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ABSTRACT 
TB and HIV are immuno-pathologically interacting epidemic infectious diseases affecting the lives of millions 

globally & sub-Saharan African region accounts the highest burden of both diseases.  Although effective therapies 

are available for the management of each, TB-HIV co-treatment has faced challenges mainly due to drug-drug 

interactions & overlapping drug toxicities. To overcome these, efavirenz (EFV) based highly active antiretroviral 

therapy (HAART) is the preferred regimen while rifampicin (RIF) based anti-TB treatment regimen is a choice to 

treat TB-HIV co-infection in resource-limited settings. RIF is a known enzyme & drug transporter inducer and/or 

inhibitor. The dose of EFV to be used in the presence of RIF is, however, controversial. This thesis is primarily 

carried out to investigate the pharmacogenetic and pharmacokinetic aspect of drug-drug interaction between RIF & 

EFV aiming to optimize the dose of EFV to be used in TB-HIV co-infected Ethiopian patients. 

This study was designed to be carried out in two sub-Saharan African countries (Ethiopia and Tanzania), owning to 

the heterogeneity of the region genetically and culturally. This thesis focuses on the Ethiopian population. The thesis 

was conducted by prospectively recruiting cohort of HIV infected individuals without TB (Arm 1; N = 285) in 

parallel to another cohort of HIV co-infected with active TB (Arm 2; N = 196). All study participants were adults 

with baseline CD4 count less than 200 cells per mm3 and were followed for a year. At baseline and follow up periods, 

clinical chemistry (liver and kidney function tests), hematological parameters (complete and differential blood cell 

counts) and HAART outcome monitoring (CD4 counts and HIV RNA viral load) were done. In addition, genotyping 

for CYP2B6*6, CYP3A5 (*3, *6, *7), UGT2B7*2, NAT2, ABCB1 (3435 C > T & 3842 A > G) & SLCO1B1 (*1b & 

*5) were also done. Pharmacokinetic variables such as plasma/intracellular concentrations of EFV, 8-hydroxy-

efavirenz (major metabolite) & metabolic ratio were determined at weeks 4 and/or 16, 16±1h post-dose. Besides, 

cholesterol, 4β-hydroxy-cholesterol (biomarker for CYP3A activity) & metabolic ratio at weeks 0, 4, 16 & 48 were 

also determined to investigate time-dependent effect of EFV on CYP3A enzyme. Socio-demographic factors (Age, 

sex, baseline body weight and BMI) were also recorded.  

This thesis reports paradoxical increase in plasma/intracellular EFV concentrations by RIF co-therapy; coherent to 

this is improved immunological outcomes among individuals co-treated for TB and HIV with comparable virologic 

success to HAART than those without RIF co-treatment. The thesis also shows wide between-subject variability in 

the long-term auto-induction by EFV based on CYP2B6 genotype. Between & within-subject variability in plasma 

EFV concentration and immunological outcome are shown to be influenced by RIF co-therapy, CYP2B6 genotype 

and baseline body weight. Besides, the thesis demonstrates the influence of CYP2B6 genotype on CYP3A auto-

induction by EFV in a gene-dose dependent manner, CYP2B6 (*6/*6 > *1/*6 > *1/*1). Furthermore, the thesis 

reveals the importance of differences in ethnicity & environmental factors contributing to wide between-population 

variability in EFV auto-induction comparing Ethiopian & Tanzanian patients. In addition, associations of CYP2B6, 

ABCB1 (3842A >G), slow NAT2 metabolizing genotypes & plasma concentration of EFV with increased incidences 

of drug-induced liver injury (DILI) and correlation of plasma and intracellular concentrations of EFV are reported in 

the thesis. The thesis also shows the long-term but not short-term effects of sex and UGT2B7 genotype in predicting 

auto-induction as well as plasma concentration of EFV.  

In conclusion, EFV dose-escalation from 600mg to 800mg is not required during TB-HIV co-treatment in Ethiopian 

patients. CYP2B6*6 genotype is not only a strong predictor for EFV pharmacokinetics but also could predict EFV-

based HAART outcomes, DILI & CYP3A auto-induction by EFV. In addition to pharmacogenetic variability, the 

importance of differences in ethnicity & environmental factors are highlighted to optimize HIV treatment across sub-

Saharan Africa.   
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1. INTRODUCTION 

1.1. Common infectious diseases: an overview 

More than 1400 species of infectious agents have been reported to cause diseases in humans. 

These include pathogens for some 347 diseases of sustained clinical importance, according to 

the recent review by Hay et al [1]. Although caused by vastly different pathogens, the world’s 

three most serious infectious diseases are, tuberculosis (TB), malaria and human 

immunodeficiency virus (HIV) caused by mycobacteria, protozoa and retrovirus, respectively. 

Together, they cause ~5 million deaths per year and substantially affect the lives of a billion 

people world over [2]. Sub-Saharan African countries are hugely affected by these infectious 

diseases and the region harbors the highest burden of mortality and morbidity due to the 

diseases. Among these, TB and HIV are highly associated immuno-pathologically. Curable 

drug therapies are available for TB and malaria while HIV progression to AIDS could also be 

controlled by combination of antiretroviral drugs, although life-long administration of the drugs 

is required. There are immense challenges associated with the management and control of the 

diseases world over but worse in developing world due to expanding population, high disease 

burden and limited access to public health facilities.  

1.1.1. HIV epidemiology & current treatment: global, regional & national scenario  

Human immunodeficiency virus (HIV) is a chronic retroviral infection and a causative agent of 

acquired immunodeficiency syndrome (AIDS). The first case of HIV infection was identified 

in 1981 [3]. It has affected the lives of millions since and still continues to be one of the major 

leading cause of death [4-6] with cases virtually reported from every country. An estimated 34 

million people were globally living with the virus at the end of 2010 [7]. Furthermore, an 

estimated 2.7 million new HIV infections and 1.8 million deaths from AIDS-related illnesses 

were reported during the same year. Sub-Saharan Africa remains the region most heavily 

affected by the virus, accounting for 68% of people living with HIV and 70% of new infections 

in 2010 [7].  

Ethiopia is geographically located in the eastern horn of Africa. It is second most populous 

African country, with an estimated inhabitant for over 80 million people in 2008 [8].  Like 

most other sub-Saharan African countries, Ethiopia has experienced a severe HIV epidemic 

since the mid-1980s [9, 10] and HIV-1 infection was first documented in 1984 in Ethiopia [11]. 

Subsequently, the first clinically overt case of AIDS was diagnosed in 1986 [12]. The epidemic 

has expanded rapidly and reached a plateau around the mid-1990s and Ethiopia remained one 
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of the hardest hit countries by the epidemic with an estimated adult HIV prevalence rate of 

1.5% in 2011 [13].   

The introduction of highly active antiretroviral therapy (HAART) has substantially resulted in 

reductions of HIV-related morbidity and mortality globally [14-16] WHO 2010 [7]. Current 

WHO guidelines recommend use of a standard first-line regimen consisting of either two 

nucleos(t)ide reverse transcriptase inhibitors (NRTIs) plus a non-nucleoside reverse 

transcriptase inhibitors (NNRTIs), efavirenz or nevirapine, or a triple NRTI regimen, and a 

second-line regimen consisting of a boosted Proteases inhibitor (PI) with at least one NRTI [7].  

The currently available antiretroviral drugs (ARV) are effective in suppressing viral replication 

and reduce the plasma viral load to the level below the detection limit, significantly restore the 

immune function and reducing HIV-associated morbidity and mortality [17-19].    

1.1.2. TB and HIV co-infection: epidemiology and co-treatment challenges 

Tuberculosis (TB) and HIV are interacting epidemic diseases. TB is the commonest 

opportunistic infection and leading cause of death among HIV infected individuals [20]. 

Likewise HIV complicates TB infection and is associated with a more rapid clinical decline. 

Infection with HIV increases the risk of reactivating latent TB infection and HIV-infected 

individuals who acquire new TB infections have high rates of disease progression [21, 22]. TB-

HIV co-infected individuals are at high risk of death [23, 24]. 

The lifetime risk of developing active TB in HIV uninfected individuals is approximately 10%; 

but the annual risk among HIV-infected patients is ~10%, while the lifetime risk approaches 

50% among them, as reviewed by Habib [25]. According to the recent WHO report [26], in 

2010, there were 8.8 (range, 8.5–9.2) million incident cases of TB, 1.1 (range, 0.9–1.2) million 

deaths from TB among HIV uninfected individuals and an additional 0.35 (range, 0.32–0.39) 

million deaths from HIV-associated TB globally. The highest rates of TB-HIV co-infection are 

in the African Region, where 44% of TB patients with an HIV test result were HIV infected 

(range among high TB-HIV burden countries, 8%–82%).    

Ethiopia is among the first 22 TB burden countries and also among the 41 high TB-HIV co-

infection burden countries [26]. As reviewed by Seyume and Legesse [27], during the year 

2011, a total of 159,017 TB cases and about 38,000 HIV-associated new TB cases were 

notified in Ethiopia. Among 65,140 TB patients who were screened for HIV infection, 5,442 

were found to be co-infected with HIV. The rate of TB and HIV co-infection is high in 

Ethiopia ranges from 25% to 57% in different regions of the country [28, 29]. 
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In co-infected patients, the priority is to treat TB with anti-tubercular (anti-TB) drugs before 

the initiation of highly active antiretroviral therapy (HAART) in anti-retroviral-naïve patients 

[30]. The anti-TB drugs used to treat drug-sensitive TB are universally the same, independent 

of HIV status although the thrice a week TB treatment regimen is recently disfavored by WHO 

among TB-HIV co-infected individuals due to higher rate of relapsing TB [26]. HAART 

reduces TB rates by up to 90% at an individual level, by 60% at a population level and reduces 

TB recurrence rates by 50% [31, 32], indicating the importance of initiating HAART for all 

people living with HIV and active TB disease, irrespective of CD4 cell count [26].  

