
 

DEPARTMENT OF WOMEN’S AND CHILDREN’S HEALTH 

Karolinska Institutet, Stockholm, Sweden 

 

EFFECTS OF PROTEASOME 

INHIBITORS ON 

CHONDROGENESIS AND 

LINEAR BONE GROWTH 

Emma Eriksson 

 

 

Stockholm 2013 

 

 

 

 

 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Publications from Karolinska Institutet

https://core.ac.uk/display/70340592?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


All previously published papers were reproduced with permission from the publisher. 

 

Published by Karolinska Institutet. Printed by Larserics Digital Print AB, Stockholm. 

  

© Emma Eriksson, 2013 

 ISBN 978-91-7549-130-1

Cover photo: Reflection of growth in the human being. 

- From small beginnings come great things - 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To my beloved Family ♥ 

Nothing is IMPOSSIBLE, the word itself says “I’M POSSIBLE”!  

 



 

 

 

 

MAIN SUPERVISOR 

Professor Lars Sävendahl, MD, PhD 

Department of Women’s and Children’s Health 

Karolinska Institutet, Stockholm, Sweden 

 

 

CO-SUPERVISORS 

Associate Professor Dionisios Chrysis, MD, PhD 

Department of Pediatrics  

Pediatric Endocrinology Unit, Medical School, University of Patras, Greece 

 

Associate Professor Vladimir Bykov, MD, PhD 

Department of Women’s and Children’s Health 

Oncology-Pathology Unit, Cancer Centrum Karolinska (CCK) 

Karolinska Institutet, Stockholm, Sweden 

 

 

EXTERNAL MENTOR 

Dr. Ylva Hägblad, MD, PhD 

Danderyds Sjukhus AB, Stockholm, Sweden 

 

 

EXAMINER/OPPONENT 

Professor Francesco De Luca, MD, PhD 
Section of Endocrinology and Diabetes  

Drexel University College of Medicine, Philadelphia, USA 

 

 

EXAMINATION BOARD 

Associate Professor Rachel Sugars, PhD 
Department of Dental Medicine 
Karolinska Institutet, Stockholm, Sweden 

 

Professor Maria Masucci, PhD 
Department of Cellular and Molecular Biology   
Karolinska Institutet, Stockholm, Sweden 

 

Associate Professor Ingrid Öra, MD, PhD 
Department of Pediatric Oncology and Hematology 
Skåne University Hospital, Lund University, Sweden 

 



 

 

ABSTRACT 

Linear bone growth occurs at the growth plate, a thin layer of cartilage between the 

epiphysis and metaphysis of long bones. In the growth plate, resting/stem-like 

chondrocytes divide and generate the highly proliferative chondrocytes, which further 

differentiate into the enlarged hypertrophic form before being substituted by bone, a 

process called endochondral ossification. A precise balance between different factors 

affecting chondrocyte proliferation, differentiation/hypertrophy, matrix synthesis, and cell 

death within the growth plate must exist to ensure normal bone growth. Anti-cancer 

therapy can interfere with any of these processes, thereby affecting chondrogenesis and 

bone growth negatively. Proteasome inhibitors (PIs, e.g., MG262 and bortezomib) are a 

new, novel class of anti-cancer drugs. Bortezomib is approved for the treatment of adult 

hematologic malignancies, and is currently under clinical trials with pediatric cancers. So 

far, any undesired secondary side effects are yet unknown in treated children.  

The aim of this thesis was to address whether PIs affect linear bone growth and 

bone homeostasis, and if so, what the underlying cellular mechanisms are, and to find 

potential ways to protect bone growth during anti-cancer treatment. 

In the first study (Paper I), the effect of the non-clinically used PIs, MG262 and 

lactacystin, were investigated both in vitro and in vivo. Here we report for the first time 

that systemic administration of MG262 specifically targets the growth plate, and impairs 

linear bone growth in treated mice. The effect is linked to increased apoptosis of 

resting/stem-like chondrocytes in a caspase-dependent and independent manner. 

Inhibition of p53 and apoptosis-inducing-factor (AIF) were able to partly rescue from 

MG262-induced chondrocyte apoptosis. 

Since bortezomib is in pediatric clinical trials, it is even more important to delineate 

any possible secondary side effects on linear bone growth and bone homeostasis (Paper 

II). Our results demonstrate that a clinically relevant dose of bortezomib specifically and 

efficiently impairs the ubiquitin/proteasome system (UPS). Consequently, young mice 

display severe growth failure during treatment, as well as after a follow-up period of 6 

months post-treatment. This effect was mediated through a local action of bortezomib in 

the growth plate, causing increased resting/stem-like chondrocyte apoptosis and 

decreased differentiation. We also show that bortezomib mainly acts via the intrinsic 

apoptotic pathway, in which p53 and Bax appear to be the key regulators triggering 

apoptosis. In addition, cultured human growth plate cartilage was confirmed to be 

highly sensitive to bortezomib. 

In an attempt to rescue bone growth during bortezomib treatment, we utilized 

pharmacological inhibition of Bax by the synthetic peptide analog to endogenous 

humanin, [Gly
14

]-Humanin (HNG) (Paper III). We made the novel finding that HNG can 

rescue bone growth during bortezomib treatment by protecting resting/stem-like growth 

plate chondrocytes. Importantly, HNG did not interfere with the desired anti-cancer effect 

of bortezomib as tested and verified in tumor xenograft models as well as several human 

tumor cell lines. HNG also protected cultured human growth plate cartilage from the 

cytotoxic effects of bortezomib. 

In conclusion, our observations confirmed in vivo and in vitro, including human 

growth plate cartilage, suggest that bone growth could potentially be suppressed in 

children treated with PIs. We hereby propose that bone growth and bone mineralization 

should be closely monitored in ongoing pediatric clinical trials. In addition, HNG may 

have the capacity to prevent PI-induced bone growth impairment without interfering with 

the desired anti-cancer effect. 



 

 

POPULÄRVETENSKAPLIG SAMMANFATTNING 

Bakgrund: Benets längdtillväxt sker i tillväxtplattan, ett tunt skikt av brosk som 

återfinns i ändarna av de långa rörbenen. Tillväxtplattan består av 3 unika zoner, “den 

vilande” innehållande stamcellslika broskceller (kondrocyter) som övergår till den 

“proliferativa” där cellerna delar sig snabbt för att sedan öka i storlek och ge upphov till 

”hypertrofa” kondrocyter som slutligen dör och ben bildas. Så länge man växer på 

längden finns alltså tillväxtplattan kvar, men under den senare delen av puberteten har den 

helt omvandlats till ben och därmed slutar vi även växa. Cancerbehandling hos unga 

individer kan störa kondrocyternas utveckling, vilket resulterar i tillväxthämning. 

Proteasomhämmare (ex. bortezomib) är en ny, lovande klass av cancermediciner som är i 

kliniska försök på barn, men man vet ännu inte om den har några skadliga effekter på 

normala vävnader och tillväxtplattans kondrocyter och/eller längdtillväxt.  

Frågeställning: Syftet med denna avhandling var att undersöka om/hur 

proteasomhämmare påverkar benens tillväxt och förbening, utreda de bakomliggande 

cellulära mekanismerna och att finna möjliga sätt att skydda tillväxten under pågående 

cancer behandling. 

Experimentella modeller: Olika musmodeller, tillväxtbrosk tillvarataget i 

samband med operation från unga patienter, mellanfotsben från råtta samt odlade 

broskceller från både människa och råtta och även humana cancerceller. 

Resultat: I den första studien (artikel I) har vi studerat effekten av de icke-kliniskt 

använda proteasomhämmarna, MG262 och lactacystin. Våra resultat visar på att MG262 

har en direkt effekt i tillväxtplattan och hämmar tillväxten hos behandlade möss. Effekten 

är kopplad till ökad celldöd av de stamcellslika broskcellerna. Genom att blockera 

uttrycket av två regulatoriska proteiner, p53 och AIF, lyckades vi delvis rädda 

kondrocyterna från MG262-inducerad celldöd. 

Eftersom bortezomib är i kliniska prövningar på barn med cancer är det av yttersta 

vikt att undersöka om den har några biverkningar på benets utveckling och längdtillväxten 

(artikel II). Våra resultat tyder på att en klinisk relevant dos av bortezomib resulterar i 

permanent tillväxthämning, både under behandlingen och även efter en 

uppföljningsperiod på 6 månader efter sista injektionen hos möss. Bortezomib inducerar 

celldöd i tillväxtplattans stamcellslika kondrocyter, genom att aktivera flera proteiner som 

är kända för att medverka till att inducera celldöd. Dessa resultat är även i linje med vad 

vi ser i odlade biopsier från human tillväxtplatta, dvs. ökad celldöd (20%) jämfört med 

kontroll (obehandlad).  

I ett försök att rädda längdtillväxten vid behandling med bortezomib använde vi oss 

av ett syntetiskt framställt protein vid namn [Gly
14

]-Humanin (HNG) (artikel III). HNG 

har visat sig skydda från celldöd. Genom att kombinera bortezomib med HNG kan vi 

förhindra bortezomib’s negativa effekter på kondrocyterna och därmed rädda 

längdtillväxten. Viktigt nog så interfererar inte HNG med bortezomib’s anti-cancer effekt, 

vilket har bekräftats i flera olika experimentella modeller. 

Betydelse: Det är viktigt att barn kan ges nya mediciner med förbättrad 

anticancereffekt utan att orsaka allvarliga biverkningar i form av extrem kortvuxenhet, 

något som våra resultat tyder på att HNG kan förhindra. Vi rekommenderar att 

längdtillväxten övervakas och följas upp noggrant hos behandlade barn i de pågående 

kliniska prövningarna med proteasomhämmare.  
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1 FOREWORD 

 

This thesis focuses on a specific type of chemotherapy drugs called proteasome inhibitors 

(PIs), and their effects on linear bone growth. The general aim was to characterize 

whether PIs may have any eventual negative effects on chondrocytes and, in turn, induce 

bone growth impairment. Finally, an attempt was made to identify targets and therapies in 

the prevention of bone growth impairment without interfering with the desired anti-cancer 

effect of PIs. To address this, a wide range of experimental models were applied 

including chondrogenic and cancer cell lines, rat metatarsal bones, normal and genetically 

modified mice, human tumor xenograft mouse models, as well as human growth plate 

cartilage obtained from adolescent patients.          
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2 INTRODUCTION 

The development of more successful anti-cancer agents has increased the population of 

adult childhood cancer survivors (Smith, Seibel et al. 2010). However, the recent 

advances in treating childhood cancers with new and progressively more intensive 

treatment regimens have also led to cancer survivors facing long-term skeletal defects and 

impaired bone health (Robson, Anderson et al. 1998). It has become increasingly apparent 

that children grow poorly during and after applied cancer therapy, where osteopenia and 

osteoporosis often are found in adult survivors, a condition that increases the risk for 

fractures. Many clinical studies have outlined these problems (Kirk, Raghupathy et al. 

1987; Schriock, Schell et al. 1991; Thun-Hohenstein, Frisch et al. 1992), and recently, 

experimental in vivo/in vitro studies have started to investigate the direct effects of 

chemotherapy on linear bone growth, including underlying cellular mechanisms. The 

notion of these facts make it even more important to evaluate the eventual long-term 

effects on normal bystander tissues, including linear bone growth, of new therapeutic 

approaches in childhood cancers, including possible ways to prevent them.            

 

 

2.1 LINEAR BONE GROWTH  

2.1.1 The skeleton  

Skeletal growth is one of the most fundamental tasks of childhood development, 

including an important tool for the assessment of an individual’s health status. The 

skeletal system is multifactorial in that it provides the firm framework and support to 

the body, serves to protect internal organs, is the primary storage site for minerals, and 

functions in hematopoiesis. The vertebrate skeleton is separated into two major 

subdivisions, the axial and appendicular components. The axial skeleton consists of the 

skull, spine, sternum, and ribs, whereas the appendicular skeleton defines the bones of 

the extremities. Bone formation of the skeleton is the result of two distinct processes, 

intramembranous bone formation and endochondral ossification (Kronenberg 2003). 

Intramembranous bone formation gives rise to certain flat bones of the skull, pelvis, 

scapula, parts of the mandible and clavicle, as well as the cortical dense bone of the long 

bones, and is achieved by direct transformation of condensing mesenchymal cells into 

bone forming cells (osteoblasts). The axial and appendicular skeleton develops by 

endochondral ossification through a more complex, multistep process that first requires 
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formation and degradation of a cartilage structure that then serves as a foundation for 

the developing bone. This does not only take place during skeletogenesis, but is also a 

part of the subsequent postnatal growth, remodeling, and fracture repair (Stevens and 

Williams 1999).  

 

2.1.2 Bone development - limb formation 

The formation of the cartilage model and skeletal elements begins during embryogenesis 

with the migration and subsequent condensation of immature mesenchymal cells (Fig. 

1a). The mesenchymal cells differentiate and become chondrocytes that proliferate in a 

randomly oriented fashion and deposit extra cellular matrix (ECM) rich in collagen type II 

and the proteoglycan aggrecan that serves as a template for future bones (Fig. 1b). In 

humans, condensation can be found at 6.5 weeks gestation, whereas the                     

cartilage anlagens have been detected by 8 weeks gestation (Burkus and Ogden 1984; 

Horton 2003). Comparable structures can be seen in mice at 10.5 days and 11.5 days of 

the 19 days gestation, respectively (Kaufman 1992). Members of the Sox family of 

transcription factors, mainly Sox9, are essential for cartilage formation and chondrocyte 

differentiation, and has been implicated in the production of collagen type II (Bi, Deng et 

al. 1999). When the cartilage template is formed, chondrocytes in their centers stop 

proliferating, enlarge in size (hypertrophy), and stop expressing many chondrocyte 

specific genes such as Sox9 and begin to express genes characteristic of hypertrophic 

chondrocytes, including collagen type X, VEGF, HIF-1α, and alkaline phosphatase (Fig. 

1c and d) (Iyama, Ninomiya et al. 1991; Gerber, Vu et al. 1999; Schipani, Ryan et al. 

2001). Hypertrophic chondrocytes in the mid-shaft of the bone direct the mineralization of 

the cartilage model. Coinciding with these changes, the loose mesenchyme surrounding 

the cartilage model differentiate into the perichondrium, where bone forming cells 

(osteoblasts) form the bone collar adjacent to the mid-shaft, hypertrophic region (Fig. 1c 

and d). Blood vessels, osteoclasts, as well as bone marrow, and osteoblast precursors then 

invade the cartilage model from the perichondrium and proceed to form the primary 

ossification center (Fig. 1e and f). The primary center expands towards the ends of the 

cartilage model as osteoclasts, remove cartilage ECM, and osteoblasts deposit bone on the 

cartilage remnants (Fig. 1g and h). As linear bone growth proceeds chondrocytes in the 

center of the epiphysis stop proliferating, become hypertrophic and attract vascular 

invasion along with osteoblasts forming the secondary ossification centers at each end of 

the long bones (Fig. 1i) (Kronenberg 2003). Now, in-between the primary- and secondary 
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ossification centers, at each end of the long bones, the cartilage that is left is called growth 

plate, which is the tissue responsible for linear bone growth. Growth plates are found in 

all long bones, and are established around the end of the first trimester in humans and 

around 15 days of gestation in mice (Horton 2003). Skeletal maturity occurs when the 

expanding primary center meets the secondary ossification centers, thus eliminating the 

growth plate. This process is called endochondral ossification, from where the cartilage 

template is replaced by bone that is initiated during fetal life and continues until growth 

ceases in late puberty/early adulthood.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Schematic representation of bone formation and growth. a, b) The initial 

condensation of mesenchymal cells and their differentiation to chondrocytes forms the 

cartilage anlagen of future bones. c) Chondrocytes in the central anlage further 

differentiate and enlarge in size (hypertrophy). Coincidently, the loose mesenchyme 

surrounding the cartilage anlage differentiates into perichondrium. d) Osteoprogenitor 

cells in the perichondrium differentiate into osteoblasts and form the bone collar adjacent 

to the mid-point of the cartilage model, which will become surrounded by the periosteum. 

