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ABSTRACT 

Ubiquitin-tagged substrates are degraded by the 26S proteasome; a multi-subunit 

complex comprising a proteolytic 20S core particle (20S CP) capped by 19S 

regulatory particles (19S RP) 1,2. The approval of bortezomib for the treatment of 

multiple myeloma has validated the 20S CP as an anti-cancer drug target 3. Here, we 

describe the small molecule b-AP15 as a novel class of proteasome inhibitor that 

abrogates the deubiquitinating (DUB) activity of the 19S RP. b-AP15 inhibited the 

activity of two 19S RP-associated DUBs, ubiquitin carboxyl-terminal hydrolase 5 

(UCHL5) and ubiquitin specific peptidase 14 (USP14), resulting in accumulation of 

polyubiquitin. b-AP15 induced tumor cell apoptosis insensitive to TP53 status and 

over-expression of the apoptotic inhibitor Bcl-2. We show that treatment with b-AP15 

inhibited tumor progression in four different in vivo solid tumor models and inhibited 

organ infiltration in an acute myeloid leukemia (AML) model. Our results show that 

the DUB activity of the 19S RP is a novel anti-cancer drug target. 
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We identified b-AP15 (Fig. 1a) in a screen for compounds that induce the lysosomal 

apoptosis pathway 4,5. To characterize the connection between b-AP15 and other anti-

cancer drugs we compared the gene expression signature of b-AP15- treated cells to a 

collection of expression signatures for >1300 bioactive compounds in the CMAP 

database (www.broad.mit.edu/cmap) 6. b-AP15 induced a gene expression profile 

similar to that of several well characterized proteasome inhibitors 7-10 (Fig. 1b, 

Supplementary Spreadsheet). To test whether b-AP15 blocked cellular proteasome 

function we utilized a reporter cell line expressing ubiquitin tagged to yellow 

fluorescent protein (UbG76V-YFP) that is constitutively targeted for proteasomal 

degradation 11. We observed a dose-dependent accumulation of the UbG76V-YFP 

reporter (IC50=0.8 µM), indicating impaired proteasome degradation (Fig. 1c). 

Defects in ubiquitin turnover are a characteristic of proteasome inhibition 12. We 

indeed observed rapid accumulation of polyubiquitin in b-AP15-treated colon 

carcinoma HCT-116 cells, with a similar kinetic but higher molecular weight than that 

of the 20S CP inhibitor bortezomib, suggesting inhibition of the ubiquitin-proteasome 

system (UPS) (Fig. 1d). The UPS controls the turnover of many cell cycle regulatory 

proteins including inhibitors of the cyclin-dependent kinases, CDKN1A, CDKNIB 

and the tumor suppressor TP53 13-15. Treatment with b-AP15 increased the levels of 

all three in a dose-dependent manner (Fig. 1e), without altering the levels of ornithine 

decarboxylase 1 (ODC1), an ubiquitin-independent proteasome substrate 16 (Fig. 1f). 

Consistent with the accumulation of cell cycle inhibitors, we observed G2/M phase 

cell cycle arrest (Fig. 1g). Cell cycle arrest was not associated with increased levels of 

DNA damage markers such as p-p53 17 or p-H2AX 18 suggesting that b-AP15 is non-

genotoxic (Supplementary Fig. 1).  
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b-AP15 treatment increased the number of hypodiploid cells (Fig. 1g) and was 

associated with increased levels of apoptotic markers, including activated caspase-3, 

caspase-cleaved poly-ADP ribose polymerase (PARP) (Fig. 1e) and cytokeratin-18 

(CK18) (Supplementary Fig. 2a). Apoptosis and decreased cell viability 

(Supplementary Fig. 2b) was observed at drug concentrations that induced 

polyubiquitin accumulation; thus providing a link between proteasome inhibition and 

cytotoxicity. Notably we found that b-AP15 was more toxic to HCT-116 cells 

compared to immortalized epithelial cells (hTERT-RPE1) or peripheral blood 

mononuclear cells (PBMC) (Supplementary Fig. 2c,d). These differences were 

larger than those observed for bortezomib (Supplementary Fig. 2e,f). Bortezomib-

induced apoptosis is sensitive to TP53 status and the expression levels of the anti-

apoptotic Bcl-2 oncogene 19,20. Using isogenic clones of HCT-116, we found that b-

AP15 induced apoptosis which was insensitive to over-expression of Bcl-2 and 

disruption of TP53, as well as BAX and BBC3, mediators of the mitochondrial 

apoptotic pathway (Fig. 1h, Supplementary Fig. 3).  

We next attempted to define how b-AP15 inhibited proteasome activity in vitro. We 

observed no inhibition of any of the proteolytic activities of the proteasome 

(Supplementary Fig. 4), no disassociation of the proteasome or inhibition of 

ubiquitin binding (Supplementary Fig. 5). The chemical structure of b-AP15 

contains a α-ß dienone with two sterically accessible ß-carbons (Fig. 1a). A similar 

pharmacophore was previously described in DUB inhibitors 21. However, when we 

tested cellular DUB activity using ubiquitin 7-amido-4-methylcoumarin (Ub-AMC) 

on b-AP15-treated cells we observed no reduction in total DUB activity 

(Supplementary Fig. 6). Given the similarities in pharmacophore structure and our 

previous data showing that b-AP15 inhibits proteasome activity independently of the 
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20S CP, we hypothesized that b-AP15 may inhibit the proteasome indirectly, by 

blocking the de-ubiquitinating activity of the 19S RP necessary for efficient 

proteasome degradation.  In vitro assays using purified 19S RP or 26S proteasomes 

confirmed that b-AP15 inhibited deubiquitinating activity using a variety of substrates 

including Ub-AMC (Fig. 2a), Ub-GFP 22 (Fig. 2b,c) ubiquitinated HDM2 (Fig. 2d) 

and K48- and K63-linked ubiquitin tetramer chains  (Fig. 2e). This inhibition of chain 

disassembly may account for the accumulation of high molecular weight ubiquitin 

conjugates observed in b-AP15 treated cells (Fig. 1d,e). 

