

Karolinska Institutet

Department of Laboratory Medicine Clinical Research Center

STUDIES ON ITK-SYK SIGNALING PATHWAYS

AKADEMISK AVHANDLING

som för avläggande av medicine doktorsexamen vid Karolinska Institutet offentligen försvaras i M.41, Karolinska Universitetssjukhuset, Huddinge

Torsdag den 13 juni, 2013, kl 12.30

av Alamdar Hussain

Huvudhandledare: Prof. C. I. Edvard Smith Karolinska Institutet Department of Laboratory Medicine Clinical Research Center

Bihandledare: Docent Abdalla J Mohamed Karolinska Institutet Department of Laboratory Medicine Clinical Research Center

Docent Beston F Nore Karolinska Institutet Department of Laboratory Medicine Clinical Research Center *Fakultetsopponent:* Prof Lars Rönnstrand Dept. of Laboratory Medicine, Lund University, Wallenberg laboratory, University Hospital Malmö, Sweden

Betygsnämnd: Prof. Christer Sundström Department of Pathology, Uppsala University Hospital, Sweden

Prof. Ola Winqvist Department of Medicine Solna, Translational Immunology Unit Karolinska University Hospital, Sweden

Prof. Catharina Larsson Department of Oncology-Pathology Cancer Center Karolinska (CCK) Karolinska University Hospital, Sweden

ABSTRACT

Chromosomal alterations are frequent causes of cancer. Until now, SYK is reported in two different chromosomal translocation events generating the ITK-SYK-fusion protein in a subset of peripheral T cell lymphomas and the TEL-SYK fusion protein in a case of myelodysplastic syndrome. T lymphocyte-expressed ITK is the only member of the TEC-family of tyrosine kinases reported as a fusion partner in transforming translocations and here we have studied this fusion. The comparison of ITK-SYK with SYK revealed that related tyrosines of ITK-SYK are phosphorylated at the linker-region and at the activation-loop and that the fusion protein localizes to the plasma membrane and potently phosphorylates the adapter proteins SLP-76 and BLNK. Moreover, membrane localization and phosphorylation of adapter substrates are blocked with PI3K inhibitors. SYK, on the other hand, showed phosphorylate SLP-76 or BLNK under the same conditions.

Since BTK is the predominantly expressed TEC family kinase in B lymphocytes, we engineered the corresponding fusion kinase, BTK-SYK. We then investigated the role of the N-terminal region in the regulation of fusion kinases ITK-SYK, BTK-SYK and TEL-SYK. Unlike ITK-SYK, BTK-SYK showed more nuclear and cytoplasmic localization and PI3K inhibitors, unexpectedly, did not block its capacity to phosphorylate the adapter substrate SLP-76. Interestingly, non-membrane-tethering PH-TH domain-mutants ITK-SYK-R29C and BTK-SYK-R28C potently phosphorylated SLP-76. On the same ground, a TEL-SYK mutant, lacking the dimerization domain, was equally phosphorylated as the full-length fusion protein, but induced highly compromised CD69 upregulation compared with TEL-SYK or ITK-SYK.

Further investigations revealed that ITK-SYK-mediated activation of T cells was dependent on the adapter function of SYK-family kinases (SYK or ZAP-70), but independent of their kinase activity. Moreover, SLP-76 adapter function was not only indispensible for ITK-SYK-mediated CD69 upregulation and IL-2 secretion, but also for the phosphorylation of activation-loop tyrosines of SYK. Mutagenesis revealed a hierarchical phosphorylation pattern in the activation of ITK-SYK. In spite of loss of phosphorylation of the tyrosines, known to act as targets in SYK, the fusion protein potently retained phosphorylation capacity for substrate adapter proteins. Phosphorylation-independent constitutive activation was further confirmed by ITK-SYK expression in SYF cells (cells lacking SRC-family kinases), since there was no detectable phosphorylation on target tyrosines, yet the substrate SLP-76 was potently phosphorylated. Altogether, our studies indicate that lack of auto-inhibition renders fusion kinase constitutive activation suggesting that many of the tyrosine phosphorylations known to be critical in the activation of SYK are dispensable for ITK-SYK activation.