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“I don’t really have Down’s syndrome; I just have a slight case of it.” 

Chris Burke 



 

 



 

   

Abstract 
Periodontal diseases are inflammatory diseases affecting the supporting tissues of the teeth. 

Subjects with Down syndrome have a higher prevalence of periodontal disease compared 

to healthy controls. Periodontal disease in Down syndrome is considered to be 

multifactorial, although the aetiology is uncertain. The aim of this thesis was to study the 

inflammatory response in periodontal tissue in terms of cytokines, prostaglandins, matrix 

metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) in 

children with Down syndrome as well as in healthy controls.  

 

In study I, 18 subjects with Down syndrome and 14 controls were clinically and 

radiographically examined and matched for age and degree of gingival inflammation 

expressed as percentage of bleeding on probing (BOP%). In all subjects, gingival crevicular 

fluid (GCF) was collected from six sites with paper strips, and levels of prostaglandin E2 

(PGE2), leukotriene B4 (LTB4), and MMP-9 were analysed using RIA and ELISA kits. 

BOP% and volume of GCF (µL) were similar in both groups while Down syndrome 

patients had significantly higher (p<0.05) mean levels of PGE2, LTB4, and MMP-9 in 

GCF than controls.  

In study II, PD and BOP% were clinically assessed in subjects with Down syndrome 

(n=24) and controls (n=29) (both groups, mean age 16.4 yr). The controls were matched 

for age and BOP% to subjects with Down syndrome. GCF was collected and Bio-Plex 

cytokine multiplex assays were used to determine levels of interferon-γ (IFN-γ), tumour 

necrosis factor-α (TNF-α), and interleukin (IL)-1β, IL-4, -6, -10, -12, and -17. GCF 

volume (µL) was significantly higher in subjects with Down syndrome (p<0.001) than 

controls. Mean levels of IL-1β, IL-4, IL-6, IL-10, IL-12, IFN-γ, and TNF-α in GCF were 

significantly (p<0.005) increased in subjects with Down syndrome compared with 

controls. The correlation between IFN-γ and IL-4 in GCF in subjects with Down 

syndrome differed significantly from controls (p<0.01).  

In study III, 21 adolescents with Down syndrome exhibiting gingivitis (DS-G), 12 

subjects with Down syndrome exhibiting periodontitis (DS-P), 26 controls with gingivitis 

(HC-G), and 8 controls with periodontitis (HC-P) were clinically and radiographically 

examined. All patients were between ages 11 and 20 yr. GCF was collected from each 

subject and the amounts of MMP-2, -3, -8, -9 and -13 and of TIMP-1, -2 and -3 were 



 

 

determined with R&D multianalyte kits. The amounts of MMP-2, -3, -8, and -9 and of 

TIMP-2 in GCF were significantly higher (p<0.005) in the DS-G than the HC-G group. 

The correlation coefficient between MMP-8 and TIMP-2 also differed significantly 

(p<0.01) between the DS-G and HC-G groups. In contrast, the correlation coefficients 

between the MMPs and TIMPs did not differ significantly between the DS-P and the 

HC-P groups. The DS-P group, however, exhibited significantly (p<0.005) lower amounts 

of TIMP-2 in GCF compared to the HC-P group. 

In study IV, children with Down syndrome (n=10) and controls (n=10) were clinically 

and radiographically examined during dental treatment under general anaesthesia. 

Peripheral blood and GCF were gathered from each patient and levels of MMP-2, -3, -8 

and -9, of TIMP-1, -2 and -3 in serum, and of GCF were determined. Peripheral blood 

leukocytes were isolated, and the relative amounts (%) of the various cells were determined 

with flow cytometry. Peripheral blood cells were stimulated with lipopolysaccharide (LPS) 

from Porphyromonas gingivalis (Pg) and MMP and TIMP levels were measured. Levels of 

MMP-3 and -8 and TIMP-1 in serum were significantly enhanced (p’s<0.05) in subjects 

with Down syndrome compared to controls. When peripheral blood leukocytes were 

cultured in the presence or absence of Porphyromonas gingivalis lipopolysaccharide, MMP-

8 levels were significantly (p < 0.05) higher in the Down syndrome group compared to 

controls. Children with Down syndrome exhibited significant positive correlations of 

CD8+ T cells with MMP-8 (r=0.630; p=0.050) and MMP-9 (r=0.648; p<0.05) and of 

CD56+ NK cells with MMP-3 (r=0.828; p<0.005) compared to controls.  

 

Conclusions 

Subjects with Down syndrome had increased levels of the arachidonic acid metabolites 

PGE2 and LTB4, the cytokines IL-1β, IL-4, IL-6, IL-10, IL-12, IFN-γ and TNF-α, and of 

MMP-2, -3, -8 and -9 and TIMP-2 in GCF compared to controls. In addition, the 

balance between pro- and anti-inflammatory cytokines and between MMPs and TIMPs 

was altered in subjects with Down syndrome but not in controls. Furthermore, in contrast 

with controls, no significant differences in MMP and TIMP levels in GCF were observed 

between Down syndrome patients with gingivitis and periodontitis. This finding might 

indicate that the inflammatory response in Down syndrome is already upregulated during 

early stages of periodontal disease. We also demonstrate an association between MMPs and 

lymphocyte subpopulations (CD8+ T-cells and CD56+ NK-cells), which may facilitate the 



 

   

migration of immune cells into the periodontal tissue. This assumption is well compatible 

with the higher levels of MMPs in GCF found in Down syndrome subjects. These 

findings, may contribute to the increased periodontal inflammation demonstrated in this 

current cohort of Down syndrome subjects. 
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Down syndrome 
 
Genetics 
Paintings and frescoes from the 1400s portray children and adults with Down syndrome. 

The first known medical description of a person with Down syndrome was made in 1838 

by the Spaniard Jean Esquirol (1). In 1866, John Langdon Down published an article in 

the London Medical Journal in which he described many of the characteristics and 

problems of Down syndrome (2). It was he who lent his name to the syndrome. In 1956, 

Albert Levan and his colleagues determined that humans have 46 chromosomes (3), which 

made it possible 3 years later, in 1959, for Jerome Lejéune to report that Down syndrome 

was due to an extra copy of chromosome 21 (4) (Figure 1).  

Down syndrome is the result of a trisomy of chromosome 21. In 94% of persons with 

Down syndrome, this is due to nondisjunction, resulting in an extra chromosome 21 in all 

cells (5). In 4% of the cases, Down syndrome is due to translocation of all or part of 

chromosome 21, and in 2% of the cases, Down syndrome is the result of mosaicism where 

only some cells have 47 (trisomy 21) chromosomes (5).  

There are two major theories for how trisomy 21 causes Down syndrome. Both theories 

are based on the view that if a gene exists in three copies instead of two, the level of gene 

expression will increase. In the first theory, the gene dosage theory, increased expression of 

specific trisomic genes on the distal half of the long arm, cytologically known as band 

21q22, are directly responsible for specific features of Down syndrome (6). In the second 

theory, the amplified developmental instability theory, the number of phenotypic features 

associated with Down syndrome is primarily due to the elevated activity of sets of genes, 

which regardless of their identity, will decrease in genetic stability or homeostasis – and not 

to the direct contributions of specific genes on the distal half of the long arm on 

chromosome 21. (6, 7). So the greater the number of trisomic genes, the more susceptible 

the foetus will be to developmental abnormalities.  
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                  Figure 1. G-banded karyotype of a trisomy 21 female, showing three copies of human  
                  chromosome 21   (HSA21). Adapted from Antonarakis and coworkers 2004 (8). 
 
 
Medical features associated with Down syndrome 

Down syndrome is characterized by mental retardation and a variety of morphological 

characteristics that occur in varying frequency (9). In addition to the morphological 

characteristics, patients with Down syndrome more often suffer from heart disease, 

leukaemia, growth retardation, hormonal disturbances, obesity, neuropsychiatric disorders, 

and increased susceptibility to infection (9).  

