
 

 

From THE INSTITUTE OF ENVIRONMENTAL MEDICINE 

Karolinska Institutet, Stockholm, Sweden 

 

RISK ASSESSMENT OF 

ENDOCRINE DISRUPTING 

COMPOUNDS 

Anna Beronius 

 

 

Stockholm 2013 

 

 

 

  

  

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Publications from Karolinska Institutet

https://core.ac.uk/display/70340588?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

 

 

Cover illustration by Estella Larsson Beronius 

All previously published papers were reproduced with permission from the publisher. 

 

Published by Karolinska Institutet. Printed by University Service, US-AB, Nanna 

Svartz väg 4, 171 77 Solna 

© Anna Beronius, 2013 

ISBN 978-91-7549-144-8



 

 

 

To my children 
 





 

 

ABSTRACT 

During the past decade a growing number of chemicals have been identified as having 

endocrine disrupting properties in laboratory studies. Also, associations between 

exposure to such substances and endocrine-related health effects in the general 

population, as well as in wildlife, have been increasingly reported. This implies that 

past chemical regulation has failed to adequately protect human health and the 

environment. Endocrine disrupting compounds (EDCs) have lately been identified as 

substances of very high concern that should be phased out in new European (EU) 

legislations for e.g. industrial chemicals, plant protection products and biocides. There 

is thus an increased pressure on regulatory agencies to be able to efficiently and reliably 

identify, characterize and risk assess EDCs. 

However, risk assessment of EDCs has proven complicated, in part due to the complex 

toxicity exhibited by substances that can interact with the endocrine system, and also 

because there are currently no generally agreed upon criteria within the EU or 

internationally that direct how to specifically identify compounds with endocrine 

disrupting properties.  

The aim of this thesis project has been to identify how scientific uncertainties 

concerning the toxicity of EDCs can be reduced or handled to make health risk 

assessments of EDCs more transparent, systematic, and reliable. To that end literature 

studies were conducted that investigated the risk assessment process for EDCs within 

different regulatory frameworks in the EU, as well as the underlying toxicity data 

available to risk assessors and how the use of all available toxicity data can be 

improved. The much debated EDC bisphenol A (BPA) was used for a case study in a 

large part of this work. 

A comparison of different regulatory frameworks within the EU showed that the 

regulatory risk assessment process, including underlying policies, criteria and 

requirements may differ for EDCs belonging to different regulatory groups, e.g. 

industrial chemicals, plant protection products or pharmaceuticals. The investigations 

within this project also showed that non-standard research studies, i.e. studies not 

conducted according to standardized regulatory test guidelines, fill data gaps and 

contribute information that could be particularly important for the identification and 

risk assessment of EDCs. However, non-standard studies were often criticized for 

having methodological limitations or being insufficiently reported, limiting their use in 

regulatory risk assessment. Regulatory agencies commonly gave more weight to 

standard than non-standard studies in risk assessment of BPA, despite the growing 

amount of research indicating that toxic effects at low doses were being overlooked. 

A framework of criteria and guidelines intended to enable transparent and systematic 

evaluation of non-standard research studies, as well as guidance for how to report in 

vivo research to meet the requirements for regulatory risk assessment, was proposed. 

These tools are intended to facilitate the use of non-standard research studies in 

regulatory risk assessment and hopefully improve the reliability of risk assessment 

conclusions for EDCs. 
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1 INTRODUCTION 

This is a doctoral thesis within the field of regulatory toxicology that aims to identify 

and discuss weaknesses in the health risk assessment process for endocrine disrupting 

compounds (EDCs) and how this process can be improved.  

Humans and wildlife are continuously exposed to a very large number of chemicals 

present in our environment. Risk assessment is the process of evaluating whether that 

exposure constitutes a risk to human health (health risk assessment) or the environment 

(environmental risk assessment). This thesis focuses on health risk assessment. 

Concern regarding potential adverse health effects from EDCs in the human population 

is increasing (UNEP/WHO 2012). Over the last decade a growing number of chemicals 

that can be found in the environment have been identified as having endocrine 

disrupting properties in laboratory studies. There are also reports of increasing trends of 

endocrine-related disorders, such as some cancers and reproductive, metabolic and 

neurobehavioral disorders, in the human population, as well as observations of 

endocrine-related effects in wildlife. In their recent reports, the United Nations and 

World Health Organization (UNEP/WHO 2012) and European Environment Agency 

(EEA 2012) state that exposure EDCs may be a contributing factor to these observed 

effects. This implies that past chemical regulation has failed to adequately protect 

human health and the environment. 

EDCs have been identified as substances of very high concern in the new European 

Union (EU) legislation for industrial chemicals (REACH) (EC 2006) and are also 

specifically mentioned as substances that should not be put on the market in the new 

EU legislations for plant protection products (EC 2009) and biocides (EC 2012). This 

increased legislative focus has put pressure on regulatory authorities to be able to 

efficiently and reliably identify, characterize and risk assess EDCs. 

However, risk assessment of EDCs has proven complicated, in part because there are 

currently no generally agreed upon criteria within the EU or internationally that direct 

how to specifically identify compounds with endocrine disrupting properties or how to 

distinguish adverse effects of EDCs from normal regulation and function of the 

endocrine system. Risk assessment of EDCs has also been hampered by large scientific 

uncertainties because of the complex toxicity exhibited by hormonally active 

substances, such as varying and multiple mechanisms of action (MoA), different effects 

at high and at low doses, potential delayed on-set of effects and non-monotonic dose-

response relationships (e.g. UNEP/WHO 2012; Kortenkamp et al. 2012). This complex 

toxicity challenges the methods by which chemicals are traditionally tested and 

evaluated for adverse health effects.  

The primary focus of this thesis has been to identify and address factors that contribute 

to scientific uncertainties in the health risk assessment process for EDCs, such as 

assumptions and principles traditionally used in toxicity testing and risk assessment, 

and ways to reduce this uncertainty.  

 



 

2 

2 BACKGROUND 

2.1 PRINCIPLES OF HEALTH RISK ASSESSMENT 

Health risk assessment of chemicals entails identifying and characterizing the risk of 

adverse health effects occurring at current exposure levels and is commonly conducted 

by national or international regulatory agencies, such as the Swedish Chemicals 

Agency (KemI) or the European Food Safety Authority (EFSA), or expert organs, such 

as the World Health Organization (WHO). Although it is performed with the overall 

objective to protect human health, the primary purpose of the risk assessment may vary 

depending on, for example, the type of substance, its intended use and the human 

exposure scenario. The aim of health risk assessment may be e.g. to establish health 

based guidance values for contaminants in food and compare these values to the 

estimated exposure levels. In other cases the purpose may be to evaluate human health 

risks as basis for authorization or restriction of the use of a chemical.  

It is not within the scope of this thesis to describe in detail the process and principles of 

health risk assessment but some of the most fundamental aspects are summarized 

below. 

 

2.1.1 Components of health risk assessment 

Different organizations describe the structure of risk assessment in slightly different 

ways but commonly containing the same components (e.g. ECHA 2011a; WHO/IPCS 

2010). Simplified, health risk assessment can be said to consist of three main parts: 

hazard assessment (including hazard identification and hazard characterization), 

exposure assessment and risk characterization (Figure 1). These parts are briefly 

described below based on information from guidance documents provided by the 

European Chemicals Agency (ECHA 2011b; ECHA 2012) and the WHO (WHO/IPCS 

2010, 2009). The work done within this PhD-project is primarily relevant for the hazard 

assessment part of risk assessment. 
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Figure 1. A simplified scheme of the components of health risk assessment. 

 

2.1.1.1 Hazard assessment 

The hazard assessment aims to identify and characterize the adverse effects of a 

compound and involves evaluating existing data, such as quantitative structure–activity 

relationship (QSAR) data, in vitro and in vivo toxicity studies, as well as 

epidemiological data (see section 2.1.2 for further discussion on data evaluation).   

Commonly, toxicity studies conducted in animals (in vivo) provides the primary basis 

for hazard assessment. Hazard assessment can be divided into two steps, hazard 

identification and hazard characterization. 

In the hazard identification step the type and nature and of potential adverse health 

effects of the compound are identified.  

The hazard characterization step entails further describing the toxicity of the 

compound. This includes evaluating the toxicokinetics, i.e. the absorption, distribution, 

metabolism and excretion of the substance, and its toxicodynamics, i.e. the molecular 

events at the target tissue, as well as the relevance of these aspects to humans.  

In hazard characterization the most sensitive adverse effect that is relevant to human 

health should be identified. This is often referred to as the critical effect. An important 

aspect is to characterize the dose-response relationship and identify a point of departure 

(PoD) for the critical effect, such as a no observed adverse effect level (NOAEL) or a 

lower confidence limit of a benchmark dose (BMDL), i.e. the highest dose considered 

not to have resulted in significant adverse effects in test animals. In some risk 

assessments the PoD is used as basis for deriving health-based guidance values 

considered “safe” for humans, such as an acceptable or tolerable daily intake (A/TDI), 
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a derived no effect level (DNEL) or a reference dose (RfD), by applying assessment 

factors (see section 2.1.4). As far as possible the mechanism of action (MoA) for the 

critical effect, i.e. the molecular and cellular events that the compound initiates and that 

subsequently leads to the critical effect, should be identified and described. 

2.1.1.2 Exposure assessment 

In the exposure assessment possible sources of exposure as well as any exposure 

scenarios relevant to humans are identified and exposure levels in human populations 

are estimated. 

The human exposure levels resulting from different scenarios can be calculated based 

on concentrations of the substance e.g. in food, dust and air, and data on the intake of 

certain food items, respiratory rate, etc. Alternatively, the total exposure to a substance 

can be estimated based on concentrations of that substance, or its metabolites, in human 

urine, blood or other tissues, if such data is available. 

The exposure assessment also has to take into consideration life stage-specific 

exposure. Exposure patterns and scenarios differ between, for example, adults and 

infants due to differences in the main sources of exposure, e.g. toys, food and 

cosmetics, as well as differences in behavior and physical parameters, such as food 

intake per kg body weight or respiratory rate.  

