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ABSTRACT 

The processes involved in neuroprotection and brain repair are an 
important aspect of the preservation and restoration of neuronal functions 
affected by pathological lesions. Mechanisms that stimulate, manage and 
regulate these processes thus hold potential for the development of 
treatment strategies for Alzheimer disease (AD). The aim of this thesis was 
to increase our understanding of the stimulation of neuroprotective and 
regenerative mechanisms, in particular with respect to amyloid-β (Aβ) 
accumulation and other pathological processes associated with AD. 

Mounting evidence suggests that the continuous loss of 
cholinergic neurons and nicotinic receptors (nAChRs) in the hippocampus 
and cerebral cortex could be mediated through an interaction between α7 
nAChRs and Aβ species. In paper I, we investigated interaction of α7 
nAChRs with different forms of Aβ, and the functional consequences of 
these interactions. We found that α7 nAChRs play an important role in 
mediating neuroprotective actions against Aβ-induced neurotoxicity, and 
that the assembly form of Aβ is important for the interaction with α7 
nAChRs and the downstream effects in neuronal cells. Fibrillar Aβ appears 
to cause cytotoxic effects by blocking α7 nAChRs, whereas oligomeric Aβ 
seems to activate α7 nAChRs to modulate calcium-dependent synaptic 
function.  

In paper II, we characterized the neuroprotective and 
neurotrophic actions of amyloid-modulatory candidate drugs (–)- and (+)-
phenserine and its primary metabolites, and investigated the primary 
signaling pathways responsible for mediating these effects. (+)-Phenserine 
increased the proliferation of mouse neural progenitor cells in culture via 
activation of MAPK signaling pathways, including elevated cortical levels 
of brain-derived neurotrophic factor in mouse brain. In paper III, we 
investigated the modulating effects of (+)-phenserine on the changes in 
brain synaptic function, hippocampal neurogenesis, and inflammatory cells 
at different stages of amyloid pathology. (+)-Phenserine increased 
proliferation of neural progenitor cells, and increased the maturation of 
newborn neurons in the hippocampi of young adult Tg2576 mice but not in 
older mice with advanced Aβ plaque pathology.  

In paper IV, we investigated the effects of stem cell 
transplantation and modulation of Aβ and α7 nAChRs on endogenous 
neurogenesis and astrocytosis, graft survival, and cognition. 
Intrahippocampi transplantation of human neural stem cells (hNSCs) 
improved spatial memory in young adult Tg2576 mice, and increased 
endogenous hippocampal neurogenesis. (+)-Phenserine increased graft 
survival but blocked the hNSC transplant-mediated increase in endogenous 
neurogenesis, indicative of interfering mechanisms of action. We found 
that α7 nAChR-expressing astrocytes accumulated along the needle track 
after transplantation, and that the numbers of these astrocytes correlated 
with the degree of endogenous hippocampal neurogenesis. Hence, we 



postulate a hitherto unexplored role for α7 nAChR-expressing astrocytes 
in neurogenesis and tissue remodeling. 

The clinical implications of stimulation of neuroprotection 
and brain repair in the course of AD are currently under investigation. 
However, it is my hope that the cumulative findings presented in this thesis 
will provide a better understanding of the possibilities and limitations of 
these therapeutic strategies that aim to change or halt the clinical 
progression of AD. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



SAMMANFATTNING PÅ SVENSKA 

Idag är över 35 miljoner individer i världen drabbade av demens. I takt 
med att andelen gamla i befolkningen stiger, beräknar man att antalet 
patienter kommer att fördubblas vart tjugonde år, vilket utgör ett allt större 
medicinskt, ekonomiskt och socialt problem.  

Den vanligaste demensformen är Alzheimers sjukdom (AD), som 
kännetecknas av patologiska förändringar i hjärnan i form av extracellulära 
depåer av amyloida plack av proteinet amyloid-β (Aβ) och intracellulära 
neurofibrillära nystan av tau-protein. En annan viktig konsekvens vid AD 
är en drastisk förlust av framförallt kolinerga nervceller i basala 
framhjärnan och dessa cellers projektionsområden i cortex och 
hippocampus. Denna förlust är kopplad till minnesstörningar som 
framträder i patienter under sjukdomens förlopp. Behandling med olika 
typer av kolinesterashämmare är idag den mest vanliga behandlingsformen 
och verkar genom att stimulera frisättning av signalsubstansen acetylkolin i 
kvarvarande kolinerga neuron.  
 
Idag tros Aβ aktivera olika sjukdomsprocesser, som tillsammans leder till 
försämrad signalering mellan nervceller och till nedsättning av de kognitiva 
funktionerna, som är karaktäristiska vid AD. Huvudfokus i min avhandling 
är att undersöka hur vi kan stimulera skyddande, (neuroprotektiva) och 
återuppbyggande (regenerativa) processer i hjärnan, med implikation för 
utvecklingen av nya behandlingsstrategier vid AD. I ett translationellt 
tillvägagångssätt har jag studerat dessa processer i modellsystem med 
neuronala celler och stamceller, kombinerat med läkemedelsbehandling 
och transplantationsstudier i AD transgena möss. 
 
I studie I undersökte vi i) hur stimulering av α7 nikotinreceptorer, som är 
viktiga för minne och inlärning, verkar skyddande mot Aβ-medierad 
toxicitet, samt ii) hur olika former av Aβ interagerar med 
nikotinreceptorer. Aggregationsformen av Aβ visade sig ha stor betydelse 
för interaktionen, där mindre och lösliga, oligomera former binder till α7 
nikotinreceptorer för att modulera synaptisk aktivitet, medan de stora, 
fibrillära formerna, tycks blockera dessa nikotinreceptorer för att orsaka 
neurotoxicitet.  
 
Studie II syftade till att karaktärisera neuroprotektiva och regenerativa, 
samt neurotrofiska egenskaper hos den Aβ-sänkande 
läkemedelskandidaten fenserin och dess metaboliter, samt att undersöka 
vilka mekanismer som medierar dessa effekter. Substanserna uppvisade 
neurotrofiska såväl som neuroprotektiva effekter i olika cellulära 
modellsystem, som delvis var medierade via proteinkinas C och MAPK-
signalering. Potentiell translationell relevans av fynden undersöktes med 
hjälp av 4-6 månader gamla Tg2576 transgena möss där fenserin ökade 
uttrycket av en neurogenes-markören doublecortin, samt ökade nivåer av 
den neurotrofiska faktorn BDNF. 
 



Fortsättningsvis utvärderade vi i studie III hur en sänkning av Aβ nivåer 
påverkar neurotrofiska och patologiska processer i hjärnan, samt när under 
sjukdomsförloppet det är möjligt att stimulera regenerativa effekter. 
Studien visar att fenserin sänker nivåer av de vanligaste amyloidformerna 
Aβ1-40 och Aβ1-42 i 4-6 och 15-18 månader gamla Tg2576 transgena 
möss. Behandlingen gav även en ökad cellproliferation i hippocampus hos 
såväl unga som äldre djur, och en ökad förgrening av nybildade neuron i 
hippocampus hos de unga djuren, men inte hos de ändre djuren med 
framträdande amyloid-patologi.  
 
Baserat på fynden i de tidigare studierna, ville vi i studie IV undersöka 
hur regenerativa processer och minnesfunktioner kan stimuleras in vivo, 
genom att kombinera transplantation av humana stamceller och 
farmakologisk behandling med läkemedel som angriper 
amyloidproduktion och stimulerar α7 nikotinreceptorer i Tg2576 
transgena möss. Stamcellstransplantation orsakade en minnesförbättring 
hos mössen, som var associerat till en ökad nybildning av nerveller 
(neurogenes) i hippocampus. Samtidig behandling med fenserin ökade 
överlevnaden av transplanterade celler men motverkade de stamcells-
medierade effekterna på kognition och neurogenes. Fynden indikerar att 
fenserin verkar antagonistiskt istället för additivt via liknande neurotrofiska 
mekanismer som de transplanterade stamcellerna. 
Kombinationsbehandling med α7 nikotinagonisten JN403 visade att det 
föreligger ett samband mellan antalet α7 nikotinreceptoruttryckande 
astrocyter och graden av neurogenes i hippocampus. Vi postulerar att 
förekomsten av denna population av astrocyter i hippocampus kan spela en 
viktig roll vid regenerativa processer i hjärnan.    
 
Vi vet idag att ansamlingen av amyloid sker tidigt under sjukdomsförloppet 
vid AD och troligen måste vi därför introducera effektiv behandling i ett 
tidigt skede av sjukdomen. Resultaten i min avhandling visar att 
möjligheten att stimulera neuroprotektion och regeneration är möjlig vid 
en ålder där patologin ännu inte är så utbredd. Tillsammans ämnar 
studierna att hjälpa till i utvecklingen av läkemedel som skyddar mot Aβ-
inducerad toxicitet, samt att öka förståelsen för möjligheter och 
begränsningar med att stimulera neurotrofiska och regenerativa processer i 
hjärnan hos AD patienter. Den kliniska tillämpningen av studier som syftar 
till att stimulera neuroprotektion och neurogenes återstår att utreda, och 
kommer förhoppningsvis bidra till terapeutiska strategier som kan 
modulera eller bromsa det kliniska förloppet vid AD.  
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1 INTRODUCTION 

1.1 ALZHEIMER DISEASE 

More than 35 million people worldwide are currently afflicted by dementia, and this 

number is expected to double every 20 years. The prevalence of dementia increases 

dramatically with age and, as life expectancy continues to increase, the population 

above 60 years of age is expected to increase by 1.25 billion by 2050. This increase is 

equivalent to 22% of the current world population, with the most rapid increase in the 

proportion of elderly expected in China, India and Latin America (Chan et al., 2013; 

Prince et al., 2013). This expectation of a dramatic increase in dementia cases places an 

enormous burden on caregivers and relatives. The worldwide cost of dementia to 

society has been estimated as 604 billion USD, equivalent to 1% of the world’s gross 

domestic product (Wimo et al., 2013). 

Fifty to 70 % of all patients with dementia have Alzheimer disease (AD), 

which is manifested clinically by a progressive decline in cognitive function, starting 

with subtle impairments to episodic memory, moving on to alterations in language and 

changes in behavior and personality, and ending with the need for total care. The 

earliest clinical features of a heterogeneous group of cognitive disorders such as AD can 

be described as mild cognitive impairment (MCI). Some patients with MCI will go on 

to develop AD, some will develop other types of dementia, and some will remain 

cognitively stable or will revert to normal. MCI may be the result of neuronal 

degeneration, but can also be caused by depression, trauma, ischemia, metabolic 

disturbances, or other conditions (Petersen et al., 2009; Winblad et al., 2004).  

The German physician Alois Alzheimer first described the pathological 

features of AD in 1906 (Alzheimer et al., 1995) and extensive research over the last two 

decades has finally provided information on the underlying pathogenesis and disease 

progression. The development of biomarkers for early diagnosis and evaluation of novel 

treatments in recent years was groundbreaking, but this branch of investigation is as yet 

in its infancy. Despite the large numbers of investigative studies and clinical trials over 

the last 30 years, the challenge to develop treatment strategies that can effectively 

prevent, halt or delay the onset and progression of AD remains.    

 

 



 

 2 

1.1.1 Pathogenesis 

The characteristic histopathological features of the AD brain include extracellular 

depositions of amyloid-β (Aβ) plaques and neurofibrillary tangles (NFTs) consisting of 

hyper-phosphorylated tau. The development of Aβ and tau pathogenesis typically 

follows distinct patterns that have been classified in stages (A–C and I–VI, respectively) 

according to the brain regions affected. In stage A, amyloid progression exclusively 

involves neocortical regions, whereas in stage B, Aβ has progressed to isocortical areas 

including small amounts of Aβ deposition in the hippocampus and in some cases also in 

the entorhinal cortex. In stage C, Aβ deposits are present throughout all isocortical 

areas including the sensory and motor cortex, and subcortical regions. Progression of 

tau pathology follows a different pattern, typically progressing from the transentorhinal 

region (transentorhinal stages I–II), and spreading to the hippocampus (limbic stages 

III–IV), and then to the isocortical regions (isocortical stages V–VI) (Braak and Braak, 

1991; Braak and Braak, 1997; Thal et al., 2002).  

 

1.1.1.1 The Aβ cascade theory and beyond 
 
The amyloid casacade theory (Hardy and Higgins, 1992) postulates that accumulation 

of Aβ in the brain is a primary event that triggers other secondary pathological events, 

such as inflammatory processes, altered protein kinase signaling and oxidative stress, 

resulting in neuronal and synaptic dysfunction and eventually cell death. The 

hypothesis that Aβ is the main cause for AD pathogenesis still has strong support, 

although a growing body of evidence suggests that, because of the multifactorial nature 

of the disease, AD is unlikely to be caused solely by the accumulation of Aβ. 