Approximately 40% of all infants with Down syndrome have congenital heart defects, 

the most common of which are atrial septal defects (10). Furthermore, children with 

Down syndrome are at a higher risk of developing acute leukaemia compared to other 

groups (11). Physical growth in Down syndrome is also affected, and children with the 

syndrome suffer from short stature and weight problems. As infants, their length is normal, 

but growth retardation becomes evident in the first years of life (12). Thyroid hormone 

deficiencies, such as hypothyroidism, are common (13, 14). And overweight and obesity 

(BMI>25 or >30) are a well-known problem (15). In Sweden, one in three individuals 

with Down syndrome is overweight by age 18 (16). Neuropsychiatric disorders such as 

attention deficit hyperactivity disorder and autism-spectrum disorder are overrepresented 
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in Down syndrome (17, 18). In addition, patients with Down syndrome diagnosed with 

autism-spectrum disorder have more severe learning disabilities than patients with only 

Down syndrome (19). Other features in the Down syndrome group include ocular 

disorders, gastrointestinal malformations, orthopaedic problems, and hearing and otologic 

disorders (20-23) (Table 1).  

 
Table 1. Common medical conditions associated with Down syndrome with known frequencies (%). 

Condition Frequency (%) 

Neuropsychiatric   

Attention-deficit-hyperactivity-disorder (18, 24) 11-44 

Autism (25, 26) 1 

Autism-spectrum disorder (17) 18 

Gastro-intestinal  

Celiac disease (27) 1.4 

Congenital heart defects (10) 42 

Otolaryngology  

Hearing impairment (28) 56 

Stenotic (narrow) ear canals (28) 40 

Otitis media (28) 38 

Obstructive sleep apnea (29, 30) 50 

Hematology  

Leukemia (9) 1 

Transient myeloproliferative disorder (31-33) 3-10 

Ocular manifestations (9) 45-70 

Nystagmus (21) 29 

Strabismus (21) 26 

Endocrinology  

Thyroid dysfunction (13, 14) 28-38 

Growth retardation (12)  

Obesity (16) 31-36 

Orthopedics  

Atlanto-axial instability (34) 15 

Increased infection susceptibility (35)  
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Immunological features 

Cells in the innate immune system such as natural killer (NK) cells and 

polymorphonuclear leukocytes (PMNs) express various pattern-recognition receptors, 

which recognize signature molecules of pathogens known as pathogen-associated molecular 

patterns (36-38). To date, several classes of pattern-recognition receptors such as Toll-like 

receptors (TLRs) have been identified. The TLRs are considered to be key players in the 

detection of invading pathogens; so far, 12 members of the TLR family have been 

identified (39). TLRs recognize pathogens and initiate a cascade of signalling pathways that 

result in the production of chemokines and adhesion molecules. These, in turn, lead to the 

migration of neutrophils and the production of inflammatory mediators (40-43).  

Several studies of the innate immune system in Down syndrome subjects have described 

functional defects in PMNs and monocytes that result in impaired phagocytic function, 

increased oxidative stress, and poorer chemotactic ability (44-46). It has been proposed 

that the oxidative stress in Down syndrome is due to overexpression of superoxide 

dismutase 1 (SOD-1), an antioxidant enzyme coded on chromosome 21 (47). 

In periodontal tissue from subjects with Down syndrome it has previously been 

described an impaired chemotactic ability of PMNs suggesting that PMNs do not reach 

the infection site (48, 49). Furthermore, in a recent study by Khocht and coworkers (50) 

demonstrated undiminished granulocyte and monocyte phagocytic intensities in subjects 

with Down syndrome, although a significantly lower percentage of monocytes was 

actively involved in phagocytosis compared to controls. Phagocytosis is followed by an 

oxidative burst and production of oxygen radicals to kill encapsulated pathogens. The same 

research group (50, 51) recently demonstrated that the oxidative burst activity of PMNs 

and monocytes is higher in subjects with Down syndrome and suggested that it may 

contribute to periodontal tissue inflammation and destruction in the Down syndrome 

group. 

 Adaptive immunity includes antibody-mediated (humoral) immunity as well as T-cell-

mediated immunity, both of which protect against infection (52).  

Antibodies or immunoglobulins (Ig) are proteins that are produced by B-cells in 

response to antigens (53). The five classes of immunoglobulins – IgG, IgA, IgM, IgE and 

IgD – are characterized by differences in structure and function. Two classes have distinct 

subclasses: IgG has four subclasses and IgA, two (53). Interaction between the various 

immunoglobulins and the antigens results in either direct inactivation of the micro-
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organism or activation of a variety of inflammatory mediators such as interleukin (IL)-6 

and tumour necrosis factor (TNF)-α to destroy the pathogen (52-55).  

In the Down syndrome group, B-cell counts and levels of IgG, IgA, IgM and IgE 

antibodies are largely normal, but the patterns of serum IgG subclasses differ from in 

persons without Down syndrome. It has been shown that in both children and adults with 

Down syndrome, serum levels of IgG2 and IgG4 are low while serum levels of IgG1 and 

IgG3 are elevated (56).  

T-cell development requires migration of precursor T cells to the thymus where they 

undergo differentiation into two distinct types of T cells: the CD4+ T-helper (Th) cell and 

the CD8+ pre-cytotoxic T cell (52). T-cytotoxic cells attack antigens directly and destroy 

cells that bear foreign antigens (57). Th cells play a crucial role in host response and 

through the influence of specific cytokines differentiated into subsets of Th1, Th2, Th17, 

and regulatory T (T-reg) cells, which mediate inflammation, tissue damage and 

autoimmunity (58-62). Recently, Kaplan (62) described a fifth group of Th cells: Th9 

cells. Concerning cellular immunity, Murphy and co-workers (63, 64) reported that 

thymus function in the Down syndrome group is altered, with a decreased number of 

mature thymocytes. Several studies have reported reduced levels of CD4+ T lymphocytes 

and increased levels of CD8+ T lymphocytes and CD56+ NK cells (65-69). Although the 

absolute numbers of T lymphocytes in the Down syndrome group gradually approach 

those of non-Down syndrome children over time, it is doubtful whether the phenotype 

and function of these cells are normal in subjects with Down syndrome (70).  

  
Orofacial features 

The mid-facial region in children with Down syndrome is often underdeveloped, 

sometimes with malocclusions such as mandibular protrusion, open bite, and posterior 

cross bite as a consequence (71-73). Reduced muscle tone in the lips, tongue, and soft 

palate can impair the ability to suck in the neonatal period and cause difficulties in 

chewing, swallowing, speech, and other orofacial functions (74). The nasal airway is often 

narrow and partially blocked as a result of a deviated nasal septum and thickened mucosa, 

frequently resulting in mouth breathing (20, 75). Because the tongue is hypotonic, it often 

protrudes and appears to be too large for the mouth (76). Dental developmental 

disturbances are also common. Dental eruption is often delayed and tooth agenesis, 

microdontia, and short roots are common (77) . Low salivary flow rates (mL/min) and 
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mouth breathing often lead to a condition of dry mouth in subjects with Down syndrome 

(78). Despite low salivary flow rates, the prevalence of caries in persons with Down 

syndrome is low (79).  

The increased susceptibility to infection of subjects with Down syndrome results in an 

elevated incidence of oral fungal infections. Candida albicans occurs as erythematous or 

pseudomembranous lesions on the tongue, palate, and cheek to a greater extent in children 

with Down syndrome than controls (80). Furthermore, patients with Down syndrome are 

more prone to periodontal disease than healthy subjects or other groups of mentally 

handicapped patients (79, 81) (Table 2).  

 

Table 2. Common orofacial conditions associated with Down syndrome with known frequencies (%). 

Condition Frequency (%) 

Malocclusion  

Mandibular protrusion (82) 48 

Open bite (82) 36 

Posterior cross-bite (83) 77 

Dental developmental disturbances  

Hypodontia (84) 56 

Conic teeth/Microdontia (77) 16 

Canine impaction/transposition (85) 30 

Delayed tooth eruption (86, 87) 28 

Low salivary flow rate (78)  

Hypotonia of the orofacial musculature (74)  

Relative macroglossia (87) 63 

Protruding tongue (87) 41 

Increased infection susceptibility  

Candida infection (80) 69 

Periodontal disease (81, 88) 35-74 
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Periodontal disease in Down syndrome 

Gingivitis is the most common form of periodontal disease in young persons (89) and is 

reversible in most children. In some, however, the balance between micro-organisms and 

the host response is disturbed, and tooth loss and periodontitis result. The prevalence of 

periodontitis is about 3-5% among adolescents (90, 91).  