This process is followed by vascular and osteoblastic invasion into the central cartilage 
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anlage (e), and cartilage is replaced by bone (formation of the primary ossification center) 

(f). This process expands toward the ends of the bone (g, h), where secondary ossification 

centers later form in the epiphyseal cartilage with formation of the mature growth plates 

(i). Illustration reprinted with permission from Elsevier Copyright (2006) and Horton WA 

from the paper “FGFs in endochondral skeletal development” by Horton WA and Degnin 

CR. Trends in Endocrinology and Metabolism 2006;20(7):341-348. 

 

 

 

2.1.3 Growth plate structure and function  

The growth plate, a transient layer of hyaline cartilage that is present only during the 

growth period is found between the epiphysis and metaphysis at each end of the growing 

long bones, and is the basic structure for endochondral ossification. The growth plate 

consists of three distinct zones: the resting zone, the proliferative zone, and the 

hypertrophic zone (Figure 2). Any imbalance in the different factors regulating 

chondrocytes in the different zones may result in impaired bone growth. It is the 

combination of chondrocyte proliferation, chondrocyte hypertrophy, and ECM production 

that is the major contributor to linear growth: each of them accounting for approximately 

10%, 60%, and 30%, respectively (Wilsman, Farnum et al. 1996). 

 

2.1.3.1 Resting zone 

The resting zone contains immature and undifferentiated chondrocytes, resting/stem-like 

cells, capable of generating new clones of proliferative zone chondrocytes (Hunziker 

1994; Abad, Meyers et al. 2002). The term “stem-like” indicate that they have the 

capacity to feed daughter cells into the adjacent proliferative layer, but are not a true stem-

cell per se with the ability to continuously divide and develop into various other kinds of 

cells/tissues. Resting/stem-like chondrocytes are nearly spherical in shape, exist as single 

cells or in pairs separated by large amounts of ECM consisting largely of collagen type II 

and proteoglycans, and they exhibit a low proliferative rate. In rabbits, it was previously 

shown that when removing the proliferative- and hypertrophic zones from the growth 

plate, leaving only the resting zone, this was enough to reestablish a completely new 

growth plate (Abad, Meyers et al. 2002). The same group also showed that these cells are 

essential for orientation of the underlying proliferative-zone columns by producing a 

growth plate-orienting factor (GPOF) (Abad, Meyers et al. 2002). These findings 

underscore the importance of the resting/stem-like chondrocytes for proper bone growth, 
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and any disturbances in their activity can therefore have severe harmful effects of 

chondrogenesis and bone growth. 

 

2.1.3.2 Proliferative zone 

Chondrocytes in the matrix-rich proliferative zone become larger in size and more 

discoid/flattened in shape, and line up in columns perpendicular to the long axis of the 

bone. These cells actively produce large amounts of ECM containing collagen type II and 

type IX, which help maintain the integrity, function, and shape of the growth plate 

(Hunziker and Schenk 1989; Nilsson and Baron 2004). The human growth plate grows 

slowly in comparison to rodents, and the rate of cell division in the proliferating cells of 

the cartilage columns is low. For example, distal femur growth rate in humans (5-8 

years of age) is 35 µm per day with a cell cycle time of approximately twenty days, 

whereas in a young rat, the growth rate is 200 µm per day with a cell cycle time of 2 

days (Kember and Sissons 1976). In the rat, there is a relatively rapid rate of cell 

division for cells in the central part of the proliferation zone (50-60 % of cells dividing 

every day), while cells at the end of the columns are dividing more slowly (5-10 % each 

day). Similar phenomenon is also seen in the human growth plate (Kember and Sissons 

1976)..Eventually, the chondrocytes in this zone lose their characteristic discoid shape 

and their capacity to divide; subsequently, they enter the zone of maturation (hypertrophic 

zone). An interesting observation is that during puberty, when the characteristic growth 

spurt is obvious, there is no evidence that the number of cells in the proliferative zone 

increases, and thus it seems likely that proliferating cells divide faster in order to produce 

the increased growth rate (Kember and Sissons 1976).  

  

2.1.3.3 Hypertrophic zone 

Growth in this zone is no longer the result of proliferation/cell division, instead the 

chondrocytes enlarge in size (hypertrophy), take on a round appearance, secrete large 

amounts of ECM rich in collagen type X, and express vascular endothelial growth factor 

(VEGF), matrix metalloproteinases (MMPs), and fibroblast growth factors (FGFs), which 

all are important for subsequent bone remodeling (Baron, Klein et al. 1994; Gerber, Vu et 

al. 1999; Haeusler, Walter et al. 2005). These cells continue to enlarge to the point where 

they have increased their intracellular volume approximately 10 times (Hunziker, Schenk 

et al. 1987). Hypertrophy is characterized by an increase in intracellular calcium 

concentration, essential for the production of matrix vesicles (small membrane-bound 
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particles that are released from hypertrophic chondrocytes), which contains large amount 

of annexins that mediate calcium uptake (Anderson 2003). The vesicles secrete calcium 

phosphatase, hydroxyapetite, and MMPs, resulting in mineralization of the surrounding 

matrix. The mineralization process together with the low oxygen tension and expression 

of VEGF attracts blood vessels from the underlying primary ossification center/primary 

spongiosum, which together are the key mechanisms for attracting bone cells into the 

hypertrophic cartilage (Gerber, Vu et al. 1999). When all glycogen stores are depleted, the 

mineralized chondrocytes lastly undergo “death” at the chondro-osseous junction, leaving 

a platform for new bone formation. There still seems to be a debate as to how 

chondrocytes are finally removed, and different theories have been proposed, such as 

programmed cell death (apoptosis) (Zenmyo, Komiya et al. 1996), or a type of aberrant 

cell death (e.g., necrosis, chondroptosis, autophagy, transdifferentiation, 

“paralysis”/”limbo” (unable to live or die)) (Roach and Erenpreisa 1996; Erenpreisa and 

Roach 1998; Meijer and Codogno 2004; Roach, Aigner et al. 2004). What is clear, 

however, is that chondrocyte removal at the chondro-osseous junction is a part of the 

normal process of bone elongation, and any disturbances might lead to defective linear 

bone growth.  

 

 

 

Figure 2. Structural organization of the growth plate cartilage. The growth plate is 

located in each end of the long bones. The hatched square on the left skeletal image is 

further clarified by the middle magnetic resonance (MR) picture that indicates the distal 

femur, knee joint, proximal tibia, and the growth plates (white horizontal line within the 
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bones indicated by arrows). The right microscopic image shows the schematic cellular 

orientation of the growth plate located between the epiphysis and metaphysis. The growth 

plate is divided into three distinct zones that represent histological and functional stages 

of chondrocyte differentiation: resting (stem-like), proliferative, and hypertrophic zones.

  

 

2.1.4 Mediators and regulation of bone growth 

Formation of the skeleton and linear bone growth are processes that are critically 

dependent on the proper homeostasis and balance between different genetic and hormonal 

factors, growth factors, environment, and nutrition, which may influence the final height 

of an individual (some of which are further explained below). Intrauterine growth in 

humans is where the most rapid growth of a lifetime takes place, with a complete fetus of 

approximately 50 cm in length produced from a single cell in only 9 months. Before birth, 

the key regulators of growth are believed to be nutrition, IGF-I and -II, and insulin, 

functioning largely independent of GH (Gluckman 1997). This is based on findings from 

both knockout experiments in mice, and in congenital GH deficiency in humans were 

birth length was only mildly diminished, whereas in congenital IGF deficiency, birth size 

was severely affected (Woods, Camacho-Hubner et al. 1996). Postnatal linear growth in 

humans is divided into three major phases: Infancy, Childhood, and Puberty (according to 

the ICP-model), which are strongly reflected by the different hormonal phases of the 

growth process (Karlberg 1987). The first phase, infancy, is characterized by a high 

growth rate from birth, with a rapid deceleration up to about three years of age. 

Childhood, the second phase, sees slow growth during the early age of childhood up to 

puberty. From birth, GH is an important modulator of longitudinal bone growth (given 

normal thyroid hormone secretion) together with the IGFs. Consequently, defects in any 

of these factors results in severe dwarfism (Rosenfeld, Rosenbloom et al. 1994; Gothe, 

Wang et al. 1999; Lopez-Bermejo, Buckway et al. 2000). The third period, puberty, is 

associated with an increased growth rate known as the pubertal growth spurt. The spurt 

itself accounts for approximately 20% of final height, then growth velocity rapidly 

decreases due to growth plate maturation in the long bones and spine, and thus, 

subsequently final height for an individual will be achieved. In other mammals, a similar 

dramatic decline in growth rate occurs, but without a superimposed pubertal growth spurt. 

Epiphyseal fusion is an active process with its own hormonal control, cellular 

mechanisms, and structural features (Perry, Farquharson et al. 2008). In both sexes, 

estrogen is the critical hormone in controlling growth plate acceleration and fusion 
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(Grumbach 2004). The general idea that bone growth stops has been believed to be 

because of growth plate fusion (Wilkins 1965). However, this concept has been 

challenged by the observations that cessation of growth occurs first, followed later by 

fusion of the growth plate (Roach, Mehta et al. 2003).  

 

2.1.4.1 Local (autocrine/paracrine) regulation of growth plate cartilage 
 

SRY (Sex determining region) Y-box 9 (Sox9): Sox9 is a critical factor for all phases of 

the chondrocyte lineage, from early condensation to the conversion of proliferating to 

hypertrophic chondrocytes, and also determines the fate of mesenchymal stem-cell (MSC) 

condensations into collagen type II-expressing chondrocytes (Lefebvre and de 

Crombrugghe 1998). Sox9 mutation causes the rare condition campomelic dysplasia, 

characterized by severe dwarfism and skeletal anomalies (Foster, Dominguez-Steglich et 

al. 1994). 

 

Runt-related Transcription Factor 2 (RUNX2): RUNX2, previously named Cbfa1, is 

important in the regulation of growth plate cartilage by promoting differentiation of 

chondrocytes into hypertrophy as well as for its role in osteogenesis (Inada, Yasui et al. 

1999). 

 

Indian Hedgehog (Ihh)/ Parathyroid Hormone-related Peptide (PTHrP) signaling: 

Ihh, produced by prehypertrophic and early hypertrophic chondrocytes, is considered 

the master regulator of chondrocyte proliferation and differentiation, as well as 

osteoblast differentiation and ossification of the perichondrium (Vortkamp, Lee et al. 

1996). Ihh binds to its receptor, patched-1 (Ptc-1), which leads to activation of the 

membrane protein, Smoothend (Smo), required for the actions exerted by Ihh on cells. 

PTHrP, expressed by periarticular perichondrium with its receptor found highly 

expressed in late-proliferating and early-hypertrophic chondrocytes, plays a crucial role 

in keeping proliferative chondrocytes in the proliferative stage (Vortkamp, Lee et al. 

1996). The orchestrated feedback loop involving Ihh and PTHrP plays key roles in 

regulating the entry and exit of cells into and out of the columnar zone. Ihh can 

stimulate the entry of resting/stem-like chondrocytes into the proliferative zone 

independent of PTHrP (Kobayashi, Soegiarto et al. 2005), or it can stimulate the 

expression of PTHrP in periarticular cells, thereby regulating the onset of hypertrophic 
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differentiation. PTHrP in turn signals back to chondrocytes in the proliferative zone by 

binding to its receptor, inhibiting differentiation into Ihh‐expressing prehypertrophic 

cells, thereby shutting off the production of Ihh by maintaining these cells in the 

proliferative phase (St-Jacques, Hammerschmidt et al. 1999). The importance of this 

Ihh/PTHrP feedback loop for normal endochondral bone formation is underscored by 

the illustrations that disruption of any of the components results in abnormal limb 

development (St-Jacques, Hammerschmidt et al. 1999). 

 

Bone morphogenetic proteins (BMPs): The family of BMPs is comprised of at least 15 

members. BMP signaling is essential for endochondral ossification by promoting the 

commitment of mesenchymal cells to the chondrogenic lineage, as well as in the 

regulation of proliferation and hypertrophy of growth plate chondrocytes (Pogue and 

Lyons 2006).  

 

Fibroblast growth factors (FGFs): The family of FGFs constitutes at least 22 members 

that interact with at least four receptors (FGFR), and are major regulators of embryonic 

bone development (Ornitz and Marie 2002). FGFs are mainly produced by cells in the 

perichondrium, and act in a paracrine manner on FGFRs expressed in proliferative and 

hypertrophic chondrocytes in the growth plate. Opposite to Ihh/PTHrP and BMP 

signaling, FGFs provide essential inhibitory signals in the control of chondrocyte 

proliferation. 

 

Vascular endothelial growth factor (VEGF): VEGF appears to be a key factor for 

vascularization of the growth plate, and a critical step for successful bone formation. 

During chondrocyte hypertrophy, ECM surrounding the hypertrophic cells becomes 

calcified, which triggers the invasion of blood vessels from the underlying metaphyseal 

bone. This is preceded by the expression of VEGF in hypertrophic chondrocytes (Gerber, 

Vu et al. 1999). Thus, VEGF is an essential coordinator of chondrocyte death, 

extracellular matrix remodeling, angiogenesis, and bone formation in the growth plate. 

 

Wingless-type MMTV integration site family (Wnts): At least 19 Wnts comprise a family 

of secreted cysteine-rich glycoproteins that interact with several receptors called Frizzled 

(Fzd). Wnts are expressed in the surrounding tissue of the early mesenchymal 

condensations that will become the cartilage template of the new bone (Day, Guo et al. 
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2005). Low Wnt signaling allows for chondrogenesis and subsequent endochondral 

ossification, whereas high Wnt signaling enhances ossification of mesenchymal cells. 

 

 

2.1.4.2 Hormonal regulators of growth plate cartilage 
 

Growth hormone (GH): GH is believed to be the key endocrine regulator of linear bone 

growth, together with a coordinated network of IGFs, IGF-I and IGF-II, and their 

receptors. Enhanced GH secretion caused by a pituitary adenoma in childhood cause 

gigantism (Sotos 1996), while any defects leads to severe dwarfism (Wit, Drayer et al. 

1989; Rosenfeld, Rosenbloom et al. 1994; Lopez-Bermejo, Buckway et al. 2000). 

Systemic actions of GH are thought to be mediated by IGF-I, formerly known as 

“sulfation factor” or “somatomedin” (Salmon and Daughaday 1957), which is produced 

systemically by the liver or locally by chondrocytes (Le Roith, Bondy et al. 2001). 

Interestingly, double knockout of GHR and IGF-I results in mice that are smaller than 

single gene knockouts, indicating that GH and IGF-I co-interact positively by 

stimulating bone growth (Lupu, Terwilliger et al. 2001). However, a direct effect of GH 

in chondrocytes has been suggested, as the growth hormone receptor is detected in all 

zones of the growth plate (Parker, Hegde et al. 2007). This concept is supported by the 

finding that local GH injection into the tibia growth plate accelerated linear growth 

compared to the unilateral bone (Isaksson, Jansson et al. 1982). Furthermore, GH may 

act directly on resting/stem-like chondrocytes to stimulate proliferation, as well as 

indirectly, through IGF-I to promote chondrocyte hypertrophy (Wang, Zhou et al. 

2004). However, these observations do not discard the possibility that some of the 

effects are mediated by local production of IGF-II.  

