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ABSTRACT 
Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by 
inflammation of the synovial membrane that can lead to joint deformity and physical 
disability. Despite recent progress in the therapeutic field of RA, the exact molecular 
mechanisms responsible for chronic joint inflammation are not yet completely 
understood. The overall aim of this thesis was to identify new molecular mechanisms 
responsible for inflammation in the rheumatoid joint and to understand how distinct 
anti rheumatic drugs act upon these mechanisms. 
 
I first focused on validating arthroscopy as a research tool for better understanding of 
the molecular mechanisms of action of anti rheumatic drugs, demonstrating that 
rheumatologic arthroscopy is a safe method, with very few complications and allowing 
retrieval of representative tissue in clinical longitudinal studies. We also propose an 
easy to perform way to quantitate macroscopic joint changes based on photos acquired 
during arthroscopies.  
 
Based on our validation study we then used this method to perform several mechanisms 
of action studies. We first investigated the effect of etanercept on synovial expression 
of lymphotoxin-α (LT-α) and tumor necrosis factor-α (ΤΝF-α). As predicted from 
previous in vitro studies etanercept was able to decrease synovial expression of both 
LT-α and TNF-α. The effect was however limited to good clinical responders. We 
propose LT-α modulation as an additional but not essential mechanism to explain the 
clinical efficacy observed with this drug in clinical practice. 
 
Defective apoptosis of lymphocytes is linked to pathogenesis of RA and 
glucocorticoids are good in vitro inducers of lymphocyte apoptosis. We therefore 
investigated the effect of intra articular glucocorticoids on synovial apoptosis 
demonstrating that in the complex milieu of rheumatoid joint glucocorticoids actually 
fail to induce lymphocyte apoptosis. We further demonstrate that monocytes are 
essential in rescuing synovial T cells from glucocorticoid-induced apoptosis through a 
soluble factor mediated mechanism, a feature that is specific for RA-derived synovial 
lymphocytes. 
 
LL-37 is an anti microbial peptide belonging to the cathelicidin family with important 
functions in innate immune response but recently also implicated as a modulator of 
acquired immune responses. We therefore investigated a potential role for LL-37 in RA 
pathogenesis, demonstrating that the peptide is present at low levels in healthy 
synovium, but up regulated in the context of inflammation. We also identified synovial 
neutrophils and to a lesser extent macrophages as the main cell types expressing LL-37. 
Distinct modulation patterns of LL-37 by some but not all anti rheumatic drugs and 
correlation with local levels of inflammation suggest a potential direct contribution of 
LL-37 to synovial pathology in RA. 
 
In conclusion, we demonstrated that arthroscopy is a safe and reliable research tool for 
studies on mechanisms of action of anti rheumatic drugs and pathogenic traits of the 
inflamed rheumatoid joint. 
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1 BACKGROUND 

1.1 INNATE AND ADAPTIVE IMMUNITY 

The immune system defends us against microorganisms that can cause infection. To 

protect the individual effectively the immune system must fulfil four main tasks. First 

immunological recognition, the presence of an infection must be detected. This task is 

carried out by the leukocytes in the innate immune system, which provide an 

immediate response, and by the lymphocytes of the adaptive immune system. The 

second task is to contain the infection and if possible eliminate it completely. To do 

that we need immune effector functions such as the complement system of blood 

proteins, antibodies and the destructive capacities of leukocytes among them 

lymphocytes. At the same time the immune response must be kept under control so that 

it does not do damage to itself. Immune regulation, the ability of the immune system to 

self-regulate, is an important function of the immune response and failure of such 

regulation can cause autoimmune diseases like RA. The fourth task is to protect the 

individual against recurring infections due to the same pathogen and therefore the 

adaptive immunity has evolved the capacity of generating an immunological memory 

[1]. 

 

Innate immunity serves as a first line of defense. It works as an early barrier to 

pathogens that acts immediately but does not generate a lasting protective immunity. 

Key components of the innate immunity are anatomical barriers such as the epithelia of 

the skin, the gastro-intestinal and respiratory tracts and professional phagocytes like 

neutrophils, macrophages and dendritic cells. Phagocytes can engulf microbes and 

destroy and eliminate them by degrading enzymes and cytotoxic mediators like 

antimicrobial peptides (AMPs) and reactive oxygen species (ROS). AMPs are naturally 

occurring peptides considered to be among the earliest developed molecular effectors 

of innate immunity [2, 3]. The immune system is triggered by detection of pathogen 

(non-self) associated molecular patterns (PAMPs) or damage associated molecular 

patterns (DAMPs) from invading organisms or injured structures. The macrophages, 

neutrophils and dendritic cells have receptors to recognize these patterns, so called 

pattern recognition receptors (PRRs). The dendritic cells work as a bridge between 

innate and adaptive immunity. They capture the microbial antigen, migrate to 

peripheral lymphoid organs and use their major histocompatibility complex (MHC) 
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class II molecules to display the antigen, in conjunction with co-stimulatory signals, to 

T cells. This initiates the early events in adaptive immunity where antigen specific T 

and B cells are activated [1]. After activation they undergo clonal proliferation and 

maturation. These features allow the adaptive immune response to be directed towards 

specific pathogens. Subpopulations of these cells later become memory cells that can 

quickly mount an immune response to the same microbe when reactivated. 

Upon encounter with the antigen, clonal expansion of antigen-specific T and B cells 

occurs. The specificity of T and B cell receptors is acquired through gene translocation 

and mutations that allow an increase in affinity and specificity. Innate immune cells do 

recognize molecular motifs that are shared by various classes of microbes through 

genetically encoded PRRs, of which toll-like receptors (TLR) are a major family. TLRs 

are highly conserved across evolutionary time and serve to activate host defense 

through a signalling pathway that operates in most multicellular organisms. In 

vertebrates TLRs have a key role in enabling the initiation of adaptive immunity. TLR-

4 for example detects the presence of Gram-negative bacteria through its association 

with the peripheral membrane protein CD14, which is a receptor for bacterial 

lipopolysaccharide (LPS). Other TLRs respond to other molecular patterns found on or 

in pathogens. TLRs activate the transcription factor NFκβ, which then induces the 

transcription of a variety of genes, including cytokines, chemokines and co-stimulatory 

molecules that have essential roles in directing the course of the adaptive immune 

response. 

 

1.2 INFLAMMATION AND AUTOIMMUNITY 

Inflammation is our body´s response to injury and tissue damage. An acute 

inflammation as a response to an infection is a normal reaction that serves to remove 

the pathological agent and start healing and tissue repair. However the inflammation 

process itself may also contribute to the development of autoimmune diseases. The 

inflammatory pathway consists of inducers, sensors, mediators, and target tissues. 

Inducers initiate the inflammatory response and are detected by sensors. Sensors, such 

as TLRs, are expressed on cells present in the tissue like macrophages, dendritic cells 

and mast cells. They induce the production of mediators, including cytokines, 

chemokines, eicosanoids and products of proteolytic cascades. These inflammatory 

mediators act on various target tissues to develop changes in their functional status for 

optimizing adaptation to the infection or tissue injury, associated with the particular 
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inducers that elicited the inflammatory response [4]. Typical signs of inflammation are 

tumor (swelling), rubor (redness), calor (heat), dolor (pain), and functio laesa 

(decreased function). 

A typical example where inflammation contributes to disease development is in 

autoimmune diseases such as RA. Autoimmunity results from the failure of self-

tolerance like inability of lymphocytes to distinguish self from non-self, so that an 

immune response against the body´s own cells and tissues leading to chronic 

inflammation will occur. 

 

1.3 RHEUMATOID ARTHRITIS 

Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by 

inflammation of the synovium, which outlines the inner cavity of synovial joints except 

for cartilage surfaces. It is a heterogeneous disease spanning several disease subsets 

with potential distinct pathogenic pathways [5-7]. Sir Alfred Garrod was in 1859 the 

first to define RA, even though the typical symptoms had been described far earlier [8]. 

Findings of population-based studies show that RA affects around 0.5–1.0% of adults 

in developed countries. The disease is two to three times more frequent in women than 

in men. The prevalence rises with age and is highest in women of 65 years and older 

[9]. The incidence ranges from 5 to 50 per 100 000 adults in developed countries and 

increases with age [10, 11]. The prevalence of RA varies geographically. The disease is 

more common in northern Europe and in the North of America compared with parts of 

the developing world, such as parts of the west of Africa [12-14]. Today it seems like 

the incidence of RA might be decreasing with onset later in life [15, 16]. 

RA is defined by a series of clinical criteria to ensure correct classification. A set of 

criteria, revised in 1987 by the American College of Rheumatology (ACR) (Table 1) 

was designed to help differentiate RA from other inflammatory arthritides [17]. These 

criteria were developed to define established disease and provide a standard for 

recruitment into clinical trials. Today we know more about the etiology and 

pathogenesis of RA and the importance of early diagnosis for the possibility of early 

aggressive treatment [5, 18]. To meet the need for earlier diagnosis and institution of 

effective disease-suppressing therapy to prevent or minimise the occurrence of the 

undesirable sequelae a new classification system was introduced, developed by the 

ACR and European League Against Rheumatism (EULAR) in 2010 [19] (Table 1). 