However, TB-HIV co-treatment poses several management challenges [33]. The optimum time 

to initiate HAART in TB-HIV co-infected individuals remains unclear [34]. Among the three 

milestone studies, SAPIT (Starting Antiretroviral therapy at three Points In Tuberculosis 

therapy) of South Africa [35] and CAMELIA (Cambodian Early versus Late Introduction of 

Antiretroviral Drugs) of Cambodia [36] showed reduced incidence of all-cause mortality, hence 

improved survival when HAART was introduced simultaneous to anti-TB treatment in cohorts 

of TB-HIV co-infected patients. Even AIDS Clinical Trial Group (ACTG) study called 

STRIDE (Immediate Versus Deferred Start of Anti-HIV Therapy in HIV-Infected Adults 

Being Treated for Tuberculosis), association of earlier HAART with a lower rate of new AIDS-

defining illnesses and death was reported among individuals with CD4 counts less than 50 cells 

per mm3 [37]. The above studies solidify the benefits of HAART introduction during anti-TB 

treatment. On the other hand, concurrent treatments of TB-HIV co-infection create several 

management challenges, including pharmacokinetic drug interactions, overlapping drug 

toxicities, TB immune reconstitution inflammatory syndrome (TB-IRIS) and high pill burden, 

which potentially affects adherence [38]. To minimize these risks, optimization of TB-HIV co-

treatment is of paramount importance either through selection of appropriate HAART regimens 

or optimized dosage.   

1.2. Antitubercular & anitretroviral drugs: challenges o f concomitant use 

WHO recommends that the first-line HAART regimen contain two nucleoside reverse 

transcriptase inhibitors (NRTIs) plus one non-nucleoside reverse transcriptase inhibitor 

(NNRTI). The preferred NRTI backbone is zidovudine (AZT) or tenofovir disoproxil fumarate 

(TDF), combined with either lamivudine (3TC) or emtricitabine (FTC) [7]. By and large, 

NRTIs remain the backbone of HAART during TB-HIV co-treatment due to their safety, 

efficacy and favorable drug-drug interaction profiles, reviewed by Aaron [30]. However, 

potentially deleterious outcomes of simultaneous co-administrations of the anti-TB drugs with 
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NNRTIs are challenging due to pharmacokinetic drug – drug interactions (DDIs) and 

overlapping drug toxicities [33, 39]. 

1.2.1. Pharmacokinetic interactions: emphasis on rifampicin & efavirenz 

Drug interaction between current ARV and anti-TB drugs is a problem. The majorities of the 

clinically significant drug interactions are pharmacokinetic-based [40], mainly through 

cytochrome P450 (CYP450) enzyme induction or inhibition in the liver [30]. The isoform 

CYP3A4 is particularly important as it is the main enzyme responsible for the metabolism of 

PIs and to a lesser extent, NNRTIs [41, 42]. Amongst the potent inducers of CYP3A4 are the 

rifamycin family [43]. Rifampicin (RIF) is a cornerstone anti-TB drug. It is a potent inducer of 

many genes controlling drug metabolism and transport, including CYP3A4 and the drug efflux 

pump p-glycoprotein [44]. Induction of CYP3A4 may reduce plasma concentrations of 

concomitantly administered ARV drugs, potentially leading to inferior HAART outcomes [45, 

46]. Besides, increased activity of the drug transporter (P-glycoprotein) may affect the 

absorption, distribution and elimination of PI [47, 48].  

NRTIs are mostly metabolized by glucuronidation and are free of significant interactions with 

rifamycins, as reviewed by Schutz C [49]. Clinically significant interactions may occur 

between RIF and NNRTIs. Pharmacokinetic data showed that RIF reduced nevirapine (NVP) 

to sub-therapeutic concentration [46, 50]. Therefore, the data to date suggest that if RIF and an 

NNRTI are to be used then efavirenz (EFV) is preferred [7], although it is unclear whether this 

has any clinical impact. Besides, there is no agreement on the appropriate dose of EFV to be 

co-administered with RIF.  

Pharmacokinetic studies have found a 20–30% reduction in EFV plasma levels when co-

administered with RIF [51] and that increasing the dose of EFV from 600 mg to 800mg is 

effective and safe [51, 52]. Conversely cohort studies employed the standard 600mg dose of 

EFV with RIF but clinical efficacies were not compromised [53-55]. A large cohort study 

conducted in South Africa showed no difference in rates of virological suppression when 

comparing patients on EFV-containing HAART alone and those on EFV-containing HAART 

and RIF-based TB treatment concurrently. EFV was used at a dose of 600 mg irrespective of 

body-weight in this cohort [56].  

In contrast, an observational cohort, looking at body-weight stratified pharmacokinetic and 

clinical outcomes, suggested that for patients weighing 60kg, a dose of 800mg of EFV should 

be prescribed [50], although this was not observed in African patients [45]. A major problem is 
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large between-subject variability in EFV concentrations [57] and this is compounded by the 

fact that EFV levels and associated toxicity are increased in individuals with polymorphisms in 

CYP2B6, present in over 20% of the black population compared with 3% of whites [58, 59]. 

This may explain some of the variability and high rates of clinical toxicity in some studies [60]. 

Drug-gene interactions studies were also recommended [61]. Based on available data, standard 

doses of EFV can be given to patients weighing 60kg, but in patients weighing 60kg an 

increase to 800mg can be considered [33, 47].   

1.2.2. Overlapping toxicities: emphasis on drug induced liver injury (DILI) 

HIV infection per se results in an increased rate of serious adverse events in patients on TB 

treatment [62]. In addition, shared toxicities with anti-TB and ARV drugs are common: rash, 

fever, peripheral neuropathy and drug-induced liver injury (DILI) being highly common 

adverse effects [30, 49]. Amongst which, DILI is the most commonly shared toxicity by anti-

TB drugs and NNRTIs and PIs. Close monitoring of liver functions are required. Severe DILI 

was found in 7.7 per 100 person-years in an African cohort; although in TB-HIV co-infected 

patients, treatment of TB increased its risk by 8.5-fold [63].  

Among the first-line anti-TB drugs pyrazinamide, isoniazid and RIF have all been associated 

with DILI [64]. There are concerns about increased incidence of DILI when NNRTIs are 

concomitantly used with the anti-TB drugs. Increased propensity of DILI was seen when both 

EFV [65, 66] and NVP [66] were administered concomitantly with TB treatment. Boosted PIs 

with RIF-based TB treatment may also result in DILI [67-69]. Development of deranged liver 

functions may significantly complicate treatment of co-infected patients [70].  

1.3. Pharmacogenetics 

Individuals differ in response to administration of equal dose of a drug. Various factors have 

been described to contribute between-subject variability in drug response; amongst those 

factors, the contribution genetic variability has received much focus. Pharmacogenetic is a 

scientific discipline that deals with the identification and description of genetic diversity to 

ascribe differences in drug response through candidate-gene approach. The related discipline 

often confused with pharmacogenetics is pharmacogenomics which uses whole human genome 

to explain between-subject variability in drug response through genome-wide association 

studies (GWAS).  

Mutational changes on certain candidate-genes affect pharmacokinetics processes, mainly drug 

metabolism and transmembrane drug transport processes. Identification of single-nucleotide 
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polymorphisms (SNPs) on genes affecting these processes significantly impact inter-individual 

and inter-population variability on drug exposure parameters, which, in turn, may influence 

drug responses at both individual and population level, respectively [71].  

1.3.1. Pharmacogenetics of drug metabolizing enzymes 

Approximately all systemically absorbed drugs undergo biotransformations mediated by 

mainly hepatic and rarely extrahepatic enzymes through phases I and II. Phase I 

biotransformation involves mainly oxidation reactions mediated by hepatic and extrahepatic 

enzyme systems called Cytochrome P450 (CYP450) and Phase II metabolism involves 

conjugation reactions mainly glucouridation by UGT enzyme system.  

1.3.1.1. Cytochrome P450 (CYP450) enzymes 

The most important eliminating pathways for lipophilic drugs are CYP450 dependent oxidation 

to polar metabolites. Mo et al [72] reviewed that the human hepatic CYP system consist of 

over 30 related isoenzymes with different, sometimes overlapping substrate specificities. The 

enzymes belonging to the families CYP1, CYP2 and CYP3 catalyse biotransformations of 

xenobiotics including 90% of clinically used drugs [73, 74]. Mutant alleles carrying certain 

nucleotide substitutions, deletions or insertions result in abnormal activity and variability in the 

contents of the CYP [74]. This, in turn, leads to between-subject variability of CYP metabolic 

rates [75]. Evidences exist that difference in CYP enzymes metabolic capacities leading to 

inter-individual variability in therapeutic responses of drugs [76-78]. Most CYPs are subject to 

enzyme induction and inhibition, leading to DDIs. Clinically significant DDIs between anti-TB 

and ARV drugs have been explained through inductions at CYP2B6 and CYP3A enzyme 

systems [79, 80].  

1.3.1.1.1. CYP2B6  

The human CYP2 cluster is located on chromosome 19q 13.2. This cluster contains the loci for 

six functional genes including CYP2A6 and CYP2B6 subfamilies [81]. CYP2B6 is mainly 

expressed in liver, accounting for 6% of the total microsomal CYPs as reviewed by Mo et al 

[72]. Although, this enzyme was historically thought to play insignificant role in drug 

metabolism, the discovery of genetic polymorphisms and inter-ethnic differences in CYP2B6 

expression [82, 83], identification of additional substrate drugs [72] as well as evidences of its 

co-regulation with CYP3A [84-86] stimulated renewed interest.  Currently, CYP2B6 enzyme is 

known to metabolize ~8 - 10% of drugs including chemotherapeutics, opioids and ARV drugs 

such as NVP and EFV [87].  
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Certain SNPs at CYP2B6 gene have been associated with high between-subject variations on 

substrate drugs exposure. Four exonic SNPs, 516G > T, 714G > A, 785A > G and 983T > C 

were identified [88]. The relative importance of each of the SNP varies among different races 

and ethnicity. Worldwide, inter-population diversity in CYP2B6 516G>T allele frequency 

ranges between 25 to 69% [89]. CYP2B6 516G>T SNP is abundant among black Africans 

[90]. The inter-population variability in the allele frequency of mutated CYP2B6 516G>T SNP 

was reported to vary between 20 to 50% among Africans, suggesting ethnic differences in the 

expression of the enzyme within the same race [91].  

The identification of CYP2B6 enzyme as the major metabolic pathways for the first-line ARV 

drugs, such as NVP and EFV [92], has also stimulated renewed interest. Differences in NVP 

and EFV exposures were reported, owing to the existence of between-subject variability due to 

differences in the expression of CYP2B6 at individual level [45, 93]. Individuals with non-

functional (mutated) CYP2B6 gene showed higher drug exposures, possibly leading to higher 

incidences of toxicities [72]. Evidences for CYP2B6 inducibility by RIF [85], its auto-

inducibility by EFV and NVP [94] and inhibition by certain drugs, have led to investigations to 

identify clinically relevant drug - drug interactions. Moreover, the intracellular co-regulation 

similarities of CYP2B6 and CYP3A enzymes have also been the basis for DDI studies [84-86].   