  

Insulin-like Growth Factors (IGFs): This family includes three ligands (IGF-I, IGF-II, 

and insulin), their cell surface receptors (IGF-IR, IGF-II/[M-6-P]R, and IR), and six high-

affinity binding proteins (IGFBP-1 to -6) which prolong the half-life of the IGFs and 

modulate their bioavailability and activity (Le Roith, Bondy et al. 2001). IGF-I plays an 

important role during both embryonic and postnatal growth, indicated by severe growth 

failure in mice carrying null mutations in the IGF-I gene (Liu, Grinberg et al. 1998). IGF-

I is produced by chondrocytes in the proliferative zone, and increased expressions are 

found upon stimulation with GH, suggesting that IGF-I has a specific role in the 
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differentiation of chondrocytes through autocrine/paracrine mechanisms (Nilsson, 

Isgaard et al. 1986). IGF-I and -II receptors are expressed throughout the growth plate, 

but was found to decrease with age coincident with a period of rapid decline in growth 

velocity (Parker, Hegde et al. 2007). IGF-II was found at high levels in the growth plate, 

especially in resting and proliferative chondrocytes, suggesting a role in proliferation 

(Parker, Hegde et al. 2007). IGF-II is a positive regulator of prenatal growth; however, its 

role during postnatal growth remains unclear.  

 

Thyroid hormones: Thyroid hormones, triiodothyronine (T3, the active form of thyroid 

hormone) and thyroxine (T4, the pro-hormone) are crucial for normal bone maturation. 

They act through thyroid hormone receptors (TRs) expressed in the resting and 

proliferative zones to regulate chondrocyte proliferation, differentiation, and vascular 

invasion at the growth plate (Robson, Siebler et al. 2000). Part of these effects appear to 

be mediated by modulating local GH and/or IGF-I actions (Williams, Robson et al. 

1998).  

 

Glucocorticoids (GCs): Prolonged GC therapy in various clinical conditions is 

associated with decreased bone volume as well as growth retardation (Bello and Garrett 

1999). In contrast, familial GC deficiency is associated with tall stature (Elias, Huebner 

et al. 2000), suggesting that GC is a potent negative regulator of chondrogenesis. 

Evidence for a direct effect of GC in the growth plate came from a study in which local 

dexamethasone infusion was found to reduce tibia growth compared with the 

contralateral vehicle-injected leg (Baron, Klein et al. 1994). GC-receptors are expressed 

in the proliferating and hypertrophic zones, and GC-induced growth inhibition is most 

likely explained by reduced chondrocyte proliferation and matrix synthesis in 

combination with increased apoptosis of hypertrophic chondrocytes (Chrysis, Ritzen et 

al. 2003). 

 

Estrogens: Estrogen is the main determinant for the puberty-associated phenomena 

related to longitudinal growth and bone quality, including growth plate fusion in boys 

and girls (Grumbach 2000), probably by accelerating chondrocyte proliferation, and 

thus advancing chondrocyte senescence (exhaustion of the proliferative capacity). Much 

of the growth acceleration due to estrogen is mediated by estrogen-induced stimulation 

of the GH/IGF-I axis. The local action of estrogens in the growth plate is mainly 
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supported by the expression of the two nuclear receptors, estrogen receptor-α (ERα) and 

estrogen receptor-β (ERβ), and also by the more recently identified membrane-bound G 

protein-coupled estrogen receptor 1 (GPER1, formerly known as GPR30) (Nilsson, 

Chrysis et al. 2003; Chagin and Savendahl 2007).  

 

Androgens: Androgens also contribute to the pubertal growth spurt, although to a lesser 

extent than estrogens, by mechanisms not fully understood. Most of the androgen 

effects on linear bone growth are probably due to aromatization into estrogen in 

peripheral tissues, possibly in the growth plate as well. This hypothesis is supported by 

findings of chondrocyte expression of aromatase P450 (CYP19), which converts 

testosterone into estrogen (Oz, Millsaps et al. 2001). However, androgens may also have 

a direct effect as androgen receptor (AR) expression has been detected in rat and human 

growth plate cartilage (van der Eerden, van Til et al. 2002; Nilsson, Chrysis et al. 2003).  

 

Leptin: Leptin is a hormone secreted primarily by white adipose tissue, regulates food 

intake and body weight. Leptin deficiency in mice impairs linear bone growth, while 

treatment of these mice with leptin injections increased bone growth (Steppan, 

Crawford et al. 2000). In contrast, in the few humans described with leptin deficiency or 

leptin-receptor deficiency, skeletal growth appeared normal (Ozata, Ozdemir et al. 

1999). Leptin receptors are expressed in chondrocytes, and leptin-treatment was found 

to stimulate chondrocyte proliferation and differentiation as well as IGF-I-receptor 

expression (Maor, Rochwerger et al. 2002). 

 

2.1.4.3 Environmental factors 

Besides genetic control, many lifestyle/environmental factors including exercise, nutrition 

and medical treatments also play important roles in regulation of bone growth and 

remodeling. Adequate physical exercise and loading are important for normal bone 

growth, bone mass accumulation, and bone strength (Khan, McKay et al. 2000). 

 

 

2.2 CELL DEATH 

Cell death can occur by either of two distinct mechanisms: apoptosis or necrosis. In 

addition, autophagy is considered yet another mode of cell death, as is cytotoxicity by 

certain chemical compounds that can combine the aspects of deaths mentioned above. 
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2.2.1 Apoptosis 

Apoptosis (type I cell death), “normal” or “programmed” cell death, was first described in 

the literature in 1972 (Kerr, Wyllie et al. 1972), and the term apoptosis, from the Greek 

word for the “falling off” of leaves from trees is used to describe the process in which a 

cell actively participates in its own destructive process. Cell death is a normal 

physiological and highly controlled process that occurs during embryonic development, in 

the maintenance of tissue homeostasis, and also includes the death of differentiated 

hypertrophic chondrocytes to facilitate linear bone growth. The apoptotic program is 

characterized by certain morphological features such as cell shrinkage, loss of membrane 

symmetry (blebbing), condensation of the cytoplasm and chromatin within the nucleus, 

and DNA cleavage (biochemical hallmark of apoptosis), an irreversible event that 

commits the cell to die. Thus, organelle structures are usually preserved intact. In the final 

stages, the dying cells become fragmented into “apoptotic bodies”, which are rapidly 

eliminated by phagocytotic cells or macrophages without inducing any inflammatory 

response. On the other hand, inappropriate induction of apoptosis, either too much or too 

little, has pathological implications. Many cancer therapeutics (including PIs) exert their 

effects through initiation of apoptosis, and even cancer progression itself seems 

sometimes to depend upon a selective, critical failure of apoptosis. In mammalian cells, 

two major apoptotic signaling pathways exist, the extrinsic pathway that is dependent on 

death receptors (DRs) on the cell surface, and the intrinsic pathway, which is dependent 

on the mitochondria (Figure 3).  
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Figure 3. Extrinsic/Intrinsic apoptotic pathways. (1) Extrinsic/death receptor (DR) 

pathway: Upon death, stimuli/ligand binding by Fas to its specific extracellular DR 

(Fas/APO-1/CD95), formation of the death inducing signaling complex (DISC) takes 

place, which results in recruitment and activation of caspase-8. Caspase-8 can cleave 

effector caspases such as caspase-3, resulting in a caspase cleavage cascade to induce 

apoptosis, and thus caspase-8 is an important pro-apoptotic protein for the extrinsic 

apoptotic pathway. (2) In comparison, the intrinsic/mitochondrial apoptotic pathway 

initiates from within the cell. A number of different stimuli such as DNA damage can 

induce transcription of p53, which can modulate transcription of a number of members 

of the Bcl-2 family BH3-only proteins such as Bak, Bax and Bid, for example. These 

proteins translocate to the mitochondria where they promote the release of cytochrome c 

and/or inhibit anti-apoptotic Bcl-2/Bcl-XL. Cytochrome c then binds to Apaf-1, which 

further complexes with pro caspase-9 to form the apoptosome, promoting further 

cleavage of downstream effector caspases. FLIP, Bcl-2, Bcl-XL, survivin, and IAP are 

the key anti-apoptotic proteins within the extrinsic and intrinsic apoptotic pathways. 

Crosstalk between pathways occurs at the caspase level. Caspase-8 can cleave cytosolic 
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Bid to truncated Bid (tBid), whereby tBid promotes cell death via activation of Bax 

and/or Bak. Cleavage of effector caspases (by either pathway) results in apoptosis 

induction and its associated phenotype (DNA fragmentation, membrane blebbing, cell 

shrinkage, and the formation of apoptotic bodies). Mitochondrial dysfunction can also 

result in caspase-independent apoptosis, regulated via apoptosis-inducing factor (AIF). 

Proteins indicated in red are pro-apoptotic and those in green are anti-apoptotic. 

  

 

2.2.1.1 Extrinsic apoptotic pathway  

Activation of apoptosis is initiated by the binding of specific protein ligands to cell 

surface transmembrane DRs that will transduce pro-apoptotic signals from the 

extracellular space into the intracellular milieu (see Figure 3). The DRs consist of 6 

members: TNF-R1, Fas, DR3, DR4, DR5, and DR6, which all have an extracellular 

cysteine-rich domain, which is required for ligand binding, and an intracellular death 

domain (DD), which is required for apoptotic signal transduction (Rossi and Gaidano 

2003). When the specific ligand binds its respective DR, a trimerization of the receptor 

occurs, which is essential for the downstream apoptotic signaling events, with subsequent 

formation of the Death Inducing Signaling Complex (DISC) and recruitment of 

procaspase-8. Next, procaspase-8 is proteolytically activated to caspase-8 with subsequent 

activation of effector caspases such as caspase-3 and/or -7, leading to apoptosis by 

digestion of proteins (Thorburn 2004). The apoptotic signal can be amplified through the 

mitochondria (Luo, Budihardjo et al. 1998) or suppressed by the endogenous inhibitor, c-

FLIP, that competes with procaspase-8 for binding to the DISC (Irmler, Thome et al. 

1997). The extrinsic and intrinsic apoptotic pathways are thereby intimately connected. 

 

2.2.1.2  Intrinsic apoptotic pathway  

This pathway is induced by direct damage to the cell from a wide range of factors, such as 

cellular stress, irradiation, lack of growth factors and chemotherapeutic agents that may 

cause mitochondrial damage (see Figure 3). Mitochondria are triggered to release proteins 

into the cytoplasm, such as cytochrome c, AIF, and/or second mitochondria-derived 

activator of caspases (Smac)/DIABLO. Released cytochrome c interacts with the caspase 

adaptor molecule, Apaf-1, procaspase-9, and dATP to form the apoptosome complex (Li, 

Nijhawan et al. 1997). This complex dimerizes and activates caspase-9, which then 

promotes effector caspases, caspase-3, -6, and -7, resulting in cell death by activation of 

the executioner protein in the apoptotic cascade, Poly (ADP-ribose) polymerase (PARP). 

Cytochrome c release and subsequent activation of caspase-9 and the downstream events 
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are controlled by the Bcl-2 family of proteins, which are important in preventing and 

promoting apoptosis (Danial and Korsmeyer 2004). The pro-apoptotic protein, Bax, 

belonging to the Bcl-2 family, has been shown to play an essential role during 

intrinsic/mitochondria- mediated apoptosis where, upon activation, it translocates to 

mitochondria and causes apoptogenic protein release (Elmore 2007). Previous 

observation suggests that the ratio of Bcl-2 to Bax determines survival or death 

following an apoptotic stimulus (Oltvai, Milliman et al. 1993). 

 

Current data provide sufficient evidence to support a role for apoptosis in the growth plate 

as a developmentally normal process during bone elongation (Burdan, Szumilo et al. 

2009), including the regulation of different anti-apoptotic (e.g., Bcl-2 and Bcl-XL) and 

pro-apoptotic (e.g., Bax, Bad, Bcl-XS, and caspases) proteins (Amling, Neff et al. 1997; 

Chrysis, Nilsson et al. 2002). Interestingly, Bcl-2 was shown to be widely expressed in 

proliferative and prehypertrophic chondrocytes, but markedly decreased in late 

hypertrophic chondrocytes (Amling, Neff et al. 1997). The opposite pattern was observed 

for Bax protein expression, with undetectable levels in proliferative cells, and a 

progressive increase towards hypertrophic chondrocytes. This imbalance of anti- and pro-

apoptotic proteins, including TUNEL-positive cells, indicates that apoptosis is a process 

of normal chondrogenesis. Chrysis and co-workers further concluded that apoptosis is 

developmentally regulated during normal growth in rats by the detection of Bcl-2, Bcl-X, 

p53, Bax, and caspase-3 and -6 (Chrysis, Nilsson et al. 2002). They also reported that in 

older rats that show decreased growth rate and growth plate height, apoptosis is increased 

in terminal hypertrophic chondrocytes. The importance of Bcl-2 in the growth plate was 

further demonstrated in mice lacking Bcl-2, which showed accelerated apoptosis and bone 

growth impairment (Amling, Neff et al. 1997). Moreover, in both PTHrP knockout mice 

(Amizuka, Henderson et al. 1996) and in mice having an active mutation in FGFR3 

(Legeai-Mallet, Benoist-Lasselin et al. 1998), increased apoptosis of chondrocytes was 

demonstrated. In summary, these studies and others point to the importance of apoptosis 

for normal development and regulation of linear bone growth.   

 

2.2.2 Necrosis 

Necrosis, “accidental” cell death, is a pathological process in which the cell has no active 

role (Kerr, Wyllie et al. 1972). The cellular characteristics are swelling of cells, loss of 
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membrane integrity, and total cell lysis with subsequent provoking of an inflammatory 

response.  

 

2.2.3 Autophagy 

Autophagy (type II cell death), a type of self-degradation has been reported as the final 

fate for hypertrophic chondrocytes (Shapiro, Adams et al. 2005). The discovery of 

autophagy was first described in 1966 (De Duve and Wattiaux 1966), and the term 

autophagy in 1973 (Schweichel and Merker 1973): it is characterized by double-

membrane autophagic vacuoles (autophagosomes), which are organelles that are used for 

“eating” itself by use of its own proteins and lipids as nutrients. In 1996, Roach and 

Erenpreisa described hypertrophic chondrocytes that exhibited unusual ultramicroscopic 

structures with condensed chromatin, although the morphology was different from both 

apoptosis and necrosis (Erenpreisa and Roach 1998). Later, they observed an increase in 

the amount of both the endoplasmic reticulum and Golgi apparatus, and termed the type 

of death observed as chondroptosis (Roach, Aigner et al. 2004). This term was later 

revised by reassessment of the terminal hypertrophic chondrocytes that showed a death 

that resembled the characteristics of autophagy (Shapiro, Adams et al. 2005). Recently, 

genes known to trigger autophagy were found to be expressed in the growth plate 

(Watanabe, Bohensky et al. 2008) as well as the cartilage microenvironment, where low 

protein, glucose, and oxygen levels further support a trigger of the autophagic response.  

 

 

2.3 CHEMOTHERAPY 

The development of increasingly intense and successful chemotherapy regimens has 

appreciably produced a growing population of childhood cancer survivors (Smith, 

Seibel et al. 2010). Chemotherapy drugs can be divided into several groups based on 

how they work, their chemical structure, and their relationship to other drugs. The main 

chemotherapeutic drug classes include alkalyting agents (DNA-damaging), 

antimetabolites (interfering with DNA and RNA synthesis), anti-tumor antibiotics 

(anthracyclines, interfering with enzymes involved in DNA replication), topoisomerases 

(inhibiting of topoisomerase enzymes), mitotic-inhibitors (interfering with cell 

replication), corticosteroids/GCs (slowing growth, and killing of cancer cells), 

miscellaneous chemotherapy drugs/targeted therapies (e.g., proteasome inhibitors). The 

main aim of chemotherapy is to target cancer cells that by definition are quickly 
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growing cells with high proliferative rates. However, in children, normal cells in some 

tissues such as cartilage also grow, proliferate, and differentiate relatively fast during 

certain periods in life, and may thereby be targeted by these drugs as well. 

