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ABSTRACT 

 

 

Recent experimental data have revealed a wealth of information that provides an 

exceptional opportunity to construct a mechanistic model of DNA repair. The cellular 

response to radiation exposure starts with repair of DNA damage and cell signalling 

that may lead to mutation, or cell death. The purpose of this work was to construct a 

mechanistic mathematical model of DNA repair in mammalian cells. The repair model 

is based on biochemical action of repair proteins to examine the hypotheses regarding 

two or more components of double strand break (DSB) repair kinetics. 

The mechanistic mathematical model of repair proposed in this thesis is part of a 

bottom-up approach that assumes the cell is a complex system. In this approach 

radiation induces DNA damage, and the cellular response to radiation perturbation was 

modelled in terms of activating repair processes. A biochemical kinetic method based 

on law of mass action was employed to model the repair pathways. The repair model 

consists of a set of nonlinear differential equations that calculates and explains protein 

activity on the damage step by step. The model takes into account complexity of the 

DSB, topology of damage in the cell nucleus, and cell cycle. 

The solution of the model in terms of overall kinetics of DSB repair was compared with 

pulsed-field gel electrophoresis measurements. The repair model was integrated with 

the track structure model to calculate the damage spectrum and repair kinetics for every 

individual DSB induced by monoenergetic electrons, and ultrasoft X-rays. For this 

purpose we proposed a method to sample the protein repair actions for every individual 

DSB, and finally calculate the total repair time for that specific DSB. The DSB-repair 

kinetics for the number of DSB induced by 500 tracks of monoenergetic electrons and 

ultrasoft X-rays were calculated and compared with experimental results for cells 

irradiated with AlK, CK, and TiK ultrasoft X-rays. 

The results presented here form the first example of mechanistic modelling and 

calculations for NHEJ, HR and MMEJ repair pathways. The results, for the first time, 

quantitatively confirm the hypothesis that the complex type double strand breaks play a 

major role in the slow kinetics of DSB repair. The results also confirm that simple DSB 

located in the heterocromatin delay the repair process due to a series of processes that 

are required for the relaxation of the heterochromatin.  The repair model established in 

this work provides a unique opportunity to continue this study of cellular responses to 

radiation further downstream that may have important implications for human risk 

estimation and radiotherapy. 
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1 INTRODUCTION 

Ionizing radiation (IR) is a potential carcinogen, and also widely used for cancer 

therapy [1]. Exposure to IR induces a variety of biological effects [2]. The main target 

of IR is the cell nucleus DNA [3]. Activation of the DNA repair and the cell signalling 

pathways are among the initial steps of the molecular and cellular protective processes 

as illustrated in Figure 1.1. Inaccurate repair of the damage may lead to mutation and 

consequently cancer. The cell may avoid the adverse consequences by activating cell 

death pathways. Mechanism of radiation action and effects is complex and not yet fully 

understood. However, recent advances in experimental technologies have provided 

unprecedented opportunity for bottom up mathematical modelling to study the 

mechanism of radiation action. DNA repair plays the central role in cellular response to 

radiation insult.  

Repair

Nano Seconds

Cell Singnaling

Minutes-Hours
Cell Cycle arrest

Cell Death

Mutation/ 

Chromosome 

Aberration

CancerMonth-Years

Generations Heritable Effects
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Figure 1.1 Sequential events and effects that follows after ionizing radiation insult in a cell 

nucleus. The time scale of initial damage induction and biological effects may range from a 

few nanoseconds to several years. The physical and chemical stages of radiation action are 

very fast and damage is formed in less than a fraction of second. Damage is induced by direct 

and indirect interaction of radiation with the DNA molecule. Damage activates repair and 

signalling pathways within seconds to minutes. If the damage is not correctly repaired it may 

lead to mutation and chromosome aberration. Signalling pathways may activate cell cycle 

arrest or cell death pathways to avoid detrimental consequences such as cancer and heritable 

effects that could develop within years of radiation incident  
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The damage induced in the DNA is classified as single strand break (SSB), base lesion 

(BL) and double strand break (DSB). The damage spectrum is influenced by dose, dose 

rate and type of the radiation exposure. The most cytotoxic type of damage is DSB. 

Figure 1.2 illustrates specific repair pathways are summoned for repair of BL, SSB, and 

DSB. There are several DSB-repair pathways that could fix the damage. The choice of 

DSB repair pathway is dependent upon the cell cycle, type of damage, and damage 

topography (damage induced in the Heterochromatin (HC) versus Euchromatin (EC)). 

In this work DSB-repair was studied mechanistically using computational modelling. 

Basic questions regarding repair kinetics of DSB have been addressed. It is known that 

DSB repair kinetics have at least two components. It is hypothesised that the repair 

kinetics is affected by DSB complexity and topography. The complexity of the DSB is 

defined by the proximity of DSB to other lesions such as DSB or SSB within 10 base 

pairs (bp) [4]. It has been shown that the complexity of the DSB increases with linear 

energy transfer (LET), using Monte Carlo track structure simulation [5-8]. LET is a 

parameter that is generally used to characterise radiations of different quality. However, 

LET is an average macroscopic quantity and does not account for the stochastic nature 

of radiation interaction [9, 10]. Topography of the damage relates to the DSB 

positioned in the HC or EC [11-13]. HC is the condensed region of the chromatin in 

contrast to EC that is transcriptionally active. It is assumed that both complexity and 

topography of the DSB affect the repair kinetics through activating slower repair 

processes [14, 15].      

By using a computational approach, both assumptions (complexity and topography of 

DSB) were tested in this work. For this purpose, details of mechanism of action of the 

repair proteins were applied in the repair model to identify and explain the components 

of DSB repair kinetics. The mechanism of protein actions and DSB repair were derived 

from various sources including molecular, biochemical, biophysical, and structural 

studies. Figure 1.2 shows a schematic representation of the ideas involved in the 

aforementioned studies. The protective biological responses to DNA damage include 

DNA repair and cell signalling. The signalling pathways involve sequential protein 

translational modifications. The cascades of the signalling protein modifications may 

lead to cell cycle arrest, and cell death. The first response to DNA damage is sensing 

the damage by a set of proteins including Ku70/80, the MRN complex, PARP-1, ATR 

and ATM. Following this, other proteins such as histone H2AX become involved in 

amplifying the response. Consequently, a large number of signalling and repair proteins 

are recruited to retain genome integrity. Different types of DNA damage are processed 

sequentially by certain proteins. In general, DNA repair processes have been classified 

in terms of base excision repair (BER) [16] for the repair of base damage and SSB; 

while for the repair of DSB, several pathways including homologous recombination  

repair (HR) [17, 18], nonhomologous end-joining (NHEJ) [19, 20], single strand 

annealing (SSA) [17, 21], and microhomology-mediated end-joining (MMEJ) [22, 23] 

are involved. The choice of the DSB-repair pathway depends on several criteria such as 

type of damage, position of the damage in the nucleus and cell cycle. In mammalian 

cells NHEJ repair is the prevalent pathway for repairing DSB, however it is still not 

definitely known in which circumstances other repair pathways, such as HR or MMEJ, 

are activated. To this end, there are two main ideas circulating in the field. The first 

argument is that the position of the DSB in the cell nucleus influences the repair 
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kinetics [11-14, 24-26]. It is suggested that DSB in the heterochromatin require opening 

of the compact chromosome structure and therefore could result in a longer repair 

process [12]. It is also suggested that the damage in the heterochromatin undergo 

resection that leads to HR repair [14, 25, 26]. The second argument suggests that the 

complexity of the DSB is the main reason for biphasic repair kinetics [15, 27, 28].  It is 

proposed that increase of LET, and consequently the complexity of damage, changes 

the repair kinetics in favour of slowing down of the repair process by involving HR or 

MMEJ [6, 29]. DNA repair processes are cell cycle dependent. HR and SSA are mainly 

active in late S and G2 phases of the cell cycle, while NHEJ is active throughout the 

whole cell cycle. DSB repair is not always conservative and may lead to various types 

of mutations or chromosome aberrations. The HR repair pathway is error-free, while 

NHEJ, MMEJ and SSA show different sizes of deletion or addition related to their 

biochemical DNA catalysis. Non-allelic homologous recombination (NAHR) is a 

special variant of HR repair which may lead to large deletions in the case of finding the 

wrong intact template pair. Recent advances in DNA experimental techniques have 

revealed a plethora of information regarding repair processes in mammalian cells. 

Nonrepaired and misrepaired DNA lesions could also lead to cell death. Cell death is 

one the cellular protective responses that could avoid development of mutations, cancer 

or heritable diseases. Cell death is classified by morphologic appearance as apoptosis, 

necrosis, autophagy, and mitotic catastrophe [30]. Cell survival is usually measured by 

clonogenic assays.  

Mathematical models of biological processes have been used to improve our 

understanding of the mechanism of biological processes and quantification of the 

qualitative experimental observations. The first models to describe radiation effects 

were phenomenological models describing the cell survival curves. Typical cell 

survival curves are presented graphically on a log-linear scale. Cell survival as a 

measure of absorbed dose has been used to propose phenomenological models with 

different degrees of complexity. To this end, target theory is used to explain 

exponential dose response survival curves. Target theory proposes that for inactivating 

a cell, a number of critical targets in turn should be inactivated. Target theory, which 

accounts for the behaviour of a population of cells, is based on a simple exponential 

formula to explain the cell survival curve [31]. Among many models, the Linear-

Quadratic (LQ) model is the most common one used  to study cell survival response to 

radiation exposure [32, 33]. The LQ model in its simplest form is based on exponential 

expression with two unknown parameters of α and β. Although the LQ model 

surprisingly describes rather accurately the cell survival curves in the classical 

fractionation region (1.5-4 Gy), it does not consider low dose hypersensitivity and 

shows overestimation at high doses [34]. Other models such as RMR (Repair-

MisRepair) [35, 36], LPL (Lethal Potentially Lethal) [37], SR (saturable repair) [38], 

MLQ (Modified Linear Quadratic) [39] and RCR (Repairable and potentially 

Conditionally Repairable damage) [40] have been proposed to overcome the 

shortcomings of the LQ model. Among the models, the RMR [40], biexponential [41], 

and Two Lesion Kinetics (TLK) [42] models proposed a simple equation to describe 

DSB repair kinetics. The phenomenological models have shown successful 

contribution in improving treatment planning for radiation therapy, however 

mechanistic details of radiation action is complex and sophisticated mathematical 
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models are required. The phenomenological models do not consider molecular 

interactions involved in DSB repair. Furthermore some of the assumptions of 

phenomenological models such as DSB saturation in the shoulder region of the dose or 

nonlinearity of DSB induction in low doses have not been observed by biological 

experiments [43].  

 

DNA Damage
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Cell Cycle
Damage 
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Figure 1.2 DNA repair and initial signalling processes that are activated by radiation 

exposure to cell. The Damage is in the form of base lesion, single strand break and double 

strand break. Base lesions and single strand breaks are repaired by the base excision repair 

(BER) pathway. Double strand breaks are repaired by nonhomologous end-joining (NHEJ), 

homologous recombination (HR), microhomology-mediated end-joining (MMEJ), and single 

strand annealing (SSA) repair pathways. The repair of DSB depends on the type of damage, 

cell cycle, and damage topography. 

The link from repair to mutation and cell death is still not clear. 

Nonrepaired/misrepaired DNA lesions could lead to cell death but the mechanism in 

which DNA repair may lead to deletions and subsequently to mutation/cell death has 

yet to be understood. To this end, Sankaranarayanan and colleagues [44] proposed a 

computational solution to bridge the gap and solve a long standing problem in genetic 

risk estimation [45]. In the absence of human data, part of the solution to genetic risk 

estimation in human is computational modelling of the cellular processes using 

mechanistic models [45, 46]. Cell cycle is one of the cellular processes that has been 

extensively studied using computational kinetic models [46-50]. More recently, similar 

approaches have been employed to study the kinetics of DNA repair pathways. These 

approaches include the Michaelis-Menten kinetics method to study BER kinetics [51-
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54]; use of biochemical kinetics model to study DSB repair and γ-H2AX foci formation 

[55-57], and Monte Carlo method to study DSB spatial-temporal modifications [58-61]. 

Most of the models used to date are based on some simplifying assumptions, which 

require further modifications and development to mimic the cellular responses to DNA 

damage. The advantage of the stochastic method (Monte Carlo) is to take the spatial 

movements of the DSB ends into consideration. However, the stochastic method is not 

an easy approach to study protein repair kinetics. The difficulty of using the stochastic 

method arises from the large number of proteins involved in the repair processes.  

In this study, we used three mathematical approaches to model the repair kinetics or 

characterise the repair kinetics. The first mathematical approach used in this work was 

a phenomenological model (two exponential method) to describe the repair curves. The 

two exponential model is a simple method to characterise the repair half time and 

fraction of repair by slow and fast kinetics, but cannot describe the mechanism of 

repair. The second method is biochemical kinetic rate modelling. The law of mass 

action is used to translate the schematic model of repair explained in Chapter 2 into a 

mathematical formalism explained in Chapter 4. The mathematical model consists of a 

set of non-linear differential equations, in which the solution of the equations provides 

the overall repair and protein action kinetics. The biochemical method is a mechanistic 

approach that explains every step of repair with a separate equation. This model has 

many unknown parameters that should be carefully devised. In comparison to other 

mechanistic methods such as the Michaelis-Menten model, it is a simple approach with 

fewer unknown parameters. The third mathematical model used in this work is inverse 

transform sampling method (ITS). This method is used to integrate the repair model 

with the damage model (simulated by Track Structure Monte Carlo method) and 

calculate the kinetics of every stage of repair for every DSB separately. The overall 

repair time for a single DSB is calculated with this method. The calculated DSB repair 

kinetics were tested by comparison to pulsed-filed gel electrophoresis (PFGE) data for 

electrons and ultrasoft X-rays. The comparison allowed us to explain the mechanisms 

involved in repair of DSB. In the following section, summary descriptions of paper I to 

paper V explain how complexity of DSB and distribution of DSB in the 

heterochromatin affect the repair kinetics of DSB induced by radiation of different 

quality. 

1.1 SUMMARY OF PAPERS 

This section provides a short summary of the published papers for the thesis. The 

papers are presented according to the course of the development of the DSB repair 

model, from the most recent to the earliest one.  The development of the DSB repair 

model also reflects the level of complexity of the model and availability of the 

experimental data for benchmarking.     

