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Methodological statistical analysis is a necessary beginning of any study of this sort

if the study is to be scienti�cally enlightening.

But it is not the end;

it will have to be subject to judgements based on knowledge of the material

that goes beyond the purely statistical analysis

in this study as in all others.

JOSEPH BERKSON, 1942



Abstract

The overarching aim of this work has been to develop and apply statistical methods for es-

timating cancer patient survival from population-based register data. Particular focus has been

on statistical methods that can be used for presenting cancer survival statistics from adminis-

trative health data registers in a manner that is relevant for physicians and patients.

Study 1: In this study we clarify and discuss the relative merits of estimates of crude and net

cancer patient survival, respectively. In addition, we demonstrate how period analysis, applied

in a competing risks setting, can be utilised to predict crude survival probabilities applicable to

newly diagnosed cancer patients. As a motivating clinical example, we use data from the Na-

tional Prostate Cancer Register to assess the impact of prognostic factors on the risk of prostate

cancer death in relation to death from other causes than prostate cancer, and event-free survival,

among recently diagnosed patients. We conclude that the period estimates of crude survival

o�er a useful basis for risk communication between physicians and clinicians and advocate their

use as means to answer prognostic questions.

Study 2: Late adverse health e�ects in cancer patients are a growing problem given the longer

survival seen for most cancers. Deaths that occur as a consequence of treatment toxicity can

be regarded as indirect deaths due to cancer. In this methodological study we extend �exi-

ble parametric survival models for relative survival by partitioning the overall excess mortality

from cancer into two component parts; excess mortality from diseases of the circulatory system,

DCS, (assumed caused by the treatment), and remaining excess cancer mortality. We present

summary measures for quantifying the risk for death from late e�ects of treatment relative to

the overall risk of dying of breast cancer, or causes unrelated to the cancer. The method is

illustrated using data obtained from the Swedish Cancer Register on women diagnosed with

breast cancer in Sweden between 1973 and 1992.

Study 3: Survival after Hodgkin lymphoma has increased substantially in the past four decades,

following the development of e�ective multi-agent chemotherapy, introduction of combined-

modality therapy with reductions in radiation �eld size and dose, and more apt evaluation of

treatment response. The aim of this study was to present clinically interpretable estimates of

temporal trends in the burden of fatal excess DCS mortality among Hodgkin lymphoma sur-

vivors who were treated in the 1970's through 1990's, and to predict the future clinical burden

among patients diagnosed more recently. Using data from the Swedish Cancer Registry we

showed how the excess DCS mortality, within 20 years after diagnosis, has decreased continu-

ally since the mid-1980s and is expected to further decrease among patients diagnosed in the

modern era. However, when accounting for competing causes of death, we found that excess

DCS mortality constitutes a relatively small proportion of the overall mortality among Hodgkin

lymphoma patients in Sweden.

Study 4: In this study we show how recently developed �exible parametric cure models, com-

bined with competing risks theory, can be used to estimate crude probabilities that cancer

patients who are alive will eventually die from their cancer, or from other causes, respectively.

Moreover, we show how to 'update' the prognosis for patients who have survived some time after

their diagnosis via the use of conditional probabilities. The method is discussed and demon-

strated using data from the Swedish Cancer Register on patients diagnosed with melanoma,

colon cancer and acute myeloid leukemia between 1973 and 2007.
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List of abbreviations

The following abbreviations are used throughout this thesis:

S(t) All-cause survival

S∗(t) Expected all-cause survival in a population assumed free from the disease under study

R(t) Relative survival

h(t) All-cause hazard

hc(t) Cause-speci�c hazard

h∗(t) Expected hazard in a population assumed free from the disease under study

λ(t) Excess hazard

H(t) Cumulative all-cause hazard

H∗(t) Cumulative expected hazard

Λ(t) Cumulative excess hazard

Fc(t) Cause-speci�c cumulative distribution function

Crc(t) Crude probability of death from the diagnosed cancer

Cro(t) Crude probability of death from causes other than the diagnosed cancer

Cralive,c(t) Crude probability of being alive and predicted to die from the diagnosed cancer

Cralive,o(t) Crude probability of being alive and predicted to die from causes other than the diagnosed

cancer

π Cure proportion

Pbtd,c Proportion of personally cured patients

CDR Cause of Death Register

ICD International Classi�cation of Diseases

INCA Information Network for Cancer Care

NPCR National Prostate Cancer Register

PSA Prostate Speci�c Antigen

RCC Regional Cancer Center

SCR Swedish Cancer Register

TNM Tumor, Node, Metastasis

HMD Human Mortality Database



1 Introduction

In Sweden, the collection of individual-speci�c data in population-based health registers has been

routine for more than half a century. Consequently, register-based research has become an integral

part of the Swedish epidemiological research tradition. It is not surprising that continuous e�orts

are made to nurture this tradition, and to push the limits for how health registers are used in

research [1]. As we broaden the focus from classical epidemiological studies, to include also more

complex clinical research studies, we need to continue developing appropriate statistical methods

to ensure that maximum use is made of the data at hand. We must also realize that the tools

we develop for this purpose are typically not self-explanatory, and that considerable e�ort must be

made to communicate new methods and make them accessible and understandable for their target

users.

Cancer statistics have a broad range of consumers, ranging from researchers, physicians, patients,

patient organisations, policymakers to medical (as well as non-medical) journalists. Although many

of the classical methods for producing and presenting statistics of cancer patient survival are useful

for aetiological and public health research, they may be less optimal for communication in a clinical

setting. For example, the most commonly reported statistics for population-based cancer patient

survival, relative survival, is interpreted in the hypothetical scenario where cancer is the only possible

cause of death. From the perspective of newly diagnosed patients, who seek to understand the

potential impact of the cancer diagnosis on their life expectancy, such statistics may be of little help.

Ideally, clinically relevant statistics on prognosis of cancer patients should enhance the information

present in the data, be presented in a manner that can aid physicians in risk counselling situations,

and facilitate informed decisions about the clinical management of cancer patients. Even though

statistical methodology that aims to ful�l this purpose is regularly developed, the uptake of the new

statistical theory to applied research in a broad sense is typically slow. The reason for this is most

likely multi-factorial but possible explanations include:

• new statistical theory does not always reach audiences beyond the technical journals where

the method was �rst published

• a lack of a clear link between the applied research question and the new statistical theory

• the new methodology is not implemented in statistical software used by applied researchers

• an unwillingness among applied researchers to abandon traditional, and widely accepted sta-

tistical methods (old habits are hard to kick!)

This thesis strives to overcome some of these barriers by combining the development of new

statistical theory, needed to appropriately answer clinical research questions, with illustrative ex-

amples of the methods using real data. Crucial to this endeavor has also been to motivate and

disseminate non-standard statistical methods to their target audiences by providing easy access via
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implementation of the methods in user-friendly software, teaching short courses, and by publishing

educational scienti�c papers in epidemiological and clinical journals.
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2 Aims of the thesis

The overall aim of this research is to develop statistical methods for estimating and modelling cancer

patient survival, with particular emphasis on developing and applying new methods for presenting

population-based cancer survival statistics in a manner relevant for physicians and patients.

Speci�cally, the aims were to:

• Appraise statistical methods for competing risks in a population-based setting and to discuss

interpretation, assumptions, strengths and weaknesses in relation to other, more traditional

statistical methods for population-based cancer patient survival (Study I).

• Extend �exible parametric survival models, adapted for relative survival, in order to estimate

treatment-related mortality in the presence of competing risks (Studies II and III).

• Combine the use of �exible parametric cure models with competing risks theory in order to

estimate the proportion of patients not bound to die from their diagnosed cancer (Study IV).

• Demonstrate how period analysis and conditional estimates of survival can be applied in

combination with the proposed statistical methods to increase the usefulness of the results for

newly diagnosed cancer patients (Studies I and IV).

• Implement the developed statistical methodology in user-friendly software to make it readily

available to applied users (Studies II and IV).
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3 Background

3.1 Cancer

The human body consists of 100 trillion (1014) cells. These are classi�ed into over 200 distinct

cell types, where each type has a specialised task to perform. Cancer is the shared name for

diseases that can arise in almost any of the di�erent cell types. As such, cancer is not one but

many di�erent diseases. The main characterising features of carcinogenesis, i.e., the process that

transforms healthy cells into cancer cells are, uncontrolled proliferation (destabilised cell division),

dedi�erentiation (loss of specialisation), impaired ability to undergo normal apoptosis (programmed

cell death), acquired autonomy from other cells (self-su�cient in growth signals and blood supply),

and loss of capacity to repair genetic errors [2]. The reprogramming of cells occurs as a consequence

of genetic mutations and epigenetic changes in healthy cells. Whilst reprogramming of one single

healthy cell into a cancer cell is su�cient to give rise to cancer, several changes to the genetic material

of healthy cells are required to initiate and promote a malignant transformation. In most cases, the

process in which one single ancestral cancer cell develops into detectable cancer takes many years,

although the natural history of cancer varies heavily across di�erent cancer types. Unless the disease

is successfully treated or controlled, cancer might spread via the blood and lymphatic system and

invade other organs of the body by forming metastases. Treatment options for most cancers include

removal of solid tumours by surgery, targeting rapidly dividing cells with chemotherapy, shrinking

tumours and destroying cancer cells by radiation, blocking the growth of cancer cells by targeted

therapies, or inducing the patient's own immune system by immunotherapy. The aim (curative or

palliative) and choice of treatment depends on the type, location and spread of the disease, as well

as on the health status of the patient. Metastasized cancer is, for example, generally not amenable

to cure, and the treatment is thus primarily palliative.

Cancer is generally regarded as a chronic disease. As such, it is a huge burden on our society,

both economically and socially. Annually, more than 50,000 new cases are diagnosed in Sweden,

and approximately 20,000 deaths from cancer occur [3]. About 50% of all new cases occur in

individuals older than 70 years, and one third of the population will be diagnosed with cancer

before their 75th birthday [3]. The number of individuals who live with cancer has increased over

time, and is estimated to further increase in the future as many types of cancer can be detected at an

earlier stage than before, and treatment regiments are becoming increasingly successful. Moreover,

the age structure in Sweden is changing with the population aging [4]. The growth of the elderly

population and the increase in the proportion in older age groups, further adds to the cancer burden

and resources that are used for cancer care. In addition, the social consequences stretch beyond

the individuals who are personally a�icted by cancer since virtually everyone will have an a�ected

family member or friend at some time during their lives.

The known causes of cancer can be divided into heritable factors, life-style factors, reproductive

factors, infectious agents, exposure to radiation (ionising and non-ionising ultraviolet radiation),
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workplace/household carcinogens and pollution. Lifestyle factors such as smoking, diet, and physical

activity are estimated to cause about 70% of all cancers [5]. Smoking alone is believed to be

attributable to 15% of all cancers, whereas heritable factors give rise to approximately 5 to 10% of

all cases [5].

3.2 The role of a cancer registry in cancer control

The Swedish Cancer Registry was founded in 1958 with the purpose of creating a data base with

national coverage that could be used to map the occurrence of cancer, monitor temporal changes

in incidence, mortality and survival, facilitate clinical and epidemiological research and make inter-

national comparisons possible [6]. This role has remained virtually unchanged until today although

organisational changes for oncologic care in Sweden have led to the majority of the registration

work and activities related to cancer control now taking place in Regional Cancer Centers. Cancer

registries have an important role in cancer control programmes. As de�ned by the World Health

Organisation [7],

"a national cancer control programme is a public health programme designed to reduce the number

of cancer cases and deaths and improve quality of life of cancer patients, through the systematic

and equitable implementation of evidence-based strategies for prevention, early detection, diagnosis,

treatment, and palliation, making the best use of available resources."

Classic components of a cancer control programme include activities related to 1) primary preven-

tion, 2) screening, 3) enabling early diagnosis, 4) optimisation of treatment, 5) rehabilitation, and

6) palliative care [8]. Cancer registries have a unique role in these activities since their wealth of

data can be used in research that monitors and evaluates the performance of existing programmes,

as well as to carry out needs assessment for future programmes [9, 8, 10]. From an international

perspective, no cancer registry is currently involved in each and every component of cancer con-

trol. Like in society at large, resources are limited and the goals and tasks in an organisation are

balanced against their bene�ts and their costs. For cancer registries, the implication is that their

direct role in cancer control is somewhat fragmented. In a survey of the members and associate

members of the International Association of Cancer Registries (IACR), Armstrong reviewed what

activities (related to cancer control) that cancer registries worldwide were most frequently involved

in. Most contributions were in basic research on cancer prevention (epidemiological research into

the causes of cancer), clinical trials of treatment, and the production of incidence statistics. Other,

less commonly, reported activities were related to situation analysis, coordination and monitoring

of screening programmes, and public education [8]. In practice, many external organisations and

research groups also contribute to the various parts of cancer control by using registry data for aeti-

ological research, evaluation of primary and secondary prevention programmes, health care planning

and patient care. In such situations the cancer registry does not participate directly in the research

and surveillance activities, but serves as the collector and provider of research data.
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3.3 Outcome measures used in cancer control

The statistical measures that are typically used in cancer control include incidence, mortality and

survival [11]. Incidence is the most frequently reported measure of cancer burden. Trends in

incidence, i.e., the rate at which new cancer cases arise in a given population, mimics trends in the

distribution of risk factors and can therefore be used to monitor the performance of e�orts that

have been taken to prevent disease occurrence (i.e., activities related to primary prevention).