CYP2B6 is induced by a large number of compounds with diverse structures, as reviewed by 

Tompkins [95]. Constitutively active receptor (CAR) is a nuclear receptor containing 

functional domains, including a DNA-binding domain and a ligand-binding domain. CAR was 

shown to have much smaller ligand-binding domain than PXR. In addition, unique structural 

conformations were identified that may explain CAR’s ligand independent activities [96]. The 

induction of CYP2B family is activation. Along with CYP2B induction, up-regulation of other 

genes including CYP2C, CYP3A, glucuronosyltransferases and transporters occurs with CAR 

activation [97].  

1.3.1.1.2. CYP3A 

The CYP3A iso-enzymes constitute the largest portion of CYP450 protein in the liver and 

small intestine [98-100] and are located adjacent to each other on chromosome 7q21. The 

CYP3A family is composed of four enzymes: CYP3A4 (the major isoform), CYP3A5, 

CYP3A43 and CYP3A7. Among these, CYP3A4 and CYP3A5 account for the majority of the 

catalytic activity of the enzyme subfamilies [91, 101]. They are responsible for the metabolism 

of 50–60% of all currently available drugs as well as endogenous substances such as 

cholesterol and steroidal hormones. 4β-hydroxy-cholesterol (4β-OHC) is metabolic product of 
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cholesterol via CYP3A. Its plasma level was shown to be an endogenous biomarker for 

CYP3A enzyme activity [102, 103]. However, in cases where plasma cholesterol levels are 

expected to vary, 4β-OHC to Cholesterol (4β-OHC/Chol) ratio was suggested to be used as 

marker for the enzyme [104].  

Multiple nuclear receptor binding sites control both the basal and inducible expression of 

CYP3A and ensure sensitivity to a number of structurally diverse substrates [105]. Expressions 

of CYP3A enzymes involve the nuclear hormone receptors pregnane X receptor (PXR) and 

retinoid X receptor (RXR) [106]. Substantial inter-individual differences in CYP3A enzyme 

expression contribute to variation in oral bioavailability and systemic clearance of CYP3A 

substrates. Not only the expression but also the induction of CYP3A shows large inter-

individual variations [95]. Among many, rifampicin (RIF) and efavirenz (EFV) are known to 

induce [107] while most PIs inhibit CYP3A activity [108, 109].  

The contribution of CYP3A5 to drug metabolism was shown to vary from 6 to 99% of the total 

CYP3A activity in different populations [101, 110]. CYP3A5 is reported in detectable amounts 

in only 10 to 30% of adult white people and Asians, whereas 60% of African Americans 

express the protein [110], wide intra-continental variation in the expression of CYP3A5 

enzyme has been reported within African continent [111].These variations may be due to the 

modulation of CYP3A expression through a wide array of environmental factors, drug-drug 

interactions and genetic variations. CYP3A5 is polymorphic and displays inter-individual and 

interracial differences in expression and CYP3A-dependent drug clearance and responses 

hence may be an important genetic contributor [112]. The main reason for variability of 

CYP3A5 activity is SNPs at 27289C<A, 6986 A<G, G14690A and 27131-32insT yielding 

prematurely truncated and thus non-functional enzymes namely CYP3A5*2, CYP3A5*3, 

CYP3A5*6 and CYP3A*7 variants, respectively [110]. Individuals carrying at least one 

CYP3A5*1 allele can express high levels of CYP3A5 enzyme.  

1.3.1.2. Conjugating enzymes: emphasis on UGTs and NATs 

Phase II enzymes conjugates phase I metabolites or parent drugs for renal and biliary 

excretions. Phase II enzymes include glutathione-S-transferase  (GST), Thiopurine-S-

methyltransferase (TPMT), UDP-glucuronosyl transferases (UGTs), N-acetyltransferases 

(NATs) and others. UGTs are the major conjugation drug biotransformation pathway while 

inter-individual and inter-population variability due to polymorphisms on NATs has been 

identified early.  
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The UGTs are distributed in many tissues including liver, small intestine, kidney, colon and 

brain [113]. UGTs mediate metabolisms of various endogenous substrates such as bile and 

steroid hormones as well as chemically diverse xenobiotics, as reviewed by Lin and Wang 

[114]. A great deal of drugs from almost all therapeutic classes including ARV drugs such as 

zidovudine (NRTI) and efavirenz (NNRTI) undergo glucuronidation [115]. Similar to some 

CYP450 enzymes, the expressions of UGTs is inducible and the mechanism of their cellular 

regulation was suggested to be similar as that of CYPs through activations of PXR and CAR 

nuclear receptors, reviewed by Zhou et al [116]. In addition, Zhou et al described other nuclear 

receptors which regulate transcriptions of UGTs such as farnesoid X receptors (FXR), 

peroxisome proliferator activated receptors (PPARƔ) and glucocorticoid receptor (GR). Many 

classical CYP450 inducers including RIF and phenobarbital were shown to induce UGTs in 

vitro and in animal studies [117, 118]. A number of UGT isoforms have been identified in 

human, encoded either by UGT1A or UGT2B gene subfamilies. UGT2B7 enzyme system is 

the major UGT isoform, highly polymorphic and is involved in the metabolism of ARV drugs 

like zidovudine and efavirenz [89, 115, 119]. 

N-acetyltransferases (NATs) are involved in the metabolism of drugs and environmental 

toxins. They catalyze the acetyltransfer from acetyl-coenzyme A. Sequence variations in the 

human NAT1 and NAT2 result in the production of NAT proteins with variable enzyme 

activity or stability, leading to slow or rapid acetylation [120, 121]. Genetic polymorphisms in 

NAT1 and NAT2 have been associated with drug-induced toxicities and disease, according to 

the reviews [122-124]. NAT1 and NAT2 occur in the liver, with NAT2 being 2 to 10 times the 

level of NAT1, depending on the NAT2 status of slow or rapid acetylator, respectively [125]. 

There are two distinct phenotypes for NAT2: ‘fast’ and ‘slow’ acetylators, measured in vivo 

using substrates such as isoniazid, dapsone and caffeine. The slow isoform of NAT2 is present 

in up to 90% of some Arab populations, in 40–60% of Caucasians and Indians and in 5–25% of 

East Asians [126-128]. Genetic polymorphism of the NAT2 is strongly implicated in 

differential susceptibility to adverse drug reactions [122, 129].  

The NAT2 acetylation polymorphism was discovered over fifty years ago when individual 

variability in isoniazid (INH) neurotoxicity was attributed to genetic variability in N-

acetylation [130]. Among the first-line therapeutic drugs for TB, INH is the drug principally 

associated with drug-induced hepatotoxicity [131]. In the liver, INH is first metabolized into 

acetylisoniazid via NAT2 [132] followed by hydrolysis to acetylhydrazine, subsequently 

acetylhydrazine is oxidised into hepatotoxic intermediates [133, 134].  
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1.3.2. Pharmacogenetics of drug transporter proteins 

A drug molecule passes through several biological membranes during pharmacokinetic 

processes. The extent of transmembrane movement of drugs is affected by the physicochemical 

properties of a drug. In addition, membrane transporters have a significant role in facilitating or 

preventing drug movement. Drug transporters may be either influx (uptake into cell) or efflux 

(out of cell) transporters, which are typically located either at the basolateral or apical 

membrane in polarized cells, reviewed by Kalliokoski et al [135]. The level of expressions and 

functionalities of membrane transporters are critical modulators for pharmacokinetic processes 

[136].  

1.3.2.1. Efflux transporters: ABCB1 

Efflux transporters are involved in energy-dependent efflux pump of xenobiotics from inside to 

outside via the plasma membrane. The most widely known efflux transporter proteins, p-

glycoproteins (P-gps) are transmembrane proteins present in intestinal epithelial cells, biliary 

canalicular cells, blood-brain barrier, lymphocytes and on the luminal surface of proximal 

tubule kidney cells, hence virtually affecting all pharmacokinetic processes [137]. Evidences 

show that a large group of drugs, including ARV drugs like most PIs were shown as substrates 

to this efflux transporter protein [138]. 

Multidrug resistance 1 gene (MDR1), also called ATP-binding cassette transporter (ABCB1), 

codes for P-gps. Several SNPs have been described on ABCB1 gene, the SNP 3435C >T, 

located in exon, has been shown to be associated with lower intestinal P-gp expression and 

activity in vivo [139-141]. Individuals homozygous for the mutation at position 3435 (TT) had 

significantly lower P-gp expression in the small intestine compared to those with functional 

variants and showed the highest plasma concentrations of some drugs after oral administration 

[139-141]. Pronounced ethnic difference in the alleles distribution of ABCB1 gene was also 

described [142-144]. The cellular expression of ABCB1 gene could either be induced or 

inhibited.  

1.3.2.2. Influx transporters: SLCO1B1 

Contrary to efflux system, influx transporters are ATP-independent pumps, importing 

xenobiotics from outside to inside across cellular transmembrane [135]. They are either organic 

cationic transporter peptides (OCTPs) or anionic transporter peptides (OATPs) [145].OATPs 

are expressed in a wide variety of tissues including liver, kidney, brain and small intestine 

[146]. A number of human OATP families have been identified, of those the roles of 
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OATP1B1, OATP1A2, OATP1B3 and OATP2B1 were characterized in drug pharmacokinetics 

[146].   

OATPs are encoded by genes of the solute carrier organic anion transporter (SLCO) family. 

The genes encoding human OATP1 family members are located in chromosome 12. Articles 

have reviewed the pharmacogenomics of OATPs and the role of OATP1B1 in drug elimination 

[135, 136, 147]. According to the reviews, numerous SNPs had been identified in SLCO genes 

[148,149]. These polymorphisms may lead to significant consequences on drug 

pharmacokinetics.  