Paper I:  

Title: Biochemical DSB-Repair Model for Mammalian Cells in G1 and Early S Phases 

of the Cell Cycle (2013, Mutation Research) 
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Paper I presents a model of repair in G1 and early S phases of the cell cycle. In this 

period of the cell cycle HR is not active. NHEJ and MMEJ are the two candidates to 

repair the damage. The simple DSB is repaired by NHEJ, the complex DSB is repaired 

by MMEJ and DSB in the heterochromatin undergoes further end processing for 

chromatin remodelling that is mediated by ATM and Artemis. The initial steps of the 

end modifications before synapsis are common for slow, fast and heterochromatin 

DSB-repair. The model was translated into a system of nonlinear equations. The 

solution of the model was compared to experimental DSB repair kinetics to derive the 

rate constants for photon irradiated cells. The model overall DSB-repair kinetics are 

compared with the experimental DSB-repair kinetics of V79 cells irradiated with 45 Gy 

of 
60

Co γ-rays and primary human dermal fibroblasts irradiated with 250 kVP X-rays. In 

order to further prove the hypotheses in this work (repair kinetics are delayed by the 

distribution of DSB in the heterochromatin and the complexity of DSB), comparison 

with experimental results for cells irradiated with different quality radiation is required. 

For this purpose the repair model could be integrated with simulation of damage for 

radiation of different quality to predict the DSB-repair kinetics. 

 

1.1.1 Paper II, Paper III, and Paper IV 

Title (paper II): The Nonhomologous End-Joining (NHEJ) Pathway for the Repair of 

DNA Double-Strand Break: I- Mathematical Model (2013, Radiation Research) 

Title (paper III): The Nonhomologous End-Joining (NHEJ) Pathway for the Repair of 

DNA Double-Strand Break: II- Application to Damage Induced by Ultrasoft X-rays 

and Low Energy Electrons (2013, Radiation Research) 

Title (paper IV): Repair of the Double-Strand Breaks Induced by Low Energy 

Electrons: a Modelling Approach (2012, Int. J. Radiation Biology) 

Collectively, papers II-IV describe different aspects of the development of the NHEJ 

repair model.  

Paper II presents a model that describes the NHEJ repair pathway. The NHEJ model 

was developed by taking into consideration the biological DSB end processing in the 

absence of homologous recombination. The model considers separate treatment for 

simple and complex DSB. However the initial steps of the end modifications before 

synapsis is common for slow and fast repair. The biochemical end modifications 

explained in the schematic model were translated to a set of nonlinear equations. In the 

absence of experimental data for rate constants we determined the rate constants for a 

sample dose of 20 Gy. The same rate constants proved to be predictive for higher doses 

up to 80 Gy and several different mammalian cell lines. The initial recruitment kinetics 

of DNA-PKcs and Ku heterodimer were compared with experimental data measured by 

green fluorescent protein tagged DNA-PKcs and Ku.  

In papers III and IV, the NHEJ mathematical model of DSB repair was used to test the 

repair capability of the model when applied to computer simulated radiation induced 

damage by low energy electrons and ultrasoft X-rays. In this work, the Monte Carlo 

track structure code system KURBUC, which can generate interaction of electron 

tracks in the environment of a cell including those on DNA from direct interactions and 

reactions of OH radicals, was used. All types of DSB were subjected to the NHEJ 
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model for repair. For this purpose, an inverse transform sampling method was used to 

derive the time required for biochemical catalysis at the ends of every individual DSB. 

This approach provides details of repair timing that otherwise are not easily measured 

for protein activities on the DSB ends. The time required for the repair of DSB induced 

by single tracks of low energy electrons was calculated. The overall repair kinetics of 

DSB induced by 500 tracks of mono energetic electrons and ultrasoft X-rays were 

computed. The overall repair kinetics showed good agreement with ultrasoft X-rays 

experimental measurements. The average times calculated for the repair of the complex 

DSB were longer than the simple DSB. 

1.1.2 Paper V 

Title: A Kinetic Model of Single-Strand Annealing for the Repair of DNA Double-

Strand Breaks (2011, Radiation Protection Dosimetry) 

Paper V presents a mathematical model that describes the SSA repair pathway. The 

model is based on the biochemical modifications of the DSB ends to rejoin the ends by 

the SSA pathway. In order to be able to concentrate on the repair exclusively performed 

by the SSA pathway, cells that are mutated in both HR and NHEJ are chosen for 

comparison. Comparison of DSB-repair kinetics based on the assumption that the entire 

repair is performed by SSA is made. The description of the model was translated to a 

set of equations. The solution of the equations gives the information regarding 

individual repair protein activity kinetics and the total DSB rejoining kinetics. The rate 

constants were derived by comparing the DSB repair kinetics of a 20-Gy experiment to 

the model solutions. Applying the same rate constants it was possible to predict the 

DSB repair kinetics of 80-Gy irradiated chicken DT40 cells.  
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2 DNA REPAIR PATHWAYS 

Ionizing radiation induces a variety of different types of damage in genomic DNA 

including base lesions, single strand breaks, and double strand breaks. Cells employ 

different series of proteins to repair the damage. These specific pathways are BER for 

the repair of base lesions and single strand breaks, and nonhomologous end-joining, 

homologous recombination, single strand annealing and microhomology-mediated end-

joining for the repair of double strand breaks. The repair pathways and protein 

functions are explained in this section. 

2.1  BASE EXCISION REPAIR 

Base Excision Repair (BER) is involved in repairing base damages, 

Apurinic/Apyrimidinic (AP) sites, and SSB [62-65]. It is estimated that the rate of 

induction of base and strand lesions per day per mammalian cell is around 10
4 

lesions 

[66, 67]. Figure 2.1 illustrates a simplified model of BER by short and long patch 

pathways. Base lesions are initially recognized and processed by a DNA glycosylase. 

The glycosylase hydrolyses the N-glycosidic bond and removes the base resulting in an 

AP site. The AP site is then cleaved by the AP nuclease. The kinetics of removal of 

damaged bases by a glycosylase depends on the damaged base [68, 69]. UNG, 

SMUG1, TDG, MBD4 and MPG (AAG) are human monofunctional glycosylases. 

Another class of glycosylases, including OGG1, NEIL1 and NEIL2, possess both 

glycosylase and AP lyase activity [70, 71]. AP endonucleases like APE form 3’-

hydroxyl and 5’-abasic deoxyribose phosphate (5’-dRP). The repair of the AP site can 

proceed by long patch (where 2-13 nucleotides are replaced) or short patch (where 1 

nucleotide is replaced) BER pathways. Most of the bifunctional glycosylases activate 

the short patch repair pathway since DNA polymerase β (pol β) excises the 5’-dRP 

moiety and replaces the missing nucleotide [72]. XRCC1 and DNA ligase III perform 

the strand ligation. Long patch BER initial repair steps are similar to that of short patch, 

starting with DNA glycosylase and AP lyase. Polymerase δ or ε together with 

proliferating cell nuclear antigen (PCNA) synthesizes a DNA patch up to 13 bases 

long. PCNA then stimulates Flap endonuclease I (FEN-1 to remove the resulting 

oligonucleotide flap. The nick is sealed by DNA ligase I. Single strand breaks are first 

recognized by poly(ADP-ribose) polymerase (PARP) protein and then processed by 

APE1 or polynucleotide kinase/phosphatase (PNKP) [73]. PNKP restores both 5′-

phosphate and 3′-hydroxyl termini. The repair then proceeds either by short patch repair 

using pol β, XRCC1 and ligase III proteins or by long patch repair using FEN-1, Pol δ 

or ε, and ligase I proteins.  
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Figure 2.1 BER starts with damage recognition and removal of the damaged base by a DNA 

glycosylase. APE1 cleaves the abasic site. The repair could proceed by short patch BER with 

Pol β replacing the damaged nucleotide and XRCC1/Lig III proteins sealing the nick. The 

other option could be long patch BER that introduces from 2-13 nucleotides. Proteins such as 

PCNA, Pol δ or ε, FEN-1, and Lig I are involved in long patch BER. 

Damage induced by ionizing radiation may contain tandem or bi-stranded base and 

sugar phosphate backbone lesions. Synthesized or enzymatically-induced lesions have 

been used to study the effect of closely positioned base lesions and strand breaks of 

different types [74-82]. It has been observed that closely positioned lesions could slow 

down the repair. Bi-stranded lesions may lead to DSB in the process of repair, since 

base lesions are modified to abasic sites in the process of repair [75]. The ability of 

BER to repair a bi-stranded lesion depends on the juxtaposition of the lesions, and the 

nature of the second damage [29, 65, 80, 82-98]. Bi-stranded base damage leads to SSB 

for the first lesion which starts the repair irrespective of the relative position of the 

lesions [83]. There might be no preference for BER processes to start with either of the 

base lesions. BER of the second lesion depends on the position of the other damage in 

the opposite strand. If the other lesion is more than one base pair away, the incision 

creates a DSB (up to three base pairs), however if the distance between the opposite 

lesion is just one nucleotide away the repair of the second lesion will be stalled to avoid 

the DSB [85], and the lesions will be repaired sequentially. Other studies on bistrand 
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damage BER suggest that a second base lesion has no or little effect on the glycosylase 

detection and excision of the parallel strand, however lesions in proximity of an AP 

lesion or SSB compromises the excision of the base lesions on the parallel strand [99]. 

Tandem lesions can also inhibit the repair of the lesions. 8-OxoG adjacent to a tandem 

AP site can affect the AP site repair. The direction of the two lesions could affect the 

repair kinetics. If the AP site is present at -1, -3, -5 positions relative to 8-OxoG, the 

missing base will be inserted while the ligation cannot be completed causing a lost 8-

OxoG. If the AP site is at +1 position relative to 8-OxoG the missing base won’t be 

inserted resulting in a lost 8-OxoG. If the AP site is at either +3, or +5 positions relative 

to 8-OxoG the missing base will be inserted, the ligation will be complete in +5 

position and the repair of the AP site is unaffected by 8-OxoG, while at +3 position 

ligation may not be complete [100].  

2.2   DSB REPAIR PATHWAYS 

To date, there are four known main DSB repair pathways namely nonhomologous end-

joining, homologous recombination, single strand annealing and microhomology-

mediated end-joining. These pathways are dissimilar in terms of repair and proteins and 

have different characteristics that are summarized in this chapter. 

2.2.1 Nonhomologous End-joining 

Figure 2.2 presents a schematic description of the repair processes involved in NHEJ as 

far as known to date. NHEJ is the main pathway in mammalian cells for the repair of 

DSB. The repair by NHEJ is relatively fast and error prone. Ku70/Ku80 heterodimer is 

the first protein to bind to the DSB. Ku heterodimer has a toroidal configuration, and 

translocate inward after binding to DSB ends. This process  provides space for other 

proteins such as DNA-dependent protein kinase catalytic subunit (DNA-PKcs) to bind 

to the Ku-DNA complex [101].The affinity of DNA-PKcs for DNA increases 100-fold 

in the presence of Ku heterodimer [102]. DNA-PKcs functions as a gatekeeper of the 

DSB ends [103]. The synapsis is formed with Ku heterodimer and DNA-PKcs 

complex. DNA-PKcs autophosphorylation at ABCDE and PQR clusters regulates the 

NHEJ repair process [104]. DNA-PKcs regulates access to the damage ends by 

autophosphorylation [105]. ABCDE autophosphorylation is required for efficient 

ligation by the XLF/XRCC4/LIG IV complex. It is proposed that the non-

phosphorylated DNA-PKcs remains bound to the termini rendering the ends 

inaccessible to the alternative repair pathways. Therefore, cells that are deficient in 

DNA-PKcs autophosphorylation of the ABCDE site are more radiosensitive than cells 

that lack DNA-PKcs. In contrast, cells deficient in PQR autophosphorylation are more 

radioresistant than cells that lack DNA-PKcs. Inhibition of PQR autophosphorylation 

renders the ends more accessible for repair by the HR pathway. In conclusion 

autophosphorylation of the ABCDE site and not the PQR site is required to open up the 

ends for the alternative pathways of repair, while autophosphorylation at both ABCDE 

and PQR sites allows NHEJ to complete the repair. Based on laser-induced damage 
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experiments, it is proposed that DNA-PKcs is only required for the complex type repair 

[106]. Other proteins that are involved in the slow repairing types of DSB are Artemis 

and ATM [26]. Artemis is an endonuclease [107], and DNA-PKcs phosphorylates 

Artemis to facilitate its endonuclease activity [108, 109]. Artemis is involved in the 

repair of the DSB that require end-processing before ligation [110-112]. XRCC4 plays 

a key role in the recruitment and activation of the end processing enzyme 

polynucleotide kinase/phosphatase (PNKP) and DNA ligase IV. PNKP possesses a 

kinase and phosphatase activity to convert 5’-OH to 5’-phosphate and 3’-phosphate to 

3’-OH, which is required for efficient ligation [113]. XLF mediates the activity of 

XRCC4 [114]. The DNA ligase complex composed of XLF/XRCC4/LIG IV could be 

sufficient for some end ligation. However, some end configurations require additional 

nucleotide addition by DNA polymerase µ or λ before the ligation process can seal the 

nick.  
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Figure 2.2 Biochemical end processing performed by NHEJ to repair the DSB. The repair 

starts with Ku70/80 and continues with DNA-PKcs recruitment to the ends. DNA-PKcs 

together with Ku70/80 forms the DNA-PK complex which acts as a gatekeeper. The repair 

continues with end processing by Artemis and polymerase µ or λ if required. Finally the 

XLF/XRCC4/LIG IV complex completes the ligation and repair. 

2.2.2 Homologous Recombination 

A schematic description of the biochemical end modifications during HR repair is 

illustrated in Figure 2.3. The HR repair is employed by the cells for different types of 

complications including radiation induced DSB repair, repair of stalled replication fork 

(during first meiotic division by repairing the deliberately induced DSB), and telomere 

maintenance with elongation of the shortened telomeres [115]. HR repair starts with 

resection of the damaged DSB ends. Ku heterodimer protects the ends in G1 and blocks 
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resection, while in the absence of Ku, MRN (Mre11-Rad50-Nbs1) can resect the ends. 

CtIP mediates the end resection by MRN protein. For this purpose CDK which is a cell 

cycle protein phosphorylates CtIP in late S and G2 phases of the cell cycle [116]. 

BRCA1 can also mediate the resection process [117]. The damage induced by radiation 

is dirty damage in comparison to clean damage or resected damage. The clean ends 

result in 3’hydroxyl or 5’phosphate group ends and require no further end processing 

for DNA polymerases or ligation. Resection of clean ends could be easily processed 

without MRN while dirty ends require MRN for resection. In the absence of MRN, 

Exo1 could be a candidate for resection. The average length of resection with and 

without Exo1 is respectively 270 and 850 nucleotides long for meiotic cells [118]. The 

average length of resection increases to 2-4 kilobases for mitotic cells [119]. The 

resection length in the absence of Ku in G1 phase could extend to 5 kb [120]. The 

length of resection suggests that for long resections Exo1 collaborates with MRN to 

facilitate long resection [121]. This is called a two stage model in which MRN starts the 

resection and the resection is either extended by Exo 1 or BLM helicase activity. The 

length of resection can be restricted by signalling proteins like ATM to avoid 

chromosome rearrangement. After resection, RPA binds very strongly to the single-

stranded DNA (ssDNA). RPA has a very high affinity for ssDNA and removes all 

secondary structures and proteins, which facilitates Rad51 recruitment to the ssDNA. 