The deubiquitinating activity of the proteasome is attributed to the action of three 

DUBs, UCHL5, USP14 and POH1 all localized within the 19S RP 23-25. UCHL5 and 

USP14 are sensitive to N-ethylmaleimide (NEM), a general inhibitor of cysteine 

proteases, whereas POH1 in contrast is sensitive to the metal chelator N,N,N,N-

Tetrakis-(2-pyridylmethyl)ethylenediamine (TPEN) 26. Residual DUB activity was 

still present after co-treatment of 19S RP with NEM and b-AP15 (Fig. 3a), but 

abolished upon co-treatment of 19S RP with b-AP15 and TPEN (Fig. 3b), suggesting 

that b-AP15 primarily inhibits one or both of the NEM-sensitive cysteine DUBs. The 

β-carbons in b-AP15 may serve as Michael acceptor moieties conferring covalent 

binding to cysteine residues in target proteins. However our in vitro assays showed 

that b-AP15 is a reversible inhibitor (Supplementary Fig. 7a–c) and that glutathione 

does preclude its inhibitory activity (Supplementary Fig. 7d). 

 

To identify which DUBs were inhibited by b-AP15, we performed competitive 

labeling experiments using hemagglutinin tagged ubiquitin vinylsulphonone (HA-

UbVS), an active site directed probe that irreversibly reacts with cysteine DUBs 23. 

Incubation of 19S RP or 26S proteasomes with b-AP15 abolished Ub-VS labeling of 
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two DUBs of molecular weights corresponding to UCHL5 and USP14 (Fig. 3c). We 

observed a similar result using UbVS on lysates derived from drug-treated cells. 

Immunoblot analysis showed a downward shift in the molecular weight of both 

USP14 and UCHL5 due to a loss of activity and decreased UbVS labeling (Fig. 3d). 

We also observed reduced DUB activity in affinity-purified proteasomes, but not in 

cell lysates, from b-AP15-treated cells. (Supplementary Fig. 8a). Consistent with the 

notion that b-AP15 is not a general DUB inhibitor, we observed minimal inhibition on 

recombinant and cytosolic non-proteasomal cysteine DUBs (Supplementary Fig. 

8b,c).  

We next investigated the effect of b-AP15 on tumor growth in vivo. When b-AP15 

was administered daily to SCID mice bearing FaDu squamous carcinoma xenografts, 

we observed significant antitumor activity (treated/control tumor volume, T/C=0.4, 

P=<0.001) (Fig. 4a). When we analyzed tumor death by measuring xenograft-derived 

CK18 in circulation 27,28, we observed a significant increase in the plasma levels of 

total CK18 (P=0.01) along with increased levels of caspase-cleaved CK18 (CK18-

Asp396) (Fig. 4b), showing that b-AP15 has activity against tumor cells in vivo. We 

also examined disease-free survival in Bcl-2 over-expressing HCT-116 colon 

carcinoma xenografts. b-AP15 treatment significantly delayed tumor onset in 

comparison to vehicle-treated control with 2 out of 6 of the treated mice being 

completely disease free at the end of the study (P= 0.0136 by log rank test) (Fig. 4c). 

Similarly, b-AP15 inhibited tumor growth in syngenic mice models using less 

frequent administration schedules. We administered b-AP15 to C57BL/6J mice 

bearing lung carcinomas (LLC) using a 2 day on/2 day off schedule and to BALB/c 

mice bearing orthotopic breast carcinoma (4T1) using a 1 day on/3 day off schedule. 
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b-AP15 significantly inhibited tumor growth in both models with a tumor volume 

response of T/C=0.16, (P=<0.01) and T/C=0.25 (P=<0.001), respectively (Fig. 4d,e). 

We also observed a reduction in the number of pulmonary metastases in the b-AP15- 

treated group of 4T1 breast carcinoma (Fig. 4f). Importantly, we observed no change 

in animal behavior or loss in body weight (Supplementary Fig. 9).  

Since our previous data showed that b-AP15 promoted the accumulation of 

polyubiquitin and inhibited cleavage of K48-linked ubiquitin chains (Fig. 1c,2c), we 

tested the effect of b-AP15 on the UPS activity in vivo by staining tumor sections with 

antibodies to K48-linked polyubiquitin chains. High levels of K48-linked 

polyubiquitin accompanied by caspase-3 activation were observed in the b-AP15- 

treated group, confirming inhibition of DUB activity (Fig. 4g).  

Next, we investigated the effect of b-AP15 on tumor cell invasion in an aggressive 

leukemic model (AML). We administered b-AP15 (daily from d 8 to d 14) to 

C57BL/6J mice bearing C1498 leukemia. Leukemia regression was observed in eight 

out of ten b-AP15-treated mice (P=<0.001) compared to vehicle treated animals 

(n=10). Liver from control animals showed hepatomegaly and massive invasion of 

myeloid leukemic cells into liver tissue (Fig. 4h). In contrast, b-AP15-treated mice 

showed normal structured hepatocytes and lower levels of leukemic blast infiltration. 