OATP1B1 is mainly expressed on the sinusoidal membrane of human hepatocytes, also 

possibly in the small intestinal enterocytes [150, 151]. Substrates of OATP1B1 include a large 

number of structurally diverse drugs including statins, rifampicin and many others. Rifampicin 

was shown to be both inhibitor and inducer of OATP1B1 in vitro [152, 153].  In addition, some 

PIs were identified as inhibitors for OATP1B1 [154-156]. According to the review by Niemi 

[147], a large number of SNPs and other sequence variations have been described in the gene 

region of SLCO1B1 [149]. Of the variants identified, 521T>C SNP has been associated with a 

markedly reduced transport activity in vitro using several OATP1B1 substrates, including 

rifampicin. The 521T>C variant is common in non-African populations, with the variant allele 

frequency ranging between 10 and 20%. Another common variant associated with altered 

transport activity in vitro is 388A>G SNP [147, 157].  

1.3.3. Pharmacogenetics of efavirenz 

Efavirenz (EFV) displays nearly complete absorption from the gut and the Cmax reaches up to 

5h after oral administration. It is highly bound (over 99%) to plasma proteins, mainly to 

albumin. It is also widely distributed in different body fluids. Elimination of EFV is through 

both oxidation and conjugation by CYP450 and UGT enzyme systems, respectively, to its 

inactive metabolites and excreted mainly in urine.  

Efavirenz (EFV) undergoes complex metabolic processes. It is metabolized mainly to 8-

hydroxy-efavirenz (8-OH-EFV), primarily by CYP2B6 to a lesser extent by CYP3A4/5 [158, 

159]. These enzymes are genetically polymorphic. Polymorphisms at 516G>T (Q172H) and 

785 A>G (K262R) have been associated with pronounced decreases in CYP2B6 expression 

and activity as well as low rate of EFV hydroxylation [160]. CYP3A5 polymorphisms per se 

did not seem to affect EFV exposures significantly as its role in 8-hydroxylation of EFV is 

minimal. However, among individuals with non-functional genotypes for CYP2B6, the role of 
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CYP3A5 polymorphism may be important. Besides, EFV is also metabolized to 7-hydroxy-

efavirenz (7-OH-EFV) by CYP2A6 [158] and evidences showed that EFV also undergoes 

direct glucuronidation by UGT2B7 to efavirenz-N-glucuridine [115]. UGT2B7 was also shown 

to be polymorphic, although evidences lack the influence of the polymorphism in relation to 

EFV exposure among individuals with distinct CYP2B6 genotypes [161]. The major metabolite 

of EFV, 8-OH-EFV, also undergoes secondary hydroxylation to 8,14-dihydroxy-efavirenz 

again by CYP2B6 and glucuronidation to 8-hydroxy-glucuridine by UGT2B7 enzyme [162-

164].  

Attempts to investigate transmembrane transport of EFV and pharmacogenetics of drug 

transporter proteins on EFV are a few. No conclusive report exists whether EFV is substrate to 

MDR1 transporters as previous reports are conflicting [165-168]. Moreover, reports are a few 

whether EFV is a substrate or inducer/inhibitor of influx transporter proteins, mainly OATPs, 

except that Janneh et al [167] suggested that intracellular accumulation of EFV may be due to 

interaction with SLCO3A1 while Weiss et al [169] showed that EFV up-regulated expressions 

of SLCO3A1and SLCO2B1 in vitro.  
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2. THIS THESIS 

2.1. Rationale of the thesis 

The current WHO guideline for treatment of HIV recommends the use of efavirenz-based 

HAART as the preferred first-line regimen in the presence and absence of TB co-infection, 

complying with this are most sub-Saharan African countries including Ethiopia. The fact that 

appreciable proportion of HIV infected individuals also develops TB in Ethiopia, by and large; 

co-treatment of TB with rifampicin-based anti-TB drugs and HIV with EFV-based HAART is 

inevitable. Owing to enzyme induction by RIF, plasma exposure of EFV is described to reduce, 

as a consequence, may lead to HAART failure.  

There is no agreement on the appropriate dose of EFV to administer with RIF. This thesis 

primarily investigated whether EFV dose escalation is necessary or not when co-treating HIV 

in TB and HIV co-infected Ethiopian patients receiving RIF-based anti-TB treatment. Earlier 

studies conducted on Caucasians showed 20–30% reduction in EFV levels when administered 

with RIF, recommending dose increment of EFV from 600 mg to 800mg. Conversely, recent 

cohort studies in non-Caucasian populations showed that when standard dose of EFV (600mg) 

was given with RIF, clinical efficacy of HAART was not compromised. Current 

recommendations suggest that when EFV is to be used concomitantly with RIF, the standard 

dose of EFV (600mg) to be used or to be adjusted upward to 800mg based on the body-weight. 

Even then, there is no agreement in the body-weight cut-offs.  

The existence of extensive heterogeneity in relation to genetic diversity, environmental 

exposures and dietary habits coupled with pharmacogenetically under explored facts among 

populations in sub-Saharan African countries also stimulated this thesis. The fact that Ethiopia 

is the 2nd highly populous country in Africa, and one of the worst affected countries by HIV 

and TB burden, the distinct genetic make-up and dietary habits of the population in Ethiopia as 

opposed to other sub-Saharan African countries had been another impetus for the design of this 

study to be conducted parallel in two sub-Saharan African countries, namely Ethiopia and 

Tanzania.   

Given the genetic heterogeneity of sub-Saharan African population, wide inter-population 

differences in the distribution of allele frequencies of EFV metabolizing enzymes and 

transporter proteins are expected. This thesis also describes the pharmacogenetics of EFV and 

investigates the effects of long-term administration of EFV on its pharmacokinetics and linking 

this to treatment outcomes in Ethiopian HIV patients. The thesis also attempts to characterize 
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the influences of pharmacogenetic factors, demographic variables, biochemical lab parameters 

and hepatitis B and C co-infections on pharmacokinetics and pharmacodynamic of EFV in 

Ethiopian TB and HIV co-infected patients. This thesis also investigated the link between 

pharmacogenetic based pharmacokinetic differences resulting drug-induced liver injury (DILI) 

among TB and HIV co-treated Ethiopian patients. In addition, the thesis characterized the 

factors affecting EFV pharmacokinetics and pharmacodynamic differences in HIV patients 

based on ethnic differences by comparing these from two sub-Saharan African countries, 

namely Ethiopia and Tanzania.     

2.2. Objectives 

2.2.1. General objective 

To investigate the pharmacokinetic and pharmacogenetic aspects of drug – drug 

interactions aiming to optimize efavirenz dose to be co-administered with rifampicin in 

Ethiopian patients. 

2.2.2. Specific objectives 

1. To investigate impacts of long-term auto-induction by efavirenz and pharmacogenetic 

factors on plasma/intracellular drug exposure and immunologic outcome over time. 

2. To assess pharmacogenetic and pharmacokinetic influences of efavirenz on CYP3A 

induction over time using 4β-hydroxy-cholesterol metabolic ratio as biomarker. 

3. To characterize impacts of ethnicity and pharmacogenetic factors on pharmacokinetics 

of efavirenz and immunologic outcomes in two sub-Saharan African countries.  

4. To assess effects of efavirenz pharmacokinetic and pharmacogenetic factors on drug-

induced liver injury (DILI). 

5. To investigate influence of rifampicin co-therapy on plasma/intracellular efavirenz 

pharmacokinetics and immunologic and virologic outcomes of HAART. 
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3. METHODS 

3.1. Study design 

The study was designed to be conducted in two different African countries, namely Ethiopia 

and Tanzania and similar protocol has been employed to conduct the trial. This thesis focused 

mainly on Ethiopia as one of the two participating countries. The study was an open-label, 

parallel design consisting of cohorts of two arms followed prospectively for a year. HIV 

infected adults without active TB at the time of enrolment, naïve for HAART with absolute 

CD4 count less than 200 cells per mm3, hereafter called Arm 1 (Papers I, II & III) , while HIV 

co-infected with active TB, naïve for both HAART and anti-TB regimens, hereafter called Arm 

2 (Papers IV & V).  

3.2. Study sites and population 

This study was primarily conducted by the Departments of Pharmacology and Internal 

Medicine, School of Medicine, Addis Ababa University (Ethiopia). Study subject enrolments 

and follow ups were conducted at HIV and TB clinics, which ran separately at the start of this 

study. The study sites were one tertiary level referral teaching hospital (Tikur Anbessa General 

Specialized Hospital) and six other health centers (Arada, Beletshachew, Bole, Kazan’chiz, 

Lideta and Meshua’lekia) in Addis Ababa. The capital city of Ethiopia is Addis Ababa, the 

inhabitant of most nations and nationalities of Ethiopia as well as people of varied socio-

economic status. This ensured the heterogeneity of the study population as a representative of 

Ethiopia.   

3.3. Recruitment of study participates  

As per the then national guideline, serologically diagnosed and confirmed HIV infected 

individuals with CD4 counts less than 200 cells per mm3 were eligible for HAART initiation. 

At HIV clinics, those HAART eligible HIV infected patients without active TB (Arm 1; 

N=285) were recruited (Papers I – V). Similar recruitment procedure was employed by TB 

clinics to recruit TB and HIV co-infected individuals (Arm 2; N=196) (Papers IV and V). TB 

diagnosis in Arm 2 patients was done either by microbiological, radiographical, clinical or 

combination of any of these. The inclusion criteria to participate in the study in both Arms 

were, age greater than or equal to 18 years, able to give written consent, who were not on any 

medication known to interact with the study drugs and did not have any significant 

hematological, liver and/or renal impairments at baseline (Papers I – V).  
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3.4. Treatments, clinical and laboratory monitoring 

Treatment of TB in TB-HIV co-infected individuals (Arm 2) was employed by a combination 

of body-weight adjusted dose of rifampicin (RIF) plus INH plus ethambutol plus pyrazinamide 

for 8 weeks (intensive phase) which was followed by 16 weeks of daily dose of RIF plus INH 

(continuation phase). TB treatment was done all through DOTs (Papers IV and V). While all 

recruited patients (both Arms 1 and 2) received combination of the first-line highly active 

antiretroviral therapy (HAART) consisting of 600mg daily dose of efavirenz (EFV) with 

zidovudine plus lamuvidine (AZT+3TC) or stavudine plus lamuvidine (d4T+3TC) or tenofovir 

plus lamuvidine (TDF+3TC) (Papers I – V). The EFV-based HAART was initiated on the 4th 

week of starting RIF-based anti-TB therapy in TB and HIV co-infected patients (Arm 2).   

