
REDOX PIONEER #7

Redox Pioneer:
Professor Arne Holmgren

Elias S.J. Arnér

Abstract

Dr. Arne Holmgren (Ph.D., 1968) is recognized here as a redox pioneer, because he
has published at least one article on redox biology that has been cited over 1000
times and has published at least 10 articles, each cited over 100 times. He is widely
known for his seminal discoveries and in-depth studies of thioredoxins, thior-
edoxin reductases, and glutaredoxins. Dr. Holmgren, active throughout his career
at Karolinska Institutet, Sweden, has led the field of research about these classes of
proteins for more than 45 years, continuously building upon his sequence deter-
mination of Escherichia coli thioredoxin in the late 1960s and discovery of the
thioredoxin fold in the 1970s. He discovered and named glutaredoxin and he
determined the structure and function of several members of these glutathione-
dependent disulfide oxidoreductases. He still continues to broaden the frontiers of

knowledge of thioredoxin and glutaredoxin systems. The thioredoxin fold is today recognized as one of the most
common protein folds and the intriguing complexity of redox systems, redox signaling, and redox control of
cellular function is constantly increasing. The legacy of Dr. Holmgren’s research is therefore highly relevant and
important also in the context of present science. In a tribute to his work, questions need to be addressed toward
the physiological importance of redox signaling and the impact of glutaredoxin and thioredoxin systems on
health and disease. Dr. Holmgren helped lay the foundation for the redox biology field and opened new vistas in
the process. He is truly a redox pioneer. Antioxid. Redox Signal. 15, 845–851.

Experiments carried out with the highest precision should be analyzed with an unbiased mind. Redox biology has a great future.
It has always been a great inspiration to know that redox proteins have been around during evolution from the beginning of life
on earth and there is yet so much to discover.

—Professor Arne Holmgren

Educational and Professional Training
of Dr. Holmgren

Dr. Holmgren was born on December 21, 1940, in the
country side outside Katrineholm in the Södermanland

region of Sweden, with his childhood farm still serving as his

summer resort. From 1960 he studied medicine at the Uppsala
University, where he met Dr. Peter Reichard. Dr. Reichard,
who had discovered ribonucleotide reductase, was a profes-
sor of medical chemistry at Uppsala University for about 2
years during 1961–1963 (57). Arne Holmgren, then a medical
student in his 20s, joined Dr. Reichard’s research group and
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was first given the task to characterize how B12 and ATP were
involved in supporting CDP reductase activity in Escherichia
coli (36). Eventually, Holmgren discovered that E. coli con-
tained less than one molecule of B12 per cell, thereafter leaving
the B12 project to search for new venues (A. Holmgren, pers.
comm.). Having finished his bachelor of medicine in 1962 and
his medicine and surgery courses during 1963–1964, Holmg-
ren moved in 1964 to the laboratory of Dr. Reichard in
Stockholm at Karolinska Institutet, where Dr. Reichard then
had succeeded Erik Jorpes as a professor in medical chemistry
(57). Within that environment, Arne Holmgren took on the
tasks of further characterizing E. coli thioredoxin, which had
just been discovered as a reductant of ribonucleotide reduc-
tase (43). This certainly proved to become a successful choice
of project. Holmgren received his Ph.D. in 1968, awarded with
the highest marks for a thesis entitled ‘‘Studies on thioredoxin
from Escherichia coli B.’’ Dr. Holmgren has stayed faithful to
the thioredoxin field ever since and he is today recognized as
its foremost authority and a genuine redox pioneer. Dr.
Holmgren has remained at Karolinska Institutet throughout
the remainder of his career, where he subsequently became
assistant professor (Docent) in medical chemistry in 1969,
university lecturer in 1970 (with responsibilities for the med-
ical student training), associate professor (Forskardocent) in
1973, professor of medical protein chemistry and enzymology
in 1983, and finally succeeding Peter Reichard as professor
and chairman of biochemistry in 1991 and as director of the
Medical Nobel Institute for Biochemistry in 1992. In 2008, Dr.
Holmgren retired on paper, but he is still a highly active sci-
entist leading a vibrant research group, from where many
additional discoveries continue to arise.