Ovary tissue of control mice also showed massive invasion of leukemic blasts and 

interstitial bleeding, not evident in the treated group. Taken together, our results 

demonstrate that b-AP15 inhibits tumor growth in vivo. 

 

Ubiquitin C-terminal hydrolases and ubiquitin specific peptidases are major 

subgroups of the approximately one hundred DUBs encoded by the human genome 29. 
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The reason for specificity of b-AP15 for UCHL5 and USP14 in the 19S RP may be 

related to unique conformations of these enzymes in the 19S RP or due to drug-

induced alterations of the 19S RP structure. Interestingly, a specific inhibitor of 

proteasome bound USP14 was recently described 30. Treatment of cells with this 

inhibitor resulted in enhanced degradation of proteasome substrates. Taken together, 

these different results suggest a degree of redundancy between USP14 and UCHL5 

with regard to ubiquitin disassembly so that cells tolerate the loss of one DUB 

enzyme but not both. Indeed it has been reported that loss of both UCHL5 and USP14 

(but not either alone) leads to the accumulation of polyubiquitinated proteins and 

inhibition of protein degradation without altering the structure or catalytic capabilities 

of the proteasome 31, similar to the phenotype observed following b-AP15- treatment.  

Strong expression of chaperone genes was observed in b-AP15-treated cells 

(Supplementary Table 1,2), showing induction of a proteotoxic response. These 

findings raise the possibility that high molecular weight ubiquitin-substrate complexes 

accumulating as a result of DUB inhibition generate strong cytotoxicity.  

 

We conclude that the DUB activity of the 19S RP is a promising target for cancer 

treatment. The cellular response to b-AP15 is not only distinct to that of bortezomib 

with regard to involvement of apoptosis regulators, but also with regard to the 

sensitivity of tumor cell lines in the NCI-60 cell line panel (http://dtp.nci.nih.gov) 

with colon carcinoma and CNS tumor cell lines being most sensitive (Supplementary 

Fig. 10).  If proven to be effective in the treatment of human malignancies, inhibitors 

of 19S RP DUB activity may display a different therapeutic spectrum than inhibitors 

of 20S enzymatic activity thereby adding to the arsenal of available therapy options.  
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Figure 1: b-AP15 inhibits the ubiquitin-proteasome system. (a) Chemical structure 

of b-AP15 (3,5-bis[(4-nitrophenyl)methylidene]-1-prop-2-enoylpiperidin-4-one). (b) 

Connectivity map of b-AP15 treated MCF7 cells. The top 5 compounds that induce a 

gene expression profile similar to b-AP15 are listed. (c) b-AP15 inhibits degradation 

of ubiquitin-tagged YFP in a proteasome reporter cell line. Levels of UbG76V-YFP 

accumulation was determined by flow cytometry and immunoblotting. (d) 

Immunoblot of ubiquitin conjugation in HCT-116 cells treated with b-AP15 (1 µM) 

or bortezomib (100 nM). (e) Immunoblot of ubiquitin conjugates, caspase 3 activation 

PARP cleavage, TP53, CDKN1A and CDKN1B in HCT-116 cells following 24 h 

treatment with the indicated concentrations of b-AP15. (f) Immunoblot of ODC-1 

levels in HCT-116 cells following treatment with bortezomib (100 nM) or b-AP15 (1 

µM). Values represent quantified optical density units of ODC-1 normalized to ß- 

actin. (g) Cell cycle profiles of b-AP15 treated HCT-116 cells. Cells were analyzed by 

propidium iodide staining and flow cytometry. (h) Levels of caspase activity in 

isogenic HCT-116 cells as determined by ELISA for caspase cleaved cytokeratin-18 

(CK18-Asp396) following treatment with bortezomib (100 nM) or b-AP15 (1 µM) 

(**’P=0.01, ***’P=0.001). 

 

Figure 2: b-AP15 inhibits deubiquitination by the 19S RP. (a) Inhibition of Ub-

AMC cleavage by 19S RP and 26S proteasomes following treatment with b-AP15. 

Ubiquitin aldehyde (Ubal), a general DUB inhibitor is included as a control. (b) 

Immunoblot of 19S RP mediated cleavage of Ub-GFP. 19S RP were pre-treated with 

DMSO or indicated concentrations of b-AP15 followed by addition of recombinant 

Ub-GFP as a DUB substrate. (c) Kinetic of 19S RP Ub-GFP cleavage following b-
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AP15 treatment. (d) b-AP15 inhibits de-ubiquitination of Hdm2. Ubiquitinated Hdm2 

was added to DMSO or b-AP15 (50 µM) treated 19S RP followed by 

immunoblotting. (e) Ubiquitin chain disassembly reactions of K63/K48 linked 

ubiquitin tetramers by 19S RP following treatment with DMSO or b-AP15 (50 µM).  

 

Figure 3: b-AP15 inhibits the 19S RP DUBs UCHL5 and USP14. (a) 19S RP were 

pre-treated with DMSO, NEM (10 mM), b-AP15 (50 µM) or b, TPEN (250 µM) 

followed by addition of Ub-GFP followed by immunoblotting with anti GFP 

antibodies. (c) Active site directed labeling of proteasomal. DUBs. Purified 19S or 

26S proteasomes were pre-treated with DMSO, NEM or b-AP15 followed by labeling 

with HA-UbVS and immunoblotting. (d) Immunoblot of HCT-116 cells treated with 

b-AP15 (1 µM) for 3 h. DUBs from whole cell lysates were labeled with HA-UbVS 

followed by SDS-PAGE and immunoblotting with indicated antibodies. 

