
 

Department of Medicine 
Karolinska Institutet and Karolinska University Hospital, 

Stockholm, Sweden 

 

IDENTIFICATION OF 
ARACHIDONIC ACID 

METABOLITES FORMED 
THROUGH THE 15-

LIPOXYGENASE-1 PATHWAY 

Åsa Brunnström  

 

 

Stockholm 2013 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Publications from Karolinska Institutet

https://core.ac.uk/display/70340503?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


All previously published papers were reproduced with permission from the publisher. 

 

Published by Karolinska Institutet. Printed by ReproPrint. 

 

© Åsa Brunnström, 2013 
ISBN 978-91-7549-026-7 

 

 

 



 

 

ABSTRACT 

The polyunsaturated fatty acid arachidonic acid is the precursor of many biologically 

active lipid mediators. This thesis is focused on the arachidonic acid metabolites 

formed through the 15-lipoxygenase-1 (15-LO-1) pathway. 

The formation and the biological effects of mediators formed through 

cyclooxygenases and 5-lipoxygenase pathways are well characterized. The 15-LO-1 is 

less studied but several lines of evidence suggest a role for 15-LO-1 in asthma and 

other inflammatory diseases. In this thesis, eosinophils, mast cells, airway epithelial 

cells and the Hodgkin L1236 cell line were found to express 15-LO-1. In mast cells and 

airway epithelial cells, IL-4 stimulation increased the expression of 15-LO-1. 

Stimulation of eosinophils with pro-inflammatory agents and osmotic activation of 

mast cells by mannitol resulted in activation of the 15-LO-1 pathway. Bacterial 

infection as well as mechanical injury of the epithelial cells in the respiratory tract are 

well-known triggers of asthma attacks. These stimuli also increased the formation of 

15-HETE in primary airway epithelial cells. Increased amounts of 15-LO-1 were found 

in bronchial biopsies from asthmatic patients compared to healthy volunteers. 15-LO-1 

was also positively stained in Hodgkin lymphoma biopsies localized in the Hodgkin-

Reed Sternberg cells, indicating a therapeutic or diagnostic relevance for 15-LO-1 in 

Hodgkin lymphoma. 

Analysis with LC-MS/MS identified the novel metabolite 14,15-LTC4. This 

metabolite was given the name eoxin C4 (EXC4) since eosinophils were a rich source of 

this metabolite. In addition, mast cells, airway epithelial cells, nasal polyps and L1236 

cells could also produce EXC4. This metabolite was converted to EXD4 and EXE4 in 

eosinophils and L1236 cells. The cysteinyl-eoxins were shown to be 100 times more 

potent than histamine and almost as potent as cysteinyl-leukotrienes to increase the 

transendothelial permeability. Increased permeability and vascular leakage is a 

hallmark of inflammation, which is an important feature of asthma. Both LTC4 

synthase and certain soluble glutathione S-transferases were found to catalyze the 

conjugation of glutathione with EXA4 leading to the formation of EXC4. The animal 

ortholog of 15-LO-1, the 12/15-LO, was also found to generate EXC4, indicating that 

studies on animals can be predictive of the function of 15-LO-1 in human. 

Besides the cysteinyl-eoxins, the Hodgkin L1236 cell line also converted 

arachidonic acid into the 14,15- hepoxilin (Hx) A3 11(S) and 14,15-HxB3 13(R) as well 

as 14,15-HxA3-C and 14,15-HxA3-D. The 14,15-HxA3 11(S) and 14,15-HxB3 13(R) 

were also identified in eosinophils, dendritic cells and nasal polyps. The Hodgkin 

lymphoma tumor only consists of a minority of malignant cells and the main part is 

inflammatory cells, such as eosinophils and mast cells. A potential role of 15-LO-1 

could be to facilitate the inflammatory features of this disease.  

 In essence, this thesis demonstrates that the 15-LO-1 pathway can convert 

arachidonic acid to many different metabolites with potential pro-inflammatory effects. 
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1 INTRODUCTION 

The aim of the work presented in this thesis was to increase the knowledge of the 

expression and biological function of the enzyme 15-lipoxygenase type 1 (15-LO-1).  

 

1.1 FATTY ACIDS 

Membrane and compartments of the cells consist of a phospholipid bilayer with a 

hydrophilic exterior and a hydrophobic interior. The construction of the phospholipid is 

a backbone of typically a glycerol with a phosphorylated alcohol hence being 

hydrophilic and two hydrophobic fatty acids. Fatty acids consist of a carboxyl group 

with an even numbered aliphatic chain which are either saturated or unsaturated. 

Although the fatty acid composition of the phospholipid is different in various organs 

and tissues, one common fatty acid in mammalian cells is arachidonic acid (20:4, ω6) 

which consists of 20 carbon atoms and four cis double bonds, positioned at carbon 5, 8, 

11 and 14 (5,8,11,14(Z,Z,Z,Z)-eicosatetraenoic acid). Arachidonic acid is dietary 

obtained or synthesized from the essential fatty acid linoleic acid (18:2, ω6). 

Arachidonic acid is almost completely incorporated in the membrane and only a limited 

amount is free in the cytosol. The release of fatty acids from phospholipids is catalyzed 

by phospholipase A2 (PLA2), an enzyme present as different isoforms in various cell 

types [1]. Arachidonic acid is a substrate for cyclooxygenases, lipoxygenases and 

cytochrome P450 enzymes and the metabolites derived from this fatty acid are 

collectively called eicosanoids since arachidonic acid contains 20 carbon atoms. 

 

1.2 CYCLOOXYGENASES 

Two functional cyclooxygenase (COX) isoenzymes, COX-1 and COX-2, are known. In 

addition, a splice variant of COX-1 is identified as COX-3 [2]. COX-1 is constitutively 

expressed in most mammalian cells, whilst COX-2 is an inducible enzyme in 

macrophages and other cells activated at sites of inflammation. COX converts 

arachidonic acid to the hydroperoxide-endoperoxide prostaglandin (PG) G2 which is 

subsequently reduced to PGH2, which in turn is the precursor to PGE2, PGD2, PGI2 and 

PGF2α (Figure 1). These prostaglandins are formed via specific terminal prostaglandin 

synthases [3]. PGH2 is also the precursor to thromboxane (TX) A2 and this conversion 

is catalyzed by TXA2 synthase [4].  

 

1.3 LIPOXYGENASES 

Lipoxygenases (LO) are a family of non-heme iron containing enzymes which 

stereospecifically introduce molecular oxygen into polyunsaturated fatty acids, such as 

arachidonic acid. In humans, at least six functional genes have been identified and the 

enzymes are named according at which carbon atom oxygen is introduced in 

arachidonic acid. Hence the human enzymes are 5-LO, 12 (S)-LO, 12(R)-LO, 15-LO 

type 1 (15-LO-1), 15-LO-2 and epidermis-type 3-LO (e-LOX-3) [5]. 

 

The 5-LO is most thoroughly investigated, and this enzyme catalyzes the formation of 

5(S)-hydroperoxy-eicosatetraenoic acid (5(S)-HPETE) from arachidonic acid. This 

formation is a free radical reaction initiated by hydrogen abstraction at carbon 7 of 

arachidonic acid, followed by a migration of the radical to carbon 5 and hence forming 

a Δ6-trans double bond. Molecular oxygen is then introduced at carbon 5 forming the 

http://en.wikipedia.org/wiki/PTGS1
http://en.wikipedia.org/wiki/COX-2
http://en.wikipedia.org/wiki/Splicing_(genetics)


 

2 

5(S)-HPETE. This metabolite can be either reduced to the 5(S)-hydroxy-

eicosatetraenoic acid (5(S)-HETE) or the enzyme can catalyze the formation of the 

epoxide leukotriene (LT) A4. In this latter reaction, a subsequent abstraction of 

hydrogen at carbon 10 of the 5(S)-HPETE occurs followed by a radical migration to 

carbon 6, yielding three conjugated double bonds. The radical finally merges with the 

hydroperoxy group and a dehydration forms the unstable epoxide of LTA4 [6]. LTA4 

can be either hydrolyzed enzymatically to LTB4 or conjugated with glutathione to form 

the LTC4. This conjugation is catalyzed by the membrane associated glutathione 

transferase LTC4 synthase (LTC4S). LTC4 can be further metabolized by γ-glutamyl 

transpeptidase and dipeptidase to LTD4 and LTE4, respectively [7] (Figure 1). LTC4, 

LTD4 and LTE4 are collectively referred to as the cysteinyl-leukotrienes.  

 

1.4 PROSTAGLANDINS  

Prostaglandins are locally acting mediators with strong varied physiological effects, for 

example contraction and relaxation of smooth muscle tissue. PGE2 is the most 

abundantly produced prostaglandin and this metabolite is important in regulating 

inflammatory processes, fever and inflammatory induced pain. The inflammation 

associated formation of PGE2 is mainly catalyzed by the membrane PGE synthase-1 

(mPGES-1) [8]. PGI2 and TXA2 play an important role in hemostasis [9]. Non-steroidal 

anti-inflammatory drugs (NSAIDs), such as acetyl salicylic acid and diclofenac, inhibit 

prostaglandin synthesis and these drugs are commonly used to treat fever and pain. 