Area of Interest in Redox Biology—
The Thioredoxin and Glutaredoxin Systems

In this short article recognizing the work of Dr. Holmgren, we
will reflect upon his key findings on the thioredoxin and glu-
taredoxin systems in particular, but we should also learn from

his strategy of careful, patient, and thorough studies of the
molecular mechanisms of these proteins. The type of meticulous
biochemical work performed by Dr. Holmgren is as important
as ever in this present era of popularity in high-throughput
screening projects and beliefs in systems biology. Although
modern approaches of high-throughput studies can certainly
yield important novel insights of crucial importance for the
understanding of organisms, it is probably only from work of
lone, focused, curious scientists that genuine discoveries of no-
vel molecular mechanisms can arise. The work of Dr. Holmgren
should thus serve as an inspiration for any aspiring researcher
who may be interested in the very details of the chemistry of life.

The very first study arising from the work of Holmgren,
then working with his fellow student Lars Thelander in the
group of Dr. Reichard in Uppsala, related to the effects of
ATP on CDP reduction and thus the allosteric regulation of
ribonucleotide reductase (36). The regulation of fidelity and
activity of ribonucleotide reductase through two separate
allosteric effector sites is of utmost intricacy (56) and could
have caught anyone’s full interest. However, Holmgren
choose to focus on the thioredoxin system and this led him
into his tremendously successful career in the redox bi-
ology field. He published his second paper in 1967 together
with Lubert Stryer and Peter Reichard on the conforma-
tional change of thioredoxin upon its reduction (61)—an
important property of the protein, considering that the re-
dox status-related conformational changes of thioredoxin
are today known to affect its binding to master control
factors such as apoptosis regulating kinase-1 (49). In his
third to seventh papers, thus completing his Ph.D. thesis
work, Holmgren worked out a reproducible scheme to
prepare thioredoxin from E. coli cells, and by having spent
time in Dr. Richard Perham’s laboratory in Cambridge,
England, to learn sequencing techniques, he determined
the amino acid sequence of E. coli thioredoxin (17–19, 34,
35). The knowledge of the sequence of E. coli thioredoxin
and the mapping of its active site -Trp-Cys-Gly-Pro-Cys-
laid the very foundation for the whole thioredoxin field.
Holmgren subsequently spent more than 2 years crystal-
lizing thioredoxin and, together with Dr. Carl-Ivar Brän-
dén, published in 1975 the 2.8 Å structure of oxidized E. coli
thioredoxin (37). It should be noted that the thioredoxin
fold is today known as one of the most utilized folds among
proteins, catalyzing a wide range of important functions
(1b). With the many thioredoxin fold proteins exerting
highly diverse reactions within different subcellular com-
partments and under different conditions, clearly there
must be individual protein-specific features of each par-
ticular member of this superfamily of proteins. Still, many
aspects of the thioredoxin fold proteins are rather univer-
sal, and by learning from the key findings of Dr. Holmgren,
we can learn much of these specific properties of the
thioredoxin fold proteins and the many systems within
which they act. Three of his key findings shall be summa-
rized here in slightly more detail.

Description of Key Finding 1

The discovery of glutaredoxin and characterization
of glutaredoxin systems

A major contribution of Dr. Holmgren was achieved al-
ready during his graduate studies, as was described earlier,

Photo of the author together with Dr. Holmgren, in con-
nection with the Oxygen Club of California meeting in
Santa Barbara, CA, March 2010.
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that is, the determination of the E. coli thioredoxin primary
sequence. However, the two first major awards that he re-
ceived, the Svedberg Prize (1979) and the Eric K. Fernström
Prize (1980), recognized his discovery of E. coli glutaredoxin.
His discovery rose from a thorough analysis of the mecha-
nisms by which a strain of E. coli (tsnC7004) shown to lack
thioredoxin could actually grow, thus suggesting that a sec-
ond reducing system for ribonucleotide reductase existed.
Through this work, a heat-stable protein that could support
ribonucleotide reductase, required glutathione, and clearly
was not thioredoxin was discovered by Dr. Holmgren. He
named the protein ‘‘glutaredoxin’’ in the first description of
this study, published by Holmgren as single author in 1976
(20). Early follow-up studies revealed the presence of similar
glutaredoxin-like proteins also in T4 phage-infected E. coli (22)
and calf thymus extracts (47). Purification of the E. coli glu-
taredoxin to homogeneity revealed the specific features of its
glutathione-dependent activity with ribonucleotide reductase
and additional enzymatic properties, such as being a general
glutathione-disulfide oxidoreductase. Interestingly, already
at that time there was also evidence for large amounts of
additional glutaredoxins being present in E. coli (23, 24). To-
day, it is well known from the work of Holmgren and many
others that most if not all organisms express several isoforms
of both thioredoxins and glutaredoxins, carrying out func-
tions that may be either specific or complementary to each
other. The major differences between glutaredoxins and
thioredoxins are found in their use of glutathione. Even if both
classes of proteins belong to the thioredoxin fold superfamily,
glutaredoxins utilize glutathione as reductant and thereby
also glutathione reductase, whereas thioredoxins are directly
dependent upon thioredoxin reductases (Fig. 1). This key
difference in function was evident already in the earliest work
of Holmgren and has generally held true until today, even if
newer findings such as mammalian Grx2 being reduced by
thioredoxin reductase (40) show that there may be also a
cross-talk between the glutaredoxin and thioredoxin systems.

