited by the diffusing 

capacity of the oxygen to 150-200 µm1. Therefore, blood vessels are a prerequisite for 

any developing process either regenerative or neoplastic2,3.   

Initial blood vessels develop as early as day 7 of embryonic life from multipotent cells 

which originate in the mesodermal layer in a process called vasculogenesis4. The 

subsequent ramification and specialization of the vascular network as well as the 

neovascularization during adulthood happens via new blood tube formation from the 

preexistent vessels in a process called angiogenesis.  

In adult life the blood vessel endothelium is mostly quiescent with few exceptions such 

as physiologic angiogenesis during menstrual cycle or wound healing. However, 

endothelial cells preserve the capacity to divide, migrate and form new vessels in  

response to  hypoxia or other stress conditions5.  

When an angiogenic signal is released, a complex reaction develops which involves: 

degradation of the basement membrane of the vessels by proteases which results in 

detachment of pericytes, loss of cell junction between pre-existent endothelial cells, 

sprouting, migration and proliferation of individual cells and finally remodeling of the 

extracellular matrix to form new tubule structures6. An efficient neovascularisation 

needs a fine-tuned interplay between pro- and anti-angiogenic mediators.  

2.2 REGULATORS OF ANGIOGENESIS 

2.2.1 Hypoxia inducible factor (HIF) 

Hypoxia is an important signal for angiogenesis and plays important role in the 

pathology of a wide spread diseases like cardio-vascular disease and ischemia, cancer, 

inflammation, anemia and chronic obstructive pulmonary diseases7.   



 

  3 

Hypoxia is defined as the condition when the delivery of the oxygen does not meet the 

demands of the tissues.  

The partial pressure of oxygen in the air is 20% (140 mmHg), while the level of oxygen 

across the tissues varies between 1 and 14 % (10 to 110 mmHg)8,9. Hypoxia is therefore 

defined when the oxygen concentration is below these levels.  

Tumors present a hypoxic environment where oxygen levels are less than 10-15 

mmHg, equivalent to 2% oxygen10.    

The transport of oxygen to the peripheral tissues is done by erythrocytes in the blood 

stream.  Adaptation to hypoxia involves different mechanisms including increasing 

erythropoietin levels which is followed by increased capacity of oxygen delivery to 

tissues by increasing the number and improving the function of red blood cells11.  

Research on the molecular mechanisms of hypoxia-induced upregulation of 

erythropoietin resulted in the characterisation of a part of the erythropoietin’s promoter 

where a protein bound and transduced activation of its transcription12.  Afterwards the 

protein mediating this hypoxic response was identified and named hypoxia inducible 

factor- HIF13. 

Now it is accepted that the molecular reaction to hypoxia is mainly mediated by HIF. 

HIF activates many genes that adapt cells to the compromised levels of oxygen, and the 

function of many of these genes is to increase angiogenesis (figure 1)7.  
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Figure 1: HIF roles in upregulating angiogenesis. 
HIF activates the transcription of genes encoding secreted factors (row 1) and their receptors (row 2) that 
are important for angiogenesis. Adapted from G. Semenza, NEJM, 2011 
Abreviations: SDF1 stromal derived factor 1, VEGF vascular endothelial growth factor, SCF stem cell factor, 
ANGPT2 angiopoietin2, PDGFB platelet-derived growth factor B, EC endothelial cells, SMC smooth muscle cells 

 

2.2.1.1 HIF subunits  

Initially, 60µg of highly purified  HIF  was obtained from 120 liters of HeLa cell 

culture and this allowed characterization of HIF as a heterodimeric transcription factor 

composed of two subunits: HIF-1α and HIF-1β 14. HIF-1β, also called aryl receptor 

nuclear translocator (ARNT) was first cloned as the binding partner to the Ah (dioxin) 

receptor15. 

The two subunits of HIF  belong to the family of proteins essential for development and 

homeostasis16. They contain a basic-helix-loop-helix and a PAS (bHLH-PAS) 

domain17. The two subunits of HIF bind to DNA only after hetero-dimerization14. The 

bHLH domain mediates both dimerization and DNA binding, whereas the PAS domain 

increases dimerization efficiency and confers DNA binding specificity18-21.  

Human HIF-1α subunit is an 826 aminoacids protein (Figure 2) with both bHLH and 

PAS domains located at the N-terminal ending, within the aminoacids sequence from 1 

to 39019. The sequence between aminoacids 391 to 826 includes the oxygen dependent 

degradation domain (ODDD) which is responsible for HIF-1α degradation in the 

presence of oxygen22 and two transactivation domains NTAD (N-terminal 
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transactivation domain) and CTAD (C-terminal transactivation domain) which are 

essential for HIF activity23,24. 

The HIF-1β subunit, contains a transactivation domain but with no importance for HIF 

function25. Moreover, HIF-1β lacks ODDD resulting in expression of HIF-1β even in 

the presence of oxygen.  

Three HIF-α subunits (HIF-1α, HIF-2α /EPAS1, HIF-3α/IPAS) and two HIF-1β/ΑRNT 

isoforms (774 and 789 aminoacids)14 have been described to date (Figure 2). Further, 

there are another two ARNT paralogues ARNT2 and ARNT3 (also known as 

bMAL/MOP3) which could function as alternative binding partners for HIF-2 alpha 

and HIF-3 alpha26.  

Figure 2: Schematic representation of the HIF subunits. 
Abreviations: HIF-hypoxia inducible factor, bHLH- basic helix-loop-helix; PAS- Per-ARNT-sim, ODD- 
oxygen dependent, NTAD- N-terminal transactivation domain CTAD- C-terminal transactivation domain 

 

The structure of HIF-2α resembles that its paralogue HIF-1α, with a 70% similarity of 

the N terminal part containing the bHLH and PAS domain27,28 and high sequence 

homology within the C terminal transactivation domain29. Despite such a big similarity 

in structure and degradation pathways the two alpha paralogues are not redundant and 

have specific functions as well30,31. 
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The third member of the alpha subunits (HIF-3α), shares high similarity with the other 

two alpha subunits, but has no C-terminal transactivation domain32 and actually 

functions as a dominant negative regulator of HIF-1α33 and HIF-2α34. HIF-3α has been 

identified as a HIF-1 target gene35 being induced at mRNA levels in hypoxia36. 

The expression pattern of HIF-1α and ARNT is ubiquitous, while the other members 

have a restricted pattern of expression26. HIF-2α is expressed in endothelial cells, heart, 

liver, kidney, brain, and duodenum27,28,37 while HIF-3 α is expressed in heart, brain, 

eye, skeletal muscles, lung, kidney and adult thymus32,38.  

Furthermore, cell-type specific pattern of expression have been noticed e.g. in kidney, 

where HIF-1α is expressed by tubular cells whereas HIF-2α is expressed mainly by 

endothelial cells and fibroblasts39.  

Availability of ARNT is crucial for HIF alpha actions, but is usually not an issue since 

it is present in large excess26 . 

After hetero-dimerisation, HIF binds to a core DNA sequence A/(G)CGTG within the 

hypoxia responsive elements (HRE) in the promoter region of the target genes, thereby 

exerting its activity40. 

2.2.1.2 HIF regulation 

HIF function is mainly modulated by the oxygen-dependent regulation of available 

protein levels40 with no HIF mRNA variation in response to hypoxia41,42. 

The canonical degradation pathway: PHD directed and VHL dependent 

In normoxia, HIF protein level is kept low by the degradation of the HIF-1α subunit. 

The molecular basis of its degradation is the O2-dependent hydroxylation of the proline 

residues43-45 in the oxygen dependent degradation domain (ODDD) of HIF 1α. The 

proline residues are conserved between species and they locate in the aminoacid 

position 402 and 564 (HIF-1α), and 405 and 531 (HIF-2α and HIF-3α).  

The reaction takes place under the control of a family of iron (II) – and 2-oxoglutarate 

dependent dioxygenase which hydroxylate the prolyl residues (PHD prolyl 

hydroxylases domain-containing protein) in the presence of oxygen46,47. There are three 

PHD paralogs important for the hydroxylation of HIF-α subunits, PHD1, PHD2 and 
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PHD346. PHD2 is also called EGLN after the name of its gene first described in an 

abnormal egg laying phenotype in caenorhabdites elegans47.  From experiments where 

the three PHD were knocked down individually by siRNA techniques, it turned out that 

the essential paralogue for HIF degradation in normoxia is PHD248. Moreover, PHD2 

not only controls the HIF-α degradation in normoxia but also degradation after re-

oxygenation events49. However, the picture is more complex, since prolonged PHD2 

inhibition induces PHD-1 which in turn degrades HIF-α protein in normoxia48. PHD3 

might be an important regulator of HIF-2α subunit50,51. All three PHDs are expressed 

ubiquitously but the abundance level for their mRNA is cell and tissue specific52.  

The PHD- enzymes activity is conditioned by the presence of iron, 2-oxoglutarate and 

ascorbic acid. Chemical substances that compete or interfere with these co-factors such 

as iron chelators (desferoxamine- DFX), transition metals (cobalt in cobalt-chloryde) or 

oxoglutarate analogs (dymethyloxalylglycine-DMOG) induce potent PHD inhibition  

and consequently stabilize HIF, being called “hypoxia mimetics”53,54.  

In addition, an iron transporter called PCBP1 (poly (rC) binding protein 1) is 

responsible for the proper delivery of the iron to the PHD.  Absence of PCBP1 reduces 

in consequence the HIF degradation by decreasing PHD efficiency55.  

PHD activity can be also decreased in normoxia by a low alpha-ketoglutarate to 

fumarate ratio56. Both fumarate and alpha-ketoglutarate are metabolites in the Krebs 

cycle which underscores the involvement of metabolic pathways in HIF modulation 

along with oxygen availability. 

Interestingly, PHD2 is a HIF-1 regulated gene product and this creates a negative 

feedback loop by which HIF regulates its own stability48.  

Few other factors that interfere with the HIF prolyl-hydroxylation have been described. 

For example OS-9, a protein amplified in “osteosarcoma-9” has been shown to interact 

both with HIF-1α and with the PHD -2 and -3 and form a ternary complex which 

accelerates HIF hydroxylation57. However the role of this interaction in HIF 

degradation is controversial since there is no significant energy transfer between OS-9, 

HIF and PHD58.  
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Oncogenes like RasV12 and v-Src induce HIF via inhibition of prolyl hydroxylation on 

residue Pro564 or via Akt-induced stabilization59.  

Factors such as ING4 from the growth inhibitors family are recruited in hypoxia by 

PHD resulting in a repressed HIF transcriptional activity60. 

Hydroxylated HIF-1α is polyubiquitinilated and targeted for proteosomal degradation. 

Ubiquitination involves the concerted action of ubiquitin-activating enzyme E1, 

ubiquitin-conjugating enzyme E2 and ubiquitin-protein ligase E3. E3 binds to the 

protein substrate and to E2, allowing the transfer of ubiquitin from E2 to the substrate. 

The von Hippel-Lindau suppressor protein (pVHL) acts as an E3 ubiquitin ligase and 

targets HIF-1α for 26S proteasomal degradation61-64. pVHL was first described and 

characterised in connection with the von Hippel Lindau syndrome that is an autosomal 

dominant inherited human tumor syndrome characterised by renal clear cell carcinomas 

(RCC), hemangioblastoma of the central nervous system, retinal hemangiomas and 

pheochromocytoma65,66. All these tumors express a high angiogenic phenotype and 

overexpress HIF which linked HIF with VHL.  