This new classification system redefines the current paradigm of RA by focusing on 
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features at earlier stages of disease that are associated with persistent and erosive 

disease, rather than defining the disease by its late-stage features like rheumatoid 

nodules and existent erosions. 

 

 
Table 1. ACR 1987 criteria (left panel) were designed to classify established rheumatoid arthritis. 2010 
ACR/EULAR criteria (right panel) are intended to classify both early and established disease. 

 
RA is a heterogeneous disease that probably should be divided into at least two 

different subsets with different causes and severity. Traditionally the subsets have been 

divided based on presence or absence of autoantibodies [5]. Rheumatoid factor (RF) is 

the classic autoantibody in RA. IgM and IgA RF are key pathogenic markers directed 

against the Fc fragment of IgG. Today more specific antibodies, so called anti 

citrullinated-proteins antibodies (ACPAs) [20], are used for the identification of clinical 

subsets of disease, with more relevance in classification of RA according to shared 

features in genetic and environmental risk factors. Both RF and ACPA are clinically 

useful prognostic markers and predict a more aggressive, destructive disease [21]. 

RA is a complex genetic disease and the exact cause is still not known but it is 

considered to develop when genetically predisposed individuals are exposed to specific 

environmental risk factors [22, 23]. These genetic and environmental risks factors 

interact and result in molecular events that drive development of arthritis. Twin studies 

implicate genetic factors in RA with concordance rates of 15 to 30% among 

monozygotic twins and 5% among dizygotic twins [24]. Estimated contribution of 

genetic factors for RA is around 50% [24]. 

ACR 1987 criteria

1. Morning sti!ness (at least 1h)
2. Arthritis of three or more joint areas
3. Arthritis of hand joints (≥1 swollen joints)
4. Symmetrical arthritis
5. Rheumatoid nodules
6. Serum rheumatoid factor
7. Radiographic changes (erosions)

Four of these seven criteria must be present.
Criteria 1-4 must have been present for at least 6 weeks

ACR/EULAR 2010 criteria

1. Joint involvement (0-5)

2. Serology (0-3)

3. Acute-phase reactants (0-1)

4. Duration of symptoms (0-1)

Points are shown in parentheses. Cut-point for rheumatoid 
arthritis. 6 points or more. Patients can also be classi!ed as 
having rheumatoid arthritis if they have: a. typical erosions; 
b. long-standing disease previously satisfying the 
classi!cation criteria
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The strongest genetic risk factor for seropositive RA is linked to the MHC class II 

locus. The HLA-DRB1 alleles code for a common amino acid sequence, the shared 

epitope, located in the β chain of the HLA-DR molecule [25, 26]. This is a group of 

alleles that play an important role in antigen presentation by influencing the binding 

and presentation of arthritogenic peptides to autoreactive CD4+ T cells [27] There are 

also other genes involved such as PTPN22 [28], coding for tyrosine phosphatase 

involved in T cell and B cell signalling [29]. At present over 30 non-MHC risk alleles 

for ACPA positive RA have been identified and validated through candidate gene 

studies and GWAS [30]. 

Smoking is the dominant environmental risk factor for developing RA [31], particularly 

in RF positive and ACPA positive patients. A gene-environment interaction between 

smoking and shared epitope provides a high risk of ACPA+ RA but not ACPA- RA 

[32]. Other forms of bronchial stress, like silica exposure, increase the risk of RA 

among persons with susceptibility HLA DR4 alleles (reviewed in [33]). In a recent 

study overweight together with smoking was shown to be a risk factor for developing 

RA in a cohort of autoantibody positive individuals [34]. 

Several anti-rheumatic therapies are available today, either classic disease modifying 

anti rheumatic drugs (DMARD) with a broad non specific immune modulation effect or 

modern biologicals, partly native human substances produced by gene technology that 

target specific molecule in the immune system. Despite this it is still difficult to find the 

best treatment for each patient right from the beginning and still there are few complete 

remissions and limited effects in about 30% of the patients. This is partly due to limited 

knowledge on the exact mechanisms of action of each individual anti rheumatic drug in 

distinct clinical settings. Particularly in RA this type of research is partially restricted 

due to difficulties in investigating the site of active inflammation, i.e. the inflamed 

synovium. I focused therefore my thesis on validating arthroscopy as a research tool for 

better understanding of the molecular mechanisms of action of anti rheumatic drugs. 

 

1.4 ARTHROSCOPY 

Historically synovial membrane biopsies have been retrieved from end stage 

destructive joints at the time of arthroplasty. However this type of intervention limits 

the investigations to late chronic destructive stages of the joint inflammation not 



 

 16 

relevant in the search of early biomarkers. Later on blind needle biopsy was introduced 

which could be used to retrieve synovial tissue in any stage of active disease. This is a 

safe, cheap method easy to perform but restricted to larger joints and not reliable in 

getting accurate samples [35, 36]. During the last years ultrasound guided biopsies are 

increasingly used, this method can be performed in both small and large joints under 

local anaesthesia [37]. It allows an indirect visual inspection and the best biopsy site is 

selected based on synovial proliferation and vascularisation. The biopsies taken have 

been shown to be reliable for histopathological assessment [38, 39]. Although this is an 

appealing technique it has some disadvantages, the bony surfaces might cause 

ultrasonic disturbances, which might limit the access area and it is also difficult to look 

into non-inflammatory joints. Further validation of this method is needed. 

 

Arthroscopic biopsy have been used by rheumatologists since the late 1970’s and is 

technically more complicated but provides better possibilities in getting good samples 

as one has direct vision of the synovial membrane in both small and large joints [36]. 

Since the introduction of local and regional anaesthetics this procedure can be 

performed safely in an office based setting [40]. The arthroscopic procedure is well 

tolerated and safe [41]. In a survey, in which information from 15682 arthroscopies 

performed by rheumatologists was collected, a complication rate of haemarthrosis was 

0,9%, deep vein thrombosis 0,2% and wound and joint infection 0,1%. The total 

complication rate reported was 15.1/1000 arthroscopies, which is comparable to reports 

from orthopedic surgeons [40]. 

 

Several studies have addressed the issue of intra-articular variation of synovitis. Intra- 

articular variation has been confirmed macroscopically [42], microscopically for cells 

[43], protein expression [44] and gene expression [45]. In our studies we have 

developed a method where we take samples from maximum macroscopic active 

synovitis both distant and close to cartilage. When performing consecutive studies with 

repeated procedures we try to sample the biopsies close to the same sites as in the first 

procedure according to a specially arthroscopy map (study I). One study has shown that 

the inflammation in one inflamed joint is generally representative of that in other 

inflamed joints [46]. Therefore, it is possible to use serial samples from the same joint, 

selecting either large or small joints. Another study showed that biopsies taken from 

actively inflamed synovial tissues of patients with RA show expression of unique 

patterns of mRNA, provided that the biopsy has been taken in such a way that the 
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analysis is performed on cells from an inflamed site [47]. Both inter-individual and 

intra-individual variation must be taken into consideration when analysing gene 

expression in synovial tissue. Therefore sites of maximal inflammation and/or random 

sampling from multiple synovial sites should be considered. 

For research purposes synovial tissue can be processed for histology, immunohistology 

(IHC), immunofluorescence, in situ hybridization, PCR, micro-array, proteomics and 

cell or tissue culture. Immunohistochemistry can be performed on formalin fixed, 

paraffin-embedded material or on samples that have been snap-frozen in liquid 

nitrogen. 

A B 

 
Figure 1 
Arthroscopic images of a normal joint with thin transparent synovium (A) and a joint with on going 
inflammation (early RA) where we can see hypertrophied synovium with villi formation and increased 
vascularity (B). 
 

1.5 BASIC ASPECTS OF THE SYNOVIAL MEMBRANE 

The synovium is the central player in RA pathogenesis. A normal synovium (figure 1A) 

consists of two distinct layers, the lining or intimal layer and the sublining or subintimal 

layer. The lining layer is the superficial layer that is in contact with the intra-articular 

cavity and produces lubricious synovial fluid (SF). It is one to three cell-layers deep, 

containing macrophage-like type A synoviocytes and fibroblast-like type B 

synoviocytes. The sublining layer consists of scattered blood vessels, fat cells and 

fibroblasts residing in a matrix of fibrils and proteoglycans together with occasional 

mononuclear cells. When inflamed (figure 1B) the synovium undergoes profound 

changes, resulting in an increased volume and surface on macroscopic evaluation with 

accumulation of an inflammatory SF in the joint space. The lining layer becomes 

hyperplastic and forms an aggressive front termed “pannus” at the cartilage-bone 

junction, leading to the characteristic RA bone erosions. Important changes also occur 

in the sublining layer with massive mononuclear infiltration and blood vessel formation 
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[48] (figure 2). Increased joint influx and defective cell death (apoptosis) of resident 

cells are the mechanisms responsible for these cellular changes [49] and result in local 

accumulation of pro inflammatory cytokines (such as TNF). These cytokines further 

contribute to activation of synovial cells and perpetuation of chronic inflammation. The 

massive hyperplasia of the synovial membrane during inflammation does not only 

cause the majority of signs and symtoms of RA but also determines the outcome of the 

disease. 