2.1.1.3 Risk characterization 

In the risk characterization step the hazard and exposure assessments are combined to 

draw conclusions about the risk to human health. One method is to see if, and by how 

much, estimated human exposure levels exceed the derived “safe” levels, e.g. the ADI, 

TDI or DNEL. Another approach is to divide the PoD (e.g. the NOAEL or BMDL) by 

the estimated exposure to calculate margins of safety (MoS), sometimes also referred to 

as margins of exposure (MoE). The sufficiency of the MoS is determined on a case-by-

case basis, but typically a MoS ≥ 100 is considered sufficient. 

 

2.1.2 Evaluation of toxicity data for risk assessment 

As mentioned above, different types of data may be used in health risk assessment, e.g. 

QSAR-data or information from studies conducted in cells or tissues (in vitro data),  

animals (in vivo data), as well as epidemiological studies investigating associations 

between chemical exposure and health effects in humans. Understandably, 

epidemiological studies have the potential to deliver very relevant information for 

health risk assessment, as they investigate the association between exposure and health 

effects in humans. However, epidemiological studies have a number of limitations. For 

example, human populations are exposed to an uncontrolled mixture of chemicals and 

other environmental factors, so it may be difficult to draw conclusions about the 

exposure to a single compound. Also, human data is lacking for many compounds.  

In contrast, experimental toxicity studies are not conducted in humans but have the 

advantage of allowing the investigator to control the study population (i.e. the cells or 

animals), the exposure to the chemical under study, as well as any environmental and 

confounding factors which may influence toxicity. In vivo studies conducted in animals 
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are commonly considered especially useful for health risk assessment since they 

investigate effects in intact organisms. Health risk assessment is therefore, in most 

cases, primarily based on data from in vivo toxicity studies, i.e. animal data provides 

the basis for conclusions about the critical effect and dose-response relationships. 

2.1.2.1 Reliability and relevance 

Evaluation of the reliability and relevance of toxicity studies for hazard identification 

and characterization is an integral part of the risk assessment process. 

Reliability indicates the “quality” of the study, e.g. the reproducibility of results and 

degree of certainty in these results, while relevance relates to how appropriate the study 

is in relation to the human health effect and exposure scenario under investigation 

(ECHA 2011c). 

There are different methods available for evaluating the reliability and relevance of 

(eco)toxicity studies (e.g. Durda and Preziosi 2000; Hobbs et al. 2005; Klimisch et al. 

1997; Küster et al. 2009). However, most are primarily for evaluation of reliability with 

less focus on relevance. Further, application of these different methods have been 

shown to result in different conclusions concerning reliability of the same study 

(Ågerstrand et al. 2011). 

The use of the Klimisch-method (Klimisch et al. 1997) when evaluating toxicity data 

for health risk assessment has been commonly promoted by regulatory agencies, such 

as the European Chemicals Agency (ECHA 2011c) and the US EPA (USEPA 1999). 

However, this method puts a lot of emphasis on the application of standardized 

guidelines and Good Laboratory Practices (GLP) and research studies not adhering to 

these standards can at best be categorized as “reliable with restrictions”. In practice it 

means that if standard studies are available, they will always be given more weight than 

non-standard studies in risk assessment.  

2.1.2.2 Standard and non-standard toxicity studies 

Toxicity studies that are conducted for the purpose of regulatory risk assessment, e.g. in 

connection with authorization processes for use and putting substances on the market, 

are generally required to comply with standardized, internationally validated and 

accepted test guidelines, such as the Organisation of Economic Co-operation and 

Development (OECD) test guidelines (TG). Standardized TGs give detailed directions 

on how to design, execute and report studies for different types of toxicity, including 

which animal models and methods to use and what endpoints to measure. Further, these 

studies should follow GLP, a set of standards for study execution and reporting. 

Standardized TGs and GLP standards are intended to guarantee high reliability of 

toxicity studies.  

A major disadvantage of standard methods is that they do not always represent the most 

relevant or sensitive testing approach given the type of compound or endpoint under 

investigation. This limitation of current standardized testing paradigms has been 

pointed out for EDCs (e.g. Kortenkamp et al. 2012; Zoeller et al. 2012) and is further 

discussed in section 2.2.5.2.  
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Research studies conducted at academic and research institutions often do not comply 

with standardized TGs. Such studies are hypothesis-driven and their study design and 

execution are aimed at investigating specific questions related to that hypothesis 

(Myers et al. 2009). Research studies also commonly utilize novel and sensitive 

methods measuring endpoints considered specifically sensitive and relevant to the study 

hypothesis. Another reason is that standardized TGs require the use of a large amount 

of animals, something that is specifically difficult to attain ethical permits for in 

academic research (Myers et al. 2009). Nonetheless, non-standard research studies
1
 

undergo a peer-review process in connection with publication in scientific journals and 

should fulfill general quality criteria for scientific investigations, e.g. the control of 

relevant variables, comparison to appropriate control groups, and proper reporting of 

the results etcetera. However, in the regulatory setting, e.g. for the purpose of chemicals 

risk assessment, the reliability of non-standard studies is often questioned for reasons 

such as suffering from methodological limitations and/or being poorly reported (Alcock 

et al. 2011; Hengstler et al. 2011). 

2.1.2.3 Weight of evidence 

In health risk assessment it is often stated that a “weight of evidence approach” was 

used when summarizing available toxicity data for hazard assessment. Exactly what is 

meant by weight of evidence (WoE) and the methods and criteria used when this 

approach was applied are, however, seldom defined. In the scientific literature the term 

WoE has been used to imply a number of different methods or concepts. The most 

common use of WoE in risk assessment is as a general concept for summarizing, 

synthesizing and interpreting a body of evidence, but the term has also been used to 

describe other ideas, such as (more or less clearly defined) quantitative methods for 

applying different weights to individual toxicity studies (Weed 2005). 

 

2.1.3 The dose-response relationship 

A central principle in toxicology is the paradigm of the dose-response relationship. This 

principle is traditionally based on two main assumptions about the dose-response of a 

toxic compound: 1) there is (in most cases) a threshold dose for effect, and exposure to 

doses below this threshold is assumed to not induce any adverse effects, and 2) the 

effect will increase with increasing dose until a maximum response is reached, 

generating a sigmoidal dose-response curve (Figure 2A).  

Genotoxic (or mutagenic) carcinogens are often exempted from the assumption 

regarding threshold for effect (ECHA 2011b; US EPA 2005). The primary reason is 

that the MoA of these compounds, i.e. the induction of genetic damage by, for example, 

adduct formation or strand breaks, implies that exposure to one single molecule could 

potentially initiate events that could ultimately result in tumor formation and cancer. In 

other words, based on knowledge concerning the MoA of these compounds it can be 

argued that, theoretically, there is no threshold for effect and the dose-response is linear 

at low doses (Figure 2B). 

                                                 
1
 NOTE: In some parts of this thesis work non-standard studies are referred to as non-guideline studies. 
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Figure 2. The traditional dose-response relationship (A) has a sigmoidal shape indicating that 

there is a threshold dose for effect below which no (adverse) effects occur. Above the threshold 

the effect will increase with increasing dose until reaching some maximum response. For 

genotoxic carcinogens a non-threshold model (B) is commonly assumed.  

 

Toxicity studies do commonly not include more than three dose groups and a negative 

control group (with zero exposure to the compound), often less. Conclusions regarding 

the shape of the dose-response can thus not be made solely on experimental 

observations but are heavily reliant on the assumptions stated above. 

In risk assessment of non-genotoxic substances the assumption of a threshold and 

monotonic dose-response curve is used to identify e.g. a NOAEL and LOAEL and to 

determine a PoD for the critical effect, on which conclusions regarding “safe” levels of 

human exposure can be based.  

It is important to note that a NOAEL is no true “no effect level” below which no 

adverse effects occur. The NOAEL is the highest dose administered in a toxicity study 

that did not result in observations of statistically significant adverse effects compared to 

the response in unexposed control animals. The presence or absence of a threshold for 

any substance can never be experimentally proven (Slob 1999). All experiments have a 

limit of detection below which statistically significant effects cannot be shown, i.e. no 

conclusion regarding the shape of the dose-response curve can be made below this 

detection limit. Also, to generate an exact dose-response curve would require an infinite 

number of doses and infinitely precise measures. In other words, the determination of a 

threshold, e.g. a NOAEL, relies on the statistical power of the study, as well as the 

choice and spacing of dose levels, and subtle effects or effects in sensitive individuals 

below the NOAEL are expected (Davis et al. 2011). 
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2.1.4 Extrapolation from animal data to human health 

As mentioned above, experimental toxicity studies in animals where the exposure to the 

substance under study, as well as the surrounding environment, can be controlled is 

most often used as basis for health risk assessment. A fundamental default assumption 

of health risk assessment is that findings in animal studies are relevant for humans, i.e. 

that the observed effects can be suspected to occur also in humans, unless the opposite 

is proven to be true (e.g. Boobis et al. 2008; JRC 2013).  

Extrapolation from animal data to human health, for example to calculate health-based 

guidance values, such as an ADI or TDI, or to calculate a MoS, is commonly done by 

dividing the PoD derived from animal studies, e.g. a NOAEL, by assessment (or 

uncertainty) factors (AF) (Falk-Filipsson et al. 2007; Kalberlah et al. 2003). AFs are 

used to account for differences in sensitivity between species and between individuals 

or, importantly, the lack of such knowledge. Historically, the default assessment factor 

for health risk assessment has been 100, consisting of a factor 10 for extrapolating from 

the test animal to humans and a factor 10 to account for differences between 

individuals. In other words, in the absence of data proving otherwise, humans are 

assumed to be more sensitive than the test animals. The assessment factor may however 

be adjusted (up or down) depending on available knowledge about, for example, 

species differences in toxicokinetics, and confidence in the data material and additional 

assessment factors may be added to account for other considerations, such as 

uncertainty in the NOAEL or lack of data, the nature and severity of the effect(s), 

duration of exposure or route-to-route extrapolation (Falk-Filipsson et al. 2007).  

 

2.1.5 Adversity 

Traditionally, risk assessment is applied to protect against harmful effects of chemical 

substances. The underlying principle is that an organism may respond physiologically 

to exposure to a compound in a way that can be considered adaptive and not lead to 

detrimental (adverse) health effects (e.g. ECHA 2011b; WHO/IPCS 2009). Hazard 

assessment thus entails identifying the adverse effects of toxic compounds. The 

International Programme on Chemical Safety (IPCS) of the WHO (WHO/IPCS 2009) 

has defined an adverse effect as:  

“Change in the morphology, physiology, growth, development, reproduction or 

lifespan of an organism, system or (sub)population that results in an impairment of 

functional capacity, an impairment of the capacity to compensate for additional stress 

or an increase in susceptibility to other influences.”  