Celebrex® is a selective COX-2 inhibitor, and thereby causes less gastro-intestinal side 

effects, and is used for the treatment of patients which cannot tolerate non-specific 

NSAID. Treatment with selective COX-2 inhibitors, however, leads to more 

cardiovascular side effects than therapy with non-specific NSAID [10]. 

 

1.5 LEUKOTRIENES 

The cysteinyl–LTs are potent bronchoconstrictors and airway constriction is a general 

feature of asthma. Other actions caused by the cysteinyl–LTs are mucus secretion in the 

airways, vasoconstriction and vascular leakage causing edema [11]. A role in airway 

remodeling (airway collagen deposition and smooth muscle thickening) is also 

described for the cysteinyl–LTs [12]. Singulair® and Accolate® are cysteinyl-LT 

receptor 1 antagonists, and these drugs are used to treat asthma. In US, a 5-LO inhibitor 

named Zyflo® is also used for asthma treatment. 

 

1.6 HEPOXILINS 

In animals, 12-LO converts arachidonic acid into the unstable 12(S)-HPETE, followed 

by an internal isomerization of the hydroperoxy to monohydroxy epoxide, leading to 

the formation of metabolites called hepoxilins. The name hepoxilin (Hx) is a 

combination of the structure (hydroxy epoxide) with the first established biological 

activity (insulin release). Two hepoxilins have been identified, HxA3 and HxB3, with 

the hydroxyl positioned at carbon 8 and 10, respectively. These metabolites are quite 

unstable and are further metabolized, either by conjugation with glutathione forming 

the HxA3-C or hydrolysis of the epoxide forming metabolites containing three hydroxyl 

groups named trioxilin (Trx) A3 and B3. HxA3-C is metabolized in analogy with the 

cysteinyl-LTs and forms the HxA3-D [13]. 
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The activity of 12(R)-LO in human skin is quite low in normal human epidermis but 

the synthesis of 12(R)-HETE and HxB3 are strongly elevated in the inflammatory and 

proliferative skin disease psoriasis. eLOX3 lacks oxygenase activity but can metabolize 

12(R)-HPETE and form a specific hepoxilin, which itself, or as a precursor, have a role 

to maintain a normal skin barrier. Mutations of the genes coding for 12(R)-LO or 

eLOX3 have been linked to certain types of ichtyosis, characterized of flaky skin [14]. 

 

 

Figure 1. Overview of the arachidonic acid metabolism. Three metabolizing pathways 

are displayed, consisting of different enzymes yielding biologically important 

eicosanoid mediators. Drugs on the market to inhibit the formation or action of these 

metabolites are indicated in boxes.  
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2 15-LIPOXYGENASE-1 

Two types of 15-LO is expressed in human cells. The amino acid sequence similarity 

between 15-LO-1 and 15-LO-2 is only 40% and the biological functions are quite 

different [15]. 15-LO-1 is predominantly expressed in airway epithelial cells, 

reticulocytes, eosinophils and dendritic cells [16] (Table 1) whereas 15-LO-2 is 

expressed in hair roots, prostate, lung and cornea. 15-LO-1 can oxygenate arachidonic 

acid at carbon 15 but also at carbon 12, leading to the formation of 15(S)-HETE and 

12(S)-HETE at a ratio of 9:1. In contrast, 15-LO-2 appears to catalyze the formation of 

15(S)-HETE only. There are also differences in substrate specificity between the two 

15-LO enzymes [17]. This thesis deals with the expression and chemical properties of 

15-LO-1.  

 

Cell type 15-LO-1 expression 

Normal cells:  

Airway epithelial cells +++ 

Eosinophils +++ 

Cornea epithelial cells ++ 

Mast cells +(+) 

Alveolar macrophages +(+) 

Dendritic cells ++ 

Reticlocytes ++ 

Synovial cells + 

Neutrophils + 

Endothelial cells +* 

Fibroblasts + 

Semianl fluid + 

Malignant cells:  

Hodgkin Reed-Sternberg cells (L1236) +++ 

Colon carcinoma cells + 

Prostate cancer + 
*[18] 

Table 1. Relative expression of 15-LO-1 in human cells [19]. 

  

2.1 STRUCTURE 

Human 15-LO-1 is a 74.8 kDa protein and contains non-heme iron. The crystal 

structure of the rabbit reticulocyte 15-LO-1 has been solved. The 15-LO-1 is comprised 

of two domains: a small N-terminal, β-barrel domain, and a lager C-terminal domain 

which is predominantly α-helix. The sequence, size and structure of the N-terminal 

domain have similarities with domains in other mammalian lipases. The C-terminal 

domain is the catalytic domain coordinating the catalytic non-heme iron. The fatty acid 

is believed to enter with the methyl group first into the binding pocket [20]. The size 

and the shape of the substrate binding pocket are essential for the position of 

oxygenation, favoring the 15-LO over the 12-LO activities [21].  

 

2.2 REGULATION 

The gene for 15-LO-1 is named ALOX15 and is located at 17p13.3 in the genome. 

Expression of 15-LO-1 is highly regulated at the transcriptional, translational, post-

translational and epigenetic level [15]. Interleukin (IL)-4 and IL-13 induce the 
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expression of 15-LO-1 via the signal transducer and activator of transcription (STAT)-

6/ Janus kinase signaling pathway [22]. The STAT-6 activation is crucial for the 

transcriptional activation of 15-LO-1 [23]. STAT-1 and -3 are also indicated to regulate 

transcription of 15-LO-1 [24]. Furthermore, the histone 3 lysine 4 methylation status is 

of importance for the expression of the 15-LO-1 gene [25]. Translational regulation is 

described during the maturation of erythrocytes. 15-LO-1 can undergo suicide 

inactivation as a post-transcriptional regulation; due to a 15-LO-1 produced arachidonic 

acid metabolite intermediate that binds covalently to the binding pocket [26]. 

 

2.3 ACTIVITY 

In resting cells, 15-LO-1 is present in the cytosol but after Ca
2+

 stimulation the enzyme 

can translocate to intracellular membranes, although the affinity to Ca
2+

 is rather low, 

with a Kd of 0.2-0.5 mM. The association with the membrane seems to consist of 

unspecific hydrophobic bonds. The bonds are strengthened by calcium building salt 

bridges between positive amino acids and the negative phospholipid head [27]. 

 

2.3.1 Substrates 

Compared to 5-LO, 15-LO-1 is a promiscuous enzyme regarding substrate specificity. 

In addition to the arachidonic acid also linoleic acid, linolenic acid and other 

polyunsaturated fatty acids independent of chain length are substrates. Besides the free 

fatty acids, esterified fatty acids in the membrane can also be oxygenated by 15-LO-1. 

However, the reaction rates with various substrates are quite different. For instance, the 

free linoleic acid is five times more effectively oxygenated compared to esterified 

linoleic acid [15].  

 

2.3.2 Catalytic reaction 

The non-heme iron is the catalyst in the 15-LO-1 pocket and the redox status of iron 

changes from Fe
2+

 to Fe
3+

 by increased peroxide tonus. The 15-LO-1 substrates all have 

a common feature with a bis-allylic methylene structure, and from the methyl group a 

hydrogen is abstracted leaving a radical (Figure 2). The radical can then delocalize to a 

more energetically favorable position, most likely two carbons away, yielding a 

conjugated double bond. In arachidonic acid, a free radical is initially formed at carbon 

13, and is then delocalized primarily to carbon 15. Molecular oxygen is then inserted at 

that position leading to the formation of 15(S)-hydroperoxy-eicosatetrenoic acid 

(15(S)-HPETE). The return of the hydrogen also gets back the activated iron (Fe
3+

). 

Subsequently, a homolytic cleavage of the peroxy forms an alkoxy radical which in 

turn initiates an array of secondary products, such as epoxyhydroxyls and keto-dienes 

[28]. The 15-LO-1 can also abstract a hydrogen from carbon 10 of 15(S)-HPETE and 

this will result in three conjugated double bonds and an epoxide  positioned at carbon 

14,15, a metabolite called 14,15-LTA4. In addition, another oxygenation can occur to 

form dihydroxy metabolites like the 8(R/S),15(S)-dihydroxy eicosatetraenoic acids 

(8,15-DiHETEs) and 14(R/S),15(S)-dihydroxy eicosatetraenoic acids (14,15-

DiHETEs). The 8,15-DiHETEs can also be degradation products of the 14,15-LTA4 

[29] (Figure 3). A sum of four 8,15-DiHETEs enantiomers can be formed and the 

quartet pattern is for example described in human airway epithelial cell incubated with 

arachidonic acid [30]. 
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Figure 2. 15-LO-1 catalyzes the conversion of arachidonic acid to 15(S)-HPETE. The 

hydrogen at carbon 13 is abstracted, yielding a radical which is stabilized by the 

conjugated double bond intermediate. The radical present at carbon 15 pairs with 

molecular oxygen forming a peroxy radical and subsequent addition of hydrogen forms 

the hydroperoxy.  

