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To My Family 



 

ABSTRACT 
Genetic predisposition is a significant and fundamental determinant of susceptibility to 
rheumatoid arthritis (RA), a complex autoimmune disease with a painful and disabling 
condition. The vast majority of genetic studies in RA have been centered on populations of 
European descent with very few studies on East Asian populations. 

In this thesis, we aimed to determine the genetic predisposition to RA in the Malaysian 
population residing in the South East Asian region. More specifically, we addressed the 
question of how far the identified RA risk loci in Europeans and East Asians can be translated 
across different populations. We undertook this investigation using the Malaysian 
Epidemiological Investigation of Rheumatoid Arthritis (MyEIRA) case control study involving 
mainly the early RA cases, which comprised of Malay, Chinese and Indian ethnic groups. We 
showed that different HLA-DRB1 shared epitope (SE) alleles, which are common in Asian (i.e. 
DRB1*0405), but not in European populations conferred significantly increased risk of 
developing anti-citrullinated protein antibody (ACPA)-positive, but not ACPA-negative RA. 
With the preponderance of the DRB1*12 alleles in our study population, we demonstrated a 
novel protective effect of DRB1*1202 associated with ACPA-positive RA in Malay and 
Chinese populations.  

The combination between genetic and environment factors is widely believed to be the 
major trigger of RA development. Our analysis of gene-environment interaction between 
smoking and HLA-DRB1 shared epitope (SE) alleles revealed a strong association with ACPA-
positive RA and this interaction seem to apply between smoking and DRB1*0405 allele, 
which is common in Asian populations. 

Polymorphisms in the peptidylarginine deiminase type IV (PADI4) gene have been 
repeatedly shown to associate with RA susceptibility in individuals of Asian descent, but 
weak or no association was observed in the European populations, despite of comparable 
risk allele frequency between these populations. We scrutinized the entire PADI locus 
including PADI1, PADI2, PADI3, PADI4 and PADI6 genes with a set of 320 single nucleotide 
polymorphisms (SNPs) for association with RA. Our findings revealed an association 
between PADI4 in the diverse populations from Malaysia. In addition, we also suggest a 
novel association in a PADI2 gene.  

Approximately 40% of RA patients are diagnosed as having ACPA-negative disease. As yet, 
few validated risk alleles were associated exclusively with ACPA-negative RA. We 
investigated the association between the previously reported ACPA-negative-associated 
dendritic cell immunoreceptor (DCIR) polymorphisms and RA in four independent Asian 
populations from China and Malaysia. Our results provide evidence for an association 
between the DCIR variant and RA in non-European populations. We also confirmed the 
genetic effect of DCIR polymorphisms on RA risk particularly in ACPA-negative RA.  

Taken together, this thesis provides evidence that no single population is sufficient for fully 
uncovering the risk variants underlying RA in all populations. Therefore, studies in diverse 
population could provide a better understanding of genetic architecture of RA especially in 
the RA susceptibility risk loci. 
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1. INTRODUCTION 
 
Have you ever thought about this: “we are different but basically the same” or “we are the 
same but different”? 

Here, I will give a brief introduction on the genetics overview for the studied disease, 
rheumatoid arthritis (RA), in two heterogeneous populations: the Caucasians and the Asians. 
I will discuss the shared genetic risk loci as well as the population-specific risk loci between 
these populations and why it is important to perform disease association research in this 
field. A short overview of the genetic tools used in studies of human complex diseases will 
also be included. 

1.1 Immune system, autoimmunity and autoimmune diseases 
 
In order to understand autoimmune diseases such as RA, it is helpful to know how the 
immune system normally works in our body. The immune system is the body’s means of 
protection against ‘foreign’ substances such as those carried by bacteria, viruses, fungi and 
parasites. It has the ability to recognize cells and tissues that are its own (self) as distinct 
from those that are not (non-self). The immune system generally protects rather than attack 
its own body tissues.  The immune system can be categorized into innate immune system 
(non-specific) and adaptive immune system (specific). Furthermore, the immune system is 
built on a network of special cells, tissues and organs that work together to defend our body 
against foreign invaders. 

Our defense mechanism begins with the physical barriers such as skin and epithelial lining. If 
these barriers are breached by the invaders known as pathogens, the macrophages (a type 
of phagocytic cells) will take the lead to control or destroy the pathogens. The macrophages 
express pattern recognition receptors (PRRs) such as the toll like receptors (TLRs) and C-type 
lectin-like receptor (CLRs), which recognize the conserved structures on the pathogens. They 
become activated and subsequently engulf and destroy the invading pathogens. 
Alternatively, macrophages can serve as antigen-presenting cells (APC) to process and 
present the pathogens during activation of the second line of defense, the adaptive immune 
system. 

The adaptive immunity refers to the antigen-specific defense mechanisms characterized by 
T cell specific for antigen derived from the invading pathogens, and by B cells producing 
antibodies that bind to these antigens. During adaptive immune response, antigens are 
transported to lymphoid organs where they are recognized by naïve B lymphocytes and T 
lymphocytes. These activated B and T lymphocytes will then proliferate and differentiate 
into effector cells and work together to eliminate the invading pathogens. 

Adaptive immunity relies on the ability of immune cells to distinguish between the host cells 
(self) and unwanted invaders (non-self). Each cell carries protein markers on its surface 
defined as major histocompatibility complexes (MHC). In normal or healthy conditions, our 
immune cells will not attack any other cells with markers identifying it as ‘self’. However, the 
immune system sometimes goes awry and cannot distinguish between self-cells and non-
self-cells. As a consequence of this, the immune cells attack the body itself. The misdirected 
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immune responses thus are designated as autoimmunity. Autoimmunity occurs through the 
presence of autoantibodies or T lymphocytes reactive with host antigens. Failure to 
maintain the control mechanisms of autoimmunity will lead to illness referred as 
autoimmune diseases. 

Autoimmune diseases are phenotypically heterogeneous. Some are organ specific such as 
type 1 diabetes and multiple sclerosis, among others, and non-organ specific (or systemic) 
such as RA and systemic lupus erythematosus (SLE). Autoimmune diseases are one of the 
commonest human complex diseases triggered by the combination of genetic and 
environmental factors.   
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1.2 Rheumatoid arthritis 
 
Rheumatoid arthritis (RA) is a complex autoimmune disease mainly involves the peripheral 
joints of hands and feet, which generally lead to  a painful and disabling condition that 
affects one in every hundred people with an estimated heritability of approximately 60% [2] 
(heritability is the proportion of total variation in the population that can be attributed to 
variation in genetic factor). RA is more common among women and in older age groups.  

The disease generally presents in a symmetrical (both side of the body) pattern, most often 
involving the hand joints. Therefore, joint destruction becomes the hallmark of RA. RA can 
affect the whole body, including several organs, and so is described as systemic disease.  
Progressive and irreversible joint damage is caused by the immune system attacking its own 
body tissues, particularly those lining the joints.  

In RA, the immune system initially attacks the synovium (a type of tissue that produces fluid 
to lubricate and nourish the joint tissues). White blood cells move from the blood stream 
and invade the synovium and small blood vessels infiltrate the area. Consequently, the 
synovial membrane becomes thick and inflamed, resulting in unwanted tissue growth. The 
inflammation also involves the release of various biochemical substances that cause pain, 
swelling and joint damage. These substances can also damage the surrounding cartilage, 
bone, tendons and ligaments. Also when they enter the bloodstream, these substances can 
cause fatigue and a general feeling of being unwell. Gradually, the joint loses its shape and 
alignment and undergoes changes that are mostly irreversible. 

For RA, almost all the evidence for autoimmune conditions is limited to the seropositive 
(rheumatoid factor (RF) and/or anti-citrullinated protein antibodies (ACPA) positive) subset 
of disease, whereas it is still unclear how much autoimmunity is associated with the 
seronegative RA.  The combination between genetic and environmental factors is widely 
believed to be the major trigger of RA development. 

Epidemiological studies revealed that RA is relatively common in almost all population of the 
world, albeit somewhat higher prevalence has been reported in northern Europe and north 
America (0.5-1.1%) as compared to Asia [3, 4]. In some geographical areas, the prevalence 
and incidence of RA varies across ethnic groups, with high RA prevalence among Pima 
Indians [5] and low in some areas of rural Africa [6]. 

The American Rheumatism Association developed classification criteria for RA with 91-94% 
sensitivity and 89% specificity (Table 1) [7]. However, the criteria are useful for established 
RA, but not sufficiently reliable when applied to patients with early arthritis. Thus the 2010 
ACR/EULAR criteria (Table 2) were established to enable for early diagnosis and treatment 
of RA which often can improve the patient’s quality of life [8]. 
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Table 1. The conventional ACR 1987 criteria for RA 

ACR 1987 Classification Criteria for RA 

     1. Morning stiffness (at least 1 hour) 

     2. Arthritis of three or more joint areas 

     3. Arthritis of hand joints (≥ 1 swollen joints) 

     4. Symmetrical arthritis 

     5. Rheumatoid nodules 

     6. Serum rheumatoid factor 

     7. Radiographic changes (erosions) 

Four of these seven criteria must be present. Criteria 1-4 must have present for at least 6 weeks. 

 

Table 2. The new 2010 ACR/EULAR classification criteria for RA 

2010 ACR/EULAR Classification Criteriafor RA 

1. Joint involvement (0-5) 

• 1 large joint (0) 

• 2-10 large joints  (1) 

• 1-3 small joints (large joints not counted) (2) 

• 4-10 small joints (large joints not counted) (3) 

• >10 joints (at least one small joint) (5) 

2. Serology (0-3) 

• Negative RF AND negative ACPA (0) 

• Low positive RF OR low positive ACPA (2) 

• High positive RF OR high positive ACPA (3) 

3. Symptom duration (0-1) 

• <6 weeks (0) 

• ≥6 weeks (1) 

4. Acute-phase reactants (0-1) 

• Normal CRP AND normal ESR (0) 

• Abnormal CRP OR abnormal ESR (1) 

Points are shown in paratheses. Cutpoint for rheumatoid arthritis 6 points or more. Patients can also be 
classified as having rheumatoid arthritis if (a) typical erosions; (b) long-standing disease previously sastifying the 
classification criteria. 
 