At baseline and scheduled follow-up periods, all recruited patients had clinical examinations 

consisting of physical diagnoses and clinical laboratory measurements such as liver function 

tests (ALT, AST, ALP, total and direct bilirubin), renal function test (serum creatinine), 

hematological parameters (complete and differential blood counts, hemoglobin, hematocrit and 

albumin), the presence or absence of viral hepatitis co-infections (such as Hepatitis B surface 

antigen and Hepatitis C viruses), immunological parameter (CD4 count) and HIV-RNA viral 

load (Papers I – V).   

3.5. HIV treatment outcome and DILI monitoring 

HIV treatment response was mainly evaluated by change in absolute CD4 count (Papers I, II, 

III & V)  and undetectable (< 50 copies per mL) HIV-RNA viral load (Paper V) at weeks 12, 

24 and 48 from the baseline value. Drug induced liver injury (DILI) monitoring was done at 

weeks 1, 2, 4, 8, 12, 24, 48 and 52 weeks after starting anti-TB therapy in Arm 2 while at 

weeks 1, 2, 4, 8, 12, 24, and 48 weeks after starting HAART in Arm 1. Liver biochemical 

parameters more than two times the upper normal limit (UNL) value were considered as DILI. 

Those greater than or equal to 5 times the UNL or equal to threefold elevation in ALT and 

simultaneous elevation of total bilirubin concentration greater than or equal to 2 times UNL 

were considered as severe DILI (Paper IV).  

3.6. Pharmacokinetic and pharmacogenetic specimen collection, isolation, 

storage and transport  

Specimens intended for pharmacokinetic and pharmacogenetic studies, treatment outcome 

monitoring and routine laboratory measurements were collected from brachial veins. To 
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determine plasma and intracellular concentrations of efavirenz (EFV) and 8-hydroxy-efavirenz 

(8-OH-EFV), duplicate blood samples (~8mL each) were collected 16±1h post-dose of 

efavirenz into CPT vacutainers (Becton Dickinson), at least once or at most twice on either 

week 4 or 16 or both, after start of HAART (Papers I – V). Standard operating procedures 

(SOPs) for isolations of the specimens from whole blood were described by Burhenne et al 

[166] and subsequently in Papers I and II.  The specimens were stored in -800C until transport 

in dry-ice pack to the Divisions of Clinical Pharmacology and Clinical Chemistry, Karolinska 

Institutet, Stockholm (Sweden) for genotyping analysis and determination of cholesterol and 

4β-OHC, respectively (Papers I - V). Specimens for quantifications of efavirenz (EFV) and 8-

hydroxyefavirenz (8-OH-EFV) were similarly stored and transported to the Division of Clinical 

Pharmacology and Pharmacoepidemiology, University of Heidelberg (Germany) for analysis 

(Papers I – V). 

3.7. Quantifications of pharmacokinetics indexes 

3.7.1. Efavirenz and 8-hydroxy-efavirenz by LC/MS/MS  

Plasma and intracellular EFV and 8-OH-EFV concentrations were determined by liquid 

chromatography–tandem mass spectrometry (LC/MS/MS). In brief, protein precipitation with 

ice-cold acetonitrile containing the deuterated and 13C-labelled internal standards was used for 

sample preparation and extraction. Extracts underwent chromatography on a Phenomenex® 

Synergi Fusion RP column with an eluent consisting of acidified 5mM ammonium acetate 

buffer, acetonitrile and methanol. Efavirenz and 8-hydroxyefavirenz were quantified using 
13C6-efavirenz and 2H4-8-hydroxyefavirenz as internal standards and electrospray tandem mass 

spectrometry in the selected reaction monitoring mode. The lower limits of quantification in 

plasma were 10.0 ng/mL for efavirenz and 0.4 ng/mL for 8-hydroxyefavirenz. The efavirenz 

(8-hydroxyefavirenz) calibration range was 10–10000 ng/mL (0.4–400 ng/mL). Linear 

regression with 1/X weighting resulted in correlation coefficients of r2>0.99. The accuracy and 

precision (intrabatch and interbatch) of the assay fulfilled all the recommendations of the FDA 

guidelines. Quality control results for accuracy and precision were in the range accepted by the 

FDA guidelines. 

3.7.2. Cholesterol and 4β-hydroxy-cholesterol  

Cholesterol concentrations were measured by a commercial enzymatic method (Cholesterol 

CHOD-PAPP, Roche Diagnostics GmbH, Mannheim, Germany) run on a Roche/Hitatchi 

Modular instrument. The between-day variation was 1.3% (at 5 mmol l-1). The determination 
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of 4β-hydroxy-cholesterol (4β-OHC) was performed by isotope-dilution gas chromatography–

mass spectrometry using deuterium-labeled 4β-OHC as an internal standard as described 

previously and modified by Diczfalusy et al [170]. The relative between-day variation (CV) 

was 4.9% (at 26.5 ng ml-1) (Paper II).  

3.8. Genotyping  

Genomic DNA was isolated from peripheral blood leukocytes using QIAamp DNA Maxi Kit 

(QIAGEN GmbH. Hilden. Germany). Genotyping was carried out at the Division of Clinical 

Pharmacology, Department of Laboratory Medicine, Karolinska University Hospital-Huddinge, 

Karolinska Institutet, Stockholm (Sweden). The SOPs for genotyping analysis were described 

in Papers I – V.  

3.9. Data collection, management and analysis 

3.9.1. Data collection and management  

Standard case report form (CRF) database was designed in MS Access. Both hard and soft 

copies of the database were employed to capture the study participants’ socio-demographic, 

pharmacogenetic parameters, baseline and follow-up laboratory values (pharmacokinetic 

parameters, biochemical, hematological, immunological and virological values). Besides, 

detailed baseline and scheduled follow-up clinical parameters including past medical history, 

physical diagnosis, karnofisky score, concomitant disease state (if any), concomitant use of any 

medication and assessment of self-reporting adherence. 

The data were collected by Good Clinical Practice (GCP) certified physicians, clinical nurses 

and lab technicians at real-time on the hardcopy of the CRF for each study participant then the 

same was entered by two independent data encoders. The double-entry was cross-checked by 

an independent data-manager periodically. Data cleanings were done before and after 

extraction of the data in MS excel spreadsheet format in preparation of transcription into 

relevant statistical software. 

3.9.2. Statistical analyses  

Normal distribution of the data was diagnosed by either Shapiro–Wilk or Kolmogorov–

Smirnov test or visual diagnostic checks before statistical analyses (Papers I - V). When 

abnormal distribution was diagnosed, the data were transformed to log to base 10. Independent 

t-test or Mann-Whitney U test and chi-square tests were used to compare independent groups 
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of continuous and categorical variables, respectively (Papers I – V). Kruskal–Wallis analysis 

of variance (ANOVA) was used for multiple comparisons (Papers I & II) . Wilcoxon matched 

paired test was used to evaluate within-subject comparisons (Papers I, II III & V) . Repeated 

measure and Freidman two-way ANOVA were used to investigate the influence of certain 

factors on change over time (Papers I, II, III & V) . 

Univariate regression analysis was used to identify potential predictors and multiple linear 

regression analysis was employed to build the final models (Papers III, IV & V) . Logistic 

regression was used to identify factors predicting virologic response, defined as non-detectable 

HIV RNA viral load < 50 copies/mL, (Paper V). Nonlinear mixed effect model and stepwise 

covariate model building were implemented (Paper III) . Pearson and Spearman correlation 

analyses were also used (Papers I & II) . 

Statistical analyses were performed using either IBM SPSS versions 15, 19 and 20 (Papers I – 

V) for Windows (IL, USA), Statistica version 10 (StatSoft Inc., Tulsa, OK, USA), NonMem 

Version 7.2 and PsN 3.5.3.or combinations of the above softwares (Paper III) . GraphPad 

Prism 5 was used for graphical presentation of the data (Papers I – V). P values ≤ 0.05 were 

considered as significant.  

3.10. Ethical considerations 

The study had obtained ethical approvals by Institutional Review Boards of the Faculty of 

Medicine, Addis Ababa University (Ethiopia) and Karolinska Institutet (Sweden). Ethical 

approval was also obtained from Addis Ababa City Administration Health Bureau and National 

Health Ethics Committee at Ministry of Science and Technology. Drug Administration and 

Control Authority of Ethiopia granted final approvals to conduct the clinical study. Written 

informed consent was obtained from all study participants upon recruitment. The study was 

conducted as per guidelines laid in the International Conference on Harmonization of Good 

Clinical Practice (ICH-GCP).  
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4. RESULTS 

4.1. Impacts of efavirenz long-term auto-induction and pharmacogenetic 

factors on plasma/intracellular drug exposure and immunologic outcome. 

(Paper I) 

4.1.1. Effect of pharmacogenetic variation and sex on between and within subject 

variability of plasma and intracellular efavirenz pharmacokinetics 

The allele frequencies of CYP2B6*6, CYP3A5*3, CYP3A5*6, ABCB1 3435C_T and 

UGT2B7*2 (2327G_A, rs7662029) were 29.7%, 66.9%, 10.6%, 20.9% and 48.1%, 

respectively. There was no significant difference between the observed and expected genotype 

frequencies according to the Hardy–Weinberg equilibrium.  

Wilcoxon matched paired tests were used to compare within-subject variability (weeks 4 and 

16) for the median plasma and intracellular concentrations of EFV, 8-OH-EFV and EFV MR. 

No between-occasion variability was observed in both plasma and intracellular concentrations 

of EFV. However, significant differences in plasma 8-OH-EFV concentrations, with the 

corresponding decreases in EFV MR, were shown between weeks 4 and 16.  

Kruskal–Wallis ANOVA was employed to see the effects CYP2B6, CYP3A5, UGT2B7 and 

ABCB1 genotypes on plasma and intracellular concentrations of EFV, 8-OH-EFV and EFV 

MR of between-subject variability at each occasion (either at week 4 or 16). CYP2B6 genotype 

showed significant influence in both plasma and intracellular concentrations of EFV, 8-OH-

EFV and EFV MR at week 4. In addition, CYP2B6 genotype maintained significant influence 

on plasma concentrations of EFV at week 16. Controlling for the effect of CYP2B6 genotype, 

significant change over time (within-subject variability) in plasma concentrations of increased 

8-OH-EFV and decreased EFV MR among *1/*1 and *1/*6 genotypes but not among *6/*6. 

Similarly, intracellular concentrations of EFV and EFV MR showed significant difference over 

time, where in intracellular EFV MR decreased in *1/*1 and *1/*6 genotypes but increased in 

*6/*6 genotype. 