 

 
Figure 2  
A schematic representation of a joint. A healthy joint to the left, with a thin synovial membrane, 
and an inflamed RA joint to the right, with a hypertrophied synovial membrane with massive 
influx of inflammatory cells. 

 

1.6 CELL POPULATION IN THE INFLAMED RA JOINT 

1.6.1 Monocytes/Macrophages 

Macrophages (MΦ) have phagocytic capacity and are central effectors of synovitis 

[50]. They are found both in the synovial tissue and SF. There are two types of 

macrophages in the RA synovial tissue, the macrophage-like type A synoviocytes in the 

lining and the sublining macrophages migrated as monocytes from the circulation and 

are diffusely distributed in the synovium. Both types have multiple functions like such 

as clearance of immune complexes, antigen presentation (MHC class II are 

overexpressed on MΦ), mediation and regulation of local and systemic inflammation 

and tissue remodelling through release of different cytokines and growth factors (TNF-
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α, IL-1, IL-6, IL-10, IL-13, IL-15, IL-18 and GM-CSF), mediation and regulation of 

monocyte migration and stimulation of angiogenesis by chemokines and 

chemoattractants, tissue degradation and post-injury tissue remodelling by matrix 

metalloproteinases (MMPs) [51]. They express several markers of the resident 

macrophage population including CD68, CD163 and CD14 [52]. In addition to the 

monocytes/MΦs central role in inflammation they are also involved in bone erosions 

due to their ability to differentiate into osteoclasts. Upon stimulation with TNF-α, IL-1, 

IL-6 and IL-17 synovial fibroblasts and activated T cells can upregulate RANKL 

expression on their surface which can engage its receptor RANK on the surface of 

monocytes and drive them into osteoclastogenesis [53]. Most of the macrophages in 

actively inflamed joints are localized in the synovial sublining rather than in the intimal 

lining layer [54]. Earlier studies have identified synovial sublining macrophage 

numbers as a potential biomarker for clinical efficacy in RA [55]. This was later 

confirmed in a study of synovial biopsies from 88 RA patients before and after 

treatment with different anti rheumatic drugs [50]. The validity of synovial tissue 

sublining CD 68 expression as a therapeutic biomarker has been confirmed across 

different academic centers [56]. 

 
1.6.2 Fibroblast-like synoviocytes (FLS) 

FLS are non-phagocytic mesenchymal-derived cells. They can be found both in the 

lining and sublining layers. The FLSs found in the lining layer are highly activated and 

exhibit features with aggressive invasive properties. They are important in both 

initiation and perpetuation of RA and can contribute to maintenance of chronic 

inflammation through cell–cell contact and through elaboration of soluble products. In 

response to environmental stimuli and interactions with various cell types in the 

inflamed synovium FLS can secrete several mediators like cytokines, chemokines, 

growth factors and several other proinflammatory molecules like prostaglandins and 

leukotrienes. There are many ways to activate FLS, for example through activation of 

TLRs, exposure of cytokines and ligation of integrins by matrix molecules. The 

resistance to apoptosis characterizes FLSs and they have been linked to the progressive 

destruction of articular cartilage [52]. It has recently been shown in a SCID mouse 

model of arthritis that FLSs can migrate to a distant unaffected joint and invade and 

degrade the cartilage and thereby promote articular involvement [57]. In a very recent 

study, citrullinated fibronectin (cFn) was shown to inhibit apoptosis and increase pro-

inflammatory cytokine secretion of RA FLSs [58]. This could be one possible 
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explanation for the increased number of FLSs that contribute to the hyperplasia in RA 

synovial membrane. 

 

1.6.3 T cells 

The T cells constitute around 30-50% of all cell types in the sublining and the majority 

are CD4+ with T helper (Th) 1 phenotype [52]. T cells are identified as CD3+ cells in 

the synovial tissue and are either CD4+ Th cells, CD8+ cytotoxic T cells or CD4+ 

regulatory T cells [59]. The cytokines present in the environment affect the 

differentiation of T cells towards a particular T cell lineage [60]. The Th1 subset 

mediates cellular immunity and is defined by IFNγ secretion. The Th2 is involved in 

humoral immunity and forms mainly IL-13 and IL-4, while Th17, the newest member 

of the T cell family is identified through its signature cytokine, IL-17. Th17 cells are 

important promoters of autoimmunity in RA [61]. Synovial-derived T cells have a 

phenotype that indicate chronic immune activation but express low levels of cytokines 

and show signs of anergy [60]. 

 

1.6.4 B cells 

B cells and plasma cells are mainly found in the sublining layer of synovial membrane. 

Around 5% of sublining synovial cells are B cells. The pathogenic role of B cells in 

autoimmune disorders have historically been attributed to autoantibody production that 

would drive the inflammation locally either in soluble form or as immune complexes 

[62]. B cells contribute to RA through both antibody-dependent and antibody–

independent mechanisms. Examples of antibody-independent functions are antigen 

presentation, T cell activation and polarization, organisation of other inflammatory cells 

and dendritic cell modulation. B cells display considerable phenotypic diversity [63]. 

 

1.6.5 Neutrophils 

The phagocytic neutrophils are the most numerous and most important cells in innate 

immune responses, they take up a variety of microorganisms by phagocytosis and 

efficiently destroy them in intracellular vesicles using degradative enzymes and 

different antimicrobial substances, for example different antimicrobial peptides (AMPs) 

like LL-37, which I will describe later on in the text. 

In the RA joint neutrophils are the first cells to be recruited at the sites of inflammation 

and accumulate mainly in the inflamed SF and to a lesser extent in synovial membrane 
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at the site of active destruction where they phagocyte immune complexes and release 

degrading proteases [64]. Resting peripheral blood neutrophils are relatively short 

lived, undergoing apoptosis within 12–18 h. Primed and activated neutrophils within 

tissues undergo molecular changes that extend their life span and alter their molecular 

properties, thereby allowing them to carry out many functions that have historically 

been attributed to macrophages. Delayed apoptosis, together with synthesis of 

inflammatory mediators like IL-8, TNF-α, IL-1, IL-6, IL-12, TGF-β and BLyS, and 

ability to present antigen to T cells via MHC II, makes tissue neutrophils capable of 

driving inflammatory processes. Many of the cytokines and chemokines implicated in 

RA are potent regulators of neutrophil activity (reviewed in [65]). Several recent 

reports have suggested a possible direct contribution of neutrophils in early RA 

pathophysiology and bone remodelling [66] by mediating Th17-responses [67], 

expressing PRRs [68-70], and mediating bone resorption via activating 

osteoclastogenesis [71]. To pass from the peripheral blood to the site of inflammation, 

the neutrophil adheres to the endothelial wall using selectins, integrins and adhesion 

molecules. Rolling arrest precedes transmigration through the endothelial lining of the 

blood vessel, and chemotaxis to sites of inflammation, for example the joint. (Figure 3) 

 

 
Figure 3 
Diapedesis of neutrophils. How the neutrophils pass from the peripheral blood to the site of 
inflammation. 

 

1.6.6 Dendritic cells 

DCs play an essential role in the initiation and perpetuation of inflammatory arthritis by 

presentation of arthritogenic antigens to autoreactive T cells. Through their potent 

antigen-presentation ability they stimulate naïve T cells, direct effector cells function 

and polarize the T cell repertoire towards the Th1, Th2, or Th17 phenotypes. Myeloid 

DCs (mDCs) are considered especially important in promoting synovial inflammation. 

Plasmacytoid DCs (pDCs) are recruited in RA ST and comprise an antigen presenting 

cell (APC) population that might contribute to the local inflammatory environment, 
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particularly as a result of their capacity to produce cytokines in situ such as IFN-α, IFN-

β, Il-15, Il-18 and Il-23p19 but also secondary to their potent function as stimulators of 

allogenic T cells. The number of synovial pDCs is especially increased in RA patients 

that are ACPA positive [72]. 

 

1.7 INFLAMMATORY BIOMARKERS, MEDIATORS 

1.7.1 Cytokines 

Cells can communicate and interact with each other either trough direct cell-cell contact 

or via cytokines. Cytokines are proteins secreted by the cells of innate and adaptive 

immunity and they mediate many of the functions of the cells involved in immunity. 

Many cell types may produce the same cytokines and individual cytokines often act on 

diverse cell types. They are synthesized in response to inflammatory or antigenic 

stimuli and act locally by binding to high-affinity receptors on target cells. The 

cytokines that mediate innate immunity are mainly produced by activated macrophages 

(TNF, IL-1, IL-12, IL-18, IFN-γ, type I IFNs IL-10, IL-23, IL-27). Some of these 

macrophage-derived cytokines (IL-12, IL-18, IL-23, IL-27) also modify adaptive 

immune responses. However cytokines that mediate and regulate adaptive immune 

responses are produced mainly by antigen-stimulated T cells (IL-2, IL-4, IL-13, IFN-γ, 

TGF-β) [73]. A large number of cytokines are active in the joints of patients with RA 

and they play a major role in pathogenesis [74]. 