Consequently, skeletal defects and impaired bone health during childhood cancer 

treatment is a common problem, and its etiology is often multifactorial, resulting from 

the disease itself, the intensity and duration of chemotherapy, other types of therapies 

applied to enhance the cure, and malnutrition. It has become increasingly apparent that 

children grow poorly during and after the cancer therapy, and osteopenia and 

osteoporosis are also often found in adult survivors, leading to a higher risk for fractures 

(Schriock, Schell et al. 1991; Athanassiadou, Tragiannidis et al. 2005). Many clinical 

studies have outlined these problems, and recently, in vivo and in vitro experimental 

studies have started to delineate the effects by which these agents target chondrocytes, 

and in turn affect linear bone growth. Hence, the question arises whether the reported 

growth impairment of chemotherapy is due to a direct effect on cartilage/bone tissue, or 

via a systemic imbalance of essential hormones for bone growth (e.g., GH/IGF-I). We, 

and others have demonstrated a direct effect on growth plate chondrocytes and linear 

bone growth, without any systemic alterations by drugs such as 5-fluorouracil 

(commonly used for treatment of solid tumors), topoisomerase inhibitor, etoposide, and 

the alkylating agent cyclophosphamide (Wu and De Luca 2006; Xian, Cool et al. 2006; 

Xian, Cool et al. 2007; Zaman, Menendez-Benito et al. 2007; Eriksson, Zaman et al. 

2012). So far, any unwanted effect on linear bone growth has to our knowledge not yet 

been reported in children treated with PIs. Nevertheless, in preclinical models, we, and 

others, have reported that PIs have severe negative effects on chondrogenesis and linear 

bone growth (Wu and De Luca 2006; Xian, Cool et al. 2006; Xian, Cool et al. 2007; 

Zaman, Menendez-Benito et al. 2007; Eriksson, Zaman et al. 2012) (discussed further in 

2.4.5). In summary, it is of great importance to increase our understanding of the 

underlying cellular mechanisms involved, and finally to determine how the growth 

potential of individuals might be maintained during treatment for childhood cancers.  

 

2.3.1 Malnutrition 

Adequate nutritional intake is also essential for optimal skeletal development and 

growth in children, as the most common cause of growth retardation, worldwide, is 

malnutrition. In most cases, when food consumption is corrected, spontaneous catch-up 

growth occurs: however, reaching a final height depends upon several factors: the amount 
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of growth that is completed before starvation, the growth that is left, and the duration of 

the starvation period (Acheson and Macintyre 1958). Consequently, catch-up growth is 

not always complete, leading to growth deficits. Vitamin D and Calcium, both necessary 

for normal bone growth, are taken up in sufficient amounts by securing an adequate diet. 

The importance of vitamin D for skeletal growth has been demonstrated by vitamin D 

deficiency, leading to delay of linear bone growth, bone abnormalities, and increased 

fracture risk in adulthood (Holick 2007). Calcium is a fundamental nutrient for bone 

mineralization, formation, and maintenance of both the structure and stiffness of the 

skeleton (Bueno and Czepielewski 2008). 

  

2.3.2 Catch-up growth 

Catch-up growth may occur following remission of diverse growth-retarding conditions 

(e.g., Cushing syndrome, hypothyroidism, celiac disease, anorexia nervosa/malnutrition, 

and GH deficiency). The phenomenon of catch-up growth was first described by Prader et 

al. (Prader, Tanner et al. 1963), in which they noted an accelerated height velocity that 

exceeds the normal growth rate for the particular age. As a result, final height is 

improved, although this recovery of height may or may not be complete. Two principal 

hypotheses have been proposed to explain the mechanism of catch-up growth. Tanner 

postulates that catch-up growth is regulated by a “time tally” mechanism that exists in the 

brain that compares the actual body size with an age-appropriate set point and adjusts the 

growth rate accordingly (Tanner 1963). This neuroendocrine hypothesis has been 

challenged by recent studies, suggesting that catch-up growth is due to intrinsic factors in 

the growth plate (Baron, Klein et al. 1994; Gafni and Baron 2000). According to the 

intrinsic model, the mechanism explaining catch-up growth may be that a maximum 

number of cell divisions exist for each chondrocyte within the growth plate. Growth-

inhibiting conditions decrease chondrocyte proliferation, and when remission takes place, 

these cells have a greater proliferating potential, explaining the increased growth rate. 

However, these studies have all been performed in animals, in which the pattern of catch-

up growth is quite different from that of humans. For example, in a child who catches up, 

height velocity can be four times that of normal growth, whereas in rodents and rabbits 

the growth velocity increment is minimal (van der Eerden, Karperien et al. 2003). 

Additional studies are needed to address the process of catch-up growth in humans.  
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2.4 THE UBIQUITIN/PROTEASOME SYSTEM (UPS) 

2.4.1 Proteasome – structure and function 

In cells, two major destruction pathways exist, involving either the lysosome or the 

ubiquitin/proteasome system (UPS). This thesis focuses on the latter system.  

 

Proteasomes are large (2000 kDa), multimeric protease complexes residing inside all 

eukaryotes, archaea, and in some bacteria. In eukaryotes, they are located in the nucleus 

and the cytoplasm (Peters, Franke et al. 1994). The main function of the proteasome is 

to maintain cellular homeostasis by degrading unwanted or misfolded proteins, thereby 

making it essential for many cellular processes including cell proliferation, regulation of 

gene expression, cell death, signal transduction, and immune surveillance.   

 

In structure, the eukaryotic 26S proteasome is a cylindrical complex composed of the 

two outer 19S regulatory cap subunits (700 kDa) situated at each end of the 20S 

proteolytic core (see Figure 4). The two outer 19S regulatory subunits consist of six 

ATPase active sites, and approximately eight non-ATPase subunit ubiquitin binding 

sites: it is these structures that recognize the polyubiquitinated proteins, unfold them and 

transfers them into the catalytic 20S core were they become degraded into peptide 

fragments. The 20S proteolytic core of the proteasome is well conserved between 

species. It resembles a hollow, barrel shaped structure, consisting of four stacked 

heptameric rings composed of a total 28 subunits. The outer two rings in the stack 

consist of seven α subunits each, whose function is to maintain a "gate" through which 

proteins can enter the barrel, as well as to block unregulated access of substrates into the 

interior core. The inner two rings each consist of seven β subunits and contain the 

protease active sites that perform the proteolysis reactions. Three distinct proteolytic 

active sites within the β subunits have been identified: chymotrypsin-like (C-L, β5, 

cleavage after hydrophobic residues), trypsin-like (T-L, β2, cleavage after basic 

residues) and caspase- or peptidyl-glutamyl peptide hydrolyzing-like (PGPH, β1, 

cleavage after acidic residues) (Cardozo 1993). 
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Figure 4. The ubiquitin/proteasome system (UPS). The ubiquitination of target 

proteins is mediated by ubiquitin-activating enzyme (UAE, E1), ubiquitin-carrier 

proteins (E2), ubiquitin-protein ligases (E3), and ubiquitin-chain assembly factor (E4). 

Polyubiquitinated substrate proteins are recognized and unfolded by the 19S cap and 

then degraded into peptide fragments within the 20S catalytic core of the 26S 

proteasome. Bortezomib reversibly inhibits the C-L, β5-site of the proteasome. This 

figure is adapted with minor modifications by me with permission from: D. Chen, M. 

Frezza, S. Schmitt, J. Kanwar and Q. P. Dou, Bortezomib as the First Proteasome 

Inhibitor Anticancer Drug: Current Status and Future Perspectives. Current Cancer 

Drug Targets, 2011;11(3): 239-253. 

 

 

2.4.2 Degradation by the proteasome - Ubiquitination and targeting 

Aaron Ciechanover, Awram Hershko, and Irwin Rose’s work from the late 1970s and 

early 1980s received the Nobel Prize in Chemistry in 2004 for the identification of 

proteolytic degradation inside cells (Hershko, Ciechanover et al. 1981) and the role of 

ubiquitin in proteolytic pathways (Hershko, Ciechanover et al. 1980).   

 

Proteins destined for proteasomal degradation are first recognized and tagged with the 

76 amino acid polypeptide ubiquitin (highly conserved from yeast to mammals), which 

binds to lysine residues on the targeted protein (see Figure 4). The tagging reaction is 

catalyzed by sequential action of key ubiquitin ligases, consisting of four different sets 
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of enzymes: E1 ubiquitin-activating enzyme (UAE), E2 (ubiquitin-carrier proteins), E3 

(ubiquitin-protein ligases), and E4 (ubiquitin-chain assembly factor). In the first step of 

the ubiquitin conjugation cascade, ubiquitin is activated by E1 in an ATP-dependent 

manner. Following activation, activated ubiquitin is transferred to E2, which either 

directly shuttles ubiquitin to a protein substrate or does it in cooperation with E3. E4 

enzymes function as mediators of ubiquitin chain elongation. Once the protein substrate 

is mono-ubiquitinated, a polyubiquitin chain is formed through the same cascade as 

described above. The cooperative action of the ubiquitin ligases results in specific 

tagging and subsequent degradation of intracellular proteins. The degradation process 

within the 20S proteasome yields peptides of about seven to eight amino acids long, 

which can then be further degraded into shorter amino acid sequences and used in 

synthesizing new proteins. 

 

2.4.3 Proteasome inhibitors (PIs) 

Due to the fact that the UPS is involved in a diverse number of critical cellular processes, 

defects of various components within this complex system are associated with 

pathological disorders including malignancies, neurodegenerative diseases (e.g., 

Alzheimer’s disease (AD), Parkinson’s disease, amyotrophic lateral sclerosis, and 

Creutzfeld–Jakob disease), and genetic diseases (e.g., Cystic fibrosis and Angelman's 

syndrome) (Ciechanover 1998).  

 

Furthermore, the importance of this cellular system has also attracted great interest into 

the development of inhibitors against it as an attractive target for therapeutic 

intervention of different human diseases such as cancer and stroke. PIs are broadly 

categorized into two groups: natural inhibitors and synthetic inhibitors. Natural product 

PIs include: linear peptide epoxyketones, peptide macrocycles, γ-lactam thiol ester, and 

epipolythio-dioxopiperazine toxin (Myung, Kim et al. 2001). Six main chemical classes 

of synthetic PIs exist: peptide benzamides, peptide α-ketoamides, peptide aldehydes, 

peptide α-ketoaldehydes, peptide vinyl sulfones, and peptide boronic acids (Myung, 

Kim et al. 2001). These agents were generally not considered for clinical development 

due to their lack of specificity and potency for the proteasome, and the fact that they 

were metabolically unstable. Most of today’s available PIs are targeted against the 20S 

catalytic core of the proteasome, thereby blocking general proteolysis, and ultimately 

resulting in the accumulation of a wide variety of proteins destined for degradation by 
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the proteasome, thus likely contributing to toxicity. To date, among all tested and 

available PIs, bortezomib (Velcade
™

) and Carfilzomib (Kyprolis
™

) have been approved 

by the US Food and Drug Administration (FDA) for the treatment of multiple myeloma 

(Kane, Bross et al. 2003; Kortuem and Stewart 2013), and bortezomib for mantle cell 

lymphoma as well (Kane, Dagher et al. 2007). The efficacy of bortezomib as a single 

agent or in combination with other drugs is also being extensively studied in different 

types of malignancies (Cvek 2012). Currently, there are about 200 active clinical trials 

of bortezomib for various kinds of cancers listed in ClinicalTrials.gov. Several new and 

promising compounds have entered into clinical trials such as CEP-18770 (phase I), 

MLN9708 (phase I), marizomib (NPI-0052, Salinosporamide A, phase I), and ONX-

0912 (phase I) (Cvek 2012). The knowledge and interest of specific upstream inhibitors 

of the UPS aims to improve specificity by limiting protein targets within the cell, 

hopefully resulting in fewer adverse effects with similar anti-cancer activity. Novel 

targeted inhibitors of the enzymes within the UPS are in development and testing, 

including inhibitors of: UAE (PYZD-4409, PYR-41), Nedd8 activating enzyme (NAE, 

MLN4924), E3 (nutlins, R7112, MI-219, MI-43), deubiquitinating enzymes (DUBs, b-

AP15) (Cvek 2012). The work within this thesis has tested two different classes of PIs: 

the natural inhibitor lactacystin, and the two synthetic peptide boronic acids, MG262 

and bortezomib (Velcade
™

). 

 

2.4.3.1 Lactacystin 

An organic compound that is a Streptomyces lactacystinaeus metabolite that was 

discovered due to its ability to induce neurite outgrowth in a murine neuroblastoma cell 

line (Omura, Fujimoto et al. 1991). Later, Fenteany and colleagues showed that 

lactacystin (376.43 g/mol) also targets the 20S proteasome by irreversible blocking of 

all three β-subunits (Fenteany, Standaert et al. 1995), where lactonization into its active 

component, clasto-lactacystin β-lactone, is necessary for inhibition of the proteasome.   

 

2.4.3.2 MG262 

MG262 (Z-LLL-Boronate, 491.4 g/mol) is a highly potent and selective cell permeable 

synthetic peptide boronic acid inhibitor of the 20S proteasome, where it binds and 

blocks the C-L activity in the β5 subunit of the proteasome. MG262 significantly 

inhibits the growth of most cultured cells with a concentration of less than 100nM.    
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2.4.3.3 Bortezomib 

Bortezomib (Pyrazylcarbonyl-PheLeu-Boronate, 384.24 g/mol) was originally 

synthesized in 1995 and termed MG-341 (Myogenics Company). After promising 

results from in vitro and in vivo studies, it was tested in a small phase I clinical trial on 

multiple myeloma patients and then named PS-341. In 1999, Millennium 

Pharmaceuticals bought the rights to it and performed extensive clinical trials. 

Preclinical studies demonstrated that bortezomib was very potent against a broad range 

of cancer cell lines in vitro (Adams, Palombella et al. 1999) and in various animal 

xenograft models (Adams 2002). In 2003, seven years after the initial synthesis, it was 

approved in the US by the FDA with the name of bortezomib (brand name Velcade
™

) 

for treatment of multiple myeloma (Kane, Bross et al. 2003; Adams and Kauffman 

2004), and has recently been approved for mantle cell lymphoma (Kane, Dagher et al. 

2007).   

 

Bortezomib is a low molecular weight, water-soluble synthetic dipeptide boronic acid that 

shows high inhibitory potency and degree of target selectivity for the 20S core of the 

proteasome, and disassociates slowly (Adams, Palombella et al. 1999). Pharmacokinetic 

studies revealed that bortezomib quickly distributes into tissues from the plasma within 10 

minutes, where its half-life is more than 40 hours (Schwartz and Davidson 2004). 

Bortezomib is primarily metabolized through intracellular oxidative deboronation 

mediated by several cytochrome P450 isoenzymes into inactive enantiomers that are 

further processed and eliminated, mainly in the bile (66%), with the remainder excreted in 

the urine (Adams, Palombella et al. 1999). Bortezomib binds and blocks the C-L activity 

in the β5 subunit of the proteasome. Maximum proteasome inhibition occurs within 1 

hour and recovers close to baseline within 72 to 96 hours after administration (Schwartz 

and Davidson 2004). In addition, the measurement of proteasome inhibition is the 

clinical marker for a targeted effective dose and should be within the 50–80% range 

(Adams and Kauffman 2004). Because of promising results of bortezomib as an anti-

cancer drug in adults and in pre-clinical studies of pediatric cancers, clinical trials in 

children are ongoing. Recent phase I studies of bortezomib in pediatric patients with solid 

tumors or acute lymphoblastic leukemia (ALL) demonstrated that the drug is well 

tolerated with promising therapeutic activity (Blaney, Bernstein et al. 2004; Horton, Pati 

et al. 2007; Messinger, Gaynon et al. 2010; Muscal, Thompson et al. 2013). 
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2.4.4 Malignant cells vs. normal cells - side effects associated with PIs 

The most frequent adverse effects (incidence > 30%) in the patients treated with 

bortezomib include asthenic conditions (e.g., fatigue, generalized weakness), 

gastrointestinal events (e.g., nausea, constipation, diarrhea, vomiting, poor appetite), 

hematological effects (e.g., low platelet and erythrocytes counts), and peripheral 

neuropathy (Chen, Frezza et al. 2011). It has been demonstrated that malignant cells 

harbor elevated proteasome activity compared with normal cells (Arlt, Bauer et al. 2009; 

Ma, Kantarjian et al. 2009). Furthermore, expression of proteasome and mRNA levels is 

increased in malignant human cell lines compared with lymphocytes and monocytes from 

healthy adults (Kumatori, Tanaka et al. 1990). Accordingly, it seems widely accepted to 

say that cancer cells are more dependent on their proteasome activity for survival than 

normal cells. Hideshima et al. reported that myeloma cell lines or patient-derived 

myeloma cells were at least 170-fold more sensitive to bortezomib compared with 

peripheral blood mononuclear cells from healthy volunteers (Hideshima, Richardson et al. 