VHL has 2 domains: α and β, and it binds through its β domain to the hydroxylated 

form of HIF-1α subunit67 and, through  its alpha subunit serves as binding partner to the 

elongin C/elongin B and Cul2 Rbx1 proteins forming the VBC-CR complex68,69. It is 

through the VBC-CR complex that HIF-1α is ubiquitinated and thus labelled for 

proteosomal degradation63,70.  

This complex is stabilized by SSAT2 (Spermidine/Spermine-N1-Acetyltransferase 2) 

which binds to HIF-1α, VHL and elongin C and further promotes HIF ubiquitination71. 

VHL-dependent HIF degradation could be accelerated by additional mechanisms. For 

example, one lysine residue in the 532 position can be acetylated by an 

acetyltransferase enzyme called ARD1 (Arrest Defective Protein-1) which results in an 

increased affinity for pVHL and subsequent increased HIF-1α degradation72.  
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Figure 3:Oxygen dependent regulation of HIF-1 α 
(adapted from Bruick, R and McKnight, S.L, Science 200273) 
Abreviations:HIF- hypoxia inducible factor, FIH -factor inhibiting HIF, HRE- hypoxia responsive element,HIF 
domains: bHLH, PAS-A, PAS-B, ODD, NTAD, CTAD 

 

pVHL dependent but PHD independent degradation pathway 

Even though, the canonical model of HIF-1α degradation involves prolyl-hydroxylases 

activity, HIF degradation in normoxia can be registered independent of them. The 

mechanism still involves VHL dependent ubiquitination but takes place on a HIF 

variant which is resistant to prolyl hydroxylation as a consequence of the mutation of 

both prolyl residues  to alanine74.  

Candidate proteins involved in this degradation pathway are the small ubiquitin like 

modifiers (SUMO), a family of ubiquitin-like proteins reported to affect many 

biological functions and required for cell viability75,76, with three isoforms SUMO1, 2 

and 3.  



 

10 

SUMOylation system is similar to the ubiquitin pathway containing an activating 

enzyme E1, a conjugating enzyme E2 (Ubc9) and a ligating enzyme E3. Ubc9 directly 

binds to the substrate protein and in its bound form recruits the E3 ligase and the pVHL 

and directs the protein to proteosomal degradation.  

SUMOylation is a dynamic, reversible process and it happens almost simultaneously 

with de-SUMOylation of the same proteins. De-SUMOylation is mediated by SENP 

(SUMO-specific proteases), and there are 6 SENPs that have been described to date77. 

For most proteins SUMOylation results in an enhanced activity. However, in case of 

HIF- 1α the results are ambiguous. Both activation78,79 and repression of HIF following 

SUMOylation have been reported80,81. The function of SENPs is still unclear since 

increased SUMOylation via down-regulation of SENP-1 is reported to be involved in 

pVHL-dependent destabilization of HIF81,while SENP-3 can increase HIF 

transactivation via de-SUMOylation of p300, leading to angiogenesis82. 

pVHL independent HIF degradation 

HIF degradation occurs even in hypoxic conditions or in cells defective of VHL (VHL-

/- cells)83 suggesting alternative degradation pathways independent of the canonical 

VHL system.  

It has been shown that p53 binds directly to HIF-1α and mediates ubiquitination via 

Mdm-2 (mouse double minut 2 homologue) which function as an E3 ligase63,84.  This 

interaction between HIF and p53 is blocked in the presence of Jab-1, a co-activator 

involved in cell- proliferation, cycle control and inflammatory response pathways85 or 

by Kruppel-like factor 5 as recently shown86.  

Rack-1(receptor for activated C-kinase-1), a scaffolding protein, has been validated as 

interacting protein for HIF by proteomics approach87. RACK-1 induces HIF 

degradation even when both proline residues in the ODDD are mutated to alanines 

suggesting a PHD - independent pathway87. RACK1 binds to Elongin-C and recruits 

Elongin-B and other components of E3 ubiquitin ligase to HIF-1α directing HIF-1α 

to a pVHL independent proteosomal degradation.  

Hsp90 has been also shown to associate to the PAS domain of HIF-1α and prevents the 

pVHL independent proteososmal degradation88,89. However, RACK-1 and Hsp90 
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compete for the same binding site on HIF, therefore maintaining a balance in the level 

of HIF degradation87.  

NEDD8 mediates an alternative mechanism for HIF stabilisation which acts at the 

degradation level and is reactive oxygen species (ROS)-dependent and pVHL-

independent. NEDD8 is required for HIF stabilization in hypoxia and approximately 

30% of HIF stabilization in hypoxia is NEDD8 dependent90.  

Interestingly, another alternative degradation pathway for HIF-1α has been recently 

described, which is independent of proteosomal degradation, but instead takes place in 

the lysosomes through chaperone-mediated autophagy91. 

Modulation of HIF activity by posttranslational modification of  transactivation 

domain 

HIF activity in hypoxia is not only modulated at the protein level, but also regulated by 

posttranslational modification of its two transactivation domains, NTAD and CTAD 92. 

The function of HIF is therefore not increased by blocking the proteosomal degradation 

since this does not modulate the transactivation domains93,94. The NTAD overlaps with 

ODDD62 thus its transcriptional activity is largely coupled to protein stability. However 

the CTAD transcriptional activity is mainly regulated by the recruitment of 

transcriptional coactivator complexes through factor-inhibiting HIF-1 (FIH-1) 95. In the 

presence of oxygen an asparagine residue in the CTAD region is hydroxylated through 

a reaction catalysed by FIH-1, which is another iron and oxoglutarate-dependent 

oxygenase96 which interferes with the recruitment of co-activators. In hypoxia, FIH is 

not active and co-activators such as CBP/p300 interact with both HIF-1 alpha 

transactivation domains to activate gene transcription94,95,97. Moreover, the reaction is 

enhanced by accessory coactivators, SRC-1, TIF2 and Ref-198.  

It is interesting to note that the Km of FIH-1 is approximately 100µM 99 while for 

PHDs it is 200µM 100, which suggests a range of oxygen levels, where there is not 

enough oxygen to promote HIF degradation but low enough oxygen to limit the 

transactivation. The multiple levels of regulation therefore allow graded responses to 

subtle changes in O2 concentration. 
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The availability of the co-activators limits HIF transactivation. For example, CITED 2 

and CITED4 compete with HIF for the binding of CBP/p300 and interfere with HIF 

activity101,102. The binding of CITED 2 to CBP/p300 increases in clinical situations like 

chronic kidney disease which impairs the adaptation of the kidney to hypoxia with 

pathogenic consequences 103.  

The HIF transcriptional activity can also be increased by binding to Jab185. 

RTEF-1 (related transcriptional enhancing factor-1) enhances HIF-1α transcription. By 

inducing HIF-1α transcription in endothelial cells, RTEF-1 accelerates endothelial tube 

formation and enhanced cell aggregation in matrigel models. In addition, accelerated 

ischemia recovery is observed in endothelial cell-specific RTEF-1 transgenic mice104. 

Sirtuins (Sirt) are regulators of metabolism which function as NAD+-dependent 

proteins deacetylases and/or ADP-ribosyl-transferases. Some Sirtuins regulate HIF 

function. 

Sirt-1 deacetylates HIF-1α and in this way modulates the HIF-1α accumulation and 

activity in hypoxia105. Sirt-1 gene expression increases in a HIF-dependent manner 

during hypoxia and augments HIF-2α transcriptional activity106, 107.  

Sirt-3, which mainly acts on mitochondrial metabolism, is a negative regulator of 

HIF1α108,109. This effect has been attributed to the function of sirtuin3 to reduce 

mitochondrial ROS production, which inhibits PHD hydroxylase activity.  

Sirt7 (another member of the same sirtuin family) impairs the function of both HIF- α 

subunits110.  

Several hormones and growth factors increase HIF activity, e.g. insulin111, IGF-I112,113, 

IGF-II114, EGF115 , angiotensin II (Ang II), thrombin, and platelet-derived growth 

factor116. They stabilize HIF-1α independent of its oxygen regulation. The main 

pathways activated by the growth factors are dependent on signaling via mitogen-

activated protein kinase (MAPK)117 or phosphoinositol 3-kinase (PI3K)118.  The same 

pathways are used by receptor tyrosine kinases (RTKs) and Ras, and some  tumour 

suppressors, such as phosphatase and tensin homologue (PTEN) during oxygen 

independent regulation of HIF119.  
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MicroRNA (miRNA) are small, non-coding, single stranded RNA molecules 

containing only 22-23 bp, which couple to the 3’ UTR region of target RNA and 

inhibits their translation. miRNA are generated from larger, several kilobase pair 

structures (pri-miRNA) which are transcribed under the control of RNA polymerase II. 

The pri-miRNA are capped and polyadenylated and contain a hairpin structure, the 

stem-loop. The stem-loop structure is cleaved in the nucleus by an RNAase, Drosha 

and the products are released into the cytoplasm as pre-miRNA120. The pre-miRNA are 

cleaved in the cytoplasm by an enzyme called Dicer with the release of mature miRNA 
121.  

miRNA are essential for development122 and their impaired expression has been 

correlated with cardiovascular and inflammatory diseases and cancers.  

Recently microRNAs have been suggested to mediate some of the HIF-1 functions123. 

miRNA-199a and miRNA-155 modulate HIF reaction to hypoxia124, 125. Interestingly, 

under prolonged hypoxia HIF-1 induces miRNA- 155 resulting in a negative feedback 

mechanism. MiR17-92, directly represses HIF-1 in normoxia but not in hypoxia125,126. 

MiR 424 is induced by hypoxia, and downregulates CUL2 which is a scaffolding 

protein critical to the assembly of the ubiquitin ligase system, and thus regulates the 

degradation of HIF alpha isoforms and promotes angiogenesis127.   

2.2.1.3 HIF function 

The main function of HIF is to act as a sensor for oxygen levels, being able to bind to 

or dissociate from its binding sites on the target gene DNA in less than 1 minute40.  

HIF binds to the HRE in the promoter region of over 100 target genes and adapts the 

cells to hypoxia by regulating processes like red blood cell production (erythropoietin), 

angiogenesis (vascular endothelial growth factor-VEGF, angiopoietin 1 and 2), cellular 

survival and proliferation or cell metabolism128,129 (Figure 4). 
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Figure 4: HIF functions. 
Abreviations:HIF- hypoxia inducible factor, Glut-1- Glucose transporter-1, GAPDH- Glyceraldehyde-3-PDH, 
IGFBP- insulin growth factor binding protein, EPO- erythropoietin, Hsp90- heat shock protein 90 

 

Many of the target genes are common for the two paralogs, HIF-1α and HIF-2α. 

However, some genes are regulated just by one of the isoforms such as BNIP3 for HIF-

1α and VEGF, Oct4 by HIF-2α130. The target gene specificity seems to be related to 

NTAD whereas CTAD is mainly controlling the expression of common targets130.  

Moreover, the coactivator CBP/p300 has been related to the selectivity for target genes 

since p300 modulates the transcription activity of HIF-1α, while CBP is involved 

mainly in translating the signals from HIF-2α107.  

HIF is essential for angiogenesis and regulates directly or indirectly more than 2% of 

all human genes in endothelial cells131. This role is also underscored by the phenotype 

of the knockout mice which lack different components of the system.  