Rad51 assembles a filament along the ssDNA. Rad52 and BRCA2 mediate the filament 

assembly on the ssDNA that is covered by RPA [116, 122]. CDK phosphorylation of 

BRCA2 in G0 and G1 phases precludes filament formation by Rad51. The Rad51 

filament has a pitch of 10 nm that includes 18 nucleotides of DNA that is about 6 

protein monomers per helical turn [115]. Up to this stage the biochemical modifications 

of the ends constitute the pre-synapsis steps of repair. The synapsis forms after 

searching the homologous pair by Rad51-ssDNA filament. The motor protein Rad54 

mediates the complementary pair searching, invasion of the intact strands, and 

formation of a displacement loop (D-loop). Rad54 is capable of bidirectional ATP-

dependent translocation along the double-stranded DNA (dsDNA) at a speed of 300 

bp/s [123]. Rad54 also mediates dissociation of the Rad51 filament from the intact 

strand to allow synthesis of the ends. After the synapsis is completed, the HR repair 

continues with either of the two main sub-pathways namely synthesis-dependent strand 

annealing (SDSA), and double strand break repair (DSBR). The SDSA sub-pathway 

involves elongation of the single strand end by polymerase η. The elongation process 

involves D-loop migration. The dissociation of the D-loop is performed by 

displacement of the synthesized intruding strand. BLM helicase and FANCM could be 

involved in unwinding the D-loop. At the end the second strand is synthesized and the 

repair is completed with annealing of the ends. The DSBR sub-pathway involves 

formation of a Holliday junction and resolution of the Holliday junction after synthesis 

of both strands. The process of opening double Holliday junctions is rather complex 

and can result in cross-overs (e.g. sister chromatid exchange). There are different 

models for opening of the double Holliday junctions by movement of the double 

Holliday junction towards each other. The opening of the Holiday junction is 

performed by Topo3, FANCM helicase, RecQ family motor proteins like BLM, and 

also endonucleases that can resolve the Holliday junctions like GEN1. The DSBR sub-

pathway is favoured in germ cells during meiotic recombination, while SDSA does not 
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involve crossovers and is preferred in somatic cells. The SDSA (illustrated in Figure 

2.3) is the major HR sub-pathway, since in vitro experiments confirms Rad51 capturing 

the second end and avoiding double Holliday junction formation.  
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Figure 2.3 HR synthesis-dependent strand annealing (SDSA) sub-pathway. The biochemical 

end processes before synapsis involves end resection by MRN, covering the ends by RPA 

and recruitment of Rad51 mediated by Rad52 and BRCA2. Synapsis is produced by invading 

the intact pair and formation of a D-loop by Rad51 and Rad54. Using the template, the first 

strand is synthesized. The D-loop is opened and the second strand in synthesized. Finally the 

repair ends with ligation.  
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2.2.3 Single Strand Annealing 

Figure 2.4 illustrates a schematic description of the SSA repair pathway. The initial 

steps of SSA are identical to the HR pathway. The MRN complex resects the DSB ends 

to form ssDNA tails. RPA binds very strongly to ssDNA and removes any secondary 

structure. The binding affinity of RPA to 5’ and 3’ ssDNA increases when it binds to 

Rad52.  Phosphorylated RPA and monomeric Rad52 interaction enhances the affinity 

of Rad52 to bind ssDNA. After Rad52 binds to phosphorylated RPA, it is able to 

proceed with the repair process by annealing the strand ends. Rad51 plays an important 

role in mediating the HR pathway and prevents Rad52 from promoting a Rad51-

independent SSA repair pathway [124]. As shown in Figure 2.4, the SSA pathway can 

successfully repair the DSB by a Rad52 annealing process. A direct repeat sequence is 

necessary for this approach. ERCC1/XPF endonuclease in vertebrates interacts 

functionally with Rad52 to remove the 3'-overhangs. Finally, ligation by Ligase III 

ends the SSA repair process.  
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Figure 2.4 Biochemical end processing of SSA. The initial steps are similar to HR 

repair involving the MRN and RPA proteins. Rad52 in the absence of Rad51 performs 

annealing activities. The overhangs are cleaved by ERCC1/XPF and finally ligation 

completes the repair 



 

15 

 

2.2.4 Microhomology-Mediated End-Joining 

A schematic description of the MMEJ repair pathway is shown in Figure 2.5. It is 

known that radiation can activate microhomology-mediated end-joining (MMEJ) DSB 

repair in yeast and mammalian cells [22]. MMEJ was considered as a backup or 

alternative NHEJ repair pathway, since MMEJ repair is enhanced especially when 

Ku70 is deficient. However it has been recently shown that MMEJ in mammalian cells 

is a very robust repair mechanism, especially in the case of class switch recombination 

in B lymphocytes. Therefore the name alternative NHEJ (alt-NHEJ) pathway suits 

MMEJ.  
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Figure 2.5 Biochemical end processing performed by MMEJ. Resection by MRN is followed 

by PARP-1 synapsis formation. The repair continues by FEN-1 overhang cleavage, DNA 

synthesis, and ligation.  

The MMEJ repair starts with end resection by MRN, which is mediated by CtIP 

especially in G1 [125, 126]. The accurate functions of the proteins which perform the 

catalysis of the DNA DSB ends remains to be further identified. However it has been 

seen that MMEJ in fission yeast is dependent on Rad52 protein [127]. The homology 

length for MMEJ is between 5-25 bp. The repair ends with more than 8 bp homology 

increasingly require Rad52 for the repair process [23]. The outcome of the repair can 

include variation in the size of deleted or inserted nucleotides. Most of our knowledge 
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about MMEJ is derived from experiments on yeast and not mammalian cells. Human 

ligase I and ligase III but not ligase IV are involved in MMEJ [128]. It has been also 

speculated that PCNA facilitates formation of the repair complexes including FEN-1 

and ligase 1 at the damage site. The other scenario could be that PARP-1 synapsis is 

followed by XRCC1-ligase III activity [129] . In the model illustrated in Figure 2.5, 

MRN starts with resection and PARP-1 performs the synapsis. PARP-1 is in direct 

competition with Ku70 [130]. The DSB ends are coupled by base pairing. FEN-1 

endonuclease activity is required to remove the flap. Polymerase β (or possibly 

polymerase λ) fills any possible gaps and finally the repair finishes with ligation by 

XRCC1/ligase III. 
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3 REVIEW OF EXPERIMENTAL DATA USED IN THIS 

WORK 

Recent experiments have expanded our understanding of the biological relevance and 

function of the repair and signalling protein recruitment. The protein-protein and 

protein DNA biochemical interactions determine the hierarchy and order of sequential 

assembly of repair proteins at the site of damage. Post-translational modification of the 

proteins including phosphorylation, ubiquitylation, SUMOylation, methylation and 

acetylation plays an important role in both repair and signalling pathways in response 

to radiation exposure. The biological experiments that have been widely used in this 

work with their limitation and applications are discussed in this chapter. 

3.1 GEL ELECTROPHORESIS 

Constant-field gel electrophoresis (CFGE) has been conventionally used to separate 

DNA fragments. The CFGE takes advantage of DNA negative charge due to the 

phosphate (PO4
-
) in the sugar-phosphate backbone. DNA charge is linearly proportional 

to its size (expressed in bp) or molecular weight. Therefore the force (F) applied to 

DNA fragments in a uniform electrical field is linearly proportional to the charge (q) 

and electrical field strength (E). Enhanced migration of smaller DNA fragments in the 

gel allows separation of DNA fragments with the CFGE method. CFGE does not 

separate fragments larger than 50 kbp with any practical field strength [131]. The 

limitation of large fragment separation (>50 kbp) limits the application of CFGE for 

moderate and low doses. Schwartz and Cantor improved the separation of fragments 

from 50 kbp to 2 Mbp by generating an inhomogeneous field with two sets of 

electrodes [132]. In pursuit, it was observed that inhomogeneous field is not a 

necessary condition for separation of large fragments and Pulsed-field gel 

electrophoresis (PFGE) method was introduced. With the PFGE method, the electric 

field is periodically alternated with pulses of 120O
 reorientation that allows fragment 

separation from 10 kbp to 10 Mbp. Among the limitations of PFGE method are that a 

large radiation dose and large number of cells is required to obtain statistically reliable 

signal for analysis. During cell culture radiolabel 
14

C is incorporated to the DNA. β-

decay of 
14

C is counted to quantify DSB. 10
5
-10

6
 cells embedded in each plug gives 

rise to 10
3
-5×10

4
 disintegrations per minute that is sufficient for analysis [133].  Doses 

lower than 10 Gy has been used for PFGE, however doses higher than 20 Gy are 

statistically more reliable [134]. In order to avoid repair during irradiation, the dishes of 

the cells are cooled down on ice. The cells can repair DSB when incubated at 37
o
C. 

The naked double helical DNA is extracted from the cell nucleus to run on PFGE. The 

fraction of activity released (FAR) is determined by the proportion of radioactive 

labeled DNA in each segment to the total radioactivity of the lane. The number of DSB 

is nonlinearly related to the FAR. The Blöcher random breakage model is used to 

calculate the number of DSB from FAR.  
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Where,     is the fraction of DNA smaller than the threshold cut-off k, r is the average 

number of randomly distributed DSB in chromosome, and n is the size of the 

chromosome.  Numerical methods are used to solve the equations and calculate the 

number of DSB from FAR. The random breakage model is based on the assumption 

that the damage is randomly distributed, according to a uniform distribution. However 

the fragment sizes tend to become smaller with the increase of LET. Therefore the 

number of DSB is underestimated with the increase of LET. In order to solve this 

problem careful analysis of the fragment sizes is required. The complexity of high LET 

irradiation fragment measurement increases with the low resolution of FAR method to 

smaller fragment sizes [135].   

It is possible to optimize PFGE protocols for better fragment separation by changing 

the parameters such as total electrophoresis duration, pulse duration, electric field 

pulsing frequency, electric field strength, electrophoresis buffer temperature, and gel 

agarose concentration presented in several PhD theses [136-138]. In order to increase 

the sensitivity of the assay it is possible to optimize the protocols for separate ranges of 

fragment sizes. For the separation of large fragments long pulse durations and stronger 

electric field could be used and for the separation of smaller fragments higher 

concentrations of agarose gel could be used. 

PFGE experiments are used to measure the repair kinetics of DSB with different dose 

and radiation qualities. In order to derive the repair kinetic curves each data point 

presents the amount of unrepaired DSB after certain time of post irradiation incubation. 

Further assays are available to measure the fidelity of repair by measuring the mis-

rejoin fragment yield [139, 140]. The experimental protocols and analysis of the PFGE 

data could differ from lab to lab that affect the results. Temperature effect is one of the 

important parameters that has been extensively studied. During the analysis of the lysis 

process, it has been noticed that the duration of lysis affects the FAR values and it was 

initially recommended to lysis for 17 hours at 50
o
C (hot lysis) [141]. Further studies 

revealed that lysis at 50
o
C could introduce heat labile sites that convert to DSB [142]. 

The DSB heat labile sites are repaired fast and independent of some of the core NHEJ 

proteins [143]. New protocols have proposed cold lysis to avoid induction of heat labile 

sites [144].  

Single gel electrophoresis or comet assay is another electrophoresis assay to assess the 

repair of SSB and DSB [145]. In this method, single cells are embedded in low density 

agarose, lysed and exposed to electric field. As explained earlier negatively charged 

DNA fragments migrate in the electric field inversely proportional to their mass. 

Fluorescent microscopy of the experiment results in a picture resembling a comet. The 

comet tail intensity indicates the amount of damage. Neutral lysis is used for DSB 

assessment, while lysis under alkaline conditions is used for SSB assessment. The 

method is not an accurate method for DSB measurement. The advantage of the comet 

assay to PFGE is lower dose (~1 Gy) and low number of cells for the assay. In terms of 

accuracy for repair kinetic measurements the PFGE experiments are favoured.  



 

19 

 

The CFGE and PFGE experiments illustrate the kinetics of DSB repair for cells 

irradiated with photons [146-176]  and ions [135, 157, 169, 174, 176-203]. PFGE 

assays have been used to study the effect of repair protein mutation [146, 147] or 

radiation quality [179, 187, 199] on repair kinetics. Figure 3.1 illustrates DSB repair 

kinetics for Chinese Hamster V79 cells irradiated with photon, proton (11 keV/µm and 

31 keV/µm), deuteron (13 keV/µm and 62 keV/µm), and helium (53 keV/µm, 81 

keV/µm, and 123 keV/µm) ions using CFGE [179]. Figure 3.2 illustrates DSB repair 

kinetics for Primary Human Dermal Fibroblasts irradiated with photons, helium 7 

keV/µm, 70 keV/µm, and 120 keV/µm) and nitrogen (97 keV/µm) ions using PFGE 

[187]. Figure 3.3 illustrates DSB repair kinetics for Normal Skin Human Fibroblasts 

irradiated with photons, helium (40 keV/µm) and nitrogen (80 keV/µm,125 keV/µm, 

175 keV/µm, and 225 keV/µm) ions using PFGE [199]. As illustrated in Figure 3.1, 

Figure 3.2, and Figure 3.3 DSB repair kinetics show at least two components. The slow 

component is enhanced with the increase of LET. These are the few experiments that 

have measured the DSB repair kinetics of ions with different LET using PFGE and 

CFGE methods. As explained, neutral elution is used for DSB repair kinetics 

measurements.  Similarly, alkaline elution could be used for the SSB repair kinetic 

measurements [204, 205]. 

 

 

Figure 3.1DSB repair kinetics for Chinese Hamster V79 cells irradiated with photon, proton, 

deuteron and helium ions [179]. CFGE was used to measure the repair kinetics.  
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Figure 3.2 DSB repair kinetics for Primary Human Dermal Fibroblasts irradiated with 

photons, helium and nitrogen ions [187]. PFGE was used to measure the repair kinetics. 