Interestingly, NFTs but not Aβ plaques are associated with cognitive decline 

(Arriagada et al., 1992). Furthermore, there is a strong correlation with synaptic loss 

in AD (Terry et al., 1991). Studies indicating that AD-related genes, including familial 

AD (FAD) mutations (see section 1.1.4 Risk factors and genetics), cause synaptic 

dysfunction and neurodegeneration without the involvement of Aβ have led to the 

identification of amyloid-independent pathological pathways for the disease (Chetelat, 

2013; Pimplikar et al., 2010). Hence, the fact that both amyloid-dependent and 

amyloid-independent mechanisms contribute to AD pathology through parallel 

pathways should be taken into consideration in the development of effective treatment 

strategies, as discussed further in section 1.4 Development of treatment strategies.   
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1.1.1.2 Aβ processing and deposition  
 
The membrane-bound amyloid precursor protein (APP) can be processed along either 

the non-amyloidogenic or the amyloidogenic pathway. In the non-amyloidogenic 

pathway, APP is cleaved within the Aβ sequence by α-secretase to form soluble sAPPα 

and is then further cleaved by γ-secretase to yield a p3 fragment. Proteolytic cleavage of 

APP in the amyloidogenic pathway by β-secretase releases a soluble sAPPβ fragment, 

and subsequent cleavage by γ-secretase results in the formation of Aβ peptides. The 

most abundant Aβ peptides in the brain are 40 and 42 amino acids long; Aβ1-42 is 

more hydrophobic and prone to aggregate than the shorter Aβ fragments (De Strooper 

et al., 2010; Selkoe, 2001). It has been suggested that the shorter Aβ fragments Aβ1-14, 

Aβ1-15 and Aβ1-16 are formed via concerted cleavage by α- and β-secretase and do 

not contribute to Aβ aggregation, whereas Aβ1-17 and longer fragments are formed 

through an amyloidogenic, γ-secretase-dependent pathway (Portelius et al., 2009). Aβ 

peptides aggegate in a multistep process into various assemblies ranging from small 

oligomers to protofibrils, which later form Aβ plaques (Rochet and Lansbury, 2000) 

(figure 1). The degradation of Aβ by enzymes such as neprilysin decreases with age 

(Hellstrom-Lindahl et al., 2008), and in AD (Miners et al., 2008). 

 

 

Figure 1. Schematic outline of Aβ aggregation from monomers to plaques. 

 

One of the important goals of AD research is to elucidate which aggregated forms of 

Aβ are involved in mediating the impaired cellular functions in the brain. An increasing 

number of studies have indicated that Aβ oligomers may be the main contributors to 

cognitive decline in AD (Lambert et al., 1998; Walsh and Selkoe, 2007), and that the 
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presence of these correlates with cognitive decline better than the presence of fibrillar 

Aβ (Naslund et al., 2000). One of the main focuses of current AD research is to 

understand the actions of the various Aβ assemblies on their cellular targets. To date, 

in vitro studies have mainly used recombinant or synthetic Aβ. Isolation of Aβ species 

from AD postmortem brains is laborious, mostly because the oligomers are sensitive 

to the reagents used in experimental protocols and can be difficult to detect. The 

specificity of antibodies targeting oligomeric Aβ is another important issue. Recent 

findings suggest that Aβ dimers isolated from AD autopsied brain tissue impair 

synaptic function and are associated with Alzheimer-type dementia (Mc Donald et al., 

2010; Shankar et al., 2008). Other studies suggest that Aβ-derived diffusible ligands 

(ADDLs) (Gong et al., 2003; Lambert et al., 1998) could be important components of 

AD pathology. Characterization of Aβ assemblies in postmortem human brain tissue 

has revealed that higher molecular weight oligomers, including dodecamers (Gong et 

al., 2003), decamers and pentamers, seem to be more prevalent than others in the AD 

brain, and that pentamers are correlated with reductions in choline acetyltransferase 

(ChAT) levels in the frontal cortices of AD patients (Bao et al., 2012). Other species 

thought to play a role in AD pathogenesis are 56 kDa assemblies (referred to as 

Aβ*56) (Lesne et al., 2006), globulomers (Gellermann et al., 2008), and protofibrils 

(Harper et al., 1997; Walsh et al., 1997).  

 Aβ probably also plays a physiological role in the healthy brain. In fact, 

various Aβ oligomer assemblies have been found and characterized in the brains of 

cognitively normal control subjects (Bao et al., 2012; Lesne et al., 2013). Furthermore, 

monomeric Aβ protects rat cortical neurons against trophic deprivation and 

excitotoxicity via the phosphatidyl inositol-3 kinase (PI3K) pathway (Giuffrida et al., 

2009).  

  

1.1.1.3 Tau 
 
Tau is a microtubulin-associated protein that is abundant in neurons in the CNS, 

mainly in the neuron axons but also in the dendrites (Grundke-Iqbal et al., 1986; Ittner 

et al., 2010). Tau stabilizes the microtubule structure of the neuron and regulates 

axonal transport (Ittner and Gotz, 2011). When tau is hyperphosphorylated, it 

dissociates from the microtubules and assembles into paired filaments, which then 

aggregate to form NFTs. Dissociation from the microtubules results in changes to the 

axonal transport system, and subsequent synaptic loss (Iqbal and Grundke-Iqbal, 2005). 
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Synaptic dysfunction and neuronal degeneration parallel the formation of NFTs, but 

the causal link between these events is as yet unclear (Serrano-Pozo et al., 2011).  

 

1.1.1.4 Inflammatory changes 
 
The classical neuropathological features, Aβ plaques and NFTs, are accompanied by 

hallmark increases in activated microglia and reactive astrocytes in the brains of AD 

patients (Beach et al., 1989; Itagaki et al., 1989; Masliah et al., 1991). The 

inflammatory responses could have a beneficial function; glial cells clear Aβ and 

debris through phagocytic mechanisms and play an important role in tissue repair 

and remodeling. However, uncontrolled inflammation with excess production of 

neurotoxic species can further potentiate pathological processes in AD (Glass et al., 

2010). Recent data suggest that microglia and astrocytes play important roles in 

regulating and maintaining neuronal activity, which can be adversely influenced by 

elevated Aβ levels (Graeber, 2010). Aβ in turn increases the synthesis of microglia and 

reactive astrocytes, and the release of pro-inflammatory cytokines such as interleukin-

1β (IL-1β) and tumor necrosis factor-α (TNFα), and chemokines such as monocyte 

chemo-attractant protein-1 (MCP-1) (Combs et al., 2001; Lindberg et al., 2005; Meda 

et al., 1995). MCP-1 also contributes to the recruitment of astrocytes around Aβ 

plaques (Wyss-Coray et al., 2003). Aβ-mediated activation of microglia stimulates the 

production of reactive oxygen species, which in turn leads to oxidative stress and 

mitochondrial dysfunction (Baloyannis et al., 2004; Butterfield et al., 2001; Sas et al., 

2007). The increased production of cytokines and reactive oxygen species results in 

targeting of cholinergic neurons and activation of astrocytes, which further amplifies 

the inflammatory signals (Glass et al., 2010). Whether inflammation in AD is a cause 

or consequence of the disease, is as yet unknown.  

 

1.1.2 The cholinergic system and nicotinic receptors in AD 

The cholinergic innervation system in the brain consists of basal forebrain cholinergic 

neurons that project to the hippocampus, amygdala, and cerebral cortex. Cholinergic 

neurotransmission is mediated by the release of acetylcholine (ACh), which is 

synthesized by ChAT and upon release interacts with neuronal nicotinic and 

muscarinic ACh receptors (nAChRs and mAChRs, respectively). ACh is inactivated 

through hydrolysis by acetylcholinesterase (AChE) in the synaptic cleft (Paterson and 

Nordberg, 2000; Schliebs and Arendt, 2006).  
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The nAChRs play an important role in regulating cognitive functions such as 

learning, memory and attention. They are located pre- and postsynaptically, as well as 

peri- and extra-synaptically, and modulate the release not only of ACh but also of other 

neurotransmitters such as dopamine, noradrenaline, serotonin, γ-aminobutyric acid 

(GABA), and glutamate (Paterson and Nordberg, 2000; Wonnacott, 1997). The 

nAChRs are ion channels composed of either α subunits (α2-10) or a combination of α 

and β subunits (β2-4). These combinations give rise to receptors with distinct 

physiological and pharmacological properties. The most common nAChR subunits in 

the mammalian brain are α3, α4, α7 and β2 (Gotti and Clementi, 2004; Paterson and 

Nordberg, 2000). This thesis focuses mainly on the α7 nAChRs, which are expressed 

throughout the human brain with the highest levels in the hippocampus, caudate 

nucleus, thalamic nuclei, geniculate bodies, diagonal band of broca and nucleus basalis 

of meynert (Paterson and Nordberg, 2000; Rubboli et al., 1994). 

Although several other neurotransmitter systems are affected in AD, the 

reduction in synthesis of ACh (the so-called cholinergic deficit) is the most severe effect 

and this correlates well with cognitive decline (Kadir et al., 2006; Nordberg et al., 

1995). Progressive degeneration of cholinergic neurons occurs in AD, accompanied by 

reductions in the levels of ChAT (Davies and Maloney, 1976; Perry et al., 1977) and 

also in nAChRs, mostly affecting levels of neuronal α3, α4 and α7 nAChR subunits in 

the brain (Nordberg, 2001; Paterson and Nordberg, 2000). Although one study showed 

that levels of α4β2 nAChRs had already been reduced by the time the MCI stage was 

reached (Kendziorra et al., 2011), another found that, when measured using 

[3H]epibatidine binding, the loss in nAChRs occurred after the transition from MCI to 

AD (Sabbagh et al., 2006). Interestingly, the number of α7 nAChRs is reduced on 

neurons but is up-regulated on astrocytes surrounding Aβ plaques in AD postmortem 

brains (Yu et al., 2005). Regional distribution of mRNA levels for α3 and α4 nAChRs 

are not altered, whereas mRNA levels for α7 nAChRs are elevated in the hippocampi 

of AD patients (Hellstrom-Lindahl et al., 1999). These findings suggest that the altered 

nAChR levels in AD occur mainly after transcription. 

 

1.1.3 Amyloid-β interactions with nicotinic receptors  

It is possible that Aβ-mediated neurotoxicity is the result of an interaction between Aβ 

and nAChRs in the brain; Aβ has been shown to interact with nAChRs on neurons 

with resultant impairment of synaptic function (Pettit et al., 2001; Wang et al., 2000a; 
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Wang et al., 2000b). One suggested mechanism is that Aβ/α7 nAChR complexes on 

glutaminergic neurons are internalized and then contribute to intracellular 

accumulation of Aβ, endocytosis of N-methyl-D-aspartate (NMDA) receptors, and 

impaired synaptic function (Snyder et al., 2005). In support of this, increased 

accumulations of Aβ have been found in cholinergic neurons with high expression of 

α7 nAChRs in the AD brain (Nagele et al., 2002), which could cause these neurons to 

be particularly vulnerable in AD (D'Andrea and Nagele, 2006). Several studies have 

indicated that nAChRs might be involved in promoting neuroprotective mechanisms in 

the brain (Buckingham et al., 2009; Kihara et al., 1997; Liu and Zhao, 2004; Picciotto 

and Zoli, 2008), which has led to an interest in developing drugs that activate nAChRs. 

Several workers have shown that nAChR agonists protect neurons against Aβ-induced 

toxicity (Kihara et al., 1997; Liu and Zhao, 2004). Both α4β2 and α7 nAchRs have 

been implicated in neuroprotection against Aβ-induced toxicity (Kihara et al., 1998; 

Takada et al., 2003), although α7 nAChRs are considered the primary mediator.  

A number of mechanistic explanations for these effects have been proposed. A 

study that tested the neuroprotective effects of various nicotinic agonists showed that the 

extent of protection was associated with the extent of upregulation of α7 nAChRs 

(Jonnala and Buccafusco, 2001), suggesting that this type of positive feedback loop 

could be important in potentiating the neuroprotective effect. But what downstream 

signalling pathways are involved in nAChR-mediated neuroprotection? The well 

known anti-apoptotic PI3K/v-akt murine thymoma viral oncogene homolog (PI3K-

AKT) pathway has been identified as an important component, possibly through the 

up-regulation of the anti-apoptotic protein BCL 2 (Arias et al., 2004). The Janus kinase-

2/signal transducer and activator of transcription-3 (JAK/STAT) pathway is also 

activated through stimulation of α7 nAChRs, where JAK may link the PI3K pathway 

with the neuroprotective STAT signaling pathway (Shaw et al., 2002). However, it is 

not known whether this pathway is essential for neuroprotection. Another pathway 

that has been identified as an important mediator of α7 nAChR-induced 

neuroprotection, is the mitogen-activated protein kinase (MAPK)/ERK pathway. α7 

nAChR agonists have been shown to promote neuronal survival via activation of 

ERK1/2, which is upstream of the transcription factor c-Myc (which provides anti-

apoptotic effects) and the cAMP response element-binding protein (CREB; which is 

important for a variety of functions, including memory formation) (Bitner et al., 2007; 

Dajas-Bailador et al., 2002b; Ren et al., 2005). The α7 nAChR-mediated increase in 
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intracellular levels of calcium ions, both via the receptor but also through the activation 

of intracellular stores, is also thought to be important for neuroprotection (Dajas-

Bailador et al., 2002a; Ren et al., 2005)  

Paradoxically, Aβ also activates signalling pathways such as MAPK-CREB 

mentioned above, and studies have indicated that the concentrations and time course of 

Aβ exposure determine which pathways are activated (Bell et al., 2004; Dineley et al., 

2001). This suggests that it might be possible to pharmacologically intervene in 

downstream processes to shift the actions of Aβ towards a pro-survival route.    