Mice that are completely deficient of either HIF-1α or HIF-1β die during embryonic 

life principally due to vasculature defects. Mice deficient in HIF-1α die in E11 due to 

severe cardiovascular and neural malformations and complete lack of cephalic 

vascularisation132,133. Similarly ARNT knockout mice die in day E10.5 due to defective 

angiogenesis and failure of the embryonic component of the placenta to 

vascularize134,135,  

HIF-2α knockout mice show a variation of phenotypes, while some models die during 

embryonic development with vascular disorganization or catecholamine deficiency136, 
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other models die shortly after birth due to respiratory distress syndrome related to 

inefficient production of VEGF137.  

HIF functions related to tumorigenesis are detailed in chapter 3. 

2.2.2 IGF-I 

IGF-I (Insulin like growth factor-I), the major component of the insulin-like peptides 

family (somatomedins) plays a central role in development through its growth 

promoting effects138.  IGF-I is expressed by virtually all tissues.  

Other components of the IGF system include IGF-II and insulin, their receptors IGF-

IR, IGF-IIR and insulin receptors. Furthermore to the system belong the insulin like 

growth factor binding proteins (IGFBPs) which represents a family of 6 proteins that  

bind with great affinity both IGF-I and IGF-II thus regulating their availability for the 

receptors139.  

The IGFs signals are transduced after coupling of the agonist to the receptors, which 

belong to the tyrosine kinase class of membrane receptors140.  Because IGFs have 

50% homology  with insulin, they could also bind to the insulin receptors.  

Insulin- receptor and IGF-R have a complex structure composed of two extracellular 

alpha chains which bind to the ligand and two trans-membranary beta chains which 

have tyrosin-kinase activity. One alpha and one beta chain form a half-receptor which 

will dimerise to another half to form a complete receptor. The two dimers are bound 

by disulfide bonds141. 

Moreover, there is a 60% similarity between IGF-IR and insulin receptor which gives 

the possibility for hetero-dimerisation (one IGF-IR-αβ complex and one IR-

αβ subunit complex) with formation of hybrid receptors important mainly in 

tumorigenesis142. However, the affinity of the IGF receptor is 1000 fold greater for 

IGF-I than for insulin and the insulin receptor has a 100 fold greater affinity for 

insulin than for IGF-I. 

After binding with the ligand, the tyrosin-kinase is activated and auto-phosphorylates 

the receptor, which will recruit substrates like insulin receptor substrates 1 to 4 (IRS 1-

4) and Shc (colagen domain protein) and this will initiate the cascade of reactions for 

IGF signal transduction143. IRS will  further activate additional substrates like the p85 
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subunit of PI-3kinase which in turn activates Akt also known as protein kinase B 

(PKB) (figure 5)144.  

Akt signaling on the mTOR (mammalian target of rapamycin) pathway is conserved in 

all eukariotes and it transduces the signal for protein synthesis145. Akt can also activate 

Bad-Ccl2 pathway resulting in the inhibition of apoptosis. 

Additionally, the coupling between IRS-1 and Shc activates the Ras-Raf-1/MEK 

pathway which controls the celullar proliferation.  

An IGF-IIR (Manoso-6 phosphate receptor) has been described which binds IGF-II 

which internalizes and targets IGF-II to degradation without signal transduction. 

However, IGF-II could also bind to IGF-IR but with lower affinity than IGF-I. 

The availability of the agonists to the IGFR is also conditioned by IGFBPs which 

controls their bioavailability146. IGFBPs can be modified in function by specific 

proteases147. Moreover, they are susceptible to post-translational modifications such as 

phosphorylation which influence their binding capacity for IGF-I148. 

IGFBP-3 is the principal binding protein in serum and forms binary complexes with 

IGF-I or ternary complexes which also involves the acid labil subunit (ALS). Both 

IGFBP-3 and ALS are under the control of Growth Hormone (GH). IGFBP-5 forms 

similar complexes with IGF-I146. The ternary complex (150kDa) is too large to cross 

the vascular wall and therefore the half time of IGF-I in serum is prolonged from 

minutes to several hours.  

The binary complexes (40-50kDa) could however cross the vascular wall and deliver 

the IGF to the targeted tissues.  

IGFBP-1 and 2 form only binary complexes with IGF-I, that contribute marginally to 

the half time of serum IGF-I. However, IGFBP-3 and 5 are saturated under normal 

circumstances but not IGFBP-1 and 2, which makes that change in their level influence 

markedly the free IGF-I levels and in consequence the biological response149 . The 

levels of IGFBPs are also modified by specific proteases150. Every IGFBP is 

specifically regulated by different factors i.e. IGFBP-1 is centrally regulated by insulin 

but can be also influenced by hypoxia, cytokines, stress151-154 and DDAVP155.  
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Figure 5: IGF- receptor and its intracellular pathways 
 

 

Canonically, it was considered that circulating IGF-I is produced in the liver under the 

control of growth hormone (GH) and plays the main role in controlling the body 

growth156. 

However this theory was challenged by the finding that mice lacking the liver secretion 

of IGF-I have unaffected postnatal body growth157-159. Moreover, a local secretion of 

IGF-I has been demonstrated in multiple tissues160.  

Beyond the key role as body growth regulator, IGF-I plays critical roles to maintain the 

normal function of several organs e.g. kidneys, cardiovascular system, brain161.  

2.2.2.1 IGF and angiogenesis 

IGF-I is an essential factor for vasculogenesis and angiogenesis in embryonic life, as it 

is involved in the development of mesodermal layer, maintaining of stem cells 

precursors and differentiation of the endothelial cells from the embryonic mesodermal 

layer cells162. Moreover, deficiency of IGF-I leads to impaired retinal development 

even in the presence of VEGF163.  
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Due to its role in the vascular system, IGF is also involved in the proper development 

of the different organs. For example IGF-I is a potent angiogenic signal for fetal lung 

endothelial cells and by this affect the morphology of the lung as well164. 

The IGF system is also essential for the homing of the endothelial precursor cells 

during neovascularization process165. The neovascularization after ischemic injury of 

the retina in diabetes, is also under the influence of IGF-I together with other factors 

(FGF-2, VEGF etc) secreted by the retina cells.  

IGF-I and IGF-IR are expressed by endothelial cells166-168 and protects them from 

atherosclerosis through their anti-apoptotic169 and anti-inflamatory properties. IGF-I 

stimulates the migration and angiogenesis of endothelial cells170. Moreover, IGF-I 

signaling via the PI3/akt pathway171,172, phosphorylates NOS which results in NO 

synthesis and vasodilation 173 . 

In cardiomyocytes IGF-I has protective effects and stimulates neovascularisation174.  

IGF-I secretion from brain microvascular endothelial cells enhances in response to 

ischemic injury and increases the survival of neurons making IGF-I a potential 

therapeutic target for ischemic stroke175. 

Recently the IGF system has been coupled with angiogenesis via activation of αvβ3- 

integrin, which are expressed especially by the activated endothelium during 

angiogenesis176,177 with protective effect against apoptosis. IGF-IR and αvβ3- integrin 

forms complexes with SDC-1 (syndecan-1) that is a family of cell-surface 

proteoglycans and accelerate endothelial cells migration178. 

Apart from its direct effects on endothelium, IGF-I maintains and potentiates the cross-

talk with other pro-angiogenic factors such as VEGF and FGF-2179.    

2.2.3 Other regulators of angiogenesis 

IGF and HIF interact in normal vasculogenesis and angiogenesis modulating the 

secretion of angiogenic factors162. VEGF has been related with angiogenesis induced 

by hypoxia since its discovery180. IGF-I increases endothelial differentiation by 

increasing HIF function which results in enhanced secretion of VEGF162. 
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VEGF (VEGF-A) was discovered as a vascular permeability factor 181,182 and is part of 

a  family of growth factors which are key effectors and regulators of  physiological and 

pathological angiogenesis acting through tyrosine kinase receptors6. The other 

members are VEGF-B, -C,-D and placental growth factor (PLGF). These factors bind 

to the three receptors VEGFR-1 (previous Flt-1), VEGFR-2 (former Flk-1/KDR) and 

VEGFR-3 (previous Flt-4)183. VEGFR-3 binds only VEGF-C and D and all these three 

members are related with lymphatic angiogenesis184. In addition, VEGF interacts with a 

family of coreceptors called neuropillins which are necessary for correct VEGF 

signaling, especially during vascular morphogenesis185.  

VEGF binds to both VEGFR-1 and VEGFR-2, but it is the VEGFR-2 receptor which 

mediates the main functions of VEGF related to its angiogenic and vascular 

permeability activity.  

VEGF’s essential role in angiogenesis is highlighted by knockout mice models: the 

VEGF knock-out mouse dies at embryonic day 11 with abnormalities related to 

defective angiogenesis186,187. Similarly, the mouse with VEGFR-2 deficiency dies in the 

embryonic day 8-9 due to deficient vasculogenesis188. Moreover, VEGF is required for 

normal growth and survival189 and maintains vascular homeostasis190  and promotes 

proliferation191,   migration and has an anti-apoptotic role for  the endothelial cells192-

194.   

VEGF has been extensively investigated in relation with diabetes. There is no clear 

information about the serum VEGF levels in patients with diabetes since both increased 

and unmodified levels have been reported195-198. These differences could reside either in 

methodological differences in inhomogeneity of selection of the patient group, e. g: 

duration of disease, type and duration of diabetes complications, treatment etc.   

VEGF has been also investigated in relationship with diabetic nephropathysince it is 

important for the function of the kidney199. 

Augmented expression of VEGF and its receptors has been demonstrated in both type 1 

and type 2 models of diabetes in animals200-202 and therapeutically VEGF inhibition has 

proven clinical benefits202.  
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VEGF plays a central role in the vascular lesions observed in diabetic retinopathy, 

ranging from the occlusion and leakage of retinal vessels, which lead to macular 

edema, to the  highly permeable vessels in the proliferative phase of retinopathy203. 

However, recently a new concept emerged regarding diabetic retinopathy, which 

involves not only the retinal vascularization, but postulates a tight communication 

between endothelial cells, neurons, glial cells and pericytes within the so called 

“neurovascular unit”, all the unit participating in VEGF secretion dysfunction. A more 

complex therapy that targets several of these factors could result in better control of the 

diabetic retinopathy203.  

Expression of VEGF and its receptors is seen in almost all tumors and is associated 

with poor prognosis. Moreover, some tumor cells secrete VEGF, which acts as a 

growth factor for the tumor204.  

Because VEGF has many roles in normal and pathological angiogenesis, therapies 

targeting VEGF are now developed for the treatment of diseases with dysregulated 

angiogenesis.  

VEGF inhibitors are already used in the clinic for controlling tumor angiogenesis5 and 

the excessive vascular leakage in diabetic retinopathy203 while therapies that provide 

VEGF are explored for the treatment of ischemic events205. However the clinical results 

are not as impressive as expected partially because VEGF is just one member of a large 

complex of factors that regulate angiogenesis, and partially because drug resistance 

develops in many cases206. It is therefore highly important to make a better 

characterization of the angiogenic events to be able to design more efficient therapies.   

Although VEGF is the most prominent angiogenic promoter it is not sufficient for the 

neovascularization process. Other factors are required, stimulators as well as inhibitors 

of angiogenesis.  

The VEGF signaling activates the endothelial cells (EC) and contributes to the 

degradation of the basement membrane that will create the environment for EC to 

migrate. The selection of the endothelial cells towards tip cell or stalk cell is determined 

by the interplay between VEGF and Notch207. The tip cells will become the migrating 

endothelial cells during neovascularization which is mainly under the control of Dll4 

whereas stalk cells will become the proliferating EC during the same process under the 
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control of Jagged1. Overall, DLL4 and Notch signaling restricts branching but 

generates perfused vessels207 .  