 

Figure 3. An overview of arachidonic acid metabolites formed through the15-LO-1 

pathway (known before the papers included in this thesis were published). The 

8(R,S),15(S)-DiHETEs are in sum four metabolites, a quartet, which elute separately 

from the LC column. Thereafter, the other DiHETEs elutes and finally the 

monohydroxy 15(S)-HETE. The DiHETEs contain three conjugated double bonds and 

have a UV absorbance maximum around 270 nm and the 15(S)-HETE, which contains 

two conjugated double bonds, at 235 nm. The DiHETEs and 15(S)-HETE have m/z 334 

and 319, respectively, in negative ion mode MS.  
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2.4 SPECIES HOMOLOGEOUS 

The animal ortoholog to human 15-LO-1, apart from rabbit reticulocyte 15-LO-1, is the 

leukocyte 12-LO with similar enzymatic expression, distribution and regulation, but 

possess mainly 12-LO activity [15]. The leukocyte 12-LO is expressed in cow, pig, rat 

and mouse. Since the leukocyte 12-LO primarily converts arachidonic acid to 12(S)-

HETE and secondarily to 15(S)-HETE the enzymes are often referred to as a 12/15-LO. 

Similar to human 15-LO-1, linoleic acid and esterified fatty acids in membranes are 

also substrate for the animal 12/15-LO [31]. 

  

2.5 BIOLOGICAL ROLE- ASSOCIATED DISEASES 

15-LO-1 has been implicated to possess several biological roles and to be involved in 

both physiological and pathophysiological processes (Table 2) due to catalyzing the 

conversion of free arachidonic to various metabolites. In addition, the capability of 15-

LO-1 to oxygenate fatty acids in biomembranes and lipoproteins should also be 

considered when discussing the biological importance of this enzyme. 

 

2.5.1 Cell differentiation  

15-LO-1 was first identified in rabbit reticulocytes and a physiological role for 15-LO-1 

was suggested. The reticulocyte is precursor to the erythrocyte, the red blood cell, and 

the maturation process includes a degradation of the mitochondria which coincides with 

the expression of 15-LO-1. The 15-LO-1 oxygenation of the mitochondrial membranes 

and the enzyme´s role in forming pores in the membrane are suggested to increase 

permeability which contributes to the mitochondrial degradation during erythropoiesis 

[32]. The 15-LO-1 also specifically degrades organelles in the eye lens by integrating 

with biomembranes allowing the release of proteases [33]. 

 

Disease Reference 

Asthma 19, 37, 39 

Chronic obstructive pulmonary disease (COPD) 52 

Atherosclerosis 53 

Pulmonary arterial hypertension 54 

Obesitas 55 

Diabetes 56 

Stroke 57 

Alzheimer´s disease 48 

Osteoporosis 58 

Hodgkin lymphoma 19 

Colorectal cancer 59 

Prostate cancer 60 

Table 2. A summary of diseases associated with 15-LO-1 expression. 

 

2.5.2 Inflammation and asthma  

Arachidonic acid metabolites formed via the 5-LO and COX-2 pathways are involved 

in inflammatory conditions in man. Also 15-LO-1 has been suggested to be primarily 

involved in inflammation, specifically in airway inflammation. Increased expression of 

15-LO-1, both the gene and the enzyme, has been detected in the bronchial epithelial 

cells in asthmatics compared to healthy subjects [34,35]. Formation of 15(S)-HETE 

was higher in chopped human bronchi, incubated with arachidonic acid, from 
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asthmatics compared with non-asthmatics. Airway epithelial cells are the main source 

of 15(S)-HETE production in the respiratory tract is [36]. In bronchoalveolar lavage 

(BAL) fluid, 15(S)-HETE was detected and the levels were higher in asthmatics 

compared to healthy subjects. Increased level of 15(S)-HETE was associated with 

tissue eosinophil numbers, increased sub-basement thickness and increased 15-LO-1 

expression in bronchial epithelium [37]. Overexpression of 15-LO-1 in the airway 

epithelial cell line A549 leads to increased release of chemokines and to increased 

recruitment of cells involved in the inflammatory response [38]. 15(S)-HETE also 

stimulates mucus secretion in airway epithelial cells [39]. Intranasal challenge with 

osmotic activation by mannitol increased 15(S)-HETE content of the nasal lavage fluid 

and the levels correlated with nasal symptoms [40]. In a mice knock-out study of the 

15-LO-1 ortholog, the 12/15-LO, the allergen induced airway inflammation and 

remodeling was attenuated [41]. Although all these observations suggest a role for 15-

LO-1 in airway inflammation, the mechanism of action is not clarified and receptors 

that specifically bind 15-LO derived metabolites have not yet been identified. However, 

one 15-LO-1 derived arachidonic acid product, 5-oxo-15(S)-HETE, has been reported 

as a potent chemotactic agent for eosinophils and neutrophils [42]. 

 

2.5.3 Cancer  

Various cancer forms, such as colorectal, prostate and breast cancer, have been 

associated with 15-LO-1 expression [43]. Nuclear hormone receptors that regulate gene 

expressions upon fatty acid binding are often suggested to be involved when the 

correlation between cancer and 15-LO-1 is discussed. 

 

2.5.4 Atherosclerosis 

A pro-atherogenic role is suggested for the ortholog 12/15-LO in mice [44] but the 

relevance in humans is not clear. 12/15-LO is overexpressed in atherosclerotic lesions 

in mice and is modifying the high density lipoprotein 3 in human endothelial cells and 

hence is suggested to be involved in atherosclerosis [45]. The ability of 15-LO-1 to 

oxygenate lipoproteins and the 15-LO-1 expression in macrophages are the reason that 

the correlation between 15-LO-1 and atherosclerosis has been studied. However, 

atherosclerotic lesions in human appear to correlate more with the expression of 15-

LO-2, than with15-LO-1 [46, 47]. 

 

2.5.5 Alzheimer’s disease 

Increased expression of 15-LO-1 was identified in brain affected with Alzheimer’s 

disease compared to non-effected brain [48]. Furthermore, in cerebrospinal fluid from 

patients with Alzheimer´s disease 15(S)-HETE was detected in increased levels 

compared to samples from healthy subjects [49]. However, the biological role of 15-

LO-1 in the disease is not clear. 

 

2.5.6 Anti-inflammatory effect and lipoxins 

Although there are many studies indicating a pro-inflammatory action of 15-LO-1 there 

are also several indications of an anti-inflammatory action for this enzyme.  For 

example, in human asthmatic bronchitis the increased level of 15(S)-HETE inhibits 

LTB4 formation [50]. 
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Since 15(S)-HPETE and 5(S)-HPETE contain two doubly allylic methylene groups 

they may serve as lipoxygenase substrates for a secondary oxygenation. These double 

oxygenated products are called lipoxin (LX) A4 and LXB4 and are triple hydroxyls. 

Lipoxins are formed by the action of two different lipoxygenases present in different 

cells, so called trans-cellular metabolism. Lipoxins reduce inflammation and promote 

resolution [51].  
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3 CELLS 

Different cell types were investigated with the purpose of increasing the knowledge of 

15-LO-1. A short description of these cells is presented below. 

 

3.1 EOSINOPHILS 

Eosinophils are involved in the immune response against parasites and play a central 

role in certain inflammatory responses. Normally1-3% of the circulating leukocytes are 

eosinophils but many patients with severe asthma or aspirin-intolerant asthma have 

increased number of eosinophils in the respiratory tract. Eosinophils can release 

cytokines, chemokines and lipid mediators upon activation. 

 

3.2 MAST CELL 

Mast cells are key effectors in allergic reactions. The characteristic of the mast cell is 

the rich cytoplasmic granule which contains histamine, tryptase, proteases, 

proteoglycans and peptidase. Mast cells are of hemapoetic origin and circulate in 

peripheral blood and finally mature when entering a tissue exposed to the external 

environment. The life span of the mast cell is long compared to other inflammatory 

cells and can survive in tissue for months. Environmental allergens trigger 

immunoglobulin E (IgE) overproduction which bind and activate mast cells. Upon 

activation a mast cell degranulates and releases the stored pro-inflammatory mediators. 

Furthermore it can synthesize PGD2, cysteinyl- leukotrienes and various HETEs. 

Cytokines and chemokines are both stored in the granule and can be de novo 

synthesized [61]. 

 

3.3 AIRWAY EPITHELIAL CELLS 

The lining of the respiratory tract consists of airway epithelial cells and they act as 

protective barrier. The airway epithelial cells are composed of basal cells, ciliated cells 

and mucus cells. The mucus cells, also called the goblet cells, produce and secrete 

mucus, which can trap potential pathogens and foreign particles in the airway. The 

ciliated cells effectively move the mucus up the respiratory tract. Airway epithelial cells 

can also produce and release biologically active compounds including lipid mediators, 

growth factors and a variety of cytokines/chemokines important in the pathogenesis of 

airway disorders [62]. 

 

3.4 LYMPHOCYTES 

Lymphomas are cancers originating from lymphoid cells, mainly B lymphocytes, and 

these malignant cells are classified as either Hodgkin lymphoma (HL) or non-Hodgkin 

lymphomas. Hodgkin lymphoma is a well-defined disease, whereas non-Hodgkin 

lymphomas are a less defined heterogenic group of lymphomas. L1236 is a Hodgkin 

lymphoma derived cell line [63]. A morphologically characteristic cell in a Hodgkin 

lymphoma tumor is called Hodgkin Reed-Sternberg (H-RS) cell, a multinucleated giant 

cell. The Hodgkin lymphoma tumor consists only of 1-2% of H-RS cells and the rest is 

infiltrating inflammatory cells like T-cells, B-cells, neutrophils, eosinophils and mast 

cells [64].  
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4 THE MASS SPECTROMETER 

The mass spectrometer (MS) measures the mass-to-charge ratio of ions in the gas 

phase. MS has long been a valuable tool for the structural determination of the 

eicosanoids.  