However, there are no generally accepted criteria for adversity and the distinction 

between adverse and non-adverse health effects is dependent on expert judgment (see 

section 2.1.6 below). For example, in the case of EDCs an important issue of discussion 

is the distinction between endocrine disruption, an implied adverse event, and 

endocrine modulation, which can be regarded as a compensatory, or adaptive, event 

(EFSA 2013), but there are no clear criteria for when these modulatory events become 

adverse. 
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2.1.6 Expert judgment 

Although there are certain rules and criteria set up for the risk assessment process by 

different authorities and organizations, for example for how to select and evaluate 

toxicity studies and how to determine the critical effect, (e.g. ECHA 2011b; 

WHO/IPCS 2009), risk assessment is inevitably reliant on the expert judgment of the 

risk assessor(s) (Weed 2005). Expert judgment is dependent on the knowledge, views 

and experiences of the of the risk assessor.  

Since the properties, uses and exposure scenarios vary for different chemicals, a risk 

assessment process that is too rigid and does not allow for the individual expertise of 

risk assessors to influence conclusions may not be able to account for all the relevant 

aspects of the substance that is being assessed. The use of expert judgment allows the 

assessment process to be flexible enough to potentially evaluate the most relevant risks 

and be as protective as possible. The identification of adverse effects and the evaluation 

of the reliability and relevance of toxicity studies for risk assessment are examples of 

aspects of the risk assessment process where expert judgment plays an important role. 

On the other hand, the use of expert judgment introduces value-based assumptions to 

the assessment, and it is thus of key importance that these assumptions are transparently 

described and justified (Wandall 2004). 

 

2.2 ENDOCRINE DISRUPTING COMPOUNDS 

Compounds that are hormonally active, meaning they can interact with the endocrine 

system in one way or another, can be both naturally occurring, e.g. phytoestrogens, or 

manmade. Such substances are present for example in food (as natural constituents, 

pesticide residues or migrating from contact materials), toys, cosmetics, textiles, 

medical equipment and construction materials, meaning that we are exposed to many of 

them every day throughout our lifetime (UNEP/WHO 2012).  

However, different definitions of what constitutes an EDC have been proposed (Table 

1). The main difference between these definitions is the importance attributed to 

plausible causality between an endocrine MoA and an adverse health effect. The 

definitions proposed by the European Commission (EC 1996) and the WHO/IPCS 

(2002) require that an adverse health effect occurs as a result of endocrine action, while 

the US Environmental protection Agency (EPA) and Endocrine Society definitions 

imply that interaction with the endocrine system in itself can be considered as 

endocrine disruption. 
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Table 1. Definitions of an EDC proposed by different organizations. 

Organization 

(year) 

Definition Reference 

US EPA 

(1996) 

An exogenous agent that interferes with the 

production, release, transport, metabolism, binding 

action or elimination of natural hormones in the body 

responsible for the maintenance of homeostasis and 

the regulation of developmental processes. 

Kavlock et al. 

1996 

European 

Commission 

(1996) 

An exogenous substance that causes adverse health 

effects in an intact organism, or its progeny, 

secondary to changes in endocrine function. 

EC 1996 

WHO/IPCS 

(2002) 

An exogenous substance or mixture that alters 

function(s) of the endocrine system and consequently 

causes adverse health effects in an intact organism, 

or its progeny, or (sub) populations. 

WHO/IPCS 

2002 

The Endocrine 

Society   

(2012) 

An exogenous chemical, or mixture of chemicals, 

that interferes with any aspect of hormone action. 

Zoeller et al. 

2012 

 

The definition proposed by the Endocrine Society is especially open for interpretation. 

It builds on the definition from the US EPA but was intentionally made even more 

general in order “to account for current and future information about the range of 

actions through which chemicals may influence the endocrine system” (Zoeller et al. 

2012). Further, this definition implies that observations in vitro are enough to identify a 

substance as an EDC, as no requirements of effects in vivo are clearly stated. 

 
2.2.1 Basic features of the endocrine system  

The endocrine system regulates the development and function of essentially all cells, 

tissues and organs in an organism throughout its lifetime (Molina 2010; Tortora and 

Grabowski 1996). As such it controls various vital processes, such as reproduction, 

growth and development, metabolism and mood. The endocrine system also helps 

maintain homeostasis if an organism is subjected to any type of stress, such as 

infections, trauma, emotional stress, dehydration, starvation, hemorrhage, temperature 

extremes, etc. Perturbations to normal endocrine function leads to dysregulation of 

these processes and may result in a wide spectrum of endocrine-related diseases, such 

as goiter, diabetes, growth inhibition, certain types of cancer and reproductive 

problems. Some major endocrine glands and tissues, as well as examples of hormones, 

are illustrated in Figure 3. 
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Figure 3. Some of the major endocrine glands and tissues and examples of hormones produced 

and released at each site. (Illustration by Viktoria Berglund.) 

 

The endocrine system acts via chemical messengers (hormones) that are released from 

endocrine glands and tissues into the bloodstream to travel to target tissues. There are 

many different hormones, which are commonly divided into four groups: 1) steroids, 

such as estrogens and androgens, 2) biogenic amines, such as the thyroid hormones (T3 

and T4), histamine and serotonin, 3) peptides and proteins, such as insulin and oxytocin, 

and 4) eicosanoids, such as prostaglandins (Tortora and Grabowski 1996).   

Hormones exert their effects by binding to specific receptors on the surface of cell 

membranes or intracellular receptors in target tissues (Molina 2010) as illustrated in 

Figure 4. Interactions with membrane-bound receptors start off cascades of signaling 

events within the cell, e.g. kinase activation and phosphorylation of proteins, which 

lead to specific biological responses of the cell. This chain of events can also lead to the 
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activation of transcription factors and transcription of specific target genes. 

Hydrophobic hormones, e.g. estrogens and androgens, can cross the cell membrane and 

interact with intracellular receptors. These receptors are ligand-regulated transcription 

factors and the hormone-receptor complex initiates transcription of target genes.  

 

 

Figure 4. Schematic figure illustrating some general cellular pathways of hormone action 

resulting from hormones interacting with intracellular receptors or receptors on cell membranes. 

(Illustration by Viktoria Berglund.)  

 

A single hormone may be able to bind to and activate different types of receptors. For 

example, estrogens can act via different types of intracellular receptors, e.g. estrogen 

receptor (ER) α and β, as well as via receptors on the cell membrane (Nadal et al. 

2001). The response to a single hormone may differ between tissues, depending on the 

type of receptors that are expressed. Also, the responsiveness of tissues to hormone 

signaling may be controlled by up- or down-regulation of hormone receptors. 

Endocrine signaling is controlled by positive and negative feedback loops between 

endocrine glands and tissues (Molina 2010). For example, emotional stress causes the 

hypothalamus to release corticotropin releasing hormone (CRH), which stimulates the 

pituitary to release adrenocorticotropic hormone (ACTH). In response to ACTH the 

adrenal cortex produces and releases cortisol, adrenaline and noradrenaline. These 

hormones bind to receptors in many different tissues and regulate blood pressure, 

metabolism, mood, immune system and many other functions in response to stress. 

Increased levels of cortisol, adrenaline and noradrenaline in the blood stream are also 

detected by the hypothalamus and pituitary and work by negative feedback to decrease 

the production and release of CRH and ACTH. 
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Some important features of the hormone system related to the issue of endocrine 

disruption are (Molina 2010; Zoeller et al. 2013): 

 The binding of hormones to receptors. As a result, hormone action is saturable. 

It also means that the effect of a hormone is dependent both on its affinity for 

the receptor and the number and type of receptors present in the target tissue. 

 Maximum effects are reached at concentrations well below receptor saturation. 

 Endogenous hormones act at very low concentrations. 

 Potency of a hormone is not equal to its binding affinity to hormone receptors. 

 The same hormone can have different functions during different life-stages. 

 Hormones may act as agonists or antagonists of each other, or in a synergistic 

fashion. 

 

2.2.2 Mechanisms of endocrine disruption 

Endocrine disruption is not a MoA in itself; rather it is a collection of different possible 

mechanisms which can lead to perturbations of the normal function of the endocrine 

system, i.e. binding to hormone receptors or interfering with the production, transport 

or metabolism of endogenous hormones (Diamanti-Kandarakis et al. 2009; 

Kortenkamp et al. 2012; UNEP/WHO 2012). As such, an “endocrine mode of action” is 

often discussed, which is a more general concept than MoA and that does not intend to 

describe in detail the molecular basis of a toxic effect (e.g. EFSA 2013; JRC 2013).  

Some EDCs are hormone receptor agonists, meaning they bind to hormone receptors 

and activate transcription of endocrine-responsive genes. Such substances will mimic 

the characteristics of endogenous hormones. However, their actions will not necessarily 

result in the same patterns of molecular events or effects as endogenous hormones, 

depending on their potency and the complexity introduced e.g. by multiple MoA 

(Zoeller et al. 2012). EDC can also act as hormone receptor antagonists, i.e. “blocking” 

a hormone receptor and subsequently gene transcription.   

Importantly, knowledge is lacking regarding the MoA for EDCs as well as the 

relationship between these molecular events and subsequent adverse health effects. 

 

2.2.3 Complex toxicity of EDCs  

EDCs display a complex toxicity which challenge traditional toxicological assumptions 

and contribute to making toxicity testing and health risk assessment difficult 

(Kortenkamp et al. 2012; UNEP/WHO 2012; Zoeller et al. 2012), for example:  

 Varied and multiple MoA, e.g. a single EDC may have both estrogenic and 

anti-androgenic properties, or may be metabolized into compounds with 

different MoA from the original compound. Further, since hormone receptors 

are differentially expressed in different tissues the MoA of an EDC may differ 

between tissues. 

 Large differences in sensitivity between and within species. For example, some 

rat strains have been reported to be particularly insensitive to estrogens 
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(Hossaini et al. 2003; Long et al. 2000) making the choice of animal model 

used for toxicity testing critical. 