In addition to their association with neuroprotection, a recent study reported 

that α7 nAChRs also play an important role in the integration and maturation of 

newborn hippocampal neurons (Campbell et al., 2010). These findings suggest that α7 

nAChRs are important in mediating both neuroprotective and neurotrophic effects.   

 

1.1.4 Risk factors and genetics 

Several risk factors are considered to be important in the etiology of AD (Reitz et al., 

2011). Advancing age is the greatest risk factor but lower levels of formal education 

have also been implicated (Stern, 2012; Stern et al., 1994), possibly as a result of a 

smaller cognitive reserve as compensation for increasing pathological changes in the brain. 

The term cognitive reserve, which has emerged from epidemiological studies, is 

associated with the theory that the brain possesses an intrinsic ability to cope with 

pathology through cognitive processing and compensatory mechanisms, which can help 

to delay the cognitive decline in AD (Stern, 2012). The level of cognitive and social 

engagement could also be important for brain function and the risk of dementia 

(Fratiglioni et al., 2004). Many risk factors for cardiovascular diseases have also been 

shown to increase the risk of developing AD and other dementias. These riskfactors 

include high blood glucose and diabetes mellitus (Ahtiluoto et al., 2010), hypertension, 

obesity in midlife, and high cholesterol levels (Kivipelto et al., 2005). Traumatic brain 

injury is another important factor which can increase the risk of AD by a factor of 

approximately 4.5 (Plassman et al., 2000). 

 Alzheimer’s disease can be classified as sporadic or hereditary (FAD), the latter 

representing 5-10% of all diagnosed AD cases. Early and late onset AD are 

differentiated depending on when the first symptoms appear: before or after the age of 

65 years. To date, genetic studies have revealed nearly 260 mutations 

(http://www.molgen.ua.ac.be/ADMutations/) in three genes associated with familial 
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autosomal-dominant AD: APP on chromosome 21, including the Swedish double 

mutation 670/671, and the genes encoding the two presenilin (PS) proteins that are 

components of the γ-secretase complex, PSEN1 on chromosome 14 and PSEN2 on 

chromosome 1 (Bertram and Tanzi, 2008; Mullan et al., 1992; St George-Hyslop, 

2000). Generally, these mutations give rise to increased production of Aβ. Mutations 

such as the Swedish mutation that are situated close to the β-secretase cleavage site on 

the APP gene result in increased production of both Aβ1-40 and Aβ1-42 (Citron et al., 

1992). Mutations close to the γ-secretase cleavage site on the APP gene and those on 

the PSEN genes selectively increase the formation of Aβ1-42 (Goate et al., 1991; 

Kumar-Singh et al., 2006). A recent study of AD patients with the arctic APP mutation 

showed low levels of fibrillar Aβ in the brain but pathological levels of Aβ and tau in the 

cerebrospinal fluid (CSF) (Scholl et al., 2012), indicative of oligomeric rather than 

fibrillar Aβ in the brains of these patients. Several other susceptible genes have also 

been identified as risk factors for AD. The most common of these, ApoE, encodes for 

apolipoprotein E, which is involved in cholesterol transport and metabolism and exists 

in the three isoforms ε2, ε3, and ε4. The ε4 allele is known to increase the risk of AD 

and to result in earlier onset of the disease. The risk is increased three-fold in ε4 

heterozygotes and 15-fold in homozygotes (Ashford, 2004).  

 In contrast to most other mutations, a rare gene variant with a mutation close 

to the β-secretase cleaving site on the APP gene lowers the production of Aβ and is 

neuroprotective. Individuals with this mutation perform better than control subjects in 

cognitive tests, which raises interesting questions on whether the improved cognition is 

linked to the Aβ effects (Jonsson et al., 2012).  

 

 

1.2 TRANSGENIC MOUSE MODELS OF AD 

Several transgenic mouse models expressing human FAD mutations have been 

developed; these are used as in vivo model systems in research to study the pathological 

processes of AD and to test the effects of potential therapeutic interventions (Ashe and 

Zahs, 2010; Hall and Roberson, 2012; Philipson et al., 2010). Although these mouse 

models have provided critical knowledge regarding the mechanisms of AD, they do not 

capture its complete pathogenesis. Because of differences between mouse strains (Table 

1) and between experimental animals and AD patients, findings from these mice have 

to be interpreted with caution. Transgenic mice harboring mutations in genes coding 
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for APP, PS1 and tau (referred to as 3xTg-AD) exhibit Aβ pathology, NFTs and 

impaired synaptic plasticity, mirroring AD pathology to a large extent (Oddo et al., 

2003a; Oddo et al., 2003b). New transgenic rodent models, such as the transgenic rat 

TgF344-A, which develops amyloid pathology, NFTs, and substantial neuronal loss 

(Cohen et al., 2013), are also under development.  

 

Table 1. Main features and characteristics of commonly used transgenic mouse 

models in AD research. 

Strain FAD mutation Neuropathology Behaviour Reference 
Tg2576 
(APPswe) 

APP695 
(K670N/M671L) 

Aβ deposition at 9 
months, no 
neuronal loss but 
reduced spine 
density  

Spatial 
learning 
deficits at  
5–6 months 

(Hsiao et al., 
1996; Lesne et al., 
2006; Perez-Cruz 
et al., 2011; 
Stewart et al., 
2011) 

APP23 APP571 
(K670N/M671L) 

Aβ deposition at 6 
months, some 
neuronal loss 

Impairment 
in passive 
avoidance 
tests, spatial 
memory. 

(Calhoun et al., 
1998; Lalonde et 
al., 2002; 
Sturchler-Pierrat 
et al., 1997) 

APP/PS1 APP571 
(K670N/M671L, 
PS1 (A246E) 

Aβ deposition at 3–
4 months, minor 
neuronal loss 

Cognitive 
impairment 
at 4 months 

(Borchelt et al., 
1997; Holcomb et 
al., 1998) 
 

3xTg-AD APP695 
(K670N/M671L,
PS1(M146V), tau 
(P301L) 

Aβ deposition at 6 
months, NFTs at 15 
months, impaired 
synaptic plasticity 

Retention/ 
retrieval 
deficits at  
4–5 months 

(Billings et al., 
2005; Oddo et al., 
2003a; Oddo et 
al., 2003b) 

5xTg-AD APP695 
(K670N/M671L,
Florida (I716V) 
and London 
(V717I), PS1 
(M146L and 
L286V)  

Aβ deposition at 2 
months,  
neuronal loss 

Spatial 
learning 
deficits at  
4–6 months 

(Oakley et al., 
2006; Ohno, 
2009) 

 

 

1.3 NEW NEURONS IN ADULT BRAINS – A PARADIGM SHIFT 

Neural precursor cells (NPCs) in the CNS are multipotent cells that can mature into 

neurons, astrocytes or oligodendrocytes (Palmer et al., 1999; Palmer et al., 1995). 

Neurogenesis is generally defined as the generation of functional neurons from these 

precursor cells, thus including every step from cell proliferation to the integration of the 

newborn neurons into functional neural circuits. These processes were initially thought 
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to occur only during the embryonic and fetal stages of development. The first evidence 

that neurogenesis occurs postnatally in the hippocampus and in the olfactory bulb was 

demonstrated in the 1960s by injecting rodents with [3H]-thymidine to label dividing 

cells and then morphologically studying their fate (Altman and Das, 1965; Altman and 

Das, 1967; Caviness, 1973). However, newborn neurons in the adult brain were not 

proven functional until an important study in songbirds showed functional integration 

of newborn neurons in the CNS (Paton and Nottebohm, 1984). A series of papers later 

showed that newly generated neurons survived for long periods, had extending axons, 

and could receive synaptic input (Kaplan and Bell, 1983; Kaplan and Hinds, 1977; 

Stanfield and Trice, 1988). Later, hippocampal neurogenesis was also confirmed in 

adult animals (Kempermann et al., 1998; Kuhn et al., 1996). Despite the results of 

numerous studies in rodents, it was thought for a long time that neurogenesis did not 

occur in the adult human brain. New neurons in the brains of adult humans were first 

discovered through the pioneering work of Eriksson and colleagues in 1998 (Eriksson et 

al., 1998). In this study, five terminally ill patients (average age 64 years) received 

injections of the thymidine analog bromodeoxyuridine (BrdU) before death, which 

subsequently enabled postmortem analysis and the identification of neural precursors 

that had undergone neuronal differentiation in the brain (Eriksson et al., 1998). It later 

became evident that the date of cell birth could be estimated in older adult populations 

by measuring 14C levels in genomic DNA, since the levels of 14C increased after atomic 

bomb testing during the cold war (1955–1963) (Spalding et al., 2005).  

Hence, it is now well known that neurogenesis continues throughout adulthood, 

mainly in two regions of the brain: i) the subventricular zone (SVZ) lining the lateral 

ventricles, from where new neurons migrate along the rostral migratory stream to the 

olfactory bulb where they mature into interneurons, and ii) the subgranular zone (SGZ) 

of the dentate gyrus (DG) in the hippocampus, as reviewed in a number of publications 

(Gage et al., 1998; Ming and Song, 2005; Ming and Song, 2011; Suh et al., 2009). 

Neurogenesis in the DG involves multiple developmental steps, in which NPCs in the 

subgranular layer undergo cell proliferation, neuronal differentiation, migration to the 

molecular granular layer of the DG, molecular and axonal targeting of the newborn 

neuron, and functional integration into existing neuronal networks (Ehninger and 

Kempermann, 2008), as schematically illustrated in figure 2. Spalding and colleagues 

estimate that about 700 new neurons are born each day in the human hippocampus 

(Spalding et al., 2013). In contrast, neurogenesis in the olfactory bulb is sparse, or may 

not occur at all, in humans (Bergmann et al., 2012). This is not surprising, considering 
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the important role that the hippocampus plays in cognitive function in humans, while 

the olfactory bulb is less developed in humans than in rodents. 

 

 

Figure 2. Schematic illustration of hippocampal neurogenesis. 

 

1.3.1 Adult neurogenesis is regulated by a myriad of factors 

Neurogenesis is intricately regulated by a large number of intrinsic and extrinsic 

factors. Proliferating NPCs are usually found in the vicinity of the vasculature of the 

brain, where vasculature-derived neurotrophic factors such as vascular endothelial 

growth factor stimulate neurogenesis (Jin et al., 2002; Schanzer et al., 2004). 

Astrocytes in the vicinity of the neurogenic zones in the brain are known to specifically 

regulate neurogenesis (Song et al., 2002) via astrocyte-secreted factors such as Wnt3a 

(Barkho et al., 2006; Lie et al., 2005), and membrane-bound factor Ephrin-B (Ashton et 

al., 2012). Astrocytes are associated with neuronal development, neurotransmission, 

synaptic plasticity and maintenance of brain homeostasis, and a number of studies have 

shown that they provide trophic, structural, and metabolic support to neurons 

(Nedergaard and Verkhratsky, 2012; Parpura and Verkhratsky, 2012; Ullian et al., 

2004). 

Extrinsic factors such as physical activity and an enriched environment 

are also potent regulators of neurogenesis. Physical activity stimulates the proliferation 

of NPCs, neuronal maturation and synaptogenesis (Ho et al., 2009; Kempermann et 

al., 1998; Snyder et al., 2009), and an enriched environment enhances hippocampal 

neurogenesis (Brown et al., 2003; Kempermann et al., 1998).  
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1.3.2 Does neurogenesis play a significant role in brain function and memory?  

The functional relevance of adult hippocampal neurogenesis on behavioral traits and 

on learning and memory has so far mainly been studied in rodents, using 

hippocampus-dependent spatial memory tests such as the Morris water maze 

(MWM). A few studies have demonstrated a correlation between hippocampal 

neurogenesis and spatial learning and memory (Drapeau et al., 2003; Kempermann 

and Gage, 2002), but others have shown conflicting results (Gould and Tanapat, 

1999; van Praag et al., 1999), probably because of confounding factors such as 

physical activity and stress, which can also affect neurogenesis. Although research 

since the first studies by Altman and colleagues some 50 years ago has provided us with 

a vast amount of knowledge in the field of adult neurogenesis, a number of questions 

remain. Nonetheless, given the rapid development of powerful tools, markers and 

model systems, there is reason to hope that current and future research will further 

improve our molecular understanding of neurogenesis and the intrinsic mechanisms 

behind neurogenesis during life, along with the contribution of neurogenesis to 

cognitive function.  

Although postmortem studies have provided much information, non-

invasive in vivo studies carried out over time are pivotal in order to understand the 

function of neurogenesis in physiological and pathological conditions, as reviewed by 

Ho et al. (Ho et al., 2013). These in vivo techniques include brain imaging with magnetic 

resonance imaging (MRI), involving scanners which can offer close to single-cell 

resolution and the possibility of measuring cerebral blood volume and blood flow. 

Interestingly, labeling transplanted stem cells with 19F enables in vivo tracking of the graft 

by MRI (Boehm-Sturm et al., 2011). Imaging with positron emission tomography 

(PET) tracers that specifically label markers for regenerative processes in the brain is 

also a promising approach for studying neurogenesis in vivo. Nevertheless, to date no 

study has demonstrated a relationship between neurogenesis and alterations in 

hippocampal volume or function.  