UGT2B7 genotype significantly affected plasma concentrations of 8-OH-EFV and EFV MR in 

long-term (week 16) but not during short-term (week 4). However, it did not influence plasma 

and intracellular concentrations of EFV during short-term but only with a trend during long 

term (P=0.07). UGT2B7 genotype significantly affected plasma concentration of 8-OH-EFV 

and EFV MR and a significant trend in EFV concentration over time. This within-subject 
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variability was pronounced among *2/*2 but not *1/*1 genotypes. However, CYP3A5 and 

ABCB-1 3435C >T genotypes did not significantly affect both between and within-subject 

variabilities in plasma and intracellular pharmacokinetics of EFV. 

Pearson and Spearman correlation tests indicated a significant positive correlation between the 

plasma and intracellular concentrations of EFV and the EFV MR at both weeks 4 and 16. 

Besides, a significant correlation between plasma and intracellular concentrations of 8-OH-

EFV at week 4 (P=0.02), but not at week 16 (P=0.44) was shown.  

The extent of change in plasma concentrations of 8-OH-EFV over time was significantly 

affected by sex (repeated measures ANOVA, P=0.015), where females at week 16 displayed 

higher concentrations than the respective value at week 4. Considering male and females 

separately, there was a significant increase in the 8-OH-EFV level (P=0.0001) and a decrease 

in the EFV MR (P=0.001) in females at week 16 compared to week 4. However, no significant 

change was observed in males (P=0.20 and P=0.74, respectively). In addition, sex had no 

significant effect on the intracellular EFV concentration at week 4, but displayed a tendency to 

influence it at week 16 (P=0.08). 

4.1.2. Effect of plasma and intracellular efavirenz pharmacokinetics on CD4 count over 

time  

Regression analysis revealed that plasma concentration of EFV at week 4 predicted CD4 count 

at week 24 (P=0.01, F=5.43) and a trend at week 12 (P=0.09) but not at week 48 (P=0.75). In 

addition, the plasma concentration of EFV at week 4 significantly affected within-subject 

variability in the CD4 count (change over time). EFV plasma concentration at week 4 

influenced the change in CD4 count from baseline until week 12 (P=0.038). Inclusion of 

intracellular and plasma EFV concentrations at weeks 4 and 16 in a stepwise forward 

regression model, the intracellular concentration at week 16 was found to be a significant 

predictor of CD4 count at week 24 (F=6.36, P=0.01).  

4.1.3. Effect of pharmacogenetic variations on the change in CD4 counts over time 

Friedman two-way ANOVA indicated significant increases in CD4 count (P=0.0001) from 

baseline over time during the 48 weeks treatment with efavirenz-based HAART in all patients.  

Significant within-subject variability was shown: week 0 versus week 12 (P=0.0001); week 12 

versus week 24 (P=0.08); and week 24 versus week 48 (P=0.028).  
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Regardless of sex or genotype differences, there was a sharp increase in the CD4 counts from 

baseline until week 12. However, the pattern of change in the CD4 count was different between 

the different CYP2B6 and UGT2B7 genotype groups after week 24. Among the CYP2B6*1/*1 

and UGT2B7*1/*1 genotype groups there was no significant change after week 24, whereas 

the mean CD4 count continued to increase until week 48 among CYP2B6*6/*6 and 

UGT2B7*2/*2 genotype groups.  

Sex, CYP2B6, CYP3A5, UGT2B7, ABCB1 genotypes were included in a forward stepwise 

regression model, but none of them predicted CD4 count at week 24, but CYP2B6 (P=0.02) and 

UGT2B7 became significant predictors of CD4 count at week 48.  

4.2. Pharmacogenetic and pharmacokinetic influences of efavirenz on 

CYP3A induction (Paper II) 

4.2.1. Change in 4β-hydroxy-cholesterol metabolic ratio over time  

The median plasma 4β-OHC concentration was increased by 1.4-, 1.8- and 3.5-fold at weeks 4, 

16 and 48, respectively. Compared with the baseline value, the median plasma 4β-OHC/Chol 

ratios increased by 2.6-, 2.9- and 1.7-fold at weeks 4, 16 and 48, respectively (Friedman two-

way ANOVA test, P=0.0001). Dunn’s multiple comparison test of pairwise contrast from 

baseline indicated a significant increase in the median 4β-OHC/Chol ratios (P=0.001) at each 

study time point. Despite the constant increase in 4β-OHC concentrations, the median plasma 

4β-OHC/Chol ratio at week 48 was lower than week 16 merely due to the relatively larger 

increase in the denominator cholesterol concentration.  

4.2.2. Effect of sex and pharmacogenetic factors on between and within subject 

variability of 4β-hydroxy-cholesterol metabolic ratio  

Kruskal–Wallis one-way ANOVA was used to investigate effects of genotype on between-

subject variability of plasma 4β-OHC/Chol ratios at each time point. None of the investigated 

genotypes including CYP3A5 had a significant effect except the CYP2B6 genotype whose 

influence became apparent and significant at weeks 16 and 48 but had no effect at baseline or 

at week 4. The within subject contrast test between adjacent concentrations indicated a 

significant effect of the CYP2B6 genotype on the change in 4β-OHC/Chol ratio (P=0.029, 

F=3.71). Friedman two-way ANOVA indicated that there were significant differences in the 

extent of change in 4β-OHC/Chol ratio over time between the different CYP2B6 genotypes; 

being highest in CYP2B6*6/*6 > *1/*6 > *1/*1 genotypes (P=0.04). The level increased 
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significantly in carriers of the CYP2B6*6 allele at weeks 16 and 48. No effect of sex and 

CYP3A5, ABCB1 and UGT2B7 genotypes was shown on the short- or long-term induction of 

CYP3A.   

4.2.3. Correlation between plasma efavirenz & 4β-OHC/Chol ratio concentrations 

There was a significant positive correlation between 4β-OHC/Chol ratio and plasma EFV 

concentration both at week 4 (P=0.02, r2=0.08) and at week 16 (P=0.001; r2=0.17. The higher 

the plasma EFV concentration, the higher the respective 4β-OHC/Chol ratio.  

4.3. Impacts of ethnicity and pharmacogenetic factors on pharmacokinetics 

of efavirenz and immunologic outcomes (Paper III) 

4.3.1. Comparisons of allele frequencies and efavirenz concentrations between 

 Ethiopia and Tanzania populations 

Genotype frequencies were determined in Ethiopian (n=262) and Tanzanian patients (n=184). 

Haplotype analyses indicated no linkage between CYP3A5 SNPs. The frequencies of all 

variant alleles determined in this study such as CYP2B6, CYP3A5, UGT2B7, ABCB1 and 

SLCO1B1 genes were significantly different between the two populations.  

Independent t-test indicated higher mean log plasma EFV concentration in Tanzanians than 

Ethiopians at both weeks 4 (P<0.0001) and 16 (P=0.002). Within country analyses using paired 

samples t-test revealed significant decrease in the mean plasma EFV concentration over time in 

Tanzanians (p=0.006), but not in Ethiopians (P=0.84). Univariate analysis indicated the 

following as significant predictors of  plasma efavirenz concentrations (percent explained 

variability, P value); CYP2B6*6 genotype (10.7%, P < 0.0001) patient country (4%, P < 

0.0001), co-infection with Hepatitis B at recruitment (1.3%, P=0.001), CYP3A5 genotype 

(0.8%, P=0.02), ABCB1 3435C >T (0.7%, P=0.02), ABCB1 3842A>G (0.98%, P=0.01), 

SLCO1B1D130N (0.7%, P=0.02), SLCO1B1 A174V (0.6%, P=0.031).  

4.3.2. Influences of ethnicity, pharmacogenetic and other factors on plasma and 

intracellular concentrations of efavirenz  

Time on therapy (week at which EFV plasma levels assessed) was not a significant predictor 

(p=0.3557). However, time on EFV therapy showed significant interaction with country 

(p=0.02). Therefore, further assessments of factors affecting EFV plasma level at week 4 and 

week 16 were done separately. 
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Univariate linear regression analysis identified the following variables as predictors of EFV 

plasma concentration at week 4; CYP2B6*6 genotype (9.8%, p<0.0001), country (4.8%, 

p<0.0001), co-infection with Hepatitis B at recruitment (0.6%, p=0.061), CYP3A5 genotype 11 

(1.5%, p=0.019), ABCB1 3435C>T (0.8%, p=0.082), ABCB1 3842 A>G (2.4%, p=0.003), 

SLCO1B1 D130N (0.8%, p=0.084). Multivariate regression analysis for EFV plasma 

concentration at week 4: CYP2B6 genotypes (p<0.0001), country (p=0.035) and ABCB1 3842 

A>G genotypes (p=0.002) were associated with significant increase in model explained inter-

individual variability of week 4 plasma concentration of EFV. The overall model explained for 

16% of inter-individual variability in week 4 plasma concentrations of EFV (p<0.0001). When 

models were built for each country separately, CYP2B6*6 contributed 8.3% and 11% while 

ABCB1 3842 A>G contributed 0.6% and 8.3% of the inter-individual variability in week 4 

plasma EFV concentration in Ethiopian and Tanzanian patients, respectively. 

Similarly, Univariate linear regression identified the following variables as predictors (r2, p 

value) of EFV plasma concentration at week 16; CYP2B6*6 genotype (17.9%, p<0.0001), 

country (2.5%, p<0.0001), co-infection with Hepatitis B at recruitment (2.6%, p=0.003). Only 

CYP2B6*6 genotypes (p<0.0001) and baseline hepatitis B co-infection (p=0.002) were 

associated with significant increase in model explained inter-individual variability of week 16 

EFV plasma concentration. Country had a trend to influence variability (p=0.08). The model 

explained for 20% of inter-individual variability in week 16 plasma EFV concentrations 

(p<0.0001). On separate model building for each country, CYP2B6*6 contributed 13.3% and 

20.6% of inter-individual variability in EFV plasma concentration at week 16 in Ethiopian and 

Tanzanian patients, respectively. 

Factors influencing EFV intracellular concentrations individually at week 4 were; EFV plasma 

concentrations (29.2%, p<0.0001), country (11.9%, p<0.0001), CYP2B6*6 genotypes (4%, 

p=0.02), body mass index (2.2%, p=0.009), baseline ALT levels (1.9%, p=0.014), SLCO1B1*5 

(1.8%, p=0.039), SLCO1B1*1b (1.5%, p=0.056) and CYP3A5 (3.6%, p=0.004). In 

multivariate model, only EFV plasma concentrations at week 4 (p<0.0001) and country (p= 

0.041) remained significant predictor of intracellular EFV concentrations at week 4.  