 

Figure 4: b-AP15 inhibits tumor growth in vivo. (a) SCID mice bearing FaDu 

human tumor xenografts were treated by daily subcutaneous injection with either 

vehicle (n =10) or 5 mg kg-1 b-AP15 (n=15). Mean tumor volume ± SEM are shown. 

(***P=<0.001). (b) Total levels of tumor derived CK18 and caspase cleaved (CK18-

Asp396) in circulation following b-AP15 treatment (**P=0.01). (c) Disease free 

survival of nude mice challenged with HCT-116 Bcl-2+ cells. Mice were treated with 

vehicle (n=6) or 5 mg kg-1 b-AP15 (n=6) 4–5 times weekly for 3 weeks and 

monitored for tumor onset. (log-rank, P=0.0136, hazard ratio = 7.9). (d) C57BL/6J 

mice bearing syngenic lung carcinoma (LLC) tumors were treated with either vehicle 

(n = 4) or 5 mg kg-1 b-AP15 (n=4) in a 1 day on/2 day off cycle. Mean tumor volume 

± SEM are shown. (**P=<0.01). (e) BALB/c mice bearing orthotopic breast 

carcinomas (4T1) were treated with either vehicle (n =5) or 2.5 mg kg-1 b-AP15 (n=5) 

in a 1 day on/3 day off cycle. Mean tumor volume ± SEM are shown. (**P=<0.01). 



 12 

(f) Box and whisker plots of pulmonary metastatic colonies from vehicle or b-AP15 

treated 4T1 breast carcinomas. Boxes represent the upper and lower quartiles and 

median, whiskers show maximum and minimum values. (g) Representative 

immunohistochemical staining for K48-linked ubiquitin accumulation and cleaved 

caspase-3 in vehicle and b-AP15 treated 4T1 tumors (scale bars, 20 µm). (h) AML 

infiltration in liver and ovary of vehicle or treated mice. Liver of vehicle treated mice 

showed invasion of leukemic blasts along with glycogen depletion and non-specific 

hemorrhage. Ovary section of vehicle treated mouse showing massive invasion of 

leukemic blasts and interstitial bleeding. In contrast ovary from showed few 

infiltrated blasts and normal morphology (scale bars, 250 µm).  
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Online Methods 

Drugs. We obtained b-AP15 (NSC687852) 32 from the Developmental Therapeutics 

Program of the US National Cancer Institute (http://www.dtp.nci.nih.gov) or from 

OncoTargeting AB (Uppsala, Sweden). We obtained bortezomib was obtained from 

the Department of Oncology, Karolinska Hospital. For in vivo administration of b-

AP15 we dissolved the drug in Cremphor EL:PEG 400 (1:1) by heating to give a 

working concentration of 2 mg/ml. Working stock was 1:10 diluted in 0.9% normal 

saline immediately prior to injection. 

 

Connectivity Map analysis. We performed the microarray based gene expression 

analysis and the Connectivity Map (CMAP) essentially as described 6. Briefly, MCF7 

cells were exposed to 1 mM b-AP15 for 6 h or vehicle  (0.1 % DMSO, 6 h). RNA was 

isolated (RNeasy miniprep kit, Qiagen) followed by quality control, labeling and 

hybridization to Genome U133 Plus 2.0 arrays (Affymetrix Inc). Raw data was 

normalized using Mas5 (Affymetrix Inc.) and rank ordered. The following criteria for 

selection of the 30 most induced (up tags) and the 30 most suppressed (down tags) 

transcripts were used. Up tags: present call and expression over 300 arbitrary units in 

the b-AP15 experiment. Down tags: present call after both b-AP15 and vehicle 

treatment, and expression over 300 arbitrary units in the vehicle experiment. Only 

tags (i.e. probes) present on HG U133A arrays were used for CMAP compatibility. 

We have deposited raw and normalized expression data at Gene Expression Omnibus 

(http://www.ncbi.nlm.nih.gov/geo/) with accession number GSE24150. 

 

Proteasome Inhibition assays. We performed in vitro proteasome activity assays 

using 20S CP (2 nM) in reaction buffer (25 mM Hepes, 0.5 mM EDTA, 0.03 % SDS) 

or 26S proteasomes in reaction buffer (25 mM Hepes, 50 mM NaCl, 10 mM MgCl2, 2 

mM ATP, 1 mM DTT). We used 10 µM Suc-LLVY-AMC, Z-LLE-AMC or Boc-

LRR-AMC for the detection of chymotrypsin-like, caspase-like and trypsin-like 

activity respectively using Wallac Multilabel counter equipped with 380 nm 

excitation and 460 nm emission filters. 

 

DUB inhibition assays. For DUB inhibition assays we incubated 19S RP (5 nM), 

26S (5 nM) UCH-L1 (5 nM), UCH-L3 (0.3 nM), USP2CD  (5 nM) USP7CD (5 nM) 



 16 

USP8CD (5 nM) or BAP1 (5 nM) with DMSO or b-AP15 and monitored cleavage of 

ubiquitin-AMC (1000 nM) using Wallac Multilabel counter or Tecan Infinite M1000 

equipped with 380 nm excitation and 460 nm emission filters. 