Compared with controls, subjects with Down syndrome have more extensive gingival 

inflammation and earlier signs of alveolar bone loss, mainly localized around incisors in the 

lower front region (92, 93) (Figure 2A and 2B). The prevalence of periodontal disease in 

subjects with Down syndrome varies depending on whether the subjects live at home or in 

institutions; prevalence is higher in subjects living in institutions (94, 95). Agholme and 

co-workers (88) used bitewings and periapical radiographs in a longitudinal study to 

diagnose periodontal disease and found that one-third of Down syndrome adolescents 

(mean age 16.6 yr) suffered from alveolar bone loss compared to 74% at the 7-year follow-

up (88). Saxén and co-workers (1977) used panoramic radiographs to evaluate the degree 

of periodontal disease and reported a prevalence of 69% in Down syndrome subjects 

between ages 9 and 39; 5 yr later, the prevalence of alveolar bone loss had increased to 

75% (96, 97).  

 

    
Figure 2A. Gingival inflammation. Gingival inflammation of the margins of the gingiva. Figure 2B. 
Periodontitis in the lower incisors in 18-year old patient with Down syndrome. 
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Microbiology 

Oral biofilm play a key role in the aetiology of oral disease. Biofilms are microbial 

communities composed of numerous diverse organisms that exist in a collective state (98, 

99). Today over 700 species have been identified in the human oral cavity (100). Micro-

organisms in oral biofilm are widely considered to initiate gingival inflammation (101, 

102). Periodontal destruction might be due to an upregulated inflammatory response to 

bacterial products from Gram-negative anaerobic periodontopathogens present in oral 

biofilm (103-105). Few studies have investigated the microbiological composition of 

plaque from patients with Down syndrome regarding different types of micro-organisms 

involved in the periopathogenic process. Barr-Agholme and co-workers (106) found higher 

percentages of Aggregatibacter actinomycetemcomitans (Aa) and Capnocytophaga in subjects 

with Down syndrome compared to controls, indicating an altered microbial composition 

of the subgingival plaque in persons with Down syndrome. Amano and co-workers  (107) 

found that children with Down syndrome between ages 2 and 13 more frequently exhi-

bited micro-organisms such as Aa, Porfyromonas gingivalis (Pg) , Bacteroidus forsythus, and 

Treponema denticola in subgingival plaque than controls. According to the authors, these 

findings suggest that individuals with Down syndrome experience colonization by various 

micro-organisms associated with periodontal disease early in childhood and that the 

resulting altered composition of subgingival plaque may lead to early initiation of 

periodontal disease (107). Furthermore, Sakellari and co-workers (108) reported that 

Down syndrome adolescents more frequently present higher levels of Aa and Pg compared 

to age-matched healthy subjects. However, subgingival microflora in adults with Down 

syndrome are no different than in matched individuals without Down syndrome (109, 

110).  

 
Gingival crevicular fluid 

Gingival crevicular fluid (GCF) is mainly an inflammatory exudate that is collected in 

the gingival crevices surrounding the teeth (111-113). GCF components have a variety of 

sources and contain substances originating from the host as well as from micro-organisms 

in subgingival and supragingival plaque. Substances from the host include molecules 

from the blood as well as contributions from periodontal cells and tissues. When micro-

organisms in the dental biofilm initiate an inflammatory response, various inflammatory 
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mediators that can be detected in GCF, such as cytokines, prostaglandins, and enzymes 

like matrix metalloproteinases (MMPs), are produced (40-43, 103-105, 114) (Figure 3). 

 

 
Figure 3. A schematic illustration of the host response in periodontal disease. The host response in 
periodontal disease includes complex interactions between a multitude of cell types, inflammatory 
mediators and tissue degrading enzymes, some of which are illustrated above. Bacterial antigens such as 
lipopolysaccharides (LPS) are recognized by the toll-like receptors (TLR´s) that initiate the recruitment of 
inflammatory cells into the periodontal tissue. Inflammatory cells and resident cells produce inflammatory 
mediators (cytokines and prostaglandins) as well as proteolytic enzymes (matrix metalloproteinases). Modified 
from Lerner 2005 (115). 
 

The collection and analysis of GCF is a useful, non-invasive method for evaluating the 

host response in periodontal disease. The volume of GCF present at a given site may be 

directly related to tissue inflammation as well as permeability and ulceration of the 

crevicular epithelium. With increased inflammation, the volume of GCF increases (116).  

One of the methods of collecting GCF is with paper strips (Figure 4). The advantages of 

using a paper strip are that the method is quick and easy as well as that individual sites can 

be sampled. Furthermore, when used correctly, paper strips is probably the least traumatic 

means of collecting GCF from the gingival crevice (114).  
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     Figure 4. GCF collecting with paper strip. 

 

Arachidonic acid metabolites  

Membrane phospholipids release arachidonic acid (AA) in response to phospholipases A2 

(PLA2) (Figure 5), a family of enzymes that are activated by mechanical injury, infection, 

allergens and cytokines, including IL-1β and TNF-α (117, 118). Free AA is then 

metabolized in the cyclooxygenase (COX) pathway, where the isoenzymes COX-1 and 

COX-2 convert AA to prostaglandin H2 (PGH2) (119). PGH2 is subsequently 

metabolised to prostaglandins (PG) and thromboxanes (TX) (119, 120). The isoenzyme 

prostaglandin E synthase (PGE synthase) catalyse the conversion of COX-derived PGH2 

to prostaglandin E2 (PGE2) (121, 122). AA can also be oxidized along the lipoxygenase 

pathway. The central enzymes, 5-lipoxygenase (5-LO), leukotriene (LT) A4 hydrolase, 

and LTC4 synthase, produce several classes of leukotrienes and lipoxins, among them 

LTB4 (123-125).  

 
Figure 5. Overwiew of the arachidonic acid pathway. Arachidonic acid, derived from phospholipids can be 
metabolized by a range of enzymes to form prostaglandins (including PGD2, PGE2, PGI2 and PGF2) and 
leukkotrienes (including LTB4, LTC4, LTD4 and LTE4) as well as thromboxanes (including TXA2). 
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Prostaglandin E2 

One of the best known and well-studied prostaglandins, PGE2 (126), is involved in the 

pathogenesis of several chronic inflammatory diseases including periodontitis, rheumatoid 

arthritis, and atherosclerosis (127-129). The levels of this mediator are elevated in the 

gingival tissue and in the GCF of patients with periodontitis compared to periodontally 

healthy subjects (128, 130, 131). It is also well established that PGE2 partly induces bone 

resorption, since PGE2 stimulates osteoclast formation by increasing receptor activator of 

nuclear factor-κB ligand (RANKL) expression and inhibiting osteoprotegerin expression in 

osteoblasts (132-134). The inhibition of osteoprotegerin expression allows RANKL to 

interact with its receptor RANK on osteoclast lineage cells to drive differentiation to 

osteoclasts (135, 136). In addition, PGE2 also induces the production of MMPs, which are 

associated with periodontal tissue destruction (137).  

In Down syndrome, information on PGE2 production in periodontal tissue is limited. 

Barr-Agholme and co-workers (138) previously reported enhanced PGE2 levels in the GCF 

of Down syndrome patients compared with age-matched controls. Furthermore, Otsuka 

and co-workers (139) demonstrated that in response to A.a LPS treatment, gingival 

fibroblasts isolated from subjects with Down syndrome produced higher levels of PGE2 

compared to gingival fibroblasts from healthy controls.  