 

Figure 3.3 DSB repair kinetics for Normal Skin Human Fibroblasts irradiated with photons, 

helium and nitrogen ions [199].  PFGE was used to measure the repair kinetics.    
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3.2  RADIATION-INDUCED FOCI 

Radiation induced foci are foci that appear in response to DNA DSB damage and 

repair. The foci can be detected under the microscope by immunostaining or protein 

tagged to a fluorescent protein such as green fluorescent proteins (GFP). The protein 

recruitment at the site of damage is an ordered and sequential process, however the 

damage are dynamic in a confined region (locally dynamic) as observed by various 

experiments. There is a wealth of information resulting from foci data regarding the 

kinetics and position of the damage in the cell nucleus, and spatio-temporal 

modifications. However the method has its own limitations and advantages. Not all 

repair proteins form foci with ionizing radiation. Histone H2AX phosphorylation (γ-

H2AX) produces the most common foci induced by radiation and have been well-

studied in the literature [206-211]. HR repair proteins like Mre11 and Rad51, BRCA, 

and RPA have been studied [25, 212]. NHEJ repair proteins don’t tend to form foci 

since few proteins are sufficient to deal with a DSB. However laser irradiation has been 

used to intensify the signal from proteins like DNA-PKcs and observe them under the 

microscope. Other proteins that have been studied are mainly signalling proteins such 

as 53BP1, ATM, and MDC1 [212-215]. Mediator of DNA check point 1 (MDC1) 

protein orchestrates the downstream damage signalling protein recruitment. MDC1 

binds to γ-H2AX with high affinity through its BRCA1 C terminal (BRCT) and 

facilitates recruitment of ATM [216]. MDC1 interacts with MRN through NBS1 [217]. 

The recruitment of MDC1 occurs rapidly within 1-2 minutes [218]. MDC1 mediates 

the downstream protein recruitment such as 53BP1 (p53-binding protein 1) and 

BRCA1 with delay [219]. BRCA1 is a HR repair protein and shows low level 

recruitment during G1 [220]. The radiation-induced foci have been extensively 

reviewed in the literature [206, 218, 221-226] . In the next section γ-H2AX assay that is 

relevant to this work is discussed. 

   

3.2.1 γ-H2AX assay 

The chromatin structure allows nearly 2 meters of DNA to be compacted in a cell 

nucleus of 10 µm diameter. The fundamental structure of the 30 nm chromatin fiber is 

the nucleosome. The nucleosome is composed of about 147 bp DNA wrapped around 

two members of each core histone family [227]. The core histone families are H2A, 

H2B, H3, and H4. The nucleosomes are connected to each other with the aid of linker 

histones (H1) and 20-80 bp DNA.  Figure 3.4 illustrates the structure of the nucleosome 

with histones in the middle of the DNA [228, 229]. Histone 2AX (H2AX) is among the 

core histone families that contributes to the nucleosome formation. Human diploid cells 

containing 23 pairs of chromosome with 6.4 x 10
9 

bp wrapped around ~3.2 x 

10
7
nucleosomes. Depending on the cell type about 2% (including lymphocytes and 

HeLa cells) to 25% of the H2A variant is H2AX [230, 231].   

 



 

22 

 

 

Figure 3.4 The crystallography image of the nucleosome with PDB (Protein Data Bank) entry 

1aoi [228, 229]. The nucleosome consists of the octamer histones and double helix DNA. The 

147 bp of DNA double helix (in blue) wrapped around core histones shown in the middle of 

the nucleosome. 

In response to radiation induced DSB the H2AX histones are phosphorylated at serine 

S139 forming γ-H2AX [231]. Several thousands of H2AX proteins surrounding the 

damage start forming γ-H2AX foci within seconds post irradiation. The maximum 

phosphorylation is recorded 15-30 min post irradiation [206], and the level of it is 

shown to increase linearly with the number of DSB for γ irradiated cells [232].  

Phosphatidylinositol-3 (PI-3)-like protein kinase family members such as DNA-PK, 

ATM, and ATR phosphorylate H2AX. ATR is activated by single stranded DNA that is 

created by stalled replication forks or resection by homologous recombination repair.  

ATM and DNA-PK are more effective in phosphorylating  H2AX [233]. DNA-PK can 

redundantly and separately to ATM phosphorylate H2AX, however DNA-PK has a 

limited range of phosphorylation in comparison to ATM [234]. NBS1 (one of the MRN 

complex proteins) may facilitate phosphorylation by ATM [235].  

Apart from γ-H2AX, many other repair and signalling proteins such as 53BP1, 

BRCA1, Rad51, and NBS1 form foci. Co-localization of DNA repair and signalling 

foci with γ-H2AX foci has been observed. Most of the NHEJ repair proteins don’t form 

foci unless compact damage is induced (with a laser). Phosphatase 2A facilitates 

dephosphorylation of γ-H2AX [236]. γ-H2AX can be detected by immunofluorescence 

using a microscope or flowcytometry. Cells tend to show a background level of γ-

H2AX foci. In addition to DSB, replication fork collapse in S phase and, apoptosis 

could form γ-H2AX foci [237]. It has been shown that for MRC-5 cells γ-H2AX foci 
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count approximately the same number of DSB, and the number of foci is linearly 

proportional with dose at its maximum signal (approximately 30 min post irradiation) 

[232]. It is estimated that approximately 2000 H2AX molecules are phosphorylated per 

DSB [231]. About 0.03 % of the H2AX molecules are phosphorylated per DSB 

induced by γ-ray. Respectively about 1 % of the H2AX molecules are phosphorylated 

for one Gy of γ-ray dose. The size of the foci is around 0. 3 square micrometres that 

covers about 2 Mbp of chromatin for gamma irradiated cells. The size of the foci 

increases with LET. The large size of the foci in comparison to the size of the DSB 

(defined within 2-3 helix of DNA) is attributed to amplification of damage response by 

γ-H2AX foci. Another probable function for γ-H2AX foci is to mediate synapsis in 

order to avoid separation of the ends. H2AX facilitates recruitment of MDC1 and 

consequently 53BP1 [238]. The low dose sensitivity of γ-H2AX foci and the simplicity 

of the experiments raised hopes to apply this method for biodosimetry (reviewed in 

[149, 239]). Supporting experiments for this application showed that visible γ-H2AX 

foci are almost exclusively induced by DSB and not by other types of damage such as 

SSB [232].  
125

IdU labelling of DNA experiments is an accurate method to count the 

number of DSB that has a 1 to 1 correlation to the number 
125

I disintegration in cell. 

The 
125

IdU labelling of DNA has shown that γ-H2AX foci counts can closely estimate 

the number of DSB under optimal conditions [240]. The first limitation of γ-H2AX foci 

is that its kinetics does not accurately express the kinetics of induction and repair of 

DSB measured by PFGE. This is due to the fact that H2AX phosphorylation is not a 

direct reaction to the damage and is indirectly phosphorylated by proteins such as 

ATM, ATR and DNA-PK. Similarly the dephosphorylation is conveyed indirectly 

therefore the kinetics of foci induction and removal does not accurately mimic DSB 

repair kinetics measured by PFGE and involves delays. Beside background levels, γ-

H2AX foci are not induced exclusively by DSB, other processes such as apoptosis or 

replication fork collapse may induce γ-H2AX foci. Evidence for DSB repair 

independent of γ-H2AX is observed by formation of 53BP1, MRN, BRCA1, RPA, 

Rad51 foci independent of H2AX [241-245]. Co-localization of RIF (radiation induced 

foci) with γ-H2AX is observed in many studies [246-249]. However, the co-

localization is transient and partial [157, 250, 251]. At early stages of repair (< 5 min) 

less than half of the Nbs1 and Mre11 foci co-localize with γ-H2AX foci, while co-

localization increases up to 75 % two hours post-irradiation [250]. Long persistent γ-

H2AX foci do not always correspond to remaining DSB and it could be due to other 

persistent problems such as remaining changes in the chromatin structure [157, 252, 

253]. The number of maximum initial foci is reported to be correlated to the number 

DSB and linearly proportional to radiation dose [232, 240]. However more 

investigation shows that in some cell types there is no linear correlation between the 

number of foci and DSB [254, 255], and there is a dose dependence effect in the 

appearance of the foci [149, 212, 213].  

Since the DSB induced in the cell by γ-ray is randomly located in the cell nucleus, a 

simple analysis could be done to count the foci per dose in Gy. In the analysis it is 

assumed that foci are induced randomly in the cell nucleus, and there are no 

endogenous foci. One Gy of γ-ray irradiation is assumed to induce 35 DSB. The foci 

have a spherical shape with a radius of 0.3 µm, and the cells have a spherical shape 

with a radius of 10 µm. Figure 3.5 illustrates the number of foci per cell nucleus for 
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doses from ~0.05 Gy to 50 Gy. From the analysis it can be concluded that for large 

doses 2 or more foci could overlap. Overlapping of the foci could be experimentally 

observed with large foci. Therefore linearity of the number of foci with dose is lost for 

large doses. At doses above 2 Gy the yield of γ-H2AX foci is underscored [256]. γ-

H2AX foci enumeration underestimates the number of DSB for high LET (in 

comparison to γ-ray) exposures. It is also observed from Figure 3.5 that the method is 

not suitable for doses higher than 5 Gy.       

 

 

Figure 3.5 Green spheres simulate foci with radius of 0.3 µm in a spherical 10 µm cell 

nucleus diameter for various doses ranging from 0.05 Gy to 50 Gy. It is assumed that 35 DSB 

(foci) are produced per Gy of photon irradiation. The number of foci for doses higher than 5 

Gy saturates the system.   
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4 MODEL OF DNA REPAIR  

Biological experiments including protein expression measurements and mass 

spectrometry provide valuable information of the protein levels in the cells. However, 

identifying the function of the proteins is a difficult task. Computational methods have 

been employed to bridge the task. For this purpose mechanistic models are of great 

importance [257]. In order to model biological responses, the cell is considered as a 

system. By defining a cell as a system, under certain modelling criteria it is possible to 

analyse and ultimately predict cellular behaviour. In addition, computational modelling 

allows testing conditions that are not feasible in the lab or have not been experimentally 

tested. In the system that is analysed in this work radiation is considered as a 

perturbation to the system that activates certain repair and signalling activities that are 

required to retain genomic integrity. The repair activities are cascades of protein actions 

at the site of damage. The proteins react sequentially and are exclusive to the type of 

damage as explained earlier. One of the methods that is applied to deal with molecular 

and chemical reactions is biochemical kinetic modelling. A kinetic model translates an 

enzymatic or molecular reaction into a differential equation. The law of mass action is 

the basis of the biochemical kinetic model or a mechanistic model. The law of mass 

action states that the rate of the reaction is proportional to the product of concentrations 

or activities of the reactants. In order to mathematically express the law of mass action, 

consider a simple consecutive first order reaction that product C is formed from 

reactant B and A consecutively with the reaction rates k2 and k1 as illustrated in Figure 

4.1. 

 

A B C
k1 k2

 

Figure 4.1 Reactant A and B react continuatively to form product C with k1 and k2 rate 

constants. 

The rate equations for reactants A and B and product C is expressed in equations 4.1, 

4.2 and 4.3. As is illustrated in Figure 4.1 and equations 4.1, 4.2 and 4.3, concentration 

of reactant A or [A] decreases with rate constant k1, while concentration of reactant B 

or [B] increases with rate constant k1 and decreases with rate constant k2 and finally 

concentration of product C or [C] increases with rate constant k2. In order to solve the 

first order linear differential equations, rate constants k1, k2 and initial values of 

reactants A and B and product C concentrations are required.  

 
    

  
        4.1 

 
    

  
             4.2 

 
    

  
       4.3 
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The same concepts explained for the simple consecutive first order reaction are used to 

model DNA repair processes by BER, NEHJ in absence of HR, and NEHJ in presence 

of HR and MMEJ models.  

4.1 BER MODEL 

Base lesions and single strand breaks are repaired by the BER pathway. BER includes 

two main subpathways of short and long patch. Both processes start with a glycosylase 

and AP endonuclease that leads to an abasic site and nick in the phosphodiester 

backbone. Depending on the type of damage the repair may proceed via separate 

processes leading to removal of either one nucleotide with short patch BER or 2-13 

nucleotides in long patch repair. The short patch repair is proposed for simple type base 

lesions in a fast process and long patch repair is proposed for clustered base lesions in a 

slow process. In this section we propose a kinetic model that explains the BER 

biochemical processes illustrated in Figure 4.2. The repair processes are described 

mathematically with a formulism based on law of mass action. In the mathematical 

description of the model, protein concentrations are specified in the brackets, and 

nomenclatures Yi, Vi, and Ki represent respectively the repair complex, repair rate, and 

repair rate constant at stage i of repair. BER starts with a glycosylase [258]. There are 

many different types of chemically modified bases that require BER, therefore the cells 

employ many glycosylases that are specific to specific base lesions and act with 

different kinetics [259-263]. For simplicity of the model, the first step of repair is 

expressed as removing the damaged base without differentiating the different 

glycosylases exclusive to every specific base lesion. Equations 4.4 and 4.5 explain the 

first step of repair that is damaged base removal. 

 

 
   

  
  

  

  
    4.4 

                      4.5 

 
Human apurinic/apyrimidinic endonuclease 1 (APE1) recognizes abasic site and creates 

a nick in the sugar-phosphate backbone [264]. APE1 makes a nick by hydrolysing the 

phosphodiester bond 5’ to the abasic site to produce a 5’-deoxyribose phosphate (dRP) 

and 3’-OH explained by equations 4.6 and 4.7. 

   

 
   

  
       4.6 

                4.7 
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Figure 4.2 The BER model is illustrated. The repair starts with glycosylase and endonuclease. 

The repair continues with short or long patch pathways. The rate constants of the repair 

processes are shown with K1 to K10 

The dRP is removed by Polymerase β lyase activity [265]. The repair then proceeds the 

short patch pathway [266]. The long patch repair continues with the complex of 

proteins Polymerase δ/ε, proliferating cell nuclear antigen (PCNA), and replication 

factor C (RFC) proteins [267, 268]. The proteins work together to replace 2-13 

nucleotides 3’ to the gap [269, 270]. The initiation of short and long patch repair is 

explained in equations 4.8 to 4.10 . 

   

   

  
          4.8 

                        4.9 

                          4.10 
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The short patch repair continues by synthesizing the single nucleotide with Polymerase 

β as explained in equations 4.11 and 4.12. 

 

 
   

  
       4.11 

               4.12 

 

The final step of short patch repair is ligation of the nick by XRCC1 and Ligase III 

proteins explained by equations 4.13 to 4.16. 

 

 
   

  
       4.13 

                       4.14 

 
   

  
       4.15 

         4.16 

The long patch repair continues by removing the single strand flap with flap 

endonuclease (FEN-1) explained in equations 4.17 and 4.18  

 

 
   

  
       4.17 

                4.18 

 

The final step of repair is sealing the nick by Ligase I as explained with equations 4.19 

to 4.22. 