A typical mass spectrometer consists of three components which are all controlled by a 

computerized system (Figure 4). The first component, the ion source, is responsible for 

forming ions and/or to transfer ions into the gas phase and subsequently introduce the 

ions into the mass analyzer. The mass analyzer separates ions according to their mass-

to-charge (m/z) ratio. Finally the ion beam current is measured by a detector. The 

design of the different components gives the characteristics to each kind of mass 

spectrometer. The mass spectrometer components work under reduced pressure or 

vacuum. 

 

Figure 4. The components of the mass spectrometer. 

 

4.1 ION SOURCE 

Sample introduction from atmospheric pressure (760 torr) into vacuum (10
-6

 torr) needs 

to be in such a way that the vacuum system is minimally disturbed. At the beginning of 

mass spectrometry history, the analytes were transformed into the gas phase by heat, 

which demands derivatization of thermally labile molecules. The ions were formed by 

electron impact (EI) which is a rather harsh method where the analyte interacts with a 

beam of electrons. A gas chromatograph (GC) allows separation of the sample 

components on a column prior to their MS analyses [65]. This combination, GC-MS, is 

still widely used for thermally stable and non-polar compounds. A softer ionization 

technique called chemical ionization (CI) was later developed, where EI was applied on 

a reagent gas, which subsequently reacts with the analytes [66]. The ionization 

technique called fast atom bombardment (FAB) achieves ionization by accelerated 

atoms, typically argon or xenon, bombarding the analyte dissolved in a non-volatile 

matrix. FAB ionization combined with protective environment of the matrix enables 

polar and thermally labile molecules to survive the ionization process [67].  

 

The combination of liquid chromatography (LC), where sample components are 

separated on a column in the liquid phase, and MS, was revolutionized when the 

electrospray ionization (ESI) technique was developed in late 1980s [68, 69]. In ESI the 

ions are already present in the liquid phase and when the solvent is vaporized, ions in 

gas phase can enter the mass analyzer. The solvent used is chosen depending on the 

solubility of the analyte and its capacity to evaporate. The liquid flow enters the ion 

Ion source
(electrospray)

Mass analyzer
(triple quadrupole)

Data system

Detector
(multichannel plate,

electron multiplier)
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source through a capillary to which a voltage is applied. The voltage produces an 

electrical gradient in the fluid which separates the charges at the liquid surface, forming 

a fine spray. At the tip of the spray a cone develops, and highly charged droplets leave 

the spray when electrostatic repulsion exceeds the surface tension of the liquid. 

Droplets are then attracted to the mass analyzer entrance due to the oppositely charged 

voltages at the entrance, and the pressure gradient. During this transition the droplets 

gradually reduce in size until the ions enter the gas phase. There are two theories 

regarding the exact mechanism for the formation of ions from charged droplets [70]. 

 

4.2 MASS ANALYZERS 

There are several types of mass analyzers, but the most commonly used are 

quadrupoles, ion traps and time-of-flight (TOF) analyzers. In the present work, MS 

instruments with triple quadrupole analyzers were used. A triple quadrupole MS 

consists of three sequential quadrupoles. A quadrupole consists of four parallel rods to 

which a direct current (DC) voltage and a superimposed radio-frequency (RF) potential 

are applied. The specific RF to DC ratio determines which m/z ions can pass the 

electrical field. Hence, the voltage settings allow only the ions of interest to reach the 

detector [71]. Triple quadrupole instruments have good linearity of signal response and 

are therefore suitable for quantitative studies but the disadvantage is the low spectral 

resolution. 

 

4.3 MS ANALYSIS 

In the triple quadrupole mass spectrometer several types of scans/experiments can be 

performed by operating each quadrupole differently (Figure 5). The first and third 

quadrupole can be operated in a scanning or static mode which allows a mass range or 

only one mass, respectively, to pass. The second quadrupole can either transmit the ions 

or perform collision induced dissociation (CID) by adding inert gas. The selected ions 

collide with the gas which induces fragmentation. All this makes it possible to perform 

MS scan, MS/MS scan, neutral loss scan, parent ion scan or single reaction monitoring 

(SRM) [72]. The first four scans are suitable for structure elucidation analysis and the 

fifth for quantitative analysis. 

 

Figure 5. An overview of the different scan types, and the settings of each quadrupole, 

which could be executed on a triple quadrupole instrument. 

 

4.4 OTHER DETECTORS 

The LC-MS set up allows other detectors to be used simultaneously. In series with the 

LC-MS, an ultraviolet (UV) or a diode array detector (DAD) can be connected. This 

Ions Detector
Second 

analyser

Collision 

cell

First 

analyser

MS scanning transmission scanning

MS/MS static collision scanning

Neutral loss scan scanning collision scanning

Parent ion scan scanning collision static

SRM static collision static
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equipment detects the UV absorbance capability of the compound and can give a 

characteristic spectrum which can be useful in the structure elucidation of the 

compound. A radioactivity monitoring (RAM) detector could be used in parallel with 

the MS instrument. The destiny of a radioactive labeled substrate is easier to follow 

than an unlabeled substrate. 

 

4.5 SAMPLE HANDLING 

The samples intended for LC-MS analysis often need some preparation prior to the 

analysis. High salt content should be diluted, sample with debris should be centrifuged 

and also extraction techniques are often used to extract the analytes of interest and get a 

more concentrated and cleaner sample. Samples are usually stored at -70°C prior 

analysis to minimize sample degradation. 

 

4.6 EICOSANOID ANALYSIS 

Mass spectrometry has been a central tool in the structural characterization of all of the 

eicosanoids starting in the 1960s with the structural determination of the prostaglandins 

[73]. Initially analysis was performed by techniques, such as GC/MS and EI and later 

FAB but more recently with ESI. Electrospray ionization allows analysis of both 

volatile and nonvolatile eicosanoids. Most eicosanoids give rise to both the protonated 

[M+H]
 +

 and deprotonated [M-H]
 -
 molecular ion and hence can be analyzed in both 

negative and positive ion mode. However, the intensity for oxygenated eicosanoids is 

usually higher in negative ion mode, and for glutathione conjugated eicosanoids the 

highest intensity is achieved in the positive ion mode. 

 

Quantification of eicosanoids has mainly been performed by LC-MS/MS due to the 

accurate quantification within a reasonable run time. Isobaric eicosanoids need to be 

separated by LC prior to the mass spectrometer and/or give rise to different 

fragmentation products in order to be analyzed accurately. Quantification is usually 

performed by a triple quadrupole mass spectrometer, using the selectively/ sensitivity 

of the SRM/MRM scan. However, eicosanoid quantification in biological fluids can be 

challenging due to their low levels, down to the pico-molar range [74]. 
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5 OBJECTIVES 

The overall objective of this thesis was to characterize various arachidonic acid 

metabolites formed via the 15-LO-1 pathway in different cell types. Furthermore, the 

focus was also on the expression of the enzyme in various cell types and the biological 

functions of the arachidonic acid metabolites formed through the 15-LO-1 pathway. 

 

The specific objective for each respective paper was: 

 

 To investigate if 15-LO-1 is expressed in mast cells and if so which arachidonic 

acid metabolites are formed (paper I). 

 

 To investigate which arachidonic acid 15-LO-1 derived metabolites are formed 

in eosinophils and how the 15-LO-1 pathway in eosinophils can be activated. 

Furthermore, the aim of the study was also to elucidate the pro-inflammatory 

properties of these metabolites in an inflammation in vitro model (paper II). 

 

 To investigate if eoxins are formed by the Hodgkin lymphoma derived cell line 

L1236 and examine if 15-LO-1 is expressed in biopsies derived from Hodgkin 

lymphoma patients (paper III). 

 

 To investigate the formation and identity of other metabolites than eoxins 

formed through the 15-LO-1 pathway in the Hodgkin lymphoma derived cell 

line L1236 (paper IV). 

 

 To investigate if the animal ortholog to 15-LO-1, the 12/15-LO expressed in 

eosinophils derived from mini pigs, can form eoxins (paper V). 