 

Leukotriene B4 

Higher levels of the AA metabolite LTB4 have been found in various inflammatory diseases 

such as asthma, rheumatoid arthritis, and periodontal disease (118, 140). LTB4 has several 

functions: it promotes the aggregation and adhesion of PMNs to endothelial cells, it 

facilitates the migration of PMNs to the inflammation site, it activates NK cells, and it 

regulates IL-1 and IFN-γ production of T lymphocytes in an immunoregulatory role (141, 

142). Heasman and co-workers (143) demonstrated that LTB4 is enhanced in GCF 

collected from patients during experimental gingivitis. In addition, Pradeep and co-workers 

(140) demonstrated that the more severe the periodontal disease, the higher the levels of 

LTB4 and that after periodontal treatment, LTB4 levels in GCF decreased. Rodrigues 

Freire and co-workers (144) reported increased chemotactic activity toward neutrophils as 

well as increased levels of 5-LO mRNA expression in Down syndrome subjects with 

periodontal disease compared to controls. To our knowledge, no reports of LTB4 levels in 

GCF from patients with Down syndrome were available at the start of this project.  
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Cytokines 

The immune system (e.g., monocytes, macrophages, and T cells) produces most cytokines, 

but other cells, like mast cells, fibroblasts and endothelial cells also produce cytokines. 

Cytokines interact in a complex way, inducing or inhibiting the production of each other. 

They are also involved in the initiation and development of inflammation, regulating the 

amplitude and duration of the response (145, 146).  

There are two distinct types of T cells, the CD4+ Th cell and the CD8+ pre-cytotoxic 

T cell (52). Th cells were initially subdivided into two subsets, Th1 and Th2, on the basis 

of their pattern of cytokine production (147). In general, immune responses mediated by 

T cells polarized into a Th1-type phenotype are characteristically cellular and pro-

inflammatory, while Th2 cells are associated with humoral immunity and present anti-

inflammatory properties (147, 148). Studies have also described four other Th cell subsets: 

Th9, Th17, Th22 and T-reg cells (149-152). The key cytokine involved in the Th1 

response, which stimulates cytotoxic T-lymphocyte responses, is IFN-γ; the key cytokine in 

the Th2 response, which stimulates B lymphocytes, is IL-4 (58, 153). Th17 cells, which 

are involved in the pathogenesis of autoimmune diseases such as inflammatory bowel 

disease and rheumatoid arthritis, are a Th subpopulation that is characterized by the 

production of its key cytokine IL-17 (153-155). The fourth group of Th cells, T-reg cells, 

plays a critical role regulating immune response by cytokines such as transforming growth 

factor (TGF)-β, IL-10, and IL-35 (156). The key cytokine involved in the Th9 response is 

IL-9, which promotes inflammation in a variety of models but seems to be particularly 

important in promoting allergic inflammation (62, 157). The sixth group of Th cells, 

Th22 cells are characterized by the production of IL-22 that increases the antimicrobial 

defense by enhancing the expression of antimicrobial peptides (152). 
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Figure 6. Overview of Th cell differentiation. Th precursor (Thp) cells differentiate into subsets as a result 
of their cytokine environment. Th1 cells are induced by IL-12 to produce IFN-γ that drive cell mediated 
immunity. Th2 cells are induced by IL-4 to produce IL-4 that drive humoral immunity. Th17 cells are 
induced by cytokines like TGF-β, IL-6 and IL-23 to produce IL-17. Th-17 cells play a vital role in 
inflammation and autoimmunity. T-reg cells are induced by TGF-β to produce IL-10 and is essential in the 
regulation of an immune response by suppressing the activation of other T-cells. Th9 cells are induced by 
TGF-β and IL-4 to produce IL-9 that is assumed to play an important role in allergic inflammation. Th22 
cells are induced by TGF-α and IL-6 to produce IL-22 that increases the antimicrobial defense of skin 
keratinocytes by enhancing the expression antimicrobial peptides and plays a role in inflammatory skin 
disease. Modified from Kramer and Gaffen (158). 
 

Subjects with Down syndrome demonstrate an altered cytokine production, as both 

TNF-α and IFN-γ are overexpressed in the thymus (63). Few studies have investigated the 

role of cytokines in periodontal disease in subjects with Down syndrome. Barr-Agholme 

and co-workers (138) previously reported unaffected levels of IL-1β in GCF from subjects 

with Down syndrome compared to controls. Recent studies have reported reduced 

expression of IL-10 as well as a reduced interferon-mediated response against microbial 

stimulus in the periodontal microenvironment in subjects with Down syndrome exhibiting 

periodontitis (159, 160). And Iwamoto and co-workers (161) reported that IFN-γ induces 

IL-6 in fibroblasts from Down syndrome.  



 

14 

Matrix metalloproteinases 

MMPs, collectively known as matrixins, form a family of structurally related 

endopeptidases that mediate the degradation of the main components in the extracellular 

matrix and thus play important roles in cell migration, wound healing, and tissue 

remodelling (162). To date, of the 24 known MMPs, 23 are found in humans (162). 

MMPs are classified into groups based on substrate specificity, such as collagenases (MMP-

1, -8, and -13), gelatinases (MMP-2 and -9), stromelysins (MMP-3 and -10), stromelysin-

like (MMP-7, -11, and -12) and membrane-type (MMP-14, -15, -16, and -17) (163). 

MMPs are secreted as latent, inactive pro-enzyme forms with cytokines like IL-1β and 

TNF-α as likely inducers of MMP expression (164-167).  

The balance between MMP expression and synthesis is regulated by their major endo-

genous inhibitors, TIMP-1, -2, -3, and -4, which partly control and stabilize MMP 

expression (168). Almost all MMPs can be inhibited by the four TIMPs, although 

differences in binding affinity have been reported (168). In periodontal tissue, MMPs and 

TIMPs are expressed by both inflammatory cells (monocytes, macrophages, lymphocytes 

and PMNs) and resident cells (fibroblast, epithelial cells and endothelial cells) (169, 170).  

Compared with healthy periodontal tissue, MMP levels are generally higher in inflamed 

periodontal tissue, in which TIMP levels exceed MMP levels; the more severe the 

inflammation, the higher the levels of MMPs (171). Compared with healthy controls, 

GCF and gingival tissue from subjects with periodontal disease exhibit significantly higher 

levels of MMP-1, -2, -3, -8, and-9, in contrast to significantly lower levels of TIMP-1 and-

2 (172, 173). Li and co-workers (174) reported increased levels in serum of MMP-1, -3, 

and -9 in patients with chronic periodontitis compared to healthy controls. 

Information on MMP and TIMP levels in periodontal tissue in Down syndrome is 

limited although Yamazaki-Kubota and coworkers (175) reported that MMP-2 and -8 

levels are enhanced in the GCF of subjects with Down syndrome. In addition, Halinen 

and co-workers (176) demonstrated increased immunoreactivity of MMP-8 in the GCF of 

subjects with Down syndrome compared to healthy controls. 

Subjects with Down syndrome exhibit a higher prevalence of periodontal disease (81). 

It has also been demonstrated that Down syndrome children exhibit much more extensive 

gingival inflammation than healthy controls despite similar levels of plaque between the 

two groups (92). Information on the early inflammatory response in terms of AA 

metabolites (PGE2 and LTB4) and pro- and anti-inflammatory cytokines as well as 
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information on periodontal tissue turnover in terms of MMPs and TIMPs in GCF from 

Down syndrome subjects is limited. Our hypothesis is that subjects with Down syndrome 

exhibit an altered host response in the gingival crevice during the early stages of periodontal 

disease compared to controls and that the altered host response possibly contributes to 

increased levels of MMPs in this patient group.  
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General aim 

To study the inflammatory response in terms of cytokines, prostaglandins, and matrix 

metalloproteinases (MMPs) in the periodontal tissue of children with Down syndrome 

compared with controls.  

 

Specific aims  

Study I    

To study the levels of prostaglandin E2 (PGE2), leukotriene B4 (LTB4) and MMP-9, in 

gingival crevicular fluid (GCF) from Down syndrome patients. 

  

Study I I  

To investigate the levels of T-helper (Th) 1-, Th2-, and Th17-related cytokines in the 

GCF of subjects with Down syndrome. 

 

Study I I I  

To study whether the relationship between MMPs and tissue inhibitors of 

metalloproteinases (TIMPs) in GCF from Down syndrome subjects is altered. 

 

Study IV 

To investigate the relationship between MMPs in serum and peripheral lymphocytes of 

Down syndrome children.