 

In vivo tumor experiments. For the squamous carcinoma model we subcutaneously 

injected 1×106 FaDu cells into the right rear flank of female SCID mice. We 

measured tumor growth by the formula L × W2 × 0.44. When tumors had grown to a 

size of approximately 200 mm3 (Day 0) mice we randomized mice to receive either 

vehicle (n=10) or b-AP15 5 mg kg-1 by daily subcutaneous injection s.c. (n=15). For 

the colon carcinoma model, we subcutaneously injected 2.5 × 106 Bcl-2 over-

expressing HCT-116 colon carcinoma into the right flank of female nude mice. We 

treated mice with 5 mg kg-1 b-AP15 by intra peritoneal injection (i.p.). For the lung 

carcinoma model we subcutaneously injected 2×105 Lewis Lung Carcinoma (LLC) 

cells into the right rear flank of female C57/B6 mice. When tumors had grown to a 

size of approximately 50 mm3 (Day 0) we randomized mice to receive either vehicle 

(n=4) or b-AP15 5 mg kg-1 i.p. (n=4) with a treatment cycle consisting of two days 

treatment followed by two days rest (2 days on/2 days off) for two weeks. For the 

breast carcinoma model we subcutaneously injected 1×105 4TD cells into the right 

mammary fat pad of female BALB/c mice. When tumors had grown to a size 

approximately 25 mm3 (d 0), we randomized mice to receive either vehicle (n=5) or 

b-AP15 2.5 mg/kg-1 i.p. (n=5) with a treatment cycle consisting of one day treatment 

followed by three days rest (1 day on/3 day off) for 3 weeks. In the AML studies we 

intra venously injected 5 × 105 C1498 AML cells into the tail vein of female 

C57BL/6J mice. After eight days mice we randomized mice to receive either b-AP15 

5 mg kg-1 (n=10) or vehicle (n=10) i.p. for 7 days (d 8 to d 14). Nineteen days after 

malignant cell injection we sacrificed all mice and evaluated histopathological 

manifestations of liver and ovary (target organs for this model of tumor) between 

groups. We conducted all animal experiments in full accordance with Swedish 

governmental and European statutory regulations on animal welfare. Stockholm 

North ethics committee approved experiments using squamous, lung and breast 

carcinoma models. Stockholm South ethics committee approved experiments using 

the AML model. Experiments using the HCT-116 model were approved by the 

Ethical Committee for Animal Experimentation, Istituto Nazionale dei Tumori di 

Milano.  
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Supplementary Figure 1

Supplementary Figure 1: b-AP15 does not induce DNA damage.
HCT-116 cells were treated with b-AP15 (1 μM) or doxorubicin (100 nM, as a positive control for genotoxic 
stress) for 18 h. Cell lysates were immuno-blotted with antibodies for phosphorylated TP53 and histone 
H2AX as a marker for DNA damage or for total levels of TP53 and β -actin as loading controls.

Inhibition of proteasome deubiquitinating activity as a novel cancer therapy.
Pádraig D’Arcy, Slavica Brnjic, Maria Hägg Olofsson, Mårten Fryknäs, Kristina Lindsten, 
Michelandrea De Cesare, Paola Perego, Behnam Sadeghi, Moustapha Hassan, Rolf Larsson
and Stig Linder.



Supplementary Figure 2: b-AP15 induces apoptosis and inhibits cell survival of HCT-116 cells whereas
PBMC (periferal blood mononuclear cells) and immortalzied hTERT-RPE1 are less sensitive.
a, HCT-116 cells were treated with increasing concentrations of b-AP15 for 24 h and the levels of apoptosis
were determined by measuring the levels of caspase cleaved cytokeratin-18 (CK18) by ELISA assay.
b, HCT-116 cells were treated with increasing concentrations of b-AP15 for 48 h. Cell viability was determined
by acid-phosphatase activity assay. Mean values ± s.d. shown.
c, HCT-116 or hTERT-RPE1 cells were treated with increasing concentrations of b-AP15 for 72 hr followed by
analysis of cytotoxicity using the FMCA method described.
d, HCT-116 or hTERT-RPE1 cells were treated with increasing concentrations of bortezomib for 72 hr followed by
analysis of cytotoxicity using the FMCA method. hTERT-RPE1 is an immortalized human retinal pigment
epithelial cell line.
e, f, IC50 was determined from log concentration-effect curves in Graph Pad Prism (GraphPad software Inc., 
CA, USA) using non-linear regression analysis (four parameter model with variable Hill slope). Concentration-
response curves were generated in two-fold dilutions at 8 concentrations of b-AP15 and bortezomib in triplicates
 using the FMCA assay. The results are expressed as log IC 50 + SD from 4-5 independent experiments 
(HCT-116, n=5, PBMC (peripheral blood mononuclear cells), n=4, hTERT-RPE1, n=5).
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Supplementary Figure 3

Supplementary Figure 3: Dose response curves of apoptosis induction in isogenic clones 
of HCT-116 cells.
HCT-116 cells were treated with increasing concentrations of bortezomib or b-AP15 for 24 h and the levels 
of apoptosis were determined by measuring the levels of caspase cleaved cytokeratin-18 (CK18) by 
ELISA assay (Mean fold change ± s.d., n=4).

