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ABSTRACT 

Antimicrobial polypeptides (AMPs) are effector molecules of the innate immune 

defense. AMPs are mainly expressed in epithelial cells and immune cells, providing the 

first line of defense to infection as direct antimicrobials. In addition, many AMPs 

display immunomodulatory functions in both the adaptive and innate immune system. 

Thus, a tight control of AMP-expression is necessary for a functional immune 

response.  

 

In this thesis the antimicrobial polypeptide armament of neutrophils (PMNs) was 

evaluated for its activity against four human pathogens S. aureus, H. influenzae, M. 

catarrhalis and C. albicans. We observed a high degree of redundancy in antimicrobial 

activity for a majority of the AMPs. Still, some polypeptides exhibited a more specific 

activity against individual pathogens. This suggests that PMNs are equipped with a 

repertoire of antimicrobial peptides and proteins with broad activities, underscoring the 

importance of PMNs in the host response. 

 

In a clinical study the expressions of cathelicidin LL-37 and α-defensins HNP1-3 were 

quantified in nasal fluids of patients with primary immunodeficiencies (PIDs). Healthy 

controls and most PID patients responded to pathogens with increased levels of AMPs 

in their nasal fluid. Interestingly, in patients with common variable immune deficiency 

(CVID) and Hyper IgE syndrome (HIES), the levels of AMPs did not increase in 

response to pathogens. Thus, there is a dysregulation in AMP-release in CVID and 

HIES patients, which may explain why these patients suffer from frequent respiratory 

tract infections. 

 

Furthermore, we have detected an induced expression of AMPs by human breast milk 

in colonic epithelial cell lines.  We isolated and characterized the inducing compound 

as lactose and noted that the inducing effect of the gene encoding LL-37 (CAMP) was 

dependent on intact p38 mitogen-activated protein kinase and c-Jun N-terminal kinase 

signaling. A strong synergistic effect on CAMP expression in HT-29 cells was observed 

in stimulations with lactose and phenylbutyrate or butyrate. This synergistic effect was 

further dissected by a proteomic approach. The subsequent pathway analysis of the 

proteomic results indicated that eleven pathways were activated. By using the novel 



 

 

CAMP gene reporter system we confirmed that the pathways of thyroid hormone 

receptor and retinoid X receptor (TR/RXR) activation, eicosanoid signaling and steroid 

biosynthesis were associated with the regulation of CAMP.  

 

In summary, AMPs exhibit both a large redundancy and strict specificity with regards 

to microbial killing. This may be relevant for certain disease conditions, where AMPs 

are lacking or dysregulated. Endogenous molecules, such as lactose and thyroid 

hormones are inducers of AMPs. In light of the wide-spread antibiotic resistance, 

attempts to strengthen epithelial barriers are highly warranted and the data presented 

here provide a concrete rationale for such studies. 
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1 BACKGROUND 

 

1.1 HOST-MICROBE INTERACTIONS 

From the sterile environment of the womb we are delivered into a world teeming with 

microbes. From then on our bodies will be either transiently or permanently inhabited 

by microbes outnumbering our cells by ten to one [1]. Most of these inhabitants are 

bacteria, although also Archaeans and Eukaryans are colonizers [2, 3]. The resident 

microbes are divided into several sub-populations formed in response to different 

epithelial niches, and hence differing evolutionary pressures. All these niche-specific 

microbes are referred to as the microbiome.  

 

The effect the microbiome exerts on us is dependent on the adaptation strategy chosen 

by its microbes. In a normal setting we co-exist in a mutualistic and beneficial 

relationship, where the microbiome can expand our genome and provide us with an 

evolutionary plasticity and traits that humans have not evolved. For instance, the 

microbiome provides us with several vitamins and essential amino acids. It metabolizes 

harmful xenobiotics and digests otherwise inaccessible polysaccharides into utilizable 

short-chain fatty acids [2, 4]. In addition, the microbiome inhibits infections by 

strengthening our immune response and by producing an inhospitable and energetically 

arid environment for invading pathogens [5]. However, in the case of pathogens, the 

microbes may choose a colonization strategy that is detrimental to us and may lead to 