 

  17 

  



 

18 

 
 
 

Materials and methods 
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his section gives a brief overview of the methods used to obtain the results presented in 

this thesis. The study design was cross-sectional and the Ethics Committee at Karolinska 

University Hospital, Karolinska Institutet, Huddinge, Sweden, approved the study 

protocol, methods, and selection of subjects. The subjects and/or their parents received 

verbal as well as written information, and all subjects and/or their parents gave their 

informed consent for participation in the studies. 

 

Study population 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Overview of the study population in the four studies included in this thesis. 
 

 

Study I  

Twenty-six subjects with Down syndrome and 90 healthy controls were examined. 

Inclusion criteria were age and degree of inflammation expressed as percentage of bleeding 

on probing (BOP%). Exclusion criteria were one or more sites with a periodontal probing 

T 
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depth (PD) > 4 mm or marginal alveolar bone loss. The final study group comprised 18 

subjects with Down syndrome (mean age 16.8 yr) and 14 controls (mean age 16.4 yr) 

matched for age and degree of gingival inflammation. All subjects received regular dental 

treatment at the Department of Paediatric Dentistry, Karolinska Institutet, Huddinge, 

Sweden. 

 
Study I I  

The study population comprised 50 subjects with Down syndrome who had been con-

secutively referred from the Public Dental Health Services, Stockholm, to the Department 

of Paediatric Dentistry at Eastmaninstitutet in Stockholm and 78 control subjects who had 

been randomly selected from the Public Dental Health Services, Eastmaninstitutet, with 

respect to age. Inclusion criteria were age (13-20 yr) and degree of gingival inflammation 

expressed as BOP less than 50%. Exclusion criteria were previous and on-going smoking 

habits, on-going orthodontic treatment, one or more sites with a PD > 3 mm, and the 

occurrence of marginal alveolar bone loss on radiographs. The final study group comprised 

24 subjects with Down syndrome and 29 matched controls (both groups, mean age 16.4 

yr).  

 
Study I I I  

The study population comprised 56 subjects with Down syndrome who had been 

consecutively referred to the Department of Paediatric Dentistry at Eastmaninstitutet and 

88 control subjects with gingivitis and periodontitis. The control subjects with gingivitis 

were selected from the Public Dental Health Services in Stockholm and the control 

subjects with periodontitis had been consecutively referred to the Department of Paediatric 

Dentistry at Eastmaninstitutet and the Department of Periodontology, Stockholm. For all 

patients, inclusion criteria were age between 11 and 20 yr. The additional inclusion 

criterion for subjects with gingivitis was BOP < 50%. Additional inclusion criteria for 

subjects with periodontitis were one or more sites with a PD > 3 mm and marginal alveolar 

bone loss on radiographs. For all patients, exclusion criteria were recent use of antibiotics 

(last 3 months), previous or on-going smoking and on-going orthodontic treatment. For 

the controls, an additional exclusion criterion was a diagnosed chronic medical disorder. 

The final study group comprised 21 Down syndrome subjects with gingivitis (DS-G, mean 

age 16.1 yr), 12 Down syndrome subjects with periodontitis (DS-P, mean age 15.0 yr), 26 
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healthy control subjects with gingivitis (HC-G, mean age 16.5 yr) and 8 healthy control 

subjects with periodontitis (HC-P, mean age 15.6 yr).  

 

Study IV 

The study population included subjects with Down syndrome and healthy controls who 

had been consecutively referred to the Department of Paediatric Dentistry at 

Eastmaninstitutet for dental treatment under general anaesthesia due to behavioural 

management problems. Inclusion criteria for all subjects were fully erupted permanent first 

molars or incisors and presence of gingivitis. For all subjects, the exclusion criteria were 

presence of periodontitis, use of antibiotics in the past 3 months, previous or on-going 

smoking and on-going orthodontic treatment. In the control group, a diagnosed chronic 

medical disorder was an additional exclusion criterion.  

Of all subjects with Down syndrome (n=24) who had been referred for dental 

treatment under general anaesthesia in 2012, 4 declined to participate in the study and 10 

were excluded due to unerupted permanent first molars. Thus, the final Down syndrome 

group included 10 subjects (mean age 12.5 yr). The control group was selected from 144 

subjects treated under general anaesthesia during 2012. Of the 144 subjects, 94 subjects 

had a chronic medical condition (excluding Down syndrome) and 26 had unerupted first 

permanent molars. Thus, 24 subjects fulfilled the inclusion criteria for the control group. 

Of these, 3 were excluded because they had received emergency treatment under general 

anaesthesia, and 11 declined to participate in the study. The final control group comprised 

10 patients (mean age 10 yr).  

 

Clinical and radiographic examinations (studies I-IV) 

The author of the thesis performed all clinical and radiological examinations of the 

patients. All parents/subjects answered a medical history questionnaire regarding oral 

hygiene habits, smoking habits, medication, and the occurrence of medical disorders. An 

interpreter assisted when subjects did not understand the Swedish language.  

 

Gingival inflammation 

In studies II–IV, gingival inflammation was based on BOP% of the gingival sulcus at 

four sites per tooth at all teeth (wisdom teeth excluded), and in study I, on six sites per 
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tooth at all teeth. The percentage of surfaces with BOP was calculated for each individual 

and expressed as BOP%.  

 

Periodontal probing depth 

PD was recorded using a graded periodontal probe (Hu-Friedy, Chicago, IL, USA) and 

measured to the nearest mm at four sites per tooth at all teeth (wisdom teeth excluded). 

PD was considered pathological when the subject exhibited one or more sites with a 

periodontal PD > 3 mm.  

 

Marginal alveolar bone loss 

Radiographic examination generally consisted of digital and conventional bitewing and 

periapical radiographs. Due to lack of cooperation, some subjects with Down syndrome 

were examined with panoramic radiographs. Alveolar bone loss was noted when the 

distance from the cemento-enamel junction to the alveolar crest on the radiograph 

exceeded 2 mm on molars, premolars, or incisors (177). 

 
Sampling of gingival crevicular fluid (studies I-IV) 

Collection of GCF samples (studies I-IV) 

Prior to the clinical examination, GCF samples were collected from each patient from the 

mesial surfaces of teeth 16, 26, 36, 46, and 41 and the distal surface of 11. Before GCF 

collection, supragingival plaque was eliminated using a cotton pellet and curette, and the 

tooth surface was gently dried with air. A paper strip (Periopaper; ProFlow, Inc., 

Amityville, NY, USA) was inserted into each sulcus and left for 15 s. Paper strips 

contaminated with blood during GCF sampling were discarded. GCF volume was 

determined by a Periotron 8000 (ProFlow, Inc.) system and calculated by interpolation 

from a standard curve and expressed as volume GCF (µL). The periopaper was placed in 

120 µL of assay buffer containing 0.9% NaCl, 0.01 M EDTA, 0.3% bovine-globulin, 

0.005% Triton-X-100, 0.05% sodium azide, 0.0255 M NaH2PO4, and 0.0245 M 

Na2HPO4 (pH 6.8) and kept frozen at -70oC.  

 

Analysis of GCF samples (study I) 

PGE2, LTB4, and MMP-9 levels in GCF were determined. Levels of AA metabolites, PGE2 

and LTB4 were assessed using commercially available radioimmunoassay (RIA) kits (NEN 
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Life Science products, Belgium) with 125I-PGE2 as the tracer for PGE2 and 3H as the tracer 

for LTB4. The levels of total MMP-9 (active MMP-9 and pro-MMP-9) were determined 

using enzyme-linked immunosorbent assay (ELISA) kits (R&D systems, UK). 

 

Analysis of GCF samples (studies II–IV) 

The levels of MMP-2, -3, -8, -9, and -13 and TIMP-1, -2, and -3 were determined in 

GCF samples using the commercially available Human MMP/TIMP Multianalyte Kit 

(R&D systems Inc., MN, USA) according to the manufacturer’s instructions. Briefly, a 96-

well microplate was pre-wet with 100µL wash buffer/well and 50µL of diluted 

microparticle mixture added to each well. The diluted GCF samples (1:2 for MMP-2, -3, -

13; 1:40 for MMP-8, -9; and 1:10 for TIMP-1, -2, -3) were added to each well and 

incubated for 2 h at room temperature on a horizontal orbital microplate shaker. After 

washing, 50µL of diluted antibody cocktail was added to each well and incubated for 1 h 

at room temperature. Finally, 50µL of diluted Streptavidin-PE was added to each well and 

incubated for 30 min at room temperature. After the last incubation, MMP and TIMP 

levels were determined using a Luminex analyzer (Bio-Rad Laboratories, CA, USA). 