 

 To investigate the effect of certain stimulus on 15-LO-1 activity in human 

airway epithelial cells. Furthermore, to investigate if eoxins are formed in 

airway epithelial cells and examine which glutathione-S-transferase (s) is 

responsible for the conjugation of glutathione with EXA4 (paper VI). 
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6 METHODOLOGY 

The general procedure to investigate the activity of 15-LO-1 in a cell type was to 

incubate the cells with unlabeled/labeled arachidonic acid and identify the metabolites 

with LC-MS/MS in combination with UV/DAD and RAM detection. The eosinophils/ 

the polymorphonuclear leucocytes (PMNL) fraction were isolated from whole blood 

and in order to produce mast cells, mononuclear cells were isolated from cord blood 

and differentiated in vitro. The cells were treated with various stimuli prior to the 

incubation and/ or certain inhibitors. The metabolites were confirmed by authentic 

standards, and some metabolites, the 14,15-HXs, were synthesized. PCR or microarray 

and western blot analyses were performed to evaluate the expression of the 15-LO-1 

gene and the enzyme, respectively. Immunohistochemical studies were performed to 

explore the expression in vivo of 15-LO-1 and other enzymes in cells or tissues. A 

model to evaluate the metabolite´s pro-inflammatory potential was tested. The model 

measures the change in permeability of an endothelial monolayer caused by the 

metabolites. For experimental details, please read the material and methods section in 

each of the listed papers. 
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7  RESULTS 

7.1 PAPER I 

Cord blood derived mast cells were prepared by two protocols, with or without serum, 

and similar results were obtained independently of protocol. Mast cells stimulated with 

IL-4 for 120 hours express 15-LO-1, but not 15-LO-2. This was shown at both mRNA 

and protein level. A time course of 15-LO-1 expression after stimulation with IL-4 for 

24-120 hour showed positive protein detection at 72 hour and further expression at 120 

hour. Mast cells incubated with labeled arachidonic acid was analyzed with high 

performance liquid chromatography (HPLC) connected with UV and RAM detection. 

Only IL-4 stimulated mast cells produced detectable amounts of arachidonic acid 

metabolites. 

 

The main metabolite detected was 15-keto-eicosatetraenoic acid (15-KETE). The 

identity was confirmed by MS/MS analysis in negative ion mode by nanospray infusing 

the collected peak and compared with authentic standard. The MS/MS spectrum was 

clearly different from the 5-KETE standard spectrum. Besides the 15-KETE, also 15-

HETE was formed in a ratio of about 1:9 compared to 15-KETE. In contrast, 

homogenized mast cells formed mainly 15-HETE. The formation of 15-KETE and 15-

HETE were not inhibited with indomethacin demonstrating that these metabolites were 

not formed via the COX pathway. To evaluate the mechanism of 15-KETE  formation, 

mast cells were incubated with either 15(S)-HPETE or 15(S)-HETE, and the 

production of 15-KETE seems to be possible from both metabolites.  

 

Mast cells were incubated with mannitol in order to mimic the mechanism of increased 

osmolartity that occurs in airways following exercise. The 15(S)-HETE was measured 

by a 15(S)-HETE enzyme immunoassay and the 15(S)-HETE level was significantly 

increased after mannitol stimulation. Immunohistochemical staining of mast cells and 

15-LO-1 was performed with antibodies against tryptase and 15-LO-1, respectively. 

(The antibody against 15-LO-1 do not detect 5-LO, 12-LO or 15-LO-2.) Cord blood 

derived mast cells, skin from a patient with atopic dermatitis and human bronchial 

tissue were sequential double stained. The study demonstrated that 15-LO-1 was 

expressed in mast cells in all investigated tissues.  

 

7.2 PAPER II 

Eosinophils are known to be a rich source for 15-LO-1 and these cells were isolated 

and incubated with arachidonic acid. The LC-UV chromatogram revealed peaks which 

corresponded to the quartet of the 8,15-DiHETEs and also to the 14,15-DiHETEs as 

well as a small peak of LTC4. The complete quartet indicated formation of 14,15-LTA4 

since two of the 8,15-DiHETEs are degradation products of 14,15-LTA4. In addition to 

these metabolites, a more polar metabolite was detected. The UV spectrum revealed it 

to contain three conjugated double bonds with a UV absorbance maximum at 282 nm. 

The formation of the metabolite was not inhibited by 5-LO or COX inhibitors. The 

metabolite was also formed when eosinophils were incubated with 14,15-LTA4. To 

further characterize the structure of this metabolite, it was analyzed with MS/MS in 
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positive ion mode. The m/z 626.2 and several of the fragments of the metabolite were 

similar as for LTC4.  

 

The data presented above suggested that the metabolite could be 14,15-LTC4 (14(R)-

glutathionyl-15(S)-hydroxy-5,8,10,12(Z,Z,E,E)-eicosatetraenoic acid). This was 

confirmed with comparison to synthetic standard. The MS/MS analysis displayed that 

the cleavage adjacent to the glutathionyl position in LTC4 and 14,15-LTC4, gave rise to 

fragments, m/z 189 and 205, respectively, that distinguish between these metabolites. 

The 14,15-LTC4 could also be further metabolized by the eosinophils and to14,15-

LTD4 (14(R)-cysteinyl-glycyl-15(S)-hydroxy-5,8,10,12(Z,Z,E,E)-eicosatetraenoic acid) 

and 14,15-LTE4 (14(R)-cysteinyl-15(S)-hydroxy-5,8,10,12(Z,Z,E,E)-eicosatetraenoic 

acid). To avoid confusion with the leukotrienes and since the 14,15-LTs were identified 

in eosinophils, we suggested the name eoxins (EX). Thus, these novel metabolites were 

named EXA4, EXC4, EXD4 and EXE4. The formation of EXC4 and EXD4 were also 

detected in mast cells with enzyme immunoassay and MS/MS. Surgically removed 

nasal polyps spontaneously released EXC4. The conjugation reaction between EXA4 

and glutathione occurred in the membrane fraction in eosinophils. 

 

Eosinophils challenged with arachidonic acid produced predominately EXC4. In 

contrast, cells stimulated with ionophore A23187 only produced LTC4. Allergen 

stimulated mast cell produce LTC4 and PGD2 and these mediators as well as IL-5 

stimulated the formation of EXC4 from the endogenous arachidonic acid pool in 

eosinophils.  

 

An in vitro permeability assay based on the assessment of changes in the 

transendothelial electric resistance across human endothelial monolayer can be used as 

a marker of changes in vascular permeability [75]. Increase in vascular permeability 

leading to vascular leakage is a hallmark of inflammation. In order to evaluate the 

potential pro-inflammatory role of eoxins, these mediators were tested in this in vitro 

model.  Interestingly, all eoxins were capable of inducing permeability. Although the 

eoxins were less potent than cysteinyl-LTs, the eoxins were about 100 times more 

potent than histamine. EXD4 was the most potent eoxin. The time response curve for 

the eoxins resembles the pattern observed for directly acting agonists such as histamine 

and LTC4. 

 

7.3 PAPER III 

The Hodgkin lymphoma derived cell line L1236 incubated with arachidonic acid 

produced 15-HETE and 12-HETE in a ratio of about 9:1, which is in agreement with a 

15-LO-1 catalyzed formation of these metabolites. The identity and quantification of 

these mediators were determined with LC-UV analysis. Other Hodgkin lymphoma 

derived cell lines examined such as L428, KMH2 and L570 did not produce these 

metabolites. RT-PCR and western blot revealed expression of 15-LO-1, but not 15-LO-

2, in L1236 cells. Western blot analysis of subcellular fractions of L1236 cells revealed 

that in the presence of Ca
2+

/ Mg
2+

, with or without calcium ionophore, the majority of 

15-LO-1 was found in the membrane fraction although a substantial amount was also 

present in the cytosolic fraction. The capacity to convert arachidonic acid to 15-HETE 

and 12-HETE, however, did not correlate with the western blot results. Incubation of 
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the cytosolic fraction with arachidonic acid led to higher levels of 15-HETE than 

similar incubations with the membrane fraction. These results indicate that 15-LO-1 in 

the cytosol has higher enzyme activity than membrane bound 15-LO-1.  

 

Incubation of L1236 cells with arachidonic led to the formation of 8,15-DiHETEs, 

14,15-DiHETE and 5,15-DiHETE, a precursor to the chemotactic 5-oxo-15(S)-HETE. 

The formation of EXC4 and EXD4 was confirmed by MS/MS. In addition, a small peak 

eluted prior EXC4 and EXD4, respectively, but with identical MS/MS spectra to 

synthetic EXC4 and EXD4.  The UV absorbance maximum, however, was slightly 

lower, indicating a change in double bond configuration. These metabolites were 

postulated to be 8-trans-EXC4 and 8-trans-EXD4. In order to establish if EXE4 also was 

formed, the cells were incubated with EXA4. Indeed EXE4 was formed and this was 

established with MS/MS. The maximum formation of EXC4 and EXD4 was achieved 

after incubation with arachidonic acid for 5 and 30 min, respectively. EXC4 and EXD4 

formation were detected after incubation with 1µM arachidonic acid and a plateau was 

reached at 40 µM. 

 

The L1236 cell line contains the characteristic giant Hodgkin Reed-Sternberg (H-RS) 

cells. To evaluate if H-RS cells in vivo also express 15-LO-1, biopsies from HL lymph 

nodes were immunohistochemically stained. H-RS cells were positively stained for 15-

LO-1 in 17 of 20 tumors but also in tissue macrophages and eosinophils. The strongest 

staining in H-RS cells was from three cases of nodular sclerosis subtype II HL and in 

one case of mixed cellularity HL. Biopsies from non-Hodgkin lymphoma tumors did 

not contain any H-RS cells and no 15-LO-1 staining was observed. 