 

1.3.3 Neurogenesis in AD 

The hippocampus is one of the earliest affected brain regions in AD (Braak et al., 1993). 

It is tempting to speculate that the mechanisms associated with cognitive reserve are 

also associated with increased neurogenesis, although this remains to be proven. 



 

 14 

Expression of neuronal markers is increased in hippocampal regions of autopsied brains 

from AD patients (Jin et al., 2004b), suggesting that neurogenesis may be a natural 

defense strategy against neurodegeneration in AD. However, a recent study by Perry 

and colleagues showed that increased proliferation of NPCs in the hippocampus of AD 

patients does not result in increased numbers of matured neurons (Perry et al., 2012).  

 Investigations into hippocampal neurogenesis in mouse models of AD have 

provided conflicting findings. Most studies report compromised neurogenesis (Demars 

et al., 2010; Haughey et al., 2002; Zhang et al., 2007), but some have described 

increased neurogenesis (Jin et al., 2004a; Lopez-Toledano and Shelanski, 2007). 

These contradictory findings may be due to differences in the transgenic models used 

in the studies, the age of the mice, or the markers used to detect and quantify 

proliferating and differentiating NPCs.  

Brain-derived neurotrophic factor (BDNF) plays an essential role in 

neuronal development; it is involved in cell proliferation, neuronal differentiation, 

integration into neuronal circuits, and synaptic plasticity in the brain (Autry and 

Monteggia, 2012; Ming and Song, 2005; Ming and Song, 2011). In AD, levels of 

BDNF are decreased in the entorhinal cortex and the hippocampus (Connor et al., 

1997; Hock et al., 2000; Narisawa-Saito et al., 1996). Aβ oligomers impair BDNF 

axonal retrograde signalling in vitro (Poon et al., 2011), suggesting a possible mechanism 

for impaired synaptic function early in AD.  

 

 

1.4 DEVELOPMENT OF TREATMENT STRATEGIES 

A vast array of treatment strategies for AD is currently being developed or tested in 

clinical trials. These strategies include the use of anti-inflammatory drugs, antioxidants, 

serotonin receptor modulators, drugs targeting tau phosphorylation and aggregation, 

and anti-amyloid drugs (the latter is discussed further in section 1.4.3 Targeting Aβ). The 

drugs under investigation have been reviewed elsewhere (Mangialasche et al., 2010; 

Misra and Medhi, 2013) or can be seen at www.clinicaltrials.gov.  An outline of the 

various treatment strategies for AD is given in figure 3.  
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Figure 3. Outline of therapeutic strategies for AD.  

 

1.4.1 Use of brain imaging and CSF biomarkers to evaluate treatment effects over 

time 

The rapid development of molecular imaging techniques using selective radiotracers 

has provided new means of studying pathological changes and treatment effects in 

living patients. Together with development of CSF biomarkers, these techniques have 

enabled longitudinal monitoring of Aβ levels, tau levels, inflammatory changes, 

metabolic and structural alterations, and changes in neurotransmission. Recent 

assessment of various biomarkers in patients with FAD suggests that pathological 

changes in the brain start decades before the onset of cognitive symptoms (Bateman et 

al., 2012; Scholl et al., 2011). Consequently, early detection and prediction of AD could 

facilitate the evaluation of early intervention strategies. 

 The PET tracer 11C-Pittsburgh compound-B (PIB), the most widely used 

amyloid tracer, has allowed visualization of the deposition of fibrillar Aβ very early in 

the course of AD, and has also facilitated investigation of Aβ progression in living 

patients (Nordberg, 2004; Nordberg et al., 2010). High PIB retention has been observed 

in cortical brain regions in patients with AD (Klunk et al., 2004) and those with MCI 

who later converted to AD (Forsberg et al., 2008; Kemppainen et al., 2007). Astrogliosis 

can also be seen in vivo using the PET tracer 11C-deprenyl, which binds to monoamine 

oxidase type B predominantly localised to the outer mitochondria membrane of 

reactive astrocytes (Fowler et al., 2005). Recent data indicate that binding of 11C-L-
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deuterodeprenyl (11C-DED) in the frontal and parietal cortices is higher in patients with 

MCI than in those with AD or control subjects (Carter et al., 2012). Furthermore, in a 

recent study in autopsied AD brain tissue, there were no correlations between 3H-

deprenyl binding and 3H-PIB binding (Kadir et al., 2011), and each of these ligands 

showed different laminar distributions in the brain (Marutle et al., 2013), suggesting that 

the time course of the inflammatory process is different from that of Aß pathology. 

Kadir et al. also found a negative correlation between fibrillar Aβ levels and the 

number of nAChRs in the AD brain, as measured with 3H-PIB and 3H-nicotine 

binding, respectively (Kadir et al., 2011), which substantiates the possibility that 

nAChRs are involved in Aβ pathology. Cell function can be assessed by measuring 

glucose consumption and metabolism in the tissue with the glucose analog 2-18F-fluoro-

2-deoxy-D-glucose (FDG). FDG PET has shown that glucose metabolism decreases in 

the posterior singulate cortices, the temporal lobe including the hippocampus, and the 

entorhinal cortex in MCI and AD patients (Mosconi, 2005). FDG PET measurement in 

FAD patients with a PSEN1 mutation suggests that aberrant glucose metabolism can be 

detected long before the onset of cognitive symptoms (Scholl et al., 2011). Furthermore, 

there is a strong association between decreased glucose consumption and cognitive 

decline (Landau et al., 2011).  

 The three most established and validated CSF biomarkers reflecting AD 

pathology are the levels of Aβ1-42, and total and phosphorylated tau. CSF Aβ1-42 

levels are decreased in AD, possibly reflecting the increase in Aβ plaques in the brain, 

whereas CSF tau levels are elevated (Hansson et al., 2006; Mattsson et al., 2009). 

 A model involving the temporal patterns of five established biomarkers in AD, 

which was developed by Jack and colleagues in 2010, has recently been updated and 

modified. A tentative, hypothetical summary of these markers in combination with 

those previously discussed is illustrated in figure 4. 
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Figure 4. Pathological changes and the tentative time course of these changes in 

biomarkers used in studies of MCI and AD (Jack et al., 2013; Kadir et al., 2010; 

Nordberg et al., 2010). 

 
1.4.2 Importance and caveats of current treatment  

Current treatment for AD consists of the AChE inhibitors (AChEIs) donepezil, 

galantamine and rivastigmine, which have been approved for mild to moderate AD, 

and the NMDA receptor antagonist memantine, which has been approved for 

moderate to severe AD. The AChEIs were designed to reduce the activity of AChE, 

and BuChE in the case of rivastigmine, and thus prolong the effect of ACh in the 

synaptic cleft, whereas memantine inhibits NMDA receptors to prevent glutamate-

mediated neurotoxicity. Improved cerebral glucose metabolism has also been observed 

in AD patients treated with rivastigmine, galantamine or donepezil (Keller et al., 2010; 

Mega et al., 2005; Stefanova et al., 2006; Teipel et al., 2006). Rivastigmine increased 

11C-nicotine binding in the brains of AD patients after 3 months' treatment, and a 

positive correlation between 11C-nicotine and cognition was found in patients treated 

with galantamine or rivastigmine for 12 months (Kadir et al., 2008b; Kadir et al., 

2007). However, despite the various positive effects that current treatment offers, there 

is an urgent need for novel, effective disease-modifying drugs.  
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1.4.3 Targeting Aβ  

Of all the AD drugs currently in clinical trials, most target aspects of Aβ pathology. 

Some target Aβ production by inhibiting β- or γ-secretases, and some prevent Aβ 

aggregation and thus the formation of amyloid plaques. γ-Secretase inhibitors are 

currently being tested in clinical trials, and some studies have reported reduced Aβ 

levels but have also reported adverse effects. It is hoped that strategies to develop 

inhibitors that are more APP-selective, with fewer effects on other γ-secretase substrates 

(De Strooper et al., 2010; Imbimbo, 2008), and further evaluation of the inhibitors 

currently under development will reveal positive effects on cognition.  

Immunization therapy that increases the removal of Aβ in the brain is also under 

evaluation. Aβ vaccines have been tested in clinical trials of AD patients since 2001. 

The first clinical trial was halted because of adverse drug reactions including 

encephalitis and increased loss of brain volume, and because no significant effects on 

cognition were observed (Fox et al., 2005; Gilman et al., 2005; Orgogozo et al., 2003). 

However, reductions in fibrillar Aβ have been reported in subsequent trials; at least 20 

Aβ vaccines are currently in clinical trials, and trials of passive immunization in 

conjunction with administration of antibodies that recognize different parts of the Aβ 

peptides are also underway (Lemere and Masliah, 2010; Mangialasche et al., 2010). In 

2010, the monoclonal antibody bapineuzumab was reported to significantly reduce 

fibrillar amyloid levels in a subgroup of patients after 78 weeks of treatment, as 

measured with PIB PET (Rinne et al., 2010). However, despite the reductions in Aβ, no 

effect on cognition was observed. Another monoclonal antibody, solanezumab, was 

recently studied in two 18-month trials. When the data from the two trials were 

combined, a trend towards a cognitive effect was shown (Gandy and DeKosky, 2013). 

Two experimental AD drugs, the AChEI (–)-phenserine, and its cholinergically inert 

enantiomer (+)-phenserine, are both APP-synthesis inhibitors and thus lower Aβ levels 

(Greig et al., 2005; Lahiri et al., 2007; Mikkilineni et al., 2012; Shaw et al., 2001). A 

clinical study of (–)-phenserine treatment in patients with mild AD showed that the 

decreased amyloid load in the brain, as measured with PIB PET, correlated with 

increased levels of Aβ1-40 in the CSF, together with improvement in cognition after 3 

months (Kadir et al., 2008a). (–)-Phenserine reached phase 3 clinical trials (Winblad et 

al., 2010), and is currently being reformulated to optimize its pharmacological actions 

(Becker and Greig, 2012). (+)-Phenserine has recently undergone phase 1 tolerability 

and target engagement trials, which reported lowered CSF levels of APP metabolites, 
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Aβ, tau and inflammatory markers in subjects with MCI (Maccecchini et al., 2012).  

 

1.4.4 In search of prevention or disease modification – What can we learn from 

recent preclinical and clinical trials in AD? 

The recent failed Aβ clinical trials in mild to moderate AD, with various drugs 

decreasing Aβ levels in the brain but showing no effects on cognitive function, suggest 

that earlier therapeutic interventions may be necessary (Selkoe, 2012). Current 

research is focusing on the development of treatments that target the underlying 

pathology and the administration of these in the early preclinical stages of AD (figure 

5). In addition, several preventive clinical studies are planned in asymptomatic 

members of families at high risk of developing AD because of a genetic predisposition 

(Aisen et al., 2013). Current thinking is that future therapy will be dependent on early 

diagnosis and the ability to identify the right time for treatment during disease 

progression. Successful treatment of AD depends heavily on future advances in the 

identification of biomarkers, including structural, pathological and functional imaging 

as well as CSF markers, for early diagnosis and evaluation of the effects of new drugs 

(Hampel et al., 2010; Nordberg, 2011).  

 To date, a large number of novel treatment strategies have been 

successful in animal models, only to fail in subsequent clinical trials. Despite the great 

disappointment associated with these failures, the trials have provided important 

information that can be used to revise future pre-clinical and clinical trials. Factors that 

critically determine the outcomes of clinical trials include the cohort size, the length of 

the trial, and the choice of endpoints. The enormous cost associated with large trials is 

certainly a limiting factor for study design. It is also valid to question whether 

inadequacies in the interpretation and extrapolation of animal data could explain the 

lack of robust effects observed with some drugs once they have advanced to clinical 

trials. First, the endpoints in preclinical studies must be carefully selected and validated 

in order to answer the questions needed for advancement to clinical studies. The choice 

of animal model should be based on the required endpoints, and the age of the animals 

included in the studies should reflect the stage of the disease at which treatment is 

intended to start.   
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Figure 5. Schematic illustration of the concepts of prevention or disease-modifying 

intervention in AD. 

 

1.4.5 Targeting nicotinic receptors 

Ongoing trials are using cholinergic drugs with nAChR agonist activity, with the 

intention of enhancing cognition and stimulating neuroprotection. Treatment of mild to 

moderate AD with nicotinic agonists selective for α4β2 nAChRs has resulted in some 

effects on cognition (Dunbar et al., 2007). However, recent clinical trials have been 

terminated because of the poor recruitment status of the patients. α7 nAChR agonists 

are also currently being tested. The partial α7 nAChR agonist EVP-6124 was well 

tolerated in preclinical trials and a phase II clinical trial (Misra and Medhi, 2013). 

Results from the phase II 6-month trial in subjects with mild to moderate AD indicate 

promising benefits, as measured with a battery of cognitive tests (Hilt et al., 2012), but 

await publication. So far, preclinical studies of α7 nAChR agonists have 

demonstrated improvements in long-term memory, but subsequent clinical trials have 

only shown attention benefits (Thomsen et al., 2010). The possible explanations for 

this discrepancy are currently under debate. Unlike ACh, α7 nAChR agonists are not 

degraded but constantly activate and desensitize the receptor. This results in an 

inverse U-shaped dose-response curve, which makes drug administration challenging 

(Geerts, 2012). Furthermore, treatment duration has typically been short, perhaps too 

short to observe any potential α7 nAChR-mediated neuroprotective actions.  