Mortality re�ects death in the population and is the principal outcome measure for evaluating

the success of screening programs. Mortality is calculated by dividing the number of deaths from

cancer by the total population at risk of dying over some well-de�ned time period. As such, trends

in mortality are not only mimicking trends in cancer survival but also trends in the incidence. The

accuracy of mortality statistics is closely linked to the accuracy of the causes of death reported on

death certi�cates [12].

To evaluate changes in the progress of diagnosing and e�ectively treating cancer patients, estimates

of survival (or equivalently, mortality restricted to the population of cancer patients) is the most

appropriate measure. Calculation of survival requires patient follow-up (from the date of diagnosis

until death or censoring) and provides an estimate of the proportion of patients who are still alive

as a function of time since their diagnosis. Survival is the cornerstone of all studies included in this

thesis and we will return to the topic of estimation and interpretation of survival in the coming

chapters.

In addition to incidence, mortality and survival, other useful measures include prevalence, and

person-years of life lost due to cancer. Common for all measures introduced here is that none take

into account the morbidity that patients might su�er from their disease. Quality of life adjusted

outcome measures are needed to fully account for all components of cancer control but a detailed

review of this aspect of patient care is beyond the scope of this thesis.

3.4 Communicating and producing statistics relevant for clinicians and patients

Whilst all of the above mentioned outcome measures have an important role in cancer control, their

usefulness is limited for an individual patient, whose primary interest might be in understanding

how the disease, and the treatment of it, will a�ect her life. Psychosocial aspects, such as feelings

of guilt, anxiety and fear, have long been recognised as important issues in cancer patient care, but

patient reactions to cancer are not only highly variable between individuals, but also during di�erent

phases of disease. The coping strategy for one patient might be to actively seek information about

the disease, in order to gain an understanding of the severity of the situation and the expected

course of treatment, whereas another patient might prefer taking a more passive role. In many

countries, including Sweden, the general idea in patient education and rehabilitation activities is

that an active role, that involves confronting facts about the disease and, if possible, participating

in decisions about the management and care, is more bene�cial for the patients than a passive role

[13]. However, adjusting to a life as a cancer patient is a long process, that often starts in a state
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of shock and includes disease reaction, anxiety management, reality adjustment, and eventually

�nding a way back to everyday life. It is important to respect that not all patients are ready to

take an active role during all phases of this process.

Risk counselling lays the foundation for the information and tools that patients require in order to

become active participants. It involves disseminating the most recent information about cancer risk

and prognosis from the learning continuum of research, via health care professionals, to cancer pa-

tients and their families. The general idea behind any form of risk counselling is to provide patients

with a sense of coherence and encourage informed participation in medical care. The success of risk

counselling is, nevertheless, highly dependent on the communication skills and information literacy

and numeracy of both the counsellor and counselee, as well as the understanding of the source data

that forms the basis for the information [14].

This thesis is concerned with producing statistics that are useful to predict and summarise the most

likely outcome of the disease. There is no standardised way in which such information is commu-

nicated between clinicians and patients today, and there is not even agreement that information

that stems from grouped patient data should be presented and discussed routinely with patients.

Notwithstanding this, it is recommended that an explicit wish from the patient to discuss the antici-

pated prognosis, and the potential risks and bene�ts of the treatment, in terms of actual percentages

should be respected [15]. At �rst glance, estimates of survival seem to be the most suitable outcome

measure to attempt to answer such questions, and in practice, the �ve-year survival probability is

often reported and quoted as a measure of prognosis. There are however, several pitfalls with a

naive use of survival proportions in risk counselling between physician and patient which leave room

for misuse and misinterpretation.

Firstly, the estimated proportion of patients who survive an arbitrary number of years after their

initial cancer diagnosis is typically calculated by the use of explicit information about the recorded

cause of death, or via a relative survival framework. Both these approaches aim to estimate net

survival. As such, the correct interpretation of, for example, the �ve-year cancer speci�c survival

proportion is: "the proportion of patients who survived �ve years after their diagnosis under the as-

sumption that only the diagnosed cancer could kill them." The subtle assumption that the patients

are assumed immune from competing causes of death is often not fully understood and therefore

sometimes over-looked in the communication of survival statistics in the context of cancer prognosis.

Secondly, communicating the relevant time frame for which survival statistics are valid is crucial. A

statement like "The survival of patients with similar disease and patient characteristics as you has

been reported to be around 70%" can be grossly misleading since it entirely lacks references to time.

Does it suggest that 70% will not die from the cancer within a speci�c time window after diagnosis

(e.g., 5 years), or perhaps that 70% of the patients will never die from the diagnosed cancer? What

if the patient has already survived one year since the diagnosis? How does that fact alter the above

statement? Moreover, from what cohort of patients was the stated survival proportion calculated?

Was it based on patients diagnosed many years in the past? If so, how are changes in the diagnosis

and treatment that might have taken place over time expected to change the prediction for patients
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diagnosed today?

Thirdly, the population-based data from which grouped estimates of survival often come, is inher-

ently observational and must always be interpreted in this context. Communicating uncertainty in

predictions and explaining that there is no such thing as being able to predict the exact course of

disease for a speci�c individual is a challenging task for any provider and communicator of statistics

targeted to patients or to the general public.

Lastly, even the most carefully calculated and interpreted estimates of survival do not account for

other aspects of treatment and rehabilitation, such as quality of life issues that might be of equal,

or even greater concern to the patients than the actual prospect of surviving �ve more years.

The bottom line is that all attempts to communicate medical information involves translating, often

high-level, information into meaningful messages for di�erent types of audiences. This requires:

1. a good understanding of what type of information is expected from the counselee.

2. easy-access to systematically structured and up-to-date disease-speci�c data.

3. standardized communication materials to avoid misinterpretation resulting from inconsistent

presentation.

4. comprehensive disease-speci�c tools that facilitate patient comprehension and that can be

adapted for individual levels of numeracy, literacy and susceptibility to framing e�ects (i.e.,

how small changes in the format of numerical information may dramatically alter the percep-

tion of the presented information [16]).

Recommendations that meet the above requirements and that aim to optimize risk communication

between doctor and patient are, however, not always straight forward to implement in practice. For

example, while there is a consensus that the main care provider has the greatest insight into the

clinical management of the individual patient, factors that include lack of easy-access to appropriate

data and tools for satisfactorily explaining the data to the patient, limited face-to-face time for

patient consultations, and uncertainty whether the patient actually is ready for, or even wants

to take an active role in her management, adds complexity to risk communication. In addition,

individuals diagnosed with severe illnesses such as cancer have been reported to also seek information

about their disease outside the health care system. In the end of 2011 in Sweden, 89% of all Swedish

households were equipped with a computer that had access to the internet, 71% of all Swedes were

reported to access the internet on a daily basis, and 23% of the users looked for health information

online at least monthly according to a report issued be the World Internet Project [17]. Among

individuals diagnosed with cancer in Sweden, the proportion of patients that use the internet to

access information about their disease has increased markedly in the past 15 years, going from

16% in 1998 to 61% in 2008 [18, 19]. Swedish cancer patients have also been found to pay closer

attention to media reports about cancer than non-cancer patients [18] which puts high demands

not only on health care professionals, but also researchers, medical reporters, support groups and

other providers of health-related information to the public.
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4 Material

4.1 Cancer registration in Sweden

Established in 1958, the Swedish Cancer Register (SCR) is one of the world's oldest cancer registers.

The SCR is maintained by the National Board of Health andWelfare and encompasses all individuals

with an o�cial residency in Sweden. Noti�cation of all malignant tumours (as well as certain benign

tumours) is statutory according to the Health Data Registers Act [20], and reports of incident

tumours are typically submitted from at least two sources (physicians, pathologists or cytologists)

[21]. National cancer registration in Sweden is based on data collected regionally via six Regional

Cancer Centers (RCC). Each RCC is situated in one out of six health care regions in Sweden, and

the noti�cation of new cancer cases are continuously recorded via the RCCs. The RCCs not only

enters the reported tumours into a computerised database, but also perform coding and logical

checks, including investigation of cases that lack complete clinical, histopathological or cytological

reports. In October each year, the data from the previous calendar year is delivered from each RCC

to the National Board of Health and Welfare, and included the SCR. The forwarded data consist

primarily of information on diagnoses codes, histological subtype, stage (available since 2004), means

of detection, and where the cancer was diagnosed.

In addition to preparing and delivering regional cancer data to the National Board of Health and

Welfare, the RCCs also host 28 cancer quality registers. The quality registers are decentralised

health registers that are administered via a common IT-platform, INCA (Information Network for

Cancer Care), which is maintained jointly be the RCCs. Each quality register has been initiated

by physicians and other health care professionals, and is used for monitoring the quality of the

care and management of cancer patients in Sweden. The scope of information related to patient

(host), tumour and treatment that is reported to, and recorded in, the quality registers is more

detailed than that of the national SCR. As such, the quality registers are often used in register-

based epidemiological studies, as well as a starting point for clinical research. A summary of the

data �ow and organisational structure of Swedish cancer registration is summarised in Figure 1.

4.2 Data material used in this thesis

4.2.1 Cancer data

In this thesis, data from the SCR was used in studies II (breast cancer), III (Hodgkin lymphoma)

and IV (melanoma, colon cancer and acute myeloid leukemia). For study I, data from the National

Prostate Cancer Register (NPCR) was used. The NPCR is a quality register that was established in

the South-East health care region of Sweden in 1987, and which reached national coverage in 1998.

The NPCR records all new cases of prostatic adenocarcinoma and is regularly updated against

the SCR. In terms of completeness, the NPCR encompasses more than 96% of all prostate cancer

reported to the SCR [22]. In addition to basic demographic data of the patient, the NPCR also

contain detailed clinical data, such as, stage according to the TNM-classi�cation system, tumour
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Figure 1 � Organisational structure of cancer registration in Sweden

grade according to the Gleason grading system, serum Prostate Speci�c Antigen (PSA) level at the

time of diagnosis, as well as intended treatment.

4.2.2 Death data

Both the SCR and the NPCR are regularly linked to the Swedish Cause of Death Register (CDR)

to retrieve information on dates of death (if applicable) that enable patient follow-up. The CDR

was initiated in 1961 and includes all deceased individuals who were residents in Sweden at the time

of their death. Stillborn children, temporary residents, and Swedes who had o�cially emigrated

from Sweden at the time they died are not included in the register. However, this is usually not a

problem in cancer patient survival studies since the Swedish Cancer Registry have merged the SCR

to data that contains information about all recorded emigrations from Sweden. The emigration

dates are used in our analyses to censor individuals who emigrate during follow-up.

The CDR also includes information about the underlying and contributing causes of death, classi�ed

according to the version of the International Classi�cation of Diseases (ICD) in force at the time.

All studies in this thesis used dates of death linked from the CDR. In addition, Study II and III

used explicit information about the underlying cause of death of deceased individuals in order to

identify patients whose death was attributable to diseases of the circulatory system.
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4.2.3 Population Statistics

Sweden has an over 300 year long history of keeping and continually updating a population register

containing information about the actual number of people living in the country. Initially, registration

was made possible via church records in each parish, but from 1749 population statistics were

systematically collected and summarized by Tabellverket. However, it was not until after a major

re-organisation of the compilation of population statistics in 1858, when Statistics Sweden was

founded, that the quality of the statistics became satisfactory. As of 1860, the data on population

and death counts is thought to have been nearly 100% complete [23]. Since then, Statistics Sweden

has remained the administrative agency responsible for producing and publishing o�cial Swedish

statistics for public information, planning and research purposes. Today, the population statistics

are compiled using data from population records at the Swedish Tax Agency.

In this thesis, population life tables, strati�ed on age, sex and calendar year, were used in all four

studies. The life tables were, nevertheless, not obtained directly from Statistics Sweden but from

the Human Mortality Databases (HMD) project. The HMD is a collaborative project that was

launched in 2002 in order to provide open, international access to detailed mortality and population

data to researchers, journalists, policy analysts among others. It is a joint project that primarily

involves research teams in the Department of Demography at the University of California, Berkeley,

USA, and at the Max Planck Institute for Demographic Research, Germany. The Swedish raw data

is submitted to the HMD by Statistics Sweden and adjusted and processed according to a common

methods protocol prior to being converted to the life-tables that are available for public use [24].