10-2.5 10-2 10-1.5 10-1 10-0.5 100
0

5

10

15

20

25 TP53+/+

TP53–/–

Bcl-2+

BBC3–/–

BAX–/–

Bortezomib (μM)

C
K1

8 
cl

ea
va

ge
 (f

ol
d 

)

10-2 10-1.5 10-1 10-0.5 100 100.5
0

5

10

15

20

25

BAX-/-
BBC3-/-
Bcl-2+
TP53-/-
TP53+/+

b-AP15 (μM)

C
K1

8 
cl

ea
va

ge
 (f

ol
d 

)



Supplementary Figure 4 : b-AP15 does not inhibit the proteolytic activities of the proteasome.
a, 20S CP  (2 nM) were pretreated with DMSO, b-AP15 (50 μM) or bortezomib 
(100 nM) for 5 min in assay buffer ( 25 mM HEPES, 0.5 mM EDTA, 0.03% SDS) followed by the addition 
of 100 μM of the fluorogenic substrates Suc-LLVY-AMC, Z-LLE-AMC or Boc-LRR-AMC for  analysis of 
proteasome chymotrypsin-like, caspase-like and trypsin-like activities respectively. 
b, 26S proteasomes (2 nM) in assay buffer (25 mM HEPES, 50 mM NaCl, 10 mM MgCl 2, 2 mM ATP, 1 mM 
DTT) were treated as in a. Values represent the fold cleavage in relative fluorescent units.   
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Supplementary Figure 5

Supplementary Figure 5. b-AP15 does not cause disassociation of 19S and 20S particles
or alter ubiquitin binding. 
a, Substrate overlay assay of b-AP15 treated proteasomes. Purified 26S proteasome was treated with 
b-AP15 (10,50 μM) separated by native gel electrophoresis and assayed for proteolytic activity 
using Suc-LLVY-AMC as a fluorogenic substrate for peptidase activity. Analysis of gels showed the 
presence of both doubly (RP2CP) and singly (RP1CP) capped proteasomes in both control and 
b-AP15 treated lanes. The addition of 0.03% SDS did not reveal an increase in the presence of 
uncapped 20S core particles. b, b-AP15 does not alter proteasome-ubiquitin binding activity.
HCT-116 cells were treated with bortezomib (100 nM) or b-AP15 (1 μM) and  proteasomes were 
affinity purified .The levels of associated polyubiquitin determined by immunoblotting. 
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Supplementary Figure 6

Supplementary Figure 6: b-AP15 does not inhibit total DUB activity. 
a, HCT-116 cells were treated for 3 h with b-AP15 (1 μM). Lysates treated with 10 mM N-ethylmaleimide (NEM) 
were included as a control for total DUB inhibition. DUB activity was determined from cell lysates by measuring 
the cleavage  of the fluorogenic substrate ubiquitin-7-amido-4-methylcoumarin (Ub-AMC). 
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Supplementary Figure 7: Biochemical characterization of b-AP15 binding
a, Dose response of b-AP15. Purified 19S proteasomes (5 nM) were treated with indicated
concentrations of b-AP15 and  DUB activity was determined by detectionof Ub-AMC cleavage. 
The IC50 value (2.1±0.411 μM) was determined from log concentration curves in Graph Pad Prism 
using non linear regression analysis. (Mean values ± SD, n=3) .Note that the IC50 observed in 
cell-free assays is somewhat higher than that observed in cells. A likely explanation to this observation 
is that the hydrophobicity of b-AP15 (XLogP = 3.3) leads to enrichment of the compound in cells 9. 
b, Reversibility of b-AP15 inhibition. The reversibility of inhibition was determined by measuring 
recovery of 19S DUB activity after rapid dilution of the enzyme b-AP15 complex. 
A reaction mix containing 50 time the normal 19S concentration used in reactions (250 nM) and 
10 times the calculated IC50 value for b-AP15 (25 μM) was incubated on ice for 15 min followed by
a 50 fold dilution in reaction buffer to give a final concentration of 19S 5nM and b-AP15 0.5 μM.
The linear reaction curves of Ub-AMC cleavage show that b-AP15 is a reversible inhibitor.
c, Experiment was performed as in b, except DMSO and b-AP15 treated proteasomes were purified by
spin purification. The recovery of DUB activity after drug removal further suggests that b-AP15 is a 
reversible inhibitor. 
d, To determine if b-AP15 reacts non specifically with cyteine residues 19S (5 nM) was treated 
with b-AP15 (10μM) or b-AP15 (10 μM) mixed with reduced glutathione GSH (2 mM). 
The presence of glutathione did not reduce b-AP15 mediated inhibition of 19S DUB activity. 
Cleavage of ubiquitin-AMC was monitored using Tecan Infinite M1000 equipped with 380 nm excitation 
and 460 nm emission filters.
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Supplementary Figure 8

Supplementary Figure 8: b-AP15 is not a general DUB inhibitor. 
a, HCT-116 cells were treated with b-AP15 (1 μM) and proteasomes affinity purified. DUB activity of proteasomes
is expressed as cleavage of Ub-AMC/suc-LLVY-AMC to normalize for proteasome levels 
(P=0.012, unpaired t test, two tailed).  
b, b-AP15 does not inhibit non proteasomeal DUBs. Recombinant non proteasomal DUBs were treated with 
b-AP15 as described and percentage activity was determined.
c, Cell lysates from 293T or HeLa cells were treated with b-AP15 (50 μM) followed by active labelling
 with HA-UbVS. All samples were run on SD-PAGE gels followed by immunoblotting with α-HA 
antibodies. 
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Supplementary Figure 9: b-AP15 treatment does not significantly alter animal weight.
The difference in weight at the start and endpoint between control and treated animals for the
xenografts presented in Fig. 4 was; FaDu, decrease of 1.3%; LLC, increase 2.1% and 4T1, 
increase of 5.8 %. Boxes represent the upper and lower quartiles and median, whiskers show 
maximum and minimum values.
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Supplementary Figure 10: Sensitivity of cell lines in the NCI60 panel to b-AP15 and bortezomib.
Shown are IC50 values for individual cell lines (left) and median IC50 values for each tumor type (right).
Data are from www.dtp.nci.nih.gov. Arrows indicate the two most sensitive tumor cell types for each drug.
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Supplementary Table 1. Induction of chaperone expression after b-AP15 treatment  
 