 Delayed onset of effects, i.e. effects that appear long after exposure and 

sometimes only in subsequent generations, as exemplified by the estrogen-

replacement drug diethylstilbestrol (DES). DES was administered to pregnant 

women from the 1940’s to the 1970’s to alleviate pregnancy-related 

complications and reduce the risk of miscarriages. No apparent adverse side-

effects in mothers or babies were noted. However, many daughters born to 

women treated with DES were later afflicted with a rare form of vaginal cancer, 

which did not manifest until after puberty (Newbold 2004).  

 Effects that occur at very low doses and non-monotonic dose response 

relationships. These aspects have been extensively debated internationally 

during the last couple of years and are discussed in more detail below. 

 

2.2.3.1 Low-dose effects of EDCs and the question of a threshold 

As mentioned above, endogenous hormones act at very low concentrations and slight 

fluctuations may result in biological response (Tortora and Grabowski 1996). EDCs act 

by the same mechanisms and against a background of endogenous hormones, adding to 

the actions of these hormones and increasing the response of already ongoing biological 

processes. It therefore stands to reason that EDCs are capable of inducing effects at 

very low doses, especially during particularly sensitive and critical windows of 

development. Indeed, there are many reports of effects occurring after administration of 

low doses of EDCs both in in vitro and in vivo toxicity studies (Richter et al. 2007; 

Vandenberg et al. 2012).  

There is, however, no generally accepted definition of “low dose”, and the term has 

been used with slightly different meanings in the literature, implying e.g:  

 doses below those commonly used in standardized regulatory toxicity studies, 

or below a previously established regulatory NOAEL for the compound, 

 doses at or below a health-based guidance value, e.g. a TDI, or 

 doses resulting in exposure corresponding to human exposure levels measured 

e.g. in blood or urine.  

General agreement on a single definition of low dose may not be necessary but, given 

the different possibilities for interpretation, it is important to clearly define what is 

meant whenever low-dose effects are discussed.  

Based on arguments concerning the shared MoA between endogenous hormones and 

EDCs, i.e. receptor-binding, and the concept of “additivity-to-background” many 

experts claim that a threshold for effect for EDCs cannot be assumed (Kortenkamp et 

al. 2012; Vandenberg et al. 2012; Zoeller et al. 2012). These arguments are especially 

strong for early molecular events, such as the first interaction of and EDC with the 

receptor and gene-transcription activation or suppression (reviewed in Beronius and 

Hanberg 2013). However, the complexity of a biological system, including interactions 

between a myriad of different signaling pathways and the presence of compensatory 

mechanisms intended to maintain homeostasis, could mean that thresholds exist for 
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“higher” endpoints such as behavior, reproduction, organ weights and growth (Conolly 

and Lutz 2004). 

Importantly, sensitivity to EDC toxicity is expected to vary in the general population, 

as is the pattern of exposure to mixtures of EDCs and other substances. Consequently, 

even if a threshold for a certain effect does exist it could be “masked” by individual 

variation (White et al. 2009). 

2.2.3.2 Different effects at low and high doses and the issue of non-monotonicity 

Due to the nature of receptor-binding, endogenous hormones, as well as EDCs, can 

exhibit different effects at high and at low doses and so-called non-monotonic dose-

response relationships (Diamanti-Kandarakis et al. 2009; Zoeller et al. 2012). Non-

monotonicity means that the dose-response curve changes direction at least once over 

the dose-range, resulting e.g. in a U- or inverted U-shape or even a bi-phasic curve, as 

illustrated in Figure 5.  

 

 

Figure 5. Illustrations of U-shaped, inverted U-shaped and bi-phasic non-monotonic dose-

response relationships. 

 

Non-monotonic dose-response curves have been reported both in vitro and in vivo for 

several EDCs (reviewed in Vandenberg et al., 2012), such as phthalates (Ge et al. 

2007), pesticides (Brodeur et al. 2009; Palanza et al. 2001), PCBs (Love et al. 2003) 

and dioxins (Fan et al. 1996). A common and well characterized example of non-

monotonicity is the “tamoxifen flare” phenomenon. Tamoxifen is an anti-estrogenic 

drug used to treat certain breast cancers by inhibiting estrogen-dependent proliferation 

of cancer cells. However, at low doses, i.e. below the therapeutic dose, tamoxifen 

actually induces cell proliferation in estrogen-dependent cells (reviewed in Howell 

2001; Vandenberg et al. 2012). This is manifested by growth of breast tumors, i.e. a 

“flare”, during the first two weeks of administration before therapeutic circulating 

concentrations are reached, which was described already in the 1970’s (Plotkin et al. 

1978).  

There are several mechanisms, especially involving receptor-binding, that can explain 

non-monotonicity (Diamanti-Kandarakis et al. 2009; Vandenberg et al. 2012;  Zoeller 

et al. 2012), for example: 

 Competing mechanisms, e.g. at low doses estradiol initiates a proliferative 

response in target cells but at high doses estradiol becomes cytotoxic resulting 

in a subsequent decrease in viable cell number. 
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 Over-stimulation of hormone receptors that leads to down-regulation of 

receptors resulting in a decrease in response at high doses. 

 Different genes being activated in response to high vs. low concentrations of a 

receptor ligand.  

 Receptor-selectivity, e.g. at low doses a compound may bind primarily to 

membrane receptors but at higher doses intracellular receptors are activated. 

 Competition for receptors. An EDC with low potency compared to the 

endogenous hormone may at low doses add to the effect of the hormone. But at 

higher concentrations the EDC out-competes the hormone for receptor-binding 

sites but leads to a decrease in response, due to the lower potency of the EDC-

receptor complex and thus reduced gene-transcription.  

 

2.2.4 Sensitive windows of exposure 

Endogenous hormones have different functions, i.e. produce different effects, during 

different periods of an organisms’ life cycle (Tortora and Grabowski 1996; Zoeller et 

al. 2012). During fetal and early life stages the endocrine system is responsible for the 

development of tissues, organs and their functions, while in adulthood it generally 

regulates functions of tissues and organs. Exposure to an EDC during early 

development can thus be specifically detrimental and lead to permanent effects in an 

individual that  can be manifested at much later life stages (Diamanti-Kandarakis et al. 

2009; Zoeller et al. 2012). The developing organism is also more sensitive to EDC 

toxicity than the adult, i.e. developmental effects occur in offspring at doses much 

lower than those causing effects in the mother (e.g. UNEP/WHO 2012). Thus, the 

timing of exposure is an important determining factor of EDC toxicity. 

The roles of estrogens, androgens and thyroid hormones are specifically important 

during fetal development.  

2.2.4.1 Estrogens  

Estrogen receptors are present in a large number of tissues in both  males and females 

but the functions of estrogen in all these structures are not known (Molina 2010). 

Estrogens play an important role in the development as well as maintenance of female 

reproductive structures, and are also responsible for the development of secondary 

female characteristics (Tortora and Grabowski 1996).  

The actions of estrogens, particularly estradiol, are also crucial in early development of 

the brain, both promoting and preventing synaptogenesis, i.e. the formation of synapses 

between neurons (reviewed in McCarthy 2009). Estrogens (and androgens) are also 

involved in sexual differentiation of certain areas of the brain, as well as the 

development of sexually dimorphic behaviors in animals (primarily rodents) (reviewed 

in McCarthy 2010; Simerly 2002). However, the development of sexually dimorphic 

behaviors in humans seems to be less well studied and established. 

Developmental exposure to estrogenic compounds, such as ethinyl estradiol, DES and 

BPA, have been reported to result in a wide array of effects in animal studies, e.g. 

effects on male reproductive organs (vom Saal et al. 1997) and behaviors (Jones et al. 
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2011), increased anxiety (Ryan and Vandenbergh 2006) and cancer (reviewed in 

Newbold 2004).  

2.2.4.2 Androgens 

Testosterone and dihydrotestosterone (DHT), drive and mediate the development of the 

male reproductive system, including the development of external genitalia and descent 

of the testes, and regulate the development of secondary male characteristics (Tortora 

and Grabowski 1996). As mentioned above, androgens are also important in the 

development of sexually dimorphic areas of the brain and behavior (reviewed in 

McCarthy 2010; Simerly 2002).  

Developmental exposure to anti-androgenic substances, such as PCBs or the fungicide 

vinclozolin, have, for example, been shown to adversely affect spermatogenesis 

(Anway et al. 2006)   and the development of male reproductive organs (reviewed in 

Kavlock and Cummings 2005) , and also affect sexually dimorphic behaviors (Colbert 

et al. 2005; Dickerson et al. 2011). 

2.2.4.3 Thyroid hormones 

Thyroid hormones, especially thyroxine (T4), are critical for the regulation of normal 

brain development in the fetus (Molina 2010; Patel et al. 2011). Thyroid hormones bind 

to receptors in the fetal brain and activate transcription of target genes that are involved 

in different aspects of brain maturation, such as myelination and cell differentiation. 

Perturbations to thyroid hormone signaling during pregnancy, such as insufficient 

supply of thyroid hormones, iodine, transporters or enzymes involved in the production 

and metabolism of thyroid hormones, may result in various neurological disorders e.g. 

mental retardation or deafness (reviewed in Patel et al. 2011). 

 

2.2.5 Regulatory aspects 

During the past few years new chemical regulations have been implemented in the EU, 

e.g. the REACH legislation and the new directive for regulation of plant protection 

products, which identify EDCs as specifically problematic compounds that should be 

phased out or subjected to strict authorization processes. However, there are currently 

no generally agreed procedures that specify how substances with EDC characteristics 

are to be identified or risk assessed, and there is a lack of appropriate standardized 

toxicity tests with regulatory acceptance. 

Within the EU and internationally there are current on-going activities to improve the 

knowledge on EDCs as well as identification and characterization of these compounds, 

test methods and risk assessment and management strategies. Several reports have been 

published as a result (EEA 2012; EFSA 2013; JRC 2013; Kortenkamp et al. 2012; 

UNEP/WHO 2012). Recently, the EU Parliament approved a resolution saying that 

current legislation and practices for regulating EDCs should be closely examined with 

the goal to update or propose new legislation by June 2015 (EU Parliament 2013). 