2001). Bortezomib has shown multiple targets in malignant cells including: i) activation 

of extrinsic and intrinsic apoptotic pathways, depending on cell type and dose, coupled 

with decreased levels of anti-apoptotic proteins; ii) suppression of the growth and survival 

factor, Nuclear factor kappa light-chain-enhancer of activated B cells (NF-κB) signaling 

pathway; iii) inhibition of angiogenesis; iiii) induction of endoplasmatic reticulum (ER) 

stress and generation of reactive oxygen species (ROS) (Adams 2004). Thus, given the 

fact that bortezomib is able to target multiple pathways and networks important for cell 

survival, it is not surprising that normal cells may also be targeted. Cytotoxic effects of 

bortezomib on immunocompetent cells have been observed, suggesting an important role 

of the proteasome in these cells, and that the immune system may be defenseless in 

treated patients. It was recently demonstrated that bortezomib induces apoptosis in 

resting natural killer (NK) cells (Wang, Ottosson et al. 2009), and bortezomib treatment 

has been shown to enhance the susceptibility to viral infections by altering antigen 

processing (Basler, Lauer et al. 2009). PIs have also been shown to impair protein 

synthesis and induce cell death in rat neurons due to mitochondrial damage (Cavaletti, 

Gilardini et al. 2007). In pigs, chronic proteasome inhibition is associated with increased 

coronary artery oxidative stress and early arthrosclerosis (Herrmann, Saguner et al. 2007).  
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2.4.5 Proteasome inhibition and side effects on chondrocytes 

It has been reported that articular cartilage chondrocytes undergo apoptosis after 

treatment with the peptide aldehyde PIs, PSI and MG132, an effect related to induction 

of the extrinsic apoptotic pathway with CD95 and caspase-8 activation (Kuhn and Lotz 

2001). On the contrary, proteasome inhibition has also been implicated as a potential 

chondroprotective modality in rat experimental osteoarthritis by increasing intracellular 

HSP70 expression, which was able to protect the chondrocytes from OA-induced 

cytotoxicity (Grossin, Etienne et al. 2004). To date, except for our own studies, there is 

only one additional study showing a link between linear bone growth and proteasome 

inhibition (Wu and De Luca 2006). In that study, they used the peptide aldehyde 

proteasome inhibitor I (PSI), and showed that it reduces linear bone growth in cultured 

fetal rat metatarsal bones. This effect was linked to suppressed growth plate 

chondrocyte proliferation and hypertrophy/differentiation, together with increased 

chondrocyte apoptosis. They also showed that treatment with PSI in chondrocyte cell 

cultures increases the expression of β-catenin (negative regulator of chondrogenesis) 

and reduces the DNA binding of the transcription factor NF-κB (known to stimulate 

chondrogenesis). In line with this, we have recently shown that proteasome inhibition, 

by MG262 and bortezomib causes severe growth retardation both in vitro and in vivo 

(Papers I-III in this thesis). We observed growth failure to be associated with increased 

apoptosis mainly in resting/stem-like chondrocytes: in addition, detailed 

characterization of the underlying apoptotic pathways revealed that several pro-

apoptotic proteins were up-regulated (e.g., p53 and Bax) with induction of 

mitochondrial damage, whereas the anti-apoptotic proteins were down-regulated (e.g., 

Bcl-2 family of proteins). These finding underscore the importance of proper follow-up 

studies in treated children, both during and after PI-treatment.     

 

 

2.5 GROWTH RESCUING THERAPY 

Our mechanistic data in growth plate chondrocytes supports a role for both p53 and Bax 

during PI-induced chondrocyte apoptosis. In order to prevent the undesired effect on 

chondrogenesis and linear bone growth caused by PIs, we aimed to test genetic and 

pharmacological targeting against these pro-apoptotic proteins as potential growth 

rescuing therapies. However, complete characterization of the apoptotic pathways after 
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proteasome inhibition will also help us to identify the molecular players involved, and 

to be targeted, for the prevention of undesired bone growth-effects.   

   

2.5.1 Inhibition of p53 

To investigate the role of p53 during PI-induced apoptosis, a small molecule p53-inhibitor 

(pifithrin-α) was employed for suppression via the siRNA technique. Pifithrin-α has been 

shown to suppress p53-mediated apoptosis, and to protect mice from lethal doses of 

gamma-radiation (Komarov, Komarova et al. 1999), suggesting that pharmacological 

suppression of p53 may be a therapeutic approach to reduce the side effects of cancer 

treatment. Occurrence of p53-dependent apoptosis is likely to be one of the major players 

associated with side-effects in normal cells during cancer treatment (Komarova and 

Gudkov 1998), therefore, therapeutic suppression of p53 could help reduce the damage to 

normal tissues. Obviously, this approach is only applicable in tumors where p53 is 

mutated and/or absent, and the anti-cancer treatment applied is known to kill cancer cells 

independent of p53. PIs can induce both p53-dependent and independent apoptosis 

(Pandit and Gartel 2011). Accordingly, a combination of PIs and p53-inhibitors should 

therefore not interfere with the ability to induce apoptosis in p53-mutated cancers, but 

instead, rescue normal p53-dependent cells.  

 

2.5.2 Humanin 

Another approach that we used was through pharmacological inhibition of Bax, with a 

relatively new peptide called humanin. Approximately 10 years ago, humanin (MTRNR2) 

was discovered by a group in Japan (Hashimoto, Niikura et al. 2001). Humanin was 

discovered during a search for neurosurvival factors in unaffected areas of an AD 

patient’s brain. The question of the origin of endogenous humanin still needs to be 

resolved, due to two peptide isoforms of 21 or 24 amino acids being known, depending on 

cytoplasmic or mitochondrial translation respectively (Guo, Zhai et al. 2003). 

Additionally, there is still an open question whether humanin is translated in the 

cytoplasm or mitochondria, as both of them showed similar biological activity (Guo, Zhai 

et al. 2003). Humanin is also the first peptide discovered within the mitochondrial genome 

since its complete sequencing in 1981 by Anderson et al., and it is encoded by an open 

reading frame (ORF) found within the 16s rRNA gene. The synthetic analog to humanin, 

[Gly
14

]-HNG (HNG), where serine at position 14 is replaced by a glycine residue, was 

shown to increase the neuroprotective effects by 1000-fold (Hashimoto, Niikura et al. 
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2001) (Figure 5). Humanin and its analogs have shown promising therapeutic effects, thus 

so far only in experimental models, mainly in neurodegenerative diseases such as memory 

impairment (Mamiya and Ukai 2001), dementia/AD (Hashimoto, Niikura et al. 2001; 

Tajima, Kawasumi et al. 2005), and stroke (Xu, Chua et al. 2006). Humanin has also been 

shown to protect during myocardial infarction (Muzumdar, Huffman et al. 2010), and 

during conditions of oxidative stress and/or ischemia (i.e., oxygen deprivation due to 

reduced blood flow) (Bachar, Scheffer et al. 2010). Humanin levels are also known to 

decrease with age in both rats and humans, suggesting that humanin may play a role in the 

aging process (Bachar, Scheffer et al. 2010; Muzumdar, Huffman et al. 2010). Although 

all studies with humanin and its analogs show protective effects, the mechanisms by 

which they act is not yet understood. However, humanin has been shown to activate G-

coupled formyl peptide receptor like 1 and 2 (FPRL1 and FPRL2) (Harada, Habata et al. 

2004), STAT (Hashimoto, Suzuki et al. 2005), and glycoprotein 130 (gp130) (Hashimoto, 

Kurita et al. 2009). Thus, the findings above were observed in different cell types and not 

consistent for all cells, which stress the fact that different cell types may employ different 

receptors or mechanisms to respond to humanin. Humanin has shown both extracellular 

as well as intracellular rescuing activities. Extracellular activities by humanin have been 

shown by its possibility to increase insulin/IGF-I signaling assessed by AKT-1 

phosphorylation in mouse neurons (Zou, Ding et al. 2003), to be a potent insulin sensitizer 

(Muzumdar, Huffman et al. 2009), and protect neuronal cells by interacting with insulin-

like growth factor-binding protein 3 (IGFBP-3) (Ikonen, Liu et al. 2003). Humanin’s 

intracellular activities were indicated by its interaction with pro-apoptotic proteins (e.g. 

Bax, Bid, Bak and BimEL) (Guo, Zhai et al. 2003; Luciano, Zhai et al. 2005; Zhai, 

Luciano et al. 2005). The anti-apoptotic effect of humanin was specific to Bax-dependent 

apoptosis, as apoptosis by Bax-independent stimuli was not suppressed. Humanin has also 

been shown to have anti-inflammatory properties by decreasing cytokine levels, such as 

TNF-α and IL-6 (Miao, Zhang et al. 2008). Interestingly, the ubiquitin-protein ligase, 

TRIM11, was found to bind and ubiquitinate humanin for proteasomal degradation, thus 

adding another level to its regulation (Niikura, Hashimoto et al. 2003). In summary, 

humanin has shown beneficial anti-apoptotic and cell-protective properties during 

episodes of toxicity, serum starvation, hypoxia, and stress conditions, for example, both in 

vitro and in vivo in different cell-types, and possibly acts as a mitochondrial autocrine, 

paracrine and endocrine signal. 
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Figure 5. Amino acid sequence of humanin and HNG. The 24-amino acid peptide 

sequence of endogenous humanin (top), and of the synthetic peptide analog, HNG 

(bottom), where a single amino acid substitution at position 14 with a glycine (G) for 

serine (S) increases the biologic potency by ~1000-fold. 
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3 PROJECT RATIONALE 

Current treatment programs for pediatric cancers provide more than an 80% survival rate. 

However, adult survivors of childhood malignancies frequently suffer from secondary 

long-term complications after previous life-saving treatments (Oeffinger and Hudson 

2004; Oeffinger, Mertens et al. 2006), experiencing consequences of short stature, skeletal 

morbidity such as osteopenia, as well as bone fractures as well-known recorded long-term 

sequelae (Robson, Anderson et al. 1998; van der Sluis, van den Heuvel-Eibrink et al. 

2002). Increasing survival rates and progressively more intensive treatment regimens 

make it even more important to evaluate the long-term effects on normal bystander 

tissues. Despite the prevailing clinical evidence, there have been few investigations into 

the direct effects of anti-cancer agents and potential ways to rescue linear bone growth 

during treatment for childhood cancers. New therapeutic options specifically targeting 

cancer cells and limiting the toxic side effects are needed. The proteasome is a potential 

target for such a novel cancer therapy (Rajkumar, Richardson et al. 2005). 

 

During the development of a new drug to be used in clinical practice, it is important to 

investigate any potential adverse effect(s) the drug might have on normal bystander 

tissues. The proteasome is an enzyme that is central to many processes required for cell 

survival, and questions regarding complications with side effects towards normal cells 

when targeting this vital cellular system arise, especially in young individuals. In this 

thesis, the focus has been directed toward a new class of anti-cancer drugs, PIs, which are 

thought to signal a new era of novel drugs. My main investigation has been on 

bortezomib, which is routinely used in the adult clinic for hematological malignancies 

(Kane, Bross et al. 2003; Kane, Dagher et al. 2007), and is currently in clinical trials of 

pediatric cancers (Blaney, Bernstein et al. 2004; Messinger, Gaynon et al. 2010; Muscal, 

Thompson et al. 2013). However, so far, any unwanted secondary side effects on 

chondrogenesis and linear bone growth in treated children are unknown. Therefore, all my 

efforts have been directed toward finding out if there might be any potential risks for 

chondrocytes and on linear bone growth by the use of this drug, and, if so, can we prevent 

these without interfering with the desired anti-cancer effect in young, treated individuals?  

 

Often it is difficult to address the contribution of a specific drug/agent and its relative 

effect on chondrocytes and linear bone growth from clinical studies, since the disease 
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itself, the well-being of the patient, the nutritional status, and the different agents 

applied to enhance the cure, will have an effect on linear bone growth. For that reason, 

different experimental models can be of great help in trying to differentiate these effects, 

including mechanisms of action, and preventative strategies. Accordingly, we have 

employed a number of different model systems and methods to address our specific 

aims, all of which are discussed in the coming sections.  
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4 PROJECT AIMS  

 

The thesis focuses on the preclinical evaluation of proteasome inhibitor (PI) treatment and 

its effects on chondrogenesis and linear bone growth. The aims also encompassed 

characterization of new therapeutic approaches to prevent bone growth failure after 

previous life-saving treatment.   

 

 

The specific aims of the thesis were: 

 

 To investigate the effects of the non-clinically approved PIs, MG262 and 

lactacystin, on chondrogenesis and linear bone growth both in vitro and in vivo. 

 

 To investigate the effects of the clinically used PI, bortezomib, on chondrocytes, 

linear bone growth, and bone remodeling including the underlying molecular 

mechanism both in vitro and in vivo. 

 

 To explore if [Gly14]-Humanin (HNG, a 24-aminoacid synthetic anti-apoptotic 

peptide), can prevent bortezomib-induced bone growth impairment without 

interfering with the desired anti-cancer effect of bortezomib both in vitro and in 

vivo. 
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5 METHODOLOGY 

5.1 Proteasome Inhibitors (PIs):  

The drugs used and included in this thesis include Lactacystin (Sigma-Aldrich, 

Schnelldorf, Germany), and MG262 (Bimol International, SMS-gruppen), which both 

were pre-diluted in dH2O, of which the latter was diluted in DMSO for in vivo studies. 

Bortezomib (Velcade
™

, formerly known as PS-341, LDP-341 and MLM341, Millennium 

Pharmaceuticals, Cambridge, MA) was dissolved in 3.5 ml saline (0.9%) to a final 

concentration of 1 mg/ml (2.6 mM). The synthetic peptide analog of endogenous 

humanin, [Gly14]-humanin (HNG) (Sigma-Aldrich, Schnelldorf, Germany) was diluted 

in saline (0.9%) to a final concentration of 0.5 mg/ml or 1 mM. All drugs were aliquoted 

and stored at -80 ºC until use.   

 

 

5.2 MODEL SYSTEMS 

The perfect animal model and/or method might not exist, and each of them has its own 

advantages and drawbacks. It is up to the investigator to choose the best model/method to 

be used that best represents and has the best ability to determine and illustrate the features 

of the current investigation. The model/method chosen should also be assessed upon 

whether its labor, technical, and/or financial demands are properly met. 

 

5.2.1 Cell lines 

5.2.1.1 HCS-2/8 (Paper I):  

The availability of primary human chondrocytes is very limited, and therefore we chose to 

use the human clonal chondrocytic cell line, HCS-2/8. These cells derive from a well-

differentiated type of human chondrosarcoma that best resembles the in vivo-like 

phenotype (Takigawa, Tajima et al. 1989). It is well characterized and widely used to 

study chondrocyte proliferation/differentiation. The cells grow slowly, with a doubling 

time of 3-4 days, and their morphology resembles that of primary chondrocytes. 

Moreover, they maintain the important markers for a chondrocytic phenotype, such as 

collagen type II (marker for proliferative chondrocytes), and following differentiation, 

they start to express proteoglycans and collagen type X (i.e., a marker of hypertrophic 

chondrocytes), including three-dimensional nodule formation.    
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5.2.1.2 RCJ3.1C5.18 (C5.18) (Papers I, II, and III): 

In this thesis, the non-transformed clonal rat chondrogenic C5.18 cell line was generally 

used. This is a mesenchymal stem cell system that has been established through sequential 

steps of subcloning of isolated fetal rat calvaria cells (Grigoriadis, Heersche et al. 1988). 