 

 
   

  
       4.19 
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4.1.1 Scaling of BER equations 

In order to solve the system of equations the parameters have been scaled with a scaling 

factor    large enough to assure that the sum of total concentration of the repair 

complexes and proteins remain constant. For this purpose it is assumed that the sum of 

total concentration of the repair complexes and proteins (Yi and Ei) is constant and 

equal to   .  

         ∑      

  

   

 4.23 

    
  

  
 4.24 

         4.25 

    
∑   

  
   

  
 4.26 

     
∑   

 
   

  
 4.27 

The following equations are derived considering the scaling factor    and substituting 

the new parameters in the model. The scaled equations are shown with equations 4.28 

to 4.36. 
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 1 to  10 are shown with equations 4.37 to 4.46. 

 

               4.37 

               4.38 

                4.39 

                4.40 

                4.41 

         4.42 

               4.43 

               4.44 

                4.45 

            4.46 

 

4.1.2 Results of BER kinetic model 

In order to solve the system of nonlinear equations the initial values and rate constants 

are required. At time zero, we assume that the repair activity of all proteins is zero and 

repair starts directly after the damage is induced. The maximum number of SSB 

damage (100%) is assumed to be induced at time zero. The rate constants for this 

model is not experimentally measured, therefore the rate constants used to solve the 

equations should be separately validated with dedicated experiments. Table 4.1 lists the 

rate constants that are used to solve the BER model.   

The solution of the model provides the individual protein activity kinetics and overall 

base excision repair model kinetics. Figure 4.3 illustrates the comparison of the overall 

repair kinetics from the model calculations and experimental measurements. The solid 

line, circle and triangle illustrate the repair kinetics for the BER model, CHO-K1, xrs-7 

cell lines [204]. The CHO-K1and xrs-7 cells are irradiated with 5.8 Gy X-rays and 

alkaline elution technique is used to measure the SSB repair kinetics [204]. The xrs-7 

cells are X-ray sensitive mutant form of CHO-K1 cells. The xrs-7 cells show reduced 

levels of DNA-PKcs expression. The SSB repair kinetics of the xrs-7 and CHO-K1 

cells are similar. The SSB repair kinetics show a two component repair and show a 

good agreement between model calculation and experiments.   
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Table 4.1 Repair rate constants used in BER model calculations 

Rate Constants BER Model 

k1 (h
-1

) 200 

k2 (h
-1

) 100 

k3 (h
-1

) 85 

k4 (h
-1

) 70 

k5 (h
-1

) 60 

K6 (h
-1

) 40 

k7 (h
-1

) 28 

k8 (h
-1

) 35 

k9 (h
-1

) 50 

K10 (h
-1

) 1.28 

 

 

Figure 4.3 Repair kinetics of single strand breaks by BER model (solid line), CHO-K1 cells 

(circle) [204], and  xrs-7 cells (triangle) [204] . 
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4.2 DSB REPAIR MODELS 

We have proposed two models for DSB-repair. The first model considers NHEJ repair 

in the absence of HR and MMEJ pathways. This model was used in situations where 

cells were irradiated by electrons or X-ray. In this model the damage in the 

heterochromatin was not considered. The second model considers NHEJ, HR, and 

MMEJ pathways for DSB produced in the heterochromatin and the influence of the cell 

cycle. The model was divided into two parts of the cell cycle. In the G1 and early S 

phases of the cell cycle NHEJ and MMEJ are considered to be active, while in the G2 

and late S phases of the cell cycle NHEJ and HR pathways are active. For both phases 

of the cell cycle the repair starts with the NHEJ pathway. If the damage is a complex 

DSB type or in the heterochromatin it is assumed that further end processing is 

required.   

 

4.2.1 NHEJ repair model 

Figure 4.4 presents a model of NHEJ pathway for the repair of DSB in absence of HR. 

In this model the repair proteins are sequentially recruited to the damage sites. Ku 

heterodimer and DNA-PKcs are required to form the synapsis. The simple type DSB is 

easily ligated, while the complex type DSB require further end processing by Artemis. 

The repair processes are described mathematically with a formulism based on the law 

of mass action. In the mathematical description of the model, protein concentrations are 

specified in the brackets, and nomenclatures Yi, Vi, and Ki represent respectively the 

repair complex, repair rate, and repair rate constant at stage i of repair.  

It is assumed that the total dose to the cell is delivered at time zero (no repair during 

irradiation) and the initial number of DSB is the initial condition of the equations. The 

rate of DSB induction is linearly related to the dose rate (
dt

dD
), with the DSB 

induction-rate per unit dose constant (α).  The first repair protein to bind to the DSB is 

Ku70/Ku80 heterodimer as expressed in equations 4.47 and 4.48. As illustrated in 

Figure 4.5 The Ku heterodimer binds to 2-4 helical turns of the DNA [271]. Ku 

heterodimer has a toroidal configuration that makes them capable of inward 

translocation even when they binds to different damage configurations [101]. Ku also 

has a higher affinity for double-stranded than single-stranded DNA [272]. 

 

 
   

  
  

  

  
    4.47 

                    4.48 

In the second step DNA-PKcs binds  to the Ku-DNA complex with high affinity [102]. 

The second complex rate (V2) increases with the Ku70/Ku80 recruitment and decreases 

with the DNA-PKcs recruitment that is explained with equations 4.49 and 4.50.  

 



 

33 

 

 
   

  
       4.49 

                   4.50 
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Figure 4.4 NHEJ model is illustrated. The repair starts with Ku70/80 heterodimer recruitment 

to the damage and forming the synapsis with phosphorylated DNA-PKcs. The repair 

continues with simple ligation or further end processing for simple and complex type DSB, 

respectively. The rate constants of the repair processes are shown with K1 to K10 
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Figure 4.5 Structure of human Ku heterodimer bound to DNA with PDB entry 1JEY [271]. 

The DNA is shown with blue colour. Ku binds to 2-4 helical turns of the DNA. The DNA 

double helix is shown in blue and the Ku70/80 heterodimer is in red and green.   

In order to form the synapsis and continue the repair, DNA-PKcs autophosphorylates at 

two sites known as ABCDE and RQR clusters [105]. DNA-PKcs regulates access to 

the damage ends [103]. The ABCDE autophosphorylation is required for efficient 

ligation. Inefficient autophosphorylation renders the end termini inaccessible to other 

proteins [273]. V3 and V4 represent the rates of DNA-PKcs autophosphorylation of the 

two sites that is explained with equations 4.51 to 4.54. 

 

 
   

  
       4.51 

         4.52 

 
   

  
       4.53 

         4.54 

The presynaptic processes of DSB repair is completed by DNA-PKcs 

autophosphorylation. Depending on the type of damage the repair continues with 

ligation or end modification before ligation. It is assumed that simple type DSB 

undergo fast repair by ligation with the XLF/XRCC4/LIG IV complex [274] as 

explained by equations 4.55 to 4.58.    



 

35 

 

 
   

  
          4.55 
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Since there is another break in the close proximity of the complex type DSB, end 

processing is required. The end processing is performed by Artemis that functions as an 

endonuclease. The XLF/XRCC4/LIG IV complex seals the nick for the complex 

damages after Artemis end-processing and synthesis activity of Polymerase µ or λ 

[275] as explained by equations 4.59 to 4.65. 
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            4.65 

4.2.1.1 Scaling of NHEJ equations 

In order to solve the system of equations the parameters have been scaled with a scaling 

factor    large enough to assure that the sum of total concentration of repair the 

complexes and proteins remain constant. For this purpose it is assumed that the sum of 

total concentration of the repair complexes and proteins (Yi and Ei) is constant and 

equal to   . The scaling factor    is equal to a value >2800 (this is justified by assuming 

35 DSB/Gy induced by 80 Gy radiation dose). 

 

         ∑      

 

   

 4.66 
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         4.68 

    
∑   

 
   

  
 4.69 

The following equations are derived considering the scaling factor    and substituting 

the new parameters in the model.  
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   to     are shown with equations 4.79 to 4.88. 
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               4.86 

               4.87 

           4.88 

4.2.1.2 Results of NHEJ kinetic model  

Since repair is a biochemical process, it is assumed that the reaction rate constants are 

applicable to mammalian cells under the same conditions. At time zero, we assume that 

the repair activity of all proteins is zero and repair starts directly after the damage is 

induced. The maximum number of DSB (100%) is assumed to be induced at time zero. 

Table 4.2 lists the rate constants that are used to solve the NHEJ model.   

Table 4.2 Repair rate constants used in NHEJ model calculations 

Rate Constants NHEJ Model 

k1 (h
-1

) 350 

k2 (h
-1

) 500 

K3 (h
-1

) 50 

K4 (h
-1

) 20 

k5 (h
-1

) 15 

K6 (h
-1

) 5 

k7 (h
-1

) 3.6 

k8 (h
-1

) 8 

k9 (h
-1

) 0.25 

K10 (h
-1

) 0.55 

    
  

The solution of the model provides the individual protein activity kinetics and overall 

DSB repair kinetics. Figure 4.6 illustrates the comparison of the overall repair kinetics 

from the model calculations and experimental measurements. The solid line and the 

symbols illustrate the repair kinetics for the NHEJ model, experimental measurements 

for DT40 cells mutated in HR repair. DT40 cells are irradiated with 80 Gy. For lower 

doses down to 20 Gy the model calculations are in a good agreement in comparison to 

experimental measurements [27]. The measurements of the repair kinetics were done 

with the PFGE method. The repair kinetics shows at least two components of slow and 

fast repair.    
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Figure 4.6 Repair kinetics of the double strand breaks by NHEJ model (solid line), and DT40 

cells mutated in homologous recombination pathway (symbols) [19]. The DT40 cells are 

irradiated with 80 Gy X-rays and pulsed-field gel electrophoresis is used to measure the 

repair kinetics 

 

4.2.2  G1 and Early S phases repair  

The NHEJ model was proposed for cells mutated in HR pathway. Therefore NHEJ is 

suitable to model the DSB-repair of the photon irradiated cells where HR is not a 

dominant repair pathway. By increasing the LET of radiation exposure, HR becomes 

increasingly involved in the repair of the complex DSB in late S and G2 phases of the 

cell cycle. In our model we assume that the complex type DSB (defined as DSB in 

close proximity (within 10 bp) of a strand break) undergo resection. It is assumed that 

the complex DSB require further end processing (such as resection) because the actual 

binding site of NHEJ core repair proteins is about 10 bp [101, 271, 276, 277] and the 

presence of another SSB impairs repair activity of DSB proteins. In support of this 

assumption it is observed that increasing the LET results in higher level of resection 
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[25] that is probably due to higher frequency of complex type DSB. Resection activates 

repair processes such as HR and MMEJ. The most probable repair pathway for 

complex type DSB in late S and G2 is HR, because Rad51 foci in G1 cells are not 

observed indicating that HR is not active during G1 [278-280]. We assume that MMEJ 

could preserve the repair for the complex DSB in G1 and early S phases of the cell 

cycle. ATM phosphorylates KAP-1 that facilitates heterochromatin remodelling [25]. 

CtIP is phosphorylated by ATM and CDK2 that allows resection of the DSB to pursue 

homologous recombination repair in G2 cells. In G1 cells CtIP foci is not observed and 

it is shown that NHEJ repairs the DSB that are not resected [25]. It has been observed 

that CDK2 interacts with Mre11 and BRCA1 to promote HR repair in late S and G2 

cells [281]. It has been suggested that DNA-PKcs binds rapidly to all DSB and makes 

the first attempt to repair by NHEJ in a fast process [25]. 

Figure 4.7 presents a model of DSB-repair pathway in G1 and early S phases of the cell 

cycle. In this model the repair proteins are sequentially recruited to the damage sites. 

Ku heterodimer and DNA-PKcs are required to form the synapsis. The simple type 

DSB are easily ligated, while the complex type DSB require further end processing that 

start with MRN resection. For the simple type DSB in the heterochromatin further end 

processing starts with Artemis/ATM proteins to relax the compact heterochromatin. 

The repair processes are described mathematically with a formulism based on the law 

of mass action. In the mathematical description of the model, protein concentrations are 

specified in the brackets, and nomenclatures Yi, Vi, and Ki represent respectively the 

repair complex, repair rate, and repair rate constant at stage i of repair. The number of 

DSB is linearly proportional to radiation dose with DSB induction-rate per unit dose 

constant (α). The repair starts with the presynaptic process of NHEJ. Ku70/80 

heterodimer is recruited to the DSB and inhibit MRN protein [130, 282]. The law of 

mass action is employed to derive equations 4.89 and 4.90 that explain Y1 increases 

with the initial dose and decreases with Ku70 and Ku80 heterodimer recruitment at the 

site of damage. As explained in the earlier models, Ku70 and Ku80 heterodimer is the 

first repair protein to bind to the DSB.       

 

 
   

  
  

  

  
    4.89 

                    4.90 

 



 

40 

 

Ku70/80 find the damage

DNA-PK synapses of the ends

XLF/XRCC4/Ligase IV end ligation

 Repair completed

Gap Synthesis

First Autophosphorylation

Second Autophosphorylation

Y1

Y2

Y3

Y4

Y5

Y6

Y7

K1

K2

K3

K4

K5

K6

K7

P

MRN resection

Y13

K13

Y14

XRCC4/XLF/Ligase IV

Artemis

DNA-PKcs

Ku70/80

Polymerase  λ - μ 

Autophosphorylated

DNA-PKcs
P

MRN

Polymerase  β

PARP-1

FEN-1

XRCC1/Ligase III

 Repair completed

PARP-1 covering the end

Polymerase β synthesis 

XRCC1/Ligase III filling the nick

FEN1 cleaving of the overhang

K15

K16

Y15

Y16

 

K14

K17

PP

Y9 PP

XLF/XRCC4/Ligase IV end ligation

 Repair completed

Gap Synthesis

Y10

Y11

K10

K11

K12

K9

K8

Y17

Artemis/ATM 

 

Figure 4.7 DSB-repair model in G1 and early S phases of the cell cycle is illustrated. The repair starts with Ku70/80 heterodimer recruitment to the damage and forming the 

synapsis with phosphorylated DNA-PKcs. The repair continues with simply ligation for simple type damage in the euchromatin. The simple type damage in the 

heterochromatin requires end processing starts with Artemis/ATM proteins to relax the compact heterochromatin. Finally the complex type damage undergoes resection with 

MRN and repair with MMEJ. The rate constants of the repair processes are shown with K1 to K17 
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The presynaptic steps are similar to NHEJ model that includes DNA-PKcs recruitment 

and autophosphorylation at ABCDE and PQR sites. These steps are explained with 

equations 4.91 to 4.96. 
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As explained earlier autophosphorylation of DNA-PKcs determines the process of 

repair. For simple type DSB in euchromatin the repair continues by NHEJ pathway. For 

simple type damage in the heterochromatin the repair continues by relaxing the 

compact heterochromatin. Finally, for the complex type DSB in euchromatin or 

heterochromatin the repair continues with resection that is explained by equations 4.97 

to 4.100.          