 

 

ACR=American College of Rheumatology; EULAR=European League Against Rheumatism; RF=rheumatoid factor; ACPA=anti-
citrullinated antigens; CRP=C-reactive protein; ESR=erythrocyte sedimentation rate. ACR 1987 criteria were designed to 
classify established RA. The 2010 ACR/EULAR criteria are intended to classify both early and established disease. 
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2.   GENETICS AND RHEUMATOID ARTHRITIS 
 

Genetic predisposition is a significant and fundamental determinant of susceptibility to 
RA. A genetic predisposition means that an individual has a genetic susceptibility to 
developing a certain disease, but this does not mean that an individual inheriting a 
genetic susceptibility will definitely develop the disease. Extensive research has been 
carried out for the identification of genetic regions tagged by genetic variations referred 
to as single nucleotide polymorphisms (SNP). Combined data from recently conducted 
genome-wide scan (GWAS) meta-analyses revealed more than 45 confirmed and 
validated genetic regions associated with RA as at September 2012 (Figure 1 and Table 
3) [9-13]. Many themes have emerged during the gene-hunting for RA risk loci: 

• The possibility of genetically distinct subsets of RA, 

• The existence of ethnic heterogeneity, 

• The evidence of shared risk loci across multiple autoimmune diseases, also 
known as pleiotropy, 

• The most popularly debated concept of ‘missing heritability’ 
 
In this thesis, I have restricted my focus on the first two themes which were related to my 
current research. 
 

2.1 Genetics and subsets of rheumatoid arthritis 
 
There is overwhelming evidence that RA is not a single disease entity [14-17], but rather can 
be sub-classified on the basis of its serologic factors, such as rheumatoid factor (RF) and 
anti-citrullinated protein antibodies (ACPA). RF is an antibody against the Fc portion of IgG, 
while ACPA are autoantibodies against citrullinated protein that are formed by post 
translational conversion of arginine to citrulline by peptidylarginine deiminase (PADI) [18]. 
RF is, however not unique for RA patients as it can also be found in the elderly and certain 
infectious diseases. Conversely, ACPA are highly specific for RA and has been widely 
accepted as the hallmark of RA. Furthermore, ACPA-positive patient seem to have a more 
aggressive clinical course and more destructive disease [19-22].  

The contribution of genetic risk factors for RA development varies among these subsets of 
RA. However, all the large-scale genetic studies to date have been biased toward ACPA-
positive RA patients and/or anti-CCP positive patients in particular [23-26]. As a result, more 
genetic risk alleles have been reported in ACPA-positive RA as compared to ACPA-negative 
RA, both in human leukocyte antigen (HLA) and non-HLA genes regions. Despite this bias, it 
is clear that many validated RA risk alleles are more strongly, if not exclusively, associated 
with ACPA-positive RA [14], but not ACPA-negative RA [27-30]. The two best examples for 
association with ACPA-positive RA are the HLA-DRB1 shared epitope risk alleles and PTPN22 
gene [31]. 
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 As yet, less validated risk alleles were associated exclusively with ACPA-negative RA. 
Although HLA-DRB1*03 has been reported to be associated with ACPA-negative disease [32, 
33], not all studies have confirmed this association [34, 35]. Intriguingly, the Swedish 
researchers have identified the genetic modulators of ACPA-positivity in which HLA-
DRB1*13 has dual role: it protects against ACPA-positive RA but in combination with 
DRB1*03, it inversely increases the risk of ACPA-negative disease [34]. Recently, our group 
compared the GWAS data for both RA subsets as characterized by ACPA status [16]. Our 
findings revealed that ACPA-positive and ACPA-negative RA display significant risk allele 
frequency differences which are mainly confined to the HLA region. Only one SNP close to 
RPS12P4 locus in chromosome 2 reached a p value of 2 x 10-6 and the locus can then be 
considered as a tentative candidate locus for ACPA-negative RA. 

Meanwhile, it should be noted that the heritability of RA among twin pairs for ACPA-positive 
RA and ACPA-negative RA was found to be 68% and 66%, respectively [36]. However, the 
presence of SE explained 18% of the genetic variance in ACPA-positive individuals but it 
contributes only 2.4% of the variance in the ACPA-negative subset. The authors concluded 
that although genetic predisposition plays a significant role in susceptibility to both types of 
RA, the development of ACPA-negative disease depends on as yet unidentified non-shared 
epitope genetic factors. Thus, deciphering the genetic factors and pathogenesis of ACPA-
negative RA remain a major challenge for genetic studies of RA. 

In this chapter, I will focus on two examples of the genes: one is associated with ACPA-
positive RA, namely the HLA-DRB1 gene, particular the SE risk alleles, and another 
associated with ACPA-negative RA, namely the DCIR gene, which has been studied in this 
thesis.
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Figure 1. Chromosomal location for the validated RA susceptibility gene/gene loci in European and         
               Asian populations 
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Table 3. List of validated RA susceptibility genes/gene loci in European and Asian 
populations 

Chr Gene(s) SNP ID Chromosomal location 
RA association 

Reference 
EUR JP KOR CHI 

1 PTPN22 rs2476601 1p13 YES # # #  [10-13] 

1 CD2, CD58 rs11586238 1p13 YES NO   NO [10, 12, 
13] 

1 MMEL1/TNFRSF14 rs3890745 1p36 YES YES NO YES [10-13] 

1 PADI4 rs2240340 1p36 NO YES YES YES [10-13] 

1 FRCL3 rs3761959 1q22 YES YES     [12, 13] 

1 FCGR2A rs12746613 1q23 YES #     [12, 13] 

1 PTPRC rs10919563 1q31 YES NO     [12, 13] 

1 GPR137B rs7537965 1q42-q43     YES    [11] 

2 SPRED2 rs934734 2p14 YES YES     [12, 13] 

2 B3GNT2 rs11900673 2p15 NO YES     [12, 13] 

2 REL rs13031237 2p16 YES NO   NO [10, 12, 
13] 

2 AFF3 rs10865035, rs11676922 2q11 YES YES YES   [11-13] 

2 STAT4 rs7574865 2q32 YES YES YES YES [10-13] 

2 CD28 rs1980422 2q33 YES NO   NO [10, 12, 
13] 

2 CTLA4 rs3087243 2q33 YES YES   YES [10, 12, 
13] 

3 PXK rs13315591 3p14 YES #     [12, 13] 

3 ARHGEF3 rs2062583 3p14.3     YES    [11] 

4 RBPJ rs874040 4p15 YES #     [12, 13] 

4 ANXA3 rs2867461 4q21 NO YES     [12, 13] 

4 1L2, IL21 rs6822844 4q27 YES #   NO [10, 12, 
13] 

5 ANKRD55, IL6ST rs6859212 5q11 YES NO     [12, 13] 

5 C5orf30 rs26232 5q21 YES NO     [12, 13] 

5 CSF2 rs657075 5q31 NO YES     [12, 13] 

5 LCP2 rs4867947 5q35.1     YES    [11] 

6 NFKBIE rs2233434 6p21.1 YES YES      [12, 13] 

6 DRB1 rs6910071  
rs2157337 

6p21.3 YES YES YES YES [10-13] 

6 CD83 rs12529514 6p23   YES      [12] 

6 PRDM1 rs548234 6q21 YES NO YES NO [10-13] 

6 TNFAIP3 rs10499194 
rs6920220 
rs5029937 

6q23 YES YES YES   [11-13] 

6 TAGAP rs394581 6q25 YES YES YES YES [11-13] 

6 CCR6 rs3093023 6q27 YES YES     [12, 13] 
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Table 3. List of validated RA susceptibility genes/gene loci in European and Asian 
populations (continue) 

Chr Gene(s) SNP ID Chromosomal 
location 

RA association 
References 

EUR JP KOR CHI 
7 CDK6 rs10225965 

rs2282983, 
rs102782993 

7q21-q22 YES     YES  [10] 

7 IRF5 rs10488631 7q32 YES YES     [12, 13] 

8 BLK rs2736340 8p23 YES YES     [12, 13] 

9 CCL21 rs2812378 
rs951005 

9p13 YES NO   NO [10, 12, 13] 

9 TRAF1,C5 rs3761847 9q33 YES YES   YES [10, 12, 13] 

10 IL2RA rs2104286 
rs706778 

10p15 YES NO   NO [10, 12, 13] 

10 PRKCQ rs4750316 10p15 YES NO   NO [10, 12, 13] 

10 ARID5B rs10821944 10q21 NO YES     [12, 13] 

11 TRAF6 rs540386 11p12 YES NO     [12, 13] 

11 PDE2A-ARAP1 rs3781913 11q13 NO YES     [12, 13] 

11 DDX6 rs10892279 11q23.3 YES YES     [12, 13] 

11 FLI/ETS1 rs4936059 11q24 YES YES YES   [11-13] 

12 KIF5A, PIP4K2C rs1678542 12q13 YES NO   YES [10, 12, 13] 

12 TRHDE rs12831974 12q15-q21     YES    [11] 

14 PLD4 rs2841277 14q32 NO YES     [12, 13] 

18 PTPN2 rs2847297 18p11 YES YES YES   [11-13] 

20 CD40 rs4810485 20q13 YES YES   NO [10, 12, 13] 

21 AIRE rs2075876 21q22.3 NO YES     [12, 13] 

22 IL2RB rs3218253 22q12 YES NO   NO [10, 12, 13] 

22 GGA1/LGALS2 rs4547623 22q13.31, 
22q13.1 

    YES    [11] 

Chr=chromosome; EUR = European; JP= Japanase; KOR= Korean, CHI= Han Chinese; #: monomorphic 
risk variant 
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2.1.1 MHC, HLA-DRB1 gene, shared epitope hypothesis and rheumatoid   
arthritis 

 

The major histocompatibility complex (MHC) has been consistently associated with RA 
across different populations. The MHC genes located on chromosome 6p21.3, extends over 
3.6 Mb [1]. The MHC is a highly gene dense region containing ∼200 defined genes, mainly 
involved in immune function [37]. The MHC region is divided into three main regions: MHC 
class I, class II and class III (Figure 2).  

The class I region, at the telomeric end of the MHC, contains the human leukocyte antigen 
(HLA) class I genes: HLA-A, HLA-B and HLA-C and encodes the HLA class I molecules. These 
molecules are expressed on all nucleated cells. They present antigens to CD8+ T cells and are 
involved in the natural killer (NK) cell mediate immune response. 

 In the HLA class II region are the HLA-DR, HLA-DP, and HLA-DQ loci; encoding the α- and β- 
chains of the various HLA class II molecules. These HLA class II molecules are expressed as 
heterodimers on the cell surface of antigen presenting cells (APC), such as dendritic cells, 
macrophages and B lymphocytes.  They present antigenic peptides to CD4+ T cells. 