 

1.4.6 Stimulating regeneration as a potential treatment strategy for AD 

The stimulation of neurotrophic processes and repair mechanisms in the brain is a 

novel and promising approach to the treatment of AD. The term regeneration refers to 



 

 21 

the repair of tissue through either stimulation of intrinsic repair mechanisms or the 

transplantation of exogenous stem or progenitor cells. There is a great need for a 

deeper understanding of the balance between neurodegeneration and brain repair, and 

of the optimal timing for such treatments.  

 

Stimulating endogenenous neuroregeneration  

One of the advantages associated with strategies focused on enhancing the brain’s 

intrinsic regeneration capacity is that they enable non-invasive approaches without the 

risk of an immune response to grafted cells. Recent increases in our understanding of 

molecular mechanisms and other factors associated with the stimulation of endogenous 

neurogenesis (see section 1.3.3) have enabled the identification of new drug targets and 

the development of new therapeutic interventions. Growth factors such as BDNF and 

nerve growth factor (NGF) are potent stimulators of endogenous neurogenesis, and are 

regarded as promising in this respect. In the first study of its kind, intraventricular 

injection of NGF into three AD patients has demonstrated increased 11C-nicotine 

retention and increased glucose metabolism (Eriksdotter Jonhagen et al., 1998; Olson et 

al., 1992). However, the route of administration had to be reconsidered because of the 

development of spinal pain in the recipients. In a later study, genetically modified 

fibroblasts secreting NGF implanted into the forebrains of eight AD patients were 

shown to be safe after 22 months' follow-up (Tuszynski et al., 2005). In a more recent 

study, six AD patients underwent basal forebrain transplantation of bio-vehicles 

containing NGF-secreting fibroblasts. This procedure was deemed safe and well 

tolerated (Eriksdotter-Jonhagen et al., 2012). The effects on cognition, however, have 

yet to be reported.  

Drugs such as antidepressants or atypical antipsychotics are reported to 

enhance neurogenesis in the brains of both rodents and humans (Nasrallah et al., 2010; 

Newton and Duman, 2007; Sahay and Hen, 2007; Santarelli et al., 2003). Preclinical 

data from studies in rodents  suggest that endogenous factors such as estrogens may also 

stimulate neurogenesis (Tanapat et al., 1999). Extrinsic factors such as physical activity 

(Ho et al., 2009; Kempermann et al., 1998; Snyder et al., 2009) and an enriched 

environment (Brown et al., 2003; Kempermann et al., 1998) that have been shown to 

stimulate neurogenesis and synaptic plasticity in rodents could also provide important 

therapeutic strategy implications for AD.  
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Transplantation of stem cells or fetal grafts 

Generally, exogenous cell replacement strategies have several advantages over other 

approaches. Large numbers of cells can be implanted and the source of the cells can be 

selected and optimized in vitro prior to grafting. However, given the widespread 

pathology and neurodegeneration resulting from these procedures, cell replacement 

strategies for AD have been considered unrealistic in comparison with their use in other 

diseases involving neurodegeneration in limited areas of the brain, such as the loss of 

dopaminergic neurons in the substantia nigra in Parkinson's disease (Lindvall et al., 

1988; Morizane et al., 2008). To date, only a limited number of studies in animal 

models of AD have explored the outcomes of stem cell transplantation. For example, 

improved cognition and enhanced synaptic density were observed following 

hippocampal transplantation of mouse neural stem cells (NSCs) in 3xTg-AD mice, and 

these positive effects were associated with increased BDNF secretion (Blurton-Jones et 

al., 2009). Moreover, improved spatial memory following NSC transplantation has 

been observed in rats with cholinergic lesions (Moghadam et al., 2009; Park et al., 

2012a; Park et al., 2012b). 

Viewing stem cell therapy for AD solely as cell replacement poses great 

challenges, since this requires extensive migration of the graft to degenerated areas in 

the brain, and subsequent differentiation and integration into functional networks. 

Recent work, however, suggests that stem cell transplantation could also generate 

trophic support for endogenous progenitor cells and neurons in the brain (Blurton-Jones 

et al., 2009; Einstein and Ben-Hur, 2008). Thus, stem cells could be regarded as 

delivery vehicles for providing the brain with a myriad of neurogenic factors.  NSC 

transplantation into the brains of animal stroke models has been shown to stimulate 

endogenous neurogenesis (Jin et al., 2011), but this has not yet been studied in AD 

animal models.  

 

 



 

 23 

2 AIMS OF THE THESIS 

The main aim of this thesis was to investigate neuroprotective and regenerative 

processes in the brain, along with implications arising from this for the development of 

novel treatment strategies for AD. In vitro cellular model systems, postmortem human 

brain tissue studies, and in vivo studies in an AD transgenic mouse model were used to 

investigate neuroprotective and regenerative mechanisms in relation to the pathological 

processes associated with AD (figure 6).  

 

The specific objectives were the following: 

 

Paper I To investigate the neuroprotective role of α7 nAChRs against Aβ-mediated 

neurotoxicity and the roles of different forms of Aβ in the interactions with 

nAChRs.  

 

Paper II  To characterize the neuroprotective and neurotrophic actions of amyloid- 

modulatory candidate drugs (–)- and (+)-phenserine.  

 

Paper III To investigate the effects of modulating brain Aβ levels at different stages of 

amyloid pathology on synaptic function, hippocampal neurogenesis, and 

inflammatory cell changes. 

 

Paper IV   To investigate the effects of stem cell transplantation and modulation of Aβ 

and α7 nAChRs on endogenous neurogenesis, graft survival, and cognition. 
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Figure 6. Schematic outline of the work undertaken in the thesis. 
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3 METHODOLOGY 

In the following section, model systems and methods used in papers I–IV and in 

previously unpublished pilot studies are discussed in relation to their advantages and 

limitations. Some methodology is summarized here, but detailed descriptions of 

experimental procedures are provided in the respective papers.  

 

 
3.1 ETHICAL CONSIDERATIONS 

Human autopsied brain tissue was obtained from the Netherlands brain bank; 

permission to use this tissue in experimental procedures was granted by the Ethics 

Committee Review Board at Karolinska Institutet and the Swedish Ministry of 

Health (S024/01). All materials and data collected by the Netherlands brain bank 

were obtained on the basis of written informed consent. All animal experiments were 

carried out in accordance with the guidelines published by the Swedish National Board 

for Laboratory Animals. Ethical applications were approved for the drug treatment and 

isolation of progenitor cells and primary neurons from Tg2576 mice (S43/07, S53/10), 

and for human (h)NSC transplantation and MWM tests using Tg2576 mice (S54/10 

and S172/11).   

 

 

3.2 COMMENTS ON MODEL SYSTEMS USED 

3.2.1 Cell cultures 

The advantage of using immortal cell lines is that they are easy to expand in sufficient 

quantities for viability assays and receptor-binding experiments. Moreover, immortal 

cell lines have been well characterized and are widely used in in vitro model systems for 

molecular and mechanistic studies. The neuronal cell lines used in paper I were 

selected for their expression of α7 nAChRs. Pheochromocytoma PC12 cells undergo 

neuronal differentiation with neurite outgrowth after exposure to NGF. These cells 

were used to study α7 nAChR-mediated neuroprotection, while human neuroblastoma 

SH-SY5Y cells were used to assess intracellular calcium levels ([Ca2+]i) following α7 

nAChR agonist and Aβ exposure. Wild-type and APPswe-transfected SH-SY5Y cells 

were also used in paper II to assess neuroprotective and neurotrophic drug actions. 
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The advantages of SH-SY5Y cells are that they are of human origin and they are 

adherent in comparison with the semi-adherent PC12 cells, which makes them more 

suitable on a practical level for calcium measurements in single cells using confocal 

microscopy. However, these tumor cell lines are limited as model systems for AD since 

they do not reflect the nature of neurons in the brain and are relatively insensitive to the 

physiological concentrations of Aβ found in AD. Therefore, primary progenitor cells 

and neurons were used in the relevant in vitro studies in paper II and in the pilot studies 

for paper IV.  

In paper II, primary progenitor cells were isolated from the SVZ of Tg2576 

mouse embryos, cultured in neurospheres, and used in in vitro studies of cell survival and 

growth. The translational relevance of these cells was assessed by measuring the early 

neuronal marker doublecortin (DCX) in the SVZ of adult Tg2576 mice.  

An in vitro pilot study before the studies reported in paper IV investigated the 

effects of several classes of drugs with different mechanisms of action including the 

amyloid-modulatory drug (+)-phenserine and the α7 nicotinic agonist JN403, on the 

proliferation and neuronal and glial differentiation of hNSCs derived from fetal brains. 

Cortical primary Tg2576 neurons in culture were also investigated in this pilot study 

to assess the effects of the drugs on neuronal maturation. hNSCs transplanted into the 

hippocampi of Tg2576 mice either alone or in combination with drug treatment were 

subsequently assessed in vivo in paper IV.  

 

3.2.2 Postmortem human brain tissue 

Although human autopsied brain tissue reflects the end stage of the disease, it is an 

irreplaceable ex vivo tool for studying disease processes in humans. The postmortem 

delay should be kept as short as possible, and limitations such as the sometimes 

substantial differences between individual subjects should be carefully considered when 

designing experiments. Another issue that must be taken into consideration is that some 

subjects will have been treated with drugs that could enhance neurogenesis in the brain, 

as reviewed in section 1.3.3. Autopsied human brain tissue extracts from 5 AD subjects 

(mean age 70 y; mean postmortem delay 7 h) and 5 control subjects (mean age 67 y; 

mean postmortem delay 9 h) were used in paper I for receptor binding assays and in 

pilot studies carried out prior to paper IV to assess the viability and differentiation of 

hNSCs in culture. Extracts containing as low as picomolar concentrations of Aβ were 

sufficient to significantly decrease the viability of primary cells, which is much more 
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relevant for mirroring an AD-like environment in vitro than the recombinant Aβ 

peptides used in paper I.  

 

3.2.3 Tg2576 mice 

Despite the limitations associated with using transgenic mice in translational AD 

research studies, these mice are valuable in vivo models for studying the evolution from 

birth of molecular pathological changes since it is not possible to study these changes in 

living patients. Mice expressing the APP Swedish mutation (APPSWE2576Kha; 

Tg2576) show high levels of soluble oligomeric Aβ in the brain, up to the age of 

approximately 10 months, before the Aβ plaques begin depositing. Tg2576 mice also 

show reduced levels of the synaptic marker synaptophysin and memory impairment 

(Lithner et al., 2011; Mustafiz et al., 2011; Stewart et al., 2011; Unger et al., 2006). In 

papers II–IV, Tg2576 mice were used to model the relationship between Aβ 

pathogenesis and regenerative processes in the brain, and the ways in which these 

processes can be modulated through pharmacological treatment or by stem cell 

transplantation. The mice were bred in the Karolinska Institutet animal care facility 

by backcrossing with B6SJL (F1) females (Taconic). Wild-type littermates served as 

control animals. All mice were housed in enriched cages with a 12-hr light-dark cycle 

and ad libitum access to food and water.  

 

 

3.3 EXPERIMENTAL PROCEDURES 

3.3.1 Receptor-binding assays 

Postmortem brain tissue from AD and control subjects was used to study the interaction 

between Aβ and nAChRs, using the radioligands [3H]PIB (which binds selectively to 

fibrillar Aβ (Ni et al., 2013)), [125I]Aβ1-40, and [3H]epibatidine (an nAChR ligand) 

(paper I). For the [3H]PIB binding assays, frontal corticex tissue was homogenized in 

PBS to yield a crude membrane fraction that included the extracellular matrix. For 

the [3H]epibatidine and [125I]Aβ1-40 binding assays, membrane (P2) fractions from 

AD and control autopsied frontal cortices, with the extracellular matrix removed from 

the fraction, were used as previously described (Marutle et al., 1998). The membrane 

fractions were incubated with the radioligand, the reactions were terminated by 

filtration, and the radioactivity was counted.   



 

 28 

 

3.3.2 Aβ preparation and characterization 

Recombinant Aβ was used in paper I, wheras Aβ assemblies in TBS extract from 

human autopsied brain tissue were used for the in vitro pilot study prior to paper 

IV. To obtain recombinant fibrillar Aβ aggregates, Aβ1-40 and Aβ1-42 (Sigma, St 

Louis, MO, USA) were dissolved in H2O and DMSO, respectively, and incubated at 

37◦C with agitation for 48–72 h before use. Recombinant soluble Aβ oligomers were 

obtained by dissolving 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP)-pre-treated Aβ1-40 

and Aβ1-42 peptides (rPeptide, Bogart, GA, USA) in DMSO, and then sonicating 

and filtering them to yield a pure, homogeneous oligomeric fraction. Recombinant 

Aβ was characterized using western blotting to verify that oligomeric Aβ remained 

non-fibrillized throughout the experiments. The aggregation and fibrillization 

processes of HFIP-pretreated oligomeric Aβ in the different buffers were assessed 

using thioflavin T (ThT) fluorescence assays. ThT assays are widely used to profile 

protein fibrillization over time, by measuring the intensity of fluorescence emitted 

from ThT when it binds to fibrillizing protein. For the pilot study, a water-soluble 

TBS fraction of Aβ oligomers was extracted from autopsied brain tissue from a patient 

with AD and a healthy control as described previously (Bao et al., 2012). Aβ assemblies 

in these fractions were characterized according to size using western blotting and 

ADDL-specific antibodies.  