4.3 A note on record linkage

Data from the population and health registers were linked using the Swedish personal identity

number that is assigned to every person who is born in Sweden, as well as immigrants who intend

to stay in Sweden for at least one year. The personal identity number was �rst introduced in

Sweden in 1947, and has since become a vital component of Swedish health care administration by

enabling tracing of patients and their medical records, and register linkages for research purposes

[25]. The personal identity number consists of three parts; the date of birth, a three-digit birth

number and a check digit and makes it possible to trace virtually any patient through, not only

the national health registers, but also other registers that contain population-statistics, such as

migration, education, taxation, and income statistics. Medical research projects that require record

linkage must be reviewed and granted by an Ethics review-board, and in practice, the linkage is

done at the National Board of Health and Welfare or Statistics Sweden where the personal identity

number is replaced by a serial number in order to make the individual records anonymized before

the data is released to researchers.
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5 Statistical methods

5.1 Relative survival and excess mortality

All statistical methods used in this thesis build upon the theory of relative survival. The concept of

relative survival was introduced for the �rst time in 1942 [26] and has since then become the method

of choice for estimating population-based cancer patient survival [11]. Relative survival provides a

measure of excess mortality associated with cancer, i.e., the mortality rate above and beyond what

is expected in a comparable group of individuals free from the cancer in question. It is calculated

without using explicit cause of death information, by contrasting the all-cause survival experienced

by the patients, to the expected survival in a comparable group of individuals, free from the cancer

in question. Formally relative survival, R(t) at time t after diagnosis can be written as

R(t) =
S(t)

S∗(t)
, (1)

where S(t) is the all-cause survival among the patients and S∗(t) is the expected (all-cause) survival

in the comparison group, free from the studied cancer. The excess mortality, denoted by λ(t) at

time t is

λ(t) = h(t)− h∗(t), (2)

where h(t) is the all-cause mortality rate experienced by the patients and h∗(t) the corresponding

expected mortality rate. The expected survival (and mortality) is typically obtained from the

National Bureau of statistics and strati�ed on characteristics such as sex, age and calendar year.

Relative survival aims to provide an estimate of net survival. Net survival is interpreted as the

survival experience of the patients in the absence of competing causes of death. For example, a

�ve-year net survival of 0.8 provides an estimate of the proportion of patients who would survive

at least 5 years after their diagnosis of cancer, 80% in this example, if it was possible to remove all

causes of death except the cancer in question. Although there is occasionally a mistake belief that

relative survival and net survival represent the same quantity, the interpretation of relative survival

as net survival is only valid under the following assumptions,

1. The time to death from the cancer in question is conditionally independent of the time to

death from other causes. By conditional independence we mean that there are no factors

that in�uence both cancer and non-cancer mortality other than those factors that have been

controlled for in the estimation via strati�cation or regression modelling. This is commonly

referred to as the independence assumption.

2. The cancer patients are exchangeable to the comparison population that gave rise to the ex-

pected mortality rates (typically conditional demographic covariates like age, sex and calendar

year).

3. An appropriate estimator is used.
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Due to the fact that the cancer and non-cancer mortality typically share the in�uence of the same

demographic covariates, it has been shown that the most commonly used estimators for calculating

a single summary measure of the life-table estimates of relative survival do, in fact, yield biased

estimates of net survival [27]. The reason for this is that a single (averaged) expected mortality rate

is applied to a group of heterogeneous individuals. However, adjusting the relative survival estimates

for age, e.g., by strati�cation or standardisation, reduces the bias in all classical estimators [28]. The

recently proposed Pohar-Perme method, on the other hand, yields unbiased estimates of net survival

for a group of cancer patients as a whole, in a setting that does not require strati�cation or regression

modelling. The Pohar-Perme method is therefor anticipated to become the preferred method for

reporting cancer patient survival statistics in the future in situations where one single summary

measure of cancer patient survival is of interest, e.g., in cancer registry reports [29, 30, 31].

In this thesis we will use multivariable regression to model relative survival (excess mortality).

Individual-level modelling of the excess mortality removes, to a certain extent, the problem raised

above since it appropriately incorporates the demographic covariates in question in the estimation

[27, 28]. However, any regression model is dependent upon the validity of all additional assumptions

that are made in the model. For example, if there are additional covariates not included in the model

that share in�uence on cancer and non-cancer mortality, the model-based relative survival estimates

will not be estimates of net survival.

5.1.1 Modelling excess mortality using �exible parametric survival models

In survival analysis, regression models are usually �tted on the (log) mortality scale, as opposed to

the survival scale. This is also the case in relative survival analysis, and a range of regression models

for excess mortality have been proposed. To date, models where the baseline excess hazard function

is assumed to take a parametric form, and where covariates are assumed to act multiplicatively

on the excess hazard, have been used most commonly in applied research [32, 33, 34, 35, 36, 37].

Non-parametric [38, 39] and fully additive regression models [40, 41, 42] have also been developed to

model excess mortality but have been used less often in practise in population-based cancer patient

survival analysis.

In this thesis, �exible parametric survival models were used. Flexible parametric models are

�tted on the log cumulative excess hazard (mortality) scale and use restricted cubic spline functions

to explicitly model the (log cumulative) baseline excess mortality function [37]. That is, on the

cumulative hazard scale the all-cause cumulative mortality, H(t), at time t is

H(t) = H∗(t) + Λ(t), (3)

where H∗(t) is the cumulative expected all-cause mortality in the general population (matched on

sex, age and calendar year), and Λ(t) is the cumulative excess mortality. The �exible parametric

survival model assumes that H∗(t) is a known quantity and that Λ(t) is the random component

subject to regression modelling. By assuming that the cumulative excess hazard is a multiplicative
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function of the covariates, x, and that the e�ects are proportional with respect to the underlying

time scale, a model for Λ(t) can be written as

ln(Λ(t;x)) = s(ln(t);γ0) + xTβ. (4)

Here Λ(t) is represented by restricted cubic splines for ln(t), s(ln(t);γ0), characterised by the vector

of parameters associated with the basis functions for the spline, γ0, and the e�ects of covariates, x,

which are given by β. The restricted cubic spline function, s(ln(t);γ0), is de�ned as,

s(ln(t);γ0) = γ00 + γ01v1(x) + γ02v2(x) + ...+ γ0K−1vK−1(x), (5)

where K is the number of knots and the jth basis function is de�ned as,

vj(x) =

x, if j = 1

(x− kj)3
+ − λj(x− kmin)3

+ − (1− λj)(x− kmax)3
+, if j = 2, ...,K − 1.

(6)

Under this de�nition, u+ = u if u > 0 and u+ = 0 if u ≤ 0, kmin is the position of the �rst knot,

kmax the position of the last knot, and λj =
kmax−kj
kmax−kmin

.

The proportional excess hazards model in (4) can easily be extended to handle time-dependent

covariate e�ects by including interaction terms between the time-dependent covariates and a new

set of restricted cubic spline terms. Modelling of time-dependent e�ects generally require fewer

knots than the baseline e�ects [37] so for each time-dependent e�ect, xi, a new con�guration of the

knots may be chosen. This gives,

ln(Λ(t;x)) = s(ln(t);γ0) + xTβ +
D∑
i=1

s(ln(t);γi)xi (7)

where D is the number of time-dependent covariate e�ects and s(ln(t);γi) is the spline function for

the ith time-dependent e�ect. Note that for each of the D time-dependent e�ects represented by xi

in the model above are typically a subset of x.

The model parameters are estimated by maximising the log likelihood function derived by Nelson

et al [37]. The likelihood contribution for each subject is

lnLi = di ln

[
h∗(ti) +

1

ti

d

dxi
(s(xi;γ0)) exp(ηi)

]
− exp(ηi)

where xi = ln(ti), and ηi is the linear predictor corresponding to individual i in the �exible para-

metric model as expressed in (4). The extension to left truncated data can easily be made by adding

the term exp(η0,i) to the above likelihood contribution for each subject. In this setting, exp(η0,i)

corresponds to individual i's linear predictor at her entry time, t0,i. That is,

exp(η0,i) = s(ln(t0,i);γ0) + xTβ.
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The maximisation of the log likelihood function, lnL =
∑n

i lnLi was done using the Newton-

Raphson algorithm [43].

5.2 Period analysis

A potential problem with survival estimates based on patients diagnosed �ve or ten years back

in time is that they might no longer be valid for newly diagnosed patients. The introduction

of new e�ective treatments could, for example, alter the conditions and prospect for recovery and

rehabilitation for the patients who receive it, compared to those who previously did not. The survival

estimates calculated from the patients who were diagnosed and treated prior to the introduction

of the more e�ective treatment would paint an overly pessimistic picture of the future for patients

diagnosed in more recent years. As a means to predict cancer patient survival in a manner that

improves the timeliness of survival, estimates period analysis was introduced for cancer patient

survival by Brenner and Gefeller about 15 years ago [44].

The conceptual idea behind period analysis is illustrated here using a mock sample of 4 cancer

patients diagnosed between 1996 and 2003 and followed for death or censoring until the end of

2005. In Figure 2 solid lines have been drawn to represent the length of follow-up of each of the

four patients. In a classical complete cohort analysis, subject 1 would enter the cohort at the date

of her diagnosis in 2003, and be followed through time until the date of death or censoring (due

to loss from follow-up or administrative censoring which occurred in 2005). Thus, subject 1 would

contribute to the riskset in calculations of survival up to 2 years after her diagnosis. Similarly,

subject 2 would contribute to the riskset up to 4 years after the diagnosis etc. In a period analysis,
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Figure 2 � Cohort of 4 cancer patients and their contribution to a survival analysis

only a subset of each subjects follow-up is incorporated into the survival calculations. Which part

is included depends on when the patient was diagnosed with cancer, and on the period window.

Since period analysis aims to improve the timeliness of survival estimates, a period window that
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includes only the most recent years for which data are available is typically chosen. In Figure 3,

the years 2002 through 2005 de�ne the period of interest, and only follow-up within this window

is incorporated in the survival calculations. For subject 1, this corresponds to the full follow-up,

i.e., the same amount of information is included in the period analysis as in a complete cohort

analysis. For subject 2 the survival time between the date of diagnosis and year 2002 is ignored,

and subject 2's contribution to the riskset is thereby restricted to the survival calculation beyond

the 2 �rst years after the diagnosis. Subject 4, who exited the study prior to the period of interest

is entirely left out from the analysis. Thus, only the most recent data are used for estimation of

short-term survival, i.e., the time during patient follow-up when temporal improvements in cancer

patient survival are typically observed [45]. The timeliness achieved by using only recent data for

estimation of short-term survival also carries over to estimates of long-term survival, even though

historical data is required to estimate of the latter.

In practice, period estimates are obtained by left-truncating all observations at the beginning of the

period window and by right censoring them the end [44]. As such, period estimates do not come

from a well-de�ned cohort of patients but from a synthetic cohort with varying degree of inclusion

in the analysis. Empirical evaluations of period analysis have demonstrated a very good agreement
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Figure 3 � Synthetic cohort based on 4 cancer patients and their contribution to a period survival
analysis

between survival estimates projected using the Brenner approach and what actually happened to the

patients once su�cient follow-up was available to calculate traditional cohort estimated of survival

[46, 47, 48]. A period approach to estimation was applied in study I of this thesis.
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5.3 Statistical methods for competing risks

Under the independence assumption, relative survival aims to estimate net survival1, i.e., survival

in the hypothetical situation were deaths from other causes have been removed. Statistical methods

for competing risks, on the other hand, are used to calculate so called crude survival probabilities2.

These are interpreted as cancer-speci�c survival probabilities in the situation where other causes of

death also exist. From a risk counselling perspective, estimates of net survival may not appropriately

describe the most likely course of the disease since they, by de�nition, will underestimate the actual

cancer-speci�c survival. The distinction between net and crude survival is illustrated in Figure 4

using data from the Swedish NPCR to summarise prostate cancer survival within the �rst 10 years

after diagnosis, among men diagnosed between 2005 and 2009. First we note that the complement of
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Figure 4 � Net and crude probabilities of death in Swedish men diagnosed with prostate cancer between
2005 and 2009.

the net and crude survival is drawn (i.e., one minus the survival probability), as is tradition in most

competing risks applications. The shaded areas in the graphs on the left-hand side represent the

net probabilities of prostate cancer death as a function of years since diagnosis. For a 75-year-old

man diagnosed with prostate cancer, the probability of dying of prostate cancer within 10 years is

0.27 in a world where it is not possible to die of other causes. When acknowledging the existence of

competing causes of death, we see that the crude probability that such a man will die of prostate

cancer during the same time interval is only 0.18 (top right hand graph). In the same panel we

also see that the probability of dying of a cause other than prostate cancer within 10 years is 0.43,

and the probability of still being alive after 10 years is 0.39. The di�erence between crude and net

probabilities is not as great for the 60-year-old men since the probability of death due to causes other

1Net survival is sometimes referred to as marginal survival [49] or partial crude survival [50] in the competing
risks literature.

2Also referred to as cause-speci�c cumulative incidence [49] or absolute survival [51].

17



than cancer is not as high. However, the two constructs are conceptually di�erent and the choice

between net and crude estimates of cancer patient survival depends on the the research question

that is to be investigated. In the discussion section of this thesis I will outline some general rules

of thumb that may be applied to assess which of the two measures of survival is most appropriate

for a given research question, and what quantities can be estimated from the available data.