With the glutaredoxins gaining more and more interest, based
upon the many functions they carry out that are not neces-
sarily overlapping with those of thioredoxins (14), the initial
papers of Holmgren discovering and describing these pro-
teins are truly pioneering works.

Description of Key Finding 2

Catalytic mechanisms of thioredoxins
and glutaredoxins

To fully understand the functions and roles of thioredoxin
and glutaredoxin (14, 28, 30), Dr. Holmgren has painstakingly
studied many crucial details of their structures (6), confor-
mational dynamics (6), substrate specificities (23, 25, 32), and
several additional features of these proteins. These studies
have laid the foundation for our current understanding of the
catalytic mechanisms of both thioredoxins and glutaredoxins.
This includes the low pKa of the nucleophilic thiolate of the N-
terminally located Cys residue in the -CXXC- active site motif
typical for these proteins (10–12) and the slight but important
conformational differences between reduced and oxidized
species of thioredoxin that may guide the binding to other
protein partners, as mentioned earlier. Importantly, Dr.
Holmgren has also characterized the differences between the
‘‘dithiol’’ reduction mechanism for disulfide reduction sup-
ported by both thioredoxins and dithiol glutaredoxins, as well
as the ‘‘monothiol’’ reduction mechanism seen with glutar-
edoxins, involving the recognition and reduction of a mixed
protein-glutathione disulfide and thus supporting deglu-
tathionylation reactions (5, 6, 51). The functional impact of
these qualitatively different mechanisms of glutaredoxin and
thioredoxin may be significant, also considering that many
‘‘monothiol’’ glutaredoxins, that is, thioredoxin fold proteins
with glutaredoxin homology having only one Cys residue in
the active site, have been indeed identified (14). The principal
differences between the dithiol and monothiol mechanisms
are shown in Figure 2.

FIG. 1. The principal com-
ponents of Grx and Trx sys-
tems. This slide, made in the
1980s by Dr. Holmgren, sche-
matically shows the Grx and
Trx systems as alternative
reductants of ribonucleotide
reductase, clearly illustrating
the glutathione dependence
of Grx but with both systems
ultimately being propelled by
NADPH through either TrxR
or glutathione reductase.
Trx, thioredoxin; TrxR, thior-
edoxin reductase; Grx, glu-
taredoxin; GSH, glutathione;
GSSG, glutathione disulfide.
(Slide kindly provided by Dr.
Holmgren.)
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Description of Key Finding 3

The links between mammalian thioredoxin reductase
and selenium

Dr. Holmgren was the first to purify mammalian thior-
edoxin reductase to homogeneity, from bovine (21), rat (48)
and human tissues, thereby discovering that the enzyme was
larger and very different from its bacterial counterpart. Dr.
Holmgren was also the first to show that a number of sele-
nium compounds could be directly reduced by mammalian
thioredoxin reductase, including selenite (42), selenodiglu-
tathione (4), and selenocystine (3). These findings were all
fascinatingly integrated into a selenium-centered system
when it was discovered by others that human thioredoxin

reductase itself is a selenoprotein (16, 62). Dr. Holmgren
rapidly showed that the selenocysteine residue of the en-
zyme was indeed needed for its catalytic activity and he
revealed molecular mechanisms by which it functioned (67–
69). He also discovered additional selenium-containing
substrates for the enzyme, such as ebselen (64–66), as well as
completely selenocysteine-dependent activities of thior-
edoxin reductase including reduction of nitrosoglutathione
(50) and diverse peroxides (69). He also published the first
crystal structure of mammalian thioredoxin reductase (58).
Together, these findings intimately link the diverse functions
of the complete mammalian thioredoxin system to that of
selenium status and thus to the many aspects of selenium in
health and disease. This may be also of special importance in

FIG. 2. Monothiol and di-
thiol mechanisms of Grxs.
This scheme shows the dif-
ference between dithiol (top)
and monothiol (bottom) mech-
anisms in reduction of Trx or
Grx substrates. (Slide kindly
provided by Dr. Holmgren.)