 

3.3.3 Viability assays 

In MTT and MTS proliferation assays, a tetrazolium compound (MTT or MTS) is 

reduced to formazan by nicotinamide adenine dinucleotide phosphate (NADPH) or 

nicotinamide adenine dinucleotide (NADH) dehydrogenase enzymes in metabolically 

active cells. The amount of formazan product, measured by absorbance, is directly 

proportional to the number of living cells (papers I and II). In paper II, MTS 

reduction was also used as a measure of cell proliferation. In paper I, MTT assays 

were complemented by measuring the release of lactate dehydrogenase (LDH) from 

cells with cell membrane leakage (CytoTox ONE Homogeneous Membrane Integrity 

Assay, Promega, Stockholm, Sweden). LDH release is a valuable complementary test 

for viability which measures the amount of non-viable cells in the samples. Formation 

of the fluorescent product resorufin is then proportional to the amount of LDH 
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released.   

 

3.3.4 Intracellular calcium measurements 

In paper I, we monitored α7 nAChR activation and the subsequent influx of Ca2+ 

ions by measuring changes in [Ca2+]i in SH-SY5Y cells, using the calcium indicator 

Fluo-3. Although Fluo-3 is a widely used dye, it is non-ratiomeric and therefore its use 

is limited compared to ratiomeric dyes that have dual emissions to enable the use of 

an internal reference. SH-SY5Y cells were loaded with Fluo-3 AM (Invitrogen), an 

ester conjugate to facilitate penetration of the cell membrane, and excited using an 

inverted Meta-Zeiss 510 LSM confocal microscope (Carl Zeiss, GmbH, Germany). 

Recordings were taken during 60 min of incubation at room temperature and the 

fluorescence intensity was measured continuously throughout the incubation period.  

 

3.3.5 Detection and quantification of protein expression 

Antibody detection-based methods of protein detection or quantification were used in 

all the papers. Western blotting was used to separate Aβ assemblies in Aβ preparations 

and autopsied human brain tissue extracts according to size (papers I and in the pilot 

study prior to paper IV) and to quantify synaptophysin protein levels (paper III). 

While western blotting is an excellent tool for protein detection and separation of 

proteins by size, it is considered a semi-quantitative method. Enzyme-linked 

immunosorbent assays (ELISA), a conventional quantitative method, were used in 

papers II–IV to measure protein levels in mouse brain tissue extracts. A similar 

quantitative method, using Meso Scale Discovery (MSD) technology, was used in 

paper III to measure cytokine and chemokine levels in mouse brain cortical tissue 

extract, and in the pilot study related to paper III for quantification of mouse Aβ 

CSF levels. MSD technology is based on the capture and detection of antibodies to 

detect epitope-specific antigens. In contrast to regular ELISA, which uses enzyme-

linked detection antibodies to yield fluorescent or color signals upon addition of 

substrate, MSD technology uses ruthenium-conjugated detection antibodies that emit 

light upon electrochemical stimulation of the electrode surface in the microplate. 

Multiple excitation cycles enhance the chemoluminiscence signal and further improve 

the sensitivity of this technique.   

For the pilot study for paper IV, immunocytochemistry was used to detect, 

quantify and morphologically characterize glial and neuronal phenotypes of 
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differentiated hNSCs in culture. Immunohistochemistry was also used in paper IV to 

study the regional distribution of astrocytes in coronal brain sections, which allowed 

quantification of the number of α7 nAChR-expressing astrocytes specifically in the DG 

of the hippocampus, and characterization of their morphological phenotypes in 

different regions of the DG.  

 

3.3.6 Drug treatment  

The full α7 nAChR agonist and α4β2 partial agonist varenicline, and the partial α7 

nAChR agonist JN403 (Coe et al., 2005; Feuerbach et al., 2007; Mihalak et al., 2006) 

were used as tools to study the interactions of Aβ with α7 nAChRs in neuronal cell lines 

and in postmortem brain tissue (paper I). As JN403 is a more selective α7 nAChR 

agonist than varenicline, this drug was also given by intraperitoneal (i.p.) injection (0.3 

mg/kg) in paper IV to treat Tg2576 mice in combination with hNSC transplantation.    

In paper II, the AChEI (–)-phenserine, its cholinergically inert 

enantiomer (+)-phenserine, and the primary metabolites of (+)-phenserine (+)-N1-

norphenserine, (+)-N8-norphenserine and (+)-N1,N8-bisnorphenserine were 

characterized in vitro with regard to their neuroprotective and neurotrophic properties. 

To avoid interference from cholinergic actions, (+)-phenserine was selected to study the 

effects on neurotrophic actions and on Aβ pathology in Tg2576 mice (i.p. injections of 

25mg/kg (+)-phenserine once daily) (papers II–IV).  

 

3.3.7 Transplantation and CSF collection 

In paper IV, Tg2576 mice received bilateral hippocampal injections transplanting 

25,000 hNSCs per hemisphere or vehicle (coordinates relative to bregma: AP -2.06, 

ML ±1.75, DV -1.75). The mice were anesthetized using a constant flow of 4% 

isoflurane throughout the procedure. The heads of the mice were fixed using ear and 

tooth bars before a skin incision into the skull bone was made to facilitate the location of 

the coordinates to target the DG of the hippocampus. Lidocaine was used for local 

anesthesia during the procedure and the animals were monitored daily for body weight 

and healing of the incision site after the surgery. While the use of immunosuppressants 

helps to avoid the risk of graft rejection after transplantation procedures, 

immunosuppressants can affect inflammatory processes and their use should be 

carefully considered in the study design. Stem cells could play an immunomodulatory 

role per se (Einstein and Ben-Hur, 2008), and previous studies have indicated that 
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transplantation of hNSCs into the brains of APP transgenic mice does not require the 

use of immunosuppressants (Marutle et al., 2007) for studies with a time-frame similar 

to that in paper IV. Accordingly, no immunosuppressants were used, and no 

symptoms indicative of a reaction to the transplant were observed.  

For the pilot study relavant to paper III, CSF was collected from the cisterna 

magna of 4- to 6-month-old Tg2576 mice. The animals were anesthetized with a 1:1 

mixture of ketamine (100 mg/kg) and xylazine (20 mg/kg), and a 26 gauge needle 

connected to a syringe by a P20 polyethylene tube was used to collect up to 7 µl CSF 

per mouse. The animals were euthanized by decapitation, and the CSF was frozen and 

stored at -80°C until used for Aβ measurements. 

 

3.3.8 Behavioral tests 

MWM tests were used to assess the hippocampal-dependent spatial memory of Tg2576 

mice and their age-matched wild-type littermates, and of Tg2576 mice after 

hippocampal hNSC transplantation (paper IV). The mice were placed in water at 

random sites (four fixed positions) around the wall of a round swimming pool of 1 m 

diameter. During the acquisition phase, the mice learned the location of a platform 

hidden under the water, aided by visual cues on the walls around the pool. In order to 

assess retention of this spatial memory, a probe trial was performed 24 hours after the 

last acquisition trial; in this, the platform was removed and the mice were allowed to 

swim for 60 seconds. The behavior of the mice in the MWM task was recorded by an 

automated video-tracking system (Ethovision). To evaluate differences in learning and 

memory between groups, Δ-latency values were calculated (follow-up probe values 

minus baseline acquisition values).  The advantage of using the MWM to assess 

learning and memory in these mice is that it is a well-recognized behavioral test that has 

been widely used to characterize cognitive deficits in Tg2576 mice. Since impaired 

motor behavior or poor vision could greatly influence the performance of the mice in 

the MWM, the mice should be carefully monitored prior to testing. The pool size 

should also be selected carefully; since the smaller the pool, the easier it is for the mice 

to find the hidden platform.  
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3.3.9 Statistics 

GraphPad Prism 5.0 or 6 (GraphPad Software, Inc.) was used for all statistical analyses.  

In all papers, parametric tests were used to compare statistical differences between 

treatment groups in the in vitro studies using cell cultures or tissue homogenates, whereas 

non-parametric tests were used for analysis of data from Tg2576 mice.  

One-way ANOVA followed by Bonnferroni’s or Dunnet’s post-hoc tests was used to 

compare statistical differences between treatment groups in papers I and II, the non-

parametric Mann-Whitney test or Student’s t-test was used for comparison between 

two groups, and the non-parametric Kruskal-Wallis one-way ANOVA by ranks 

followed by Dunns or Dunnet’s post-hoc test was used for comparison between multiple 

(>2) groups in papers III and IV). Spearman’s rank correlation was used as a non-

parametric test for correlation analysis, which was visualized graphically using simple 

regression analysis (papers III and IV). In all papers, the data are presented as means 

± standard error of the mean (SEM). P-values <0.05 were considered to be significant. 
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4 RESULTS AND DISCUSSION 

This section summarizes and discusses the main findings of the thesis. A more detailed 

description of the results can be found in the respective papers.  

 

 
4.1 INTERACTION OF FIBRILLAR AND OLIGOMERIC FORMS OF Aβ 

WITH α7 nAChRs – RELEVANCE FOR NEUROPROTECTION 

Mounting evidence suggests that the continuous loss of nAChRs in the hippocampi and 

cerebral cortices of patients with AD could be mediated through an interaction between 

α7 nAChRs and Aβ species (Jonnala and Buccafusco, 2001; Kihara et al., 2001). An 

exciting field of research postulating the potential advantages of targeting α7 nAChRs 

to induce neuroprotective mechanisms against Aβ-induced toxicity has recently 

emerged. Comparative studies on the effects of Aβ1-40 versus Aβ1-42 are sparse but 

available studies indicate that Aβ1-40 interacts with α7 nAchRs in a reversible manner, 

whereas Aβ1-42 binds to the receptor irreversibly (Lee and Wang, 2003). The 

importance of the assembly form of Aβ on the interaction with α7 nAChRs is an 

important aspect that has not to our knowledge been investigated previously. The 

interactions between different aggregated forms of Aβ and α7 nAChRs were thus 

studied in paper I, using neuronal cells in culture and postmortem human brain tissue 

from AD patients. This study indicated that recombinant fibrillar Aβ1-40 causes 

cytotoxic effects in PC12 cells, whereas fibrillar Aβ1-42 and oligomeric Aβ1-40 and 1-

42, in the form of dimers, decamers, dodecamers and larger oligomers of approximately 

100 kDa in size, did not significantly reduce cell viability at physiologically relevant 

concentrations (nanomolar range), as reflected in the brains of sporadic AD patients 

(Hashimoto et al., 2010).  

It has been suggested that α7 nAChRs exert neuroprotective effects 

through downstream signalling pathways such as i) the MAPK/ERK signaling pathway 

and activation of the downstream transcription factor CREB, or ii) the PI3K/Akt 

pathway, both of which are important for neurotrophic actions and cell survival 

(Abbott et al., 2008; Bell et al., 2004; Dineley et al., 2002; Dougherty et al., 2003). For 

further details, the reader is referred to section 1.1.3 Amyloid-β interactions with nicotinic 

receptors. Paper I showed that the partial α4β2 and full α7 nAChR agonist varenicline 

and the partial α7 nAChR agonist JN403 protected the cells against fibrillar Aβ1-40-
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induced toxicity, further indicating that α7 nAChRs mediate neuroprotective effects. 

We then hypothesized that these effects could be mediated a) through the signalling 

mechanisms mentioned above, b) by preventing Aβ from binding to nAChRs, or c) by a 

combination of these.    

Using a human postmortem frontal cortex tissue homogenate, we found 

that [125I]Aβ1-40 bound to α7 nAChRs. To further investigate the interaction between 

fibrillar Aβ and α7 nAChRs, we studied the effects of varenicline and JN403 on 

[3H]PIB binding to Aβ in AD frontal cortex autopsied brain tissue. 3H-PIB binds 

selectively to, and correlates with levels of, fibrillar Aβ at autopsy (Kadir et al., 2011; Ni 

et al., 2013). [3H]PIB binding increased after exposure to these two compounds, 

possibly reflecting the displacement of Aβ from α7 nAChRs by α7 nAChR agonists, 

thus making the “free” or non-complex-bound Aβ more accessible for binding to 

[3H]PIB (figure 7). A recent study using drugs with affinity for different nAChR 

subtypes confirmed the specific binding to α7 nAChRs (Ni et al., 2012). 

 

 

Figure 7. Illustration of a proposed interaction between fibrillar Aβ and α7 nAChRs 

in the presence of α7 nAChR ligands (modified illustration courtesy of Ruiqing Ni, 

Karolinska Institutet, Sweden).  

 

The role of oligomeric Aβ in the interaction with α7 nAChRs was then tested by 

displacing the nAChR ligand [3H]epibatidine with varenicline in the presence of 

oligomeric Aβ1-40 using a human postmortem frontal cortex tissue homogenate. 