 

7.4 PAPER IV 

In order to fully characterize the metabolic profile of products generated through the 

15-LO-1 pathway in L1236, these cells were incubated with 
14

C-labeled arachidonic 

acid. The 8,15-DiHETEs and the eoxins have already been identified to be produced by 

the L1236 cell line. In addition, in the radioactivity chromatogram two other major 

metabolites were detected. The most polar metabolite was produced in similar amounts 

as EXC4. These metabolites did not have an absorbance maximum above 200 nm, and 

were therefore only vaguely detected in the UV chromatogram. The lack of UV 

absorbance demonstrated that these metabolites not contain any conjugated double 

bonds. Maximal amount of the more polar metabolite was obtained after two minutes 

of incubation and the less polar metabolite after 10 minutes of incubation. Furthermore, 

these metabolites were also formed after L1236 cells were incubated with 15(S)-

HPETE but not with EXA4.  

 

Analysis of the metabolites by MS revealed a molecular weight of the polar and less 

polar metabolite of plus 18 Da compared to EXC4 and EXD4, respectively. This 

indicated an additional hydroxyl group in comparison to the cysteinyl eoxins. The 

MS/MS spectrum of the polar metabolite revealed a fragment ion at m/z 308, which 

represent the glutathione cleaved adjacent to the sulfur with the charge retention on the 

glutathione part [76]. The MS/MS spectrum of the less polar metabolite contained a 

fragment ion at m/z 179, which represent the cysteinyl-glycine complex. These 
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fragment ions revealed that the polar metabolite is transformed into the less polar 

metabolite by cleaving of the glutamate, as for the conversion of EXC4 to EXD4. 

 

The additional fragment ions in the spectra of these metabolites were mostly derived 

from the peptide part and not from the fatty acid part of the molecule; hence the 

position of the hydroxyl group was not clear. The 13(R/S)-hydroxy-14,15-epoxy-

eicosatrienoic acid is also known as 14,15-hepoxilin B3 (14,15-HxB3) and this 

metabolite is produced through the 15-LO-1 pathway in human airway epithelial cells 

[77]. Therefore, the two 13(R) and 13(S) enantiomers of the 14,15-HxB3 conjugated 

with glutathione (14,15-HxB3–C) was synthesized. The LC retention time of the 13(R) 

enantiomer was identical to the most polar metabolite. However, the MS/MS spectrum 

was clearly different from the polar metabolite spectrum. 

 

The 11(R/S)-hydroxy-14,15-epoxy-eicosatrienoic acid also known as the 14,15-

Hepoxilin A3 (14,15-HxA3) is produced through the 15-LO-1 pathway in garlic root 

[78]. The 14,15-HxA3 is more unstable than 14,15-HxAB3 since it is acid sensitive and 

degrades to a trihydroxy acids. The two 11(R) and 11(S) enatiomers of the 14,15-HxA3 

conjugated with glutathione (14,15-HxA3–C) were synthesized. The 14,15-HxA3–C 

with the hydroxyl group at carbon 11 in S configuration had identical retention time 

and MS/MS spectrum as the polar metabolite. The polar metabolite was therefore 

suggested to be 11(S),15(S)-dihydroxy-14(R)-glutathione-5,8,12(Z,Z,E) eicosatrienoic 

acid (14,15-HxA3–C 11(S)). Since the less polar metabolite appeared to be formed after 

removal of glutamate from the polar metabolite, the synthesized 14,15-HxA3–C 11(S) 

was incubated with ɣ-glutamyl transpeptidase or L1236 cells. The product formed co-

eluted and had similar MS/MS spectrum as the less polar metabolite. The identity of the 

less polar metabolite was therefore 11(S),15(S)-dihydroxy-14(R)-cysteinyl-glycyl-

5,8,12(Z,Z,E) eicosatrienoic acid (14,15-HxA3–D 11(S)). 

 

Subcellular fractionation of L1236 cells demonstrated that the supernatant and not the 

membrane fraction converted 14,15-HxA3 into 14,15-HxA3-C. Therefore the capacity 

to catalyze the conversion of several soluble recombinant glutathione S-transferases 

(GSTs) was tested. The highest capacity had GST M1-1b, P1-1 (Ile), M2-2 and P1-1 

(Val). In contrast, LTC4S had relatively low capacity to catalyze this reaction. The 

enzyme GST M1-1 is highly expressed in L1236 cells (unpublished data). 

 

Neither of the other 15-LO-1 expressing cells or tissues, that is eosinophils, dendritic 

cells and nasal polyps, produced the cysteinyl containing 14,15-Hx. However, these 

cells, as the L1236 cells, converted arachidonic acid to 14,15-HxA3 11(S) and 14,15-

HxB3 13(R). Also recombinant 15-LO-1 enzyme incubated with arachidonic acid 

converted arachidonic acid stereoselectively to 14,15-HxA3 11(S) and 14,15-HxB3 

13(R), indicating that human 15-LO-1 itself  has an intrinsic hepoxilin synthase 

activity. 

 

7.5 PAPER V 

The animal ortholog to 15-LO-1, the 12/15-LO, has mainly 12-LO activity and hence 

catalyzes the formation of partly different metabolites than the human enzyme although 

the animal enzyme also possesses 15-LO activity to some extent. The aim of this study 
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was to evaluate whether the minor 15-LO activity in the animal enzyme could catalyze 

the formation of eoxins. Three mini pigs were infected with the parasite Ascaris suum 

to increase the eosinophil numbers since eosinophils contain abundant amounts of 

12/15-LO [79]. On four consecutive days (1-4) after infection, blood was drawn and the 

polymorphonuclear leukocyte (PMNL) fraction, which contain eosinophils, were 

isolated. The highest levels of eosinophils were detected at day 1 after infection.  

 

The PMNL fractions, pre-incubated with 5-LO and COX inhibitors, were incubated 

with 
14

C-labeled arachidonic acid and analyzed with LC-UV/RAM and by LC-MS/MS. 

The 8,15-DiHETE quartet and 14,15-DiHETE were identified. The EXC4 metabolite 

was detected in the radioactivity and UV chromatograms and had identical MS/MS 

spectrum as authentic EXC4 standard. Thus, PMNL isolated from porcine had the 

capacity to produce EXC4. The amount of EXC4 was quantified by LC-MS/MS multi 

reaction monitoring (MRM) by the utilizing m/z 626 to m/z 301 and 205 transitions. 

The formation of 12-HETE was highest day 1 and then decreased while the levels of 

15-HETE were constant during the studied period. Taken together, although porcine 

PMNL produced about five times more 12-HETE than 15-HETE, the cells could 

generate significant amounts of EXC4. 

 

7.6 PAPER VI 

The human airway epithelial cells highly express 15-LO-1 and several reports describe 

an increased expression and activity of the enzyme in the respiratory tract of asthma 

patients. The commercially available MucilAir cells are a model of the human lung 

epithelium. It consists of basal cells, ciliated cells and mucus cells, and are fully 

differentiated and cultivated on micro-porous filters in an air-liquid interface [80]. 

Human epithelial airway MucilAir cells were used in this study and were firstly 

analyzed by western blot for the presence of 15-LO-1. The 15-LO-1 enzyme was 

highly expressed and the expression was further enhanced after stimulation with IL-4. 

The mRNA expression was investigated by whole genome microarray analysis and a 

high hybridization signal for 15-LO-1 indicated a high gene expression.  

 

Epithelial cells were incubated with arachidonic acid and the 15-HETE and EXC4 

metabolites were identified by LC-MS/MS. 15-HETE was detected in un-stimulated 

cells, however the levels of 15-HETE were significantly elevated after IL-4 stimulation. 

The activity of 15-LO-1 was investigated after treating the cells with the bacteria 

Pseudomonas aeruginosa, condensed smoke extract or by scratching the cell surface 

with a pipette to mimic epithelial injury. Challenge of the cells with P. aeruginosa and 

scratching stimulated the formation of 15-HETE by a factor of 10, but condensed 

smoke extract did not increase the formation of 15-HETE.  

 

The conversion of EXA4 to EXC4 occurred mainly in the cytosol. Therefore, it was of 

interest to examine which soluble GST that is expressed in airway epithelial cells. 

Microarray analysis of soluble GSTs demonstrated that GST P1-1 had the highest 

expression. Recombinant soluble GSTs (M1b-1b, M2-2, M3-3, M4-4, P1-1(Val), P1-

1(Ile), T1-1, A1-1, A2-2, A3-3, A4-4) were incubated with EXA4 and glutathione, and 

subsequently the EXC4 formation was quantified. Both isoforms of GST P1-1 

effectively converted EXA4 to EXC4. Immunohistochemistry staining for 15-LO-1 and 
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GST P1-1 was performed on human airway epithelial cells from bronchial biopsies 

derived from healthy volunteers and asthmatic patients. Sequential cuts indicate co-

localization of 15-LO-1 and GST P1-1 in epithelial cells lining the bronchi, showing 

enzymes required for EXC4 formation is expressed in the human airway epithelial cells. 

The airway epithelial had higher extent of positively 15-LO-1 stained cells in biopsies 

from asthmatic patients compared to healthy volunteers. The intensity after GST P1-1 

staining was equally high in both groups. 
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8 DISCUSSION 

The expression and activity of 15-LO-1 was investigated in eosinophils, mast cells and 

airway epithelial cells. These cells have been reported to have a role in the 

pathophysiology of asthma. The Hodgkin lymphoma L1236 cell line, which has a high 

constitutive expression of 15-LO-1, was also investigated. The identified arachidonic 

acid metabolites formed through the 15-LO-1 pathway are presented in Figure 6. 