On a more theoretical note, the crude probability of dying from cancer, denoted Crc(t), is commonly

expressed by the cause-speci�c cumulative distribution function, de�ned to be Fc(t) = P (T ≤ t, δ =

c), where δ is an indicator that tells that death from cancer, c, is the event of interest [50]. Fc(t)

can be calculated from the cause-speci�c hazard rates, hc(t), and the all-cause survival, S(t), via,

Fc(t) = Crc(t) =

∫ t

0
S(u)hc(u)du, (8)

where

S(t) = P (T > t) = exp

{
−
∫ t

0
h(u)du

}
(9)

and

h(t) = lim
∆t→0

P (t ≤ T < t+ ∆t | T ≥ t)
∆t

. (10)

The instantaneous rate at which death due to cause c occurs, hc(t), is de�ned to be:

hc(t) = lim
∆t→0

P (t ≤ T < t+ ∆t, δ = c | T ≥ t)
∆t

. (11)

In a relative survival setting, estimates of the all-cause survival, S(t) and cancer-speci�c haz-

ard, hc(t), are replaced by their relative survival counterparts. This involves replacing S(t) with

S∗(t)R(t) and hc(t) with λ(t), respectively [52]. Hence, the crude probability of death from the

cancer in question can now be re-expressed as

Crc(t) =

∫ t

0
S∗(u)R(u)λ(u)du. (12)

Similarly, the crude probability of death due to causes other than cancer, Cro(t), is given by

Cro(t) =

∫ t

0
S∗(u)R(u)h∗(u)du. (13)

5.3.1 Numerical integration and variance approximation

Expressions (12) and (13) were approximated numerically using the 'brute force' method proposed

earlier by Carstensen [53]. The time scale (time since diagnosis) was split into 1000 intervals of

equal length, and the predicted, interval-speci�c values of the integrand, f̂(tj | x) = S∗(tj | x)R̂(tj |
x)λ̂(tj | x) were calculated. The crude probabilities of death were then obtained by summing the

interval-speci�c integrands over the 1000 intervals as follows,
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
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f̂(t3)

...

f̂(t999)

f̂(t1000)


= L



f̂(t1)

f̂(t2)

f̂(t3)

...

f̂(t999)

f̂(t1000)


, (14)

where l is the interval length, i.e., 10
1000 . f̂(tj | x) is a non-linear function of regression model

parameters and its variance-covariance matrix was obtained using the delta method. In the setting

of this study, the variance-covariance matrix of the vector f̂(t | x) is,

Var(f̂(t | x)) = GV̂ G′, (15)

where G is a matrix of observation-speci�c derivatives for each parameter in the model, and V̂ is

the estimated variance matrix for the model parameters. Similarly, it follows that the variance-

covariance matrix of the vector Ĉrc(t) is,

Var(Ĉrc(t)) = LGV̂ G′L′. (16)

G were approximated numerically using the Stata command predictnl [43].

This approach to estimate crude probabilities of death from cancer was the main focus of study

I. In study II and III competing risks theory was combined with a novel approach for partition-

ing excess mortality into component parts, and in study IV competing risks theory was used in

combination with a recently developed method for estimating and modelling statistical cure in a

population-based setting [54].
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5.4 Cure

Cure is a summary measure used for quantifying improvements in cancer care and prognosis. Whilst

there does not exist one single unambiguous de�nition of cure in the context of cancer patient sur-

vival, three broad de�nitions of conceptually di�erent constructs have emerged from the �eld of

clinical oncology [55].

• Clinical cure or medical cure refers to the situation where the treatment has eradicated all

signs and symptoms of a patient's disease, and where the cancer in question will not return.

Even in situations when clinical cure is the goal of the treatment, it is intrinsically hard

to objectively measure if an individual patient has reached this goal. In terms of the clinical

management of the patient, there is little practical bene�t from being able to separate clinically

cured patients from asymptomatic long-term survivors who live their lives with no evidence

of disease. To quote Robert J. Mayer, MD, a senior cancer researcher at Dana-Farber and

physician at Dana-Farber/Brigham and Women's Cancer Center, "Cure is a word that I don't

use a great deal; it is promising something that may or may not be possible. Instead I say to

patients, You will be alive and well, and in 20 years we'll look back at this and have a chuckle."

[56]

• In a relative survival framework, Statistical cure occurs from the point in time (after diagnosis)

when cancer patients die at the same rate as a comparable group of individuals, free from

the cancer in question. In contrast to clinical cure, statistical cure is de�ned on a group level

and is relatively straight forward to estimate. As such, the �rst cure model was introduced

by Boag in 1949 [57]. Informally, statistical cure can be estimated by de�ning an asymptote

to a net survival curve. Figure 5 demonstrates this idea and illustrates how male patients

diagnosed with colon cancer can be partitioned into a statistically cured group and a group

bound to die from their cancer. Because the cured proportion is identi�ed in a net survival

framework, the interpretation of this measure is limited to the hypothetical situation where

competing causes of death are assumed not to exist.

• Personal cure is a quantity that is not reported often in practise, but which corresponds to

the proportion of cancer patients who are likely to die from a cause other than their cancer.

The terminology is somewhat misguiding since personal cure is, in fact, also de�ned on a

group level. Moreover, personally cured patients do not necessarily die free from signs and

symptoms of their cancer. In contrast, the patients may die with their cancer. Terminology

apart, this measure is of potential interest to cancer patients who want to understand the

likely course of their disease since its estimation requires consideration of competing risks.

Figure 6 use the same cohort of male patients as in Figure 5 to illustrate the various groups

into which patients may be classi�ed after they are diagnosed with cancer. At the time of

diagnosis all patients are assumed to be alive. As time progresses some patients will die and,
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Figure 5 � Conceptual illustration of statistical cure in 75-year old Swedish males diagnosed with colon
cancer in 2005

at a given point in time during follow-up, the probability that the deaths that have occurred

were caused by the diagnosed cancer versus other causes can be calculated. The proportion of

personally cured patients is obtained by estimating an asymptote to the crude survival curve.

It will, by de�nition, be lower than the proportion of statistically cured patients.
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Figure 6 � Conceptual illustration of personal cure in 75-year old Swedish males diagnosed with colon
cancer in 2005

5.4.1 Modelling statistical cure

Several models for estimating statistical cure using population-based data have been proposed by,

for example, De Angelis [58], Verdecchia [59], Yu [60], Lambert [61] and Andersson [54]. Apart from

providing an estimate of the proportion of statistically cured patients, cure models also estimate the
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survival function of those that are uncured. Cure models can generally be divided into two classes

of models, mixture models and non-mixture models.

In mixture models, the all-cause survival function, S(t) can be written as,

S(t) = S∗(t)(π + (1− π)Su(t)), (17)

where π is the proportion of patients that will be statistically cured and Su(t) is the cancer-speci�c

survival function for the uncured patients [59]. Thus, mixture models build upon the idea that

patients belong to either a cured group (for which the survival function is assumed to equal that

of a comparable disease-free population), or to an uncured group (whose overall survival function

can be described by S∗(t)Su(t)). Mixture models primarily di�er with respect to the parametric

distribution that is used to appropriately model, and capture the shape of the cancer-speci�c survival

function for the uncured group.

In non-mixture models, the all-cause survival function is instead written as,

S(t) = S∗(t)πFz(t). (18)

Again, π denotes the cure proportion, whereas Fz(t) denotes some cumulative distribution function,

implying that Fz(t) = 1 − SZ(t), where SZ(t) is a survival function [61]. Fz(t) can be estimated

parametrically, and in practice, the Weibull distribution is often used for this purpose. In contrast

to mixture cure models, the original non-mixture models have a biological motivation that stem

from what is known about tumor growth [62]. The idea is that treated cancer patients may be

left with cancer cells that are capable of forming a new tumour mass, and thereby lead to relapse.

Cured patients are assumed to have no such cells left after treatment, whereas for uncured patients,

FZ(t) represents the distribution function that characterises the time it takes for cancer cells with

proliferate potential to develop into a detectable cancer. This biological motivation for non-mixture

cure models is, however, not relevant in a relative survival setting but the mathematical results

can still be applied to estimate an asymptote representative of the cured proportion (as long as

statistical cure is believed to be a reasonable assumption).

Equation (18) can, nevertheless, be rewritten as,

S(t) = S∗(t)

(
π + (1− π)

(
πFZ(t) − π

1− π

))
. (19)

Under this form, the survival function of the non-mixture cure model takes the form of a mixture

cure model. Using equation (19) it becomes clear that the survival function of the uncured patients

can be obtained via πFZ (t)−π
1−π , which is a simply a transformation of the model parameters, in a

non-mixture cure model.
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5.4.2 Flexible parametric cure models

In study IV of this thesis we use �exible parametric cure models to estimate statistical cure. We

subsequently apply competing risks theory to get estimates of "personal cure". Flexible parametric

cure models belong to the family of non-mixture cure models. They are also a special case of the

�exible parametric survival model, outlined previously in equations (4-6). In contrast to other non-

mixture cure models that have been adapted for relative survival, the use of �exible parametric cure

models obviates the need to make strong distributional assumptions about the functional form of the

survival function of the uncured patients and thus o�er greater modelling �exibility [54]. It has also

been shown empirically that the �exible parametric cure model tends to perform better than other

commonly used cure models under scenarios where the survival of the patients is either relatively

good (e.g., patients with localized melanoma) or poor (e.g., among elderly patients diagnosed with

AML) [63]. These are situations where most cure models (adapted for relative survival) often fail to

converge, or otherwise provide a poor �t to the data as compared graphically to empirical estimates

of relative survival.

By de�nition, statistical cure occurs when the excess mortality, observed in the cancer patients,

reaches zero. Such a scenario can be built into the �exible parametric survival model by constraining

the log cumulative excess hazard function to have zero slope from a certain point in time after

diagnosis. In practice, such constraint is imposed by treating the spline basis functions, vj(x), used

to model the log cumulative excess hazard function in (4) in reverse order, and by restricting the

parameter for the linear spline term to be zero. Thus, for j = 1, ...,K − 1, vj(x) are now:

vj(x) =

x, if j = 1

(kK−j+1 − x)3
+ − λj(kmax − x)3

+ − (1− λj)(kmin − x)3
+, if j = 2, ...,K − 1.

(20)

where x = ln(t) and λj =
kK−j+1−kmin

kmax−kmin
. The parameter for the linear spline variable, γ01, is then

restricted to be 0.

The �exible parametric cure model provides an estimate of the relative survival, R(t), via

R(t) = πFZ(t), (21)

where the cure proportion, π = exp(− exp(γ00)), and the distribution function, FZ(t) = exp(γ02v2(x)+

...+ γ0K−1vK−1(x)).

When adding a set of covariates, z, and D time dependent e�ects to the model, R(t) becomes:

R(t; z) = exp(− exp(γ00 + βTz)exp(γ02v2(x) + ...+ γ0K−1vK−1(x)) +

D∑
i=1

s(ln(t);γi) (22)

From (22) it follows that γ00 and β contribute to the modelling of the cure proportion, whereas

parameters that depend on time are used to model FZ(t).
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Flexible parametric cure models have been incorporated into the stpm2 command in Stata [64].

This implementation was used in Study IV.
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6 Study 1: Making cancer patient survival statistics more useful

for patients and clinicians

6.1 Motivation

In the clinical research community there has been, and still is, much confusion about statistical

methods for estimating survival in the presence of competing risks. As a result, a large number of

papers have been published with the aim of clarifying when competing risks methods are needed,

approaches to estimation, assumptions and interpretation of the estimated quantities, see for exam-

ple [49, 65, 66, 67, 68, 69, 70, 71]. In this paper, a general aim was to clarify and discuss the relative

merits of crude and net cancer patient survival in a population-based setting. In addition, we set

out to demonstrate how period analysis, applied in a competing risk setting, can be used to predict

'absolute', (i.e. crude) survival probabilities applicable to newly diagnosed cancer patients. As a

motivating clinical example, we assessed the impact of prognostic factors on the risk of prostate

cancer death in relation to death from other causes than prostate cancer, and event-free survival,

among recently diagnosed patients.

6.2 Data

The target group for the clinical application were all (recently diagnosed) men with intermediate

or high risk localised prostate cancer in Sweden who are candidates for conservative or hormonal

management. The study population was identi�ed from the cohort of all (n=99,051) men with a

recorded diagnosis of prostate cancer in the Swedish NPCR between 1996-2008. Included in the

study were men with complete stage and treatment information (n = 93,685). Risk groups were

formed according to a modi�ed version of the National Comprehensive Cancer Network R© classi-

�cation, by combining the recorded TNM stage, tumour grade (according to the Gleason grading

system), and serum Prostate Speci�c Antigen (PSA) level at the time of diagnosis. The interme-

diate risk category was de�ned as clinical local stage T1-2, N0, NX-, M0, MX and serum levels of

PSA between 10-20 ng/ml or Gleason score 7, and the locally advanced high risk category as T3-4,

N0, NX, M0, MX and/or PSA between 20-50 ng/ml and/or Gleason score 8 or higher. Patients not

included in these risk group classi�cations, and patients who received curatively intended treatment

were excluded, leaving 29,647 patients in the study population that formed the basis for the syn-

thetic cohort for the period analysis. Figure 7 illustrates the entry criteria to the synthetic cohort.

Under the chosen period window (2005-2009) no patients who died before 1 Jan 2005, (n = 6,294)

contributed to the study-base. Thus, from the study population, 23,353 men were included in the

analysis.