Interestingly, the presence of 0.1 and 5 µM oligomeric Aβ1-40 resulted in a receptor 

occupancy of approximately 50 %. In addition, a shift in the affinity of varenicline to 

nAChRs from the pM to µM range was observed in the presence of 5µM Aβ1-40 

(figure 8). This suggests that oligomeric Aβ modulates nAChRs allosterically and 

possibly changes the conformation of the receptor, which consequently alters the 

binding affinity of nAChR ligands. This finding, together with the observation of 
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increased [3H]PIB binding, could shed light on current research aiming to develop α7 

nAChR-positive allosteric modulators for AD treatment. At least one of these novel 

compounds, S24795, has been shown to prevent or reverse the binding of Aβ to α7 

nAChRs (Wang et al., 2010; Wang et al., 2009), indicating that this type of drug 

could potentially preserve or potentiate the receptors’ neuroprotective properties. It is 

suggested that varenicline and JN403 could display similar features.  

To date, one study has modeled the interaction of Aβ with α7 nAChRs 

at the molecular level. Multiple binding sites were identified, and at least one Aβ-

epitope was accessible for α7 nAChR binding in various Aβ species ranging from 

monomers to protofibrils. This epitope, named K28, binds to the same site as ACh, 

whereas other Aβ binding sites seem to be located on the periphery of α7 nAChRs 

and do not interfere with ACh binding (Maatuk and Samson, 2013). Hence, there is 

reason to expect that Aβ could modulate α7 nAChRs either allosterically or at the 

active site.   

 

Figure 8. Oligomeric Aβ1-40 decreases the affinity of varenicline for nAChRs in the 

human frontal cortex. Reprinted from Lilja et al. (Lilja et al., 2011), with permission 

from IOS Press.  

 

To further assess the functional effects of oligomeric Aβ on nAChRs, [Ca2+]i was 

measured in SH-SY5Y cells after exposure to Aβ1-40 and varenicline. Oligomeric but 

not fibrillar Aβ increased [Ca2+]i, with a maximum response at 10 nM. This effect 

was attenuated by varenicline, suggesting that oligomeric Aβ1-40 activates α7 nAChRs 

to modulate Ca2+-dependent synaptic function. This is in line with previous findings 

showing that Aβ1-42 elevates Ca2+ levels through neuronal α7 nAChRs (Dougherty et 

al., 2003), and also indicates that varenicline prevents Aβ from binding to α7 nAChRs.   
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Taken together, these findings suggest that the α7 nAChRs are an important 

cellular target for Aβ, and that the aggregated form of Aβ is relevant to its effect on α7 

nAChRs. It appears that some of the multiple Aβ binding sites characterized by 

Samson and Maatuk operate independently of the Aβ aggregation state, whereas other 

binding sites are specific for particular assembly forms and thus contribute to their 

unique properties.  In the model systems studied in this thesis, fibrillar Aβ interacted 

with α7 nAChRs to induce neurotoxic effects, whereas oligomeric Aβ seemed to 

modulate synaptic function through the alteration of  [Ca2+]i. Hence, it appears that 

targeting α7 nAChRs in order to stimulate neuroprotective actions against Aβ-induced 

toxicity will depend on the stage of amyloid pathogenesis at which the intervention is 

introduced.  

 

 

4.2 STIMULATION OF REGENERATIVE PROCESSES AND THE 

IMPORTANCE OF Aβ MODULATION 

Several studies, both in vitro (Haughey et al., 2002; Kwak et al., 2011; Wicklund et al., 

2010) and in vivo (Zheng et al., 2013), have suggested that the pathophysiological 

environment in AD has adverse effects on stem cells and neurogenesis. In order to 

investigate the translation of in vitro results from cellular models of pharmacological 

modulation of Aβ on endogenous neurogenesis and synaptic function, in vivo studies 

using Tg2576 mice of different ages were carried out. The two experimental AD drugs 

(–)- and (+)-phenserine, both of which are APP synthesis inhibitors and thus lower Aβ 

levels (Greig et al., 2005; Lahiri et al., 2007; Mikkilineni et al., 2012; Shaw et al., 

2001), were investigated.  

 

4.2.1 (+)-Phenserine stimulates neuroprotective and neurotrophic processes via 

MAPK signaling and enhanced BDNF levels 

The aims of Paper II were to characterize the neuroprotective and neurotrophic 

effects of (–)- and (+)-phenserine, and the primary metabolites of (+)-phenserine: (+)-

N1-norphenserine, (+)-N8-norphenserine and (+)-N1,N8-bisnorphenserine, and also to 

investigate the primary signaling pathways responsible for mediating these effects. All 

the compounds lower APP levels through translational inhibition of the IL-1 response 
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element in the 5’ untranslated region of the APP mRNA (Mikkilineni et al., 2012; Shaw 

et al., 2001; Yu et al., 2013) (figure 9).  

  

 

Figure 9. Chemical structures of phenserine and its primary metabolites, and 

schematic illustration of APP inhibition.  

 

(+)-Phenserine, (–)-phenserine and (+)-N1-norphenserine increased the proliferation of 

SH-SY5Y cells. (+)-Phenserine had sustained effects on cell proliferation in the presence 

of sub-lethal levels of Aβ and H2O2, and displayed neuroprotective effects against 

H2O2- and glutamate-induced toxicity. (+)-Phenserine also enhanced cell proliferation 

and demonstrated pro-survival effects in primary Tg2576 progenitor cells in culture. 

Both the proliferative and neuroprotective actions were mediated, at least in part, 

through the protein kinase C (PKC) and MEK signaling pathways. MEK1 and MEK2 

signaling are closely involved in the regulation of cell proliferation and cycle arrest, and 

MEK2 is especially known to promote cell survival. PKC acts upstream from MEK 

and is thus also closely involved in the regulation of these cellular processes (Skarpen et 

al., 2008; Ussar and Voss, 2004).  

Merging evidence suggests that BDNF plays an important role in promoting 

neuroprotection in rodents and primates (Nagahara et al., 2009). It activates the 

MAPK/ERK signaling pathway, which in turn activates the downstream transcription 

factor CREB. CREB then promotes the expression of BDNF through a positive feed-

back loop (Autry and Monteggia, 2012; Lu et al., 2008). Interestingly, we measured 

increased BDNF levels in the cerebral cortices of wild-type mice after (+)-phenserine 

treatment. Our findings thus indicate that (+)-phenserine exerts actions involving 

MAPK signaling pathways, including enhancement of BDNF levels.  

 

4.2.2 Modulation of Aβ levels in the cerebral cortices and CSF of Tg2576 mice 

The effects of (+)-phenserine on Aβ levels at different stages of amyloid pathology and 

the subsequent effects on synaptic function, hippocampal neurogenesis and 

inflammatory cell changes were investigated in paper III and its related pilot study. 
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In paper III, reductions in Aβ1-42 levels were observed in both 4- to 6-month-old and 

15- to 18-month-old Tg2576 mice that received (+)-phenserine for 16 consecutive days. 

The effects of (+)-phenserine on Aβ levels in the CSF of 4- to 6-month-old APPswe 

transgenic mice were investigated in the pilot study. The levels of Aβ1-42 were 

reduced (by 26 %) as was the Aβ42/40 ratio (by 21 %) in the (+)-phenserine-treated 

mice, but the difference did not reach statistical significance (figure 10). Clinical data 

have shown similar but more pronounced reductions in CSF Aβ1-42 levels after 10 

days of (+)-phenserine administration to MCI patients (Maccecchini et al., 2012). 

 

 

   

Figure 10. Aβ levels in (A) cerebral cortex and (B) CSF of 4- to 6-month-old Tg2576 

transgenic mice treated with (+)-phenserine (Phe) or saline (Sal). Data are shown as 

mean values ±SEM.  

 

4.2.3 Modulation of chemokine and cytokine levels in Tg2576 mouse brains 

Because Aβ is known to stimulate the activation of microglia and astrocytes and the 

release of pro-inflammatory cytokines (Combs et al., 2001; Lindberg et al., 2005; 

Meda et al., 1995), we examined the effects of (+)-phenserine on the pro-

inflammatory cytokines IL-1β and TNFα, and the chemokine MCP-1. Levels of IL-

1β were elevated in Tg2576 mice compared to wild-type mice in both age groups; 

(+)-phenserine attenuated this increase in the older Tg2576 mice (15–18 months old). 

MCP-1 induces astrocyte chemotaxis and contributes to the recruitment of astrocytes 

around Aβ plaques (Wyss-Coray et al., 2003). Interestingly, we found age-dependent 

increases in cortical MCP-1, and an association between MCP-1 levels and lowered 

Aβ1-42 levels in the older Tg2576 mice. TNFα has been implicated in both the 

A B 
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pathogenesis of AD (Combs et al., 2001; Tarkowski et al., 2003a; Tarkowski et al., 

2003b) and the mediation of neuroprotective effects through increased production of 

neurotrophic factors (Hattori et al., 1993; Sriram and O'Callaghan, 2007). In line 

with the latter, a trend towards increased TNFα levels was observed in (+)-

phenserine-treated Tg2576 mice in both age groups.  

 

4.2.4 Enhanced cell proliferation and DCX expression in the neurogenic zones of the 

brain 

(+)-Phenserine treatment of the younger Tg2576 mice resulted in increased numbers 

of BrdU+ proliferating cells in the CA1 region of the hippocampus, a region 

especially vulnerable to Aβ (Burger, 2010), and also a trend towards increased 

numbers in the DG. A similar increase in BrdU incorporation was shown in the older 

Tg2576 mice after (+)-phenserine treatment. The increased cell proliferation in both 

age groups was associated with attenuated Aβ1-42 levels in the brains of these mice. 

Thus, reducing the Aβ load in the brains of older Tg2576 mice (15–18 months old) 

when Aβ plaque pathology is prominent could enhance cell proliferation in the 

hippocampus. 

A significant reduction in hippocampal neurogenesis was observed in the 

older mice compared to the younger treatment groups, indicating that NPCs are fewer 

or more vulnerable in older animals. Previous work has indicated that the age-

dependent decline in hippocampal neurogenesis occurs because of decreased neuronal 

maturation, decreased levels of neurotrophic factors, or aberrant vasculature in the 

vicinity of the neurogenic zone (Bernal and Peterson, 2004; Lugert et al., 2010; Shetty 

et al., 2005). Treatment of the younger (4- to 6-month-old) Tg2576 mice with (+)-

phenserine stimulated the maturation and plasticity of newborn neurons in the 

hippocampal DG (paper III; figure 11), and increased the expression of the early 

neuronal marker DCX in the subventricular zone (paper II; figure 12). Regardless of 

the location of the neurogenic zone, NPCs follow similar general patterns including 

proliferation, migration, differentiation and integration into existing networks. 

Neuroblasts in the SVZ can be induced to migrate away from their usual route to the 

olfactory bulb towards a site of injury or neurodegeneration in the cerebral cortex or 

other brain areas, as reviewed by Christie and Turnley (Christie and Turnley, 2012). In 

the DG, however, there is little if any migration to other areas of the brain in response 

to injury or disease, although neurogenesis can be induced at the site of injury, with 
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improvement in memory functions (Christie and Turnley, 2012). Hence, 

pharmacological induction of neurogenesis in both the SVZ and the DG could have 

different, and probably positive, implications for the treatment of neurodegenerative 

diseases such as AD.  

 

 

  

Figure 11. Increased dendritic arborization of newborn neurons in the DG of 4- to 

6-month-old Tg2576 mice following (+)-phenserine treatment.  

 

 

Figure 12. Increased DCX immunoreactivity in the SVZ of 4- to 6-month-old 

Tg2576 mice following (+)-phenserine treatment.  
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4.3 HUMAN NEURAL STEM CELL TRANSPLANTATION AND EFFECTS 
ON HIPPOCAMPAL NEUROGENESIS, SPATIAL MEMORY, AND α7 
nAChR-EXPRESSING ASTROCYTES   

The studies presented so far suggest that α7 nAChRs are important mediators of 

neuroprotective actions (paper I), that (+)-phenserine has neurotrophic actions in AD 

Tg2576 mice, and that early reduction of amyloid pathology could enhance 

endogenous neurogenesis (papers II and III). Although cell replacement therapies 

have in the past been regarded as highly challenging and, perhaps, not feasible for 

future treatment of patients with AD, recent experimental studies indicate that 

transplantation of stem cells into the brains of AD transgenic mice, in addition to 

increasing the levels of progenitor cells, could also supply trophic support to 

endogenous progenitor cells in neurogenic regions of the brain and to existing 

neurons (Blurton-Jones et al., 2009; Einstein and Ben-Hur, 2008). In paper IV, we 

expanded our hypothesis to examine how the stimulation of regenerative mechanisms 

in vivo is related to cognitive status in younger Tg2576 mice (a model for early Aβ 

pathological changes in AD).  