Factors influencing EFV intracellular concentrations individually at week 16 were; EFV 

plasma concentration at week 16 (25%, p<0.0001), country (10.2%, p<0.0001), CYP2B6*6 

(6.9%, p<0.0001), SLCO1B1 D130N (*1b) (2.1%, p=0.034), SLCO1B1 A174V (*5) (1.5%, 

p=0.056) baseline Hepatitis B co-infection (2.1% p=0.014). However, only EFV plasma 

concentrations at week 16 and country were significant predictors of the intracellular EFV 
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concentrations. The model explained for 32.4% of inter-individual variability in week 16 

intracellular EFV concentration (p<0.0001). 

4.3.3. Effect of ethnicity and CYP2B6 genotype on immunologic outcomes   

At weeks 24 (p=0.004) and 48 (p=0.002) of EFV therapy, the mean CD4 cell count was 

significantly higher in Tanzanians than Ethiopians. Within subject tests of repeated measure 

ANOVA showed a significant increase in CD4 over time (p<0.0001). Bonferroni post hoc test 

indicated that major increases were between week 0 and 12 (p<0.0001) and between week 24 

and 48 (p=0.008). No significant difference was shown between week 12 and 24 (p=0.57).  

Between subject effect tests of repeated measure ANOVA showed a significant effect for 

country (p=0.004) but not CYP2B6 (p=0.29). Splitting the data by country, between subject 

effect test for CYP2B6 genotype was not significant for Tanzanians (p=0.52). However, a trend 

of having higher CD4 gain for being carrier of CYP2B6*6 allele in gene-dose dependent 

manner for Ethiopians (p=0.11). Having the same CYP2B6 genotype, Tanzanians displayed 

higher CD4 gain than Ethiopians except in CYP2B6*6 genotype groups. Multivariate linear 

regression model building indicated intracellular EFV concentrations at week 4 (p=0.013) was 

a significant predictor of CD4 gain by week 12, while patient country (p=0.059) had a trend. 

4.4. Effects of efavirenz pharmacokinetic & pharmacogenetic factors on 

drug-induced liver injury (DILI) (Paper IV) 

4.4.1. Effect of efavirenz concentration on DILI 

Significant associations were shown between DILI and increased plasma EFV 

concentration/EFV MR (p=0.036).  

4.4.2. Associations of CYP2B6, ABCB1 and NAT2 genotypes with DILI 

Cox-regression analysis showed that there was a statistically significant association between 

DILI with CYP2B6*6, ABCB1 3435TT and NAT2 slow-acetylator genotypes (p=0.04, 0.02 

and 0.039 respectively). There was significant difference in the proportion of subjects with 

ABCB1 3435TT genotype between cases (12.2%) and controls (3.8%) wherein the proportion 

was higher in those who developed DILI. A nearly significant effect of UGT2B7*2/*2 

genotype with DILI was also noted (P=0.08).  
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4.5. Influence of rifampicin co-therapy on plasma/intracellular efavirenz 

pharmacokinetics & immunologic and virologic outcomes of HAART. 

(Paper V)  

4.5.1. Effect of rifampicin co-treatment on plasma/intracellular concentrations of 

efavirenz 

Independent t-test revealed that early in co-therapy (week 4), plasma concentration of EFV was 

higher in patients receiving EFV concomitantly with RIF co-treatment (Arm 2) than patients 

receiving EFV only (Arm 1) (p=0.04). Similar difference was noted, though a trend (p=0.1) 

during later stage of co-treatment. A nearly significant higher EFV intracellular concentration 

was observed in RIF co-treatment group than without RIF at week 4 (p=0.08) but no difference 

was seen at week 16. Stratifying patients based on baseline body weight, no difference was 

seen in plasma concentrations of EFV between the two arms at both occasions (weeks 4 and 

16) among patients with body weight less than 50Kg. On the contrary, higher plasma EFV 

concentrations were shown in RIF co-treatment group than without RIF at both occasions 

(weeks 4 and 16) among patients with body weight greater than or equal to 50Kg at baseline.  

Stratifying patients by CYP2B6, higher EFV plasma concentrations were noted in RIF co-

treatment group than without RIF at week 4 (p=0.04) and a similar trend (p=0.1) was seen at 

week 16 among CYP2B6*6 carriers. However, no difference was shown between the groups at 

both occasions among CYP2B6*1/*1 genotype. Regardless of CYP2B6 genotype stratification, 

there was no difference in EFV intracellular concentration between RIF co-treatment group and 

the group without RIF at both occasions. 

4.5.2. Predictors of plasma and intracellular concentrations of efavirenz 

Factors affecting log plasma efavirenz concentrations at week 4 and week 16 separately were 

analyzed using regression analysis. Treatment group, demographic, type of HAART, baseline 

biochemical parameters, and CYP2B6 genotype were used as predictors and plasma EFV 

concentrations as dependent variable. Factors that influence log plasma concentrations of EFV 

with p<0.3 in the Univariate were included in multivariate linear regression model to build the 

final model. Backward elimination method was used to obtain predictors in the final 

multivariate linear regression model. Treatment group (Arm), sex and CYP2B6 genotype 

remained significant predictors of plasma efavirenz concentration at both week 4 and 16 but 

not body baseline body weight categorization. 
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4.5.3. Immunologic and virologic outcome comparisons between HIV and TB-HIV co-

treatment groups 

Repeated measure ANOVA indicated a tendency of having higher median CD4 over time in 

Arm-2 (TB-HIV co-infected) patients compared (p=0.06). However repeated measure ANOVA 

within each treatment group did not show significant effect of baseline body weight groups on 

change in CD4 cell count over time. Immunologic response to EFV-based HAART was higher 

among individuals co-treated with RIF containing anti-TB regimen than without. Having the 

same CYP2B6 genotypes, patients’ co-treated with RIF displayed higher CD4 gain than those 

treated with EFV-based HAART only.   

Univariate regression analyses were done on CD4 count at week 24 as outcome variable. 

Factors in final models predicting efavirenz plasma concentration were, Arm (p=0.0001) and 

HBsAg (p=0.02) at week 4 and Arm (p=0.0001), HBsAg (p=0.02), and CYP2B6 genotypes 

(P=0.02) at week 16 predicted CD4 count at week 24. Among efavirenz intracellular 

concentration predictors, Arm (p=0.05), Sex (p=0.001), Baseline BMI (p=0.02) and CYP3A5 

genotypes (p=0.07) at week 4 affected CD4 count at week 24.  

Proportion of patients with detectable HIV RNA (> 50 copies/mL) at week 24 was significantly 

lower among HIV patients receiving EFV based HAART alone (9%) than TB-HIV co-infected 

patients receiving concomitant RIF co-therapy (23%), regardless of baseline body weight 

category. No significant differences in the proportion of HIV virologic responders were 

observed at 48 weeks between the two treatment groups and stratified by body weight category. 

To evaluate relationships between EFV concentration, presence or absence of RIF co-therapy 

(Arm) and baseline body weight category, we performed Univariate and multivariate binary 

logistic regression analysis. No significant effect of plasma EFV concentration or CYP2B6 

genotype on virologic response was observed at both study time points. Baseline body weight, 

presence of TB co-infection and RIF co-treatment had significant effect on virologic response 

at week 24 but not at week 48. The effect of baseline body weight on virologic response was 

observed, irrespective of presence or absence of RIF co-treatment. 
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5. DISCUSSION 

This thesis reports several major findings. One of the main findings of this thesis is paradoxical 

effect of rifampicin (RIF) co-therapy on plasma and intracellular concentrations of efavirenz 

(EFV), consistent to this, improved immunologic response to HAART is reported among RIF 

co-treated cohort than without. These effects were pronounced among CYP2B6 slow 

metabolizers or CYP2B6*6 carriers (Paper V). In addition, there was no difference in the 

proportions of virologic successes between the two groups, irrespective of pretreatment body-

weight (Paper V). The thesis also reports substantial between subject variability in the effect of 

long-term efavirenz (EFV) auto-induction, systemic plasma and intracellular exposures of EFV 

as well as treatment response over time, partly due to time-dependent effects of sex, CYP2B6 

and UGT2B7 genotypes (Paper I). In addition, this thesis reports that induction of CYP3A by 

EFV is concentration and time-dependent and influenced by CYP2B6 genotypes in a gene-dose 

dependent manner (Paper II). The thesis also demonstrates importance of ethnicity and 

environmental factors, besides pharmacogenetic variations in CYP2B6 and ABCB1 genotypes 

to substantially contribute differences in EFV plasma/intracellular systemic exposure as well as 

immunologic recovery between Ethiopian and Tanzanian HIV patients receiving similar 

HAART (Paper III) . Moreover, this thesis reveals associations of elevated EFV plasma 

concentration and pharmacogenetic biomarkers such as ABCB1 3435TT, CYP2B6*6/*6 and 

NAT2 slow-acetylator genotypes with the development DILI in Ethiopian TB-HIV co-infected 

patients (Paper IV).  

Pharmacokinetic studies reported reduced plasma exposures of EFV due to co-administration 

of RIF, owing to the ubiquitous enzyme inducing nature of RIF [42]. To the effect, escalation 

of EFV dose from 600mg to 800mg was recommended when EFV was co-administered with 

RIF [171]. However, recent studies from diverse population rebut the dose escalation 

recommendation [57, 93, 161, 172-174]. In agreement with the later, the thesis does not 

recommend escalation of EFV dose in TB-HIV co-infected Ethiopian patients through this 

thesis with pharmacokinetic supported TB-HIV treatment outcomes (Paper V).  

Proportion of patients with detectable HIV RNA viral load (>50 copies/mL) was significantly 

higher in EFV group by week 24 irrespective of baseline body weight category (Paper V). 

However, there was no difference in proportions of virologic responders between groups 

containing EFV-based HAART only and RIF co-treatment with EFV-based HAART by week 

48, indicating that concurrent TB-HIV co-treatment takes longer time to reach virologic 

success compared to treating HIV only infection (Paper V). Besides, analysis indicated higher 
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proportion of patients with detectable HIV RNA viral load in those weighting > 50 kg at 

baseline as compared to those weighing ≤ 50kg in both EFV-based HAART only and RIF co-

treatment with EFV-based HAART groups. This might indicate that effect of pretreatment 

body weight on viral response is not specific to presence of rifampicin co-treatment (Paper V). 