6.3 Methods

Our interest in this study was to estimate crude survival from prostate cancer (target event), versus

crude survival from any other cause, by prognostic factors. A graphical representation of the com-
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Figure 7 � Entry criteria to the synthetic cohort used in Study 1

peting risk model used in Study I is provided in Figure 8. We estimated the event-speci�c hazard

function that corresponds to the excess hazard due to prostate cancer, λ(t) using a �exible paramet-

ric survival model (with delayed entry), and obtained the expected hazard function in the absence

of prostate cancer, h∗(t) from population life tables. Crude probabilities of death were calculated by
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Figure 8 � Competing risk model used in study I

evaluating the integrals in equations (12) and (13) for t ∈ [0, 10]. The integrands were obtained us-

ing the predicted excess hazard, ˆλ(t), and relative survival, ˆR(t) from the �exible parametric model

and by assuming that S∗(t) and h∗(t) were known (given sex, age and calender year). To make

the estimates of relative survival and excess mortality applicable to recently diagnosed patients we

assumed that a period approach to modelling would give timely estimates of relative survival and

excess mortality, and that the expected population mortality rates would remain constant 10-years

into the future. At the time the study was carried out, the latest observed mortality rates available

from the HMD were from 2009.
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6.3.1 Approach to modelling

Table 1 contains a summary of all �exible parametric survival models that were �tted and contrasted

in this study. In all models, 5 df were used to model the baseline excess hazard function. Likelihood

ratio tests (LR-test) were used to formally test the signi�cance of additional parameters (e.g.,

for time-dependent e�ects or interactions) to a given model. When modelling interaction e�ects

between a covariate modelled using a restricted cubic spline (RCS) and a binary covariate, only the

�rst spline term (i.e., the linear component) was included in the interaction. Model 8 was the �nal

model and used to generate all results in Study I.

Model Covariates included Functional form Df time-dependent e�ect P-value from LR-test

1 Age at diagnosis RCS 5 df N/A -
2 Age at diagnosis RCS 5 df 3 < 0.001
3 Same as model 2 +

Treatment binary N/A < 0.001
4 Same as model 3 +

Risk category binary N/A < 0.001
5 Same as model 4 +

Risk category binary 3 0.0128
6 Same as model 5 +

Treatment binary 3 < 0.001
7a Same as model 6 +

Age x Risk category RCS 1 df N/A 0.5037
7b Same as model 6 +

Age x Treatment RCS 1 df N/A 0.0025
8 Age at diagnosis + RCS 5 df 3

Treatment + binary 3
Risk category + binary 3
Age x Treatment + RCS 1 df N/A
Risk category x Treatment RCS 1 df N/A 0.031

Table 1 � Summary of approach to modelling excess mortality

6.4 Findings and discussion

The idea behind this paper was to demonstrate how the combined use of competing risks theory, and

statistical methods suitable to predict survival of newly diagnosed cancer patients, can provide data

that can form a basis for risk counselling. Although such statistics are sought after by some patients

and physicians, a responsible use of the information makes great demands on both its producers and

consumers. At best, a carefully conducted statistical analysis of population-based data can provide

a reasonable guess of survival estimates of newly diagnosed patients. At worst, it can mislead and

give false hope to patients and their families. In this study, we provided a general discussion of the

interpretation and assumptions of commonly reported statistics of population-based cancer patient

survival. An overall aim was to raise the level of understanding for such statistics, and the discussion

was centered around the following issues:

• Net and crude survival are conceptually di�erent constructs that both have a place in cancer
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care programmes, although the latter is more useful in the communication of risk between

clinician and patient.

• A prediction model is only as good as the information that goes into it. In principle, individual-

level prediction is the goal. In practice, the data available for modelling in population-based

health registers are limited, and results must typically be interpreted on a group level.

• The manner in which survival statistics are presented to patients and their families, and the

tools that are used for the purpose of conveying complex information, are instrumental in risk

counselling.

• Careful consideration of the limitations that arise from statistical assumptions must be made

when interpreting the results of any statistical analysis. In the setting of this study, these

include assumptions made in relative survival versus cause-speci�c survival, sensitivity to

modelling assumptions (inclusion of relevant prognostic factors, consideration of interaction

e�ects, functional form of covariates, departures from the proportional hazard assumption,

and the chosen approach to project the prognosis of patients).

The above points were highlighted in the context of prostate cancer patient survival in Sweden.

In recent years, scienti�c papers that report estimates of crude prostate cancer survival have, in

fact, become quite common [72, 73, 74, 75, 76]. We believe that the results from such reports are

considerably more useful in a clinical setting than estimates of net survival, which do not provide

an ideal basis for risk counselling as they are only interpretable in a hypothetical world (in which

the patients do not live).

One aspect of risk counselling involves providing tools that can help patients make an informed

decision about their preferred medical treatment. The use of observational cancer data for this

aim is, nevertheless, suboptimal and results of the type presented in this paper should not be

used in isolation, but in combination with evidence from randomized clinical treatment trials. For

illustration, in the past 15-20 years there has been a rapid increase in (primarily) low, intermediate,

and high risk localized prostate cancer, where a large contribution follow from the increased use of

the PSA test [77, 78, 79]. Because the uptake of the PSA test, and the diagnostic work-up is skewed

towards men who are healthier than the general population, strong selection mechanisms gave rise

to our cohort [72]. This has consequences for the validity of relative survival analyses which assume

that the patients are exchangeable to the general population (free from prostate cancer). As a means

to circumvent this problem, our study did not include men with low-risk prostate cancer, a group

where estimates of relative survival were > 1 for certain combinations of the covariates. However,

it is possible that men who are at lower risk of dying of all-causes than the population at large are

also, to some extent, overrepresented among men with intermediate and high risk localized prostate

cancer. In addition, the results in this study indicate the presence of another selection mechanism

that relates to how patients are assigned to treatment. When comparing, men in the same risk

group and of the same age, men who receive hormonal therapy have a dismal prognosis compared
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to men who are managed conservatively. This is probably best explained by the fact that men who

are assigned to hormonal treatment at diagnosis are generally in poorer health compared to men

who are eligible for watchful waiting (i.e., deferred hormonal treatment until clinical progression)

and active surveillance (i.e., deferred curative treatment until perceived disease progression). The

strong selection to the cohort and the indication to treatment warrant additional investigation and

consideration of host-factors that predict all-cause survival. This can, for example, be done by

expanding population life tables by indices such as socioeconomic position or level of comorbidities.

Another way to achieve a more appropriate match of patients to the general population is to use

the biological age (as opposed to chronological age) of patients as matching factor in the analysis.

The estimation of biological age involves consideration of comorbidities in the group of patients, but

obviates the need to ascertain the level of comorbid conditions in the entire back-ground population.

If it is believed that the cause of death classi�cation of prostate cancer patients is reliable, a third

alternative is to estimate cause-speci�c survival, i.e., make explicit use of the recorded cause of

death in the analysis (as opposed to estimate relative survival).
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7 Study 2: Partitioning of excess mortality in population-based

cancer patient survival studies

7.1 Motivation

An attractive feature of relative survival is that it provides an estimate of the excess mortality

associated with a diagnosis of cancer. Excess mortality captures both the direct and the indirect

contribution of cancer to mortality, as opposed to cause-speci�c survival which is limited to measure

the direct contribution. Direct causes are all causes of death that would typically be classi�ed as

death from the cancer in question on the death certi�cate and include, for example, malfunctioning

and failure of vital organs where the cancer was originally situated (or metastasized to) and cachexia.

Indirect causes of death include late e�ects from treatment, e.g., cardiovascular complications,

secondary malignancies, infections (that may be too hard for someone with terminal cancer to

�ght), and suicides. Late adverse health e�ects in cancer patients is a growing problem given

the longer survival seen for most cancers. For example, in breast cancer survivors, several studies

have identi�ed an increased risk of cardiovascular disorders, mainly myocardial infarction, possibly

associated with radio- and chemotherapy such as anthracyclines [80, 81]. These deaths are not

straight forward to study since:

1. the physician that signs the death certi�cate can never know for certain if a cardiac event was

induced by a treatment administered many years in the past or not.

2. indirect deaths are not immediately identi�able using a standard relative survival analysis

(which provide an estimate of the overall excess mortality associated with cancer).

In this study we extended �exible parametric survival models for relative survival, with the aim to

partition the overall excess mortality from cancer into two component parts; excess mortality from

diseases of the circulatory system (DCS), and remaining excess cancer mortality.

7.2 Data

The method is illustrated using data on 70,655 women diagnosed with breast cancer in Sweden

between 1973 and 1992 obtained from the Swedish Cancer Register. The restriction to diagnoses

before 1993 ensured that all women had a potential follow-up of at least 15 years. Among these

women, there were 40,361 death in all, of which 8,939 were classi�ed as any disease of the circulatory

system (according to the information stated on the death certi�cate).

The extended model requires population life tables that are strati�ed on broad categories of cause

of death. These were constructed using individual-level data containing information about year of

death, age at death, sex, underlying cause of death for all people who died in Sweden between 1961

and 2007. Two sets of life tables were constructed, one corresponding to the expected mortality

rates from DCS, and one corresponding to the expected mortality from causes other than DCS.

Data on population size, N , the total number of deaths, d, in Sweden and the total number of
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DCS deaths, dDCS , for the years 1973-2007 were obtained by year of occurrence from the HMD

and the National Board of Health and Welfare, and were collapsed over sex, age and calendar year.

Probabilities of death due to DCS and non-DCS were estimated by taking the ratio of the death

counts and population at risk in matched intervals of age (i), sex (j), and calendar year (k). The

corresponding mortality rates were then calculated using

h∗DCS,i,j,k = − ln(1−
dDCS,i,j,k

Ni,j,k −
dDCS,i,j,k

2

) (23)

and

h∗other,i,j,k = − ln(1−
d− dDCS,i,j,k

Ni,j,k −
(d−dDCS,i,j,k)

2

). (24)

7.3 Methods

In a �exible parametric model (adapted for relative survival), the cumulative hazard at time t can

be written as the sum of the cumulative expected hazard, H∗(t), and the cumulative excess hazard,

Λ(t), according to expression (3). We now instead consider an alternative expression for H(t),

H(t) = H∗DCS(t) +H∗Other(t) + ΛDCS(t) + ΛOther(t). (25)

where H∗(t) has been partitioned into the expected mortality from DCS, H∗DCS(t) and other causes

than DCS, H∗Other(t), and Λ(t) into the excess mortality from DCS, ΛDCS(t), and other causes than

DCS, ΛOther(t), respectively. H
∗
DCS(t) and H∗Other(t) are assumed to be known from population life

tables, and ΛDCS(t) and ΛOther(t) are estimated from a �exible parametric survival model. Thus,

our interest is now in modelling the time to death from cancer induced DCS, and the time to death

from other (non-DCS) cancer related causes. The corresponding excess hazard rates are depicted

in Figure 9, together with a third outcome of potential interest, death from causes unrelated to the

diagnosed cancer.
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Figure 9 � Competing risk model used in study II

Important to remember is that, under this model, expected deaths from DCS are included in the
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box that represents death from other causes than BC. The DCS deaths that occur as a consequence

of treatment only constitute a small proportion of all DCS deaths combined.

In principle, λDCS(t) and λother(t) can be estimated using two separate �exible parametric models,

ln(Λj(t;x)) = s(ln(t);γ0,j) + xTβj , j ∈ {cvd, other} (26)

where s(ln(t);γ0,j) provides an estimate of the log cumulative baseline excess mortality for cause j,

and the vector βj represents the covariate e�ects on cause j. However, an alternative approach to

modelling, that allows for more �exibility in modelling the e�ects of covariates, is given by,

ln(Λj(t;x)) = s(ln(t);γ0) + xTβ + cj(βcvd + s(ln(t);γcvd) + xTβcvd) (27)

where

cj =

0, if j = other;

1, if j = DCS.

Using this approach, the two outcomes are estimated jointly by including a binary covariate, c, with

cause of death information that enables estimation of separate baseline excess hazard functions for

the di�erent outcomes. The covariate e�ects, xβTj , are assumed to be common for the two causes

of death, but this assumption can be relaxed by including additional interaction terms between a

subset (or all) of the covariates and c. The component-speci�c excess mortality rates, λj(t), are

related to Λj(t) via λj(t) = d
dtΛj(t).

Before a model of type (27) can be �tted, the data set must be transformed into long format. This

is a common way to structure data sets prior to competing risks analyses, and involves assigning

each individual as many observations in the new data set as there are outcomes under investigation.

Moreover, a covariate that indicates cause of death is needed, as well as a death indicator for the

speci�c cause. An example is shown below.

+--------------------------------------------------------+

| id entry exit dead cause rate sex agediag |

|--------------------------------------------------------|

| 5464 0 20 0 DCS .00038 2 23 |

| 5464 0 20 0 Other .00120 2 23 |

|--------------------------------------------------------|

| 6851 0 .74590164 0 DCS .00109 2 57 |

| 6851 0 .74590164 1 Other .00427 2 57 |

|---------------------------------------------------------

| 7129 0 7.6939891 1 DCS .00026 2 34 |

| 7129 0 7.6939891 0 Other .00153 2 34 |

|--------------------------------------------------------|

In this sample data set, individual with id = 5464, was followed for 20 years and was still alive

at the end of follow-up. Individual 6851, on the other hand, was followed for 0.75 years after which

32



she (sex = 2) died from a cause unrelated to DCS. Similarly, individual 7129 was followed for 7.69

years before she died from some disease of the circulatory system. In this data set, rate denotes the

age-, sex- and calendar matched expected mortality rate from DCS and other causes, respectively.