 

4.3.1 Pharmacological stimulation and neuronal induction in AD-like brain 

microenvironments  

An in vitro pilot study was carried out before paper IV to select suitable drugs for 

pharmacological treatment. We investigated the neuroprotective and neurotrophic 

effects of various drugs: the α7 nAChR partial agonist JN403, the amyloid-modulatory 

drugs (–)-phenserine and (+)-phenserine, the antidepressant fluoxetine, the anti-

inflammatory ibuprofen, and the AChE and α7 nAChR allosteric modulator 

galantamine. After 28 days of hNSC differentiation in culture, the number of cells 

positive to the neuronal marker βIII-tubulin was markedly reduced after exposure to a 

TBS extract from AD frontal cortex containing picomolar concentrations of Aβ, 

compared to untreated cells. Drug treatment with nanomolar concentrations of JN403 

alleviated these effects to a large extent (figure 13A and B). When given in combination 

with similar concentrations of (+)-phenserine, JN403 also promoted neuronal 

maturation of Tg2576 primary corticex neurons (figure 13 C and D). The primary 

neurons were also stained for synaptophysin after JN403 exposure, but were not 

quantified due to the diffuse distribution of this marker (figure 14 A-C).  JN403 and 

(+)-phenserine showed the most potent neurotrophic effects among the drugs studied, 
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and were selected for in vivo studies of hNSC transplantation of Tg2576 mice (paper 

IV), as described in the following section.  

 

 

Figure 13. (A) Expression of neuronal marker βIII-tubulin (red) and glial marker 

GFAP (green) in hNSCs in vitro after 28 days' differentiation. The hNSCs were 

untreated (CTRL), or weekly exposed to brain extracts from a healthy control (HC), a 

patient with AD (AD), AD plus JN403 (JN), or AD plus (+)-phenserine (PHEN). (B) 

Representative images of CTRL, HC, AD, and AD+JN as outlined in (A). (C–D) 

Expression of the neuronal marker MAP2 (red) and the number of branch points in 

untreated Tg2576 transgenic mouse primary cortex neurons in culture (CTRL) and 

after weekly exposure to JN403 (JN), (+)-phenserine (PHEN), or JN403 plus (+)-

phenserine (JN+PHEN) for 21 days. **p<0.01 compared with CTRL, #p<0.05, 

##p<0.01 compared to AD. The data are expressed as means ± SEM. 

 

Figure 14. Representative images of mouse primary cortex neurons labeled for A) 

MAP2, B) synaptophysin, and C) overlay of MAP2 and synaptophysin. Arrows point 

to neuronal soma.  
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4.3.2 hNSC transplantation augments endogenous neurogenesis and improves 

cognitive function in Tg2576 mice 

Intrahippocampal transplantation of hNSCs into 6- to 9-month-old Tg2576 mice was 

combined with 5 weeks' treatment with (+)-phenserine, JN403, or vehicle.  The aims 

were to test spatial learning and memory prior to and after transplantation and drug 

treatment, and to investigate the effects of drug treatment on endogenous neurogenesis 

in the DG, hNSC transplant survival, and the number of α7 nAChR-expressing 

astrocytes in the neurogenic niche (for study design, see figure 15). Although Tg2576 

mice of this age have elevated Aβ levels and increased astrocytosis, they also exhibit a 

degree of neuroplasticity, as shown in paper III. 

Figure 15. Experimental design as presented in paper IV.  

 

hNSC transplantation ameliorated the impaired hippocampal-dependent spatial 

memory in Tg2576 mice, at least in part by enhancing endogenous neurogenesis, as 

identified by increased numbers of DCX+ neurons in the DG. Thus, these findings 

support a direct connection between endogenous neurogenesis and cognitive function. 

They also suggest that transplantation of stem cells could offer valuable support for 

existing neurons and endogenous stem cell populations in the hippocampus. In line 

with these findings, a previous study has shown that hippocampal transplantation of 

murine NSCs improves cognition mediated by increased BDNF levels in aged 3xTg-
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AD mice, despite heavy Aβ plaque and NFT pathology (Blurton-Jones et al., 2009).  

Thus, we hypothesize that impaired neurotrophic support in AD can result in impaired 

endogenous neurogenesis, which could be restored by hNSC grafts.  

 
4.3.3 Distribution of α7 nAChR-expressing astrocytes in the hippocampal neurogenic 

niche 

Although α7 nAChR-mediated neuroprotective effects have been confirmed in a 

number of experimental studies, including those in paper I, little is known about 

whether the effects are the result of α7 nAChRs expressed on neurons or on astrocytes. 

Investigations into α7nAChRs on astrocytes are few, although these include reports on 

the presence of functional α7 nAChRs on astrocytes in rat hippocampus slices 

(Sharma and Vijayaraghavan, 2001; Shen and Yakel, 2012). The density of α7 

nAChRs on neuronal cells was reduced and the number of α7 nAChR-expressing 

astrocytes surrounding Aβ plaques was increased in postmortem AD brains, indicating 

that this subset of astrocytes could play an important role in the inflammatory processes 

occurring in response to Aβ deposition (Yu et al., 2005). In the DG of hNSC-

transplanted Tg2576 mice receiving JN403, the number of α7 nAChR- expressing 

astrocytes was significantly lowered versus those receiving saline. In addition to the 

effects on astrocytes, co-administration of hNSCs and JN403 inhibited the improved 

spatial memory and the induced endogenous neurogenesis observed after hNSC 

transplantation alone. In contrast to the in vitro findings where JN403 exerted 

neurotrophic actions, it seems that JN403 has antagonistic rather than agonistic effects 

in this in vivo model system.  

Intriguingly, we found that α7 nAChR-expressing astrocytes accumulated along 

the needletrack, indicating that these cells are involved in modulating inflammation 

associated with tissue remodeling following injury. This led us to ask whether the 

numbers of α7 nChR-expressing astrocytes in the neurogenic niche could be linked 

with neurogenesis. In support of this theory, the increased number of α7 nAChR-

expressing astrocytes was found to positively correlate with the number of DCX+ 

cells in the DG. Hence, we postulate for the first time that α7 nAChR-expressing 

astrocytes could be important in tissue remodeling and plasticity. These findings also 

raise the question of whether there are any functional differences between non-α7 

nAChR-expressing astrocytes and α7 nAChR-expressing astrocytes in cell repair – 

and if so, what these differences are. Clearly, this requires further detailed 
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investigation.   

 

4.3.4 (+)-Phenserine enhances graft survival but antagonizes hNSC-mediated effects 

on endogenous neurogenesis and cognition 

Treatment with (+)-phenserine increased the survival of the grafted cells, in line with 

our previous findings that this drug exerts pro-survival effects on progenitor cells and 

hippocampus neurons (paper II). In contrast, (+)-phenserine prevented the increased 

neurogenesis and the improvements in hippocampus-dependent memory induced by 

hNSC transplantation. Based on the findings in paper II, (+)-phenserine seems to 

exert neurotrophic effects through the MAPK and PKC signaling pathways, which are 

involved in a diverse repertoire of biological events including proliferation, 

differentiation, metabolism, motility, survival, and apoptosis. Consequently, this vast 

array of mechanisms could interfere with the effects of transplanted hNSCs on the brain 

microenvironment in order to support neurogenesis. Given that (+)-phenserine appears 

to enhance graft survival by acting directly on the implanted hNSCs, this effect would 

most likely not be antagonized.  

Although hNSC transplantation holds great promise, impaired graft 

survival as a result of the increasing presence of pathological proteins in the AD brain 

should be considered. Hence, to sustain the efficacy of this intervention, we propose 

that combination treatment with drugs that target the different pathological processes 

without interfering with the stem cell-mediated neurogenic effects should be 

administered at specific disease stages. Current efforts to determine the time course of 

the pathological changes during the disease, using CSF and imaging biomarkers, are 

important in this respect as the results could indicate when different types of 

regenerative and neurotrophic therapies would be most beneficial for AD patients. 
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5 CONCLUDING REMARKS AND FUTURE OUTLOOK 

The clinical implications of experimental studies investigating the stimulation of 

neuroprotection and brain repair are currently being explored. It is hoped that these 

studies will result in therapeutic strategies that will change or halt the clinical course of 

AD, in contrast to the currently available symptomatic treatment. In the translational 

approach presented in this thesis, the main aim was to investigate how neuroprotective 

and regenerative processes can be enhanced in a variety of experimental model systems 

relevant for AD, to define implications for the development of novel intervention 

strategies. 

 

Do nAChRs have differential roles in neuroprotection and neurogenesis? 

We found that α7 nAChRs play an important role in mediating neuroprotection 

against Aβ-induced neurotoxicity, and that the aggregated form of Aβ is important for 

the interaction with α7 nAChRs and the downstream effects in neuronal cells. This 

implies that the time of introduction of α7 nAChR-targeting interventions during the 

disease course determines the effects of the treatment. I postulate that α7 nAChR 

ligands that promote cell survival and neuroprotection through intracellular 

mechanisms, in combination with compounds that sterically occlude Aβ from binding 

to α7 nAChRs, would be promising treatment strategies for AD. These drugs could 

comprise positive allosteric modulators, which do not get desensitized as easily and are 

postulated to have good chances to be clinically successful.  

In addition to the neuroprotective role of α7 nAChRs, we found that the 

numbers of α7 nAChR-expressing astrocytes were related to the degree of hippocampal 

endogenous neurogenesis of stem cell-transplanted Tg2576 mice. These findings 

prompted me to wonder what roles α7 nAChR-expressing astrocytes might play in the 

neurogenic niche and with respect to tissue remodelling and plasticity, and whether α7 

nAChR-expressing astrocytes in the vicinity of neurogenic zones in the brain possess 

neurotrophic properties. These and other questions could be used in future studies on 

α7 nAChRs and elucidation of their role in regenerative processes.  

 

Therapeutic window for enhancing endogenous neurogenesis 

This thesis has also provided new insights into a number of different effects mediated by 

the amyloid modulatory drug (+)-phenserine, a current and promising candidate drug 
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for AD therapy. The drug exerted neuroprotective, pro-survival and cell proliferative 

effects of neuronal and progenitor cells in culture, which translated into neuronal 

maturation of the latter cells in vivo in AD transgenic mice. These effects on 

regeneration and plasticity in the brain were achievable only during the specific time 

period when neurogenesis in the brain was still measurable and inducible. Although 

some of the data indicate an association between the effects on Aβ pathogenesis with 

those on neurotrophic processes, this should be interpreted with caution, as a causal 

relationship remains to be proven. These findings gave rise to further questions that 

require investigation. For example, can regenerative therapies prevent the age-

dependent decline in neurogenesis and preserve cognitive function, and at what stage 

during the disease course should Aβ-targeting therapies be introduced in order to halt 

or prevent amyloid pathogenesis? Given the age-dependent sigmoidal increase in Aβ 

levels (Karran et al., 2011) and previous indications that endogenous neurogenesis 

shows an exponential decline with age (Knoth et al., 2010; Lazic, 2011), interventions 

targeting Aβ or stimulating regenerative processes may be successful if introduced early 

enough during the disease course. Further investigation using (+)-phenserine to answer 

these questions would be on my wishlist. A recent research study posits that 

hippocampal neurogenesis in humans continues throughout life, with only minor 

decline associated with ageing (Spalding et al., 2013). These findings appear promising 

for the translational relevance of the results to date, and suggest that the therapeutic 

window for stimulating neurogenesis in humans is probably much broader than that in 

rodents.  

 

Endogenous neurogenesis linked to cognition 

We have shown for the first time that stem cell transplantation stimulates endogenous 

neurogenesis in an AD animal model. Enhanced neurogenesis was further associated 

with improved hippocampus-dependent memory in Tg2576 mice, indicating a link 

between endogenous neurogenesis and cognition. These findings indicate that hNSCs 

themselves possess an intricate innate signaling system, and secrete a plethora of 

neurogenic factors that could stimulate a number of processes during neurogenesis. 

Stem cell transplantation in AD patients could thus be superior in outcome to drugs 

acting at only one or even a few targets. Safety issues regarding the use of stem cell 

transplants, as well as the sustainability of the neurogenic effects observed after stem cell 

transplantation, however, needs to be studied in long-term trials. 
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In summary, this thesis indicates that the introduction of intervention strategies early in 

the disease course when i) amyloid burden is low, ii) neurogenesis is still substantial in 

the brain, and iii) memory deficits are mild, will enable detection of neuroprotective 

and neurotrophic effects.  

Induced pluripotent stem cells (iPSCs), isolated from patient fibroblasts, 

are currently being developed to model diseases such as AD. It is hoped that this type of 

model system will contribute to the advancement of regenerative therapies to clinical 

stages. For continued studies on the aspects presented in this thesis, model systems such 

as iPSCs-derived neurons and glial cells would constitute unique tools for further 

investigating cellular processes as well as molecular targets for neuroprotective and 

neurotrophic drugs such as (+)-phenserine and α7 nAChR modulators. On a systems 

biology level, the development of biomarkers for in vivo non-invasive assessment of 

neurogenesis and pathological changes is essential for the evaluation of these types of 

interventions longitudinally, at both pre-clinical and potentially clinical levels.  

 

As discussed throughout the thesis, a large number of factors and their interplay are 

important for the development of AD. Despite the occurrence of disease-specific 

pathological changes in the brain, some individuals do not develop AD. The factors 

behind this phenomenon may be many, including genetic, epigenetic and lifestyle 

factors, but I believe that the brain’s ability to use intrinsic mechanisms to stimulate 

neuroprotection and brain repair to sustain cognitive functions, could be part of the 

answer. 
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