disease. The net effect of how pathogenic colonization affects us is highly dependent on 

our immune status. An impaired immune response is a prime target for both classical 

and opportunistic pathogens, whereas hyperactivation of immune responses in sepsis or 

during severe influenza may also be detrimental to health [6]. Furthermore, microbial 

factors may also dictate the outcome of microbial infiltration, exemplified by the 

virulence factors of pathogens. These factors aid in the adaptation of the microbe to the 

host environment, inhibit host defenses and promote transmission between hosts. In 

addition, the delicate host-microbe balance can be disturbed by host genetic or 

environmental factors such as diet, lifestyle, or antibiotic use. This can result in an 

altered composition of the microbiome with implications for several diseases [3, 7]. For 

example, mice deficient in Toll-like receptor 5, a microbial sensor of innate immunity, 

show deviations in the composition of the gut microflora and symptoms of metabolic 

syndrome [8]. Interestingly, these symptoms are transferrable to wild type germ-free 
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mice by inoculating them with the altered gut flora from the Toll-like receptor 5 

knockout mouse [8]. Conversely, by transferring the gut microflora from lean human 

donors to patients suffering from metabolic syndrome can result in the alleviation of 

several symptoms [9]. Also inflammatory bowel disease and diabetes are associated 

with a dysregulation of the microbiota and is attributed to immunological alterations or 

diet [10-13]. This further supports the notion that maintaining an optimal microbiota is 

a major contributor to health and defense against infection. 

 

1.2 INNATE IMMUNITY  

 

Background 

In the host the regulation of the microbiota and the inhibition of pathogens access 

commonly functions without clinical symptoms, although there are instances when a 

strong defense response is required and mounted. In acute inflammation the body reacts 

with broad immune activation to potentially harmful stimulus from pathogens or 

endogenous detrimental conditions, e.g., cancer or tissue damage. The non-specific, or 

innate, defense does not need prior recognition of the threat to function, rather it 

responds in a preprogrammed manner to broad classes of threats. The innate responses 

are fast acting (~1.5 h for the recruitment of neutrophils to a wound [14]) in comparison 

to the adaptive or antigen-specific response which is mounted days later. Still, the 

innate responses will lag behind a replicating microbe with a generation time of 20 

minutes or less. To maintain the defenses during this time and support infiltrating 

immune cells, preformed defense mechanisms are already present at the site of 

infection. Typically, these defenses may clear an infection even without the requisition 

of the innate effector cells or the adaptive immune response. 

 

Evolutionary aspects of the immune system 

 

The innate immune system is an evolutionary ancient system of a defense born from 

the constant arms race between host and microbe for the same resources. Already 

unicellular organisms developed defense systems to detect and fend off invading 

pathogens [15]. However, with the advent of multicellular organisms and their 

associate microbiomes innate immunity evolved mechanisms to distinguish self from 

non-self. It also became important to distinguish commensal microbes from pathogens 

and to distinguish a healthy host cell from a damaged one [16, 17]. Because of the large 
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effective population of competing microbes with their propensity to evolve, one can 

even go as far as to say that an efficient immune system is a prerequisite for the 

survival of a multicellular organism. The ancient origin and the efficacy of innate 

immunity explain its presence in most life forms. It is the sole contributor to the 

immune defense of plants, fungi and invertebrates, and it acts as the first line of defense 

in vertebrates [17].  

 

How does the innate immune system function? 

The innate immune response acts at the host-microbial interface, where it is maintained 

by surface epithelia with support from resident or infiltrating phagocytic cells such as 

monocytes, macrophages and neutrophils. At this interface anatomical, mechanical, 

chemical, microbiological and immunological factors provide a barrier to infection 

(Figure 1). 

 

Figure 1. The human barrier defenses. Several barrier functions cooperate in order to 

achieve microbial clearance. Antimicrobial polypeptides (AMPs) act directly as 

antimicrobials and indirectly as modulators of the immune response by recruiting and 

activating innate and adaptive immune cells.  