According to the manufacturer, MMPs and TIMPs have < 0.5% cross-reactivity with other 

MMP and TIMP family members. MMP-2, -3, -8, -9, and -13 recognize both natural and 

recombinant human pro, mature as well as TIMP-1 complexed MMP-2, -3, -8, -9 and -

13. TIMP-1, -2, -3, and -4 recognize both natural and recombinant human TIMPs.  

The levels of IFN-γ, TNF-α, IL-1β, IL-4, IL-6, IL-10, IL-12, and IL-17 in GCF were 

determined using the commercially available Bio-Plex Cytokine Assay (Bio-Rad 

Laboratories, CA, USA) according to the manufacturer’s instructions. In brief, a 96-well 

microplate was pre-wet with 100µL wash buffer/well and 50µL of coupled magnetic beads 

were added to each well. GCF samples, 50µL, were then added to each well and incubated 

for 30 min at room temperature. After washing, 25µL of detection antibodies were added 

to each well and incubated for 30 min at room temperature. Finally, 50µL of diluted 

Streptavidin-PE was added to each well and incubated for 10 min at room temperature. 

The levels of the various cytokines were determined in a Luminex analyzer (Bio-Rad 

Laboratories). 
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Serum sampling (study IV) 

During general anaesthesia, 12ml peripheral venous blood was collected in three vacutainer 

glass tubes containing heparin. One glass tube was immediately centrifuged and the serum 

was kept frozen at -70°C. The remaining blood was used for flow cytometry analysis. All 

serum samples were analysed for MMP-2, -3, -8, and -9 and TIMP-1, -2, and -3; levels 

were determined using the commercially available Human MMP/TIMP Multianalyte Kit 

(R&D systems, Inc.) according to the manufacturer’s instructions.  

 
Immunophenotyping of peripheral blood cells (study IV) 

Peripheral blood (8ml) from the children with Down syndrome and the matched controls 

was lysed by adding FACSLysing solution (BD Biosciences, San Jose, CA USA) according 

to the manufacturer’s protocol. The cells were then washed twice with phosphate-buffered 

saline (PBS), stained in 50µL of PBS with conjugated antibodies, counted, and analyzed 

using multicolour flow cytometry to determine the relative amounts (%) of the various cell 

phenotypes. Five- or eight-color fluorescence analyses were performed in an eight-color 

flow cytometer (BD FACSVerse™ 8 color flow cytometer, BD Biosciences) according to 

the manufacturer’s recommendations. Briefly, the immunophenotypic analysis of the cells 

was done using the following conjugated anti-human monoclonal antibodies with the 

appropriate concentration of fluorochrome. After the addition of antibodies and 

incubation for 30 min at 4°C in the dark, the cells were washed with PBS and then 

analysed. Each analysis required a minimum of 10,000 cells. Data were analysed using BD 

FACSSuite software (BD Biosciences) and FlowJo (version 8.5.3; Tree Star, Inc., OR, 

USA). 

 

Cell cultures of peripheral blood leukocytes (study IV) 

Leukocytes were isolated from peripheral blood as previously described. The cells (3x106) 

were seeded in 60-mm Petri dishes in Dulbecco’s modified Eagle’s medium (DMEM, 

Invitrogen, Life Technologies, Scotland, UK), cultured, and then incubated at 37°C in 

1.2mL DMEM with or without Pg LPS (10µg/mL) (Sigma-Aldrich, St. Louis, MO, 

USA). After 16 h of incubation, the culture medium was collected and centrifuged (1500 

rpm/min), after which the supernatant was removed and stored at -70°C until MMP-8 
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and MMP-9 could be assessed (R&D Systems Inc.). The leukocytes were stained with 

various antibodies as previously described and analysed using flow cytometry to determine 

the percentage of T-lymphocyte subpopulations (CD3+, CD4+, CD8+) and NK cells 

(CD56+).  

 
 
Statistical analysis 

In study I, the Student’s independent t-test (two-tailed) was used to compare means 

between the groups and correlations within groups. A general linear model ANOVA test 

was used to test differences in correlation coefficients between Down syndrome patients 

and controls. All statistical calculations were done using the Statistical Package for the 

Social Sciences (SPSS 10.0).  

 

In study II, the Student’s independent t-test (two-tailed) was used to compare the means 

and the chi-square exact test was used to compare the categorical variables of the groups. 

Pearson’s correlation was used to calculate the correlation within the group. Fisher's 

z-transformation was used to test the difference in correlation coefficients between subjects 

with Down syndrome and controls. The Bonferroni analysis was used to adjust for 

multiple testing. All statistical calculations were done using SPSS (version 13.0) and 

MedCalc (version 10.2; MedCalc Software, Mariakerke, Belgium). 

 

In study III, The Mann-Whitney U test (two-tailed) was used to compare the medians 

and the chi-square exact test was used to compare the categorical variables of the groups. 

Pearson’s correlation was used to calculate correlations between groups. Fisher's 

z-transformation was used to test the difference in correlation coefficients between subjects 

with Down syndrome and controls. The Bonferroni analysis was used to adjust for 

multiple testing. All statistical calculations were done using the SPSS (IBM SPSS Statistics 

for Windows, Version 20.0, 2011, Armonk, NY: IBM Corp). 

 
In study IV, the Mann-Whitney U test (two-tailed) was used to compare the medians of 

the variables. Pearson’s correlation was used to calculate correlations between groups. All 

statistical calculations were done using the SPSS (IBM SPSS Statistics for Windows, 

Version 20.0, 2011, Armonk, NY: IBM Corp). 
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Results and Discussion 
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he four studies on which this thesis is based describe the inflammatory response 

in terms of cytokines, prostaglandins, and MMPs in the periodontal tissue of 

children with Down syndrome and in controls. Study I deals with the levels of the AA 

metabolites PGE2 and LTB4 as well as of MMP-9 in gingival crevicular fluid from patients 

with gingivitis. In study II, the balance between pro- and anti-inflammatory cytokines in 

gingival crevicular fluid from patients with gingivitis was studied. Study III investigated 

homeostasis in periodontal tissue by studying the balance between MMPs and TIMPs in 

gingival crevicular fluid from both gingivitis and periodontitis patients. Study IV further 

explored the possible role of MMPs in periodontal disease by investigating the association 

between MMPs in serum and peripheral blood leukocytes from patients with gingivitis. All 

four studies have been submitted to peer-reviewed journals and three are published. The 

articles can be found in their entirety in the appendix. This section gives a brief overview of 

the results of these studies and a discussion of the findings in relation to current literature. 

 

T 
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Clinical conditions of the subjects 

In all studies, the subjects were clinically and radiographically examined to determine 

BOP%, periodontal PD, and presence of marginal alveolar bone loss. We did not use the 

plaque index (PI) in any study since oral hygiene in children varies from day to day, 

making the PI an unreliable indicator of gingival inflammation (178-180). Furthermore, 

cooperation in subjects with Down syndrome is often low and they easily become im-

patient. Thus, the validity of BOP% as an indicator of gingival inflammation in children is 

more reliable than PI and the reason we decided to assess BOP instead of PI (181). 

Underestimation of periodontal PD in subjects with Down syndrome compared to 

controls is also likely, due to insufficient cooperation during probe penetration of 

periodontal pockets. 

All subjects in studies I–IV exhibited gingivitis. Study III also included patients with 

periodontitis.  

 

AA metabolites (study I) 

Several studies have suggested that PGE2 and LTB4 are involved in the pathogenesis of 

periodontal disease. Enhanced levels of both PGE2 and LTB4 have been detected in the 

gingival tissue and GCF of patients with periodontal diseases compared to periodontally 

healthy subjects (131, 182-184). In study I, levels of PGE2 and LTB4 in GCF expressed as 

pg/mL were significantly (p<0.05) higher in subjects with Down syndrome compared to 

controls matched for degree of gingival inflammation. An overexpression of SOD-1 in 

subjects with Down syndrome might explain these elevated levels. Hensley and co-workers 

(185) reported that astrocytes overexpressing SOD-1 in vitro exhibit elevated release of 

PGE2 and LTB4. Furthermore, the altered subgingival microflora in subjects with Down 

syndrome (106, 108) may contribute to enhanced levels of PGE2 in GCF since previous 

studies have reported that various periodontal pathogens stimulate production of PGE2 by 

resident cells and monocytes (186-189).  