Models of type (27) estimate the component-speci�c3 excess hazard rates. Similar to a 'standard'

competing risk model, as described in equation (12), the component-speci�c excess hazard rates can

be used to calculate crude probabilities of death. The extension from (12) to component-speci�c

crude probabilities of death is immediate

Crcan,j(t) =

∫ t

0
S∗(u)R(u)λj(u)du, j ∈ {cvd, other} (28)

but requires the additional step of calculating R(u) =
∏
j Rj(u).

7.4 Findings and discussion

In this study we present a number of summary measures for quantifying the risk for death from late

e�ects of treatment relative to the overall risk of dying of breast cancer, or causes unrelated to the

cancer. Component-speci�c excess mortality rates (and rate ratios) were used to assess the impact

of prognostic factors on excess DCS mortality. Without making an assumption about independence

(i.e., between deaths from breast cancer, both DCS and non-DCS, and other causes) these cannot

be interpreted as net mortality rates from excess DCS. Instead, they describe the excess rate at

which women with breast cancer die of DCS, in the real world where other causes of death also

exist. Although estimates of net survival (or net mortality) are the gold standard for epidemiological

studies into the causes and risk of cancer, in practise, the independence assumption is often not

satis�ed, and inference is then based on the real-world mortality rates. There is, nevertheless,

no one-to-one relationship between the latter and crude survival probabilities. Competing risks

methodology is therefore required to estimate the (real-world) survival probabilities from di�erent

causes of death. Figure 10 summarizes temporal trends in the 15-year crude probabilities of death

from di�erent causes among women diagnosed with breast cancer at ages 55, 65 and 75 respectively.

Overall the probability of treatment-related DCS is very low (< 0.05) in relation to the probability

of dying from other causes (from breast cancer, or unrelated to breast cancer).

We assume that the excess DCS mortality is associated with the cancer in question and, more

speci�cally, that the excess DCS mortality is induced by the treatment. This is not a testable

assumption, but its validity relies primarily on:

1. The quality of the information stated on the death certi�cates. Even though the excess DCS

mortality rate is estimated in a relative survival framework, we must broadly categorise all

underlying causes of deaths into either DCS or non-DCS in order to identify the deaths that

occur in excess to what is expected in a comparable group of women free from breast cancer.

3These are sometimes referred to as cause-speci�c hazard rates [49] or transition intensities [82] in traditional
competing risk and multistate model literature
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Figure 10 � Temporal trends in component-speci�c crude probabilities of death among women diag-
nosed with breast cancer in Sweden between the years 1973 and 1992

2. Whether women with breast cancer are exchangeable to the matched general population with

respect to their cardio- and cerebrovascular risk pro�le, i.e., if the the fact that the women

have breast cancer is the only thing that distinguishes them from the general population with

respect to their risk of developing, and dying from DCS.

Sensitivity analyses, explained in detail in the paper, were carried out and promoted to assess

the impact of miss-classi�cations of the underlying causes of death on the estimated excess DCS

mortality rates. In addition, we also estimated excess DCS mortality by laterality. This analysis

was not included in the published paper, but we believe it provides support for the validity of our

approach to estimating excess DCS mortality. It is known that the myocardial exposure of breast

radiotherapy is higher among women treated for breast cancer in the left breast, as compared to

the right breast [83, 84, 85]. Figure 11, shows that this pattern is also present in our data. As

expected, the excess DCS mortality among women treated for breast cancer in their left breast is

higher, and increases with elapsed time since diagnosis. Women treated with breast cancer in their

right breast are also subject to excess DCS mortality (at a lower, and relatively constant, rate).

We speculate that this is indicative of two driving mechanisms for the excess DCS mortality, one

that arise from exposure to radiotherapy (left breast), and another that arise from chemotherapy

related cardiac dysfunction, which become clinically apparent earlier than radiation damages [80].

The excess DCS mortality that is observed in direct relation to the diagnosis is, however, unlikely

to be attributable to treatment, but possibly a severe side-e�ect from the high levels of psychosocial

stress that is induced by the cancer diagnosis itself [86].

From a public health perspective, being able to study if changes in clinical practise towards

reducing treatment-related mortality have had an impact on patient survival is important. Cardio-
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Figure 11 � Timing of excess non-DCS and excess DCS mortality by breast cancer laterality among
women diagnosed in Sweden between the years 1978 and 1982 at ages 70-79.

and cerebrovascular late e�ects from treatment is merely one indirect cancer consequent death out

of many possible, for example, risk for death from secondary cancers and infections in patients with

Hodgkin lymphoma, or suicide in patients with e.g., lung, prostate, or head and neck cancer. Finer

partitioning of excess cancer mortality would be useful to investigate the relative contribution of

each such cause to the overall risk of dying from the diagnosed cancer. Such analysis would require

additional use of the information stated on the death certi�cates and further work should address

under what situations �ner strati�cation is feasible.
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8 Study 3: Temporal trends in mortality from diseases of the cir-

culatory system after treatment for Hodgkin lymphoma

8.1 Motivation

Survival after Hodgkin lymphoma has increased substantially in the past four decades and, for

patients aged less than 65 years at diagnosis, the disease is now highly curable [87]. The improved

prognosis is likely attributable to improved patient assessment and staging, the development of

e�ective multi-agent chemotherapy, introduction of combined-modality therapy with reductions in

radiation �eld size and dose, and more apt evaluation of treatment response. The aim of this study

was to apply the methodology developed in Study II to present clinically interpretable estimates

of temporal trends in the burden of excess mortality from diseases of the circulatory system (DCS)

among Hodgkin lymphoma survivors who were treated in the 1970's through 1990's. In addition,

since the treatments administered to these patients are, to some extent, considered outdated in

modern Hodgkin lymphoma management, we also aimed to predict the future clinical burden among

patients diagnosed and treated in more recent years.

8.2 Data

Included in the study cohort were all patients diagnosed with Hodgkin lymphoma in Sweden between

1973 and 2006 at ages 19 to 79 (n=5,832). These patients were identi�ed in the Swedish Cancer

Register using ICD7 code 201. No patients were excluded on the basis of previous cancer diagnoses,

although in patients with multiple primary Hodgkin lymphoma diagnoses, we only considered the

�rst diagnosis (n=16 excluded). Patients reported as having suspected, or not microscopically veri-

�ed Hodgkin lymphoma were excluded (n = 36). Likewise were patients with a Hodgkin lymphoma

that was diagnosed incidentally at autopsy (n=318), leaving 5,462 patients in the analysed cohort.

The prognostic factors under investigation were sex, age at diagnosis and calendar year of diagnosis.

8.3 Methods

8.3.1 Approach to modelling

We estimated the component-speci�c excess DCS mortality rate, and remaining (non-DCS) ex-

cess mortality using �exible parametric survival models of the type described in Study 2. Each

component-speci�c baseline excess hazard function was modelled using 5 degrees of freedom (df).

The e�ects of age and year were modeled continuously and non-linearly using restricted cubic splines,

where the knots were placed at the 5th, 25th, 50th, 75th and 95th percentiles of the distribution

of the two variables, respectively. Moreover, the e�ects of these covariates were estimated inde-

pendently between the outcomes (i.e., no main e�ects were assumed to be shared between the two

outcomes) and time-dependently. Time-dependent e�ects were modeled with 12 df (3 df x 4 param-

eters representing the basis vectors for the age and calendar e�ects respectively). The assumption
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that the time-dependent e�ect of calendar year was shared between the outcomes was relaxed by

including a three-way interaction term (between calendar year, cause of death and the time scale).

In all, 57 parameters were estimated in the �nal �exible parametric model. When investigating the

statistical signi�cance of interaction terms, we sometimes kept non-signi�cant terms in the model

in order to avoid imposing constraints on estimates that were of primary interest. For example, we

did not constrain the e�ect of calendar year to be the same for both the excess DCS mortality and

the remaining excess mortality since temporal trends in these rates were the main interest of the

study.

8.3.2 Predicting excess mortality and crude probabilities of death into the future

We were only able to fully observe the 20-year excess DCS mortality rate, and remaining excess

mortality rate for patients diagnosed prior to 1988 (due to administrative censoring at 31 Dec 2007).

For patients diagnosed from 1988 and onwards, follow-up was, nevertheless, partially observable,

and used to extrapolate the long-term excess mortality beyond the range of existing data. The

extrapolations were based on the �tted trend (within the observable data) from the model speci�ed

above. Figure 12 shows how the model-based extrapolation of the 20-year excess DCS mortality

behaves beyond the observable data for patients diagnosed at age 60 and in di�erent years. Apart

from any assumptions that were made in terms of specifying a model for the covariate e�ects, the

extrapolated rates should only be interpreted under the additional assumption that no unpredictable

changes in the general pattern and trends of the mortality of either the HL patients or the general

population occurs.
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Figure 12 � Illustration of the estimated excess DCS mortality predicted within the range of observable
follow-up and extrapolated outside the range of follow-up for male patients, aged 60 years at diagnosis,
and diagnosed with Hodgkin lymphoma in Sweden between 1980 and 2000.
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8.4 Findings and discussion

Although excess mortality from DCS is a concern for long-term Hodgkin lymphoma survivors, the

actual risk of dying from such treatment related side-e�ects is small in relation to the risk of dying

from the underlying disease, or from other causes (unrelated to the disease). The 20-year excess DCS

mortality has decreased continually since the mid 1980's, and is predicted to further decrease among

patients diagnosed in the modern era. There are many possible explanations for these �ndings.

The National Care Programme has regularly been updated with regards to principles for treatment,

through restricting to low-dose radiotherapy and reducing and alternating chemotherapy cycles, with

the aim of minimizing the risk for long-term adverse events, without compromising the anti-tumour

e�ects [88]. However, lack of treatment data in this study, prevented us from disentangling the

relative contribution of these e�orts. Other actions to reduce treatment-related cardiotoxicity have

also included patient-speci�c recommendations and surveillance visits to estimate the individual

risk pro�le and enable early detection of symptoms [89].

Few studies on this topic have presented crude probabilities of death as measure of the risk that

Hodgkin lymphoma patients face to die of late cardiotoxic e�ects from treatment. Moreover, many

authors have recognized the di�culty in estimating the e�ects of long-term treatment complications

in patients diagnosed and treated more recently [90, 91, 92]. This study is novel in the sense that

we have strived to do both these things. Although the panorama of possible late e�ects attributable

to modern Hodgkin lymphoma treatment are yet to be veri�ed once the data becomes available, we

argue that, meanwhile, this study maximizes the amount of information that can be obtained from

the available data.

The predicted 20-year crude probabilities of death for patients diagnosed between the years 1988 and

2003 were calculated under the assumption that there will be no changes in the all-cause population

mortality between the years 2007 and 2023. However, the average life span in Sweden has increased

by 2.5 years, on average, per decade since the 1900 [4]. Of all causes that contribute to mortality

in the population, mortality from DCS has decreased most, for both men and women. The relative

reduction in DCS mortality, for individuals aged 30 to 79, over the past three decades has been

approximately 3-4% per year. In order to assess the sensitivity of the published 20-year crude

probabilities of death for patients diagnosed from 1988 and onwards, we also re-did the analysis

using a set of population mortality rates projected for the years 2013-2023 by Statistics Sweden,

using the so called Lee-Carter model [93]. This model incorporates past mortality trends and has

become the leading statistical model for population mortality forecasting, both in the demographic

literature and in practical applications. The Lee-Carter projections are summarised in Figure 13,

whereas Table 2 displays the �at mortality rates that were applied in our study. The projected

mortality rates for individuals up to age 60 are close to those estimated from the Lee-carter model.

However, for individuals older than 60, the rates used in our study are well above the rates projected

by Statistics Sweden.

38



Age
Sex 30 40 50 60 70 80
Males 0.7 1.1 3.2 7.1 20.6 66.5
Females 0.3 0.7 2.0 4.8 12.2 44.6

Table 2 � Projected mortality rates (per 1000 person-years) used in study III (assumed �xed for the
years 2008-2023)
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Figure 13 � Projected mortality rates (per 1000 person-years) for the Swedish population between the
years 2013-2023 using the Lee-Carter model. Source: Statistics Sweden 2013-08-06

The crude probabilities of death from di�erent causes that were published in study III are

repeated in Figure 14 (left-hand side). In addition, Figure 14 shows the di�erence (expressed in

percentage points) between the published results and the results obtained when population mortality

rates from the Lee-Carter models have been applied instead. The published crude probabilities of

death from other causes than Hodgkin lymphoma are overly pessimistic, as compared to those that

were obtained using the mortality rates projected by Statistics Sweden using the Lee-Carter model.

The di�erence between the two approaches was greatest for patients who were 60 years or older at

diagnosis and diagnosed in the most recent years (overestimated by 5 percentage points for patients

diagnosed in 2003). Whilst the direction of these �ndings on deaths from other causes than HL are

consistent with what we would expect to observe if the all-cause mortality rates were to decrease in

the future, changing to the Lee-Carter projected mortality rates appears to have a negligible impact

on the crude probabilities of death from Hodgkin lymphoma (DCS or non-DCS).
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Figure 14 � Crude probabilities of death (as published), and the di�erence (expressed in terms of
percentage points) between the published results and the results obtained when population mortality
rates from the Lee-Carter models have been applied.