The C5.18 cell line spontaneously and sequentially undergoes chondrocyte differentiation 

and terminal differentiation, displaying cartilage phenotypic stability without requiring 

biochemical or oncogenic transformation (Grigoriadis, Heersche et al. 1996; Lunstrum, 

Keene et al. 1999). Even though this system is based upon an in vitro situation, the 

morphology, cartilage specific histochemical markers, and the acquisition of the 

chondrocytic phenotype in this cell system is identical to the chondrogenic process that 

occurs in vivo (Lunstrum, Keene et al. 1999). These facts make it ideal and unique for 

studying chondrocytic cellular and molecular regulation, in addition to suggesting that our 

findings are relevant to the in vivo process. The C5.18 cell line was used and cultured as 

previously described (Spagnoli, Hwa et al. 2001). Briefly, after reaching confluence 

(resting phase; 4 days),
 
cells were treated with fresh Eagle’s minimum essential medium 

(MEM) alpha supplemented with 50 µg/ml ascorbic acid
 
and 10 mM β-glycerophosphate. 

After 4-7 days of culture, the cells acquire markers of early chondrocytic differentiation
 

(i.e., collagen type II and proteoglycan synthesis), and progressively
 
acquire markers of 

terminal differentiation (e.g., collagen type X and alkaline phosphatase activity) at 10-14 

days of culture. The cultures were monitored over a total period of 12 days and cultures 

were supplemented with fresh MEM alpha every 3 days.  

 

5.2.1.3 Human cancer cell lines (Paper III): 

In order to verify that HNG does not interfere with the anti-cancer effect of bortezomib, 

we investigated several different human cancer cell lines with different phenotypic and 

genotypic characteristics. The cell lines include (and are further described in Paper III); 

six neuroblastoma  cell lines (SH-SY5Y, SK-N-BE(2), SK-N-AS, SK-N-SH, SK-N-DZ 

and IMR32); six medulloblastoma (MBL)/supratentorial primitive neuroectodermal cell 

lines (D283, D324 (also called DAOY), D425, D458, UW228-3, and PFSK-1), prostate 

cancer PC3 (ATCC CRL-1435), non-small cell lung carcinoma A549 (ATCC CRL-

2271), colon cancer (e.g., HCT116), breast cancer (e.g., MCF-7), and acute lymphatic 

leukemia (ALL; CCRF-CEM).  
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5.2.2 Organ cultures of metatarsal bones (Papers I, II, and III): 

In vitro cultures of both fetal (embryonic day 20 (E20)) rat metatarsal bones (Papers I- 

III), and postnatal (day 8 (P8)) rat metatarsal bones (Paper II) have been used to screen 

and characterize the local/direct effects of PIs on linear bone growth. Organ cultures, in 

comparison to cell cultures provide an environment that more closely reflects the in vivo 

situation. This in vitro model system enables maintenance of important factors, such as 

the cell-cell interactions, cell-matrix contacts, three-dimensional growth, and the 

possibility to follow linear growth over time. An advantage, though also a possible 

disadvantage not reflecting the actual in vivo situation, is the fact that these bones are 

cultured under serum-free conditions, are lacking blood supply and thereby are absent 

of the systemic factors and influence, which in turn facilitate the investigation of the 

direct effects of added drugs. Detailed description of the culture conditions and 

treatments can be found in the individual papers. Briefly, metatarsal bones were 

cultured in serum-free medium that was changed every 2-3 days, and cultured for a 

maximum of 12 days. Digital images were captured throughout the culture period, 

allowing the assessment of linear bone growth. 

 

5.2.3 Animal models 

All animal studies were performed with permission from the relevant Animal Ethical 

Board, and in strict accordance with the Swedish National Board for Laboratory Animals 

(SFS 1988:541). All efforts were made to minimize animals from suffering. 

 

5.2.3.1 Normal mice (Papers I and II): 

Evidently, time-patterning and regulation of linear bone growth are different in humans 

and rodents. For instance in humans, there is the characteristic pubertal growth spurt, 

and by the end of puberty the growth plates disappear and are remodeled into bone 

(Kember and Sissons 1976). While in rodents, closure of the growth plate does not 

occur, the growth plate persists as an inactive structure (Roach, Mehta et al. 2003). We 

used young mice that best represent the rapid growth and great growth potential as seen 

in children. Mice grow relatively quickly during the first weeks, and then slower growth 

is observed up to approximately 13 wks of age when they reach a plateau and growth is 

almost arrested. Furthermore, mice have been extensively studied with regards to both 

linear bone growth, and pharmacokinetics/pharmacodynamics of PIs. Two different 
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mouse strains were used: the inbred C57B strain, and the outbred NMRI strain, in order 

to delineate any strain-specific effects of PI treatment.  

 

5.2.3.2 Genetically modified mice (Paper I): 

For evaluation of the in vivo effect of proteasome inhibition in different tissues, we used 

a reporter mouse model for the UPS (Lindsten, Menendez-Benito et al. 2003). These 

mice express the ubiquitin
G76V

-green fluorescent protein (Ub
G76V-

GFP) that is 

constitutively targeted for ubiquitin-dependent proteasomal degradation. Tissues from 

these mice display low GFP fluorescence unless the cells fail to degrade the Ub
G76V

-

GFP protein as a consequence of functional impairment of the UPS. Low doses of the 

PI, MG262 (0.2 µmol/kg), were administered to male Ub
G76V

-GFP mice at 5 wks old. 

Mice were treated on day 1, 3, and 5, and then killed 48 hrs after the last injection, with 

tissues then removed for subsequent analyses of GFP accumulation under a fluorescent 

microscope.   

 

5.2.3.3 Tumor xenograft mouse models (Paper III): 

Most pediatric preclinical in vivo testing has involved tumor xenografts as the model. 

We implanted the tumor cells subcutaneously (sc.) in our xenograft models which have 

the advantage of being well described, fast, easy to handle, cheap, as well as allowing 

tumor-host interaction, which makes it possible to study angiogenesis. Xenograft tumor 

growth and response to therapy can be directly followed by observation and tumor 

burden evaluated by volume calculation using caliper measurement, without being 

invasive and with minimal stress to the animal. The main drawback of the xenograft 

model is the site/place of the tumor with regards to environmental cues from which the 

tumor cells actually originally originate (brains, in this case). Furthermore, in contrast to 

engrafting primary cells, human tumor cell lines have generally been cultured over 

several months to years, and there are concerns that they no longer represent the 

characteristics of the original modeled human tumor. The establishment of human 

tumors cells requires mice that are immunosuppressed, and we therefore used NMRI 

nude (athymic) mice for our study. These mice lack T-cells, but have a compensatory 

increase in natural killer (NK) cells, which can also limit tumor growth and prevent 

metastasis (Habu, Fukui et al. 1981). For all xenograft studies, animals were 

xenografted at an age of 4-5 weeks by the method described in other cited research 
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(Morton and Houghton 2007), and treatment procedures, housing, measurement of 

tumor- and linear bone growth etc., are described in Paper III. 

 

5.2.4 Human growth plate cartilage (Papers II and III): 

Most of our in vitro assays on the sensitivity of growth plate chondrocytes to apoptosis 

are obtained from rat and mouse tissues/cells. To verify our rodent results in non-

transformed human chondrocytes, we had the advantage of using intact human growth 

plate tissue. Biopsies were obtained from the proximal tibia and distal femur growth 

plates from pubertal children undergoing epiphyseal
 
surgery for different medical 

conditions (e.g., constitutional tall stature or leg length discrepancy). Growth plate 

biopsies were collected with a bone marrow biopsy needle, transferred to tubes 

containing culture medium DMEM-high glucose, and placed directly on ice. In the lab, 

biopsies were cut into ½-1 mm thick slices under an inverted microscope, transferred 

into individual 24-well plates, and cultured for 24 hrs in 1 ml of supplemented culture 

medium including the drug of interest. After the culture period, samples were fixed in 

4% formaldehyde for 24 hrs, decalcified in 10% EDTA pH 7.8 for 24 hrs. Samples were 

embedded in paraffin, cut into 4 µm thick slices, and mounted on glass-slides for further 

analyses. 

 

 

5.3 ANALYSES OF BONE GROWTH AND STRUCTURE 

5.3.1 Quantitative histomorphometrical growth plate analyses (Paper II):  

Growth plate histology (i.e., height of the growth plate, proliferative zone height, number 

of columns, number of cells per column, and size of terminal hypertrophic chondrocytes) 

was assessed by examining proximal tibia Alcian blue/van Gieson (AB/vG)-stained 

sections under a light microscope connected to a digital camera and a computer. Terminal 

hypertrophic chondrocytes were considered as the last chondrocyte in the intact lacuna 

closest to the chondro-osseus junction. All histological measurements were performed in 

the central two thirds of the growth plate by a person blinded to the experimental groups. 

 

5.3.2 Growth rate determination by Calcein labeling (Paper I): 

The use of fluorochromes is a relatively simple technique to considerably increase 

insights into the dynamics of in vivo bone formation (van Gaalen, Kruyt et al. 2010). 

Except for bone length measurement with calipers that only provides an end-point 
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measurement, we utilized fluorochrome-labeling by calcein. Calcein is a fluorescent 

marker that is incorporated into newly formed bone tissue, allowing determination of 

bone mineralization that is commonly used to evaluate bone elongation (Turner 1994). 

Calcein was injected 7 days before, and 1 day before sacrifice. Non-calcified femurs 

were subsequently embedded in blocks of methylmethacrylate and examined under a 

fluorescent microscope. The distance between the two calcein bands, which 

corresponded to the bone growth that took place over the 6 days, was determined by 

using image analyses.   

 

5.3.3 Dual X-ray Absorptiometry (DXA) (Paper II): 

To be able to follow and measure bone growth longitudinally during the in vivo 

experiment, we utilized DXA. DXA is a non-invasive procedure that is commonly used 

to determine bone mineral density (BMD) in clinical settings. This system distinguishes 

between hard tissue (bone) and soft tissue based on how these different tissues absorb 

the two low-energy X-ray beams that the machine sends out. The denser the tissue is, 

the less X-rays get through to the detector. By using two different X-ray sources rather 

than one, it greatly improves the accuracy. DXA analyses were performed on lightly 

anesthetized mice by using the Norland pDEXA Sabre and Sabre research software 

(Version 3.6; Norland Medical Systems, Fort Atkinson, Wsconsin, USA). Bone lengths 

were determined from these scans by measuring the length from the proximal part to the 

distal part of femurs. 

 

5.3.4 Radiographic imaging (Papers II and III): 

Radiographic imaging by X-ray is the true evaluation of bone structure, and was thereby 

used for evaluation of in vivo bone growth in Papers II and III. Bones contain much 

calcium which, due to its relatively high atomic number, absorbs x-rays efficiently. X-

ray analyses were performed on lightly anesthetized mice, and their backbones were 

fixed in a flat position for optimal imaging. The bones were visualized at a distance of 

1.0 m with the settings 50 kV and 2.5 mAs by employing the GE AMX-4 (GE 

Healthcare, USA). Mean bone length per animal was calculated by measuring the length 

from the proximal part to the distal part of femurs using computerized software (Sectra 

Image Display System 5).  

 



 

40 

5.3.5 Peripheral quantitative computed tomography (pQCT) (Paper II):  

pQCT is a useful tool for determination of bone mass, but due to the relatively high 

dose of radiation it delivers, its routine application for use in human clinical procedures 

is limited. Tomographic bone measurements were performed by using the Stratec XCT 

Research M (software version 5.4B; Norland Medical Systems), adapted especially for 

examination of small bones as previously described (Tivesten, Moverare-Skrtic et al. 

2004), using a rotating X-ray tube that moves around the object of interest at a fixed 

distance, allowing independent evaluation of parameters associated with trabecular and 

cortical bones. In our study, we evaluated trabecular BMD in the metaphyseal region of 

the tibia, and cortical BMD, and area and thickness in the diaphyseal region. 

 

5.3.6 Mechanical testing of bone strength by 3-point bending (Paper II): 

The mechanical properties of the femur shafts were tested with the 3-point bending 

method using a universal mechanical testing device (Avalon Technologies, Rochester, 

MI, USA). Each femur was compressed in the diaphyses (middle part) at a constant rate 

of 0.155 mm/s until breakdown. Mechanical parameters, including ultimate strength 

(maximal load in N) and energy absorbed by the bone tissue representing structural 

toughness (area under the load deformation curve, Nm × 10
−3

), were calculated. 

 

 

5.4 CELL VIABILITY AND DNA SYNTHESIS ASSAYS 

5.4.1 MTT-assay (Paper III): 

We used the colorimetric 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium (MTT) 

assay (Mosmann 1983). This method is suitable to assess cell viability, proliferation or 

toxicity. This in vitro model system of measuring metabolic/mitochondrial activity of 

viable cells is widely used for screening purposes of drug activity, and well suited for 

defining interactions between drugs when having many different cell-types and drugs to 

analyze. It is non-radioactive, convenient (i.e., performed entirely in a microplate), 

quantitative, and allows samples to be analyzed rapidly and simultaneously. The 

principle of this method is the cleavage of the tetrazolium salt by the mitochondrial 

“succinate-tetrazolium reductase” that is active only in viable cells to a colored water-

insoluble formazan salt, which must be solubilized before spectrophotometric 

measurement. After its solubilization, the formazan can easily and rapidly be 

quantitated in an ELISA reader. However, one has to keep in mind that during in vitro 
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culture conditions, changes in pH and nutrients in the medium might also affect to the 

metabolic state of the cells and thus give variation in the final readout. Briefly about the 

MTT test, cells were cultured and treated in a 96-well microplate before incubation with 

MTT solution for 2 hrs (viable cells convert MTT to a water-insoluble formazan dye), 

followed by solubilization of the formazan by acidic isopropanol, and quantitation of 

the colored product by an ELISA reader (spectophotometrically at 595 nm).     

 

5.4.2 5-bromo-2´-deoxyuridine (BrdU) labeling (Paper II):  

To study DNA synthesis in vivo, we employed the BrdU labeling technique. BrdU 

labeling was developed as an alternative approach for determining the proliferative 

index of tumors (Hoshino, Nagashima et al. 1989), and was introduced for studying cell 

proliferation in chondrocytes in 1993 (Farnum and Wilsman 1993). This technique 

offers the advantage of studying cell proliferation in individual cells. BrdU is a synthetic 

nucleoside (modified uridine), and an analog to thymidine. The principle underlying this 

method is the incorporation of BrdU into newly synthesized DNA of replicating cells 

during the S phase of the cell cycle (i.e., before cellular division into 2 daughter cells), 

substituting for thymidine during replication. This method of assessing cell proliferation 

has the advantage over the traditional method of 
3
H-thymidine incorporation, in that it 

does not require handling of radiolabeled material, it is reliable, fast, and susceptible for 

quantification. However, one should also keep in mind that this method is also 

associated with some cell-toxicity and teratogenicity, and may not exclusively detect 

dividing cells, but also cells undergoing DNA repair: it is also noted that BrdU can 

increase proliferation and decrease differentiation by itself (Taupin 2007). BrdU-

solution was intraperitoneally (ip.)-injected twice into mice at 16, and 2 hrs before 

autopsy. To enable quantification of the BrdU-incorporated, paraffin-embedded tissue 

sections were incubated with a BrdU-specific monoclonal antibody, followed by an 

FITC-conjugated secondary antibody, and then counterstained with DAPI. The number 

of BrdU-positive (FITC, green color) chondrocytes per growth plate was determined by 

digital automatic cell counting as described below.   
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5.5 CELL DEATH ANALYSES 

5.5.1 TUNEL assay (Papers I, II, and III):  

The terminal deoxynucleotidyl transferase (TdT)-metiated dUTP nick-end labeling 

(TUNEL) method (Gavrieli, Sherman et al. 1992) was utilized for quantification of 

apoptosis in growth plate chondrocytes obtained from animals, cultured metatarsals, and 

human growth plate tissues. The TUNEL assay has been further optimized for use in 

growth plate tissue in our laboratory (Chrysis, Nilsson et al. 2002). Briefly, proteinase K 

digestion was reduced from 20 min as recommended by the manufacturer to 5 min, and 

the concentration of enzyme was reduced from 20 ng/ml to 10 ng/ml, in order to 

minimize false positive detection of apoptotic cells. Thus, this protocol was undertaken 

in all of the studies. The assay works on the principle that nuclear DNA strand breaks 

(single or double) that occur during apoptosis can be identified by labeling the free 3’-

hydroxyl (OH)-termini. Biotin-labeled nucleotides, dUTP, are polymerized to these 3’-

OH groups in a reaction catalyzed by the TdT enzyme. The incorporated biotin-labeled 

nucleotides were then detected by a streptavidin-conjugated secondary antibody (Alexa 

Fluor-546) before mounting in DAPI-containing media. The number of TUNEL-

positive chondrocytes in relation to the total cell number per growth plate was 

determined by digital automatic cell counting as described below. This is a fast, 

relatively sensitive, and quantitatible method. It must be kept in mind that the TUNEL 

assay may also detect DNA damage associated with non-apoptotic events such as 

necrotic cell death due to extensive DNA degradation induced by exposure to toxic 

compounds, for instance (Ansari, Coates et al. 1993), and it has also been reported to 

stain cells undergoing active DNA repair (Kanoh, Takemura et al. 1999). To distinguish 

apoptosis from necrosis, we performed additional analyses that included the expression 

of pro-apoptotic proteins, including active/cleaved caspases and PARP, the cell death 

ELISA, and studies of mitochondrial damage as discussed below.     