Fibroblasts growth factors (FGF) have been the first described as pro-angiogenic 

factors 208. They exert their function after the degradation of the matrix in synergy with 

VEGF209.  

Angiopoetins represent another family of angiogenetic factors. Together with VEGF 

they have a high specificity for the endothelial cells. They act via tie-2 receptors and 

interfere with the later phases of angiogenesis, mainly during vessels ramification and 

remodeling or to promote the capillary stability210.  

Platelet derived growth factors (PDGF) and their tyrosine kinase receptors are 

important for migration and proliferation of the endothelial cells 211 during normal 

angiogenesis but also for the recruitment and regulation of tumor fibroblast during 

pathologic angiogenesis212. PDGFB and PDGFR-β are essential for vascular 

maturation, and inactivation of either PDGFB or PDGFR-β leads to pericyte deficiency, 

vascular dysfunction, micro-aneurysm formation, and bleeding211.  

Recently, the metabolic sensor peroxisome proliferator-activated receptor-γ coactivator 

1α (PGC-1α) has been shown to stimulate angiogenesis in ischemic tissues and after 

exercise213,214. PGC-1α a potent regulator of metabolic processes215 also controls 

angiogenesis adapting in this way the oxygen supply to the demand of the cells216. 

PGC-1α regulates angiogenesis and VEGF, independent of HIF213. This underscores 

again the multiple control levels for regulation of angiogenesis.  

Other stimulators of angiogenesis include P1GF, TGF-β, SDF-CXCL12 system and 

sphyngosine 1 phosphate receptor5,6.  

On the other site are the inhibitors of angiogenesis, e.g. endostatin, trombospondin and 

caplostatin217 that also have been proposed as therapeutic targets for normalizing 

angiogenesis217.  
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2.3 HIF AND IGF-I SIGNALING IN A DISEASE MODEL 
 WITH REDUCED ANGIOGENESIS RATE 

2.3.1 Angiogenesis and diabetes complications 

Diabetes has reached epidemic proportion with a worldwide incidence of over 300 

million affected people and the number is predicted to raise dramatically218,219. The 

complications associated with prolonged exposure to hyperglycemia contribute to the 

increased mortality220 and morbidity221,222 in patients with diabetes compared with 

patients without diabetes.  

Endothelial dysfunction and aberrant angiogenesis have been associated with all 

chronic complications of diabetes including both macrovascular complications, i.e. 

cardiovascular disease, stroke, peripheral arterial disease and microvascular 

complications as in diabetic nephropathy, diabetic neuropathy, retinopathy and diabetic 

foot ulcers.  

Moreover, it has been shown that angiogenesis is impaired even after successful 

glucose control due to the fact that tissues preserve a memory of hyperglycemia223. 

Interestingly, the dysregulation of angiogenesis in diabetes complications is in both 

directions, ranging from deficient angiogenesis in wound healing and myocardial 

perfusion to overshooting angiogenesis as in retinopathy or atherosclerotic plaque.  

Therefore characterizing the mechanisms for vascular dysfunction in diabetes is a 

promising field which could lead to the development of alternative therapies in the 

management of diabetes and its complications. In fact, therapies targeting angiogenesis, 

mainly directed against VEGF are already current medical practice especially for 

diabetic retinopathy203. However, the results are not optimal all the time as in the case 

of diabetic nephropathy202,224-226 which suggests that the angiogenesis in diabetes is a 

complex field which is only partially understood and warrants further exploration.  

2.3.2 Diabetic foot ulcers 

Diabetic foot ulcer is a debilitating complication of diabetes associated with decreased 

angiogenesis. Almost 25 % of the patients with diabetes are at risk of developing foot 

ulcers227. Despite progress in the control of hyperglycemia, delayed wound healing in 
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diabetes remains a common complication and every 30 seconds one diabetic foot is lost 

in the world by amputation228.  

The therapeutic options besides the metabolic control include off-loading, treatment of 

infections and improvement of blood flow. The available therapies, however, are 

insufficient and almost 10% of patients eventually undergo amputation229,230. About 

85% of cases of major lower limb amputations in patients with diabetes are due to 

preceding ulcers231.  

The development of diabetic foot ulcers is multifactorial and includes peripheral 

vascular disease, microangiopathy232,233, neuropathy and even a reduced blood flow due 

to hyperglycemia234.  

Due to neuropathy, the patients lose the sensation of pain, which would normally 

trigger the avoidance of injuring factor and raise awareness of the existent lesion235,236. 

Moreover, due to pain insensitivity the patient applies repetitive stresses on a 

preexistent lesion which leads to poor healing and ulcer chronicity 237.  

Motor neuropathy affects the small muscles of the foot and results in disturbances of 

the normal movement and weight distribution during walking creating areas of high 

pressure where calluses develop. These areas will be more prone to ulcer development. 

In addition, there is also autonomic neuropathy affecting the sympathetic tone with 

altered function of the sweat glands and consequent dryness, fissuring and ulcerations 

of the skin238.  

In the end, the existence of peripheral neuropathy results in almost 3 times increased 

risk to develop foot ulcer in patients with diabetes239,240.  

Peripheral arterial disease (PAD) is present in many  cases of diabetic foot ulcers 241 

and is a major risk factor for amputation 235,242. Furthermore, the coexistence of sensory 

and autonomic neuropathy delays PAD diagnostic in patients with diabetes. The 

severity of the PAD predicts wound healing potential241. The severity of the PAD could 

be appreciated by markers like transcutaneous oxygen pressure (TcPO2). It is generally 

accepted that a wound will heal if the TcPO2 is higher than 50mmHg whereas values 

under 30mmHg will severely impair healing243.   
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A recent meta-analysis of the algorithms for stratification of the risk to develop diabetic 

foot ulcer has identified diabetic neuropathy, peripheral vascular disease, foot 

deformity, previous ulcer and previous lower extremity amputation as the most 

common predictors244. 

Wound healing is a complex and a well-coordinated succession of events which include 

clot formation, inflammation, re-epithelialization, angiogenesis, granulation tissue 

formation, and tissue remodeling245,246.  These events need the coordinated actions 

between different cell types like fibroblasts, keratinocytes, endothelial cells and 

macrophages under the stimulation of growth factors and cytokines224,225.  

Diabetes has a repressive effect on most of these processes 247,248 including growth 

factors secretion249, cell migration 250, macrophages functions 251, the capacity of 

metalloproteinases to remodel the extracellular matrix252  and angiogenesis 253,254. 

There is also a reduced production of SDF-1 and CXCR4 which will impair the 

recruitment and function of EPC and will also contribute to the deficient 

angiogenesis255-257.  

Furthermore, the cellular functions are impaired by high glucose and reduced 

proliferation and adhesion of endothelial cells or vascular smooth muscle cells have 

been shown 258.  

2.3.3 Mechanisms of chronic complications of diabetes.  
Radical oxygen species (ROS) in diabetes.  

Hyperglycemia causes organ failure by affecting the functions of cells that are unable 

to maintain constant level of intracellular glucose. The endothelial cells important for 

angiogenesis are such an example, along with mesangial cells or cells in the peripheral 

nerves.  

Several mechanisms have been proposed to explain how the increased intracellular 

glucose influx results in cellular damage. The first mechanism is through increased 

polyol pathway. It implies that the excess intracellular glucose is degraded to sorbitol 

by aldose reductase. Sorbitol is further oxidized to fructose in a reaction dependent on 

NADPH. However, NADPH is also necessary for maintaining the reduced form of the 

antioxidant glutathione which further means that in hyperglycemia the glutathione level 
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is not maintained and the cells are vulnerable to oxidative stress259. Indeed, 

overexpression of aldose reductase results in glutathione deficit260.  

The second mechanism involves the production of AGE (advanced gylcosylated end 

products) which is responsible for modifications and impaired activity of intracellular 

or extracellular proteins. The extracellular proteins as for example albumin, bind after 

glycosylation to the receptors for AGE (RAGE) and determine the secretion of 

cytokine and growth factors, thereby initiating inflammation cascade and vascular 

pathology. In addition, there is an enhanced RAGE expression in response to high 

glucose261. 

Another pathway is the protein kinase C α, β, δ (PKC) pathway, which is activated by 

diacylglycerol produced from excessive intracellular glucose262. It modulates the gene 

expression for proteins involved in vascular contraction (eNOS and endotelin-1), 

angiogenesis and vascular permeability (VEGF), vascular occlusion (PAI-1 and TGF-

β) or inflammatory processes via activation of NF-kB263,264. Moreover, activated PKC 

determines PDGF receptor-b dephosphorylation which results in pericytes apoptosis265. 

The last mechanism involves an increased flux through the hexosamine pathway with 

posttranslational modifications of proteins and deleterious effect on diabetic blood 

vessels266,267. In this pathway glucose-6 phosphate is metabolized to fructose-6 

phosphate and further diverted to UDP (uridine diphosphate) N-acetyl glucosamine via 

glucosamine-6 phosphate. N-acetyl glucosamine in turn posttranslationaly modifies 

proteins such as SP1, TGF-α and TGF -β1267.  

All these mechanisms have been unified into a single theory which states that radical 

oxygen species (ROS) overproduction in mitochondria in hyperglycemia is responsible 

for the activation of all the above mentioned mechanisms268. The increased ROS 

production in mitochondria causes DNA strand breaks that activate poly(ADP-ribose) 

polymerase enzyme (PARP) which further decreases glyceraldehyde-3 phosphate 

dehydrogenase (GAPDH)269.  

This event is followed by activation of all the other pathogenic pathways suggested to 

underlie chronic complications in diabetes e.g. PKC activation, AGE products 

formation, increased hexosamine activity and increased flux through the polyol 

pathway266,268 . 
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2.3.3.1 HIF and ROS 

Hypoxia is an additional pathogenic factor in diabetic complications beside 

hyperglycemia 270. In hypoxia, in presence of normal glucose concentration HIF is 

activated and controls expression of different genes involved in the maintenance of 

ROS production within the normal levels.  

Activated HIF controls mitochondrial ROS generation at a multi-level process: it 

represses mitochondrial biogenesis and respiration271, it decreases mitochondrial mass 

by autophagy272, it shunts pyruvate away from the mitochondria by activating PDK1 

gene273,274, it increases the efficiency of cytochrome c oxidase which decreases ROS 

formation from complex IV275. HIF increases also the lactate dehydrogenase activity 

which increases the flow of glucose through anaerobic glycolysis decreasing in this 

way its access to the aerobic glycolysis and to the secondarily ROS production276. The 

effect of hyperglycemia on these control points is not known, but is part of this thesis 

investigation.  

2.3.4 IGF-I in diabetes 

IGF-I plays important roles in diabetes which is underlined by the fact that mice who 

present only 25 % of the normal serum IGF-I levels develop impaired glucose tolerance 

associated with increased insulin resistance and are prone to develop diabetes easier 
277,278. Lower levels of IGF-I are also present in type 1 diabetes patients279,280, mainly 

due to the inadequate liver IGF-I secretion due to the lack of insulin281,282. In type 2 

diabetes, the IGF-I levels are more related to the levels of IGFBP283. In the beginning of 

disease the IGFBP-1 levels are reduced due to an increase of insulin secretion in 

response to insulin resistance which results in higher level of circulating IGF-I151,284. 

However as the disease progresses, the liver becomes resistant to insulin induced 

suppression of IGFBP-1 and consequently the circulating IGF-I levels decrease285,286.  