   
Expression 

values  
Probe Set 
ID Gene Title 

Gene 
Symbol b-AP15 Vehicle 

Fold 
change 

117_at heat shock 70kDa protein 6 (HSP70B') HSPA6 24149 33 725 
225061_at DnaJ (Hsp40) homolog, A4 DNAJA4 21103 711 30 
203810_at DnaJ (Hsp40) homolog, B4 DNAJB4 1955 123 16 
205543_at heat shock 70kDa protein 4-like HSPA4L 5452 406 13 
200666_s_at DnaJ (Hsp40) homolog, B1 DNAJB1 33900 5251 6 
241716_at heat shock 60kDa protein 1  HSPD1 487 77 6 
203811_s_at DnaJ (Hsp40) homolog, B4 DNAJB4 960 178 5 
202581_at heat shock 70kDa protein 1B HSPA1B 31068 6382 5 
206976_s_at heat shock 105kDa/110kDa protein 1 HSPH1 40974 8427 5 
211016_x_at heat shock 70kDa protein 4 HSPA4 1803 422 4 
202843_at DnaJ (Hsp40) homolog, B9 DNAJB9 1879 449 4 
200880_at DnaJ (Hsp40) homolog, A1 DNAJA1 19970 4872 4 
200800_s_at heat shock 70kDa protein 1A  HSPA1A 57478 14352 4 



Supplementary Table 2. Quantitation of chaperone gene induction. 
 
 

  Fold induction# 

Gene Title 
Gene 

Symbol b-AP15 bortezomib 
heat shock 70kDa protein 6 (Hsp70B') HSPA6 1550 60 
heat shock 70kDa protein 1B (Hspa1b) HSPA1B 21 12 
DnaJ homolog, B1 (Hsp40B1) DNAJB1 22 5 

HCT116 cells were treated with IC90 concentrations of b -AP15 or bortezomib and 
mRNA levels were determined after reverse transcription and real time PCR. Fold 
induction is expressed as fold untreated control. The experiment was repeated with 
similar results.



Supplementary Methods 

 

Reagents. We obtained all reagents from the following sources: 20S proteasome (E-

360), 26S proteasome (E-365), 19S proteasome (E-366), Suc-LLVY-AMC (S-280), 

Z-LLE-AMC (S-230), Boc-LRR-AMC (S-300), Ubiquitin-AMC (U-550), Tetra-

ubiquitin K63 (UC-310), Tetra-ubiquitin K48 (UC-210), deconjugating enzyme set 

(KE10), HA-Ubiquitin Vinyl Sulfone (U-212) (Boston Biochem); anti-β actin (AC-

15), ODC-1 (HPA001536) (Sigma Aldrich); anti-LC-3 (2775), anti-GAPDH (2118), 

anti-p44/42 MAPK (4695), anti-Phospho-p44/42 MAPK (9101)(Cell Signaling); N-

Ethylmaleimide (34115) (EMD Chemicals); anti-Ubiquitin K48 (Apu2), anti-

Ubiquitin (MAB1510) (Millipore); anti-p53 (DO1), anti-UCHL5 (H-110), Hdm2 

(SMP14) (Santa Cruz); anti PARP (C2-10), anti-p27 (G173-524), anti-active Caspase 

3 (C92-605) (BD Biosciences); anti-USP14 (A300-919A) (Bethyl Laboratories); anti-

HA (12CA5)(Roche).  

 

Cell culture. MCF7 cells were maintained in MEM/10% fetal calf serum. HCT-116 

p53+/+, p53–/–, Bcl-2+ , BBC3–/– and BAX–/– cells were maintained in McCoy´s 5A 

modified medium/10% fetal calf serum. The HCT-116 p53+/+ p53–/–, BBC3–/– and 

BAX–/–  cells were generated as described 1. We generated the HCT-116 Bcl-2+  cell 

line by transfecting parental HCT-116 p53+/+cells with pCEP4 Bcl-2 (Addgene 

plasmid 16461) 2 and isolating high expression clones . FaDu and LLC3 cells were 

maintained in DMEM high glucose medium supplemented with 10% fetal calf serum, 

Na pyruvate, Hepes and non-essential amino acids. 4T1.12B carcinoma cells were 

maintained in RPMI medium supplemented with 10% fetal calf serum. The 

proteasome reporter cell line MelJuSo Ub-YFP was generated as described 3. Cells 

were maintained in Dulbecco’s Modified Eagle’s Medium/ 10 % fetal calf serum. The 

retinal epithelial cell line was generated as described 4. All cells were maintained at 

37oC in 5% CO2.  

 

Determination of cell apoptosis and viability. We seeded cells in 96-well microtiter 

plates at 10,000 cells per well and incubated overnight. Cells were treated with 

indicated drug for 24 h. At the end of the incubation period, NP40 was added to the 

tissue culture medium to 0.1 % and 25 µl of the content of each well was assayed 

using the M30-Apoptosense® ELISA as previously described 6.  We determined cell 



viability by measuring acid phosphatase activity or by FMCA 7. For the acid 

phosphatase activity cells were seeded at 5,000 cells per well in 96-well culture plates 

and incubated for 12 h at 37oC. Compounds were added to the cells in growth media 

and incubated for 72 h at 37oC. Cells were washed with 200 µl warm PBS. 100 µl of 

para-nitrophenyl phosphate (pNPP, 2mg/ml) in Na acetate buffer pH 5 (NaAc 0.1 M, 

0.1% Triton-X-100) was added per well. Cells were incubated for 2 h after which 

reaction was stopped by addition of 1N NaOH. Absorbance was measured at 405 nm. 