 

8.1 EOSINOPHILS (PAPER II, IV & V) 

Eosinophils which contain high amounts of 15-LO-1 [81] formed EXC4, EXD4 and 

EXE4, in addition to the earlier described mono- and dihydroxy metabolites derived 

from arachidonic acid. The formation of the eoxins from arachidonic acid have not 

been demonstrated earlier in human cells, however, in rat basophils the conjugation of 

synthetic 14,15-LTA4 to 14,15-LTC4 have been shown [82]. The positively 

identification was based on formation from EXA4, UV triene spectrum and finally 

identical retention time and MS/MS spectrum compared to synthetic standards. 

 

The EXC4 MS/MS spectrum contained fragments derived from the glutathione part, 

such as m/z 497, 319, 308 and 301. The many functional groups of the glutathione part 

make it easier to fragment than the carbon chain of the fatty acid, which partly consists 

of conjugated double bonds. These fragments were also present in the MS/MS 

spectrum of LTC4 and have been identified with deuterium and MS
3
 experiments with 

an ion trap mass spectrometer. The m/z 319, 308, 301 are all derived from cleaving 

adjacent to the glutathione sulfur, whilst the m/z 497 is cleaving of a amide bond 

resulting a loss of the glutamic residue in the glutathione adduct [83]. 

 

Although many similarities of the EXC4 and LTC4 MS/MS spectra, two high-intensity 

fragment ions differed between the spectra. The EXC4 and LTC4 MS/MS spectra 

contained m/z 205 and 189, respectively. The LTC4 m/z 189 represents the lipid part 

after a cleavage of C6-C7 carbon bond of the lipid backbone adjacent to the position of 

the glutathione. Primarily the m/z 319 is formed by cleavage of the carbon-sulfur bond 

and forming a protonated epoxide, which subsequently is cleaved forming a resonance 

stabilized alkyl cation m/z 189 [83]. The EXC4 fragment ion m/z 205 was suggested to 

be a result of a cleavage of the C13-C14 bond in the lipid backbone and is possibly 

formed in a similar way. The m/z 205 and 189 was also present in the MS/MS spectra 

of the D and E metabolites. Hence, the m/z 205 and 189 fragment ions could be used to 

distinguish between the cys-EX and cys–LT. The fragments could be used in 

qualitative analysis but also in quantitative analysis to ensure specificity. 

 

The EXA4 formation in eosinophils was also verified by the presence of the full quartet 

of 8,15-DiHETEs. EXA4 is formed from 15-HPETE and could possibly be catalyzed 

by the 12-LO activity of the 15-LO-1. The catalytic process would then be induced by 

the removal of hydrogen at carbon 10 [84]. The EXA4 conjugation with glutathione to 

form EXC4 occurred in the membrane fraction and LTC4S can catalyze the conversion 

in Sf9cells (unpublished results). This indicates LTC4S as responsible for the 

conjugation in eosinophils. The EXC4 was also detected in nasal polyps, probably due 

to high eosinophil infiltration in the nasal polyps. 
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Increase in vascular permeability leading to vascular leakage is a hallmark of 

inflammation. All eoxins were capable of increasing permeability in a model system 

based on the resistance across a human endothelial monolayer, thus indicating a 

capacity to induce vascular leakage in vivo. The eoxins were less potent than the 

cysteinyl-LTs, although the eoxins were about 100 times more potent than histamine. 

The permeability increasing effect of the cys-LTs and histamine is achieved by 

triggering intracellular calcium mobilization and cytoskeleton rearrangement leading to 

paracellular gaps [85]. The eoxins could possible increase vascular permeability in a 

similar way. 

 

The eosinophils also produced 14,15-HxA3 11(S) and 14,15-HxB3 13(R) in a  

stereoselective manner and the 15-LO-1 was indicated to have intrinsic hepoxiln 

synthase capability. 

 

Porcine eosinophils are a rich source of the 12/15-LO [79], which is the animal 

ortholog to 15-LO-1. The human 15-LO-1 possess mainly 15-LO activity whilst the 

12/15-LO, mainly possess 12-LO activity. Porcine PMNL fractions, enriched with 

eosinophils, were incubated with arachidonic acid. The cells produced the 8,15-

DiHETE quartet and 14,15-DiHETE, which is in agreement with earlier reports [86]. 

Also the EXC4 were identified and the only probable enzyme in the PMNL fraction to 

facilitate the conversion of arachidonic acid into EXA4 is the 12/15–LO. Murine 

eosinophils which contain 12/15-LO also convert arachidonic acid to EXA4 [87]. The 

formation of EXA4 was possible facilitated by a combination of 15- and 12-LO 

activity. The 15-LO activity forms the 15-HPETE and from 15-HPETE the 12-LO 

activity removes a hydrogen at carbon 10, followed by the homolytical cleaved 

hydroperoxy forming an alkoxy radical which is cyclized and forms the epoxide of 

EXA4 [84,88]. Purified 12-LO from porcine leukocytes have earlier been shown to 

have EXA4 synthase activity with 15-HPETE as a substrate [79]. 

 

The enzyme in porcine PMNL fraction responsible for the glutathione conjugation of 

EXA4 forming EXC4 was not established. Expression of LTC4S is not described for 

porcine leucocytes however the conjugation can also be catalyzed by soluble GSTs. 

The PMNL fraction produces 15-HETE:12-HETE at a ratio of 1:5, compared to the 

human 15-LO-1 which produces the hydroxy acids at a ratio of 9:1 [15]. The 12-HETE 

and 15-HETE formation were not connected, the 15-HETE formation was rather 

constant while high levels of 12-HETE were detected on day 1. This could be due to 

platelet contamination with high 12-LO activity of the PMNL fraction. Studies of 

animal 12/15-LO can probably to some extent be used to increase our knowledge of the 

human 15-LO-1 function. 

 

8.2 MAST CELLS (PAPER I & II) 

Cord blood derived mast cells expressed 15-LO-1, but not 15-LO-2, only after IL-4 

stimulation, indicating the importance of this interleukin for 15-LO-1 expression in 

mast cells. The stimulatory effect of IL-4 on the 15-LO-1 has also been shown in 

monocytes, epithelial and dendritic cells and alveolar macrophages [89-91]. The 15-

LO-1 containing mast cells transformed arachidonic acid into 15-KETE and 15-HETE. 

15-KETE and 15-HETE eluted closely but still separated on the reverse phase C18 
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column used and they had different UV absorbance maximum at 280 and 236 nm, 

respectively. Both retention time and UV absorbance maximum was identical as for 

synthesized standards. The peaks were collected and infused by nanospray ionization 

and analyzed in negative ion mode. The MS scan of 15-KETE contained m/z 317 

which is in agreement of the molecular weight of 15-KETE (318 g/mol). The MS/MS 

scan gave rise to several fragments e.g. m/z 113, 139, 219 and 273, as was also the 

case for the synthetic standard. The m/z 113 and 219 fragments were not detected in 

the MS/MS spectrum of 5-KETE, clearly separating 15-KETE and 5-KETE. The m/z 

113 and 219 fragment was suggested to be a result of a cleavage of the C6-C7 and 

C14-C15 bond, respectively, with the charge retention on the carboxyl acid part. 

Experiments performed with 
18

O2 or D8 labeled 15-HPETE confirm the m/z 219 being 

formed after a rearrangement of the double bonds forming a conjugated triene ion. 

However, the labeled experiments indicate that the m/z 113 is a cleavage of the C13-

C14 with the charge retention on the omega end [92]. 

 

The main metabolite in intact cells was 15-KETE but 15-HETE was the main 

metabolite produced in in homogenized cells. This indicates the requirement of an 

intact cell structure for the 15-KETE formation. A NADP
+
 dependent dehydrogenase 

converts the 5-LO corresponding metabolite 5(S)-HETE to 5-KETE in neutrophils and 

monocytes [93]. 5-KETE is a potent chemoattractant for neutrophils, however, no 

recruitment effect on neutrophils is found for 15-KETE [94]. Recombinant 

thromboxane synthase and prostacyclin synthase can form a mixture of 15-KETE and 

15-HETE from 15-HPETE, a mechanism suggested to occur via hemolytic and 

heterolytic cleavage of 15-HPETE [95]. In rabbit lung prostaglandin dehydrogenase has 

been suggested to convert 15-HETE to 15-KETE [96], however no expression of this 

enzyme has been reported in mast cells. If a contribution of another enzyme besides 15-

LO-1 is required for the formation of 15-KETE was not established. In addition to 15-

KETE formation mast cells also formed EXC4 through the 15-LO-1 pathway. 

 

In nasal lavage fluid from patients with allergic rhinitis mannitol inhalation increase the 

15-HETE production compared to placebo inhalation. The 15-HETE increase is related 

to a decreased nasal peak inspiratory flow in patients with active rhinitis [37]. The 

mannitol treatment of mast cells significantly increased the 15-HETE release. The 

release was measured with enzyme immunoassay, although the cross reactivity of the 

antibody to 15-KETE is not known and 15-KETE could therefore contribute to the 

released value. The value of 15-HETE however is in the range of other reported values; 

less than prostaglandin D2 but more than cysteinyl-LTs [97]. The expression of active 

15-LO-1 mast cells in vitro was clearly indicated and to investigate if mast cells express 

15-LO-1 in vivo immunohistochemistry was performed. Mast cells in human bronchial 

tissue and in skin from a patient with atopic dermatitis also expressed 15-LO-1.  