 

 
   

  
              4.97 

                         4.98 

                      4.99 

                4.100 

The simple DSB in euchromatin are ligated by the XLF/XRCC4/LIG IV complex and 

explained by equations 4.101 to 4.104. XRCC4 binds to both DNA and DNA ligase IV. 

XRCC4 and XLF play a key role in the recruitment DNA ligase IV and regulate its 

activity.  
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         4.104 

Artemis is involved with the fraction of DSB that are repaired slowly [107]. The DNA-

PKcs phosphorylation of Artemis is essential for the endonuclease activity for the DSB 

in the HC series of actions including Artemis end processing, and ATM 

phosphorylation of KAP-1 is required for chromatin remodelling. ATM phosphorylates 

KAP-1 that facilitates heterochromatin remodelling [11-13, 25]. The repair is ensued by 

gap filling and ligation explained with equations 4.105 to 4.110. The second option for 

simple DSB in the heterochromatin is to undergo resection. We have not considered the 

second option in this model. 
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                         4.106 
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         4.109 

            4.110 

 

The complex DSB in G1 and early S phases of the cell cycle are assumed to undergo 

resection and repair by MMEJ. As MMEJ is masked by NHEJ,  the proteins involved 

in DSB repair and their molecular mechanisms are not fully known yet [283]. 

Inhibition of the MRN complex components suggests that the MRN complex is 

involved in the resection of DSB that are consequently repaired by MMEJ [282, 284, 

285]. PARP-1 is one of the proteins that is inhibited by the Ku heterodimer [130, 282] 

and is involved in MMEJ repair [286, 287]. PARP-1 is also involved in the initial steps 

of MMEJ repair after resection. It is proposed that PARP-1 may control the subsequent 

repair steps of MMEJ [130]. Equations 4.100 and 4.112 represent the MRN and PARP-

1 initial processes leading to MMEJ repair.  

 

 
    

  
         4.111 

                    4.112 

The flap endonuclease 1 (FEN-1) removes the mismatched nucleotides as explained by 

equations 4.113 and 4.114 [288]. 
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         4.113 

                   4.114 

The final step of MMEJ repair is gap synthesis by Polymerase β [289] and ligation by 

the XRCC1/Ligase III complex [164, 290, 291] as described mathematically with 

equations 4.119 to 4.120. 
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                          4.116 
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                            4.118 

 
    

  
         4.119 

            4.120 

 

4.2.2.1 Scaling of DSB repair (G1 and early S) equations 

In order to solve the system of equations the parameters have been scaled with a scaling 

factor    large enough to assure that the sum of total concentration of repair the 

complexes and proteins remain constant. For this purpose it is assumed that the sum of 

total concentration of the repair complexes and proteins (Yi and Ei) is constant and 

equal to   . The scaling factor    is equal to a value >2800 (this is justified by assuming 

35 DSB/Gy induced by 80 Gy radiation dose). 

 

         ∑      

  

   

 4.121 

    
  

  
 4.122 

         4.123 

    
∑   

  
   

  
 4.124 

     
∑   
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∑   

  
   

  
 

4.126 

 

    

The following equations are derived considering the scaling factor    and substituting 

the new parameters in the model.  

 

 
   

  
 

 

  

  

  
    4.127 

 
   

  
       4.128 

 
   

  
       4.129 

 
   

  
       4.130 

 
   

  
              4.131 

 
   

  
       4.132 
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   to     are shown with equations 4.142 to 4.158. 

               4.142 

               4.143 

         4.144 

         4.145 

                4.146 

                4.147 

         4.148 

                 4.149 

                 4.150 

                     4.151 

            4.152 

                  4.153 

                   4.154 

                   4.155 

                   4.156 

                   4.157 

            4.158 

4.2.2.2 Results of DSB repair (G1 and early S) kinetic model  

In order to solve the system of equations the initial values and rate constants are 

required. The repair starts at time zero therefore the activity of all proteins is zero 

before radiation exposure. The maximum number of DSB damage (100%) is assumed 

to be induced at time zero. Table 4.3 lists the rate constants that are used to solve the 

repair model.   
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Table 4.3 Repair rate constants used in model calculations 

Rate Constants G1 and early S Model 

k1 (h
-1

) 350 

k2 (h
-1

) 500 

K3 (h
-1

) 50 

K4 (h
-1

) 20 

k5 (h
-1

) 25 

k6 (h
-1

) 18 

K7 (h
-1

) 3 

k8 (h
-1

) 9 

k9 (h
-1

) 2 

k10 (h
-1

) 0.8 

K11 (h
-1

) 0.5 

k12 (h
-1

) 3 

k13 (h
-1

) 1 

k14 (h
-1

) 0.7 

k15 (h
-1

) 0.75 

k16 (h
-1

) 0.5 

K17 (h
-1

) 0.15 

 

The solution of the model provides the individual protein activity kinetics and overall 

DSB repair kinetics. Figure 4.6 illustrates the comparison of the overall repair kinetics 

from the model calculations and experimental measurements. The solid line and the 

symbols illustrate the repair kinetics for the repair model in G1 and early S, and 

experimental measurements [179, 187]. The experimental measurements are performed 

for V79 cells and primary human dermal fibroblasts. The V79 cells were irradiated 

with 45 Gy of 
60

Co γ-rays and constant-field gel electrophoresis was used to measure 

the repair kinetics up to 2 hours. The primary human dermal fibroblasts were irradiated 

with 250 kVP X-rays and pulsed-field gel electrophoresis was used to measure the 

repair kinetics up to about 30 hours.  
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Figure 4.8 Repair kinetics of the double strand breaks by DSB-repair model in G1 and early S 

phases of the cell cycle (solid line) and V79 cells (X symbols) [179] and primary human 

dermal fibroblasts (Circles) [187]. The V79 cells were irradiated with 45 Gy of 
60

Co γ-rays 

and constant-field gel electrophoresis is used to measure the repair kinetics. The primary 

human dermal fibroblasts were irradiated with 250 kVP X-rays and pulsed-field gel 

electrophoresis is used to measure the repair kinetics. 

4.2.3 Late S and G2 phases repair 

In late S and G2 phases NHEJ and HR repair are actively involved in the repair of 

DSB. In late S and G2 phases, there might be competition between NHEJ and HR 

repair pathways or between Ku70 and the MRN complex [124]. Ku 70 inhibits MRN 

from resection. In the model all DSB are first recognized by the Ku70/80 heterodimer. 

Similar to NHEJ and early S and G1 models DNA-PKcs is recruited to the DSB. If the 

damage is simple, NHEJ repairs the DSB in a fast process. If the simple damage is in 

the heterochromatin similar to the model in early S and G1, the Artemis and ATM 

proteins start the process of relaxing the HC that delays the repair. Finally if the 

damage is complex, MRN starts resection and the DSB is repaired by the HR pathway. 

Figure 4.9 presents a model of DSB-repair pathway in late S and G2 phases of the cell 

cycle. The proteins are sequentially recruited at the site of DSB for different types and 

topology of DSB. 
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Figure 4.9 DSB-repair model in late S and G2 phases of the cell cycle is illustrated. The repair starts with Ku70/80 heterodimer recruitment to the damage and performing the 

synapsis with phosphorylated DNA-PKcs. The repair continues with simply ligation for simple type damage in the euchromatin. The simple type damage in the 

heterochromatin requires end processing starts with Artemis/ATM proteins to relax the compact heterochromatin. Finally the complex type damage undergoes resection by 

MRN and repair by HR. The rate constants of the repair processes are shown with K1 to K20 
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The repair processes are described mathematically with a formulism based on the law of 

mass action. In the mathematical description of the model, protein concentrations are 

specified in the brackets, and nomenclatures Yi, Vi, and Ki represent respectively the 

repair complex, repair rate, and repair rate constant at step i of repair. The number of DSB 

is linearly proportional to radiation dose with DSB induction-rate per unit dose constant 

(α). The repair starts with the presynaptic process of NHEJ. Ku70/80 heterodimer is 

recruited to the DSB and inhibit MRN protein [130, 282]. The law of mass action is 

employed to derive equations 4.159 and 4.160 that explain Y1 increases with the initial 

dose and decreases with Ku70/80 heterodimer recruitment at the site of damage.    

 

 

   

  
  

  

  
    4.159 

                    4.160 

The presynaptic steps are similar to the NHEJ model that includes DNA-PKcs recruitment 

and autophosphorylation at ABCDE and PQR sites. These steps are explained with 

equations 4.161 to 4.166. 

 

 
   

  
       4.161 

                   4.162 

 
   

  
       4.163 

         4.164 

 
   

  
       4.165 

         4.166 

     

Similar to the model in G1 and early S phases of the cell cycle, depending on the type of 

DSB the repair process ensues with fast ligation of simple DSB, further end-processing 

and relaxation of the HC as illustrated in Figure 4.9. Since the model for simple type 

DSB, and DSB in the HC is identical to G1 and early S phases of the cell cycle, the 

explanations for equations 4.167 to 4.180 are as explained in section 4.2.2.  
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                      4.169 
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       4.171 

                            4.172 
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4.174 
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                         4.176 
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         4.179 

            4.180 

The initial step for homologous recombination repair is 5’-3’ resection that is nucleolytic 

degradation of 5’ end to 3’ [292]. The single stranded DNA can be aligned to the 

homology strand prior to ligation. After resection by MRN, RPA binds strongly to the 

single stranded DNA and removes all secondary structures [293] explained by equations 

4.181 and 4.182.  

 

 
    

  
         4.181 

                 4.182 

 Phosphorylation of RPA allows Rad52 and BRCA2 recruitment at the site of damage 

[262, 294]. Rad52 and BRCA2 mediate recruitment of Rad51 in mammalian cells [259, 

260] , explained by equations 4.183 and 4.184. 

Rad52 
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         4.183 

                          4.184 

 
  

Rad51 is the central protein in HR pathway. Rad51 forms a filament over the single 

stranded DNA, explained by equations 4.185 and 4.186  

 

 
    

  
         4.185 

                   4.186 

Rad 54 mediates Rad51 in finding the intact DNA and forming the displacement loop (D-

loop) that is explained by equations 4.187 and 4.188  

 

 
    

  
         4.187 

                         4.188 

 

It has been shown that the polymerase ζ is most probably involved the DNA synthesis 

[295, 296]. Equations 4.189 and 4.190, and equations 4.191 and 4.192 show the first and 

second strand synthesis.  
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                     4.192 

  

The final step of homologous recombination repair is sealing the nick by DNA ligase that 

is explained with equations 4.193 to 4.196  
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         4.193 

                    4.194 

 
    

  
         4.195 

            4.196 

4.2.3.1 Scaling of DSB repair (G2 and late S) equations 

In order to solve the system of equations the parameters have been scaled with a scaling 

factor    large enough to assure that the sum of total concentration of the repair 

complexes and proteins remain constant. For this purpose it is assumed that the sum of 

total concentration of the repair complexes and proteins (Yi and Ei) is constant and equal 

to   . The scaling factor    is equal to a value >2800 (this is justified by assuming 35 

DSB/Gy induced by 80 Gy radiation dose). 

 

         ∑      
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∑   

  
   

  
 4.202 

Equations 4.203 to 4.240 are derived considering the scaling factor    and substituting the 

new parameters in the model.  
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              4.207 

 
   

  
       4.208 

 
   

  
       4.209 
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   to     are shown with equations 4.221 to 4.240. 
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4.2.3.2 Results of DSB repair (G2 and late S) kinetic model      

In order to solve the system of equations the initial values and rate constants are required. 

The repair starts at time zero therefore the activity of all proteins is zero before radiation 

exposure. The maximum number of DSB damage (100%) is assumed to be induced at 

time zero. Table 4.4 lists the rate constants that are used to solve the repair model.   

Table 4.4 Repair rate constants used in model calculations 

Rate Constants Late S and G2 Model 

k1 (h
-1

) 350 

k2 (h
-1

) 500 

K3 (h
-1

) 50 

K4 (h
-1

) 20 

k5 (h
-1

) 25 

k6 (h
-1

) 18 

K7 (h
-1

) 3 

k8 (h
-1

) 9 

k9 (h
-1

) 2 

k10 (h
-1

) 0.8 

K11 (h
-1

) 0.5 

k12 (h
-1

) 3 

k13 (h
-1

) 1 

k14 (h
-1

) 0.7 

k15 (h
-1

) 0.75 

k16 (h
-1

) 0.5 

k17 (h
-1

) 0.5 

k18 (h
-1

) 0.5 

k19 (h
-1

) 0.5 

K20 (h
-1

) 0.15 

 

The solution of the model provides the individual protein activity kinetics and overall 

DSB repair kinetics. Figure 4.10 illustrates the comparison of the overall repair kinetics 

from the model calculations and experimental measurements. The solid line and the 

symbols illustrate the repair kinetics for the repair model in G2 and late S phases of the 

cell cycle, and experimental measurements [179, 187]. The experimental measurements 
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are performed for V79 cells and primary human dermal fibroblasts. The V79 cells were 

irradiated with 45 Gy of 
60

Co γ-rays and constant-field gel electrophoresis was used to 

measure the repair kinetics up to 2 hours. The primary human dermal fibroblasts were 

irradiated with 250 kVP X-rays and pulsed-field gel electrophoresis was used to measure 

the repair kinetics up to about 30 hours. The same experimental data sets are used to 

compare with the models in late S and G2 phases, and in G1 and early S phases. It is 

preferred to use repair kinetics of synchronized cells in different phases of the cell cycle. 

Unfortunately these data were not available. However, PFGE kinetic experiments do not 

show different DSB repair kinetics for G1 and G2 cell cycle phases [26].      

 

 

Figure 4.10 Repair kinetics of the double strand breaks by DSB-repair model in late S and G2 

phases of the cell cycle (solid line) and V79 cells (X symbols) [179] and primary human dermal 

fibroblasts (Circles) [187]. The V79 cells were irradiated with 45 Gy of 
60

Co γ-rays and constant-

field gel electrophoresis was used to measure the repair kinetics. The primary human dermal 

fibroblasts were irradiated with 250 kVP X-rays and pulsed-field gel electrophoresis was used to 

measure the repair kinetics. 
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5 APPLICATION OF DSB-REPAIR MODEL  

The solution of repair models could not be directly integrated to the damage simulation. 