On the chromosome, the class III region is lies between the class I and class II regions, 
encodes proteins with immune-response-related functions (other than direct antigen 
presentation) such as complement, etc.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Location and organization of the HLA complex on chromosome 6. The complex is 
conventionally divided into three regions: I, II, and III. Each region contains numerous loci (genes), only some 
of which are shown. Of the class I and II genes, only the expressed genes are depicted. Class III genes are not 
related to class I and class II genes structurally or functionally (Adapted from Klien J et al, [1], copyright 
Massachusetts Medical Society). 
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It has been estimated that HLA genes account for 30% to 50% of overall genetic 
susceptibility to RA [38-41]. Within the HLA locus, the strongest association is linked to the 
HLA-DRB1 gene, which encodes the β chain of the class II molecule referred to as HLA-DR. 
The first association between RA and HLA-Dw4 was reported in 1976 by Peter Stastny [42]. 
A decade later, Gregersen et al. advanced the hypothesis that multiple RA risk alleles within 
the HLA-DRB1 gene shared a conserved amino acid sequence at position 70 to 74 
(70QRRAA74, 70RRRAA74 or 70QKRAA74) in the third hypervariable region of DR beta 1 chain, 
designated as ‘shared epitope’ (SE) and the risk alleles are termed as SE alleles [43].  

The mechanism underlying the SE and RA association is insufficiently understood. The 
common hypotheses attribute it to the presentation of arthritogenic antigens [44] or 
alteration in peptide affinity or T cell repertoire selection [45, 46], which are promoting 
autoreactive adaptive immune responses. Other hypothetical explanations for the 
association between RA and SE include molecular mimicry of the SE by microbial proteins, 
increased T-cells senescence induced by SE-containing HLA molecules, and potential 
proinflammatory signaling function that is unrelated to the role of SE in antigen recognition 
[47, 48]. 

The RA-associated HLA-DRB1 SE risk alleles for RA are believed to differ between ethnic 
groups. For example HLA-DRB1*0401 and HLA-DRB1*0404 are the commonest alleles in RA 
patients of European ancestry [49-51], whereas DRB1*0405 is prevalent in Asian 
populations [52-56]. These observations are largely due to differential distribution of HLA-
DRB1 alleles among ethnicities. Interestingly, a remarkable high frequency of HLA-
DRB1*0901 allele (7-15%) was also observed in individuals of Asian ancestry, but is less 
common in Europeans. Although the HLA-DRB1*0901 allele does not belong to the SE-
containing DRB1 risk alleles, its association with RA susceptibility was evident in Asian 
populations [56-58]. 

ACPA has been widely believed to be clinically important [59] and several studies 
investigating the relationship between ACPA and HLA-DRB1 have revealed that the 
association between DRB1 SE alleles and RA was restricted to ACPA-positive RA, but not 
ACPA-negative RA, both in European and Asian populations [58-62].  

Although HLA-DRB1 alleles, particularly the SE risk alleles explain much of the risk due to the 
MHC region, there is growing evidence that additional non-SE risk loci within the MHC were 
associated with RA susceptibility [63-67]. Recently, the dense SNP genotyping across the 
MHC provided continued support for additional alleles i.e. HLA-DPB1 gene and the European 
ancestral haplotype of A1-B8-DR3 [63, 68-71].  Additionally,  a very recent GWAS performed 
on a large combined samples of European ancestry provided supporting evidence that three 
amino acid position (11, 71 and 74) and additional amino acid positions in HLA-B (at position 
9) and HLA-DP (at position 9) conferred risk to ACPA-positive RA. These amino acids were 
found to be located in the peptide-binding grooves in HLA molecules [72].  Another recent 
report from Japanese population also suggested an independent association between RA 
and HLA loci other than the HLA-DRB1 alleles (HLA-DP, HLA-B and HLA-C) [73]. 

As yet, there is compelling evidence from recent genetic discoveries suggesting the SE 
hypothesis alone is insufficient to explain the contribution of the HLA genes to RA 
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susceptibility.  Furthermore, genetic variants underlying RA are likely to be multiple, each 
with a relatively small effect, but act as in a concert (i.e. gene-gene interactions) or with 
environmental influence (i.e. gene-environment interactions) leading to clinical disease. 

Considerable efforts have been undertaken to unravel the genetic contribution to RA and 
these efforts have led to the discovery of an extensive list of RA risk loci outside the MHC 
region such as the PTPN22 gene, the PADI4 and other loci, both in patients of European and 
Asian ancestries. 

 

2.1.2 The DCIR gene and rheumatoid arthritis 
 
Overall, approximately 40% of RA patients are diagnosed as having ACPA-negative disease 
[74]. They hold an important clue to the RA mechanism and are as important as the ACPA-
positive RA. Little is known about the genetic susceptibility to ACPA-negative RA [16].  
Recent studies of oil-induced model of inflammatory arthritis in rats in our group provided 
supportive evidence of an association of resistance to disease with variant in antigen-
presenting lectin-like receptor gene complex (APLEC), including the dendritic cell 
immunoreceptor (DCIR) [28, 75-77].  

The DCIR gene, located on human chromosome 12p13 is characterized by the carbohydrate 
recognition domain (CRD) and signaling through an immunoreceptor tyrosine-based 
inhibitory (ITIM) [78].  Four DCIR SNP markers were initially found to be significantly 
associated with ACPA-negative RA with modest effects (estimated ORs 1.21 to 1.27), but not 
ACPA-positive RA in a Swedish population [28]. Additional validation is therefore warranted 
in other populations as to unravel the nature of variation that potentially underlies 
susceptibility to RA, particularly in the ACPA-negative subgroup. 

 

2.2 Ethnic heterogeneity in rheumatoid arthritis risk loci 
 
Over the past several years, there has been an explosion of new data on genetic risk factors 
for RA. This progress has resulted from the expansion of case-control samples collections 
and the development of commercial genotyping platforms such as the SNP-based genome 
wide scan or GWAS, which allow for production of hundreds of millions of genotypes in a 
rapid and cost-effective manner [9-13, 16, 23-25, 43, 79-96]. It is important to highlight that 
almost all the GWAS experiments and many other large-scale genetic studies have been 
conducted among individuals with self-reporting as ‘white’ European ancestry [23, 79, 91, 
95, 97]. Therefore, the majority of literature has been centered on the risk-associated alleles 
among the patients of European ancestry. Very few large studies have been performed 
involving individuals of Asian ancestry (largely limited to Japanese population) [9, 12, 80, 81, 
85], which lead to identification of the PADI4 and CD244 as risk factors for RA in this 
population. 

 Interestingly, several genes including HLA-DRB1, STAT4, TNFAIP3, TAGAP, CTLA4 and 
NKFBIE [12, 13] have been validated as shared susceptibility genes among populations of 
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European and Asian ancestries, while other RA susceptible genes seemed to be limited to 
specific ethnic populations as presented in Figure 1 and Table 2.  

 

2.2.1 Rheumatoid arthritis genetics in Europeans 
 
The majority of RA genetic studies undertaken by far have been focused on populations of 
European ancestry, showing remarkable consistency in their findings. Many novel RA risk 
loci have been detected recently through large-scale meta-analysis studies (a statistical 
analysis tool that can be used by combining data from several studies that have been 
conducted on similar research aim/hypothesis). The major goal of such meta-analysis is to 
increase the power of a study and ultimately identify novel association of modest effect. An 
example was demonstrated in the recent meta-analyses performed by Stahl and colleagues 
which had included a total of 12,307 seropositive (RF or ACPA) RA patients and 28,975 
European controls recruited from four different geographical regions: Sweden, North 
America, UK and The Netherlands. The study successfully confirmed 24 previously 
established RA risk loci and additionally introduced seven novel RA risk loci (CCR6, IL6ST, 
RF5, PXK, RBPJ, and SPRED2) to the existing RA risk loci list. As a result, the number of 
robustly associated RA risk loci has increased to 34 in the European populations [13].  

 

2.2.2 Rheumatoid arthritis genetics in Asians 
 
Multi-ancestry studies on validated RA susceptibility loci have proven the presence of both 
population-specific and shared genetic components of RA [15, 98]. Unlike the European 
studies, most of the Asian studies were conducted independently in individual population 
such as Japanese, Korean and Han Chinese.  These three ethnic groups are by far considered 
as the major ethnic groups from East Asia region.  

Most of the RA risk loci identified in Asian populations were based on the findings obtained 
from the Japanese studies. Very recently, Okada and colleagues reported a GWAS meta-
analysis performed in Japanese population including 9,351 RA patients (approximately 80% 
of individuals were with ACPA-positive RA) and 38,575 controls from five different centers in 
Japan. The researchers identified nine loci newly associated with RA at genome-wide 
significance level (P<5.0 x 10-8).These gene loci included B3GNT2, ANXA3, CSF2, CD83, 
NKFBIE, ARID5B, PDE2A-ARAP1, PLD4 and PTN2. In addition, the authors also conducted a 
multi-ancestry comparative analysis together with the data from previously pooled meta-
analysis from the European populations [13]. The results provided convincing evidence of 
∼30% overlapping RA genetic risk factors between the Asian and European populations’ e.g. 
14 loci from a total of 46 loci were shared. However, while all the 46 investigated RA risk 
variants were polymorphic in the European subjects; six loci were actually monomorphic in 
the Japanese population including the PTPN22 variant. Interestingly, only two of the newly 
detected RA risk loci in the Japanese study e.g. ARID5B and PTPN2 were associated with RA 
in the European populations.  
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In Korean RA population, the GWAS data revealed that only MHC region and PADI4 reached 
the genome-wide significance level. The shared genetic susceptibility was observed in four 
regions namely STAT4, BLK, AFF3 and CCL2 between the Korean and European patients with 
RA. Freudenberg and co-workers reported that few RA genetic risk factors may be specific to 
the Korean population after performing the validation in an independent cohort [11]. 

Danoy and colleagues used a set of known European RA-associated risk variants from 19 
distinct gene regions to replicate the associations in another Asian RA population, the Han 
Chinese from China. The study included 2,737 RA patients and controls and reported that 
only two genes loci, MMEL1 and CTLA4 were associated with Han Chinese RA patients, while 
six other loci showed nominal association with RA. It is important to mention that in this 
replication study, the authors confirmed that no association was observed between the 
PTPN22 genetic variant and RA in the Han Chinese population. 