FIG. 3. Links between the
mammalian Trx system, se-
lenium metabolism, and cell
growth. This scheme summa-
rizes some of the many func-
tions of the Trx system that
promote or regulate cell
growth. With mammalian
TrxR being a selenoprotein,
these functions are also sele-
nium dependent. TrxR can
further directly reduce several
selenium-containing sub-
strates, which intimately links
the Trx system to selenium
metabolism. Finally, the sele-
nocysteine residue of TrxR is a
target for a number of electro-
philic anticancer agents, there-
by converting the enzyme to a
pro-oxidant toxic protein that
together with the inhibition of
the Trx system may explain
some of the anticancer efficacy
of such drugs. ROS, reactive
oxygen species. (Scheme
adopted from a slide kindly
provided by Dr. Holmgren.)
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relation to cancer growth and anticancer therapy, as sum-
marized in Figure 3.

Other Achievements

Dr. Holmgren has published more than 380 peer-reviewed
publications and has clearly had a major impact on research in
redox biochemistry. As of today, about 70 of those publica-
tions have attracted 100 citations or more (Supplementary
Table S1; see www.liebertonline.com/ars.). It is difficult to
decide what other achievements of Dr. Holmgren should be
singled out as his additional accomplishments, in addition to
the key findings summarized earlier. However, the following
works clearly deserve to be mentioned:

� Characterizing thioredoxin as not only a reductant of
ribonucleotide reductase but also a powerful general
disulfide reductase, and in the process, introducing in-
sulin as an efficient thioredoxin substrate used in assays
of thioredoxin activities (25–27, 33, 59).
� Purifying mammalian thioredoxin and thioredoxin re-

ductase to homogeneity, and developing additional
specific assays to measure their activities (21, 48).
� Beyond discovering glutaredoxin (see earlier text) also

determining the glutaredoxin structure using nuclear
magnetic resonance (NMR) (5, 7) and catalytic mecha-
nism with ribonucleotide reductase from either E. coli
(5) or mammals (63).
� Purifying and characterizing Grx1, Grx2, Grx3, and

Grx4 from E. coli (1, 1a, 13, 15, 24, 51, 52, 60).
� Discovering mammalian glutaredoxin 2 and finding

that it is an iron-sulfur cluster protein (38, 44–46).
� Discovering that the N-terminal Cys residue in the

thioredoxin active site has a low pKa and thereby ex-
plaining the mechanism of thioredoxin-catalyzed dis-
ulfide reduction (41), which was further supported by
determination of the structure of reduced thioredoxin
(8, 9) (at that time the largest solved 2D NMR protein
structure). Also discovering differences between the
oxidized and reduced protein (29, 39), which underlies
the redox regulation by binding of reduced but not
oxidized thioredoxin to selected target proteins.
� In a collaborative effort, discovering that thioredoxin

regulates photosynthesis (31).
� Characterizing extracellular human thioredoxin and the

C-terminally truncated thioredoxin-80 and the effects of
these proteins as immunomodulatory cytokines (2, 53–55).

In addition to his many scientific accomplishments, Dr.
Holmgren has been also a member of the Nobel Assembly at
Karolinska Institutet selecting nobel laureates and of the
Swedish Royal Academy of Sciences and recipient of a number
of prizes and awards, and he has tutored many prominent
scientists in the field of redox biochemistry. Last, but not least,
he has vividly entertained many of his colleagues with illus-
trative recollections of his hunting adventures—his favorite
outdoor activity, tracking down moose and wild boars in the
Swedish woods aided by his Dachshund dogs. Those dogs have
been also loyally joining him in his office. The latest one, Digger,
is the current dear and friendly pet in the Holmgren laboratory.

Asking Dr. Holmgren to give some words of wisdom for
any future scientists in the field, he gives the following
statement:

A citation from the French physiologist Claude Bernard has been
a great inspiration: ‘‘What we know is a great obstacle to learn more
about what is yet unknown to us.’’ Experiments carried out with the
highest precision should be analyzed with an unbiased mind. Redox
biology has a great future. It has always been a great inspiration to
know that redox proteins have been around during evolution from
the beginning of life on earth and there is yet so much to discover.
Another great inspiration has been to work on selenium and sele-
noproteins knowing the pioneering work of Jac Berzelius, who dis-
covered and named selenium in 1818 and was a professor of
chemistry and pharmacy here at Karolinska Institutet in Stockholm.
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