Therefore, first the damage (including induction of DSB) was simulated using Monte 

Carlo track structure methods, and subsequently those DSBs either in simple or complex 

form were subjected to the repair model. The repair model uses the law of mass action to 

derive kinetic rate equations. The equation for every stage explains the biochemical repair 

action by a specific protein at that stage. The complete sequential repair process composes 

a system of nonlinear differential equations. The solution of the system of nonlinear 

differential equations yields the overall repair kinetics and kinetics of every stage of 

repair. The overall repair kinetics are compared with experimental repair kinetics 

measured with PFGE for a total dose of 20 to 100 Gy. By assuming 35 DSB per Gy, a 

total dose of 20 to 100 Gy results in 700 to 3500 DSB. Therefore the overall repair 

kinetics is calculated for 700 to 3500 DSB. In order to apply the repair models for the 

repair of damage induced by radiation and calculated by track-structure models, the 

inverse transform sampling method is used. In this method the repair kinetics for a single 

DSB are calculated by sampling from the repair kinetics of 700 to 3500 DSB. For this 

purpose it is required to assume that the repair kinetics do not saturate at high doses up to 

100 Gy. For normal cells (not repair deficient), the repair in terms of kinetic response for 

different doses of radiation is the same. For doses from 10 to 80 Gy, the PFGE 

experiment shows similar repair kinetics [232, 297, 298]. Using  -H2AX foci kinetics 

time course of repair from 0.02 to 2 Gy [232, 299], (although this is not an accurate 

method for repair kinetics analysis) the unrepaired DSB fraction (residual foci) is 10% 

after 24 hours [298]. Therefore both PFGE experiments from 10 to 80 Gy and -H2AX 

experiment from 0.02 to 2 Gy show DSB repair kinetics do not saturate with increasing 

dose up to 80 Gy. In other words it is assumed that a single track effect is the dominant 

process to induce the damage. Lindborg and colleagues (14) calculated the integral 

proximity function for 
60

Co γ-rays and the mean energy imparted for doses of 2, 22, and 

60 Gy for different target sizes [300]. From their calculation it is shown that for doses less 

than 60 Gy, the maximum target size that single track effect dominates is radii of about 70 

nm. In other words, since the definition of DSB in the DNA is bi-stranded damage within 

2-3 helical turns for doses as high as 60 Gy, the probability of multiple track effects or 

interaction of pairwise DSB is negligible prior to repair.  

In order to perform inverse transform sampling it is assumed that the probability density 

function (PDF) at every stage of repair is equal to repair activity kinetics normalized to 

the area under the curve. The PDF is converted to cumulative distribution function (CDF) 

by cumulative integration over time. By inverse transform sampling of the CDF, it is 

possible to calculate the time required for each protein to perform its repair action at each 

stage of repair for a DSB induced by a single track of radiation. The DSB were divided 

into two main categories of simple and complex types according to our original definition 

[7]. The final models of repair consider separate pathways for DSB in the 

heterochromatin region. In those models it is assumed that about 15 % of simple DSB fall 

into the heterochromatin regions. Therefore, it is possible to investigate the repair time 

required for every separate protein to perform DSB end modifications and repair, in 
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addition the average repair kinetics for the simple, and complex DSB is separately 

calculated.  

5.1 LOW ENERGY ELECTRON AND ULTRASOFT X-RAY DAMAGE AND 

REPAIR 

Low energy electrons are of great importance, because a high fraction of energy 

depositions by ions and photons is through low energy electrons. Experiments using 

Auger electron emitters and Ultrasoft X-rays with low energy electrons are frequently 

performed to study DNA damage. The advantage of Auger electron experiments is the 

very short range of the electrons that is in the order of the size of the cell nucleus.   

 

5.1.1 Damage Simulation 

Low energy X-rays (ultrasoft X-rays) such as CK, AlK and TiK X-rays were used in 

various radiobiological investigations [301, 302]. Electron tracks with energies from 100 

eV to 4.55 keV and ultrasoft X-rays were simulated with the KURBUC-liq code [15, 303-

307]. For TiK X-rays it is assumed that the electrons are monoenergetic with the energy of 

4.55 keV. The electron spectrum for ultrasoft X-rays was generated with X-ray 

interactions in soft-tissue [308]. The electron spectrum following the absorption of CK, 

and AlK X-rays takes into account all possible Auger and photoelectron emissions from 

the K, L, M and N shells. Table 5.1 and Table 5.2 summarize the electrons spectrum for 

CK, and AlK X-rays, respectively. The first column lists the frequency of occurrence per 

1000. The damage could occur in the DNA or rest of the cell noted by type 1 and type 2 

respectively. The atom is left ionized after emission of Auger electrons with the energy 

known as residual potential energy (RPE). The final columns list the electron energies.  

The Monte Carlo track structure simulations are done at three stages, Physical, 

Prechemical, and Chemical. The electron energy spectrum is sampled to derive the energy 

of electrons for each run. KURBUC-liq follows primary and secondary electron 

interactions including excitation, ionization, and elastic scattering in liquid water event by 

event. In KURBUC-liq the elastic scattering cross sections remain the same as the 

KURBUC vapour cross sections [309], while new cross sections for inelastic scattering 

based on dielectric response model [310] is used. For each inelastic collision the location, 

amount of deposited energy and type of interaction is recorded. The physical tracks are 

run for monoenergetic electrons with energies of 100, 200, 300, 400, 500, 1000, 1500, 

and 4550 eV and CK, and AlK X-rays. The physical electron tracks for a single track of 

electrons with energies 100, 200, 300, 400, 500, 1000, 1500, and 4550 eV are shown in 

Figure 5.1. In the prechemical stage (10
-15

 s to 10
-12

 s) ionization and excitation of water 

molecules develop into free radical species. The water species are listed in Table 5.3 per 

radiation track. 
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Table 5.1 Electron spectrum for CK X-ray [308] 

 

Frequency 

per 1000 
Type 

a
 RPE (eV) 

b
 Electron spectrum (eV) 

519 2 29 249 0 0 0 

374.2 2 13 265 0 0 0 

50.6 2 21 257 0 0 0 

22.4 2 33 137 108 0 0 

13.6 2 35 171 72 0 0 

4.1 2 38 240 0 0 0 

3.8 1 33 137 108 0 0 

2.3 1 29 249 0 0 0 

1.5 1 12 266 0 0 0 

1.1 2 53 210 15 0 0 

1.1 2 64 108 84 22 0 

1.1 1 20 258 0 0 0 

1 2 30 204 44 0 0 

1 2 64 139 44 31 0 

0.8 2 78 171 29 0 0 

0.7 2 33 161 84 0 0 

0.4 2 24 217 37 0 0 

0.4 1 64 108 84 22 0 

0.3 2 13 221 44 0 0 

0.3 1 33 161 84 0 0 

0.2 1 17 261 0 0 0 

0.1 2 17 247 14 0 0 

0 0 0 0 0 0 0 

a
 Interaction in the DNA type 1, interaction in the remainder of the cell type 2 

b
 After the emission of Auger electrons the original atom is left ionized, carrying a potential energy due to its 

charge known as residual potential energy (RPE). 
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Table 5.2 Electron spectrum for AlK X-ray [311]   

Frequency per 1000 Type 
a
 RPE (eV) 

b
 Electron spectrum (eV) 

849.9 2 32 950 505 0 0 0 

58.2 2 42 1198 247 0 0 0 

46.5 2 29 1458 0 0 0 0 

25.7 2 42 1083 362 0 0 0 

2.9 2 19 1468 0 0 0 0 

2.7 1 32 950 505 0 0 0 

2 2 69 1105 261 33 19 0 

1.9 2 92 937 410 28 20 0 

1.3 2 42 1198 247 0 0 0 

1.1 2 113 1105 217 30 22 0 

0.9 2 61 972 410 44 0 0 

0.8 1 42 1083 362 0 0 0 

0.7 2 36 1281 170 0 0 0 

0.7 2 12 1475 0 0 0 0 

0.6 2 30 1273 184 0 0 0 

0.5 2 74 1253 131 29 0 0 

0.49 2 67 1293 104 23 0 0 

0.4 2 80 1212 170 25 0 0 

0.4 2 123 766 518 47 33 0 

0.3 2 138 1098 177 49 25 0 

0.2 2 30 1317 140 0 0 0 

0.2 2 60 1105 289 33 0 0 

0.2 2 116 766 518 87 0 0 

0.2 1 29 1458 0 0 0 0 

0.1 2 20 1419 28 20 0 0 

0.1 2 36 1451 0 0 0 0 

0.1 2 37 1346 104 0 0 0 

0.1 2 36 1212 239 0 0 0 

0.1 2 56 1186 218 27 0 0 

0.1 2 143 1044 250 37 13 0 

0.1 2 214 636 518 48 39 32 

0.1 2 20 1387 47 33 0 0 

0.1 1 19 1468 0 0 0 0 

0.1 1 12 1475 0 0 0 0 

0.1 1 68 1293 103 23 0 0 

0.1 1 30 1293 164 0 0 0 

0.1 1 37 1346 104 0 0 0 

0 0 0 0 0 0 0 0 

a
 Interaction in the DNA type 1, Interaction in the remainder of the cell type 2 

b
 After the emission of Auger electrons the original atom is left ionized, carrying 

a potential energy due to its charge known as residual potential energy (RPE). 
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Figure 5.1 Electron tracks for single track of electrons with energies 100 eV to 4.55 keV. The electron tracks were simulated with the electron track structure code 

KURBUC-liq [303, 304, 306, 307] 
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Table 5.3 Yield of water species per radiation track at 10
-12

s. 

Energy (eV) 100 200 300 400 500 1000 1500 4550 CK X-ray AlK X-ray 

Total species 177 348 517 688 858 1702 2531 7627 488 2537 

OH 57 116 173 232 290 580 861 2608 161 859 

eaq
-
 51 95 140 183 228 448 663 1988 137 674 

H 16 32 43 60 72 142 209 633 44 215 

H3O
+
 41 85 130 173 218 438 652 1975 117 644 

H2 6 10 16 20 25 47 73 211 15 73 

H2O2 6 10 16 20 25 47 73 211 15 73 

HO2 - - - - - - - - - - 

O2 - - - - - - - - - - 

OH
-
 - - - - - - - - - - 

O2
-
 - - - - - - - - - - 

HO2
-
 - - - - - - - - - - 
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In the chemical stages the water radicals are diffused (10
-12

 s to 10
-9 

s) and followed 

with their reactions. The radical diffusion is followed up to 10
-9

 s that is relevant to ~4 

nm diffusion [312, 313]. The model of damage considers direct energy deposition in 

the DNA and indirect damage contribution by water radicals. A molecular B-DNA 

model is considered as target. The diameter of the DNA molecule is 2.3 nm and the 

length is 54 bp. The direct energy deposition to the sugar-phosphate backbone 

exceeding 15 eV leads to single strand break. The value of 17.5  2.5 eV was calculated 

[314] by comparing to experimental damage induced by 
125

I decay [315]. 20% of the 

OH radicals that reach the DNA interact with the sugar-phosphate backbone and 80 % 

of the OH radicals interact with nucleobases. 65 % of sugar-phosphate radicals lead to 

SSB. Therefore 0.13 is the activation probability of OH radical interaction with sugar-

phosphate backbone that lead to SSB [316]. All the OH radicals that react with 

nucleobases are assumed to lead to base damage. Table 5.4 lists the number of damages 

with the threshold energy of 15 eV and 17.5 eV for direct damage induction in 

comparison to experimental results.  

 

Figure 5.2 Electron track with the energy of 1.5 keV including the physical track and OH 

radicals (grey spheres). The electron tracks were simulated with the electron track structure 

code KURBUC-liq [303, 304, 306, 307]  
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The number of SSB and DSB in DNA segments per track was used to calculate the 

number of SSB and DSB in the cell nucleus per Gy. For this purpose, the mean 

molecular weight of a chromosome was calculated by considering an average number 

of 245 Mbp per chromosome, and 22 chromosomes with a relative mass of 650 

g/mol.bp [317]. The comparison of the number of damages induced per cell per Gy 

with the experimental results is shown in Table 5.4. The number of SSB remains almost 

constant with the change of energy (~700). The number of DSB increases with energy 

from 100 eV to 300 eV and decreases for energies higher than 300 eV. The  
60

Co 

source induces around 30 DSB/Gy/cell [301], that is about 3 times less than that for low 

energy electrons and ultrasoft X-rays, and 1000 SSB/Gy/cell [301] which is around the 

same number for low energy electrons and ultrasoft X-rays. For ultrasoft X-rays, the 

number of DSB per cell per Gy increases with the decrease in energy as expected. As is 

shown in Table 5.4 the 15 eV threshold energy shows a better agreement with the 

experimental measurements. Table 5.5 lists the number of DSB and SSB for 500 tracks 

of monoenergetic electrons and ultrasoft X-rays. The ratio of direct, indirect and mixed 

interaction SSB and DSB are listed in Table 5.5.  
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Table 5.4 Yield of DSB and SSB per cell per Gy and comparison with experimental measurements [301, 302]. 
 

Energy (eV) 100 200 300 400 500 1000 1500 4550 AlK X-ray CK X-ray 

SSB (#/Gycell)*  650 717 739 786 698 781 774 776 746 746 

SSB (#/Gycell)
+
  440 533 545 598 524 582 558 564 541 543 

Measurements SSB (#/Gycell) 
        

935 
 

DSB (#/Gycell)*  33 81 99 94 79 86 65 81 91 101 

DSB (#/Gycell)
+
  20 38 47 53 42 50 41 42 56 45 

Measurements DSB (#/Gycell) 
       

56 77 112 

* The minimum energy for the induction of a single strand break was set to 15 eV 
+
  The minimum energy for the induction of a single strand break was set to 17.5 eV 

Table 5.5 Number of SSB and DSB induced by 500 tracks of radiation and fraction of DSB and SSB that are induced by direct, indirect or mixed interaction. 

Energy (eV) 100 200 300 400 500 1000 1500 4550 AlK X-ray CK X-ray 

Ratio of SSB to DSB 28.38 16.43 16.97 14.83 14.83 17.42 17.53 22.72 15.63 15.42 

Total number of SSB 1731 3204 4751 6184 7758 15765 23835 73495 4236 22932 

Total number of DSB 61 195 280 417 523 905 1360 3235 271 1487 

Fraction of SSB induced by indirect interaction 0.78 0.75 0.77 0.76 0.78 0.78 0.78 0.79 0.77 0.78 

Fraction of SSB induced by direct action 0.21 0.22 0.19 0.2 0.19 0.18 0.19 0.18 0.19 0.18 

Fraction of SSB induced by mixed interactions 0.02 0.04 0.03 0.04 0.04 0.04 0.04 0.03 0.04 0.04 

Fraction DSB by direct interaction 0.25 0.26 0.25 0.24 0.23 0.22 0.22 0.2 0.23 0.23 

Fraction of DSB by indirect interaction 0.39 0.4 0.38 0.41 0.4 0.4 0.4 0.43 0.4 0.43 

Fraction of DSB by mixed interactions 0.36 0.34 0.38 0.35 0.37 0.38 0.38 0.37 0.37 0.34 
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5.1.2 Damage by Type (Complex and Simple Damage) 

DNA damage arises either from direct interaction of electron or ion with the DNA, or 

by reaction of water radicals generated in the bulk water surrounding the DNA. As the 

DNA also contains a hydration shell, interaction of electrons with this layer was 

considered to be via direct pathway. We considered an energy deposition of 17.5 eV in 

the volume of the sugar-phosphate as a measure for the induction of a SSB, or similarly 

in a base moiety for the induction of a base damage [318]. A probability of 0.13 was 

considered for the reaction of OH radicals to produce a single strand break, and a 

probability of 0.8 for the production of a base damage.   