 
1.7.1.1  TNF-α 
 
Based on synovial samples obtained from inflamed joints, tumor necrosis factor (TNF) 

was discovered as a key modulator molecule in RA for more than 20 years ago. Based 

on original studies which demonstrated elevated TNF concentrations at the sites of 

inflammation [75] it was proposed that this particular molecule drives disease 

pathology. It belongs to the TNF superfamily and consists of a protein expressed on the 

cell surface or present in a soluble form following cleavage by a protease called TNF-

α-converting enzyme [76]. Both membrane bound and soluble forms are biologically 

active. Removal of excess TNF became a therapeutic goal [77-79]. Animal studies first 

demonstrated amelioration of chronic arthritis following TNF blockade [80-82] and a 

pilot study in RA patients, using a monoclonal anti-TNF antibody, showed impressive 

clinical results [83] and opened a new therapeutic era in RA [84]. TNF-α have several 

functions: it can activate leukocytes, endothelial cells and synovial fibroblasts, induce 
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production of cytokines, chemokines, adhesion molecules and matrix enzymes; 

suppress T reg function; activate osteoclasts and resorption of cartilage and bone; 

modulating neutrophil survival [85] (reviewed in [74]). TNF also has a dual effect on 

cell survival, being able either to promote cell death or to induce pro survival genes. 

While both TNF receptors promote early cell death, only TNFR1 can delay apoptosis 

via NF-kB-controlled expression of pro-survival genes such as Bfl-1 and TRAF-1 [86]. 

 

 
Figure 4 
Simplified picture that outlines the typical TNF-α actions that are relevant to the 
pathogenesis of RA. Adapted from Brennan et al 2008 [74] 

 

1.7.1.2 Lymphotoxin α (LT-α) 
 
LT-α formerly known as TNF-β, was originally described in 1968 as a cytotoxic factor 

produced by T cells after antigenic or mitogenic stimulation [87]. In 1984, human LT-α 

was purified from a B-lymphoblastoid cell line and its structure was determined by 

classic protein- sequencing methods [88-90]. LT-α and TNF-α are 30% homologous in 

their primary amino acid sequence [91, 92]. LT-α is structurally similar to TNF-α. LTα 

is a soluble homotrimer composed of 17-kDa monomers and binds to and signals 

specifically through TNF receptors 1 and 2 (TNFR1 and TNFR2) to exert its biologic 

activities [93]. LT-α and TNF-α have many similarities but there are some distinct 

molecular and biological differences [94, 95]. The N-terminus of LT-α, unlike that of 

TNF-α, resembles a traditional signal peptide, making its conversion to a soluble form 

extremely efficient. LT-α is never found at the cell surface, a unique feature among the 

TNF superfamily members. LT-α is anchored to the cell membrane only in association 
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with membrane-bound LT-β, as LT-αβ hetero-trimers. LT-αβ is structurally distinct 

from LT-α and comprises two membrane-anchored heterotrimers, the predominant 

LTα1β2 form and a minor LTα2β1 form, both of which interact with the LT-β receptor 

(LTβR) [95]. 

LT-α is expressed by CD4+ Th 1 cells, CD8+ T-cells, NK cells, B-cells and 

macrophages [95]. LT-α has specific roles in the development and function of the 

immune system, mainly in lymphoid organ development, organization and maintenance 

of lymphoid microenvironments, host defense, and inflammation [96]. However, most 

of the evidence pointing to these roles came from genetically deficient mice and the 

relevance of LT-α in humans is less clear. In an animal model of collagen-induced 

arthritis, blocking of LT-α with a monoclonal antibody significantly improved the 

disease [97]. The main mechanism for improvement was attributed to the depletion of 

LT-α expressing Th1 and Th17 cells. Recently it has been demonstrated that LT-α can 

trigger activation of FLSs [98]. However LT-α was not detected in whole sera, plasma 

and synovial fluid of patients with RA, using commercially available ELISA kits. 

 

1.7.1.3 IL-6 
 
IL-6 is a cytokine produced by T cells, B cells, monocytes and fibroblasts, present at 

elevated levels in patients with RA. IL-6 signalling involves both a specific IL-6R and 

a ubiquitous signal-transducing protein, gp130 that is also utilized by other members of 

the IL-6 family. Il-6 signalling occurs by two mechanisms. Conventional signalling 

involves the binding of IL-6 to trans-membrane IL-6R on cells expressing this receptor. 

In contrast, trans-signalling involves binding between the complex of soluble IL-6R/IL-

6 and membrane-bound gp130. Trans signalling allows IL-6 to affect cells that do not 

express IL-6R, including many synovial cells [99, 100]. The biological activities of IL-

6 contribute to both systemic and local RA symptoms. Il-6 is a strong inducer of the 

acute-phase response, which can result in fever, secondary amyloidosis, anemia and 

elevations in acute phase proteins, such as C-reactive protein (CRP) [100]. The ability 

of IL-6 to induce B cell differentiation may lead to the formation of rheumatoid factor 

and other autoantibodies [101]. In joints, IL-6 promotes osteoclast activation and 

induces the release of MMP, thus contributing to joint damage [102, 103]. In patients 

with RA, IL-6 levels correlate with markers of disease activity and clinical symptoms. 

IL-6 signalling plays an important role in inflammatory cell migration by increasing the 

rate of cell adhesion and by inducing chemokine production in inflamed joints. [104]. 
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1.7.2 Antimicrobial peptides  

AMPs are naturally occurring peptides considered to be among the earliest developed 

molecular effectors of innate immunity [2, 3]. Two of the most extensively studied 

mammalian gene families of AMPs are the cathelicidins and the defensins [105]. The 

genes of mammalian cathelicidin consist of four exons, where exon four encodes the 

anti-microbial domain. CAMP (Cationic Anti-Microbial Peptide) is the single 

cathelicidin gene in humans. The human AMP LL-37 is a linear 37-residue peptide 

generated from the C-terminus of its precursor protein hCAP18 by a proteolytic 

cleavage [106]. 

 

1.7.2.1 LL-37 
 
LL-37 is expressed in many cell-types and stored as the precursor hCAP-18 in large 

quantities in the specific granules of neutrophils [107]. LL-37 has a direct antimicrobial 

action but also diverse immune-modulatory effects such as increased chemotaxis of 

neutrophils, monocytes and T-cells [105], activation and maturation of B-cells and 

dendritic cells [105, 107, 108] and differentiation of macrophages towards 

macrophages with a pro-inflammatory signature [109]. It is known that cathelicidins 

and other AMPs influence adaptive immunity by acting on antigen presenting cells 

(APCs). Cathelicidins are secreted and taken up by macrophages, B cells and DCs and 

their effects on these cells lead to selective immune activation [105, 110, 111]. 

Immature monocyte derived DCs transport LL-37 into the cytoplasm and nucleus 

where LL-37 acts to up regulate CD68 and HLA-DR expression [112], these markers 

are associated with activation of the adaptive immune response. 

LL-37 is produced by keratinocytes and neutrophils in wounded skin [113] and appears 

to be involved in the pathogenic events by binding locally released self-DNA and self-

RNA in psoriasis, thus forming large aggregates that are resistant to nuclease-attack 

and transport and retain the nucleic acids in the early endosomes of pDCs, thereby 

leading to extended activation of TLR-7 and TLR-9 [114, 115] and production of type I 

IFN while inhibiting TLR-3 responses [116]. Patients with SLE [117, 118] but also a 

subtype of RA patients [119] display a type I IFN signature as measured by peripheral 

blood mononuclear cells (PBMC) gene expression. Given the importance of AMPs for 

development of SLE and psoriasis, there is a possibility that AMPs could also be 

mediators in TLR-stimulated pathways leading to induction of other autoimmune 
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diseases that are characterized by reactivity to nucleic acids, such as for example 

arthritis. The CAMP gene is constitutively expressed in the healthy state but can be 

increased in certain conditions, for example in psoriasis or SLE [120, 121]. 

LL-37 has also been detected as a component of the so-called NETs (neutrophil 

extracellular traps) structures that are formed following dying neutrophils. NETs 

contain self-DNA, AMPs and histones and they can serve as immunogens in SLE and 

additional autoimmune conditions by activating pDCs to produce type I IFN via TLR 

to induce a type I IFN signature [114, 122-124]. We have recently shown that LL-37 

plays a pathogenic role in mediating synovial inflammation in an animal model of 

arthritis [125]. 

 

1.8 APOPTOSIS IN RA 

Apoptosis, programmed cell death is an evolutionary conserved, multi-step process by 

which a cell dies, quietly. In contrast to necrosis the contents of the apoptotic cell are 

not released, the cell is cleared by phagocytosis and does not result in an inflammatory 

response. Apoptosis can be initiated by a variety of stimuli through different 

intracellular pathways, death receptor (DR) pathways or mitochondria-dependent 

pathways, the common link being activation of the caspases [126]. A hallmark of 

apoptosis is the degradation of DNA by cleavage between nucleosomes. To detect 

DNA strand breaks in tissues the TUNEL method, which labels DNA fragments, is 

commonly used [127]. Electron microscopy is another method frequently used; it 

identifies changes in nuclear morphology that define apoptosis [126]. 