IGF-I correlates also with insulin resistance287. Systemic IGF-I administration has been 

tried as complementary therapy to insulin and was associated with enhanced insulin 

sensibility, decreased insulin requirements and better glucose control288-290. However, 

side effects e.g. edema, worsening of retinopathy, headache, arthralgias, jaw pain, 

significantly has limited its use in diabetes.  
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IGF-I signaling is associated with many chronic complications of diabetes, such as 

diabetic retinopathy291-293, diabetic nephropathy294,295 and diabetic wound healing296. In 

the diabetic kidney, IGF-I and GH are related to the increased kidney volume, 

increased glomerular filtration rate and microalbuminuria and also with the presence of 

tubular injury 297.  

Patients with higher serum IGF-I levels have more severe forms of diabetic 

retinopathy298,299. This observation was not confirmed later, probably due to 

methodological differences279. However, there is a general consensus that local IGF-I 

levels are higher in diabetic patients undergoing vitrectomy than controls300. Moreover 

inhibition of IGF-I could result in some positive effects in the management of 

retinopathy301.  

IGF-I is also important for diabetic wound healing. Lower levels of IGF-I are reported 

at the wound level 246,296,302 and furthermore, the deletion of IGF-IR is accompanied by 

reduced angiogenesis and granulation tissue formation.303 

2.4 HIF AND IGF-I SIGNALING IN A DISEASE MODEL  
WITH INCREASED ANGIOGENESIS RATE 

2.4.1 Kaposi’s Sarcoma 

Kaposi sarcoma (KS) is a vascular tumor that has first been described in 1872 by 

Moritz Kaposi304. Nowadays they are most commonly associated with AIDS. Based on 

population demographics and risks, Kaposi sarcoma is divided in four classes305:  

- Chronic KS (classic or European) presents with multiple red to purple skin 

plaques or nodules, frequently localized in the distal lower extremities. The 

lesions could increase in number and spread, but some cases of spontaneous 

disappearance have been also reported. They grow on the skin and 

subcutaneous tissue and are usually asymptomatic. The chronic form of KS 

could be associated to another malignancy but not with human deficiency 

virus (HIV).  

- Lymphadenopatic KS (endemic or African) is most prevalent in the South 

African children from Bantu. It presents as sparse skin lesions with 

lymphadenopathy. This form is very aggressive and could also affect viscera.  
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- AIDS- associated (epidemic) KS it is the most common tumor in AIDS 

patients. Due to antiretroviral therapy its prevalence decreased from almost 30 

% to circa 1% in patients with AIDS. Together with the lymphadenopatic 

form it is the most common tumor in Africa, and it could be found in almost 

50% of men in some African countries.  

- Transplant associated KS occurs in association with immunosuppressant 

therapy after organ transplantation. It is usually aggressive with nodal, 

mucosal and visceral involvement. The skin lesions could be absent.  

There are three different stages in the evolution of the disease: from the initial patch 

stage which presents as red to purple flat lesions -macules, going through the stage of 

plaque, when the lesions raise, become larger and more violaceous to the final stage, 

the nodular stage characterized by bigger, prominent lesions. The nodular stage often 

associates nodal and visceral involvement especially in the limphadenopatic and AIDS 

associated forms.  

The spindle cell- the characteristic cell type for KS is present from the early patch stage 

and becomes predominant towards the later stages. The vascular tumors grow due to 

spindle cell proliferation. 

The most frequent pathogenic agent identified in relationship with KS development is a 

type of herpes virus called KS-associated herpesvirus (KSHV) or human herpesvirus 8 

(HHV-8)306.  The finding of KSHV DNA in all KS lesions, the distribution of KSHV 

infection similar to that of KS  together with the fact that KSHV is identified in the 

spindle cells offer strong arguments that KSHV is an important pathogen for the 

development of KS307.  

There are few mechanisms which explain the role of KSHV in KS tumorigenesis. The 

most clearly defined mechanism is the existence of latent viral genes which promote 

viral replication and interfere with the normal cellular anti-apoptotic check points 

resulting in increased survival of KS cells. The proteins encoded by these genes are 

latency associated nuclear antigen (LANA), viral cyclin C (v-cyclin), v-Flice inhibitory 

protein (v-FLIP), kaposins A, B and C307 and they induce cell growth, block apoptosis, 

downregulate the host immune responsiveness and control angiogenesis. Furthermore, 

the latent viral genes encode also a 12 pre-miRNA miRNAs which produce for 

example, miRNA 155 which has been related to the development of KS308,309. In the 
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genome of KSHV are also few open reading frames (ORF) which are similar to cyclins. 

Cyclins activate cyclin dependent kinases (CDKs) which will further create 

deregulations of cellular proliferation a mechanism used by KSHV in influencing KS 

tumorigenesis310. 

Initially it was considered that the spindle cells are of endothelial origin and are the 

only important cell type in the progression of the disease. However, lately the 

participation of myofibroblast-like cells was proposed as an important event. 

Accordingly, both endothelial and myofibroblast like cells come from common 

pluripotent mesenchimal cells which are modified by the KSHV, immunodeficiency, 

viral G protein coupled receptors or viral interleukin-6 and LANA311.  

The tumorigenesis process also includes inflammation and angiogenesis, apart from the 

proliferation discussed above. The KSHV infection alone is not able to maintain the KS 

growth without a proper local environment with pro-inflammatory312 and pro-

angiogenic factors.  

The angiogenesis in KS is particular since it initiates before the tumor mass is 

established, which is opposite to the “classical” neovascularization in tumors, where the 

process is initiated, (so called  “angiogenetic switch”313) by a critical tumoral mass that 

reaches a certain level of hypoxia.  

Angiogenesis in KS is regulated by VEGF314 and its receptors. Furthermore the viral 

proteins involved in the pathogenesis of KS modulate the secretion of other strong 

angiogenic factors like angiogenin315 and angiopoietin 2316.  

2.4.2 HIF and tumorigenesis  

The tumor growth is strictly dependent on the existence of blood supply and often the 

tumors develop around a blood vessel. Above a critical volume, the distance from the 

blood vessels overcomes the diffusing capacity for oxygen and generates areas within 

tumors that are hypoxic. Moreover, hypoxia is entertained by irregular, aberrant vessels 

which often characterize the tumors. The hypoxic environment in the tumor correlates 

with the progression and aggressiveness of the tumors317 and even with the response to 

radiotherapy318.  
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As HIF adapts the cells to hypoxia, its role in tumor biology have been extensively 

investigated in relation with the tumoral progression, metastatic capacity and the 

response to therapies319.  It has been shown that HIF promotes tumor cell proliferation 

by activating growth factors like PDGF, IGFII and EGF319. It controls the angiogenesis 

as previously described. Moreover, in hypoxia  HIF adapts the cells to the metabolic 

demands by controlling the switch from aerobic to anaerobic glycolysis320. On top, HIF 

promotes gene instability and  regulates cell apoptosis7.  

HIF-1α and its isoform HIF-2α are up-activated in most of the tumors studied and their 

expression correlates with the clinical evolution and with the sensitivity of the tumors 

to irradiation321. Although both alpha subunits harbor the same stabilization pathway, 

their potential in tumorigenesis is different322. HIF-2α could be expressed even at near 

normal oxygen tension323 and seems to have a special pathogenic role in tumors. 

Several factors probably contribute to the oncogenicity of HIF2α relative to HIF1α. 

HIF2α is less  sensitive than HIF1α to inhibition by FIH1 and both the NTAD and 

CTAD of HIF2α are active under normoxia324.  

Both HIF-1α and HIF-2α could also function as tumor suppressors, but in different 

tumor types e.g.HIF-1 α in renal cell carcinoma and HIF-2 α in lung adenocarcinoma30. 

This is an interesting observation which suggests that for a specific tumor it matters 

which of the HIF α isoforms is expressed and to which level and this decides their 

progressing potential.  

2.4.3 IGF and tumorigenesis 

The IGF system plays a critical role in cancer biology325 underscored by the 

epidemiological studies where high serum IGF-I levels increase326 the risk of a person 

developing a cancer 327while reductions of circulating IGF-I levels decrease the risk for 

cancer development328.   

Moreover cancer cells secrete IGF-I and IGF-II325 that can function auto/paracrine for 

tumor progression since most of the tumors have increased expression of IGF-IR329,330.  

IGF-IR regulates the cell cycle thus controlling the tumor growth331. Independent of the 

malignancy potential of a cell a tumor cannot metastasize in the absence of IGF-IR332.  

Its expression is associated with an enhanced metastatic capacity of the tumors333 and 
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also with the resistance to chemo- and radiotherapy334,335.  Recently it has been shown 

that IGF-IR could also translocate to the nucleus and function as transcription factor336, 

mainly through binding to the promoter of cyclin D1 contributing to tumor 

progression337. 

During neoplastic transformation, IGF-I couples not only to IGF-IR but also to insulin 

receptors and to hybrid variants of receptors formed between IGF-I and insulin 

receptors. There are two types of insulin receptors: IRA and IRB. A special role in 

tumorigenesis is played by the insulin receptor type A mainly expressed in cancers338 
339. Both IGF-I and IGF-II have increased affinity for the hybrid receptors142.    

Due to its pluripotent roles in tumorigenesis, the IGF system is investigated as a 

potential target for anticancer therapies. The most successful of preclinical studies are 

the therapies that specifically block the IGF-IR. One problem arising with these 

therapies is development of resistance to therapy. However, some compounds such as 

the specific tyrosine kinase inhibitor – picropodopylin (PPP) develop less resistance340.  

Preliminary results from the phase III clinical studies debate the  benefit of IGF-IR 

blocking therapies as single therapy due to their side effects141. However the final 

results are not yet published. 
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3  AIMS 

3.1 GENERAL AIM 

The general aim of the thesis is to investigate the role of HIF and IGF-I as pathogenic 

mechanisms of two diseases with dysregulation of angiogenesis namely diabetes and 

Kaposi Sarcoma (KS) to enable suggestion of new therapeutic targets based on these 

findings.  

3.2 SPECIFIC AIMS 

• To investigate the interaction between hyperglycemia and hypoxia as 

pathogenic mechanisms for the development of chronic complications of 

diabetes  

• To investigate the consequences of hyperglycemia dependent HIF 

repression for the development of chronic complications of diabetes 

• To investigate the mechanisms responsible for HIF repression in diabetes 

• To establish the therapeutic effect of HIF stabilization in hyperglycemia in 

general and in diabetic wound healing in particular  

• To establish the contribution of systemic IGF-I for the wound healing 

process, in normoglycemia and hyperglycemia 

• To investigate the relationship between IGF and HIF in Kaposi’s Sarcoma 

• To study the mechanisms of HIF accumulation in Kaposi’s Sarcoma 

• To investigate the efficiency of IGF-IR blockade as potential therapy in 

Kaposi’s Sarcoma 
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4 RESULTS 
Diabetes complications and tumors are two diseases with impaired angiogenesis that 

nowadays have limited therapeutic options. Our focus was to investigate the 

mechanisms of impaired angiogenesis in these clinical situations to be able to propose 

novel rational therapeutic strategies.  

 

Paper I and Paper II 

We investigate in our studies the cross-talk between hyperglycemia and hypoxia as 

main pathogenic factors in the development of chronic complications in diabetes. We 

base our research on previous results from our group showing that hyperglycemia 

impairs HIF-1α stability and function and we hypothesize that this is a main cause for 

the defective wound healing seen in diabetes. For this study we use  the db/db mice as 

model of diabetic ulcers because of similarities with the wound healing process in 

humans341.  

Moreover, given the central role played by ROS in the development of chronic 

complications of diabetes, we proposed to study the consequence of the impaired 

response to hypoxia induced by hyperglycemia on ROS production. 