By and large, Sub-Saharan countries obtain ARV drugs through donations from various 

international initiatives. The above pharmacokinetic and pharmacodynamic findings in the 

thesis highlight the use of standard dose of EFV during TB-HIV co-treatments, irrespective of 

pretreatment body-weight to minimize dose-related EFV toxicities, in addition to the cost 

reductions that could have been incurred due to EFV dose-escalation from 600mg to 800mg.  

The thesis also reveals the long-term auto-inductions by EFV, as evident by the significant 

increase in the main metabolite, 8-hydroxyefavirenz (8-OH-EFV), in plasma (32%) and in 

PBMCs (53%) with a corresponding decrease in EFV metabolic ratio (20% and 5%, 

respectively) over time. The extent of change was significantly affected by sex, CYP2B6 and 

UGT2B7 genotypes (Paper I). EFV is primarily metabolized to 8-OH-EFV mainly by 

CYP2B6, also by others such as CYP1A2, CYP3A5/4 and CYP2C9 [158, 159]. Auto-induction 

of EFV may involve some if not all of these enzymes as most of them are inducible [175-177]. 

The long-term auto-induction effect of EFV on CYP3A was reported in this thesis, using an 

endogenous biomarker for CYP3A activity, 4β-OHC/Chol ratio (Paper II). Besides, the auto-

induction on CYP3A by EFV was shown to be influenced by CYP2B6 genotype in gene-dose 

dependent manner, being highest in slow metabolizers with CYP2B6*6/*6 genotype followed 

by *1/*6 and *1/*1. This was further substantiated by a positive correlation, though weak, 

between plasma EFV concentration and 4β-OHC/Chol ratio both at two different times (Paper 

II) . The implication of long-term auto-inductions by EFV may warrant potential DDIs between 

EFV and substrates to CYP3A and CYP2B6 enzymes.    

The plasma and intracellular concentrations of EFV did not change significantly over time, 

despite changes in 8-OH-EFV and EFV MR over time, as above (Paper I). This is in contrast 

to a report on Tanzanian HIV patients, where there was an overall significant reduction in the 

EFV concentration over time [176]. The two studies were designed and conducted in parallel to 

investigate the effect of EFV auto-induction on its systemic exposure over time in two 

pharmacogenetically different African populations. This thesis indicates not only the presence 

of inter-individual but also interethnic variation in the extent of EFV auto-induction. EFV 

pharmacokinetic variability is not solely explained by the 8-hydroxylation pathway or the 

CYP2B6 genotype, because large between-subject variability in the plasma EFV exposure 
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remains unexplained, even after accounting for known CYP2B6 genetic variations. This was 

the basis for evaluation and identification of predictors of plasma and intracellular 

concentrations of EFV by combining the similarly designed and parallelly conducted data from 

Ethiopian and Tanzanian HIV patients (Paper III) .   

The thesis reports that geographic differences (patient country), CYP2B6*6 and ABCB1 3842 

A < G genotypes as significant predictors of EFV plasma and intracellular concentration 

(Paper III) . The allele frequency distributions of both CYP2B6*6 and ABCB1 3842A<G 

alleles was significantly higher in Tanzanians than Ethiopians. Likewise EFV plasma and 

intracellular concentrations as well as immunological gain were significantly different between 

the two populations; being higher in Tanzanians than Ethiopians (Paper III) . Besides, the 

extent of EFV auto-induction overtime was pronounced in Tanzanians whereas no significant 

change was observed in Ethiopians (Papers I & III) . This thesis demonstrates not only the 

existence of between population differences in EFV pharmacokinetics and pharmacogenetics 

but also variations in the extent of EFV auto-induction between populations (Paper III) . 

Furthermore, to optimize EFV dosage, the thesis emphasizes the importance of ethnicity and 

environment factors in addition CYP2B6 and ABCB1 genotype, which may in turn influence 

the immunological outcomes (Paper III) . This is in line with the results by Dandara et al [111] 

who also found inter-ethnic and population differences in the distribution of various allele 

frequencies for other CYPs among Africans. This thesis reaffirms the need for extensive 

population specific pharmacogenetic research for optimized antiretroviral therapy across 

Africa. 

The thesis also reports the association of elevated plasma concentration of EFV with DILI 

(Paper IV). The association of higher EFV plasma concentration with DILI was regardless of 

concomitant RIF based anti-TB therapy, whereas no association of the metabolite (8-

hydroxyefvairenz) was observed. Furthermore, ABCB1 3435TT, CYP2B6*6/*6 and NAT2 

slow-acetylator genotypes were identified as pharmacogenetic biomarkers for the development 

DILI in Ethiopian TB-HIV co-infected patients (Paper IV). Direct liver toxicity by higher EFV 

plasma concentration could be a possible mechanism for EFV-based HAART induced liver 

injury in HIV patients. In support of this argument were associations of DILI with CYP2B6*6 

and UGT2B7*2, the variant alleles associated with increased EFV plasma concentration 

(Paper IV). The associations of these genetic biomarkers with DILI emphasize the need to use 

pharmacogenetic tools to predict and identify HIV treatment toxicities a priori.       
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In addition to the above major findings, this thesis also reports several outcomes. One of the 

results reported in the thesis is the following allele frequencies in Ethiopian population: 

CYP2B6*6, CYP3A5*3, CYP3A5*6, UGT2B7*2, ABCB1 3435C >T, ABCB1 3842A<G, 

SLCO1B1-D130N (*1b), SLCO1B1-A174V (*5) were 29.7%, 66.9%, 10.6%, 48.1%, 20.9%, 

14.5%, 61.1% and 79.1%  respectively (Papers I & III) . Besides reporting these allele 

frequencies in Ethiopian population as new information, the comparisons of the allele 

frequencies between the two sub-Saharan African countries, the thesis also shows significant 

differences between Ethiopians and Tanzanians, reaffirming the need for extensive population 

specific pharmacogenetic studies to optimized antiretroviral therapy across Africa (Paper III) .  

The thesis also shows positive correlations of plasma and intracellular concentrations of EFV 

(Paper I). Most ARV drugs including EFV are known to exert their effect intracellularly [178, 

179]. Drug concentrations at the site of action are regarded as the true indicative for treatment 

successes. The result of the correlation between plasma and intracellular concentrations of EFV 

suggested that plasma exposure could be surrogate marker for intracellular activity (Paper I). 

This is in agreement with previous reports [180, 181]. This thesis also reports higher incidence 

of drug induced liver injury (DILI) due to concomitant anti-TB and EFV-based HAART 

among TB-HIV co-infected Ethiopian patients (Paper IV).  

This thesis also demonstrates the influence of pharmacogenetic variations on immunologic 

outcome among HIV infected Ethiopians (Paper I). By and large, good immune recovery, as 

indicted by a sharp increase in the CD4 count during early (3 months) on HAART. This was 

regardless of sex or genotype (Paper I). However, the pattern of CD4 gain was observed to be 

variable between the different CYP2B6 and UGT2B7 genotype groups 6 and 12 months after 

HAART. There was no significant change in the CD4 count between 6 and 12 months among 

subjects with CYP2B6*1/*1 and UGT2B7*1/*1, while the CD4 count continued to increase 

among carriers of CYP2B6*6/*6 and UGT2B7*2/*2 (Paper I). The thesis indicates that the 

effect of genetic variation in CYP2B6 and UGT2B7 on the change in the CD4 count becomes 

apparent in the long run as therapy continues (Paper I). Genotype variability may be 

considered as additional factor to explain differences in immunologic response for HAART. 

The thesis pioneers to stratify immunologic outcomes of EFV-based HAART based on 

genotypes. 
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6. CONCLUSIONS AND RECOMMENDATIONS 

6.1. Conclusions 

• Rifampicin (RIF) co-therapy caused paradoxical effect of plasma and intracellular 

concentrations of efavirenz (EFV), subsequent to that it caused better immunologic 

response and comparable virologic success to HAART than HAART without RIF.  

• Substantial between-subject variability was shown in the effect of long-term efavirenz 

(EFV) auto-induction, systemic plasma and intracellular exposures of EFV and 

HAART response over time, partly due to time-dependent effects of sex, CYP2B6 and 

UGT2B7 genotypes. 

• Induction of CYP3A by EFV was influenced by CYP2B6 genotypes in concentration 

and time-dependent in a gene-dose dependent manner. 

• Importance of ethnicity and environmental factors substantially contributed to the 

differences in EFV plasma/intracellular systemic exposure as well as immunologic 

recovery. 

• Associations of elevated EFV plasma concentration and ABCB1 3435TT, CYP2B6*6/*6 

and slow NAT2 metabolizing genotypes with the development of DILI in Ethiopian TB-

HIV co-infected patients were observed. 

• Allele frequencies of CYP2B6*6, CYP3A5*3, CYP3A5*6, UGT2B7*2, ABCB1 3435C 

>T, ABCB1 3842A>G, SLCO1B1 D130N (*1b), SLCO1B1 A174V (*5) in Ethiopian 

population were reported.  

• Positive correlation between plasma and intracellular concentrations of EFV was 

established. 

• Impact of pharmacogenetic variations on immunologic outcome among HIV infected 

Ethiopians was demonstrated.  

• RIF co-therapy, Baseline Body Weight and CYP2B6 genotypes predicted plasma and 

intracellular concentrations of EFV during short-term and long-term EFV 

administration. Among these factors, RIF co-therapy and CYP2B6 genotypes were 

associated with CD4 recovery at 6 months EFV-based HAART. 

6.2. Recommendations  

• Escalation of efavirenz (EFV) dose from 600mg to 800mg is not needed in co-treating 

TB/HIV co-infected Ethiopian. 

• Potential drug-drug interactions may be warranted on substrates of CYP3A and CYP2B6 

enzymes due to long-term induction effect of EFV.  
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• Extensive population specific pharmacogenetic studies for optimized antiretroviral 

therapy across Africa should be carried out. 

• Therapeutic drug monitoring (TDM) in association with pharmacogenetic tools may be 

employed to routinely monitor HAART toxicities and responses.                    

• Plasma concentrations of EFV may be surrogate markers for intracellular EFV 

exposure.  
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