The extrinsic pathway, the death receptor pathway is initiated through ligation of 

specific death receptors, FAS, by their ligands, FasL, TNF-related apoptosis-inducing 

ligand (TRAIL) receptors-1 and -2 and TNF receptors-1 and -2. Engagement of a death 

receptor with its ligand (e.g. FasL, TRAIL and TNF-α) induces apoptosis via activation 

of caspase-8 [128]. Fas-FasL interaction result in the recruitment of Fas associated 

death domain (FADD) and pro-caspase 8, which is cleaved to activate caspase 8. 

Activated caspase 8 either directly cleaves caspase 3 or activates BH3 interacting 

domain death antagonist (Bid), which disrupts mithocondrial integrity through the 

action of the pro-apoptotic molecules Bcl-2 associated X protein (BAX) and Bcl-2 

homologous antagonist killer (BAK). In some cells, especially MΦ, growth factor can 

activate the PI3K/PKB pathway. The phosphorylation and activation of protein kinas B 

(PKB) by PI3K (phosphatidylinositol 3-kinase) regulates the anti-apoptotic protein 
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myeloid cell leukaemia-1 (Mcl-1) and A1expression. NF-κB activated by TNF-α has 

the same effect. Mcl-1 and AP1 (activator protein 1) together with Bcl-2 maintain 

mitochondrial integrity by inhibiting the damage promoted by aggregation of BAX and 

BAK. Following the loss of mithochondrial integrity cytochrome c is released and 

together with Apaf-1 (apoptosis protease activating factor 1) and pro-caspase-9 the 

apoptosome is formed activating caspase 9 and subsequently caspase 3. Caspase-3 

promotes the characteristic features of apoptosis, including DNA fragmentation and 

cell death. Mitochondrial apoptosis might be directly induced by cytotoxic 

chemotherapy, UV irradiation, growth factor withdrawal or induction of p53 [129]. 

(Figure 5). 

 
Figure 5 
Schematic representation of apoptosis induction and suppression in RA synovial cells. (FADD: Fas 
associated death domain, TNFR: TNF receptor, NF-κB: nuclear factor κB, GFR: growth factor receptor, 
PI3K: phosphatidylinositol 3-kinase, PKB: protein kinas B FLIP: Fas-associated death domain-like IL-
1β-converting enzyme inhibitory protein, Bid: BH3 interacting domain death antagonist, tBid: truncated 
Bid, Mcl-1: myeloid cell leukaemia-1, AP1: activator protein 1, BAX: Bcl-2 associated X protein, BAK: 
Bcl-2 homologous antagonist killer Apaf-1: apoptosis protease activating factor 1) 
 
The massive hyperplasia of the synovial membrane in RA is partly due to a defective 

apoptosis of infiltrating and resident synovial cells [52]. There are several potential 

mechanisms that can explain the resistance to apoptosis in RA. Histological studies 

have demonstrated low levels of apoptosis in the RA synovial tissue [127, 130], 

between 1% and 3% of synovial cells, despite the presence of both cell death receptors 

(Fas and TNFR) and cell death ligands (Fas-ligand and TNF) in the inflamed synovium 



 

 28 

[131, 132]. Neutrophils that have migrated into RA joints display a delay in apoptosis, 

and thus have an enhanced potential to mediate host tissue damage because of their 

extended life span [133, 134]. It has been suggested that this delayed apoptosis in 

neutrophils could be partially due to the hypoxic conditions in the joints [135]. The 

anti-apoptotic Mcl-1 of the Bcl-2 family is involved in the pathophysiology of 

inflammatory disorders, and has been shown to be elevated in synovial fibroblasts 

[136], macrophages [137] and lymphocytes, as well as neutrophils [135] from 

inflammatory arthritis patients. Dysregulation of the intrinsic apoptotic pathway in RA 

has been reported to occur via increased expression of BAX and Bcl-xL in 

synoviocytes [138] and B cells [139], and Bcl-2 in CD4+CD28-T-cell clones [140] and 

RA synovial tissue [141]. This may be explained by high expression of Fas-associated 

death domain-like IL-1β-converting enzyme inhibitory protein (FLIP) in synovial tissue 

[142]. FLIP inhibits caspase-8 activation by blocking its engagement with intracellular 

domains on death receptors, and expression of FLIP is under the control of Nuclear 

Factor (NF)-kB, a transcription factor that is activated by TNF-α [143].   RA-FLSs are 

relatively resistant to apoptosis and through both cell-cell interactions and the secretion 

of soluble factors they also prevent infiltrating B and T cells from undergoing apoptosis 

[144]. 

 
1.9 TREATMENT 

1.9.1 Classic anti rheumatic drugs 

While more modern therapies, such as biologicals, have been developed based on pre 

existing knowledge about disease pathogenic mechanisms, classical anti rheumatic 

drugs, such as glucocorticoids and methotrexate, have been empirically used in RA 

based on the assumption that these drugs will exert their effect through mechanisms 

described in disease states others than RA. It is therefore important to characterize the 

disease specific mechanisms of action of these drugs for a more rationale use in clinical 

practice. However surprisingly few studies are available. 

 
1.9.1.1 Methotrexate (MTX) 
 
MTX is the most frequently used disease-modifying anti-rheumatic drug (DMARD) 

and it suppresses disease activity and reduces joint damage [145]. It is usually the first 

DMARD administered to patients with RA. It should be initiated when the disease is 

first diagnosed. The dose used and escalation of dosing has increased in recent years. 
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Folic acid is given to limit toxic effects. Findings of observational studies show that 

many patients remain on methotrexate and it achieves good outcomes [146]. MTX is a 

folate antagonist but the precise mechanism of action in the treatment of RA is unclear, 

it is thought that MTX prevents de novo pyrimidine and purine syntheses, required for 

DNA and RNA syntheses, and consequently inhibits cellular proliferation of 

lymphocytes involved in the inflammation process. At the cellular level, MTX and/or 

MTX-polyglutamates directly inhibit dihydrofolate reductase (DHFR), thymidylate 

synthase (TS) and 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) 

transformylase. Other folate enzymes such as methylenetetrahydrofolate reductase 

(MTHFR) may be influenced indirectly. MTX enters the cell via the reduced folate 

carrier (RFC1), whereas several multi-resistance proteins (MRPs) and P-glycoprotein 

(P-gp) probably facilitate cellular efflux [147]. 

Methotrexate has been shown to down regulate RA synovial inflammation with a 

decrease in the number of synovial macrophages probably due to deactivation of the 

endothelium with reduced expression of cytokines [148] and adhesion molecules [149]. 

A potential beneficial effect on cartilage has been suggested by the significant down 

modulation of synovial MMPs [149, 150] and our yet unpublished data suggest also an 

effect on bone metabolism through specific decrease of synovial RANKL expression. 

Only few studies are available in other diseases than RA, namely in psoriasis arthritis, 

where methotrexate decreased inflammatory synovial infiltrates and MMP expression 

without any effect on hypervascularity, a prominent feature of this type of arthritis 

[151, 152]. 

We have recently shown that MTX directly affects the RANKL/RANK/OPG system 

and inhibits osteoclast formation, a mechanism that might explain the bone sparing 

effect observed for MTX in clinical practice (Revu, S et al, Manuscript). 

 

1.9.1.2 Glucocorticoids 
 
Glucocorticoids (GCs) are potent anti-inflammatory agents that modulate apoptosis of 

immune cells. Most studies on mechanism of action (MAO) of GCs have addressed the 

effect of systemic administration. In this respect systemic GCs decrease macrophage 

number and tends to decrease the numbers of T cells, B cells and FLSs, probably 

through down regulation of the expression of synovial chemotactic factors [153] and 

adhesion molecules [154]. As a more specific synovial consequence of systemic GC, 

up regulation of the anti inflammatory S100A8 protein has been reported [155]. Real-
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time quantitative PCR (Q-PCR) identified synovial expression of IL-8 and MMP-1 as 

biomarkers correlating with clinical response in a placebo controlled study of systemic 

GCs [156]. GC activities can be divided in genomic effects mediated through cytosolic 

glucocorticoid receptors (GRs) that need hours to become evident at the cellular and 

tissue levels and non genomic effects mediated through membrane-bound GR or 

nonspecific physicochemical interaction with the cell membrane which might explain 

some of the immediate effects observed with GC administration in vivo [157]. There 

are several synthetic GCs, such as triamcinolone hexacetonide (for local intra-articular 

administration) and methylprednisolone (for both local and systemic administration), 

used in clinical practice today. Differences in the mechanisms of action of these two 

compounds have been previously reported [158]. 