4.1 HYPERGLYCEMIA DESTABILIZES HIF AND IMPAIRS ITS FUNCTION 

Hypoxia was recently identified as an additional pathogenic factor in diabetic 

complications beside hyperglycemia270,342. It is a consequence of several mechanisms 

e.g. deficient blood supply due to micro- and macro-vascular disease, poor local 

diffusion of oxygen due to local oedema, but also an increase of oxygen consumption 

induced by hyperglycemia343.  

In response to hypoxia HIF is up-regulated and activates the transcription of several 

genes involved in metabolism, angiogenesis, proliferation and apoptosis which will 

adapt the cells to hypoxia.  
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We demonstrate here that, in the presence of high glucose, the cells fail to properly 

adapt to hypoxia due to a repression on HIF stability and function with important 

consequences on the tissue’s ability to heal after wounding (Paper I). 

Knowing that fibroblasts are important effectors in wound healing, we first investigated 

the effects of combined hyperglycemia and hypoxia on mouse fibroblasts derived from 

skins of db/db mice. Hyperglycemia destabilized HIF-1α in hypoxia which was 

followed by repression of  HIF target genes that are important for the wound healing 

such as VEGF involved in angiogenesis, SDF-1 and SCF involved in recruitment and 

homing of endothelial progenitor cells (EPC) and Hsp90 important for cells migration 

(Paper I). The same HIF repression induced by high glucose has been observed by 

others and us in other types of primary cells344-349. Moreover, fibroblasts isolated from 

the skin of diabetic patients are unable to increase the VEGFA production in response 

to hypoxia exactly like fibroblasts from diabetic mice348. However, it seems that the 

HIF repression induced by hyperglycemia is specific for primary non-tumor cells since 

it is not constantly seen in tumor cells350.  

The negative regulatory effect of hyperglycemia on HIF-1α stability and function is 

further confirmed in vivo, in diabetic wounds of db/db mice. We demonstrated that 

despite a more hypoxic environment generated in diabetic wounds (evaluated by 

staining with the “hypoxia dye” pimonidazole hydrochloride) HIF-1α expression is 

reduced compared to the wounds in normoglycemic mice. This is highly relevant for 

human diseases since HIF-1α levels are repressed in biopsies from patients with 

diabetic ulcer as compared to venous ulcers that share the same hypoxic environment 

but are exposed to normal blood glucose levels 344.  mRNA levels of HIF-1α target 

genes involved in wound healing (VEGF, Tie-2, Hsp90, SDF-1α) are also 

downregulated in the wounds of db/db mice (Paper I). 

4.2 HIF STABILISATION IS CRITICAL FOR IMPROVING 
 WOUND HEALING IN DIABETIC MICE 

The hypoxic environment of skin wounds in diabetes is a consequence of multifactorial 

processes. In the first place there it is general hypoxia of the skin, especially at the 

epidermis level due to the distance from the blood supply351. Secondly, it associates 

with acute hypoxia following any injury with an increased demand of oxygen from the 
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cells recruited to regenerate the tissues and finally, the oxygen supply is limited due to 

the micro and macro angiopathy present in diabetes 237,352,353.  

On the other hand, HIF is essential for wound healing during all phases of the wound 

healing process354 through the control of angiogenic growth factors 7, recruitment of 

EPC 355 and cell motility356. However, we have shown that hyperglycemia impairs the 

tissues’ reaction to hypoxia in general and that diabetic wounds express less HIF-1α. 

Therefore we hypothesised that the defect in the wound healing seen in diabetes is a 

consequence of HIF-1α repression and we aimed to stabilise HIF-1α as potential 

therapy.  

For this purpose we used two prolylhydroxylase (PHD) inhibitors, 

dimethyloxalylglycine (DMOG) and desferoxamine (DFX)53. HIF-Hydroxylases 

contain Fe(II) in their catalytic centers and use -ketoglutarate as a co-substrate47 and 

they can therefore be inhibited by iron chelators, such as DFX and by competitive 

antagonists of α-ketoglutarate, such as DMOG. Both substances efficiently counteract 

the repressive effect of hyperglycemia on HIF whether used in vitro or in vivo, as topical 

treatment of the wounds.  Moreover, the HIF stabilisation was followed by a significant 

improvement in wound healing in diabetic mice despite persistent chronic 

hyperglycemia. Accordingly, processes important for wound healing (angiogenesis, 

granulation, epidermal regeneration, homing of the EPC) were improved by PHD 

inhibitor treatment (Paper I). 

The central role of HIF in diabetic wound healing was brought by gain-of-function 

studies with adenovirus-mediated expression of constitutively stable forms of HIF-

1α which had the same positive effect on wound healing in diabetic animals as PHD 

inhibitors.  

4.3 MECHANISMS FOR HYPERGLYCEMIA INDUCED  
HIF REPRESSION IN HYPOXIA  

We next considered the mechanisms by which hyperglycemia interferes with HIF 

regulation. Previous work in our group indicated that HIF repression induced by 

hyperglycemia takes place posttranslationally, at the degradation level as it is canceled 

by proteasome inhibitor, MG132344. Since VHL has a central role in HIF degradations 

we first analyzed the effects of hyperglycemia on HIF after VHL inactivation.  
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Using two different approaches we demonstrated that the repressive effect of high 

glucose on HIF is dependent on a VHL-mediated degradation mechanism. First we 

showed that HIF-1α modulation by hyperglycemia was abolished in a renal carcinoma 

cell line that that lacked functional VHL and second that classic HIF target genes like 

VEGF were no longer suppressed by high glucose after siRNA silencing of VHL 

(Paper I).  

Furthermore, since HIF activation in hypoxia is modulated by complex mechanisms 

involving the two transactivation domains: NTAD and CTAD92, we pursued our 

investigation and studied the effect of hyperglycemia on each of the two transactivation 

domains. The negative regulatory effect of glucose affected both NTAD and the 

CTAD. Consistent with our results, HIF transactivation repression by hyperglycemia 

has been confirmed by other groups348. The relevance of this multiple level regulation 

of HIF transactivation remains to be evaluated. For the moment we could not find any 

additional benefit of a constitutive activated form of CTAD over the double prolyl 

mutated HIF construct for promoting wound healing in diabetes using different 

adenovirus mediated constructs. It is however unclear if using  VP16 in the adenovirus 

construct would not hide the contribution of CTAD, being known that VP16 has a 

highly active transactivation activity357.  

In conclusion, hyperglycemia- induced HIF repression in hypoxia is at multiple levels, 

including the stabilization of the protein but also the transactivation activity.  

However, VHL expression is not induced by hyperglycemia which suggests that 

hyperglycemia exerts its effects by enhancing the sensitivity of HIF-1α to VHL 

dependent degradation. 

Canonically, VHL binds to HIF-1α in normoxia, after hydroxylation of the proline 

residues mediated by PHDs. We therefore decided to investigate if the PHDs are 

responsible for the increased VHL-mediated degradation of HIF-1α. Indeed, both PHD 

inhibitors used, DFX and DMOG counteracted the repressive effect of hyperglycemia 

on HIF stability and function. The effect was however only partial but to a level 

sufficient to improve the reaction of the tissues to hypoxia.  

In addition, our preliminary data using a NTAD construct with both critical prolines 

mutated demonstrated that hyperglycemia activates an additional mechanism beside 
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PHD modulation since high glucose still represses the NTAD construct resistance to 

PHDs activity (Figure 6). This effect is in agreement with the observation that HIF is 

only partially rescued by PHD inhibitors. Similar HIF-1α degradation has been 

described even in hypoxia by a mechanism dependent on VHL but independent on 

PHD activity74.  

 

 
Figure 6: Hyperglycemia represses the function of HIF construct resistant to PHDs 
activity 
Relative luciferase activity in the extract of 3T3 cells exposed to different oxygen and glucose 
concentrations (5 mM and 30mM) after co-transfection of NTAD-PPA (PPA-both prolyl residues 
mutated to alanine) and Gal4-responsive reporter gene plasmid 

One possible candidate to mediate the effect of hyperglycemia is SUMO (small 

ubiquitin like modifiers) which functions as ubiquitin and use the same VHL system for 

targeting SUMOylated proteins to degradation.  

Since SUMOylation is an extremely dynamic process with a high turnover rate of 

SUMOylation and deSUMOylation, we used SUMO constructs which are resistant to 

the action of SUMO-specific proteases SENP, the proteins that are responsible for 

deSUMOylation.  Indeed as seen in figure 7 we could detect an enhanced 

SUMOylation of the HIF protein in hyperglycemia (figure 7).  
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Figure 7: Enhanced SUMOylation of the HIF protein in hyperglycemia 

SUMOylation of proteins has been reported in relation to hypoxia358,359 or 

hyperglycemia360,361. , The significance of HIF sumoylation in hyperglycemia is not 

clear and further investigation is needed since SUMOylation has such discordant 

reported effects on HIF function78-81.  

Other mechanisms, independent of VHL ubiquitination may be of significance for HIF 

repression in hyperglycemia.  

Methylglyoxal (MGO) accumulates intracellularly in diabetes as a result of 

glycolysis362 and leads to HIF-1α ubiquitination through a mechanism independent of  

VHL and PHDs hydroxylation. Instead, MGO uses a chaperone binding ligase- CHIP 

(Carboxy terminus of Hsp70-Interacting Protein) such as the E3 ligase which targets 

HIF-1α for proteosomal degradation. The interaction between HIF-1α and CHIP is 

mediated by Hsp70363.  

Moreover, MGO affects HIF-1 functional activity not only through HIF-1α 

destabilization but also through modifying the coactivator p300, which in turns leads to 

decreased HIF-1a/p300 interaction during HIF transactivation348,363.  

However, it has been demonstrated that Hsp70, by recruiting the ubiquitin ligase CHIP, 

promotes the ubiquitination and proteasomal degradation of only HIF-1α but not HIF-

2α364 whereas we were able to detect degradation of both paralogs in hypoxia following 

high glucose exposure (data not shown). 

This may also explain why overexpression of glyoxalase I, which normalizes the 

intracellular levels of MGO, only partially rescues the hyperglycemia-induced HIF 

destabilization363 whereas deferoxamine administration which abrogates methylglyoxal 
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conjugation and also stabilizes HIF against PHD mediated degradation has more 

pronounced effects348. 

Another interesting molecule in the context of HIF repression in hyperglycemia is p53 

which is activated in response to high glucose365. p53 contributes to both HIF 

degradation by recruiting ubiquitin ligases such as CUL-1 or mdm-2,84 and also 

represses  the HIF transcriptional activity by competing with HIF for the co-activator 

p300366. It is however unlikely to be involved in hyperglycemia induced HIF repression 

since HIF destabilization in hyperglycemia is observed in fibroblasts lacking p53 

gene344. 

4.4 THE IMPACT OF HIF REPRESSION ON DIABETES COMPLICATIONS 

We have demonstrated that repression of HIF induced by hyperglycemia is an 

important pathogenic mechanism for defective wound healing in diabetes. The same 

pathogenic effect played by HIF repression by hyperglycemia is also seen in other 

tissues affected in the development of chronic complications of diabetes.  

HIF-1α is destabilized by high glucose as early as after 6hrs exposure to hypoxia 

(Paper I) which highlights the potential relevance for the early cell reaction to hypoxia 

during acute ischemic events (acute myocardial infarction, stroke). 