2.2.5.1 Criteria for identifying EDCs 

One critical issue in terms of regulatory measures for EDCs is the lack of generally 

established criteria for identifying compounds as EDCs. The new EU legislations for 
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plant protection products and biocides state that a definition of EDCs should be agreed 

upon in 2013 (EC 2009, 2012). In 2012 the European Commission requested EFSA to 

advise on such criteria. 

The development of criteria for EDCs is inherently dependent on which definition of 

EDC is used. EFSA (2013) adopted the WHO/IPCS definition (see Table 1) and 

concluded that in order for a substance to be identified as an EDC it has to 1) have an 

endocrine MoA, 2) cause adverse effects in an intact organism or (sub)populations, and 

3) that there is a causal link between the endocrine MoA and the adverse effect.  

Thus, the issue of distinguishing between adverse effects of endocrine disruption and 

compensatory endocrine effects becomes critical. However, as discussed above, there 

are no clearly defined criteria for adversity and, at the time being, we lack the 

knowledge to draw up general criteria for what constitutes and adverse endocrine effect 

and distinguishes it from normal modulations of the endocrine system (EFSA 2013; 

JRC 2013; Kortenkamp et al. 2012;). Adversity, and consequently the identification of 

EDCs, thus has to be determined on a case-by-case basis based on expert judgment. 

In contrast, others, e.g. the Endocrine Society (2012) advocate that endocrine activity in 

itself could be regarded as endocrine disruption. Reasoning along those lines would not 

require a causal link between the endocrine MoA and downstream adverse effects. 

However, it would probably mean that a very large number of substances would be 

identified as EDCs and would lead to a regulatory situation that would require other 

types of criteria to guide decisions on which compounds that constitute a health risk 

and when to apply risk management strategies.    

2.2.5.2 Toxicity testing 

Toxicity testing according to standardized and internationally validated test guidelines 

has traditionally been an important basis for regulatory risk assessment of chemicals 

(see section 2.1.2.2). However, current standardized test methods and batteries, e.g. the 

OECD test guidelines, have been criticized for being insufficient to identify and test the 

complex toxicity of EDCs (e.g. EFSA 2013; JRC 2013; Kortenkamp et al. 2012; 

Zoeller et al. 2012). 

The issues of concern are, e.g: 

 Current standardized tests do not include the most sensitive endpoints relevant 

to endocrine disruption 

 There is no test in mammals available intended for investigating in utero or 

early developmental exposure and effects at later life stages. 

 Important sensitive windows of exposure, e.g. before and during mating are not 

adequately covered in many tests. 

 The inclusions of few dose groups, and requiring that relatively high doses are 

administered to observe statistically significant effects, means that effects at low 

doses are not adequately evaluated. 

 Endocrine disruption entails a wide spectrum of different hormone actions that 

could possibly be affected; it is therefore not likely that a single test is sufficient 

to identify all EDCs.   
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Work is on-going e.g. at the OECD (OECD 2012) to enhance guidelines for the 

purpose of testing and assessment of EDCs. But these efforts has mainly focused on 

compounds interacting with estrogen, androgen and thyroid signaling or steroidgenesis 

and development of tests for identifying and evaluating other types of endocrine 

activity has received less attention.  

2.2.5.3 Risk assessment methodology 

It is apparent that the application of traditional risk assessment principles and 

assumptions becomes problematic in the evaluation of EDCs. For example, non-

monotonic dose-relationships does not allow for extrapolation from high to low doses, 

i.e. drawing conclusions about the nature and risk for toxic effects in humans at 

environmentally relevant (low) exposure based on observations in animals exposed to 

relatively high doses, the way that it is traditionally done. Further, if a threshold for 

effect for EDCs cannot be assumed no “safe” dose for humans can be derived.  

There is always uncertainty in risk assessment (Kalberlah et al. 2003), e.g. uncertainties 

concerning species-differences and the relevance of a certain effect to humans, 

uncertainties in measurements and in default values used. Some of these may be 

handled by applying default AFs, as discussed above. However, risk assessment of 

EDCs is especially riddled by uncertainties due to their complex toxicity and our 

incomplete understanding of it. In addition, for many EDCs (as for other substances) 

there may be a lack of data further hampering the understanding of their toxicity. There 

is thus a need to handle these large uncertainties in order to ensure reliable risk 

assessment and sufficient regulation of EDCs that is protective for the entire 

population. 

Currently, standard toxicity studies are not expected to provide all relevant toxicity data 

for EDCs (e.g. EFSA 2013; JRC 2013; Kortenkamp et al. 2012; Zoeller et al. 2012). 

Thus, reliable and relevant non-standard exploratory research has an important role to 

fill information gaps and potentially reduce uncertainty in regulatory risk assessment of 

these compounds. However, methods for evaluating the reliability and relevance for 

health risk assessment of toxicity studies, which allow for potentially attributing the 

same weight to non-standard as to standard studies, are lacking. 

 

2.3 BISPHENOL A 

Bisphenol A (BPA) is and EDC for which risk assessment has proven especially 

complicated and it has been used for a case study in parts of this thesis work. BPA was 

first synthesized at the end of the 19
th

 century. Reports of its estrogenic potential were 

published in the 1930’s (Dodds and Lawson 1936) and it was for a while considered as 

a candidate substance in the development of estrogen replacement therapies (Vogel 

2013). However, other more potent estrogenic substances, such as DES, were 

discovered during this period and since the 1950’s BPA has primarily been used in the 

production of epoxy resins and polycarbonate plastics.  

The production volume of BPA has increased steadily and today it is one of the most 

highly produced industrial chemicals globally. Polycarbonate and epoxy are very 
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versatile materials and are used in a wide variety of consumer products, such as plastic 

bottles and containers, sports equipment, building materials and electronics (Beronius 

and Hanberg 2011). Measured concentrations of BPA in human blood, urine and other 

tissues confirm that exposure is widespread in the general human population (Calafat et 

al. 2008; Vandenberg et al. 2007). It is generally believed that consumer exposure to 

BPA occurs primarily via food in contact with BPA-containing materials, such as 

polycarbonate baby bottles, tableware and food containers as well as food and beverage 

cans lined with epoxy resins. It has also been shown that BPA can be transferred to the 

skin from certain types of thermal printing paper, such as some types of cashier’s 

receipts, in significant amounts (Biedermann et al. 2010).  

The estimated BPA-exposure in the human population is 0.01 – 4.5 µg/kg body weight 

(bw)/day (FAO/WHO 2011). Infants and small children are estimated to have the 

highest exposure, which can be explained by a large intake of food per kg bw, as well 

as high intake of foods polycarbonate feeding bottles and canned foods. Studies 

measuring urinary BPA-concentrations in the general population seem to confirm that 

children have a higher BPA-exposure than adults (Calafat et al. 2008; Vandenberg et al. 

2007). 

It is well known that BPA can interact with nuclear and membrane-bound estrogen 

receptors and the toxicity of BPA is very well studied compared to many other 

chemicals. Still, there is disagreement among scientists as well as regulators as to the 

nature and size of the health risks posed by this compound. The NOAEL for BPA 

established for regulatory purposes in Europe and the US is currently 5 mg/kg body 

weight (bw) and day (EFSA 2006; US FDA 2008). This NOAEL was identified from 

two multigeneration standard studies in rats and mice investigating reproductive and 

developmental toxicity (Tyl et al. 2002 and 2008). The current TDI for BPA has been 

based on this NOAEL and an AF of 100 and has consequently been calculated to 50 

µg/kg bw/day. However, there are a large number of non‐standard research studies 

available reporting effects of BPA exposure at doses well below 5 mg/kg bw/day, 

sometimes around only a few μg/kg bw/day (Richter et al. 2007). This so called “low 

dose controversy” has made the risk assessment of BPA particularly difficult and has 

led scientists and others to question the regulatory NOAEL and the sufficiency of the 

current TDI for BPA.  

Exposure to low doses of BPA, i.e. below the NOAEL, especially during early 

development, has also been reported to result in non-monotonic dose-response 

relationships for several endpoints, e.g. male reproductive behavior (Jones et al. 2011), 

female fertility (Cabaton et al. 2011) and learning and memory (Xu et al. 2011).  

However, many of the studies reporting low-dose effects of BPA have so far not been 

considered adequate to serve as the basis for the derivation of health-based guidance 

values, or the evaluation of MoS, in regulatory risk assessments of BPA. The reasons 

given are often that they suffer from methodological flaws, such as only using one or 

two dose groups and inappropriate statistical methods, and/or are poorly reported, 

which limit their reliability for risk assessment purposes. 
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2.4 AIM 

The overall purpose of this project was to contribute to making health risk assessments 

of EDCs more transparent, systematic, and reliable. As discussed above, risk 

assessment of EDCs has proven particularly complicated and is often hampered by 

large scientific uncertainties. The aim of the studies presented in this thesis was to 

identify how these uncertainties can be reduced or handled in order to improve risk 

assessment of EDCs. To that end this work has endeavored to make detailed scrutiny of 

the strengths and weaknesses of the risk assessment process and to identify important 

scientific and policy-related aspects that influence this process for EDCs. 

The specific aims of the different studies have been: 

I. To investigate the lack of regulatory coordination for EDCs by comparing the 

risk assessment processes within legislative frameworks for different regulatory 

groups of chemicals. 

II. To investigate to what extent the conclusions vary between the available risk 

assessments for BPA and what might be the scientific and/or policy-related 

reasons for these differences, with the overall aim to contribute to the 

understanding of the risk assessment process for EDCs and the factors that 

influence this process. 

III. To systematically investigate how the results in behavioral and functional 

parameters differ between DNT studies of BPA and if any factors of study 

design, such as choice of test species or test method, could explain the 

differences in results from these studies and what the implications are for DNT 

testing of BPA and other EDCs. 

IV. To propose criteria and guidance for the evaluation of reliability and relevance 

of non-standard in vivo studies, which could be used to facilitate systematic and 

transparent evaluation of such studies for health risk assessment. And to 

propose user friendly guidance for reporting of non-standard studies intended to 

promote an improvement in reporting of studies that could be of use in risk 

assessment. 
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3 METHODS 

Identification and investigation of scientific and policy-related aspects, as well as 

interactions between these two, that influence the risk assessment process for EDCs 

require careful scrutiny of relevant regulatory and scientific documents. This PhD-

project was thus carried out as a series of literature studies, using the methodology 

developed by Rudén (2001a, b). Legislative and guidance documents, risk assessments, 

as well as toxicological studies and other published investigations have constituted the 

working materials, which have been systematically compared and analyzed in the 

different studies.  