 

5.5.2 Cell death ELISA (Paper I):  

For quantification of apoptosis in cultured chondrocyte populations, we used the 

commercially available Cell Death ELISA kit. This immunoassay detects cytoplasmic 

low molecular histone-associated DNA fragments (mono- and oligonucleasomes) of 

apoptotic cells. This assay is based on the fact that DNA fragmentation without loss of 

the plasma membrane integrity is the hallmark of apoptosis. The test principle is a one-

step sandwich immunoassay, were cells first are lysed, centrifugated and an aliquot of 
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the supernatant (DNA, singel- and double- stranded) is transferred to a streptavidin-

coated 96-well microplate, an addition of monoclonal antibodies is made (anti-histone 

biotin labeled and anti-DNA peroxidase conjugated), and the sample is incubated with 

peroxidase substrate before determining the amount of colored product 

spectrophotometrically. This method is quantitative, convenient (non-radioactive) and 

reproducible, also allowing a large sample number. Further, the antibodies in the kit are 

not species-specific and can thereby be used for a wide variety of species. Moreover, 

this method can also measure necrosis, by using the supernatant where the 

oligonucleasomes will be released into: thus, the assay provides the ability to 

distinguish from apoptosis and necrosis. Accordingly, under our experimental 

conditions we excluded the occurrence of necrosis since no mono- or oligonucleasomes 

were present in the supernatant of cell cultures. 

 

5.5.3 Caspase-3 fluorometric assay (Paper I):  

Activation of caspases (cysteine proteases) plays a key role in mediating the early stages 

of apoptosis. The activation involves specific proteolyses of individual caspases. We 

chose to analyze the activity of the executioner caspase in the apoptotic cascade, 

caspase-3, by using the specific peptide substrate, DEVD, conjugated with a fluorogenic 

7-amino-4-methylcoumarin enzyme, which can be detected fluorometrically following 

cleavage and release. Fluorescence values were converted to picomoles of AMC release 

by using a standard curve generated with free AMC, and the maximum rate of AMC 

release (pmol/min) was then estimated for each sample. This assay is described to show 

proportional caspase-3 activity to the percentage of apoptotic cells.  

 

5.5.4 Analyses of mitochondrial membrane potential (Paper II):  

To assess loss of the mitochondria membrane potential (ΔΨm), which is indicative of 

apoptosis, we used tetramethylrhodamine (TMRE) ethyl ester to quantify the time-

dependent damage of mitochondria after drug treatment (Ehrenberg, Montana et al. 

1988). TMRE is a cell permeable, positively-charged, red-orange dye that rapidly 

accumulates in active mitochondria due to their relative negative charge. It also exhibits 

low cytotoxicity, and is relatively photostable with low tendency to bind other intra-

cellular organelles. When the ΔΨm collapses in apoptotic cells, mitochondria fail to 

incorporate TMRE that become dispersed into the cytoplasm, and cellular fluorescence 

drops dramatically. This event can easily be detected by fluorescence microscopy or 
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quantified by flow cytometry. This technique can distinguish between healthy/vital 

cells, and the ones transitioning into an apoptotic state, as further discussed in Paper II. 

 

5.5.5 Digital automatic cell counting (Papers I, II, and III):  

Quantification of the number of proliferative and apoptotic cells of in vivo/in vitro 

treated growth plates/bone rudiments, was performed respectively by this method. 

Digital images of BrdU-positive cells (FITC, green color) or TUNEL-positive cells (by 

Alexa-546 antibody, red color) were captured using an Olympus DP70 digital camera. 

For each visual field to be quantified, three images were captured: a phase-contrast/light 

image, a Dapi image (detection of all cells, emission at 449 nm, blue color), and an 

FITC (emission at 530 nm) or Alexa-546 (emission at 573 nm) image. Automatic 

counting was then performed using Image-Pro
®

 Plus software (Media Cybernetics Inc, 

Bethesda, USA) within the growth plate (containing resting, proliferative, and 

hypertrophic zones). It was identified based on the light image, and the selections were 

applied to the corresponding Dapi- and FITC or Alexa-images. The percentage of 

positive cells was calculated as the ratio of bright objects in the FITC (proliferation)- or 

Alexa-546 (apoptosis)-image over the total number of bright objects in the 

corresponding Dapi image. 

 

 

5.6 DETERMINATION OF PROTEIN EXPRESSION 

5.6.1 Immunohistochemistry (IHC) (Papers I, II, and III): 

The procedure utilizing specific antibodies to identify, localize, and to a certain extent, 

quantify protein expression in the cells of a tissue section is referred to as IHC. IHC was 

utilized to detect the expression of different proteins (antigens) in formalin-fixed growth 

plate- and tumor tissue sections. Furthermore, cartilage-tissue sections, specifically 

obtained from in vivo studies are difficult to work with since they easily detach from the 

slides. Consequently, we therefore used saline-coated Superfrost +/+ glass-slides, which 

improved the attachment of the tissue to the slides. Fixation of tissue is an important step 

before subsequent analyses to preserve the cellular components and proteins intact. 

Cross-linking of proteins by formaldehyde may mask their binding-sites (epitopes), 

making it inaccessible to detection antibodies, which could result in false-negative results. 

To minimize false-negativity, the step of antigen-retrieval was added for all stainings. 

Antigen-retrieval was, in our case, achieved either by heating of the tissue in citrate buffer 
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(pH 6.0) for 15 min at 93-98°C, or by enzyme treatment. Furthermore, antigen-retrieval 

enhances the sensitivity of the immunostaining procedure, making it possible to decrease 

the concentration of the primary antibody, and thereby decrease the risk for non-specific 

staining (false-positivity). Before the addition of primary antibody, sections were 

incubated using normal serum from the host of the secondary antibody to reduce 

unspecific staining. The next step of choosing the antibody with greatest specificity and 

sensitivity against the particular antigen in the specific specie of interest is probably the 

most important issue connected with IHC, and it requires proper controls to be included in 

order to support the validity of the staining and identify experimental artifacts. 

Appropriate controls to be included are tissue samples that are known to express (or not 

express) the protein/epitope of interest. A negative control can also be obtained by pre-

incubation of the primary antibody with the appropriate immunogen, replacement of the 

primary antibody with non-immune immunoglobulin of the same isotype (when using 

monoclonal antibodies), and/or by omitting the primary antibody. Detailed description for 

each protein is further described in the Material and Method section of the individual 

papers. 

 

5.6.2 Western Immunoblot (Papers I, II, and III): 

This technique is well-established, reproducible, allows separation of proteins by their 

molecular weight, and offers the ability to quantify the expression level of proteins. We 

applied this technique to study the expression levels of both anti-apoptotic (e.g., Bcl-2, 

Bcl-XL) and pro-apoptotic (e.g., Bax, Bcl-XS, AIF, caspases, and PARP) proteins, 

including the transcription factor and its regulatory protein, p53 and Mdm-2 

respectively, in the cell extracts. Loading of equal protein amounts were based on 

quantitation using the Bradford assay (Bio-Rad Laboratories AB, Sundbyberg, Sweden). 

Proteins were separated on Tris-HCl or gradient acrylamide gels, and then transferred 

onto a Hybond-P polyvinylidene difluoride-transfer membrane, which allows detection 

of low protein levels (nanogram). Blocking of non-specific binding before incubation 

with primary antibody was achieved by placing the membrane in a dilute solution of 

protein: in our case, we always used 5% non-fat dry milk. The secondary antibodies 

used were linked to horseradish peroxidase (HRP) enzyme that will cleave the added 

chemiluminescent agent, the reaction product emitting light in proportion to the amount 

of protein, creating an image (dark band) of the antibodies bound to the blot. The 

resulting bands were confirmed by comparing the size of the protein in the cell extract 
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with known molecular weight markers. The densities of the protein-bands of interest 

were analyzed in relation to the house-keeping gene (GAPDH) to evaluate the relative 

amount of protein between samples. Finally, the extensive data in the literature 

concerning Western Immunoblotting and on the regulation of the different proteins were 

very useful for validation of our findings. 

 

 

5.7 BLOOD ANALYSES 

5.7.1 Proteasome activity analyses (Papers I, II, and III): 

Proteasome activity was measured in whole blood collected at different time-points 

from treated mice. Blood was collected in tubes containing Heparin (100IE/KY/ml, 

LEO Pharma, Malmö, Sweden), and chymotrypsin-like (C-L, subunit β5) proteasome 

activity was measured using the synthetic fluorometric substance method (Lightcap, 

McCormack et al. 2000). Briefly, the assay involves hydrolysis of exogenous added 

LLVY-AMC by the chymotrypsin-like activity of the 20S proteasome. AMC is a highly 

fluorescent molecule, and its release was measured in a spectrophotometer. This assay 

offers a unique method of measuring proteasome activity that is sensitive, accurate, and 

reproducible. In addition, the measurement of proteasome inhibition is the clinical 

marker for a targeted effective dose, and it should be in the 50-80% range (Adams and 

Kauffman 2004). 

 

5.7.2 Serum IGF-I levels (Papers I, II, and III):  

To investigate if there was any interference with the IGF-I system in treated mice, and 

try to delineate if the observed bone growth impairment was more a systemic or local 

effect, serum IGF-I levels were analyzed. Serum concentrations of IGF-I were measured 

by radioimmunoassay, using a commercially available kit (IGF-R20) purchased from 

Mediagnost, Tuebingen, Germany. The sensitivity of the assay is 0.02 ng/mL. The assay 

was performed following the instructions from the manufacturer with the exception that 

a sample volume of 3 µL was used, based on previous experiences. All samples were 

analyzed in duplicate.  

 

5.7.3 Analyses of bone biomarkers (Paper III): 

To assess the activity of osteoblasts (bone formation) and osteoclasts (bone 

degradation), a commercial sandwich enzyme-linked immunosorbent assay (ELISA) 
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was utilized according to the manufacturer instructions for quantification of serum 

levels of procollagen type 1 N-terminal (PINP) and collagen type 1 cross-linked C-

telopeptide (Ctx) respectively. The propeptide, PINP is released into the blood 

circulation during bone formation (collagen I synthesis), and is the most sensitive and 

specific marker for measurement of bone formation (Hale, Galvin et al. 2007). On the 

contrary, during osteoclastic bone resorption, Ctx is one of the degradation products of 

collagen type I. Briefly about the assay, a microtiter plate is coated with a capture 

antibody, and a sample is added before the addition of the detecting antibody that will 

bind the antigen (PINP or Ctx) in the sample. Thereafter, an enzyme-linked secondary 

antibody is added that binds the detecting antibody, and finally the chromogen that will 

be converted by the enzyme into a color that is quantified spectrophotometically is 

added. 
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6 RESULTS 

6.1 EFFECTS OF PROTEASOME INHIBITION ON CHONDROGENESIS 

AND LINEAR BONE GROWTH (PAPERS I AND II) 

 

Proteasome Inhibition Up-regulates p53 and Apoptosis-Inducing Factor in 

Chondrocytes Causing Severe Growth Retardation in Mice (Paper I) 

 

 In this study, we mostly focused on the non-clinically used PI, MG262. By using the 

transgenic reporter mouse model for the UPS, Ub
G76V

-GFP mice (Lindsten, Menendez-

Benito et al. 2003), we show that systemic administration of a clinically relevant dose of 

MG262 (0.2 µmol/kg), tissue-specifically impairs the UPS in growth plate chondrocytes. 

The impairment of the UPS was accompanied by the induction of chondrocyte apoptosis 

in growth plate cartilage of treated mice. Furthermore, this effect resulted in severe linear 

bone growth impairment, observed both 48 hrs, as well as 45 days post treatment with 

MG262, compared to vehicle-treated animals. The bone length differences (femur and 

tibia) after the 45 day follow-up period was not as striking as 48 hrs after the last 

injection, suggesting that some catch-up occurred, although this 45-day follow-up period 

was not enough to fully catch-up in growth, and we do not know what happens beyond 

this period. 

 

The underlying mechanistic studies revealed that MG262-induced growth failure was 

mainly caused by a severe thinning in the height of the resting zone, which was followed 

by chondrocyte apoptosis of the resting/stem-like and proliferative chondrocytes. Caspase 

inhibitory experiments in organ cultures of metatarsal bones and human- and rat 

chondrocytic cell lines confirmed that MG262 triggered both caspase-dependent and 

independent apoptosis of chondrocytes. Accordingly, protein expression of the 

transcription factor, p53, was also found to be increased in growth plate cartilage of 

MG262-treated mice. In addition, the regulator of caspase-independent apoptosis, 

apoptosis inducing factor protein expression, also appeared to be highly up-regulated in 

chondrocytes after MG262 treatment, both in vitro and in vivo. 

 

Suppression of p53 expression by employing the siRNA technique resulted in a 35% 

decrease in MG262-induced chondrocyte apoptosis. This finding supports a role for p53 



 

49 

 

during PI-induced chondrocyte apoptosis. Furthermore, in support of a role for AIF-

mediated chondrocyte cell death, suppression of AIF by siRNA decreased apoptosis of 

chondrocytes by 41%. These data support an important role for the UPS in growth plate 

chondrocytes, and by impairing this system, it results in deleterious effects on growth 

plate chondrocytes, followed by growth impairment.  

 

 

Bortezomib Is Cytotoxic to the Human Growth Plate and Permanently Impairs Bone 

Growth in Young Mice (Paper II) 

  

In this study we extended our investigations to the clinically used PI, bortezomib that is 

currently in clinical trials of pediatric cancers (Blaney, Bernstein et al. 2004; Messinger, 

Gaynon et al. 2010; Muscal, Thompson et al. 2013). However, so far, any undesired 

secondary side effects in fast-growing individuals have, to our knowledge, not yet been 

described. Because of the alarming data of the non-clinically used PIs on chondrogenesis 

and induction of bone growth impairment from us and others (Wu and De Luca 2006; 

Zaman, Menendez-Benito et al. 2007; Zaman, Fadeel et al. 2008), we decided to elucidate 

any potential risks of bortezomib treatment on linear bone growth, and bone metabolism, 

including the underlying molecular mechanisms. The studies were performed both in 

vivo, in two different strains of young mice (which best represents the rapid growth of a 

child), and in vitro, in cultured metatarsal bones and a chondrocytic cell line. Finally, we 

also used pubertal human growth plate cartilage to assess and verify the toxicity of 

bortezomib. 