Taken together the GWAS data from different populations, it is evident now that there are 
substantial genetic differences between the European and Asian populations. However, one 
should also consider that populations of European and Japanese ancestries have dominated 
the majority of the GWAS and RA association studies in the literature. It is therefore 
important to perform further dissection of RA genetic determinants across other ethnic 
groups in the world as to   clarify the RA genetic heterogeneity between different ethnic 
populations and eventually provide further insight into the RA pathogenesis on the 
ethnicity-dependent manner. 

In summary, it is now obvious that there is heterogeneity among the different RA subsets 
defined by ACPA status and also across different ethnic populations. The differences are 
best reflected by the major genetic determinant of predisposition to RA, the HLA-DRB1 
alleles, which were discussed exclusively in earlier chapter under section 2.1.1. The most 
replicated non-HLA associations are also good examples of the ethnic differences in RA risk 
factors: PTPN22 in European populations and PADI4 in Asian populations, which will be 
discussed further in the next chapters. 

 

2.2.3 The PTPN22 gene and rheumatoid arthritis 
 
Protein tyrosine phosphatase non-receptor type 22 or PTPN22 gene was  first reported as a 
non-HLA RA risk factor in European populations, after an initial finding of association with 
the related autoimmune disease type 1 diabetes (T1D) in 2004 [88, 99]. Since then the 
association with RA has been consistently documented in multiple ethic populations of 
European descent [24, 26, 31, 100-108].  

The PTPN22 gene is located on chromosome 1p13 and encodes an intracellular tyrosine 
phosphatase [109]. The best associated genetic variant rs2476601, which affects amino acid 
620, is an arginine (R) to tryptophan (W) missense polymorphism that may alter the function 
of protein [110, 111].   

The frequency of the associated PTPN22 risk variant rs2476601 differs among European 
individuals, showing a gradient of decreasing from northern to southern Europe i.e. from 
12.5% in the Swedish and Finnish to 2.5-7.4% in the Spanish and Italian populations, 
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respectively [112]. Interestingly, this allele is rarely found or absent in African American and 
in populations of Asian descent [10, 12, 113-115]. Although there were several attempts to 
find different SNPs in the PTPN22 gene that may be associated n with RA in the non-
European populations, there were no evidence of association with RA, both with haplotype 
analysis and re-sequencing of this region [113, 114]. 

PTPN22 gene is now widely accepted as a pleiotropic gene (i.e. one gene influences multiple 
phenotypic traits). In addition to RA, the PTPN22 gene was associated with a number of 
autoimmune diseases, including T1D, SLE, Grave’s disease, generalized vitiligo, Hashimoto 
thyroiditis, Myasthenia gravis, and Addison’s disease [115-124]. Strikingly, there was no 
evidence of association with multiple sclerosis, inflammatory bowel disease and celiac 
disease [125-130]. These contrasting patterns of association are likely to reflect 
fundamental similarities and differences in the mechanism underlying the pathogenesis of 
these disorders.  

The PTPN22 risk variant is generally found to be associated with almost exclusively with the 
ACPA-positive RA, but not ACPA-negative RA [24]. The combination of PTPN22 variant and 
anti-CCP antibodies illustrated 100% specificity for diagnosing RA [103]. Also, this genetic 
variant appears to contribute risk of developing RA mainly in individuals with SE-positive 
[24, 131, 132]. 

In summary, the robust and reproducible genetic association of PTPN22 variant with RA in 
European populations, but not in Asian populations suggesting PTPN22 is associated with RA 
only in specific populations. 

 

2.2.4 The PADI4 gene and rheumatoid arthritis 
 
Apart from the long-established HLA-DRB1 risk alleles associated with RA, the 
peptidylarginine deiminase type 4 (PADI4) gene, residing outside the HLA locus, was 
identified in a Japanese population as a second risk factor for RA in 2003 through a large-
scale linkage disequilibrium SNPs mapping experiment [81].  

PADI4 gene is located on chromosome 1p36 and is a member of the PADI member encoding 
an enzyme that converts the arginine to citrulline (also known as citrullination, a type of 
post-translational modification) (Figure 3) [133]. The physiological role of citrullination is not 
well understood, but believed to be connected with inflammation and cell death. 
Citrullinated proteins are found in sites of inflammation, including lining and sub lining cells 
of inflamed rheumatoid joints [59, 134, 135]. In the initial case-control association study, the 
authors also demonstrated that a PADI4 haplotype consists of multiple coding SNPs affected 
the stability of RNA transcript, suggesting increased expression and function of PADI4 may 
be involved in RA pathogenesis. 

The PADI4 polymorphisms have been repeatedly shown to associate with RA susceptibility 
in patients of Asian ancestry [10, 11, 136-147], but their contribution to RA susceptibility in 
European populations was weak and remains inconclusive [24, 148-155]. In the largest UK 
study totaling 19,000 individuals, no association was found for PADI4 variant rs2240340 (as 
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well as 56 other PADI4 SNPs) [150]. A very recent published large-scale GWAS meta-analysis 
between individuals of Asian descent from Japan (9,349 RA cases and 38,575 controls) and 
individuals of European descent (5,277 RA cases and 20,169 controls)revealed that the 
genome-wide significant association of PADI4 variant rs766499  was evident in the Japanese 
RA population with an estimated OR of 1.17 (95% CI 1.11 to 1.24), whereas nominal 
association was observed in the European populations with an estimated OR of 1.09 (95% CI 
1.03 to 1.15, PGWAS=0.0022) [12].  

Although the association between the PADI4 gene and RA in the Asian populations has been 
convincingly determined, as yet, it is debatable to what extent the PADI4 genotype is 
associated with RA in European populations. Evidence from previous studies revealed that 
the risk variant frequency of RA susceptible SNPs in Asian individuals e.g. the rs2240340 
variant was comparable to those in Europeans, thus, the genetic background is believed  not 
the best explanation for the lack of association in patients of European descent. It is possible 
that the as-yet-unidentified environmental exposure may modulate the biological effect of 
PADI4 variant in different populations. Despite the ethnic differences observed in the PADI4 
association with RA, antibodies to citrullinated peptide antigens (ACPA) are universally 
recognized and widely believed as an important serologic marker in RA, the pathway of 
citrullination by PADI, could, therefore be a common pathological pathway in RA even in 
European populations. 

 

Figure 3. Conversion of arginine to citrulline by peptidylarginine deiminase (PAD) in the presence 
of calcium ions i.e. deamination or citrullination. A post translational calcium-dependent enzymatic process 
results in the loss of one positive charge for every arginine residue to neutral citrulline. Amended from Klareskog L et al. 
Annu. Rev.Immunol.2008. 
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3. ENVIRONMENTAL FACTORS AND RHEUMATOID ARTHRITIS 
 

In addition to the vast data on novel genetic risk factors, an expanding catalogue of 
environmental exposures have been implicated in RA susceptibility [156-160], prevalent 
among these is cigarette smoking. Other factors that have been associated with the 
development of RA including reproductive/hormonal factors such as oral contraceptive use; 
air pollution, dietary factors including vitamin D and antioxidant intake; alcohol 
consumption and certain infections [159-171]. 
 

3.1 Smoking and rheumatoid arthritis 
 
Smoking is by far representing the most prominent and consistently replicated 
environmental risk for developing RA [49, 51, 62, 132, 147, 172-174]. Several studies 
reported increased RA risk associated with cumulative smoking exposure [175, 176], 
denoting the importance of extent to the exposure in risk of RA development. 

Recent studies revealed that the gene-environment interaction between HLA-DRB1 SE risk 
alleles and smoking conferred risk of RA development and restricted to only seropositive i.e. 
RF-positive and/or ACPA-positive RA subset, but not seronegative RA [19, 51, 62, 132, 140, 
174]. An article published by our group recently exhibited that interaction occurred with 
HLA-DRB1*04 group as well as DRB1*01/*10 groups, implying that regardless of fine 
specificity, all the HLA-DRB1 SE alleles strongly interacted with smoking in the development 
of ACPA-positive RA in the Swedish Caucasian population [51]. 

Furthermore, research on the antigenic specificity of ACPA in gene-environment interaction 
has characterized a subpopulation of ACPA-positive RA, who exhibited anti-citrullinated α-
enolase (CEP1) specificity (43-63%). The authors revealed that combined effect of the SE, 
PTPN22 and smoking showed strong interaction with CEP1, presenting extremely high OR of 
37 for RA risk [177]. 

Although RA is relatively common in almost all populations of the world, smoking 
prevalence rates differed highly among the populations. For example, a recent 
epidemiological survey has shown that smoking prevalence was generally higher in men 
from Asia countries than in the European countries except in Sweden. Moreover, the gender 
gap in smoking rate was particularly large in most Asian countries i.e. Korea, Japan, 
Indonesia and China [178]. Therefore, the attribution of smoking to the development of RA 
may differ among populations. A recent report from Swedish EIRA study revealed that 
smoking was estimated to be responsible for 35% of the ACPA-positive RA. Additionally, 55% 
of ACPA-positive RA was attributable to smoking in individuals carrying two copies of the 
HLA-DRB1 SE risk alleles [179]. These findings indicated that smoking may affect disease risk 
differently in different individuals and smoking attribution to RA is important at the 
population level. Given that only one third of cases of ACPA-positive RA were attributed to 
smoking in this study, other environment and genetic factors may modify the effect of 
smoking on the development of RA in different populations including the Swedish 
population.  



18 

 

4. GENETIC MARKERS AND APPROACHES 
 
Complex diseases are often referred to as multifactorial disorders because of the 
involvement of multiple genes and environmental exposures together with the complicated 
interactions between them.  Understanding the genetic principal including the genetic 
markers selection, various study designs and also the genetic approaches, may thus help in 
planning and designing the experimental studies for unraveling the underlying etiology of 
RA. 

4.1 Genetic markers 
 

A genetic marker is a genetic variant that could be used to study the qualitative or 
quantitative traits. Genetic markers associated with certain diseases can be detected in the 
DNA samples and can thus be used to determine whether an individual is at risk of 
developing disease. The commonly used genetic markers include microsatellites and single 
nucleotide polymorphisms (SNPs). 