For the FMCA assay cells were seeded in the drug-prepared 384-well plates using the 

pipetting robot Precision 2000 (Bio-Tek Instruments Inc., Winooski, VT). The plates 

were incubated for 72 h and then transferred to an integrated HTS SAIGAN Core 

System consisting of an ORCA robot (Beckman Coulter) with CO2 incubator 

(Cytomat 2C, Kendro, Sollentuna, Sweden), dispenser module (Multidrop 384, 

Titertek, Huntsville, AL), washer module (ELx 405, Bio-Tek Instruments Inc), 

delidding station, plate holder, barcode reader (Beckman Coulter), liquid handler 

(Biomek 2000, Beckman Coulter) and a multipurpose reader (FLUOstar Optima, 

BMG Labtech GmbH, Offenburg, Germany) for automated FMCA. Survival index 

(SI) is defined as the fluorescence of test wells in percentage of controls with blank 

values subtracted. 

 

Substrate overlay assays. We performed native gel electrophoresis essentially as 

described 5. In brief 4 µg of purified 26S proteasome (Boston Biochem) was mixed 

with 10 or 50 µM b-AP15 and incubated at 37oC for 10 min. We resolved samples on 

4% non-denaturing PAGE and submerged gels in assay buffer (20 mM Tris-HCL, 5 

mM MgCl2, 1 mM ATP, 0.1 mM Suc-LLVY-AMC) and visualized proteasomes 

under UV illumination.  

 

Ubiquitin-cleavage assay. The recombinant Ub-GFP plasmid pet19b Ub-M-GFP was 

generated as described 23. We purified recombinant Ub-GFP from BL21 e.coli cells 

by His affinity purification. For cleavage assays we incubated 19S RP (25 nM) with 

10 mM NEM, 250 µM TPEN or 50 µM b-AP15 for 10 min followed by the addition 

of recombinant Ub-GFP (200 nM). We performed ubiquitin chain disassembly 

reactions as above except K48- or K63-linked ubiquitin tetramers (50 ng) were 

substituted for Ub-GFP. We generated the ubiquitinated HDM2 substrate according to 



the Boston Biochem protocol (K-200). For the cleavage assay we incubated 19S RP 

(25 nM) with 50 µM b-AP15 or DMSO for 10 min followed by the addition of 

ubiquitinated HDM2 (100 nM). 

 

Proteasome isolation: We treated HCT-116 cells with bortezomib (100 nM) or b-

AP15 (1 µM) for 3 hours. We lysed in 50 mM HEPES pH 7.4, 250 mM sucrose, 10 

mM MgCl2, 2 mM ATP, 1 mM DTT and 0.025 % digitonin.  Samples were sonicated 

briefly followed by incubation on ice and proteasomes were isolated according to 

manufacturers protocol.  

 

UbVS labeling. We lysed cell pellets from control or treated cells with buffer (50 

mM HEPES pH 7.4, 250 mM sucrose, 10 mM MgCl2, 2 mM ATP, 1 mM DTT) on ice 

for 15 min and removed debris by centrifugation. We labeled 25 µg of protein with 1 

µM HA-UbVS for 30 min at 37oC. We resolved samples by SDS-PAGE and 

performed immunoblotting.  

 

Cell-cycle analysis. For determination of cell cycle HCT-116 cells were treated with 

b-AP15 or DMSO Cells were harvested by trypsinisation, washed and fixed in 70% 

ice cold EtOH for 12 h. Cells were re-suspended in staining solution containing 

propidium iodide (50 µg/ml) and RNAse A (0.5 µg/ml) in PBS. Samples were run on 

BD FACScalibur. The percentage of cells in each phase of the cell cycle was 

determined using ModFit software. 

 

Determination of pulmonary metastases. Since the 4T1 cells are resistant to 6-

thioguanine, metastases can be determined by culturing homogonized tissue in the 

presence of 6-thioguanine. For determination of metatastic 4T1 cells the protocol was 

as described 8. In brief lungs from treated or untreated animals were homogenized and 

treated with collagenase and elastase. Cells were grown in the presence of 60 µM 6-

thioguanine for 2 weeks and the number of metastatic colonies determined by giemsa 

staining.   

 

Determination of caspase-cleaved CK18 in mouse plasma. For measurement of the 

apoptosis-related CK18-Asp396 fragment, 12.5 ml of plasma was collected 24 h after 



last treatment and analyzed using the M30 M30-Apoptosense® assay. Each sample 

was mixed with 0.4 ml of heterophilic blocking reagent (Scantibodies laboratory Inc). 

Immunostaining. Tumor sections were de-paraffinised with xylene, rehydrated and 

then incubated over-night with K-48 ubiquitin or active-caspase 3 (1/500) diluted in 

1% (wt/vol) bovine serum albumin and visualized by standard avidin–biotin–

peroxidase complex technique (Vector Laboratories). Counterstaining was performed 

with Mayer's haematoxylin.  

Statistical analyses. For comparisons of treatment groups, we performed the 

unpaired t test (Mann-Whitney), repeated measures ANOVA and Kaplan-Meier 

survival (Mantel-Cox test). All statistical analyses were performed using GraphPad 

Prism Software (version 5.0). Statistical significance was achieved when P was less 

than 0.05. 
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