 

Our results indicate that bortezomib efficiently blocks the UPS, with a similar degree of 

proteasome inhibition as seen in treated humans, that is to say, within the 50–80% range 

(Adams and Kauffman 2004). By using a clinically relevant dose of bortezomib (1 

mg/kg) along with a similar dosing regimen as in the clinic, we confirmed that one 2-

week cycle (2 injections/wk) causes permanent growth failure in treated mice, when 

followed for up to 6 months post-treatment. This effect was mainly due to induction of 

apoptosis in resting/stem-like chondrocytes. Previous studies suggest that it is the 

resting/stem-like cells that influence the growth plate structure and function (Gafni, 

Weise et al. 2001; Schrier, Ferns et al. 2006), and that this cell population serves as the 

pool for generating the columnar clones of the underlying proliferative zone (Abad, 
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Meyers et al. 2002). Together, these studies indicate the importance of the resting/stem-

like chondrocytes for maintenance of the normal growth potential and thus, any 

disturbances and/or depletion of it might therefore result in incomplete growth. 

Treatment with bortezomib in fetal and postnatal cultured rat metatarsal bones resulted 

in a dose-dependent growth inhibitory effect. Interestingly, bortezomib treatment for 

only 24 hrs in fetal metatarsals was enough to permanently inhibit bone growth, further 

suggesting irreversible growth failure. To identify what cells in the metatarsal bones 

that were targeted, we analyzed the bones by using the TUNEL method. Bortezomib 

dose-dependently increased chondrocyte apoptosis, an effect mainly observed in 

resting/stem-like chondrocytes. Metatarsal bones were also stained with Alcian 

Blue/van Gieson (AB/vG) to detect changes of matrix components such as 

glucosaminoglycans and collagens. Indeed, bortezomib decreased the levels of matrix 

components, indicated by the low levels of AB/vG-staining. We further confirmed our 

results in cultured human growth plate cartilage, which was found to be highly sensitive 

to bortezomib after 24 hrs of treatment. Again, mainly the resting/stem-like 

chondrocytes, and to some extent also the early proliferative chondrocytes, were 

targeted, as quantified by the TUNEL method.  

 

Our data support a local action of PIs, selectively targeting resting/stem-like growth 

plate chondrocytes, leading to decreased bone growth. This concept is supported by the 

findings in the Ub
G76V

-GFP mouse model, and measurement of serum IGF-I levels that 

were not different from vehicle-treated mice, together with the growth inhibitory effect 

in cultured metatarsal bones.  

 

The sensitivity of chondrocytes to bortezomib treatment was further verified in the rat 

chondrocytic cell line, C5.18, by utilizing the cell viability assay, MTT. The cells were 

treated for 24 hrs and 48 hrs with bortezomib (0-100 nM), which resulted in a time- and 

dose-dependent decrease in cell viability. Again, the resting/stem-like cell population 

was found to be the most sensitive one, in contrast to both proliferative- and 

hypertrophic chondrocytes. 

 

In an attempt to delineate the underlying molecular mechanisms regulating bortezomib-

induced apoptosis, protein expression profiles (using the Western immunoblot 

approach) of several pro- and anti-apoptotic proteins were investigated in resting/stem-
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like C5.18 chondrocytes. These cells were exposed to bortezomib (1000 nM) for 3, 6, 

12, and 24 hrs. Our results indicated that bortezomib induced early activation of p53 and 

Bax, as early as 3 hrs after treatment, suggesting key roles for these proteins in the 

regulation of bortezomib-induced chondrocyte apoptosis. We also observed subsequent 

cleavage of caspases (-9, -8, and -3), and finally also of poly-ADP-ribose polymerase 

(PARP) in exposed chondrocytes.  

 

Skeletal morbidity such as osteopenia and osteoporosis, including increased risk for bone 

fractures are common long-term side effects associated with childhood anti-cancer 

treatment (Siebler, Shalet et al. 2002). However, the impact of PIs on bone metabolism 

and bone strength in children are still unknown. To investigate this, we performed 

analyses of serum bone biomarkers, tomographic trabecular, and cortical bone 

measurements (by pQCT), and mechanical bone strength assessment (by 3-point 

bending test) in treated mice. Our results showed no significant effects of bortezomib on 

the bone biomarkers (PINP and Ctx), and neither on BMD, nor on bone biomechanical 

properties, such as cortical content, cortical thickness or bone strength. Previous studies 

have shown that PIs such as proteasome inhibitor-1, epoxomicin and bortezomib may 

enhance bone formation and BMD in 5-week-old Swiss ICR white mice (Garrett, Chen 

et al. 2003) and in 7-week-old C57B/6 mice (Mukherjee, Raje et al. 2008). Moreover, a 

recent study provides convincing and promising results of bortezomib on bone formation 

through stimulation of vitamin-D receptor signaling (Kaiser, Heider et al. 2013). 

Bortezomib has also been shown to suppress osteoclast activity (von Metzler, Krebbel et 

al. 2007) and increase osteoblast activity (Zangari, Esseltine et al. 2005) by activating 

Runx2 (Mukherjee, Raje et al. 2008) or inhibiting Dickkopf-1 (DKK1), an inhibitor of 

osteoblast function (Oyajobi, Garrett et al. 2007). However, bortezomib had no effect on 

femur BMD in a myeloma model of 15-week-old CB.17/Icr-SCID mice (Pennisi, Li et 

al. 2009), which is in line with our data. These conflicting results may suggest that 

regulation of mouse bone remodeling by the UPS is influenced by age, mouse strain, 

dose, duration of treatment, and/or immune function. Furthermore, we did not observe 

any positive effect of bortezomib treatment on bone strength when biomechanical testing 

was performed. Bortezomib might therefore not offer the same level of benefit to bone 

health in fast growing individuals as earlier reported in adults with multiple melanoma 

(Zangari, Terpos et al. 2012). 
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6.2 PREVENTIVE STRATEGIES TO RESCUE BONE GROWTH IN PI-

TREATED INDIVIDUALS (PAPER III) 

 

Humanin prevents bortezomib-induced bone growth impairment without interfering 

with the desired anti-cancer effect (Paper III) 

 

The present study was designed to investigate the potential for HNG to rescue from 

bortezomib-induced bone growth impairment without interfering with the desired anti-

cancer effect of bortezomib. To test this, we applied an array of different in vivo and in 

vitro models, including human tumor xenograft models of childhood neuroblastoma 

(NBL) and medulloblastoma (MBL), cultures of human growth plate cartilage, fetal rat 

metatarsal bones, and chondrogenic- and cancer cell lines.  

 

First we used the organ culture model of fetal rat metatarsal bones as a screening tool to 

assess any rescuing effect by HNG from bortezomib-induced bone growth impairment. 

Our results indicate a partial rescue of metatarsal bone growth, when combining HNG 

(100nM) with bortezomib (25nM). This promising result led us to further verify if this 

was also true in vivo, with the aim to also rule out any potential interference of HNG with 

the anti-cancer effect of bortezomib. To test this, young nude mice were first established 

with either NBL or MBL childhood tumors before receiving treatment with either one 2-

week cycle (2 injections/wk) of bortezomib, HNG, the combination of HNG/bortezomib, 

or the vehicle. Our results indicate that intravenous (iv.) injections of bortezomib (0.8 

mg/kg) efficiently blocked the proteasome (approximately 60%), an effect that was not 

disturbed by the addition of HNG. However, intraperitoneal (ip.) injections of bortezomib 

(1.0 mg/kg) resulted in a less efficient proteasome inhibition in these mice. Despite this, 

bortezomib treatment resulted in significant bone growth failure, irrespective of 

intravenous or intraperitoneal administration. Combination treatment with HNG could 

almost completely rescue bone growth, close to the growth rate observed in vehicle-

treated mice.  

 

Histomorphometrical analyses of the mouse growth plates revealed that combination 

treatment with HNG could restore growth plate height to a similar level as observed in 

vehicle treated mice. This rescuing effect was mainly due to a prevention of resting/stem-

like chondrocyte apoptosis. We also confirmed our observations in cultured human 
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growth plate cartilage, where HNG prevented bortezomib-induced chondrocyte apoptosis 

to a similar extent as seen in vivo. The chondrocyte rescuing effect of HNG was coupled 

to a suppressive effect of the pro-apoptotic proteins, Bax and the downstream executioner 

protein, PARP. Our data are in line with previous studies in other cell types where 

humanin and its analogs were found to bind Bax, preventing its activation, and thereby 

protect the cells from apoptosis (Guo, Zhai et al. 2003; Zhai, Luciano et al. 2005). An 

interesting observation that we made, was that bortezomib increased Bax accumulation in 

chondrocytes, but not in human NBL cells, suggesting that the chondrocyte rescuing 

effect of HNG might be linked to a Bax-dependent effect.    

 

The key-question if administering HNG to individuals with cancer is the risk of any 

potential interference with the anti-cancer effect of bortezomib, and hence, a rescue of the 

tumor cells. To investigate this we used several different human NBL and MBL tumor 

cell lines, including tumor cells from some of the most common human cancer diagnoses 

(i.e., lung, prostate, colon, and breast cancer), and also the human tumor xenograft mice 

models of NBL and MBL. Our in vivo data demonstrate that HNG does not diminish the 

anti-cancer effect of bortezomib, but instead potentiates it. Interestingly, HNG by itself 

showed an anti-tumor effect as documented with the highest HNG concentration tested in 

three tumor cell lines, as well as in the two different NBL tumor xenograft experiments, 

where the effect was linked to decreased angiogenesis and increased tumor-cell apoptosis. 

Our in vitro and in vivo result also confirms an anti-cancer effect of bortezomib that is in 

line with previous reports (Brignole, Marimpietri et al. 2006; Hamner, Dickson et al. 

2007; Yang, Jove et al. 2012). We observed a clear delay of tumor growth in response to 

bortezomib, but no apparent evidence of tumor regression, also consistent with previous 

reports (Michaelis, Fichtner et al. 2006; Houghton, Morton et al. 2008). 
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7 CONCLUDING REMARKS  

Using an array of different in vitro and in vivo models of chondrogenesis and linear bone 

growth, the current study revealed that clinically relevant doses of PI-treatment 

specifically target the growth plate and damage normal chondrogenesis, which in turn is 

reflected by bone growth failure. Histology and cellular analyses further demonstrated 

pronounced reduction of growth plate height, associated with a suppressed height of all 

zones in the growth plate, reduced size of terminal hypertrophic chondrocyte, and we also 

observed that bone matrix deposition was severely decreased after proteasome inhibitor-

treatment. PI-induced impairment of the chondrogenesis process and failure of linear bone 

growth was probably found mainly due to the induction of resting/stem-like chondrocyte 

apoptosis, and accordingly, GFP reporter accumulation was evident mainly in these cells. 

The stem-like cells in the resting zone have a finite proliferative capacity that is gradually 

depleted (Schrier, Ferns et al. 2006), and any disturbances to this might result in growth 

disturbances (Abad, Meyers et al. 2002). Consistent with this hypothesis, we speculated 

that PI-treated animals would not be able to catch-up. Some tendencies of catch-up 

growth were observed, specifically after MG262-treatment, however, it was not complete. 

Bortezomib-treated mice were followed up to 6 months after cessation of treatment after 

administration of one 2-wk cycle of a clinically relevant dose of bortezomib, and still they 

were found growth retarded as compared to their weight-matched and pair-fed, vehicle-

treated mice. When investigating the underlying molecular/apoptotic pathways after PI-

treatment, we found early accumulation and activation of p53, Bax, and AIF, cleavage of 

caspases, and the executioner protein in the apoptosis cascade, PARP, while the anti-

apoptotic proteins were found to be down-regulated (e.g., Bcl-2 and Bcl-XL). Moreover, 

mitochondrial dysfunction was also observed, which has previously been implicated as 

being a key mechanism involved in apoptosis (Susin, Zamzami et al. 1997). These 

outcomes therefore emphasize the need of finding preventive strategies to protect 

chondrocytes and maintain normal bone growth during PI-treatment in young individuals 

without interfering with the desired anti-cancer effect of PIs. In an attempt to test this, we 

used the synthetic peptide analog to endogenous humanin, [Gly
14

]-Humanin (HNG), 

which has been shown to be a wide-spectrum survival molecule in different cell-types and 

diseases (Xu, Chua et al. 2006; Hoang, Park et al. 2010) with the ability to bind Bax, 

preventing its activation, and thereby protect the cells from apoptosis (Guo, Zhai et al. 

2003). To address our question, human tumor xenograft mouse models, in vitro cultures 
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of human growth plate cartilage, rat metatarsal bones, and both chondrogenic and cancer 

cell lines were applied. Here, we made the novel finding that HNG can rescue from PI-

induced bone growth impairment. Importantly, HNG did not interfere with the desired 

anti-cancer effect of bortezomib. The cytoprotective effect of HNG was associated with a 

protection of resting/stem-like chondrocytes from bortezomib-induced apoptosis, an 

effect mediated through interference with the pro-apoptotic protein, Bax. We also 

confirmed that HNG has the ability to protect cultured human growth plate cartilage from 

the cytotoxic effects of bortezomib.  

 

In conclusion, we strongly recommend linear bone growth and bone mineralization to be 

closely monitored in the current pediatric clinical trials of PIs, and for the future, HNG 

supplementary treatment may be a potential therapy for preventing any undesired 

effects associated with PI treatment in children.    
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8 FUTURE PERSPECTIVES 

Overall, it appears that inhibition of proteasome function in chondrocytes specifically 

induces apoptosis, linking the UPS of protein degradation with the regulation of 

apoptotic cell death in chondrocytes and, in turn, with negative consequences on linear 

bone growth. Our observations indicate a more local effect of PIs in the growth plate, 

although we cannot exclude that other systemic factors other than IGF-I may play a role, 

so this should be further investigated. Consequently, observations from this study suggest 

that bone growth could be suppressed in young individuals treated with PIs. However, it 

should be emphasized that so far, any side effects on linear bone growth in treated 

children are unknown, and one should be cautious when extrapolating pre-clinical data to 

the clinical arena. In accordance, our finding needs to be confirmed in ongoing pediatric 

clinical trials.  

 

We showed that resting/stem-like chondrocytes are the main target of PIs, and that no 

complete catch-up growth occurred after PI-treatment, which emphasizes the 

importance of the resting zone chondrocytes, and that loss of them may lead to loss of 

growth potential, which is also supported by previous studies (Abad, Meyers et al. 2002; 

Schrier, Ferns et al. 2006). However, the fact that we found the “quiescent”/slowly- 

proliferative cells to be most sensitive to PI-treatment is in contrast to other studies that 

have reported that rapidly proliferating cells are most susceptible to PIs (Kisselev and 

Goldberg 2001; Voorhees, Dees et al. 2003). The different sensitivity in terms of 

chondrocytes in the growth plate might be due to a cell-type-specific effect with, for 

example, variable dependence on intact proteasomal function, sensitivity to changes in 

normal protein composition, more efficient PI-uptake, or slower inactivation of PIs. This 

finding , therefore, warrants further investigation.  

 

Due to the skeletal morbidities associated with PI-treatment found during this study, it is 

important to develop strategies that will minimize the risk of complications while still 

maintaining high cure rates. Here we show that HNG-supplementary treatment has the 

ability to reverse the negative effects induced by PIs on bone growth by protecting the 

growth plate, mainly by preventing resting/stem-like chondrocyte apoptosis. Importantly, 

the rescuing effect of chondrocytes by HNG did not interfere with the desired anti-cancer 

effect of bortezomib. Hence, humanin and its analogs are novel, potential cell-survival 
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peptides under substantial investigation in different conditions: there is still a lot to 

explore and learn about them, in other words, knowledge of their stability/half-life, cell-

interaction and binding-sites, full dose- and time response, complete interaction of the 

apoptotic pathways and other factors still needs to be gathered. Furthermore, the long-

term effects of HNG remain to be elucidated, as well as any long-term interference with 

the anti-cancer effect, and/or potential cancer-cell rescue. The observed dual roles of 

HNG acting both as a chondrocyte-protective factor, as well as suppressor of tumor 

growth, are remarkable and need to be further investigated in other tumor models. 

Moreover, our findings of a bone growth rescuing effect by HNG may also have wider 

implications as disturbed growth has been linked to many different types of anti-cancer 

treatments.  
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