4.1.1 Microsatellites 
 

Microsatellites or SSR (single sequence repeats) or STR (single tandem repeats) are among 
the commonly used markers in genetic studies. They consist of a stretch of DNA with a few 
nucleotides long i.e. 2 to 6 basepair (bp) repeated several time in tandem e.g. 
CACACACACACACA. Microsatellites are relatively small in size, and can therefore easily be 
analyzed by PCR and gel electrophoresis. 

4.1.2 Single nucleotide polymorphisms (SNPs) 
 

A SNP is a single base mutation in DNA. SNPs are the simplest form of genetic variants, 
usually biallelic, and they are also the most common source of genetic polymorphism in the 
human genome. SNPs are present throughout the genome. They are highly abundant and 
widely distributed i.e. one SNP in every 1000bp, in human genome [180]. SNPs have become 
the popular and standard genetic marker used to identify associated alleles in different 
diseases. SNPs can be found across different regions within a particular gene with different 
roles. For example, a SNP may affect the protein structure if it is in the exon region; in 
promoter region, it may affect transcription activation; it may also influences the alternative 
splicing when it is in the intron region or even influences the mRNA stability if it is found in 
the 3’ or 5’ untranslated region (UTR). They may also be in linkage disequilibrium with the 
disease susceptibility locus. 

 

4.2 Genetic approaches and strategies 
  

Different genetic approaches and strategies have been effectively applied to identify risk loci 
in complex diseases including RA. The following description will be centered on two major 
approaches known as linkage analysis and association mapping and two strategies: GWAS 
and candidate gene approach. 
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4.2.1 Linkage analysis 
 

Traditionally, the search for a disease gene begins with the family-based linkage analysis. 
Genetic linkage studies are usually performed to identify the estimate location of a gene 
relative to its variations designated as genetic marker with known position. This method has 
been phenomenally successful in mapping Mendelian variants, which are usually rare single 
gene disorders [181, 182].  Genetic linkage analysis is depends on cosegregation of 
chromosomal regions with a phenotypic trait within families. For most common 
autoimmune diseases such as RA, familial aggregation is rather modest, and therefore 
genetic linkage analysis has quite low statistical power to detect the chromosomal regions 
with shared genetic risk within families.  

4.2.2 Association mapping 
 

The basic idea of high density SNPs-based association analysis is to assess association 
between SNPs and a disease phenotype in a population. In this approach, the genetic causal 
variants are generally unknown and cannot be observed. Thus, the disease-gene association 
is identified through disease-marker associations, with the assumption that the genetic 
variants are in high LD with causal disease variants. Therefore, LD holds the main key in 
genetic association mapping. Association mapping approach can be implemented in case-
control study design, both in family-based design (i.e. related controls) or non-family based 
design (i.e. unrelated controls derived from general population). Briefly, the transmission 
disequilibrium test (TDT) has been proposed as a family-based association test design, which 
tests for the presence of genetic linkage between a genetic marker within a family and this 
study design is not affected by population structure. The case control studies which form 
the majority of published report will be discussed separately in following chapter. 

4.2.2.1 Case control study design 
 

Case control studies are extensively used and the most powerful study design. A case 
control study compares the frequency of SNP alleles in two well-defined groups of 
individuals: cases that have been diagnosed with the disease under study, and controls, who 
are either known to be unaffected, or who have been randomly selected from the 
population. It is noteworthy that both methods of selections for the controls form a valid 
study. This study design also referred to as the non-family based design and is appropriate 
for studying relatively common SNP alleles that confer a modest or small effect on disease 
risk. An increased frequency of a SNP allele or genotype in cases when compared to the 
control subjects indicates that the presence of the SNP allele may associated with the 
disease risk. However, this study design could be confounded by the population 
stratification. For example, a good match between the genetic background of cases and 
controls is crucial for ensuring any genetic difference between them is related to the 
investigated disease, and not due to bias sampling. Taken together, careful selection of 
cases and controls is obligatory to warrant homogeneous genetic background, i.e. to 
perform the case control study within narrowly defined ethnic groups and avoid possible 
stratification [183]. Nonetheless, the limitation derived from population stratification can be 
detected and corrected by the means of bioinformatics computational methodology [184, 
185]. 
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In summary, although genetic linkage and association mapping shared the similar idea of 
‘recombination’, these approaches have different characteristics for identifying the 
trait/disease loci with certain strengths and limitation as presented in Table 4 [186]. 

 

Table 4. Characteristics between linkage analysis and association mapping* 

Characteristic 

  

Property of mapping 
approach 

Linkage analysis Association mapping 

Data type studied Relatives Singleton patients and controls 
Objective Identify a single gene with 

large effect on phenotype 
Identify common susceptibility 
variants underlying disease 

Relevant parameter Recombination fraction Association statistic 
Range of effect detected 
(linkage or association) 

Long (≤5Mb) Short (≤100kb) 

Number of markers 
required for genome 
wide coverage 

Moderate (500-1000) Large (>100,000) 

Statistics used Cumbersome (requires tailor-
made likelihood methods) 

Elegant, can use the range of 
classical statistical tools 

Dealing with correlated 
markers 

Pose problems in presence of 
non-genotyped individuals 

Can be handled efficiently 

Biological basic of 
approach 

Observe (or infer) 
recombination in pedigree 
data 

Exploit unobserved 
recombination event in past 
generation 

Dealing with allele 
heterogeneity 

Not a problem Reduces power 

Detecting genotyping 
errors 

Potentially detected as 
Mendelian inconsistencies  

Potentially detected only in 
family data, but not in 
unrelated case control data 

Most suitable application Rare, dominant trait Common trait 

*Adapted from Ott et al, 2011 Nature Genetics [186]. 
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4.2.3 Genome-wide association studies (GWAS) 
 
The GWAS approach is a hypothesis-free study design with advantage that no prior 
information about the genetic risk factors is required. We can assess tens or hundreds of 
thousands of SNP polymorphisms simultaneously by this approach. The basic concept of 
GWAS is based on ‘common disease-common variants’ model. For instance, since the 
disease is common, its presence may arise from a set of predisposing allele at multiple loci, 
each of which is itself common in the population. With the completion of the International 
HapMap Phase I and Phase II project [187, 188], ∼3.2 million genotyping data in four 
populations of different ethnic origin (Caucasians of Northern and Western European origin, 
Japanese from Tokyo, Han Chinese from Beijing and Yoruba from Nigeria) were released into 
the public domain.  HapMap provides information about the linkage disequilibrium (LD) 
patterns across the genome, thus allow the investigators underpin the design of SNP marker 
panels for GWAS. Most of the GWAS studies employ 50,000 or more SNPs across the 
genome and each addressing a separate hypothesis. For this reason, the statistical 
significance levels must be corrected for multiple testing. An overall p value of <5x10-7 is 
now widely accepted as compelling evidence of true association. The success and popularity 
of this approach has been marked by an online catalogue which contains 1,617 published 
GWAS reports at p≤5x10-8 for 249 traits as at the third quarter of 2011 and is still ongoing 
[189]. A summary of these findings gives insight to the current genetic landscape of RA. 
 

4.2.4 Candidate gene approach 
 
Candidate gene studies have been a mainstay for human genetic studies for several 
decades. Candidate gene analysis is a hypothesis-driven approach, in which the candidate 
genes can be selected from biological pathway that harbors other previously associated risk 
loci. Depending on the size of the candidate region and cost implications, the investigator 
can choose to include all potentially functional SNPs residing in predicted regulatory regions, 
splice sites, intergenic sequence, introns or coding exons in marker selection. A good 
example of this is the 9p33 region which contains complement component 5(C5) and TNF-
receptor-associated factor 1(TRAF1) genes. The first association between this region and 
experimental arthritis was observed in a genome-scan of mice [190]. Based on these 
findings, Kurreeman et al went on to investigate this disease locus in RA in a case control 
study population and found evidence for association with RA [25]. The authors concluded 
that TRAF1/C5 region increases the susceptibility to and severity of RA, possibly by 
influencing the structure function, and/or expression levels of TRAF1/C5. 
 

4.2.5 Population stratification 
 
Case control association studies assume that any difference in SNP genotypes between 
cases and control is due to their difference in disease status, but not any difference in their 
genetic background. However, the genotypic differences between cases and controls could 
sometime generate as a result of the differences between population ancestries, instead of 
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any effect on the disease risk [191]. This phenomenon is generally referred as population 
stratification. Population stratification can lead to 1) the presence of spurious associations 
between the SNP and disease, and 2) lack of replication across many association studies. For 
example even if a well-designed population case control study carefully draws the cases and 
controls from the same population, a hidden fine-scale genetic substructure within the 
single population (or the unintentional inclusion of individuals from other population) 
cannot be rule out. Furthermore, confounding occurs when the population substructure is 
not equally distributed between the cases and control groups. Therefore, after giving careful 
consideration to matching cases and controls on population origins [192], investigators 
should always examine and characterize the potential population stratification during the 
quality control process. Efforts should than be made to remove or reduce the effect of 
population stratification by removing the individuals of divergent ancestry. It is possible to 
correct for unknown population stratification using the entire set of genotyped SNP 
markers. This is commonly done using the genomic control approach [185, 193] and 
principal component approach [184]. 

 

4.2.5.1 Principal component analysis (PCA) 
 
The most commonly used method for detecting and subsequently removing individuals with 
large-scale differences in ancestry is principal component analysis (PCA) [184, 194]. PCA is a 
multivariate statistical method used to produce several uncorrelated variables termed 
principal components, from a data matrix containing observations across a number of 
potentially correlated variables. The principal components are calculated to that the first 
PCA for as much variation occurs in the data in a single component, following by the second 
component and so on.  A common set of approximately 50,000 independent markers must 
be used for the model-building. Region of extended high LD i.e. the HLA region should be 
excluded before analysis because these can substantially influence the PCA model [184]. 

 

4.2.6 Meta-analysis 
 
Meta-analysis is a statistical technique for combining the findings from independent studies, 
which address a set of related research hypotheses. Meta-analysis can increase effective 
sample size as to improve the statistical power of analysis. One of the main advantages is 
that it can reduce the probability that random error will produce spurious association. 
Meta-analysis overcomes the problem of small sample size and inadequate statistical power 
in genetic studies of complex diseases. Apart from this, meta-analysis also evaluates the 
existence of heterogeneity. The presence or absence of heterogeneity influences the 
subsequent method of analysis. For example, if heterogeneity is absent, then the analysis 
employs the fixed effect modeling. This assumes the size of genetic effect is the same (fixed) 
across all studies investigated and the variation between the studies occurs by chance. 
Conversely, random effect model assumes that the genetic effect really does vary between 
studies. Such models tend to increase the variance of the summary measure making it more 
difficult to obtain significant outcomes [195, 196]. 
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5. AIMS OF THE THESIS 
 
The main goal of this thesis was to identify the genetic risk factors that predispose to 
rheumatoid arthritis in the multiethnic Malaysian population and to compare the results 
between the three major ethnic groups i.e. Malay, Chinese and Indian. 