 

Few reports on the MAO of local administrated GC are available. We have previously 

demonstrated that ia GCs decrease the number of synovial T cells, whereas the number 

of macrophages remained unchanged [159]. We could also show that overall synovial 

protein expression of TNF-α, IL-1β, extranuclear HMGB-1, VEGF, and ICAM-1 was 

reduced at follow up tissue sampling, while no significant effects were observed 

regarding vascularity following ia GCs. In contrast, expression of IL-1α, VEGF, and 

cytoplasmic HMGB-1 protein in vascular endothelial cells was not affected. GC 

therapy down regulated levels of messenger RNA (mRNA) encoding IL-1α and IL-1β, 

but not TNF or HMGB-1. Synovial cell infiltration and pro-inflammatory cytokine 

expression were affected in a multifaceted manner by ia GC treatment. Marked 

reduction of synovial T lymphocytes, TNF, IL-1β, extranuclear HMGB-1, ICAM-1, 

and VEGF occurred in association with beneficial clinical effects [160]. We further 

demonstrated that GCs could change the pro bone destructive synovial phenotype 

through specific down regulation of RANKL expression [159] and modulate the 

synovial prostaglandin pathway [161]. Our group has focused on the studies of 

mechanisms of action of ia GC, an adjuvant therapy largely used in different clinical 

settings for RA treatment. 
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1.9.2 Biologicals 

1.9.2.1 TNF antagonists 
 
TNF was discovered as a key modulator molecule in RA for more than two decades 

ago. In the search for understanding the pathogenesis of RA and cytokine biology TNF 

and interleukin-1 (IL-1) emerged as key factors in inflammation. Originally studies on 

animal models of RA showed good effect of TNF blockade [80-82]. A pilot study was 

performed in RA patients using a neutralizing chimeric monoclonal anti-TNF antibody, 

cA2, now called infliximab also gave very positive results [83]. There was strong 

symptomatic response, with relief of tiredness, lethargy and morning stiffness, 

reduction of swelling and tenderness. This study was followed by a larger multicenter 

study, a double-blind placebo-controlled trial with the same antibody, performed in 

four European centres, which showed the same good results [84]. Re-treatment of eight 

patients from the first open study was also successful [162]. Today there are five TNF-

antagonists available: Infliximab, a chimeric monoclonal antibody; Etanercept, a 

recombinant TNF receptor-Fc fusion protein; Adalimumab, a fully human monoclonal 

antibody; Certolizumab, a recombinant humanized antibody Fab’ fragment; 

Golimumab, a fully human monoclonal antibody. The mechanisms of action of TNF 

antagonists have been intensively studied but still there are many questions unsolved. A 

class effect of different TNF antagonists is the decrease in synovial cellularity observed 

by immunohistochemistry for cell surface markers as early as 48 hours and maintained 

up to 2 months after treatment initiation [163, 164]. The decrease concerns mainly 

intimal and sublining macrophages and is less pronounced for plasma and T cells, 

suggesting that TNF antagonists mainly target the macrophage synovial compartment. 

Further histological examination of arthroscopic obtained synovial biopsies provided 

even insights into the mechanisms behind this change in cellularity consisting in both 

decrease expression of adhesion molecules with consecutive reduction of cell 

recruitment [165] and increased apoptosis with consecutive increase in the clearance of 

resident cells [166]. Using similar methodology, the direct and selective modulation of 

the receptor activator of the NF-kB ligand (RANKL) pathway has been proposed to be 

responsible for the bone protective effect observed with these drugs in clinical studies 

[167], while MMP modulation is thought to be important for the cartilage protective 

effects. TNF antagonists also down regulate expression of synovial and serum cytokine 

levels [168-171]. Most of the studies on the effect of TNF antagonists have been 

conducted with Infliximab-treated patients with RA. 
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1.9.2.2 Rituximab 
 
Rituximab is a chimeric monoclonal antibody directed against CD20 antigen expressed 

by B cells. Treatment of chimeric mice with anti-CD20 mAb inhibited the production 

of IFN-gamma and IL-1β, indicating that APCs other than B cells could not substitute 

in maintaining T cell activation. Different studies have shown that treatment with 

rituximab causes a rapid and specific decrease in numbers of B cells in the synovium 

after 4 weeks. The early synovial tissue response varied between patients but in the 

peripheral blood there was a marked B cell depletion in nearly all patients [172, 173]. 

Prolonged follow-up showed good clinical response and a more pronounced decrease 

of B cells after 16 weeks but also a significant decrease in sublining macrophages, T 

cells and plasma cells supporting the concept that B cells have a big role in synovial 

inflammation [56, 174-176]. 

 

1.9.2.3 Abatacept 
 
Abatacept, a CTLA4-Ig fusion protein, attenuates T cell activation as it regulates the 

activation of T cells by inhibiting the CD80/86:CD28 co-stimulatory pathway that is 

required for the proper T cell activation. Abatacept had minimal effect on synovial cell 

composition but significantly down modulated IFNγ gene expression in the inflamed 

RA synovium [177]. 

 

1.9.2.4 Tocilizumab 
 
Tocilizumab is a humanized anti-interleukin-6 (IL-6) receptor monoclonal antibody, 

which binds to circulating soluble IL-6 receptor and membrane-expressed IL-6 

receptor, inhibiting IL-6 by binding to both forms of IL-6 receptor [178]. 
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2 AIMS OF THIS THESIS 

2.1 GENERAL AIM 

The overall aim of this project was to identify new molecular mechanisms responsible 
for inflammation in the rheumatoid joint and to understand how distinct anti rheumatic 
drugs interact with these mechanisms. 
 
2.2 SPECIFIC AIMS 

1. To develop and validate a standardized procedure to obtain synovial biopsies 

for further molecular studies (study I) 

2. To characterize synovial expression of LT α and TNF-α in therapy resistant RA 

and their modulation by anti TNF treatment (study II) 

1. To characterize synovial T cell apoptosis and its modulation by intra articular 

glucocorticoids in active RA (study III). 

3. To investigate a potential new role for LL-37 as a pro-inflammatory molecule 

in RA and to study its modulation by distinct anti rheumatic drugs (study IV) 
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3 RESULTS AND DISCUSSION 
The main focus of my research has been to look at the synovial membrane in RA 

patients. Arthroscopy with consecutive synovial immunohistology is a major research 

tool to dissect molecular mechanisms at the site of inflammation, without further in 

vitro manipulation, needed for fine characterization of both new and more classic anti 

rheumatic drugs. This will eventually contribute to a better use of different combination 

therapies in clinical practice and a better understanding of differences between 

therapies in terms of both effectiveness and adverse reactions. The ultimate goals of 

this type of research are identification of both new therapeutic targets and synovial 

biomarkers for predicting disease course and therapy response. 

 

3.1 PAPER I - EVALUATION OF ARTHROSCOPY AND MACROSCOPIC 
SCORING  

Safety of and yield of adequate synovial samples by arthroscopy 

We have established an arthroscopy research unit at our department since 1998 with 

408 procedures until 2005. We have validated the safety of the procedure and its 

usefulness as a research instrument. In our hands rheumatologic arthroscopy was a safe 

method with very few complications (two major and one minor complication; two 

haemarthrosis and one wound infection, respectively). Importantly, other major 

complications, such as septic arthritis or deep vein thrombosis, did not occur. In our 

study no arthroscopy procedure lasted more than one hour, and we kept the irrigation 

volume at a minimum, which might contribute to lowering the risk of infection as this 

has before been described as a risk factor for infection [40]. Despite the use of local 

anaesthesia, pain might still be a problem. In our study the physician responsible for the 

procedure notified occurrence of pain in each case, but it was not captured in a formal 

protocol. We had to prematurely terminate 12 procedures (3% of the cases) due to pain. 

In one patient the pain induced at the time of the arthroscopy lasted for two weeks. The 

large majority of the patients who were asked to do a second follow up arthroscopy 

consented to the procedure indicating that the experience of pain was low. 

 

Yield of biopsies adequate for histology was 83% over all, 94% for knee joints and 

34% for smaller joints. The low rate of adequate histology from small joints might be 

an obstacle that is possible to overcome with the right training and the use of ultrasound 

guidance [37] as other groups have reported better success rate [179]. In our case we 
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decided to restrict the studies mainly to knees, ankles and wrists if repeated biopsy 

sampling of the same joint was required. 

 

Macroscopic scoring 

There is an obvious need to correlate macroscopic findings and microscopic/molecular 

analysis of inflamed joints. Several different macroscopic scales have been used [41, 

42, 180] and have been found to correlate with molecular SM features [180, 181]. Only 

a few studies have been published on intra and inter-variation of different raters in 

macroscopic scoring. We created a method for macroscopic scoring using printed 

photographs of synovitis obtained at arthroscopy. Fifty images where scored by seven 

raters twice, regarding hypertrophy, vascularity and synovitis using a five-point scale 

(0-4). Intra-individual scoring variation was low; at the second scoring 99% of all 

scores were within one point of the first scores using a five-point scale. Further, a 

perfect match between first and second scoring sessions was reached in 70% of scores, 

and no single parameter had a substantially greater intrinsic variability. We also 

showed low inter-rater variation: 1036 of 1050 individual scores (98.7%) were within 

one point from the median score. The range was two points or less in 139 of 150 

(92.7%) image scores. 

Some of the images and scores from the first set were used to create a reliable and easy 

to use macroscopic synovial scoring system for arthroscopy (Macro-score). These 

written instructions were tested on the same set of 50 photographs by five control-raters 

with no previous experience of arthroscopy. Without any other instructions they scored 

well and the time to understand the score and perform the score was about 2- 2.5 hours. 