 

The anatomical barrier to infections is provided by the compartmentalization of 

sensitive tissues in efficiently sealed epithelial layers by mechanisms such as 

keratinization and tight junctions. The mechanical barrier is exemplified by the constant 
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movement of cilia, cell shedding and peristalsis that expel unwanted colonizers. The 

chemical barrier is provided by the secretion of fluids such as mucus, saliva, and tears 

that contain substances inhibiting the proliferation and spreading of microbes. The 

microbiological barrier is constituted by the microbes already inhabiting our bodies, 

providing an inhospitable environment for invading microbes. Normally microbes 

cannot penetrate the combined defenses of the epithelial lining, since these cells 

provide an additional innate immunological barrier by the secretion of AMPs.  

 

However, tissue injury or pathogen virulence factors may allow a microbe to penetrate 

the pre-existing barriers of the epithelia. The microbe will at that point encounter 

resident macrophages, dendritic cells, neutrophils or molecules of the complement 

system that can neutralize the microorganism. If the pathogen evades also these 

obstacles it may trigger the alarm for further innate immune responses by being 

recognized by pattern recognition receptors (discussed below) expressed on epithelial 

and sentinel cells such as macrophages and dendritic cells [17].  

 

The activation of pattern recognition receptors or signals from damaged cells will lead 

to a cascade of responses that ultimately result in the activation of immune genes, the 

secretion of antimicrobial peptides and proinflammatory cytokines. This will lead to 

inflammation, recruitment and activation of neutrophils followed by a rapid influx of 

circulating macrophages and lymphocytes, phagocytosing the pathogen. In addition, 

phagocytic cells can also secrete antimicrobial agents in concert with epithelial cells of 

the affected area for extracellular killing of the pathogens. Finally, additional adaptive 

immune responses will be initiated by signals from cells of the innate immune system. 

Although the responses of the innate immune system are germline encoded, and their 

reactions thus predetermined, its cells are still able to direct and tailor the adaptive 

immune responses to broad classes of pathogens by the secretion of specific cytokines 

[17].  

 

1.2.1 Cells of innate immunity 

  

1.2.1.1 Epithelial cells 

Although not strictly immune cells, the epithelial cells at the host-microbe interface of 

the skin and mucosa, are the first cells an infiltrating microbe encounters. The epithelial 

cells must both prevent pathogen entry while functioning as a gatekeeper for molecules 
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transported in and out of the body. The epithelial cell contributes significantly to the 

immune defense and the regulation of the microbiota through the secretion of inhibiting 

and antimicrobial components including antimicrobial polypeptides and mucins [18-

20]. In addition, epithelial cells act as sentinel cells through their expression of surface 

and cytoplasmic pattern recognition receptors (discussed below) [21]. The epithelial 

cells can also act as orchestrators of the barrier defenses. This is achieved through the 

interaction of epithelial cells with antigen presenting cells (APCs) or lymphocytes 

followed by the secretion of cytokines, recruiting cells of both the innate and adaptive 

immune systems [22, 23].  

 

1.2.1.2 Granulocytes  

The polymorphonuclear neutrophils (PMNs) are the most abundant leucocytes in 

peripheral blood, constituting 40-70 % of all leukocytes. In comparison to eosinophils 

and basophil granulocytes making up only a few percent of leukocytes [24]. The 

granulocytes diverge from a common progenitor cell and mature in a series of 

developmental stages in the bone marrow (granulopoiesis), during which their granules 

are formed. The granules contain microbicidal components, including antimicrobial 

polypeptides, proteases and enzymes generating reactive oxygen species [24].  

 

The PMNs are recruited to a site of infection by chemotactic signals from epithelia and 

resident macrophages. They extravasate from blood to a site of infection by binding 

firmly to and migrating through the activated endothelium of microvessels in inflamed 

tissues. They are commonly the first immune cell infiltrating a site of infection [25]. 