 

8.3 AIRWAY EPITHELIAL CELLS (PAPER VI) 

Human airway epithelial cells contain abundant amounts of 15-LO-1.  The airway 

epithelium is directly involved in the pathology of asthma, as an essential controller of 

inflammatory, immune and regenerative responses to allergens, viruses and 

environmental pollutants [98]. Therefore it is of great interest to investigate the airway 

epithelial cells. The cultivated human airway epithelial MucilAir cells expressed 15-
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LO-1 and the expression was further induced by IL-4. The 15-LO-1 was active and 

transformed arachidonic acid into 15-HETE and EXC4. In order to resemble 

physiological conditions in asthmatic patients, the cells were treated with various 

stimuli that trigger an asthma attack and the effect on 15-LO-1 activity was evaluated. 

P. aeruginosa is a medically significant Gram-negative bacterial pathogen 

distinguished for its antibiotic resistance. Incubation of epithelial cells with P. 

aeruginosa stimulated markedly the formation of 15-HETE. Characteristic for 

asthmatics are the disrupted and injured bronchial epithelial. To mimic epithelial injury 

the airway epithelial cells were scratched with a pipette, which led to increased 

formation of 15-HETE. Cigarette smoke is one component that could cause injured 

epithelium, however the cells treated with condensed smoke extract did not produce 

more 15-HETE.  

 

The glutathione conjugation of EXA4, leading to the formation of EXC4, was in human 

airway epithelial cells catalyzed by a soluble GST. Microarray analysis and incubation 

experiments with 12 soluble GST both indicated the two isoforms of GST P1-1 (Val 

and Ile) were responsible for this conjugation. The high expression of GST P1-1 

mRNA and enzyme in human bronchi is in alignment with earlier reports [99]. 

Immunohistochemistry on bronchial biopsies from asthmatic and healthy subjects 

indicated co-localization of 15-LO-1 and GST P1-1. The expression of 15-LO-1 was 

higher in biopsies from asthmatic patients than in healthy volunteers, whereas the 

expression of GST P1-1 was high in both groups. The co-localization in the epithelial 

cells lining the bronchi suggests a role for GST P1-1 in the formation of the EXC4 in 

the human airway epithelial cells. In conclusion, enzymes required for the EXC4 

formation is present in human airway epithelial cells and the 15-LO-1 pathway is 

activated after challenge with stimuli that cause an asthma attack. 

 

8.4 HODGKIN LYMPHOMA CELLS (PAPER III & IV) 

The HL derived L1236 cell line had high 15-LO-1 activity and catalyzed the 

conversion of arachidonic acid into EXA4 which was further converted to the cysteinyl-

EXs. The sequential cleavage of EXC4 forming EXD4 and EXE4 was more rapid than 

in human eosinophils. This is probably due to a higher content of the catalyzing 

enzymes, ɣ-glutamyl transpeptidase and dipeptidase, respectively, in the L1236 cells. 

The EXC4, EXD4 and EXE4 were identified by LC-MS/MS and in addition the 8-trans–

EXC4 and 8-trans–EXD4 were detected. The double bond isomerization probably 

occurred non-enzymatically in the L1236 cells. 

 

15-LO-1 was present in the cytosolic fraction in resting L1236 cells cultivated in a 

calcium free medium. When calcium is present, with or without ionophore, the main 

15-LO-1 protein was detected in the membrane fraction. However, when the different 

subcellular fractions were incubated with arachidonic acid, the majority of 15-HETE 

and 12-HETE was formed in the cytosolic fraction. This was unexpected since 

membrane bound 15-LO-1 has earlier been found to possess higher activity than 

cytosolic 15-LO-1 protein [100]. A possible explanation could be that exogenous added 

arachidonic acid is easier accessible for the cytosolic 15-LO-1 enzyme. Another 

possibility is that the membrane 15-LO-1 enzyme might be inactivated by 15-HPETE 

since the metabolite is not as rapidly reduced in the membrane fraction as in the 
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cytosolic fraction. The translocation of 15-LO-1 to the membrane upon calcium 

challenge is in accordance with reported findings in eosinophils [100].  

 

Immunohistochemistry showed that 15-LO-1 was expressed in 85% of the HL lymph 

node biopsies analyzed, but not in any of the NHL biopsies. The 15-LO-1 could 

therefore serve as a diagnostic tool to distinguish between HL and NHL. 

 

L1236 were the only of the investigated HL cell lines that expressed 15-LO-1. 

However the L1236 cell line is the only cell line which is clonally related to the original 

tumor [101]. Several of the HL cell lines, such as L1236, have autocrine stimulation of 

IL-3, and therefore have constitutively expression of the transcription factor STAT-6. 

The STAT-6 is required for transcription of 15-LO-1 [24]. Although other HL cell lines 

expressed STAT-6 but not 15-LO-1 might be due to epigenetic control of the 15-LO-1 

promotor. 

 

The formation of arachidonic acid metabolites derived through the 15-LO-1 pathway in 

H-RS cells might contribute to the inflammatory features of HL. Eoxins increase 

vascular permeability and 5-oxo-15-HETE, putatively formed, is chemotactic for 

eosinophils, which are infiltrated in many HL tumors. 15-HETE has been reported to be 

both pro-inflammatory and anti-inflammatory in various studies [15,16]. One can also 

speculate that 15-LO-1 could be involved in formation of the H-RS giant cells by 

modulating the intercellular membrane. The 15-LO-1 is described to be involved in the 

degradation of mitochondrial membranes in the erythropoiesis [15] and membranes 

during the differentiation of keratinocytes and the eye lens [33]. 

 

L1236 cells was incubated with 
14

C-labeled arachidonic acid and two hitherto unknown 

15-LO-1 derived metabolites were identified as 14,15-HxA3–C 11(S) and 14,15-HxA3–

D 11(S). The MS/MS spectra of both metabolites demonstrated several water losses, 

suggesting a loss of the additional hydroxyl group at carbon 11, hence forming a more 

stable configuration. The initial water loss enables the subsequent formation of the m/z 

205 fragment ion. The mechanism of formation is probably the same as for the eoxins, 

by cleavage of the C13-C14 of the lipid backbone which charge retention on the lipid 

moiety. The 14,15-HxA3–C 11(S) is formed by the L1236 cells at the same magnitude 

as the EXC4. However, the other tested 15-LO-1 expressing cells did not produce 

14,15-HxA3–C 11(S) and 14,15-HxA3–D 11(S) and the relevance of these metabolites 

need to be further assessed. The corresponding 12-LO formed HxA3-C is reported to 

induce vascular contraction of guinea pig isolated trachea and increase vascular 

permeability in rat skin [102,103]. 

 

The 14,15-hepoxilins are described as hydroperoxide isomerase products  in garlic root 

[78] and in rabbit aorta the 14,15-HxA3 is formed by a CYP2J2 functioning as a 15-

HPETE isomerase [104]. The 14,15-hepoxilins are also described as non-enzymatic 

degradation products from 15-HPETE [105]. However, the formation of 14,15-HxA3 

11(S) and 14,15-HxB3 13(R) in L1236 cells, eosinophils, dendritic cells and nasal 

polyps was stereoselective, which indicated an enzymatic catalyzed formation. This is 

consistent with the results from human epithelial cells where the 14,15-HxB3 with the 

hydroxyl group in R configuration is most prominent [77]. The stereospecific 14,15-

hepxilins were also formed when arachidonic acid was incubated solely with 
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recombinant 15-LO-1, indicating an intrinsic 14,15-Hx activity, without the presence of 

an isomerase. Purified lipoxygenase from rabbit reticulocytes have also an intrinsic 

capacity to convert arachidonic acid into 15-HPETE and 14,15-HxB3 [29]. The 12-LO 

Fe
3+

 is described to catalyze the formation of the arachidonic acid peroxide radical 

which rearranges to HxB3 [106]. The 14,15-Hxs was proposed to be catalyzed by the 

15-LO-1 Fe
2+

 where the 15-HPETE hydroperoxide is homolytical cleaved and an 

oxygen radical is formed and spontaneous cyclization forms an epoxyallylic radical 

having electron density principally at carbon 11 and 13. Oxygen rebound at these 

carbons results in the formation of 14,15-HxA3 and 14,15-HxB3, respectively.  

 

 

Figure 6. An overview of arachidonic acid metabolites formed through the 15-LO-1 

pathway described in this thesis. The 15-KETE was identified in cord blood derived 

mast cells. The cysteinyl-eoxins were identified to be formed by eosinophils, mast cells, 

airway epithelial cells, nasal polyps and the Hodgkin L1236 cell line. EXC4 was also 

identified as a product formed by the animal ortholog to 15-LO-1, the 12/15-LO. The 

formation of the cysteinyl-14,15-hepoxilins were only established in the L1236 cell line, 

however the 14,15-HxA3 11(S) and the 14,15-HxB3 13(R) were stereoselectively formed 

by L1236 cells as well as by eosinophils, dendritic cells and nasal polyps. 
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