We, nevertheless, recommend further investigation into the topic and impact of di�erent as-

sumptions for projecting the expected mortality rate in future studies of this kind. A less naive

approach than that applied in the current study might be warranted in other cohorts of patients,

particularly if the interest is in elderly patients.
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9 Study 4: The application of cure models in the presence of com-

peting risks

9.1 Motivation

Estimates of cancer survival in the presence of competing risks are frequently used to relate the

patients' risk of dying from their cancer to that of dying from competing causes, or to still be alive,

as a function of elapsed time since diagnosis. A natural question for patients to ask when faced

with such statistics is related to their chance of being cured from the diagnosed cancer.

In this study we demonstrate how �exible parametric statistical cure models, combined with com-

peting risks theory, can be used to estimate so called 'personal cure' in population-based cancer

patient survival studies.4 We also show how patients who are still alive, and under follow-up, can

be partitioned into two groups as depicted in Figure 15.
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Figure 15 � Partitioning of the crude probability space of cancer patients

Furthermore, we derive and discuss the usefulness of conditional crude probabilities as a tool for

supplying patients with updated estimates of their anticipated prognosis.

9.2 Data

All cases of malignant melanoma (ICD7: 190x), colon cancer (ICD7: 153x) and acute myeloid

leukemia (AML)(ICD7: 205.0, 205.9, 206.0 and 206.9) diagnosed in Sweden between 1973 and

2007, at ages 19 to 80, were extracted from the Swedish Cancer Register. Information about date

of death for deceased individuals was retrieved from the Swedish Causes of Death Register. No

4Even though the term 'personal cure' has been introduced in a population-based setting previously, using a
grouped data approach [94], we have deliberately avoided to use this terminology in the current study since it
provides a poor description of what is, in fact, estimated.
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patients were excluded on the basis of previous cancer diagnoses, although in patients with multiple

tumors of the same type, we only considered the �rst diagnosis. Incidental autopsy �ndings and

benign cancers were excluded from each of the three cohorts (melanoma: 11,958 exclusions, colon

cancer: 14,517 exclusions, AML: 2,436 exclusions). The last observable date for administrative

follow-up was December 31, 2012.

9.3 Methods

The general approach to estimating the quantities of interest in this study is outlined below:

1. Estimate the (net) survival from �exible parametric cure models. This involves de�ning a

point from which the patients are assumed to no longer experience excess mortality from the

diagnosed cancer. In this study, and for all three cancer types, statistical cure was assumed

to occur at 10 years after the cancer diagnosis.

2. Transform estimates of (net) survival from the �exible cure model into crude probabilities of

death from cancer by evaluating:

Crc(t) =

∫ t

0
S∗(u)R(u)λ(u)du,

and

Cro(t) =

∫ t

0
S∗(u)R(u)h∗(u)du.

3. Estimate the asymptote, Pbtd,c, to the cancer-speci�c cumulative incidence function, Crc(t).

Due to the pre-speci�ed time of cure, this asymptote corresponds to Pbtd,c = Crc(10), and

de�nes the proportion of patients who are bound to die from their diagnosed cancer, (i.e., one

minus the 'personal cure' proportion).

4. Calculate cumulative crude probabilities that patients who have not yet died (from any cause)

at time t after diagnosis will eventually die from cancer, Cralive,c(t), versus other causes,

Cralive,o(t), using:

Cralive,c(t) = Pbtd,c − Crcr,c(t) (29)

and

Cralive,o(t) = 1− Crcr,o(t)− Pbtd,c (30)

The above steps partition the crude probability space of cancer patients according to Figure 15.

The proportion of patients who will not die from cancer, conditioning on having survived until time

t, was calculated from:

Cro|alive(t) = 1−
Pbtd,c − Crc(t)

1− Crc(t)− Cro(t)
(31)
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The stpm2 program in the Stata software was used to �t the �exible parametric cure model. We

wrote a post-estimation command that was subsequently used to estimate equations (29)-(31).

The numerical approximations of the integrals and the variances used to construct 95% con�dence

intervals were performed using the methods described in chapter 5.3.1 of this thesis.

9.3.1 Approach to modelling

For the melanoma and colon cancer cohorts, we �tted �exible parametric cure models with 6 df for

modelling the baseline cumulative excess hazard function (where the knots placed at the 0th, 20th,

40th, 60th, 80th, 95th and 100:th centiles of the distribution of the uncensored log survival times).

For the AML cohort, we added one more internal knot at 8 years after diagnosis because the last

internal knot would otherwise be placed too early during follow-up (at 4.1 years). It has been shown

that it is important to disperse the internal knots over the entire follow-up when applying �exible

parametric cure models in order to achieve a good �t to the data [64].

All models were adjusted for sex, year of diagnosis and age at diagnosis. The e�ects of the continuous

variables were assumed non-linear and modeled using restricted cubic splines (using 4 df to represent

the e�ect of age, and 3 df for the calendar e�ect). Furthermore, the e�ect of age and calendar year

were modeled time dependently (using 3 × 4 df and 3 × 3 df, respectively, for the time-dependent

e�ects), and assumed to interact (using an additional 3 × 1 df for the interaction e�ect).

9.4 Findings and discussion

To cure a cancer patient from her disease can be viewed as the ultimate goal in medical decision

making, and the ability to quantify the anticipated survival from the prospect of cure should have

high clinical value. Statistical cure models aim to estimate the proportion of cancer patients who will

not experience any excess mortality from their disease. However, the cure proportion is estimated

in the absence of competing causes of death, and as such, it does not represent the actual survival

patterns in a given cohort of cancer patients. In this study, we have shown how to recalculate

net survival, and the statistical cure proportion, from a �exible parametric cure model into crude

survival probabilities, and a competing risks analogue to the cure proportion. In addition, we

have shown how the crude probability of still being alive after a diagnosis of cancer can be further

partitioned to estimate the proportion of patients who were alive and bound to die from their cancer,

versus alive and bound to die from other causes. Results from this analysis, presented for males

diagnosed with melanoma, colon cancer and AML, respectively, in Sweden in 2005, are summarized

in Figure 16. These are cancer types where statistical cure models have previously been applied to

Swedish data, but where competing risks were not taken into account in the analyses [95, 96, 97].

The interpretation of the results in the earlier studies was therefore somewhat di�erent. Similar to

other measures of net survival, the statistical cure proportion is an appropriate measure to evaluate

the progress of control activities, or improvements of cancer treatment. As such, it is also useful

for cancer patients, but in an indirect way. Crude estimates of survival re�ect the survival patterns
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Figure 16 � Crude probability of death from melanoma, colon cancer, and AML in Sweden among
males diagnosed in 2005.

that are actually observed. Given the increasing number of long-term cancer survivors, there is also

a need for statistical survival measures that are applicable under the realistic situation where other

causes than cancer may lead to the death of the patient. We believe that such measures are of a

more direct interest to cancer patients and physicians for the purposes of risk communication, but

also for scheduling follow-up visits to the clinic for long-term survivors.

Survival time from diagnosis is of great relevance to clinicians, researchers, and administrators, but is

less relevant to patients who have already survived some initial period. Mortality for many types of

cancer is highest in the months immediately following diagnosis, and consequently, survival estimates

from diagnosis will not be of great relevance to patients who have already survived a number of

months (or years). Of greater interest are so-called conditional survival probabilities; the estimated

future (crude) survival probability, conditional on having survived some initial period following

diagnosis. Conditional survival probabilities can be used to provide regular updates of the prognosis

and can provide critical information that may decrease anxiety associated with the diagnosis of

cancer, and help deal with feelings of uncertainty about the future. Baade and colleagues, for

example, state that:

"for patients who survive 1,3 and 5 years after diagnosis, access to updated information for each

point of their cancer recovery is important, providing scope for evidence-based optimism as they

progress on the survivor's journey" [98].

Conditional crude survival probabilities provide such information but have not been reported often

in practice. Figure 17 shows the age-speci�c conditional crude probabilities that patients who are

still alive one year and three years, respectively, after their diagnosis, will die from a cause unrelated

to their diagnosed cancer. For all three cancer types, a general improvement in prognosis follows
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from each additional year survived. For colon cancer and melanoma, nearly all patients who have

survived at least �ve years, irrespective of age at diagnosis, are predicted to die from some cause

unrelated to their cancer.

A potential criticism of the results presented in Figure 17 is related to how sensitive the results are

to the assumption that statistical cure has been reached after 10 years of follow-up. We strongly

suggest that �exible cure models should only be used to model cancer survival in situations where

it is known that excess mortality (on a group level) does eventually reach zero. For all cancer types

included in this study, there have been previous reports about statistical cure. Even so, it is useful

to also consider the robustness of the results with respect to the assumption that is made about

the timing of statistical cure by bringing the point of cure further forward in time. In Figure 17

we have therefor also overlaid the results from such sensitivity analyses, where statistical cure was

instead assumed to have occurred after 11, 12 and 13 years after diagnosis. The results are very

close to those based on the assumption that cure was reached after 10 years.
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Figure 17 � Estimated proportion of patients with melanoma, colon cancer and AML who are predicted
to die from causes other than their cancer, conditional upon having survived for one and �ve years,
respectively.
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10 Conclusions and discussion

The overall aim of this thesis has been to develop and apply statistical methods for presenting

population-based cancer survival statistics in a manner relevant for physicians and patients. In one

way or other, most statistical analyses of cancer patient data can probably be classed as relevant

for physicians and patients. For example, randomized clinical treatment trials are necessary to

evaluate the e�cacy of new treatments and, if the outcome is satisfactory, the new treatment will

bene�t future patients, so the study is relevant for patients in that sense. An observational study

that correlates survival of cancer patients with dietary habits can be relevant for patients if the

knowledge gained provides clues into the aetiology of the disease, and can be used as grounds for

nutritional recommendations that improve the well-being of the patients. Studies that evaluate the

e�ectiveness of screening programmes are highly relevant for patients, since acceptance for, and

participation in, existing programmes can be crucial to get an early diagnosis and to reduce the

burden of cancer. All of these research questions would typically be investigated using survival

analysis in a net framework5. However, throughout this thesis, I have referred to methods that are

relevant for physicians and patients almost synonymously with methods that aim to predict the

prognosis after a diagnosis of cancer in the presence of competing risks. Such methods are suitable

to e.g., predict survival for newly diagnosed patients, and to balance the risk of death from cancer,

overall or from treatment-related complications, against the risk of death from causes unrelated to

the diagnosed cancer. By presenting results in a manner that is understandable for both health

care professionals and lay audiences, and by explaining under what assumptions the methods and

statistical analyses are valid, we believe that such methods can be of direct use in risk counselling

between patients and physicians.

All studies in this thesis include competing risks methodology. In my experience, a wider recognition

of situations when the statistical analysis needs to be made in the presence, as opposed to absence,

of competing risks is needed. To date, many tutorial papers have been written on this subject, but

the uptake of new methods in applied research is generally slow and there still seems to be much

confusion surrounding this topic amongst medical researchers. In part, this is probably due to a

more general lack of understanding of the theoretical quantities that are, in fact, estimated using

traditional methods for survival analysis.

10.1 What do we aim to estimate?

To help researchers, unacquainted with statistical methods for competing risks, decide what analysis

to do, and what quantities can be estimated, I have developed a decision-tree (see next page) that

can serve as an informal guide towards an appropriate analysis. In principle, the choice of survival

analysis depends on the target quantity of interest, in this example net or crude survival.

5By a net survival framework I include methods that aim to estimate (net) survival functions, hazard rates and/or
hazard ratios
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Whether the �tted model actually provides a reasonable estimate of the target quantity depends on

the degree of systematic and random error that is inherent in the data, or arise in the estimation.

The �owchart aims to explain under what conditions net (marginal), cause-speci�c and subdistri-

bution hazard rates can be estimated, and what type of research questions each of these constructs

is best suited to answer6.

Broadly speaking, net survival is the underlying quantity of interest in many epidemiological appli-

cations (e.g., in studies of disease aetiology, or studies that investigate the e�ect of prognostic factors

on cause-speci�c survival). Under the assumption of conditional independence between the compet-

ing events there is a one-to-one relationship between net hazard rates and net survival (path 1 in

�owchart). This assumption is not formally testable using the competing risk data, but if violated,

cumulative survival curves (i.e., Kaplan-Meier curves or relative survival curves) do not provide

unbiased estimates of net survival, and the estimated hazard rates lose their (net) interpretation.

Without the independence assumption, the hazard rates become cause-speci�c hazard rates which

quantify the event rate in the realistic situation where individuals might experience a competing

event before the target event (path 2 in �owchart). That is, net hazard rates and cause-speci�c

hazard rates are technically estimated using the same statistical machinery, but the interpretation

of the estimated hazard, as one or the other, depends on whether the independence assumption can

be regarded satis�ed or not. The cause-speci�c hazard rates (and rate ratios), nevertheless, still

carry information that can be used for statistical inference. In practice, most epidemiological stud-

ies that aim to investigate a research question that pertains to net survival are probably analysed

using cause-speci�c hazard rates, and not marginal hazard rates, since the former can always be

estimated.

Crude survival, on the other hand, is primarily used to assess the impact of some risk/prognostic

factor on a speci�c target event, in the real-world situation when competing events might preclude

the event of interest from occurring. Unfortunately, the cause-speci�c hazard rate for a single cause

has no exact mathematical relationship with the corresponding cause-speci�c crude cumulative sur-

vival (i.e., cause-speci�c cumulative incidence functions). Instead, there are two main approaches

to estimation of crude survival from a regression modelling perspective,

1. by estimating the cause-speci�c hazard (or the excess hazard) and the all-cause survival and

transforming them to the crude survival scale in a separate step using equation 8 (path 3a in

�owchart).