A database approach was used for Papers I, II and III, which entailed collecting 

detailed information from the materials in databases constructed in Microsoft Word or 

Access, depending on the amount and complexity of the data and analyses to be made. 

Key questions to be investigated were then formulated for each study. This approach 

enabled systematic and detailed comparisons within as well as between documents. 

Legislative, guidance and risk assessment documents were identified via internet 

searches or contacts with authorities. Toxicity studies and other relevant scientific 

literature were generally identified via searches in PubMed or from the reference lists 

of risk assessment documents or other key literature.  

Model compounds were used in three of the studies in order to investigate how risk 

assessment of EDCs has been conducted in practice, in addition to studying how this 

process is described and regulated in legislation. In Paper I three EDCs were used as 

model compounds to represent three different regulatory groups within EU legislation; 

BPA was used to represent existing industrial chemicals, dioxins as environmental 

pollutants in food, and vinclozolin as an existing active substance in plant protection 

products. The different regulatory frameworks were compared in terms of the scope of 

respective EU Regulations or Directives relevant for the risk assessment process and 

requirements for toxicity testing and risk assessment stated therein, as well as the 

availability and scope of guidance documents for risk assessment.  

One recent EU risk assessment report for each model compound, produced in 

accordance with each of the regulatory frameworks investigated, was identified from 

the websites of responsible EU authorities (BPA and dioxins) or provided by the 

Swedish Chemicals Agency (vinclozolin). Key questions were formulated to allow 

comparison between these reports in terms of e.g. the toxicological data on which they 

were based, conclusions regarding the critical effect, as well as the toxicological 

principles used to determine human relevance of the identified endocrine MoA. 

In Papers II and III the case of BPA was further investigated. BPA was considered 

relevant and suitable as a model substance of a focused case study mainly because 1) its 

toxicity has been well studied and thus there are a large amount of toxicity data 

available, 2) there is wide-spread and continuous exposure in the general population 

making its safety a relevant area of research, 3) there are several recent risk assessment 

documents available from different national and international authorities and expert 
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groups, and 4) risk assessments come to different conclusions regarding the risk to 

human health. 

In Paper II risk assessment documents for BPA were scrutinized. A database 

collecting key information from the different risk assessment documents as well as the 

critical toxicity data on which they were based was constructed. Available risk 

assessments were identified from the websites of relevant authorities as well as via 

internet searches. The aim was to include all available and recent risk assessments of 

BPA addressing human health risks to the general population. 

Key questions were formulated to specifically investigate differences between risk 

assessment documents concerning conclusions regarding risk to the human population 

at current exposure levels, identification of critical study and critical effect, how 

scientific uncertainty was handled and assumptions and arguments used in determining 

the significance for health risk assessment of non-standard studies reporting effects at 

low doses of BPA, i.e. below the previously established regulatory NOAEL. 

In Paper III a data base was constructed based on the requirements and 

recommendations for DNT-testing according to OECD TG 426. Information from 

available DNT-studies of BPA was collected in this data base enabling systematic 

comparisons between different DNT-studies, as well as to the requirements and 

recommendations in TG 426. In total, 47 studies investigating behavioral endpoints in 

offspring of rats or mice exposed to BPA prenatally and/or during lactation were 

identified from risk assessment documents as well as via searches in PubMed. Three of 

these studies were excluded due to being judged too insufficiently reported based on 

predefined criteria. Consequently, 44 DNT-studies were included in analyses.  

In addition to the database approach for systematic comparisons, Principal component 

analysis (PCA) and Partial least squares projection to latent structures (PLS) modeling 

were conducted to identify any systematic information in the data collected from DNT-

studies and explore how different factors of study design (independent variables) may 

have contributed to differences in results between studies (dependent variables). PCA is 

a technique that is used to extract the most relevant information from a multivariate 

data set, i.e. a data set where several observations are described by several variables, 

with the aim to make it easier to interpret (Abdi and Williams 2010). The goal is to 

identify the variables that contribute to the most variability in the data set, i.e. that carry 

the most information. To that end, PCA transforms the large number of variables 

(which are possibly correlated) into fewer, un-correlated, principal components (PC). 

Imagining the multivariate data set as a “cloud” of data points, each PC represents an 

axis passing through the center of the data in one dimension of the data set. The first PC 

is the axis with the largest variance i.e. that accounts for as much of the variability in 

the data as possible. Each subsequent PC is orthogonal to the one before and accounts 

for as much of the remaining variability as possible. The observations and variables can 

then be plotted in regard to the PCs and their patterns can be analyzed (Abdi and 

Williams 2010). The aim is to explain a data set that includes a large number of 

variables by using a much smaller number of PCs. 
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PLS is a multivariate regression method that can be used to model the relationship 

between two matrices, e.g. X and Y. Specifically, the advantage of using PLS is that it 

simultaneously models the variation among numerous and strongly correlated X-

variables and the variation among several Y-variables, as well as the relationship 

between them (Eriksson et al. 2008; Wold et al. 2001). Another strength of PLS is that 

it can handle missing data. It is thus a very useful method for investigating the 

relationship between numerous independent and dependent variables in complex data 

sets. 

In Paper IV five OECD TGs for different types of in vivo toxicity testing were 

scrutinized to identify requirements and recommendations for in vivo toxicity testing 

that have been internationally accepted. Previously proposed methods for study 

evaluation were also identified from the open literature and reviewed. Based on this 

information a framework containing criteria and guidelines for evaluating the reliability 

and relevance for health risk assessment of non-standard in vivo studies was developed. 

In addition, a checklist for reporting in vivo research in order to meet the requirements 

of regulatory risk assessment was proposed. In order to ensure their scientific 

soundness, relevance and user-friendliness, feedback on the criteria and guidelines for 

study evaluation as well as the reporting checklist was requested from experts within 

the field of toxicity testing and risk assessment from research institutions in Europe and 

the US, the Swedish Chemicals Agency and the US FDA. 
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4 RESULTS AND DISCUSSION 

This section is intended to summarize and discuss the main results of this thesis work in 

a wider perspective.  

 

4.1 HEALTH RISK ASSESSMENT PROCEDURES FOR EDCS WITHIN 

THE EU  

Four different legislative frameworks
2
 regulating 1) existing industrial chemicals, 2) 

environmental pollutants in food, 3) existing active substances in plant protection 

products and 4) pharmaceuticals within the EU were investigated in Paper I.  

At the time, there were no requirements within any of the investigated frameworks to 

specifically investigate endocrine disrupting potential or, consequently, for the 

identification of EDCs.  

The requirements for toxicity testing within these four frameworks, as well as the 

availability and scope of guidance documents intended to guide the risk assessor, varied 

substantially. Considerably more toxicological information was required for 

pharmaceuticals and plant protection products than for the other two groups. In 

particular, for pollutants in food, such as dioxins, for which there is no intended use and 

no manufacturer, there are currently no data requirements for risk assessment stated by 

any EU legislation. Risk assessment of such compounds is conducted only if risks to 

human health are known or suspected and must then be based on data that is available 

in the literature. For compounds such as dioxins where there have been incidents of 

human exposures such as the Seveso accident (Pesatori et al. 2003), and for which there 

is a strong research interest, the existing data material may be vast. But this cannot be 

expected to be the case for other pollutants that may be an issue for concern.  

This lack of a generally agreed procedure under any of the investigated regulatory 

frameworks that directly specifies how substances with EDC characteristics should be 

identified or risk assessed, what end-points are crucial to investigate, or how the results 

of such investigations are to be interpreted, means that the regulatory risk assessment 

process, as well as underlying policies, criteria and requirements may differ for 

different EDCs. Indeed, in Paper I it was concluded that if the only data available was 

the data required by legislation, only the plant protection substance vinclozolin was 

likely to be identified as an EDC. The endocrine disrupting properties of the other two 

model compounds, dioxins and BPA, would have gone undetected had they not been 

previously known or suspected due to a large research interest and the academic 

research literature available. 

The increased focus on EDCs in REACH (EC 2006) and the new EU regulation for 

plant protection products (EC 2009), as well as the work within e.g. the OECD to 

develop tests and construct test batteries aimed at identifying compounds with 

endocrine disrupting properties and evaluating their toxicity, is a step forward to 

                                                 
2
 The regulatory frameworks for industrial chemicals and plant protections products have since been 

replaced by the REACH Regulation (EC) No 1907/2006 and the new EU Regulation (EC) No 1107/2009 

for plant protection products, respectively. 
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closing the net on EDCs. However, there are several aspects remaining which hamper 

risk assessment of these compounds, e.g. disagreements among researchers, authorities 

and other stake holders concerning the criteria for identifying EDCs and what effects to 

consider adverse as opposed to adaptive. The development and validation of 

appropriate standardized test methods also progresses slowly due to extensive 

validation and harmonization procedures. 

 

4.2 THE BPA CASE 

The purpose of the investigations conducted for Papers II and III, using BPA as a 

case study, was to investigate and systematically compare practices, principles and 

assumptions in the risk assessment of BPA and in DNT-testing, respectively. It was not 

to discuss the WoE in this case or to draw conclusions about whether or not BPA poses 

a risk to human health. 

 

4.2.1 Factors influencing the lack of consensus regarding the health 

risks of BPA 

At the time of the investigation in Paper II ten risk assessments evaluating BPA were 

available from different national and international authorities and expert groups (AIST 

2005; ECB 2003, 2008; EFSA, 2006, 2008; Health Canada 2008; NTP-CERHR 2008; 

SCF 2002; US FDA 2008; vom Saal et al. 2007). These had all been conducted within 

a six-year period between 2002 and 2008. Conclusions regarding health risks of BPA 

vary between these assessments from “there is no risk to any part of the population” to 

“there is risk to the entire population”, with a couple of them (Health Canada 2008; 

NTP-CERHR 2008) stating that there is too much scientific uncertainty in the case to 

make any strong and definite conclusions concerning health risks. 

In most of the BPA risk assessments compliance with internationally standardized and 

validated test guidelines was considered a mark of quality or even a quality criterion. 