Moreover, during cardiovascular ischemic conditions, hyperglycemia precludes 

adaptation to hypoxia, which results in increased myocardial infarction size367,368 as a 

consequence of a reduced angiogenic capacity369, 
370 which leads to poor collateral 

vessel formation. This is confirmed in human left ventricular biopsies of diabetic 

patients with acute coronary events which express lower HIF and its pro-angiogenic 

target gene VEGF371. The repression of VEGF has been correlated with in an 

increased risk of cardiovascular morbidity and mortality in patients with diabetes372. 

However, stabilization or overexpression of HIF-1α in hyperglycemia has been 

proven an efficient therapeutic tool in myocardial capillary network improvement 

following myocardial injury373 or in increasing limb perfusion and function in 

diabetic mice after ischemic events374. The observed beneficial effects were mainly 

due to an enhanced angiogenic potential through normalizing VEGF, enhancing the 

recruitment of EPCs, etc.  
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In diabetic nephropathy, hypoxia can be detected by MRI in the outer medulla of 

diabetic kidneys very early in the development of the disease pointing towards its 

primary pathogenic role375, 376. Due to the hypoxic environment, HIF and its targets 

gene expression are enhanced377. The reaction to hypoxia,  is however impaired due to 

hyperglycemia which is shown by incomplete overlap between pimonidazol staining (a 

marker of hypoxia)378 and HIF-1α and HIF-2α expression in kidneys of STZ induced 

diabetic rats379 and db/db mice378. In addition, VEGF induction is reduced345. HIF 

overexpression in kidneys has therefore also been proposed as therapeutic approach in 

diabetic nephropathy and has been demonstrated to protect against progression to end 

stage renal disease380-382. 

Furthermore, the role of HIF signaling in the development and progression of diabetic 

nephropathy is indicated by the finding that a polymorphism of HIF-1α (P582S) which 

confers relative resistance to the repressive effect of hyperglycemia is associated with 

protection for nephropathy in patients with type2 diabetes378,383.  

Biopsies from patients with diabetic foot ulcers, as demonstrated before, express less 

HIF-1α compared to biopsies from patients with venous ulcers that share the same 

hypoxic environment but are not exposed to hyperglycemia344. In addition, HIF 

stabilisation by pharmacological substances and overexpression by a genetic approach 

cancel the deleterious effect of high glucose (paper I,347,349).  

In conclusion, hyperglycemia-induced repression of HIF is an important pathogenic 

mechanism in the development of diabetes complications and overexpression or 

stabilisation of HIF is an efficient therapeutically approach against development and 

progression of diabetes complications.  

Hypoxia and hyperglycemia also affect the success of pancreatic islets 

transplantation. Diabetes induces a more pronounced hypoxic environment for the 

transplanted islets384. This results in a poor revascularization of the transplanted 

islets385-387 and in a reduced transplantation success rate388. A better revascularization 

pattern is associated with a higher rate of beta cell proliferation and superior beta cell 

function389.  
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4.5 ROS AND DIABETES COMPLICATIONS  

Hyperglycemia dependent damage of tissues has been explained by several  

mechanisms which include PKC activation, increased advanced glycation end (AGE) 

products formation and increased expression of AGE receptors, increased hexosamine 

activity and increased glucose flux through the polyol pathway266,268. 

All the mechanisms have been demonstrated to be the consequence of an upstream 

common event, increased mitochondrial ROS production, due to enhanced glucose 

flux during glycolysis through oxidative phosphorylation390,391. The increased ROS 

production causes DNA strand breaks that activate poly(ADP-ribose) polymerase 

enzyme (PARP) which further decreases glyceraldehyde-3 phosphate dehydrogenase 

(GAPDH)390 with consequences on all  5 other pathogenic mechanisms. The more ROS 

is produced, the quicker the diabetes complications progress392.  

Mitochondrial ROS production is tightly regulated by HIF. It increases within minutes 

in hypoxia but chronic hypoxia leads to lower levels of ROS as a consequence of HIF 

stabilization and activation7. Because in hyperglycemia, HIF expression and function 

are repressed as demonstrated above, we hypothesised that one mechanism which 

contributes to the overproduction of mitochondrial ROS in diabetes is a consequence of 

hyperglycemia- induced HIF repression.  

We tested our hypothesis in in vitro, on two primary cell culture models relevant for 

diabetes complications, Human Dermal Fibroblasts (HDF) and Human Dermal 

Microvascular Endothelial Cells (HDMEC) and were able to show that indeed, 

concomitant exposure to high glucose and hypoxia leads to an increased mitochondrial 

ROS production which is not present when cells are exposed to the same level of 

hypoxia in normal glucose levels.  

The exposure to 30 mmol mannitol (used as osmotic control) did not affect 

mitochondrial ROS production. This is expected with the background that mannitol is 

metabolically inactive, but still a relevant observation because we observed a HIF 

protein destabilisation after cell exposure to mannitol in hypoxia344.  

Endothelial cells are one of the main targets for the deleterious effects of 

hyperglycemia and their dysfunction is the cause of micro- and macroangiopathy which 
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are associated to all diabetes complications. One pathogenic mechanism by which ROS 

overproduction contributes to complications is induction of apoptosis393,394 which is 

observed in endothelial cells in diabetes395 .  

Therefore, our next step was to investigate the consequences of ROS overproduction on 

apoptosis in HDMEC and we demonstrated that the apoptosis rate increases after 

exposure of the cells to both high glucose and hypoxia.  

4.6 HIF STABILISATION IN HYPERGLYCEMIA RE-ESTABLISHES  
THE NORMAL ROS LEVELS 

We have previously shown that HIF overexpression or stabilisation in hyperglycemia 

has essential benefits for the prevention and treatment of diabetes complications. This 

effect is observed in almost all the tissues affected by chronic complications of 

diabetes: skin, heart, kidneys and arteries. Since an excess of ROS production is 

accepted to be the pathogenic mechanism for all these complications, we decided to 

further evaluate the consequences of HIF stabilisation on mitochondrial ROS 

production.  

We investigate d whether restoration of HIF stabilization by a pharmacologic approach 

or by siRNA silencing of VHL would lead to normalization of mitochondrial ROS 

production in cells exposed to combined hypoxia and hyperglycemia. 

In the first approach we used DMOG as a PHD inhibitor, which efficiently rescues HIF 

function in the presence of hyperglycaemia as previously shown (Paper I). DMOG  

normalized the ROS levels in cells exposed to combined hyperglycemia and hypoxia to 

the levels observed in normoxia and normal glucose, suggesting that HIF repression in 

diabetes is “the missing link” that explains the ROS overproduction in diabetes. 

Consequently the apoptosis rate of the endothelial cells was decreased by exposure to 

DMOG treatment.  

We demonstrated in paper I that HIF-1α destabilisation in hyperglycemia and hypoxia 

is mediated by pVHL. We therefore investigated the effect of HIF induction through 

VHL siRNA silencing on mitochondrial ROS production. siRNA silencing of VHL 

was followed by normalisation of mitochondrial ROS production, consistent with   HIF 

stabilization through DMOG treatment.  
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We further investigated whether HIF repression induced by hyperglycemia contributes 

to excess ROS production in vivo.  Since the nephropathy is one of the major 

complications in diabetes396,397 we analysed the ROS production in the kidneys in 

streptozocin (STZ) induced diabetic mice  (for at least 5 weeks).The ROS production 

was evaluated by -4-hydroxynonenal (4-HNE), which is a stable compound of lipid 

peroxidation and accepted marker of oxidative stress. 

As seen in figure 9, 4-HNE levels in kidneys from STZ induced diabetic mice are 

significantly higher than those in kidneys from normo glycemic control mice as 

reported by others398.  

In agreement with the in vitro results, DMOG treatment normalizes HNE levels to the 

levels seen in normoglycemic mice, underscoring the relevance of HIF induction for 

normalizing ROS levels in the presence of hyperglycemia (Figure 8 and Figure 9).  

 

 

 

Figure 8: Effect of systemic DMOG treatment on the mRNA of HIF target genes in kidneys of STZ 

induced diabetic and control mice. 
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Figure 9: ROS production is normalised in the kidneys of STZ induced diabetic mice after systemic 
treatment with DMOG. 

Since the excess ROS production was proposed as the unifying pathogenic mechanism, 

which contributes to the development of chronic complications of diabetes, many 

treatments have been experimentally investigated with the aim of normalizing 

mitochondrial ROS production223,399. One strategy was to stimulate the cellular systems 

that decrease ROS as UCP-1 overexpression or SOD /catalase overexpression400. 

Another strategy targeted PARP formation which is the immediate effector activated by 

superoxide thus involved in the chronic complications of diabetes401.  

All these approaches have shown that decreasing intracellular superoxide or interfering 

with its action represents an efficient strategy to correct some of the endothelial 

dysfunction in diabetes402 and  to ameliorate the progression of chronic complications 

of diabetes e.g cardiopathy403,404, nephropathy405,406, retinopathy407 and neuropathy408.  

We propose here that the mechanism responsible for the ROS overproduction in 

diabetes is dependent on HIF repression induced by hyperglycemia. Since HIF 

regulates many other cellular functions409 apart from ROS production in hypoxia it is 

expected that strategies that would aim to stabilize HIF in diabetes will be more 

efficient therapies.  
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Proposed model for the contribution of HIF repression in the development of 

chronic complications of diabetes 

 

 

Paper III and Paper IV 

IGF-I has been associated with the development and progression of both chronic 

complications of diabetes and neoplasia.  

A common denominator for both diseases is dysregulated angiogenesis. An essential 

pathogenic mechanism behind poor wound healing in diabetes is deficient 

angiogenesis, whereas Kaposi’s Sarcoma (KS) represents a model of neoplasia, where 

angiogenesis is excessive and again central for the evolution of the disease.  

IGF –I is known to have important roles in angiogenesis in addition to hypoxia.  

In the next two papers we therefore investigated IGF-I signaling in these two models of 

dysregulated angiogenesis i.e. diabetic wound healing and Kaposi’s sarcoma.  
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4.7 LIVER SPECIFIC KNOCK- OUT OF IGF-I DOES NOT AFFECT  
THE WOUND HEALING RATE 

IGF-I promotes wound healing by multiple mechanisms e.g. increased chemotactic 

activity for endothelial cells, enhanced proliferation of keratinocytes and fibroblasts, 

and augmented wound strength246. However, serum IGF-I is reduced both in type 

1279,280 and  insulin-dependent type 2 diabetes285,286 patients . Additionally, the local 

IGF-I expression is reduced in diabetic wounds246,296,302 .  

This suggests that poor wound healing in diabetes could be related to IGF-I deficiency 

and was the basis for using IGF-I as topical therapy for diabetic wound healing410,411.  

The relative contribution of the liver-derived IGF-I (endocrine- acting) versus the 

locally produced IGF-I (autocrine- paracrine acting) for the wound healing remains 

however unknown. 

We therefore decided in the next study to investigate the contribution of the systemic 

IGF-I on the wound healing rate of mice under normoglycemic and diabetic 

conditions. As systemic IGF-I is mainly dependent on the liver secretion we studied 

wound healing in mice with liver-derived IGF-I deficiency (LI-IGF-I-/- mice) due to 

complete inactivation of the IGF-I gene in the hepatocytes that consequently results 

in 75% lower serum levels of IGF-I . 

In normoglycemic conditions the wound healing rate in the LI-IGF-I-/- mice is 

similar to the control mice, despite lower serum IGF-I.  

We then studied the wound healing rate after inducing diabetes using streptozotocin 

(STZ) in 2 months old LI-IGF-I-/- mice and in their controls. Diabetes resulted in 

decreased serum levels of IGF-I in LI-IGF-I-/-mice versus their controls. However, 

even though diabetes delayed the wound healing rate compared with normoglycemic 

animals, there was no difference in wound healing rate between diabetic  LI-IGF-I-/- 

and diabetic control mice.  