2. by estimating the subdistribution hazard, e.g., using the Fine-Gray model, which has a one-to-

one correspondence to the cause-speci�c cumulative incidence function (path 3b in �owchart).

In contrast to the estimation of net survival, the independence assumption is not required to achieve

a valid estimate of crude survival. Throughout this thesis, we have applied the �rst approach to

estimation. The Fine-Gray model has not been used, or discussed, in this thesis previously but is a

6Systematic errors, such as confounding, selection-bias, recall bias etc, are not included in the �owchart but must
of course also be considered in order for any study to be valid.
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commonly adopted approach to estimating crude survival. In fact, the Fine-Gray model is probably

the most commonly applied method for estimating crude survival. The main reasons why we have

not considered the Fine-Gray model in this thesis, despite it's wide use in applied research, include:

• We measure cancer-speci�c survival using relative survival, as opposed to cause-speci�c sur-

vival. The Fine-Gray model has not been adapted for relative survival.

• In addition to crude survival probabilities, we also studied excess hazard rate ratios as an

e�ect measure for the association between certain covariates and net survival. For example,

in studies II and III we compared and contrasted the in�uence of age at diagnosis, sex, and

year of diagnosis, on the excess DCS mortality and remaining excess mortality respectively.

These were estimated from the same �exible parametric model that gave the estimates of S(t)

and λ(t) that were subsequently used to calculate crude survival probabilities. Subdistribu-

tion hazard rate ratios, estimated from a Fine-Gray model have a di�erent interpretation, as

compared to excess hazard rate ratios, and cannot be used to answer research questions that

pertain to net survival.

• Our group has developed a range of statistical methods for population-based cancer patient

survival by extending �exible parametric survival models. A nice feature of the methods

described in studies II and V, is that they are also �tted within this modelling framework.

We hope that this fact increases the acceptability and the uptake of the methods in applied

research.

Study I can be viewed as a classical competing risks analysis (in a relative survival framework) with

the goal to quantify probabilities of death from prostate cancer whilst adjusting for the competing

risk mortality. Studies II-IV, on the other hand, extend existing competing risks methodology, by

adapting and applying it in a new setting, in order to provide additional insight into the anticipated

prognosis of cancer patients.

For example, partitioning of excess mortality into component parts is conceptually similar to a cause-

speci�c competing risks analysis, where treatment related DCS deaths and other (non-treatment

related DCS) deaths are treated as separate outcomes. However, in practice, the fact that treatment

related DCS deaths are not possible to distinguish from DCS deaths that would have occurred

irrespective of whether the patient was treated or not, makes the analyses in studies II and II

impossible to carry out in a cause-speci�c setting. Thus, carrying over, and translating well-known

methods from the competing risks literature from a cause-speci�c to a relative survival framework

was needed.

Similarly, in study IV, we adapted competing risk methodology for relative survival to incorporate

the assumption that a proportion of the patients will eventually be statistically cured from their

disease. Such adaptation enabled estimation of "personal cure", and further partitioning of alive

cancer patients into distinct groups, based on their risk of eventually dying from the diagnosed

cancer, or from some cause unrelated to their disease. Summary measures of cancer patient survival
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that incorporate the prospect of cure are rarely reported, but can be useful in the dialogue between

physician and patient since it puts the health risks, faced by the patients with a curable cancer, in

context.

10.2 Presentation of results

With the development of new statistical methods, aimed at producing survival statistics that de-

scribe the likely outcome of a given disease, come challenges related to the presentation of the results

from such analyses.

In epidemiological association studies, there are often one or two variables (and possibly the in-

teraction between the two) whose e�ect on the outcome is of main interest. However, additional

covariates are typically also included in the analyses to control for potential confounding. The

results of such studies are often quite easily summarized in terms of hazard ratios in tabular for-

mat. In studies aimed at prediction, more complex/larger statistical models are typically required

in order to give meaningful predictions. In principle, any pertinent data useful for predicting the

outcome should be considered in predictive models, although attention must also be paid to avoid

over�tting. In practice, at least when it comes to register-based studies, we use the data that we

have at hand for prediction. In the majority of the studies in this thesis, the data available were

those recorded in the Swedish Cancer Register. This limited the covariates available for analysis to

relatively basic demographic data about the patient (age at diagnosis, sex, year of diagnosis etc.),

and hardly any data related to the tumour or treatment (except in study I where data from the

NPCR were used). Even so, when continuous covariates were modelled continuously, as opposed

to categorically (which seems to be the tradition in epidemiology) the number of possible covariate

patterns grew quickly, even with as few as 3-4 predictors in the model. A structured presentation

of results becomes still harder when considering conditional estimates of survival, since updated

predictions should probably be calculated for several time points after diagnosis in order to have

value in a clinical setting. In order to comply with the space limitations set up by the scienti�c jour-

nals in which our studies were published, we focussed on demonstrating the statistical methods and

thus restricted the presentation of results to "typical" patients. New modes/formats for displaying

predictions are needed for a more exhaustive presentation of results from studies of this type, a fact

that has also been addressed by researchers at the Norwegian Cancer Registry as follows:

Providing realistic, relevant and accurate prognostic information on smaller groups conditioned on

follow-up time, strati�ed on age, stage and possibly other prognostic variables, will be challenging

and expand the traditional cancer registry reports, probably beyond the comfort zone [99].

There are several large ongoing projects to make cancer patient survival estimates accessible to

health care professionals and patients via online prognostic resources. These prediction tools aim to

provide individual-level predictions of, e.g., metastatic progression, cause-speci�c survival and/or

life expectancy, based on a pro�le of values of prognostic factors that are entered into the web-based

application by the user. Predictions from elaborate statistical models are stored in a data base and
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shown only for the patient pro�le that is asked for in a given search query. Examples of such work

include the Cancer Survival Query System (CSQS) [100], developed by the Division of Cancer Con-

trol and Population Sciences at the National Cancer Institute, the prediction resource developed

and published by the Memorial-Sloan Kettering Cancer Center [101], as well as PREDICT, an on-

line prediction resource for breast cancer survival, developed by the National Institute for Health

Research and the University of Cambridge [102]. Similar large scale programs do not yet exist

in Sweden, but seem like the logical next step to assist physicians in risk counselling and to help

their patients to better understand the prognosis and the risks and bene�ts of various treatment

strategies.

10.3 Statistics targeted towards lay audiences

A reasonable question to ask is if we should be producing prognostic statistics aimed towards

patients at all, given the impossible task to foresee the future of an individual patient. It must

also be recognised that not all patients wish to speculate about their prognosis, and that physicians

might (quite rightly so) be reluctant to quote a single number that serves as a best guess of the

predicted prognosis. At the same time, information of this type is already communicated in the

clinics, although in more subtle terms than actual percentages, and patients and their families

are already known to actively search for information about their disease from web-based resources

[19, 103, 104]. To meet their information needs, whether it is to assemble an information base

for risk counselling, or to increase the general understanding of the potential implications of the

disease and treatment for the a�ected patient/family member, we believe they should have access

to the most recent and relevant data. We are, however, not suggesting that observational data and

prognostic information from prediction tools of the type discussed above should be used in isolation,

but rather as a complement to other scienti�c reports, and the clinical judgement and experience

of the treating physician.

There is a vast amount of research and literature available on the topic of best practices for reporting

medical information to lay people, see for example [16, 14, 105]. When it comes to presenting data,

it is crucial to understand that patients are heterogeneous with respect to their information literacy,

numeracy, and susceptibility to framing e�ects. In order to convey a clear message, all e�orts to make

data publicly available via e.g., web-based prediction tools must therefore be appropriately targeted

and adapted for the intended end-user. For example, visual tools that use natural frequencies to

display information have been found preferable to probability/percentage statements, or relative risk

measures that are quoted without reference to the absolute risks [106]. Another issue that needs to

be carefully explained when patients are seeking information outside the health care system, is the

distinction between single event probabilities and probabilities applicable on a group level [107]. For

this, we strongly advocate the use of disclaimers that explain the conditions for interpretation, and

that a complete picture for the individual patient is best given by the patients own care provider.
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11 Future perspectives

The opportunities to make more e�cient use of the internationally acclaimed health registers that

we have in Sweden are great. The Swedish cancer quality registers are starting to become mature,

and to reach a high level of completeness. It seems timely to review what information physicians,

who initiated and continuously report to these registers, wish to be able to access and bring into

their daily clinical work. With this thesis, we hope to have given some new ideas of how population-

based cancer register data could be used to investigate clinically relevant research questions, and to

summarise cancer patient survival statistics. My hope is that the work described can inspire new

work in the direction of making cancer patient survival statistics accessible to a broader range of

users. In addition to further tailoring cancer patient survival statistics to meet the needs of the

end users, and initiating the work towards developing a query system for presenting information

on cancer patient survival, a couple of methodological issues that require additional research are

described in this chapter.

11.1 Adjusting for comorbidities in studies of cancer patient survival

Relative survival is calculated as the ratio of the all-cause survival of the patients to the expected

survival of a comparable cohort from the general population, assumed free from the disease under

investigation. Apart from sex and calendar year, the expected survival is typically matched on each

patient's chronological age. However, adjusting for these factors alone might not be su�cient to

make the patients exchangeable to the general population. For example, among men with localised

prostate cancer we found than those who were diagnosed with low risk disease had, on average,

better all-cause survival than expected (i.e. negative excess mortality). One explanation for this

phenomenon is that the "biological age" of men with localised prostate cancer might, in fact, be lower

than their chronological age. The presence of comorbidities a�ects the biological age of individuals,

yet comorbidities are very rarely considered in population-based studies of cancer patient survival.

When comorbidities are considered, the Charlson comorbidity index [108] is typically used. The

Charlson comorbidity index was developed to predict one-year all-cause mortality among patients

enrolled in clinical trials and may therefore not be optimal for studying long-term cancer patient

survival. An alternative approach to adjusting for comorbidities in cancer survival studies has

been proposed by researchers at the National Cancer Institute, and involves matching patients to a

reference population based also on the "biological"/health status adjusted age [100]. Determining an

individual patient's health status adjusted age was done by using the number and type of comorbid

conditions recorded in a national social insurance programme (Medicare). In this example the

investigators chose to include 15 conditions that are also included in the Charlson comorbidity

index, but in principle any combination of conditions can be included in the modelling of the health

status adjusted age. In Sweden, it would be possible to use data recorded in the in- and out-

patient hospital registers, but possibly also the Prescribed Drug Register, to identify the comorbid

conditions that have the strongest in�uence on the patients' "biological" age.
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A second approach to making cancer patients exchangeable to general population is to stratify the

conventionally used population mortality �les on additional factors. US life tables are, for example,

often strati�ed on race, but suggestions and examples of population mortality �les that include

social class, geographic region and smoking status also exist [109, 110, 95, 111]. Irrespective of

the preferred approach, to develop and apply methods that allow adjusting for additional factors

which make patients heterogeneous from the general population is important to further improve

predictions of survival in population-based cancer studies.

11.2 Assumptions for the expected survival in the cancer-free population

Standard errors of relative survival ratios are calculated without taking random variation in the

expected survival into consideration. Variation in the expected survival has generally been viewed

as negligible since the population life tables, from which the expected survival is typically retrieved,

are derived from a large sample (the entire population). The expected survival in a given cohort of

patients is, however, still subject to random variation resulting from random variation in the age

distribution of the cancer patients. Moreover, the random variation in the observed and expected

survival of cancer patients may be positively correlated, as both tend to decrease with increasing age.

Brenner and Hakulinen demonstrated empirically that the latter correlation was of such magnitude

that standard errors that accounted for the covariance between observed and expected survival were

generally lower than those standard errors that are conventionally used (and which entirely ignore

expected variation in relative survival calculations) [112]. In practice, this �nding has not had an

in�uence on how standard errors for relative survival survival are calculated. Reasons for this might

be that the well-known Greenwood method at least gives conservative estimates of the standard

error, and that bootstrap con�dence intervals are found too computationally intensive in practice.

In this thesis, we have also relied on the assumption that any random variation in the expected

survival/mortality is negligible, and have treated them as �xed in the estimation and calculation of

crude survival probabilities. A theoretical extension that is warranted involves assessing the validity

of this assumption. In particular, such evaluation is important if there is a general movement in

the �eld towards stratifying population life tables on additional factors, such as socio-economic

status, race and/or comorbidity indices to satisfy the exchangeability assumption. Increasing the

dimension of population life tables inevitably also makes the argument that the variability in the

expected survival is negligible less convincing (since the data that gave rise to the life tables become

more sparse). Seppä et al. have recently studied the impact of treating region-speci�c expected

mortality rates as random quantities, as opposed to �xed, in the context of quantifying region-

speci�c cure proportions among patients with colon cancer in Finland [113]. Only minor di�erences

in the estimated cure proportions and median survival times of the uncured were seen when the

expected mortality rates were treated as random. Studies that investigate the consequences of

treating expected mortality rates as �xed in the settings of other cancer types and study designs

are, however, still needed.
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