LTB4 was significantly negatively correlated with the clinical variables BOP% and PD. 

In contrast, the correlation was positive in controls, which is well compatible with the view 

that LTB4 plays an important role in the recruitment of neutrophils during inflammation 

and, thus, is strongly associated with gingival inflammation (140, 143). Although subjects 

with Down syndrome demonstrated higher levels of LTB4, the negative correlation with 
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BOP% found in this study might be related to the impaired chemotactic ability observed 

in subjects with Down syndrome (35).  

 

Relationship between pro- and anti-inflammatory cytokines in 

GCF (study II) 

The novel findings in study II were higher levels of Th1-, Th2-, and Th17-related 

cytokines in GCF and an altered relationship between Th1 cytokine IFN-γ and Th2 

cytokine IL-4 in subjects with Down syndrome compared to controls.  

The relationship between IFN-γ and IL-4 in GCF differed significantly (p<0.05) 

between subjects with Down syndrome and controls. This difference indicates an altered 

immune response regarding the balance between pro- and anti-inflammatory cytokines in 

the Down syndrome group, although it is unclear whether the inflammatory response was 

enhanced or decreased. Interestingly, Kalinski (126) reported that PGE2, reduces produc-

tion of Th1 cytokine IFN-γ but not the Th2 cytokine IL-4 in human CD4+ T cells. Thus, 

it is possible that PGE2 promotes Th2 responses since it has been described to be involved 

in Th2-associated diseases such as asthma (126). However, the role of PGE2 in the altered 

relationship of IFN-γ/IL-4 in GCF observed in the Down syndrome group is an important 

topic for future studies.  

Correlations of BOP% and GCF volume (µL) with the cytokines IL-1β, -4, -6, -10, 

and -12, IFN-γ, and TNF-α were also investigated. In the controls, cytokine levels of IL-

1β, -4, and -10, IFN-γ, and TNF-α were significantly (p<0.05) positively correlated with 

GCF, which did not occur in the Down syndrome subjects. Lack of a significant 

correlation between the clinical variables and the investigated cytokines in subjects with 

Down syndrome further supports the concept of an altered host response regarding pro- 

and anti-inflammatory cytokines. However, lack of positive correlations between GCF 

volume and the various cytokine levels in subjects with Down syndrome could partly be a 

result of the greater variation in cytokine levels in GCF as well as the heterogeneity within 

the Down syndrome group related to differences in genotypes.  

We also demonstrate significantly (p<0.05) higher levels of IL-1β, -4, -6, -10, and -12, 

IFN-γ, and TNF-α in GCF of subjects with Down syndrome compared to controls. The 

higher cytokine levels may result from the enhanced number of pro-inflammatory 

monocytes (CD 14dim CD16+) observed in subjects with Down syndrome compared to 
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healthy controls (190). Pro-inflammatory monocytes, which represent approximately 10% 

of the total monocyte population, have superior antigen presenting cell activity and 

produce significant amounts of pro-inflammatory cytokines (191-194). Interestingly, 

study IV investigated the percentages of various peripheral blood leukocytes and found no 

difference regarding CD14+ monocytes in Down syndrome subjects compared to controls. 

However, this project did not have the opportunity to identify which periodontal tissue 

cells produced the cytokines that contribute to enhanced levels of cytokines in GCF.  

 

 
Relationship between MMPs and TIMPs in GCF (studies I, III, IV) 

A balance between tissue regeneration and tissue degradation is required to maintain 

periodontal tissue homeostasis. The long-term result of a disturbance of that balance may 

be periodontal tissue breakdown (168). Increasing evidence implicates MMPs as key 

mediators in the tissue destruction associated with various forms of periodontal disease, 

including the progression from gingivitis to periodontitis (195-197). MMP activity is 

controlled by the TIMPs ( TIMP-1, -2, -3 and -4), which contribute to the stabilization of 

MMPs and thereby participate in tissue remodelling during periodontal tissue destruction 

(162, 168, 198). 

Studies I, III, and IV found significantly (p<0.05) higher levels of MMP-2, -3, -8 and -

9 as well as of TIMP-2 in the GCF of patients with Down syndrome compared to controls 

matched for degree of gingival inflammation. In addition, in study III, the correlation 

coefficient between MMP-8 and TIMP-2 differed significantly (p<0.01) between the 

Down syndrome group with gingivitis (DS-G) and the healthy control group with 

gingivitis (HC-G). The enhanced amounts of MMP-8 and TIMP-2 in GCF may partly 

explain the altered relationship between MMP-8 and TIMP-2 in the DS-G group, but if 

the amount of TIMP-2 was insufficient to balance the enhanced MMP production, it 

might partly explain the increase in tissue breakdown (199). In addition, the enhanced 

GCF levels of PGE2 in subjects with Down syndrome demonstrated in study I might also 

contribute to the increased levels of MMPs in GCF as well as the altered relationship 

between MMP-8 and TIMP-2 in subjects with Down syndrome. This assumption is well 

compatible with the fact that MMP expression can be suppressed by inhibiting PGE2 and, 

in contrast, increases TIMP levels in epithelial and stromal cells in vitro (200).  
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Furthermore, study III found no difference in the amounts of MMPs and TIMPs 

when comparing the DS-G group with Down syndrome patients with periodontitis (DS-

P). This was in contrast to the control groups, where the control patients with 

periodontitis (HC-P) exhibited significantly higher amounts of both MMPs and TIMPs 

compared to the HC-G group. The lack of difference between the two Down syndrome 

groups could indicate that the inflammatory response in Down syndrome subjects is 

already strongly upregulated during the period of gingivitis.  

Study III also found a significant positive correlation between TIMP-3 and TNF-α in 

the HC-G group, which could not be demonstrated in the DS-G group. TIMP-3 has been 

reported to regulate inflammation by inhibiting TNF-α converting enzyme (201, 202), 

which is involved in the proteolytic cleavage of pro-TNF-α on the cell surface, resulting in 

the release of soluble TNF-α (203, 204).  

The increased levels of MMPs as well as the altered relationship between MMPs and 

TIMPs in GCF might be a result of the higher levels of PGE2 and the altered balance 

between pro- and anti-inflammatory cytokines demonstrated in subjects with Down 

syndrome in the current cohort.  

 

Relationships between MMPs in serum and peripheral blood 

lymphocytes (study IV) 

The percentages of CD3+ and CD8+ T cells and of CD56+ NK cells were significantly 

higher (p<0.05) in the Down syndrome group compared to the controls. In contrast, no 

significant differences were found in the percentages of CD4+ T cells, CD14+ monocytes, 

CD15+ granulocytes, CD19+ B cells or CD45 cells, between the Down syndrome and 

control groups. Furthermore, the mean CD4/CD8 ratio was significantly lower (p<0.01) 

in the Down syndrome group compared to the controls.  

The increased levels of CD3+ and CD8+ T cells as well as of CD56+ NK cells in 

peripheral blood demonstrated in study IV is in accordance with earlier studies (65-69, 

205, 206). Our finding regarding the enhanced percentage of CD8+ T cells is noteworthy, 

since activated CD8+ T cells may play an important role in the degradation of periodontal 

tissue (164, 207, 208). The decreased CD4+/CD8+ ratio in the subjects with Down 

syndrome might indicate an altered immune response since the CD4+/CD8+ ratio is 

considered to be an important marker of immune system functions (209-211). 
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Interestingly, patients with early onset periodontitis have been reported to exhibit a 

decreased CD4+/CD8+ ratio compared to controls (212).  

Study IV also determined MMP and TIMP levels in serum collected from subjects with 

Down syndrome and controls. Levels of MMP-3, MMP-8, and TIMP-1 in serum  were 

significantly (p<0.05) elevated in the Down syndrome group compared to the control 

group, which may be related to the increased number of T and NK cells that study IV 

demonstrated. However, one must take into account that MMPs are also expressed by 

various inflammatory cells such as monocytes, macrophages, and polymorphonuclear cells 

(PMN) as well as resident cells such as fibroblasts, epithelial cells, and endothelial cells 

(169). 