We have discussed above (Paper I) that the impaired wound healing in diabetes is 

mainly related to defective angiogenesis and to a reduced function of  endothelial 

precursors cells (EPC)256 due to a defect in the local expression of stromal derived 

factor-1 (SDF-1α) that binds EPC through the CXR-4 receptors355. We investigated 
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these markers in the wounds of diabetic LI-IGF-I-/- mice versus diabetic control 

animals and we observed a similar expression of SDF-1 α  and CXCR4 mRNA, which 

is in agreement with the results on the wound healing rate.  

In conclusion we show that liver-specific knock-out of IGF-I does not affect the 

wound healing, in neither normoglycemic conditions nor in diabetes.  

This issue is of importance, suggesting that locally delivered IGF-I is sufficient to 

improve wound healing in diabetes avoiding in this way the potential side effects 

that are associated with systemic IGF-I therapy144.  

4.8 IGF-I INCREASES HIF-1α AND HIF-2α IN KAPOSI’S SARCOMA  

Paper IV 

Kaposi’s sarcoma (KS) is a highly vascularized tumor which affects predominantly 

patients with acquired immune deficiency syndrome (AIDS). Previous reports from 

our group have shown that the biology of the tumor is dependent on IGF-I which 

stimulates the proliferation of these tumoral cells and increases their survival412. The 

hallmark of KS is the highly angiogenetic phenotype which has been related to 

VEGF314. IGF-I has an additive effectwith VEGF in stimulating the proliferation of 

KS cells412.  

HIF is a strong signal for VEGF production and IGF-I has been reported to modulate 

HIF activity112,117,413. However, at the time when this study was performed, no 

information was available about the HIF expression and roles in KS.  

We started therefore, by investigating HIF expression in 17 HIV –positive tumor 

biopsies. Both HIF-α paralogs were expressed throughout the tumor area. The pattern 

of accumulation for the two paralogs was different underscoring the non-redundant 

function of the two HIF α subunits. HIF-1α expression increases significantly from 

the early patch biopsies to the late nodular KS biopsies whereas HIF-2α expression 

was not significantly modified through different stages.  

In order to check the relationship between IGF-I and HIF-α subunits and their 

significance for the development of KS tumors, we continued our investigation in vitro 
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using KSIMM, an established KS cell line that produces large highly vascularized 

tumors when injected s.c. in nude mice414.  

IGF-I induces both HIF- α subunits, in a dose dependent manner in these cells. We 

further investigated whether the accumulation of the HIF-α subunits under IGF –I 

stimulation has functional consequences. To this end, we transiently transfected the 

KSIMM cells with an HRE-reporter construct and exposed the cells to IGF-I which 

increased the luciferase activity. Moreover IGF-I augmented VEGF protein secretion, a 

classical HIF target gene, highlighting the effects of IGF-I on HIF function.  

It is important to emphasise that HIF-2α could be detected in KSIMM cells even in 

normoxia. This observation is concordant with the expression pattern of HIF-2α in 

biopsies from patients with AIDS related KS where it was strongly detected from the 

early phases of tumor evolution and did not change significantly in more advanced 

lesions.  

HIF-2α accumulation at higher oxygen levels has also been shown in HeLa and 

neuroblastoma cells415, 416 as opposed to HIF-1α which accumulates only at lower 

oxygen levels. As HIF-2α has growth promoting effects30,417 and in other tumor models 

promotes angiogenesis and invasion via VEGF418 it might also represent the initiation 

signal for the neoangiogenesis in KS. Similar, it has been shown that HIF-2α is 

sufficient to induce angiogenesis in hemangiomas associated with VHL deficiency419. 

The fact that HIF-1α is minimally expressed in the early stages of KS, but increased 

with the progress of the disease could be a self-limiting reaction of the tumor which in 

the beginning tries to counteract HIF-2α proangiogenic effects. In mice with tumor 

xenografts deletion of HIF-1α in vascular endothelial cells reduces tumor expansion by 

decreasing VEGF signaling and EC proliferation420 and restricts tumor cell metastasis, 

whereas HIF-2α has opposing effects421.   

4.9 MECHANISMS OF IGF DEPENDENT HIF ACCUMULATION  

We show in this study that IGF-I is able to induce both HIF-1α and HIF-2α isoforms in 

KSIMM cells but with a lower effect than hypoxia. This suggests that a different 

regulatory pathway is activated.  
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Therefore, we next investigated the mechanism by which IGF-I induces HIF α 

isoforms accumulation. We first investigated the potential modulation of HIF 

transcription. IGF-I does not modulate the mRNA levels of any of the HIF-α isoforms 

suggesting a posttranscriptional mechanism for IGF-I action on HIF accumulation.  

The main mechanism for HIF protein accumulation induced by hypoxia or hypoxia 

mimetics is dependent on proteosomal degradation. In order to study whether IGF-I 

dictates a similar pattern of accumulation, we exposed the KSIMM cells in parallel to 

IGF-I and CoCl2 (a hypoxia mimetic, which interferes with PHD activities17,24). HIF-1α 

and HIF-2α started to accumulate as early as after 30 minutes after exposure to IGF-I 

and their levels increased steadily over time in the first 4 hours whereas the two 

isoforms stabilized from 3 hours after CoCl2 exposure underscoring a different 

pathway of accumulation.  

In order to investigate a potential effect of IGF-I at translation level we exposed 

KSIMM cells to IGF-I or CoCl2, but blocked the intracellular translation mechanism 

with cycloheximide (CHX) after 4 hours (when both stimuli induced HIF α−subunits 

accumulation).  

 In the absence of CHX, both HIF-α subunits maintained their levels for the next 60 

minutes while CHX treatment induced a decline of the 2 HIF-α paralogs induced by 

IGF-I. The decline started as early as 15 minutes while there was a minimal effect even 

after 60 minutes, on the α-subunits when they were stabilized by CoCl2. Based on this 

dynamic we conclude that IGF-I regulates HIF-α subunits by inducing their translation.  

4.10 BLOCKING IGF-I SIGNALING PATHWAY DECREASES THE HIF-1α 
AND HIF-2α ACCUMULATION AND THE EXPRESSION OF THEIR 

TARGET GENES 

IGF-IR has been shown to be present in KSIMM cells412 and it is important for KS 

tumor biology. Picropodophyllin (PPP) is a specific IGF-IR tyrosine kinase inhibitor422 

which has been used as a successful therapeutic agent423-426 in the treatment of different 

tumors. PPP exerts complex actions on the IGF-IR as it does not function just as an 

inhibitor of the receptor activity but also down -regulates the expression of IGF-IR427. 

In addition, blocking the IGF-IR signaling by PPP leads to inhibition of VEGF 

secretion and has antiangiogenic effects428.  
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The importance of IGF-IR on HIF-1α and HIF-2α  was highlighted by the complete 

abolishment on their accumulation after blocking the receptor with either αIR3 (a 

monoclonal blocking antibody) or with PPP. The functional consequences are reflected 

by the decrease in VEGF mRNA levels to values even lower than in normal cells with 

potential important effect on KS biology considering the central role played by VEGF 

for KS.  
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5 POINTS OF PERSPECTIVES 

The aim of this thesis was to characterize new pathogenic mechanisms which lead to 

dysregulated angiogenesis and are relevant for chronic complications of diabetes and 

tumors. We focused in this context on two important regulators of angiogenesis: HIF 

and IGF.  

The role of HIF in diabetes is a relatively new field under development. We have 

studied here the mechanisms by which hyperglycemia impairs HIF stabilization in 

hypoxia. We showed that the HIF-1alpha destabilization in hyperglycemia is a 

degradation mechanism dependent on VHL. Moreover we showed that both HIF 

transactivation domains are regulated by hyperglycemia.  

We further showed that hyperglycemia-induced HIF repression is a mechanism 

relevant for chronic complications of diabetes, by demonstrating its relevance to 

diabetic ulcers. We proposed that HIF stabilization could be developed in an efficient 

therapy since we demonstrated that local HIF induction improved the healing rate of 

the diabetic ulcers.  

Given the central role played by ROS in the development of chronic complications of 

diabetes, we investigated the consequences of hyperglycemia dependent repression of 

HIF on the production of mitochondrial ROS.  

We demonstrated that the repression of HIF during exposure to hyperglycemia plus 

hypoxia resulted in increased production of mitochondrial ROS with negative 

functional consequences. However, by restoring the HIF reaction it was possible to 

normalize the ROS production and reestablish the cell capacity to adapt even in 

persistent hyperglycemia. 

These results might offer the premises for conducting clinical studies on patients who 

present with chronic complications of diabetes. DFX which efficiently rescued HIF 

function in hyperglycemia is already in clinical use for other indications. Moreover, 

intensive research is ongoing to develop HIF- hydroxylases inhibitors for clinical use .  

Important future directions of our research are to establish which mechanisms are 

activated by hyperglycemia and that lead to repressed HIF function in diabetes.  
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IGF-I has been associated with the development and progression of chronic 

complications of diabetes as well as neoplasia.  

We investigated the contribution of systemic IGF-I to wound healing rate showing that 

liver-derived IGF-I does not affect wound healing in mice, in neither normoglycemic 

conditions nor in diabetes. This study suggests that local therapy with IGF-I is 

sufficient for improving wound healing in diabetes thereby avoiding side effects that 

would be associated with systemic IGF-I therapy.  

We also demonstrated that the highly vascularized phenotype characteristic for 

Kaposi’s Sarcoma is highly dependent on IGF-I and HIF. We further described that 

accumulation of HIF IGF-I induced was by increasing HIF translation. We 

demonstrated that IGF-IR inhibitors block the HIF accumulation and function. This 

makes them potential candidates for therapy since both HIF-1α and HIF-2α are highly 

expressed in the biopsies of the patients with Kaposi’s Sarcoma and play a central role 

in KS biology. 

In conclusion, we identified new mechanisms of dysregulated angiogenesis in diabetes 

and tumors which can be the basis for new therapeutic strategies.  
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6 CONCLUDING REMARKS 

HIF represents a potential therapeutic target for management of chronic complications 

of diabetes:  

• High glucose impairs the stability and function of HIF-1α 

• The repression of HIF-1α induced by hyperglycemia is dependent on 

VHL mediated proteosomal degradation 

• Hyperglycemia dependent repression of HIF-1α is pathogenic for 

diabetic wounds since local HIF stabilization by hydroxylase inhibitors or by 

direct adenoviral transfer improves the diabetic wound healing rate 

• Glucose dependent HIF repression is responsible for the increased 

mitochondrial ROS production  with deleterious effect on cell survival 

• HIF stabilization normalizes the mitochondrial ROS production in 

hyperglycemia plus hypoxia 

Liver specific knock-out of IGF-I does not affect the wound healing rate neither in 

normoglycemia nor in diabetes 

IGF-I represents a potential therapeutic target in Kaposi Sarcoma:  

• Kaposi sarcoma expresses both HIF-1α and HIF-2α 

• IGF-I induces HIF-1α and HIF-2α accumulation in KSIMM cells 

by increasing the translation of the paralogues 

• Blocking the IGF-IR signaling decreases HIF-α accumulation and 

blunts the VEGF expression, offering a promising therapeutic strategy for 

Kaposi’s Sarcoma 
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It is not when truth is dirty, but when it is 

shallow, that the lover of knowledge is 

reluctant to step into its waters. 

Friedrich Nietzsche 
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