More specifically, the aims of this thesis were: 

• To determine the frequencies of the HLA-DRB1 shared epitope (SE) alleles and to 
test the hypothesis whether the selective association between ACPA-positive RA 
and certain HLA-DRB1 alleles is valid in the Malaysian patients with RA  

• To investigate the gene-environment interaction between smoking and HLA-DRB1 
SE alleles (including those that are rare in European populations) in different subsets 
of RA defined by ACPA status, in a multiethnic population of Asian descent 

• To explore the association between PADI4 polymorphism and RA risk in the 
Malaysian population residing in South East Asia with the goal of elucidating 
generalizability of association in Asian populations. 

• To identify the possible association of DCIR polymorphism with RA subsets in four 
independent Asian populations and further validate the ACPA-negative RA 
association, originally detected in European population, in Asian cohort. 
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6. METHODOLOGICAL CONSIDERATIONS 
 
This thesis is mainly based on a multicenter case control study entitled the Malaysian 
Epidemiological Investigation of Rheumatoid arthritis (MyEIRA) similar to the Swedish EIRA 
study. The study was established in August, 2005 by Allergy and Immunology Research 
Center and Biostatistics and Epidemiology Unit, Institute for Medical Research, Kuala 
Lumpur, Malaysia in collaboration with Rheumatology Unit, Department of Medicine and 
Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden. Together 
with genetic risk factors investigation of RA, epidemiological study for environmental risk 
factors for RA was initiated and will complement my thesis research. 

 

6.1 Malaysian background 
 
Malaysia is a country in South East Asia and consists of two geographical regions divided by 
the South China Sea (latitude 2°30’N, longitude 112°30’E) with a population of 28.3 million 
people, comprising of multiethnic groups (Malay 63.1%, Chinese 24.6%, Indian 7.3%, others 
5%)(http://www.statistics.gov.my/portal/download_Population/files/census2010)(Figure 4). 
History has shown that Malaysia’s geographical position and location in between the great 
civilizations of Europe and the Middle East to the West and China and Japan to the East. 
Thus, Malaysia is a natural meeting spot of trade routes and ultimately formed a multi-racial 
and multicultural nation. 

 

 

Figure 4. Percentage distribution of the population by ethnic group, Malaysia, 2010. Source of data: 
http://www.statistics.gov.my/portal/download_Population/files/census2010. 

http://www.statistics.gov.my/portal/download_Population/files/census2010)(Figure
http://www.statistics.gov.my/portal/download_Population/files/census2010.
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6.2 Study populations 
 
The MyEIRA study is a sister study of the Swedish EIRA [197], consisting of mainly early RA 
defined according to the American College of Rheumatology (ACR) 1987 criteria [7].  RA 
cases were identified from eight rheumatology centers in Peninsular Malaysia. Controls 
were randomly selected and matched to cases for gender, age and residential area. In our 
genetic analyses, we further matched the cases and controls by ethnic groups i.e. Malay, 
Chinese, Indian and others.   

Blood samples were collected from all the participants. Information about environmental 
exposures was collected by means of face-to-face interviews by well-trained interviewers 
with a modified questionnaire based on the Swedish EIRA questionnaire. Clinical data were 
also recorded. In total 1,260 cases and 1,625 controls were recruited between August 2005 
and December 2009. 

In paper IV, we also used information from the Han Chinese case control study including 
1,193 cases (both early RA and established RA) and 1,278 unrelated controls. 

Detailed information regarding the selection and exclusion criteria for the MyEIRA study can 
be found in the respective paper/ manuscript included in this thesis and in our smoking 
exposure article [198]. 

 

6.3 Ethical approvals 
 
All participants gave their written consent. The MyEIRA study was approved by the Medical 
Research and Ethics Committee, Ministry of Health, Malaysia (KKM/JEPP/02 Jld.1 (86); 
(14)dlm.KKM/NIHSEC/08/0804/MRG-2005-12) and Stockholm Regional Ethics Committee, 
Sweden (2012/1381-31/1). Whereas, the Han Chinese case control study was approved by 
the Medical Ethics Committee in Peking University People’s Hospital. 

 

6.4 Laboratory considerations 
 
In this section, I have selected to discuss about the cells isolation as the source of DNA and 
the Luminex application used for HLA typing. Both methods are routinely performed in our 
histocompatibility and immunogenetic laboratory at IMR at Kuala Lumpur in Malaysia. 

 

6.4.1 Ficoll-hypaque density gradient separation 
 
We used the density gradient centrifugation technique for separating the buffy-coat 
enriched cells (mainly monocytes and lymphocytes). The basis for this cell separation assay 
is the differential migration of cells during centrifugation according to their buoyant density, 
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which results in the separation of different cell types into distinct layers [199, 200]. Briefly, 
the diluted blood sample was layered onto a Ficoll-sodium metrizoate gradient of specific 
density i.e. 1.077 g/ml, following centrifugation highly purified buffy-coat with enriched 
lymphocytes and monocytes are harvested from the plasma-Ficoll interface. This method 
has been found to be rapid, simple and robust with very low contamination of erythrocytes 
(i.e. in which the presence of erythrocytes may hamper the DNA extraction process, 
therefore affecting the yield and quality of DNA). A brief protocol is presented in Figure 5. 
The DNA was extracted using the commercial QIAamp DNA Blood Mini kits from QIAGEN 
(Hilden, Germany). The concentration and quality of DNA were assessed by optical density 
at 260/280nm with NanoDrop™ 1000 spectrophotometer (Thermo Fisher Scientific, U.S.A).  

 

6.4.2 The Luminex application to HLA genotyping 
 
Luminex technology is a new flow cytometry technology enabling us to analyze numerous 
reactions in a single tube or well. It is a multiplexed data acquisition and analysis platform of 
microsphere-based assays that performs simultaneous measurements of up to 100 different 
analytes.  

HLA typing using Luminex is a reverse polymerase chain reaction sequence specific 
oligonucleotide (PCR-SSO) system which involves PCR amplification of targeted regions 
within the MHC Class I or Class II regions with group specific primer. The primers used for 
amplification are biotinylated, and the PCR product is then denatured and allowed to 
hybridize to complementary DNA probes conjugated to up to 100 fluorescently code beads. 
Bound amplicon is detected by labeling with a Streptavidin-Phycoerytherin (SAPE) 
conjugate, with Streptavidin binding to the biotin used to label the primers and 
phycoerytherin serving as the reporter dye for the presence of bound amplicon. 
Subsequently, the Luminex platform is used to identify any SAPE bound to the beads. The 
observed reaction patterns are used to assign HLA type. Positive and negative control beads 
are used to quality control the typing assay. The flow of this method is illustrated in Figure 6. 

The combinations of speed and reproducibility form the main advantages of Luminex as 
used for HLA typing.  This technique is fairly robust and requires very little DNA i.e. 1µl of 
20ng/µl DNA with purity between 1.65-1.80. The Luminex technique is suitable for both high 
and low throughput laboratories as the entire process takes place in a single well of 96 well 
PCR plate and thus, different loci can be process on the same tray. The use of advance probe 
technology reduces the number of ambiguities usually encountered in HLA typing.  
Furthermore, as compared to PCR-SSP, Luminex offer a safer method with the elimination of 
the use of agarose gel electrophoresis and its associated use of ethidium bromide. 

 



 

27 

 

 

 

Fi
gu

re
 5

.  
Fl

ow
 c

ha
rt

 sh
ow

in
g 

th
e 

Fi
co

ll-
hy

pa
qu

e 
de

ns
ity

 g
ra

di
en

t s
ep

ar
at

io
n.

 

 



28 

 

Figure 6. Flow chart showing the protocol for HLA genotyping using Luminex technology.  
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7. RESULTS AND DISCUSSIONS 
 
The knowledge on disease pathology and risk assignment in RA is mainly based on studies of 
European populations and limited to a few studies of East Asian populations from Japan, 
Korea and China. These East Asian populations are generally referred to as the Asian 
populations in the published literature.  

Malaysia is a unique multiethnic country in the South East Asia region, representing the 
genetic diversity across multiple large populations of Asian descent i.e. Malay, Chinese and 
Indian. In Malaysia, the three major ethnic groups are living side by side thereby sharing 
many environmental factors. There is low degree of genetic mixing between the groups, 
which allows the comparison between genetically divergent groups partly sharing 
environmental influences. 

The MyEIRA study is the first large Asian case control study, performed in Malaysia and even 
in South East Asia region, involving mainly early RA patients, who are matched 
epidemiologically to their controls. With the following results, we aimed to elucidate the 
genetic predisposition to RA in this population and associate the similarities and differences 
in disease risk with other ethnic populations in the world. 

Only the main results from Paper I – Paper IV are presented and discussed in this section. 
Additional information can be found in the complete paper under the Paper I – Paper IV 
section of this thesis. 

 

7.1 HLA-DRB1 alleles association 

7.1.1 Evaluation in subsets of rheumatoid arthritis (PAPER I)  
 
Compelling evidence from the past few years has indicated that HLA-DRB1 shared epitope 
(SE) risk alleles are associated only with a subset of RA that is characterized by the presence 
of ACPA or rheumatoid factor [60, 62, 132, 174]. Recently, a GWAS performed in ACPA-
positive RA and ACPA-negative RA further support the idea that distinct risk factors operate 
in these subsets of RA defined by ACPA status [16], and therefore these subsets should be 
regarded as two separate disease entities and studied separately in both genetic and 
functional studies of RA pathophysiology.  