The majority of the assessments agreed that the two standard reproductive toxicity 

studies conducted by Tyl et al. (2008; 2002) provided the most reliable data that could 

serve as key evidence in health risk assessment. Commonly, a NOAEL of 5 mg/kg 

bw/day and a LOAEL of 50 mg/kg bw/day for were identified from these studies.  

The main reason for differences in risk assessment conclusions seemed to have been 

differences in the evaluation of the reliability and relevance of non-standard research 

reporting effects at low doses of BPA, below the LOAEL established in the studies by 

Tyl et al. While the most of the assessments concluded that this low-dose literature was 

of questionable reliability and/or relevance to humans one, the expert group convening 

in Chapel Hill in 2006, stated that “There is extensive evidence…that low doses of 

BPA have persistent effects on brain structure, function and behavior in rats and mice” 

and that “The wide range of adverse effects of low doses of BPA in laboratory 

animals…is a great cause for concern with regard to the potential for similar adverse 

effects in humans” (vom Saal et al. 2007). The Chapel Hill assessment was conducted 

by researchers with extensive prior expertise in the field of BPA which may explain 
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why their evaluation of the available toxicity data differed from that of the other risk 

assessments. However, some of the other assessments stated that, although not 

sufficiently reliable or relevant, the low dose studies could not be entirely dismissed as 

insignificant for human health risk assessment. This reasoning seems to have led to the 

expression of uncertainty in the risk assessments of Health Canada and the National 

Toxicology Program Center for the Evaluation of Risks to Human Reproduction (NTP-

CERHR). 

It can thus be argued that, in the case of BPA, the fact that the amount of toxicity data 

available has increased significantly during the last decade has contributed to scientific 

uncertainty in risk assessment conclusions rather than to leading to more certain 

assessments. One reason may be that a lot of the research published for BPA has 

suffered from insufficient reporting and that there is a lack of agreed upon methods on 

how to evaluate the reliability and relevance of non-standard research for risk 

assessment purposes. 

 

4.2.2 Developmental neurotoxicity of BPA – contributions of non-

standard studies 

One issue of disagreement between risk assessors has been the potential of BPA to 

cause DNT at low doses. The studies by Tyl et al., which were used as key evidence in 

most risk assessment of BPA, did not investigate DNT. However, several of the BPA 

risk assessments have evaluated other studies investigating DNT concluding, in many 

cases, that available DNT-studies were not sufficiently reliable or relevant to set a 

NOAEL below that established based on the studies by Tyl and co-workers. However, 

the Chapel Hill experts judged these studies as relevant for evaluating the risks to 

human health. Also, in the assessments by NTP-CERHR and Health Canada it was 

specifically stated that effects on neurobehavioral development may prove important 

for the assessment of BPA and that further research in this area is needed (Health 

Canada 2008; NTP-CERHR 2008). The DNT issue also became a point of 

disagreement between member states in the 2008 update of the assessment from 

European Chemicals Bureau (ECB 2008). Denmark, Sweden and Norway argued along 

the lines of Health Canada and the NTP-CERHR, that the data on DNT did indeed raise 

concerns about the health risks of BPA. However, the official conclusion from the ECB 

assessment was that there was no concern regarding any health risks form BPA and the 

Nordic countries’ opinion was included as a footnote in the report. Since then, a large 

DNT-study adhering to OECD TG 426 has been conducted in an attempt to settle this 

dispute (Stump et al. 2010). The conclusion from this study was that BPA does not 

cause DNT, either at high or at low doses. 

One reason that the reliability of the available research on DNT of BPA has been 

questioned is the varying and sometimes contradictory results reported from studies in 

this area. The purpose of Paper III was thus to investigate to what extent results in 

behavioral and functional parameters differ between available studies investigating 

DNT of BPA in rodent studies, and what could be the reasons for these differences. The 
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studies were also compared to the requirements for designing and conducting a DNT-

study according to the standardized guideline OECD TG 426 (OECD 2007).  

OECD TG 426 states that pregnant dams (preferably of a common rat strain) should be 

administered the test substance orally from the first day of gestation until weaning of 

the pups. Offspring are evaluated for effects in different functional and behavioral 

endpoints, as well as other physical and developmental landmarks, such as body weight 

and sexual maturation, before weaning, at adolescence and young adulthood. Brain 

weight and neuropathology data are collected at weaning and at termination. The 

required behavioral endpoints include evaluations for behavioral ontogeny, motor and 

sensory function, motor activity and learning and memory.  

However, many non-standard DNT-studies investigating BPA have evaluated other 

types of behavioral effects, such as anxiety, exploration and social and sexual 

behaviors. Forty-four DNT-studies were identified from the open literature and deemed 

sufficiently well reported to be included in analyses. Only one, the study by Stump et 

al., had been carried out in accordance with OECD TG 426. Studies in both mice and 

rats were included. Evaluations of behavioral effects conducted in the DNT-studies 

were categorized into either: 1) motor activity, 2) learning and memory, 3) anxiety-

related or exploratory behaviors, or 4) other behaviors, including e.g. social, sexual and 

maternal behaviors. Systematic comparisons showed that, indeed, very varying and 

sometimes contradictory results were reported, especially for the required endpoints 

motor activity and learning and memory. Also, effects were more often observed in 

endpoints that are not required according to OECD TG 426 while relatively few studies 

reported effects on e.g. motor activity (Paper III, Fig. 2). This is not very surprising 

since behaviors are linked to hormonal state as well as hormonal mechanisms (Cory-

Slechta et al. 2001; Zoeller et al. 2012). These behaviors may thus be particularly 

relevant for the evaluation of the neurotoxic actions of EDCs in general.  

Another observation in Paper III was that non-standard research studies often lacked 

information about the research aim, design, performance or results which hampered the 

interpretation and evaluation of study results. 

 

4.2.3 Sex-differences 

Given the estrogenic potential of BPA it is reasonable to assume that exposure, 

especially during early development, may give rise to different effects in males and 

females. Indeed, this has often been observed in toxicity studies of BPA, e.g. in regard 

to sexually dimorphic behaviors (Carr et al. 2003; Gioiosa et al. 2007; Rubin et al. 

2006). Sex-differences in sensitivity, i.e. whether one sex is more sensitive overall to 

the toxicity of BPA, have however not been evident, nor has this issue been discussed 

in BPA risk assessments (Paper II). 

In Paper III it was observed that behavioral effects after developmental exposure to 

BPA have more often been investigated in male than in female offspring. This is 

problematic since sex-differences in effects are to be expected and extrapolations 

between the sexes, i.e. drawing conclusions about risk to females based on toxicity data 
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conducted in males, may be difficult. It was also observed in Paper III that the non-

required behavioral endpoints, especially social and sexual behaviors, seemed to have 

been particularly important in identifying DNT-related effects in female offspring. 

These types of behavioral effects were observed in females in about 70% of the studies 

where they were investigated. In contrast, effects on motor activity or learning and 

memory in females were only observed in about 30% of the studies where these 

parameters were investigated (Paper III, Fig. 2). 

 

4.2.4 Implications for toxicity testing and risk assessment 

The investigations of the BPA-case in Papers II and III raise issues that could have 

implications for toxicity testing and risk assessment of EDCs. 

Primarily, conclusions from these studies concur with on-going discussions that 

standardized test guidelines may not contain the most sensitive and relevant endpoints 

and up-to-date methods needed to evaluate EDCs (Kortenkamp et al. 2012; Zoeller et 

al. 2012). Since standard studies are traditionally given more weight than non-standard 

research studies in regulatory risk assessment there is thus a chance that sensitive 

effects of BPA and other EDCs are not being adequately considered to ensure a risk 

assessment that is protective of even the most sensitive individuals in the human 

population. As the case of BPA shows, even when sensitive effects at very low doses 

are strongly implied from a large amount of non-standard research studies their 

relevance for health risk assessment is questioned in the presence of data from standard 

studies that contradict these findings. 

Work is being carried out e.g. at the OECD to develop new standardized test strategies 

suitable for identifying and testing EDCs (OECD 2012). However, this process has 

proved challenging, in part due to the complex toxicity of EDCs previously described. 

As discussed in Paper III, effects in social and sexual behaviors were often observed 

for BPA and are likely to be sensitive effects of many EDCs in general since such 

behaviors are linked to hormonal state as well as hormonal mechanisms (Cory-Slechta 

et al. 2001). However, the standardization of tests to evaluate social and sexual 

behaviors is hampered by the complexity of these behaviors. For example, they must 

often be interpreted before they can be quantified, which means that they are difficult to 

automate and require a high level of expertise and trained investigators (Cory-Slechta et 

al. 2001). It is therefore challenging to incorporate tests for these endpoints in 

standardized test batteries for neurotoxicity. 

The development of new standardized methods is also inherently slow due to the 

extensive validation and harmonization procedures for standardized test methods. In the 

meantime, a lot of new research is published in the area of EDC toxicity. It therefore 

seems important to be able to use non-standard studies in a reliable and transparent 

manner in risk assessment in parallel to the work of developing new sensitive and 

relevant standards for toxicity testing. 
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4.3 FACILITATING THE USE OF NON-STANDARD STUDIES IN HEALTH 

RISK ASSESSMENT OF EDCS 

Conclusions from Papers I, II and III indicate that non-standard research studies 

contribute data that may be important to fill knowledge gaps and improve risk 

assessment conclusions for EDCs. Also, it seems counterproductive that a lot of 

academic research is conducted on the toxicity of chemicals, which can ultimately not 

be used to inform risk assessment. However, as the case of BPA illustrates, 1) the use 

of non-standard studies in risk assessment is often hampered by perceived 

methodological limitations and insufficient reporting, and 2) the reliability and 

relevance of the same studies may be judged differently by different evaluators.  

In Paper IV the aim was thus to propose a framework of criteria and guidelines 

intended to facilitate systematic and transparent evaluation of the reliability and 

relevance of non-standard studies for health risk assessment. One additional but 

important purpose was to suggest a checklist of information that should be reported, 

which could be used as guidance for authors when preparing manuscripts for 

publication.  

The desired outcome of these efforts was to contribute to reducing scientific uncertainty 

in health risk assessment conclusions and, in extension, to better targeted policy 

decisions for health risk reduction. However, more research and discussions in this area 

is needed. 