 

3.2 PAPER II - ETANERCEPT DECREASES SYNOVIAL EXPRESSION OF 
TUMOR NECROSIS FACTOR AND LYMPHOTOXIN-α IN 
RHEUMATOID ARTHRITIS 

TNF-α is a key modulator of chronic inflammation in RA synovium, but less is known 

about LT-α, another pro inflammatory member of the same cytokine family. Few 

previous reports have investigated the expression in the synovium. Etanercept is the 

only TNF antagonist acting as a soluble receptor and able not only to block TNF-α but 

also LT-α, at least in vitro. High levels of expression of synovial LT-α have therefore 

been proposed as a possible mechanism to explain why certain patients might respond 

to etanercept while being resistant to treatment with TNF antagonists that exclusively 

block TNF-α such as infliximab [182]. However this original speculation has been 
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dismissed in a subsequent study demonstrating no significant differences in synovial 

baseline expression of LT-α in responders and compared to non-responders to 

infliximab. Buch et al looked at a subgroup of patients (n=5) demonstrating total failure 

to respond to infliximab but measurable clinical response to etanercept. In these 

patients there was no significant difference in expression of LT-α before treatment with 

etanercept compared with infliximab good responders (ACR 50/70) [183]. We further 

confirm this by demonstrating similar baseline expression of synovial LT-α in both 

responders and non-responders to etanercept treatment. In another study from the same 

group they could see that baseline synovial TNF-α and IL-1 expression did not predict 

infliximab response but synovial TNF-α level expression was reduced in all patients 

after infliximab treatment except for the worst non-responders [184]. Earlier it has been 

shown that TNF-α synthesis was reduced 2 weeks after infliximab treatment and that 

high level of synovial TNF-α production prior to treatment may predict responsiveness 

to therapy [168]. Another group has also showed the same results in a larger study with 

143 patients. Here they could confirm that the baseline level of TNF-α expression was a 

significant predictor of response to infliximab [185]. In a study that was originally 

designed to examine the effectiveness and safety of etanercept in RA patients that had 

failed infliximab they could show good effect of etanercept but an exploratory analysis 

of serum LT-α and anti-infliximab antibodies was also performed. That analysis did not 

show any evidence of relationship between LT-α levels and response to etanercept 

[186]. 

 

Etanercept down regulates synovial LT-α and TNF-α expression in good clinical 

responders 

To our knowledge this is the first study to investigate the effect of etanercept on 

synovial cytokine expression in relation to clinical response to therapy in RA patients. 

We demonstrate that etanercept decreases synovial expression of both TNF-α and LT-α 

and that this effect is restricted to good clinical responders. Clinical response to 

etanercept could not be predicted by differential synovial expression of these cytokines 

at baseline. We demonstrated that LT-α was present in a majority of the investigated 

RA biopsies (n=46) with large variations between different patients. LT-α was detected 

in both lining and sublining layers in a majority of patients, with high inter individual 

variations in a similar manner with other synovial cytokines [44]. Infliximab treatment 

had no effect on synovial expression of LT-α. These findings taken together suggest the 

existence of a specific and TNF-independent regulation of synovial LT-α by etanercept. 
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Another possible explanation is that the low number (etanercept n=12, infliximab 

n=11) of the patients might prevent identification of meaningful changes specifically in 

the infliximab group. However, similar numbers of patients allowed detection of 

significant changes in the etanercept group and in previous studies on infliximab [44, 

166, 167]. We observed higher baseline levels of synovial TNF-α expression in 

responders as compared to non-responders to etanercept, but the difference was not 

statistically significant. No such difference was however observed for LT-α, suggesting 

that LT-α is rather a bystander than a major driving cytokine of the rheumatoid 

synovial inflammation. 

	 

3.3 PAPER III – MONOCYTES ARE ESSENTIAL FOR INHIBITION OF 
SYNOVIAL T CELL GLUCOCORTICOID-MEDIATED APOPTOSIS IN 
RHEUMATOID ARTHRITIS 

Defective synovial apoptosis is one important mechanism contributing to local cell 

accumulation and perpetuation of inflammation in RA. RA synovial T cells express a 

phenotype suggesting chronic immune activation but have been found resistant to 

apoptosis [187, 188]. GCs are known inducers of T cell apoptosis, mainly through the 

mitochondrial pathway [189]. Our group have previously shown a decrease in the 

number of synovial tissue T cells after treatment with ia glucocorticoids in a wide range 

of arthritis types and suggested that this finding might be the consequence of reduced 

cell trafficking to the joints [160]. However apoptosis induction by GCs might be an 

additional mechanism and the aim of this study was to investigate if this was true. 

 

All patients included in the study were clinical responders as evaluated by physician 

assessment during arthroscopies. The clinical response was paralleled by a significant 

decrease in the number of ST T cells as evaluated by CD3 staining, without changes in 

the number of ST macrophages, as evaluated by both CD68 and CD163 staining. 

We confirmed low levels of apoptosis in synovial tissues obtained from active arthritis 

that were unchanged following local administration of ia injection of GCs. The 

synovial apoptosis was evaluated using TUNEL technique and staining for active 

caspase-3 and confirmed with dual-immunofluorescence CD3/TUNEL. Similar, RA SF 

T cells were resistant to GC-induced apoptosis when cultured in vitro in the presence of 

monocytes. However upon SF isolation and separate culture of T cells, apoptosis 

induction was readily detected after exposure to GCs (dexamethasone, triamcinolone 

and methylprednisolone, had all the same effect). Transwell co-culture of monocytes 
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and T cells demonstrated that soluble factor(s) and not cellular contact are essential for 

T cell resistance to GC-mediated apoptosis. It has earlier been demonstrated that 

monocytes isolated from RA SF express IL-15 [190], a cytokine able to up regulate 

Bcl-2 expression [187] and to render activated T cells resistant to glucocorticoid-

mediated apoptosis [191]. This feature appears to be RA-specific as T cell apoptosis 

induction was observed in co-cultures of cells, obtained from psoriatic arthritis patients, 

in the presence of dexamethasone at similar doses. In conclusion, we demonstrate that 

monocytes rescue synovial T cells from glucocorticoid-induced apoptosis, a feature that 

seem to be specific for RA. 

 

3.4 PAPER IV – IDENTIFICATION OF THE ANTIMICROBIAL PEPTIDE LL-
37 AS A POTENTIAL MEDIATOR OF SYNOVIAL INFLAMMATION IN 
RHEUMATOID ARTHRITIS 

LL-37 is originally described as an anti microbial peptide belonging to the cathelicidin 

family with important functions in innate immune response but recently also implicated 

as a modulator of acquired immune responses [105, 192-194]. We have recently 

reported that rCRAMP, the rat homologue of human LL-37, plays a pathogenic role as 

a local and systemic mediator of inflammation in an animal model of arthritis. This 

suggests that LL-37 may contribute to RA pathogenesis [125]. To extend these findings 

and add new knowledge on the role of LL-37 in human RA we investigated the 

expression of LL-37 in synovial membrane and its relationship to local inflammation. 

We started with a screening of LL-37 expression performing immunohistochemistry on 

different tissues from a patient with RA where we looked at bone marrow, lymph node 

and synovial biopsies. We also looked at lung biopsies from patients with RA (Figure 

6) and synovia from other arthritis like psoriatic arthritis and we could in all of the 

different tissues identify LL-37 expression. 
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Figure 6 
Immunohistochemical analysis of LL-37 expression in lungtissue from a patient with RA. LL-37 
expression in cells with neutrophil morphology (A), negative control (B). Magnification x25  
 

LL-37 was expressed in a majority of the 37 pre-treatment RA synovial biopsies, both 

in the lining and sublining layers. The peptide was also detected by western blot in the 

inflamed SF, while only low levels of LL-37 were detected in the healthy synovium.  

Treatment with adalimumab and ia GCs but not MTX resulted in a significant down-

regulation of synovial neutrophils and LL-37 expression. Using serial and double-

fluorescent immunostaining we could confirm that neutrophils and to a lesser extent 

macrophages were the main cell-types expressing LL-37. We also found LL-37 

expression in the endothelium in some of the biopsies from healthy individuals and 

following intra-articular glucocorticoids, which is intriguing and its relevance for the 

synovial biology needs further investigation. 

 

Previous studies have demonstrated that a broad spectrum of AMPs are expressed to 

different extent in normal, inflamed and pyogenic synovial membranes at both RNA 

and protein level [195]. However, synovial distribution of LL-37 has only been 

investigated at the RNA level showing that LL-37 mRNA is present in the synovial 

membranes of RA and osteoarthritis but absent in healthy and pyogenic arthritis [195-

197]. In accordance with this we here demonstrate very low levels of LL-37 expression 

on peptide level in healthy synovium and with distinct up-regulation in active RA that 

could be reverted by anti-rheumatic treatment. Similar to our current study we have 

previously shown over-expression of the rat cathelicidin rCRAMP during pristane-

induced arthritis (PIA). The induced expression was most pronounced at the very early 

phase of disease but sustained until the late, chronic stage (figure 7). 
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Figure 7 
Immunohistochemical analysis of rCRAMP expression in hind paws of Dark Agouti rats at day 0 and 23 
after pristane injection. In naïve animals (A and B) rCRAMP is expressed in synoviocytes (especially in 
the synovial lining (B with magnification x40)), part of the chondrocytes and in osteoblast-like cells of 
bone marrow. During pristane-induced arthritis (PIA) (C and D), rCRAMP is also strongly expressed in 
inflammatory cells of the infiltrating pannus tissue. Magnification x40 (D) shows strongest expression in 
cells with neutrophil morphology (blue arrow) and intermediate expression in macrophage-like cells and 
multinucleated osteoclasts (red arrow). 
 