Overall, our study demonstrated that HLA-DRB1 SE-positivity confers higher risk in ACPA-
positive RA regardless of the ethnicity as presented in Table 5, thus providing supporting 
evidence for the theory that the selective association between ACPA-positive RA and HLA-
DRB1 SE alleles as observed in Europeans is also valid in non-European populations. In 
addition, our findings also revealed that the occurrence of ACPA was linked to the presence 
of HLA-DRB1 SE alleles in a gene-dose dependent manner, consistent with those in 
individuals of European descent [62, 174].  
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In RA patients, specific subtypes of DRB1 alleles have been consistently reported as 
increased in many populations, however, the subtypes associated with RA differs between 
ethnic groups. In populations of European ancestry for instance, DRB1*0401 and 
DRB1*0404 and DRB1*0101 are the most common alleles associated with RA susceptibility, 
while DRB1*0405 has a preponderance in Asian populations [34, 52, 55, 201]. Our current 
data corroborated that the frequency of DRB1*0405 was increased sizably in the Malay and 
Chinese patient with ACPA-positive RA. Limited increased frequency of DRB1*0405 was 
noticed in Indian ethnic groups, both in cases and controls, as compared with other ethnic 
groups. The findings may be explained by the dominance of DRB1*0403 allele in the Indian 
population. Interestingly, while DRB1*1001 was rarely present in the European populations 
[34, 35], it was significantly associated with increased risk of developing ACPA-positive RA in 
all three ethnic groups. Conversely, DRB1*0101 was infrequently found in the Malaysian 
population. 

We demonstrated a novel inverse association of DRB1*1202 alleles and ACPA-positive RA in 
Malay and Chinese ethnic groups, independent of DRB1 SE alleles.  This association was also 
observed in Malay patients with ACPA-negative RA. It is worth noting that DRB1*1202 is a 
common allele found in Asian populations, but rare in European populations (Figure 7) 
[202]. Fascinatingly, a very recent publication from Japanese population identified 
DRB1*1201 as novel RA susceptibility allele in ACPA-negative RA. The authors also provided 
evidence that combination of DRB1*1201 and DRB1*0901 exhibited remarkable association 
in this RA subset [203]. On the contrary, our findings showed that DRB1*1201 did not 
associate with ACPA-negative RA but rather with ACPA-positive RA in the Malay population. 
It would be interesting to perform meta-analysis for found association of RA with different 
DRB1*12 subtypes in different oriental populations, including the Japanese and our cohort. 

 

 

 

Table 5. Risk of developing ACPA-positive or ACPA-negative RA among carriers of SE (Single, double 
or any) in the MyEIRA study population by ethnicity 

*cases and controls without SE alleles were used as reference group; **Fisher exact two-tailed p value, 
p=0.0015; #Fisher exact two-tailed p value, p=0.3, NS. 
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7.1.2 Interaction with smoking (PAPER II) 
 
Until recently, the role of genes, environment and immunity as risk factors for RA has mainly 
been studied independently. However, growing evidence revealed that these parameters 
indeed do not act exclusively independently but rather interact with each other contributing 
to RA development [49, 51, 62, 132, 157, 159, 174, 175, 177].  

In Paper II, we investigated the gene-environment interactions in major subsets of RA 
dichotomized by ACPA status, taking into consideration smoking as the well-established 
environmental risk factors along with the presence of DRB1 SE alleles as the best-known 
genetic risk factor. We could compellingly demonstrate that smoking and the SE alleles were 
associated with increased risk of developing ACPA-positive RA, but not ACPA-negative RA 
(Figure 8). Strikingly, the combination of smoking and SE alleles reveals very high risk for 
ACPA-positive RA (OR=25.6, 95% CI, 10.4 to 63.4). 

 

Figure 7. World-wide distribution of DRB1*1202 allele.  Adapted from Solberg et al, Hum Immunol, 
2008 (www.pypop.org/popdata) 
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The interaction between smoking and the presence of SE alleles was termed as departure 
from the additivity of effect [204] and was quantified by calculating the attributable 
proportion due to interaction (AP) together with 95% CI. Briefly, the AP is the proportion of 
the incidence among individuals exposed to two interacting factors, being attributable to 
the interaction per se i.e. the combined effect exceeding the sum of their independent 
effect (Figure 9). 

 

 

 

 

Figure 8. Odds ratios of developing ACPA-positive and ACPA-negative RA for different combinations 
of smoking and SE alleles. The odds ratios of developing (a) ACPA-positive RA (b) ACPA-negative RA were 
compared with those who never smoked and have no SE alleles. 

Figure 9. A schematic representation of increased risk due to additive interaction. The attributable 
proportion (AP) is the percentage extra risk (in red), not explained by the sum of separate risks (i.e. gene and 
smoking), of the total risk. 
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Our group has previously reported that regardless of fine specificity, all DRB1 SE alleles 
strongly interact with smoking in conferring an increased risk of ACPA-positive RA in patients 
of European descent [51]. Applying the same case control study design and analysis 
strategy, we could demonstrate that ever smokers carrying the Asian common DRB1 SE 
allele i.e. DRB1*0405 had a 12.9-fold increased risk for developing ACPA-positive RA, though 
the interaction between smoking and DRB1*0405 allele was not statistically significant (AP 
=0.4; 95% CI, -0.1 to 0.9). 
 

7.2 Generalizability of PADI4 gene association (PAPER III) 
  

Previous GWAS linkage studies of RA sibling pairs have shown that a susceptibility locus at 
1p36 which confers risk to RA [205-208]. The gene region contains clusters of 
peptidylarginine deiminase (PADI) genes encoding enzymes, which are responsible for 
converting the peptidylarginine to peptidylcitrulline in the presence of calcium ions, thus, 
may change the conformation and functional properties of target proteins after 
citrullination [209]. In addition, a series of PADI activities including expression of PADI 
enzymes, protein citrullination and production of ACPA occurs in the synovium of RA 
patients, pinpointing its importance in disease pathogenesis [210]. Compelling evidence 
revealed that association at PADI4 gene locus is largely limited to RA patients of Asian 
descent [81, 137-140, 142-147, 152].  

In this study, we aimed to determine if the association between PADI4 polymorphisms and 
RA risk could be generalized for different oriental populations, outside of the East Asian 
region. Additionally, we also searched for possible RA associations across the PADI locus 
including PADI1, PADI2, PADI3, PADI4 and PADI6 genes. 

Given that association in case control studies can be potentially confounded by population 
stratification if the two study groups are poorly matched for genetic ancestry, also, the 
PADI4 gene association with RA was believed to be ethnic-dependent, we undertook the 
study carefully throughout the investigation of PADI association with RA within different 
ethnic groups in the study. In our analysis, we performed the principle component analyses 
(PCA) for cases and ethnically matched controls for the Malay, Chinese and Indian 
populations separately to detect and correct for possible population stratification (Figure 
10) [184].  No substantial overlap between the groups was observed.  

Accordingly, we convincingly validated the association between PADI4 polymorphisms and 
RA risk in multiethnic populations of Asian descent. Meta-analysis of our current data and 
the previous published data from Asian populations on PADI4 SNP rs2240340 variant [81, 
137, 143, 145, 152, 211], provides strong evidence supporting PADI4 as an RA susceptibility 
gene diverse Asian populations (Figure 11). Hitherto, our study exhibited a possible novel 
association between PADI2 SNP rs1005753 variant and RA in the multiethnic Malaysian 
population (Figure 12). 
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It is also important to mention in this thesis that our single point analyses of variations 
across the various genes in PADI locus revealed modest effect size in RA population and the 
peak association varies between different ethnic groups (Figure 13). 

 

 

 

 

 

 

 

 

 

Figure 11. Meta-analysis of allelic association between PADI4 rs2240340 variants and risk of 
developing RA in Asian populations. 

Figure 10. Principal component analysis (PCA) plots of genetic diversity across HapMap data and 
MyEIRA study population. PCA plots of genetic diversity for each of the case control study in each ethnic 
group are presented in (a) Malay (b) Chinese and (c) Indian. Cases and controls for each ethnic group represented 
by red and green, respectively. 
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Figure 12. Meta-analysis of the allelic association between PADI2 rs1005753 variants and 
risk of developing RA in the MyEIRA study population 

Figure 13. Regional association plots with recombination rate on the PADI genes 
for the three major ethnic groups from MyEIRA study. The graphs are centered on the 
most significant SNP in each ethnic group. 
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7.3 DCIR polymorphisms and ACPA-negative RA (PAPER IV) 
 

Genetic factors contribute to the development of ACPA-negative RA as much as ACPA-
positive RA [36] however, little is known about the ACPA-negative RA susceptibility alleles of 
HLA or non-HLA genes. 

Dendritic cell immunoreceptor (DCIR) was mapped by Dr Johnny Lorentzen in our group, to 
a quantitative trait locus in a congenic rat strain protected from oil-induced arthritis. 
Subsequently, the DCIR variants were found to be associated with ACPA-negative RA in the 
Swedish population [28]. In this paper, we conducted a large case control study involving 
four independent Asian populations with the aim of elucidating the initially reported 
association of DCIR polymorphism with RA. While a consistent significant association 
between DCIR polymorphism and ACPA-negative RA was replicated in the Han Chinese 
population, we did not find any association between DCIR polymorphism and RA in all the 
three major ethnic groups from Malaysia. Nevertheless, when we performed meta-analysis 
using our present data together with the initial published data, we could demonstrate a 
significant association with ACPA-negative RA under a fixed effect model (OR=1.17; 95% CI 
1.06 to 1.30), despite a somewhat significant heterogeneity across different ethnic groups 
(I2=67%, p=0.02) (Figure 14).  

Failure to replicate DCIR association in one ethnic group but not the other in not unforeseen  
and this finding may reflect an important clue about genetic architecture underlying 
different populations across the world [212]. For instance, a recent study documented 
population stratification within the Han Chinese population from China, with the main 
observed clusters corresponding roughly to northern Han Chinese and southern Han 
Chinese [213]. In this present study, our findings provide support for evidence that the Han 
Chinese individuals were mainly from the northern part of China, historically the Malaysian 
Chinese were mostly from southern China. This is a possible reason for the inconsistent 
association observed between these two seemingly homogeneous groups. 

Abundant DCIR expression was observed in the synovial fluid and tissue of RA patients, but 
not detected in the joints of healthy individuals [214]. We showed an increased DCIR 
expression level in RA patients, compared with the healthy controls. In RA patients, the 
increased DCIR expression observed was associated with individuals carrying the risk variant 
(i.e. TC or CC genotype) regardless of their ACPA status. Although the DCIR expression was 
insignificantly associated with the ACPA-negative disease, this may possibly be due to the 
loss of statistical power. It is noteworthy that a recent study investigating the differential 
expression of DCIR revealed no difference of DCIR mRNA expression between RA cases and 
controls [215]. The possible explanation could be linked to the study design i.e. selection 
criteria of RA cases and or the sample size used. 