Furthermore, a significant positive correlation between CD8+ T cells and MMP-8 

(r=0.630; p=0.050) and between CD8+ T cells and MMP-9 (r=0.648; p<0.05) was 

observed in the Down syndrome group that was not seen in control subjects. A significant 

positive correlation between CD56+ NK cells and MMP-3 (r=0.828; p<0.01) was also 

observed in the Down syndrome group, in contrast to the controls. The positive 

relationship between CD8+ T cells and both MMP-8 and -9 in subjects with Down 

syndrome is well compatible with Séguier and co-workers (213), who reported a positive 

correlation between CD8+ T cells and MMPs in gingival tissue from patients with perio-

dontitis. In addition, experimental studies indicate that MMPs partly contribute to the 

migration of T cells and NK cells (214). In light of these findings, the positive relationship 

of T-cell subpopulations and NK cells with MMPs demonstrated in subjects with Down 

syndrome may emphasize the significance of the MMPs in the migration of infiltrating T-

cell populations and NK cells into sites with periodontal inflammation. This assumption is 

compatible with the increased levels of MMPs in GCF in subjects with Down syndrome 

demonstrated in studies I, III, and IV.  

The positive relationship between MMPs in serum and lymphocyte subpopulations in 

peripheral blood (study IV) and the enhanced levels of inflammatory mediators PGE2, 

LTB4, and TNF-α (studies I and II) in the Down syndrome group is interesting, since it 

has been demonstrated that PGE2, LTB4, and TNF-α upregulate the production of MMPs 

by T cells and NK cells (215-221).  
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Production of MMPs and TIMPs in cell cultures of peripheral 

blood leukocytes (study IV)  

In study IV, peripheral blood leukocytes were treated with LPS from Pg and its effect 

investigated on MMP and TIMP levels as well as the relative amounts (%) of the various 

lymphocyte subpopulations. MMP-8 levels in the supernatant (expressed as pg/10,000 

cells) and percentages of CD8+ T cells were significantly higher (p<0.05) in the Down 

syndrome group compared to controls. In cells not treated with Pg LPS, MMP-8 and 

TIMP-1 levels as well as the percentages of CD3+ T cells and CD8+ T cells were 

significantly (p<0.05) higher in the Down syndrome subjects compared to the controls. 

Furthermore, no significant differences in MMP and TIMP levels or in the lymphocyte 

subpopulations within the two groups were observed after stimulation with Pg LPS. 

Because study IV subjects exhibited gingivitis, a lower cellular response to stimuli by 

periodontal pathogens might explain the lack of increased MMP expression after 

stimulation with Pg LPS. This assumption is well compatible with the findings of Restaino 

and co-workers (222), who reported an increased expression of MMP-9 in neutrophils 

stimulated with Pg LPS in periodontitis patients but not in healthy controls with gingivitis.  

 

Strengths and weakness of the studies  

Studies I-IV: Down syndrome is a heterogeneous patient group. Cooperation in dental 

treatment is often low and subjects with Down syndrome get easily impatient, which 

makes it difficult to collect clinical data such as PI, PD, BOP, and GCF. It is therefore a 

challenge to conduct studies in this patient group. Another strength is that the same 

examiner examined all children in both groups and thereby minimized the variation in 

periodontal diagnosis. A weakness is that the difficulties in collecting GCF in Down 

syndrome subjects, compared with the controls, increased the risk of contamination and 

might have affected the biochemical results negatively. Furthermore, behavioural 

management problems during dental treatment in the Down syndrome group limited the 

number of subjects in this cohort.  

Study I-IV: GCF collection is a sensitive technique, and both contamination and 

prolonged collection time can affect the GCF measurements. It is important to be careful 

when placing the paper strip in the periodontal pocket so that the sample is plaque free 

(supragingival plaque must be removed) and that there is no blood or saliva 
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contamination.  Contamination can influence the volume of fluid that is collected 

leading to an increase in GCF measurements (223). Furthermore, the problem with 

prolonged collection times is the increase of the protein content in GCF with increasing 

time (224). Also the way to report the data of the measured levels of host mediators in 

GCF is a matter of discussion. Unlike the analysis of serum, where the sample fluid is a 

small part of the total fluid volume, sampling of GCF varies from tooth site to tooth site.  

Based on the studies by Lamster and coworkers (225, 226) who developed a system to 

GCF sampling that standardizes the time of collection, they recommend that GCF data 

should be reported as total amount in the timed sample. Another factor to consider when 

reporting GCF data, is also that one has to take into account the dilution factor of the 

buffer in which the paper strip is placed when reporting the concentration of different 

host mediators in GCF.  

Study III included both patients with gingivitis and patients with periodontitis, which 

made it possible to study the differences in inflammatory response in the early stages of 

periodontal disease and periodontitis. 

Study IV was a functional study on peripheral blood from Down syndrome subjects 

and controls that investigated associations between MMPs in serum and peripheral blood 

leukocytes. However, this study must be considered a pilot study due to the relatively low 

number of subjects included. In addition, it is not possible to conclude what type of cells 

in the peripheral blood and in the periodontal tissue produce the different MMPs studied. 

 

The factors described above should be taken into consideration when interpreting the 

results of this thesis. 

 
Future perspectives 
It has been incredibly interesting to participate in the studies on which this thesis is 

based, and they have provided some answers to the research questions. In the future, 

however, it would be of great interest to investigate the production of inflammatory 

mediators and MMPs from different leukocytes in periodontal tissue and peripheral blood 

and to further clarify their role in periodontal tissue inflammation in the Down syndrome 

group. Furthermore, longitudinal studies on the effect of routine preventive treatment on 

the inflammatory response in subjects with Down syndrome as evidenced by inflammatory 

mediators and proteolytic enzymes in GCF would be highly interesting.  
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Main findings 
This section lists the main findings of the present thesis on the inflammatory response in 

children with Down syndrome. 

 
 
o Down syndrome subjects exhibited increased levels of arachidonic acid metabolites 

(PGE2 and LTB4) in gingival crevicular fluid (study I).  

 

o Increased levels of T-helper-related cytokines such as pro-inflammatory (IL-1β, IL-6, 

IL-12, IFN-γ and TNF-α) and anti-inflammatory cytokines (IL-4 and IL-10) were 

observed in gingival crevicular fluid from subjects with Down syndrome. There was 

an altered relationship between the anti-inflammatory cytokine IL-4 and the pro-

inflammatory cytokine IFN-γ in gingival crevicular fluid from subjects with Down 

syndrome (study II). 

 

o Levels of MMP-2, -3, -8, and -9 and of TIMP-2 in gingival crevicular fluid are 

increased in subjects with Down syndrome (study I, III, IV). In addition, a positive 

correlation was observed between MMP-8 and TIMP-2 in subjects with Down 

syndrome (study III). 

 

o Serum MMP levels (MMP-3 and -8) are increased in individuals with Down 

syndrome (study IV). 

 

o A relationship between MMPs (MMP-3, -8, -9) and lymphocyte subpopulations 

(CD8+T cells and CD56+ NK cells) in peripheral blood was observed in subjects with 

Down syndrome (study IV). 
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 Clinical  implications 
 
The results of this thesis confirm that subjects with Down syndrome in the current cohort 

have an altered inflammatory response in periodontal tissue compared to healthy controls. 

The increased levels of AA metabolites (PGE2 and LTB4) as well as the altered relationships 

between pro- and anti-inflammatory cytokines and between MMPs and TIMPs in Down 

syndrome subjects with gingivitis is well compatible with our hypothesis of a strongly 

upregulated inflammatory response in periodontal tissue.  

It is important to inform patients with Down syndrome and their parents and to make 

them aware of the altered inflammatory response in periodontal tissue observed in this 

patient group. These findings suggest that it may be important to begin routine preventive 

treatment in patients with Down syndrome at an early age, before they develop the first 

signs of periodontitis, to reduce periodontal tissue breakdown and thus improve patients’ 

quality of life.  
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