 

4.3.1 A framework for evaluating reliability and relevance of non-

standard studies 

The framework for data evaluation presented in Paper IV allows for potentially 

attributing equal weight to non-standard and standard studies in health risk assessment. 

Several of the previously published methods for study evaluation, especially the 

preferred method of many regulatory agencies proposed by Klimisch et al. (1997), 

attributes higher reliability to studies conducted according to standardized test 

guidelines by default. The importance of the relevance of the study is emphasized in the 

framework proposed in Paper IV. Few of the previously published methods for study 

evaluation provide guidance for the evaluation of relevance and focus mainly on 

reliability. In addition, it provides clearly defined and detailed criteria and guidelines 

for evaluating reliability and relevance. 

These criteria and guidelines were primarily based on requirements and 

recommendations identified from OECD TGs for relevant in vivo studies, as well as 

previously reported methods. Since the OECD TGs have been internationally validated 

and accepted they were considered an adequate and reliable basis for suggesting criteria 

for study evaluation. 

A two-tiered approach was proposed (Figure 6), where the purpose of the first Tier is to 

identify studies that are sufficiently well reported and reliable enough to be carried 

forward to a more thorough evaluation of reliability in Tier II in parallel with 

evaluation of relevance.  
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Figure 6. The structure of the proposed framework for study evaluation. 

 

A web-based color-coding tool was developed for the purpose of applying the criteria 

in Tier II. Using this tool the evaluator can mark each criterion as green for “fulfilled”, 

orange for “partially fulfilled”, red for “not fulfilled” or white for “not applicable”. The 

tool generates a color chart for the study in an exportable excel-sheet, which can be 

used as a basis for determining whether the study is of high, sufficient or low reliability. 

I.e. if the chart is dominated by red the conclusion may be that the study is not reliable 

enough to be used for risk assessment, while if it is mainly green and/or orange the 

study may be considered of high or sufficient reliability and adequate to serve as key or 

supporting evidence in risk assessment. Depending on the substance being investigated 

and the type of study, e.g. chronic or reproductive toxicity, some criteria may be 

considered to be more critical for the reliability of the study than others. Visualizing if 

and to what extent each criterion has been fulfilled using a qualitative method of color-

coding, rather than attributing a numerical value as proposed by Schneider et al. (2009), 

opens up for a more flexible evaluation of the overall reliability of the study and is a 

transparent method for applying expert judgment. 

The goal is that the proposed criteria and guidelines, as well as the color-coding tool, 

should be publically available and free to use on-line in the near future.  

 

4.3.2 Guidelines for reporting animal research 

Based on the proposed criteria and guidelines for study evaluation a checklist for 

reporting in vivo studies was constructed. The list contains items considered important 

to that should be reported from in vivo studies to ensure that the study can be evaluated 

and considered as evidence in regulatory risk assessment. 

However, the amount of information presented in published research articles is usually 

restricted by space limitations. Therefore, the checklist can alternatively be used as a 

template for providing supplementary information in cases where the information is too 
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extensive to include in the manuscript text or inclusion of all details is considered to 

prevent a clear description of main results and conclusions related to the study 

hypothesis.  
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5 CONCLUSIONS 

 

The main conclusions from this thesis work can be summarized as follows. 

 In the absence of generally agreed procedures for how substances with EDC 

characteristics are to be identified or risk assessed, what end-points are crucial 

to investigate, or how the results of such investigations are to be interpreted, the 

regulatory risk assessment process, as well as underlying policies, criteria and 

requirements may differ for different EDCs. 

 Because of the complex nature of endocrine disruption, test methods, principles 

and criteria for data interpretation traditionally used might not be directly 

applicable to EDCs and further research within this field is needed. 

 Standardized test guidelines, such as the OECD test guidelines, do not always 

include the most sensitive endpoints relevant for the evaluation of EDCs. 

 Non-standard studies, i.e. research studies not conducted according to any 

standardized test guidelines, could fill information gaps and contribute 

information that could be particularly important for the risk assessment of 

EDCs.  

 The work of developing new standardized tests for EDCs is progressing slowly, 

in part due to the complex toxicity of EDCs but also due to the extensive 

validation and harmonization procedures for standardized test methods. It is 

therefore important to be able to use non-standard studies in a reliable and 

transparent manner in risk assessment in parallel to the work of developing new 

sensitive and relevant standards for toxicity testing. 

 Tools are needed that facilitate systematic and transparent evaluation of non-

standard studies for the purpose of risk assessment. These tools should allow for 

potentially giving equal weight to non-standard and standard studies in risk 

assessment.  

 Information that is crucial for reproducibility and the evaluation of study 

reliability is often missing from non-standard research studies published in 

scientific journals. Reporting of non-standard studies needs to be improved in 

order to meet the requirements of regulatory risk assessment.  
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6 POPULÄRVETENSKAPLIG SAMMANFATTNING 

Vi omges dagligen av en blandning av olika kemikalier från till exempel tillsattser och 

föroreningar i vår mat, textilier, leksaker, kosmetika och byggnadsmaterial. Därför är 

det viktigt att ha en effektiv kemikaliekontroll, som säkerställer att de ämnen vi 

exponeras för inte leder till oönskade hälsoeffekter. Hälsoriskbedömning av kemikalier 

görs som en del i kemikalieregleringen för att bedöma om deras användning innebär 

någon risk för människors hälsa. Hälsoriskbedömning innebär att man utvärderar vilka 

toxiska effekter ett ämne kan ge upphov till, ofta baserat på information från 

toxicitetsstudier i djur, och vid vilka halter det kan tänkas ge upphov till skadliga 

hälsoeffekter hos människor. Man kan sedan bedöma huruvida människors exponering 

överstiger de halter som kan anses säkra.   

Oron för hormonstörande ämnen och de effekter de kan ha på människors hälsa och i 

miljön har ökat under de senaste årtiondena. Hormonstörande ämnen påverkar 

hormonsystemets normala funktioner, till exempel genom att härma kroppsegna 

hormoner eller genom att störa hur dessa produceras, bryts ner eller transporteras i 

kroppen. Samband mellan sådana ämnen och hormonrelaterade sjukdomar, som vissa 

typer av cancer, försämrad fertilitet och hjärt-kärlsjukdomar i den allmänna 

befolkningen, liksom effekter i miljön och djurliv, har rapporterats i ökande grad under 

de senaste decennierna. Detta tyder på att tidigare kemikaliereglering inte har lyckats 

skydda människors hälsa och miljön tillräckligt. 

Hormonsystemet reglerar i stort sett alla kroppens organ, vävnader och celler. Genom 

specifika signalsubstanser, hormoner, styr hormonsystemet en rad livsviktiga 

funktioner, så som fortplantning, tillväxt och utveckling, metabolism och humör. 

Särskilt kritisk är fostertiden då hormonsystemet har en viktig roll i utvecklingen av 

olika organ och vävnader. Om hormonsystemets normala funktion störs under denna 

känsliga period kan det i värsta fall leda till allvarliga och permanenta effekter, som till 

exempel hämmad mental utveckling, missbildningar och ökad risk för vissa typer av 

cancer. I nya EU-lagstiftningar för t.ex. industrikemikalier, växtskyddsmedel och 

biocider har hormonstörande ämnen uppmärksammats som särskilt oroväckande ämnen 

som bör fasas ut eller strikt regleras. Det finns således ett ökat tryck på regulatoriska 

myndigheter att effektivt kunna bedöma eventuella hälsorisker från dessa ämnen.  

Dock råder stor vetenskaplig osäkerhet kring hormonstörande ämnen och de har visat 

sig särskilt svåra att riskbedöma, bland annat på grund av deras komplexa toxicitet. Till 

exempel kan ämnen som härmar kroppsegna hormoner ge upphov till effekter vid 

mycket låga doser. De har också visat sig kunna orsaka olika, och även motsatta, 

effekter vid höga och vid låga doser i djurstudier. Ofta är effekterna mycket subtila och 

blir ibland inte tydliga förrän långt efter exponeringen upphört. 

Dessa egenskaper strider mot flera av de antaganden och principer som toxikologin och 

riskbedömning traditionellt bygger på, som att man kan dra slutsatser om hälsorisker 

vid låga halter av ett ämne baserat på toxicitetsstudier i djur där relativt höga halter har 

testats.  
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Syftet med avhandlingsarbetet som presenteras här har varit att undersöka hur den 

vetenskapliga osäkerheten beträffande hormonstörande ämnens toxicitet kan minskas 

eller hanteras för att göra hälsoriskbedömningen av dessa ämnen bättre och mer 

tillförlitlig. Arbetet har byggt på litteraturstudier som undersökt 

riskbedömningsprocessen för hormonstörande ämnen inom EU, liksom de 

toxicitetsdata som finns tillgängliga för riskbedömare och hur användningen av all 

tillgänglig toxicitetsdata kan förbättras. Den omdebatterade substansen bisfenol A 

(BPA) har använts som en fallstudie i en stor del av detta arbete.  

Myndigheter lägger ofta störst vikt vid toxicitetsstudier som genomförts enligt 

internationellt överenskomna och standardiserade testriktlinjer när de utför 

riskbedömningar. Standardiserade tester anses vara mycket tillförlitliga men har dock 

kritiserats av forskare och andra experter vad gäller att kunna fånga upp känsliga 

effekter av hormonstörande ämnen, bland annat för att de inte tar tillräcklig hänsyn till 

hormonstörande ämnens specifika egenskaper, som till exempel effekter vid mycket 

låga doser och fördröjda effekter. Resultaten i avhandlingen visar bland annat att icke-

standardiserade forskningsstudier, alltså studier som genererats inom akademisk 

forskning, kan bidra med information som kan vara särskilt viktig för att få en säkrare 

riskbedömning för hormonstörande ämnen. Men forskningsstudier kritiseras ofta för att 

ha svagheter och brister som negativt påverkar deras tillförlitlighet och därför begränsar 

deras användning i regulatorisk riskbedömning.  

Inom detta avhandlingsarbete har också metoder utvecklats som syftar till att kunna öka 

användbarheten av forskningsstudier i hälsoriskbedömning av kemikalier. Målet är att 

överbrygga klyftan mellan akademisk forskning och kemikaliereglering och 

förhoppningsvis bidra till att göra hälsoriskbedömningen för hormonstörande ämnen 

säkrare. 
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