 

 



 

37 

 

 

 

      
  

 

 

 

Figure 14. Meta-analysis of rs2377422 for ACPA-negative RA across different ethnic groups. 
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8. CONCLUDING REMARKS 
 
The vast majority of genetic studies in RA have centered on populations of European 
descent and/or a few from East Asian populations. The fact is that RA is caused by interplay 
of genetic variation and environmental factors. Genetic studies have revealed a substantial 
divergence of genetic variation across population in term of allele frequency; linkage 
disequilibrium and haplotype structure [216-218]. Taken together, the current findings on 
RA risk may provide an incomplete picture of the genetic basis of the disease. 

In this thesis, our main goal is to determine the genetic predisposition to RA in a multiethnic 
Malaysian population residing in South East Asia. More specifically, we would like to address 
the questions as of how far the identified RA risk factors in both the Europeans and East 
Asian can be translated across different ethnic populations. Overall, our data further 
support different genetic backgrounds that were associated with the distinct subsets of RA 
characterized by ACPA status. We demonstrated that different DRB1 SE alleles, that are 
common in Asian (i.e. DRB1*0405), but not European populations confers significant 
increased risk of developing ACPA-positive RA, but not ACPA-negative RA in Malaysian 
population regardless of ethnicity. In addition, our analysis revealed a considerable 
heterogeneity of association signals between our population and those of European descent 
and East Asian descent. An example is the DRB1 SE risk alleles seemed to be shared, but the 
risk signal often appeared to be population-specific i.e. DRB1*0401, DRB1*0404 and 
DRB1*0101 in Europeans, DRB1*0405 and DRB1*0901 in Japanese populations and 
DRB1*0405 and DRB1*1001 in Malaysian population. This phenomenon also observed for 
the protective alleles i.e. we demonstrated a novel association between the DRB1*1202 and 
ACPA-positive RA in Malay and Chinese populations, while DRB1*13 alleles were 
documented in European patients with ACPA-positive RA. The possibility of analyzing these 
relationships further in different ethnic groups will be of major importance for our 
understanding of which immune reaction contributes to RA in different subsets of RA from 
different parts of the world. 

By scrutinizing the gene-environment interaction between DRB1 SE alleles and smoking in 
the development of RA, we show that the risk of developing ACPA-positive RA is associated 
with a strong gene-environment interaction between DRB1 SE alleles and smoking in the 
Malaysian population. Notably, this interaction seem to apply to smoking and DRB1*0405 
allele, which is common in Asian populations, but not in populations of European descent. 

There is no doubt about the existence of the population-specific risk variants associated 
with RA, as it was clearly illustrated previously by the PTPN22 RA risk gene in European 
populations and PADI4 gene in Asian populations. However, to what extent the association 
particularly between PADI4 gene and RA could be demonstrated in other oriental 
populations’ remains to be determined. In this thesis, we scrutinized the entire PADI locus 
including PADI1, PADI2, PADI3, PADI4 and PADI6 with a set of 320 SNPs markers for 
association with RA. Our findings revealed an association between PADI4 and RA in the 
diverse Asian populations from Malaysia and suggest an additional novel association in a 
PADI2 gene. The latter finding is awaiting replication in independent cohort or in other 
ethnic populations.  
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 As yet, very few validated risk alleles associated with ACPA-negative RA, though their 
heritability was comparable to that of ACPA-positive disease. We investigated the 
association between the previously reported ACPA-negative-related DCIR polymorphisms 
and RA in four independent Asian populations, with special focus on the ACPA-negative RA 
subset. Our data provide evidence for association between the DCIR rs2377422 variant and 
RA in non-European populations. We also confirmed the influence of DCIR polymorphisms 
on RA susceptibility especially on ACPA-negative RA. 
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9. FUTURE DIRECTIONS 
 

In the case of genetic studies of RA, it remains a great challenge if “we are different (i.e. by 
ethnicity) but basically the same (i.e. disease phenotype) or “we are the same (i.e. sharing 
common risk loci) but different (i.e. population-specific risk signals). However, I think both 
are valid for this thesis. 

An impressive list of validated and highly suggestive non-MHC RA risk is growing after GWAS 
became available. However, these non-HLA risk alleles explain only 5% of the genetic 
burden of RA [79], indicating that additional non-MHC risk alleles remain to be discovered. 

Existing genotyping technology captures most common variants that are believed to be 
ancient origin and shared among different populations. Nevertheless, RA risk can also be 
due to rare variants, which are more likely to be population-specific and could carry a 
greater risk. New technologies are required to detect the rare variants. For example, the 
whole genome sequencing that may help to facilitate detailed analysis of rare and structural 
variants. This will undoubtedly lead to the further identification and refinement of causal 
variation and thereafter will help to resolve some of the controversy surrounding the 
concept of ‘missing heritability’. It is worth noting that the rare variants are individually 
difficult to identify, but, once detected, they can collectively make a substantial contribution 
to the genetic risk underlying RA in the near future. 

While it is important to design a dense mapping genotyping array to capture more common 
variants as well as rare variants, it is also vital to conduct such mapping in non-European 
populations. This is because most of the genetic platforms today i.e. GWAS are designed for 
the optimal use in people of European ancestry, thus the outcomes may give an incomplete 
picture of the genetic makeup of RA. Moreover, the current approach limits us to globally 
assess the heterogeneity association signals between populations of European descent and 
Asian descent. 

The RA risk variants identified so far have small or moderate risk effects and explain a small 
part of RA heritability as discussed earlier. Thus, when comparing the results of genetic 
studies between different populations, we are actually comparing a small fraction of the 
total genetic risk presence in each population. Larger case control cohorts will then be 
needed to detect such small effects. Yet, there are challenges which lie in collecting a larger 
cohort of homogeneous samples from a variety of different populations, as well as 
conducting genetic studies in a variety of well-characterized populations. These challenges 
however, could be possibly resolved by establishing international collaboration consortia as 
we are currently practicing and are reflected in this thesis. A meta-analysis of the pooled 
data from different populations could also increase the statistical powers for detecting 
modest effect exhibited in RA susceptibility genes. 

In order to complete the understanding of genetic predisposition to RA, it is essential to 
study other types of polymorphisms that are also contributing to genomic variation i.e. copy 
number polymorphisms and repeat elements. Further dissection of genetic and 
environmental determinants and their interactions including gene-gene and gene-
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environment interactions will help clarify genetic heterogeneity between different ethnic 
populations.  

Accordingly, once the causal variant(s) have been identified at a given locus, functional 
studies such as on the regulation of gene expression and protein structure, location and 
function could be designed and followed. 

The ultimate goal of genetic association studies is nevertheless, to translate the findings into 
clinical practice. For example identification of associated variants suggests biological 
pathway, which might lead to the intervention of therapeutic targets. It may be possible to 
develop a more personalized approach to disease management from the knowledge of a 
patient’s genetic background. 

Finally, it may be possible to use the information about genetic and environmental 
susceptibility factors for RA to identify high-risk groups in the general population with the 
aim of develop preventive strategies. 
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10. SAMMANFATTNING PÅ SVENSKA 
 
Svensk titel: Genetisk predisposition för reumatoid artrit (ledgångsreumatism) i 
Malaysia 

Har du någonsin tänkt på det här: ”Vi är olika men i grunden lika som bär” eller ”vi är lika 
som bär men olika” 

Min avhandling handlar om likheterna och olikheter mellan europeiska (kaukasiska) 
populationer och asiatiska fram för allt malaysisk population och riken att utveckla RA. Vi 
vet att både genetiska och omgivningsfaktorer påverkar risken att få RA. Vi vet att 
immunologiska faktorer som vita blodkroppar och speciella antikroppar är avgörande, men 
hur ser sambandet ut mellan de immunologiska mekanismerna som orsakar sjukdomen och 
de faktorer som medför risk att utveckla reumatoid artrit (RA)? 

De fyra delarbetena som ingår i avhandling behandlar just detta. 

I delarbete 1 visar jag att speciella genvarianter (alleler) kallad shared epitope alleler, som är 
viktig för reglering av immunsystemet, ökar risken att få RA hos en grupp av patienter som 
har antikroppsmarkören ACPA, anti-citrullinated protein antibody. Man finner samma gen i 
europeiska som i malaysiska populationer men det är olika genvarianter (alleler) som är 
överrepresenterade i Malaysia jämfört med i Europa.  

I delarbete 2 visar jag att de genvarianter som vi studerade i delarbete 1 den så kallade 
shared epitope alleler interagerar med rökning. Personer som har riskvariant och dessutom 
rökar har en mångfaldigt ökad risk för att utveckla ACPA-positivt sjukdomen. I motsats, ökar 
denna kombination inte risken för ACPA-negativt sjukdomen. 

I delarbete 3 visar jag att det finns speciella genvarianter skilda från shared epitope som 
ökar risk för RA. Min studie visar att genvarianter i PADI-gener som inblandad i citrullinering 
av proteiner ökar risken för sjukdomen. Det som är speciellt här är att dessa genvarianter 
har hittills bara visats vara en riskfaktor för RA i asiatisk befolkning och inte i europeisk 
befolkning. 

I delarbete 4 har jag tillsammans med kinesiska forskare visat genvarianter som kan påverka 
risken för att utveckla ACPA-negativt sjukdomen. De genvarianter i så kallade DCIR-genen 
som påverkar makrofagaktivering ökar alltså risken av ACPA-negativt sjukdomen. DCIR-
genvarianter är däremot ger inte en risk av ACPA-positivt RA. 

Sammanfattningsvis visar min avhandling på att det finns en avgörande koppling mellan 
genetiska faktorer jag har studerat i HLA-DRB1, PADI och DCIR gener, och omgivningsfaktor, 
jag har studerat rökning. Samtliga studerade faktorer har betydelse för immunsystemets 
aktivering. Långt flera gener och omgivningsfaktorer har betydelse för utveckling av 
sjukdom.  

Det är mycket intressant att se att många av faktorerna är gemensamma för människor i 
olika delar världen–vi är lika.  Men att det också finns skillnader i hur sjukdomen 
/sjukdomarna uppstår – vi är olika. 

Med kunskapen om likheter och skillnader kommer vi att bättre kunna förhindra sjukdomar 
som ledgångsreumatism och specialdesigna behandlingar som på ett vetenskapligt sätt 
passar olika populationer och till slut passar varje individ.  
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