 

Figure 5.3 The damage classification according to the complexity [319]. The double helix 

DNA is shown with four lines. The solid lines present the sugar-phosphate (S-P) backbones 

and the dashed lines present the bases of the DNA. The left column classifies the damages on 

the S-P backbone.  Damage on the (S-P) backbones compose a ‘SSB’ and two tandem SSB in 

close proximity (<10 bp) is defined as ‘SSB
+
’. Two bi-stranded SSB in close proximity is 

defined as ‘DSB’ and separated with more than 10 bp is defined as ‘2SSB’. A DSB in close 

proximity of a SSB and a DSB is defined as ‘DSB
+
’ and ‘DSB

++
’, respectively. The complex 

DSB are defined as ’DSBC’= ‘DSB
+
‘ and ‘DSB

++
’. The right column illustrates the damage 

on the base. The first damage is a simple base damage (‘BD’). Two base damages are defined 

as ‘2BD’ and base damage in close proximity of SSB and DSB. A single strand break (SSB) 

or base damage (BD) may arise either from the direct hits or the reaction of an OH radical.      

In this work 54 bp long DNA is used. The atomic model of the DNA is according to the 

linear B-DNA decamer including the hydration shell [320]. In the naked DNA model, a 

virtual sphere big enough to contain the entire tracks and the water radicals is 

considered to score the damage. Cylindrical chords are randomly positioned in the 

sphere. The random chords contain the DNA segments with 54 bp length and 2.3 nm 

diameters. The damage to the DNA is classified into simple and complex illustrated in 

Figure 5.3. The simple damage contains DSB, SSB, and base lesions, and the complex 

damages include SSB
+
, DSB

+
, and DSB

++
.  SSB

+
 is a SSB in a close proximity (~ 10 
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bp) to another SSB. DSB
+
 is a DSB in close proximity to SSB, and DSB

++
 is a DSB in 

close proximity to another DSB.  

5.1.3 Repair Simulation (Inverse Transform Sampling Method) 

The biochemical repair kinetic model solution provides the repair kinetics of each stage 

of repair for a total number of 600 to 2400 DSB for 20-80 Gy doses (assuming 30 DSB 

per Gy). In order to calculate the repair time for every DSB separately the inverse 

transform sampling (ITS) method is used. The probability density function (PDF) in the 

ITS model is defined as equal to repair activity kinetics normalized to the area under 

the curve. The cumulative distribution function CDF of the repair process at each stage 

of repair (Yi(t)) is calculated by cumulative integration over time of the PDF at every 

stage of repair. Yi(t) is a monotone increasing function with a maximum value of 1: 

where t is time and Yi(t) represents the cumulative distribution function at stage i of the 

repair process. In order to calculate time t for a single DSB at every stage of repair a 

random number U between 0-1 is generated. Time t is calculated by the expression 

Yi(t)=U. The repair activity kinetics at stage i, yi(t) illustrated in Figure 5.4, is the 

solution of the linear differential equation system for the NHEJ model.  

 

Figure 5.4 Kinetics of protein repair Y2 to Y9. The protein repair kinetics are assumed to be 

the probability density function (PDF) of the protein activity 



 

68 

 

In order to calculate CDF from PDF, yi(t) is normalized to the area under the curve and 

cumulativly integrated over time that results in Yi(t) illustrated in Figure 5.5. 

 

Figure 5.5 Cumulative distribution function (CDF) function of Y2-Y9 

The DSB spectrum computed by track structure simulations are subject to the repair 

model to calculate the time of repair for every individual DSB and the overall DSB 

repair kinetics. Inverse sampling of CDF function of Y2 to Y9 for every single DSB 

provides the repair time at every step and total repair time. With the NHEJ model the 

DSB are divided to two groups of simple and complex. For simple type DSB Y2 to Y5 

present the presynaptic repair kinetics and Y6 presents the ligation kinetic or total repair 

time. For the complex type DSB Y2 to Y5 present the presynaptic repair kinetics and Y7 

to Y9 present the end processing and ligation kinetics. 

Figure 5.6 presents unrejoined DSB kinetics. The symbols and the lines represent the 

experimental measurements, and calculations, of repair kinetics for the DSB induced by 

CK, TiK and AlK X-rays, respectively. The repair kinetics were normalised to the total 

(initial) number of DSB for 500 tracks of low energy electrons or ultrasoft X-rays.  

Table 5.6 summarizes the number of DSB induced by 500 tracks of monoenergetic 

electrons and ultrasoft X-rays. The DSB are categorized as complex and simple and the 
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average time for the repair of the simple and complex damage are listed. The average 

time for the repair of simple DSB is around 20 minutes, while the average time for the 

complex DSB is around 340 minutes. 

 

 

 

Figure 5.6 Unrejoined DSB kinetics calculated for 500 tracks of CK, AlK X-rays and 4.55 keV 

electrons and compared to the pulsed-field gel electrophoresis experiment measurements with 

CK [302] , AlK [301], and TiK [302] X-rays inducing damage in V79-4 cells. The solid line 

presents the modelling results. Inverse transform sampling of the protein repair kinetics is 

used to calculate the repair kinetics of DSB.   
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Table 5.6 Yield and repair time of DSB ultrasoft X-rays and monoenergetic electrons 

 

 

Energy (eV) 100 200 300 400 500 1000 1500 CK AlK TiK (4550) 

Total number of DSB 61 195 280 417 523 905 1360 271 1487 3235 

Number of DSBs 52 146 211 294 397 709 1044 217 1099 2568 

Number of DSBc 9 49 69 123 126 196 316 54 388 667 

Average time for DSBs repair (min) 20 20 20 20 20 20 20 20 20 19 

Average time for DSBc repair (min) 348 349 341 340 328 344 348 338 341 349 

Simple DSB: DSBS 

Complex DSB: DSBC 
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6 DISCUSSION AND CONCLUSIONS 

Since the discovery of X-ray [321] in 1895 by Röntgen, IR has been employed as a 

powerful tool for imaging and radiotherapy. In the early days after the discovery of 

radiation, scientists were interested in understanding the physics of different types of IR 

as well as their applications. It did not take long to discover the hazards of radiation. 

Skin erythema due to high doses of radiation was among the first symptoms observed. 

Eventually it was noticed that radiation is a potential risk for cancer induction by 

observing the cancer incidence of exposure to radiation, among them Marie Curie and 

her daughter. IR is known as a double edged sword that could cause or be used to 

eradicate cancer. IR has been studied mainly by its effects, however its mechanism of 

action is still not fully understood. In response to IR cells activate DNA repair and cell 

signalling processes to protect the cell either by repair or by causing cell death in order 

to avoid adverse effects such as mutation [322], chromosome aberration [323] and 

cancer [324]. DNA repair plays the central role in the cell response to radiation. 

Intensive laboratory research is evolving in DNA repair and cell signalling processes, 

however the link from DNA damage to mutation, cancer and cell death is not easily 

formed. On the other hand, the advances in understanding the mechanisms of DNA 

repair and cell signalling pathways and human genome research have opened up 

unprecedented opportunities to develop ‘bottom-up’ modelling approaches. These 

approaches are aimed at linking induced DNA damage through cellular DNA repair 

processes with deletions, duplications or other rearrangements (that arise as a result of 

such processing) and with the potential adverse health consequences (cancer and 

hereditary effects) that may ensue. The applications of the damage and repair modelling 

is to develop new protein targets for cancer treatment [325], improve radiation therapy 

protocols [34, 40, 326] and propose novel methods to enhance therapeutic ratios [34], 

develop targeted cancer therapy [327], and estimate genetic and carcinogenic risk to 

human populations exposed to ionizing radiation [45]. The current work is focused 

simulating initial induced DNA damage and the repair processes, for which we have 

constructed a comprehensive mechanistic computational model of DNA repair. 

Enhancing therapeutic ratio by combining DNA repair targeting and radiotherapy is an 

active field of research [328-330]. Cancer cells show a number of defects for repair and 

signalling pathways such as frequent BRCA mutation in breast and ovarian cancers 

[331] and p53 mutation in different types of human cancer [332, 333]. Targeting 

mutated pathways in cancer cells seems to be a promising method to cure cancer.  

The present work describes a theoretical framework for modelling repair processes for 

different types of damage induced by ionizing radiation. We have selected the 

biochemical kinetic modelling approach, since it is simple and explains the biochemical 

repair processes step by step, with minimum simplifying assumptions. In paper II the 

most prevalent DSB repair pathway is explained. The NHEJ model was developed by 

taking into consideration the biological DSB end processing in the absence of 

homologous recombination. The model considers separate treatment for the simple and 

complex types of DSB. However the initial steps of the end modifications before 

synapsis is common for slow and fast repair. The model explains the presynaptic 

processes in detail, since there exits more experimental information regarding the core 
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NHEJ protein involvement in the presynaptic repair processes. The end biochemical 

modifications were translated to sets of equations. In the absence of experimental data 

for rate constants we determined the rate constants for a sample dose of 20 Gy. The 

same rate constants proved to be predictive for higher doses up to 80 Gy and several 

different mammalian cell lines. The initial recruitment kinetics of DNA-PKcs and Ku 

heterodimer were compared with experimental data measured by green fluorescent 

protein tagged DNA-PKcs and Ku. Additional experiments are needed to reduce 

uncertainties in the estimated NHEJ rate constants.  

The NHEJ repair model kinetic results were compared with experiments on cells 

mutated in the HR repair pathway. The NHEJ model is suitable for low LET radiation 

in which the frequency of the complex DSB is low. It has been observed that upon 

increase of LET the damage complexity increases and the repair of the complex DSB 

are delayed [25, 334]. Recently it is shown that increasing the LET results in more 

resection by MRN [25]. Our interpretation from these observations is that core NHEJ 

proteins have difficulty in repairing the DSB in close proximity to another strand break, 

and open the ends for resection by MRN [25]. In order to use the repair model for high 

LET irradiated cells we have proposed two separate models dependent on the 

availability of the HR pathway. In G1 and early S phases of the cell cycle homologous 

recombination is not active, therefore the only option for repair of the DSB that have 

undergone resection is MMEJ as explained in paper V. Besides the complex type DSB, 

it is proposed that DSB in the heterochromatin prolong the repair process. Biochemical 

repair handling of both types of DSB are considered in G1 and early S phases of the 

cell cycle and in late S and G2 phases of the cell cycle. The repair model is based on 

the law of mass action and calculates the overall and step-by-step repair kinetics. For all 

DSB the repair starts with NHEJ presynaptic steps and continues the end processing 

and ligation depending on the type of DSB. The difference between G1 and early S 

phases of the cell cycle and in late S and G2 phases of the cell cycle is that the complex 

damage is repaired by MMEJ and HR, respectively. The solution of the model in terms 

of overall DSB repair kinetics is in good agreement with experimental measurements 

for low LET irradiated cells. The model provides valuable step-by-step repair kinetics 

that could add to the detailed understanding of the DSB repair processes.  

With the assumption that cells under test show two-component DSB repair kinetics, the 

two exponential method explains the characteristics of the curves. The repair fractions 

and repair half-life show different mammalian cells are similar within the accepted 

uncertainty of the experiments. The differences could arise from experimental 

uncertainties and differences in cell size, nucleus size, and amount of heterochromatin. 

The two-exponential method like other phenomenological models does not inform 

about the detail of the mechanism and explains the graphical features of the response.  

We employed the new version of track structure code KURBUC-liq for simulation of 

electron track and ultrasoft X-rays (100 eV to 1.5 keV monoenergetic electrons, and 

CK, AlK and TiK ultrasoft X-rays) [15, 335] to model DNA damage spectra. The present 

biophysical computer simulation method is the only way to precisely identify and 

quantify the forms and frequencies of the simple and complex DSB. To access the 

reparability of the induced DSB, a mechanistic mathematical model of the NHEJ 

kinetic repair was applied to simulated DNA DSB induced by low energy electrons and 
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ultrasoft X-rays. The set of nonlinear equations describing the NHEJ biophysical repair 

activities on the DSB ends was solved to derive the protein activity kinetics for a total 

dose of 15 Gy of CK X-rays. The protein activities were sampled to estimate the repair 

time required for DSB induced by 1 track of radiation at a time. In order to employ the 

repair model, the inverse transform sampling method was used to calculate the repair 

time from the CDF of the protein repair kinetics. The method is capable of calculating 

the repair time for every single DSB. The overall DSB repair kinetics for DSB induced 

by 500 tracks of radiation for CK, TiK and AlK X-rays were compared with 

experimental measurements. The total DSB repair kinetics for CK, AlK, and TiK showed 

good agreement with experimental measurements and model calculation. This approach 

provides details of repair timing that are not easily measured for protein activities on 

the DSB ends. The results show that the NHEJ model based on the complexity 

hypothesis is capable of predicting the DSB-repair kinetics of cells irradiated with 

electrons. 

For future work the models proposed for early S and G1 phases of the cell cycle and 

late S and G2 phases of the cell cycle can be used to calculate the repair kinetics of 

DSB damage spectrum simulated track structure models. The overall repair kinetics of 

DSB induced by radiation of different quality can be compared with the experimental 

results [135, 179, 184, 187, 197, 199, 336]. We are currently running track structure 

simulations which require high CPU usage and very high memory requirement (such 

calculations are done on supercomputers).  

In short the advantages of a mechanistic model is that under certain assumptions the 

model could be used for predicting the overall repair kinetics of high LET irradiated 

cells. Track structure simulations have shown that both low LET and high LET 

radiations induce simple and complex DSB. As explained in our publications, the 

sampling method was used to calculate the step-by-step repair time of DSB induced by 

electrons and X-rays. In future work, the DSB induced by radiation of different quality 

will be simulated and subjected to the repair model. The overall repair kinetics 

predicted by track structure simulation will be compared with experimental data to test 

the model. The comparison of the DSB-repair kinetics with different LET irradiated 

cells could test the hypothesis of our model that the repair is delayed because of the 

local complexity of the DSB or distribution of the damage in the heterochromatin.   
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