Low level of LL-37 expression in the normal synovium and septic arthritis with up- 

regulation in the context of sterile inflammation suggests that LL-37 mainly contributes 

as mediator of the local adaptive immune response in RA, and not acting as an 

antimicrobial defensive peptide.  

LL-37 is capable of attracting various cell-types such as phagocytic leukocytes, 

immature dendritic cells, and lymphocytes, together with its capacity to stimulate IL-8 

production and mast cell degranulation offers some insights in its potential pro-

inflammatory role in arthritis [107, 198]. Recently a novel mechanism has emerged by 

which LL-37 can contribute to the generation of autoimmune diseases. It has been 

shown that in psoriatic lesions excessive LL-37 accumulates with subsequent binding 

of self-DNA and -RNA, forming large aggregates. These aggregates are resistant to 
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degradation and retained in the endosomes of pDCs, thereby leading to detrimental 

production of type I IFNs [114, 123, 124, 199]. Furthermore, in the sera of patients with 

systemic lupus erythematosus (SLE), immune complexes of AMPs and DNA forming 

neutrophil extracellular traps (NETs) trigger activation of dendritic cells. NETs can 

serve as auto-antigens to trigger B cell activation, as demonstrated by antibodies 

against AMPs [122, 123, 200]. A vast majority of the cells expressing LL-37 were 

identified as neutrophils, which are part of innate immunity and crucial for the 

pathogenic defense. These cells also have an important role in the modulation of 

several immune functions. They are the first cells to arrive at sites of inflammation 

[201] and are able to release cytotoxic components such as ROS, nitrogen species, 

AMPs, proteases and other inflammatory mediators. Neutrophils are mainly found in 

the SF of RA patients but may also be detected in the ST [65, 202]. Recently, 

neutrophils have been implicated as important mediators of the synovial inflammation 

in early stages of the disease, in a similar way as we observed in the pristane-induced 

model of arthritis in rats [125, 203]. However in our current study neutrophils and LL-

37 were up regulated in both early and long-standing RA seemingly more dependent on 

inflammation than of disease duration. Treatment with adalimumab and intra-articular 

GCs decreased both the number of neutrophils and LL-37 expressing cells, while no 

such effect was observed for methotrexate. It is tempting to speculate that this 

difference is due to different stages of the disease, with adalimumab and glucocorticoid 

treated patients both having longstanding RA while methotrexate treated patients are 

newly diagnosed with RA. However no differences in the level of expression of either 

neutrophils or LL-37 were observed among the three treatment groups and both early 

and longstanding RA had higher levels of expression as compared to healthy 

individuals. As far as changes in LL-37 expression paralleled changes in the number of 

synovial neutrophils we believe that the most obvious explanation is a decrease in the 

local synovial recruitment of neutrophils induced by adalimumab and intra-articular 

glucocorticoids. Despite previous reports suggesting that methotrexate also influence 

neutrophils functions at least in vitro we were not able to see any significant down-

regulation of synovial neutrophils following methotrexate treatment in vivo despite 

good clinical results in a majority of the patients. One additional possibility is a direct 

effect of adalimumab and intra-articular glucocorticoids on LL-37 expressing cells and 

lack of such effect for methotrexate, as suggested by our pilot screening in vitro in the 

LL-37 expressing cell line. 
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4 CONCLUSION 

In this thesis we have demonstrated that:  

• In our hands rheumatologic arthroscopy is a safe method with very few 

complications. For knee joints it is a reliable method to retrieve representative 

tissue in clinical longitudinal studies. Our results are similar to other few 

centers performing rheumatologic arthroscopies and are part of a continuous 

effort to develop international standards in this area. (Paper I) 

• We have also created an easy to use macroscopic score, that needs to be 

validated against other methodologies, which we hope will be of value in 

further developing international standards in this area (Paper I) 

• Etanercept treatment modulates synovial expression of both TNF-α and LT-α 

in vivo, an additional mechanism that explains the clinical efficacy observed 

with this drug in clinical practice (Paper II) 

• Monocytes are essential in rescuing synovial T-cells from glucocorticoid-

induced apoptosis through a soluble factor mediated mechanism, a feature that 

is specific for RA-derived synovial T-cells. We propose that this might be 

overcome by the combination of locally administrated glucocorticoids with 

monocyte-targeted therapies rather than T-cell apoptosis-inducing therapies 

(Paper III) 

• LL-37 is expressed in the inflamed rheumatoid synovial membrane and is 

modulated by distinct anti-rheumatic agents (Paper IV) 
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5 GENERAL DISCUSSION AND FUTURE 
PERSPECTIVES 

Synovial arthroscopy is a useful tool in investigating the site of active inflammation 

in chronic joint diseases. We have contributed with the experience of our centre to the 

available data in the field. It is important to note that in this context there are few 

Rheumatology centres around Europe currently performing arthrosocopies and 

therefore thorough validation and standardization of different procedures is highly 

needed. We have in our first paper described in detail our experience in performing 

arthroscopies and consider this an important part of the current ongoing collaboration 

between centres to achieve consensus and to eventually develop common protocols. 

This is an important task for the future as the development of new anti rheumatic 

drugs as well as the need for identification of new therapeutic and diagnostic 

biomarkers urge access to large samples of biopsy material that should be collected in 

similar ways in order to allow a meaningful analysis. One problem with clinical 

invasive studies is usually the small number of patients possible to collect, as was the 

case also in our hands. Because of this we have chosen to make use of internal 

controls where patients constitute their own controls. 

 

My thesis has also provided insight in how one should use arthroscopies and synovial 

biopsies in order to not only describe clinically the effect of various anti rheumatic 

drugs but also to map new and some time unexpected mechanisms of action of these 

drugs. The glucocorticoids failure to induce apoptosis was somewhat surprising as 

dexamethasone is used as a prototype for apoptosis induction in vitro in a large array 

of cellular systems. This added new knowledge to our current understanding on how 

lymphocytes gain important survival advantages just by interaction with other cellular 

components of the synovial inflamed joint. Also differences in results when different 

cell systems are used (biopsies versus mixed cell cultures versus single type cell 

cultures) further stress the importance of having access to systems as similar as 

possible with the in vivo situations. In this respect synovial biopsies offer one of the 

closest model to the in vivo situation. Further work is needed to map the factor(s) 

responsible for the apoptosis resistant phenotype of the synovial lymphocytes. If 

successful, such work would potentially allow identification of factors that might be 

new targets for therapeutic modulation. 
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Using same methodology as above we characterized in detail synovial expression of 

novel potentially inflammatory mediators, namely LT-α and LL-37. While some 

isolated reports on LT-α synovial distribution were published before, our study 

provides a more thorough investigation in a large number of biopsies. Despite some 

distinct modulation by etanercept, in accordance with what we were expected from in 

vitro experiments, we conclude that most probably LT-α is not a major denominator 

of the synovial inflammation in RA but merely a bystander molecule. Despite this 

being apparently a negative result it will still help us to better understand how drugs 

that have a certain cytokine inhibitory profile when studied in vitro can have a 

different clinical efficacy and safety profile in vivo. Analysing complex structures 

such as biopsies in parallel with more simplified cellular systems offers better 

possibilities in both designing new drugs and understanding the mechanisms of action 

of “classic” drugs. 

 

Recent reports on the potential relevance of the anti microbial peptide LL-37 as a 

modulator of inflammation and adaptive immunity prompted us to investigate its role 

in arthritis. Despite synovial membrane being a privileged area in terms of 

susceptibility to infections, we did not find a high expression of LL-37 in healthy 

synovium. It might be so that AMPs others than LL-37 are expressed in the joints. 

However the clear up regulation of LL-37 in context of inflammation and its specific 

down regulation by some but not all anti rheumatic therapies points to a potential 

pathogenic role for this molecule in the context of synovial inflammation. Future 

research in this area is needed. Recently it has been shown that modification of LL-37 

by the process of citrullination confers higher chemotactic activity against 

mononuclear leukocytes as compared to native LL-37, a process that might play a 

role in chronic obstructive pulmonary disorders. Preliminary data from our laboratory 

shows extensive expression of LL-37 in the lungs of patients with RA. If this is 

citrullinated or not, pro inflammatory or not, important for disease pathogenesis or 

not, remains to be demonstrated and will be a focus of future research. 

 

The studies presented in my thesis have contributed to the knowledge on how 

synovial arthroscopy can be used to study mechanisms of action of anti rheumatic 

drugs and to identify new synovial biomarkers. However much more work is needed 

in the future in order to translate this knowledge in clinical practice and to use it for 

the benefit of the patients. 
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