During extravasation PMNs release their granules in a distinct order.  Primarily, the 

secretory granules are released in contact with the endothelium to prepare the 

endothelia for the transmigration of PMNs and the tertiary/gelatinase granules are 

released during the transmigration through the endothelium. Finally the 

secondary/specific and primary/azurophil granules that contain the bulk of the 

microbicidal components of PMNs are exocytosed at the site of infection by 

degranulation [24]. The PMNs are also phagocytic cells that engulf and degrade 

opsonized and non-opsonized microorganisms in phagolysosomes by both oxygen-

dependent and -independent mechanisms [24]. The oxygen-independent mechanisms 

are formed by digestive enzymes as well as antimicrobial polypeptides present in the 

granules. Furthermore, it was recently showed that PMNs can undergo NETosis, where 

the PMNs release structures called neutrophil extracellular traps, or NETs, composed of 
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nuclear or mitochondrial chromatin and DNA laden with microbicidal molecules that 

can capture and kill extracellular pathogens [26].   

 

1.2.1.3 Macrophages 

Resident macrophages are constantly present in connective tissues, the liver, the lung 

and the skin and are often the first immune cells an infecting microbe encounters.  

Additionally, there are circulating macrophages capable of migrating to a site of 

infection. Like other activated phagocytes the surface of macrophages is covered with 

pattern recognition receptors that aid in sensing microbes or cell debris [21]. Much like 

the PMNs, the macrophages act as phagocytes, engulfing and digesting cell debris or 

pathogens in their phagolysosome. They also orchestrate the innate and adaptive 

immune responses by antigen presentation, stimulation of lymphocytes and other 

immune cells through release of cytokines and lipid inflammatory mediators [17]. 

 

1.2.1.4 T-helper 17 cells 

Th17 cells is a subset of T helper cells, expressing the transcription factor retinoic acid 

receptor (RAR)-related orphan receptor-γ (ROR-γ) and are recognized by their 

secretion of IL-17 and IL-22 [27]. They are distinct from both Th1 and Th2 cells and 

are, along with macrophages, key orchestrators of mucosal innate immunity. They 

recruit neutrophils and induce AMP expression in epithelia [28]. An impaired function 

of Th17 cells has been detected in both HIES (discussed later) [29] and in chronic 

mucocutaneous candidiasis [30]. The Th17 cells have recently gained much attention 

by their association with systemic lupus erythematosus (SLE), psoriasis, rheumatoid 

arthritis and other autoimmune conditions [31].  

 

Additional cells contribute to the innate defense against infection. These include the 

cytotoxic natural killer- (NK-) cells, acting on virally infected or tumor cells and mast 

cells contributing to inflammatory responses. The antigen presenting dendritic cells are 

functioning as sentinel cells, sampling the environment for molecular signatures of 

infection by several pattern recognition receptors. Once a molecule is recognized by the 

receptors of the dendritic cell it migrates to the lymph nodes and present its catch to 

adaptive immune cells (B- and T-cells) [17]. 
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1.2.2 Receptors of innate immunity 

Pattern recognition receptors (PRRs) are involved in the sensing of microbes. PRRs 

include the surface and endosome/lysosomal Toll-like receptors (TLR), as well as the 

cytosolic NOD-like receptors (NLRs). The PRRs recognize pathogen-associated 

molecular patterns (PAMPs), which are structurally conserved sets of molecules that 

are unique and generally essential to the specific microbes [17]. The PRRs recognize a 

wide range of PAMPs including lipopolysaccharide (LPS), lipoteichoic acid, 

peptidoglycan, double-stranded RNA and unmethylated CpG DNA, structural motifs 

specific for different subtypes of microbes [17]. The PRRs can also detect alarm signals 

for aberrant tissue states in the host by the recognition of specific damage-associated 

molecular patterns (DAMPs) or alarmins, e.g., high-mobility group protein B1 

(HMGB1), self-DNA, calprotectin and heat shock proteins [32, 33].  

 

The binding of PAMPs or DAMPs to PRRs triggers pro-inflammatory mitogen-

activated protein kinase (MAPK) signaling cascades and activate nuclear factor kappa-

light-chain-enhancer of activated B cells (NF-κB) or interferon regulatory factor 3 

(IRF-3) [17]. This will result in increased expression of chemokines and cytokines that 

can attract immune cells, eliciting systemic responses such as fever [17]. Furthermore, 

receptor activation will lead to the expression of microbicidal molecules, e.g., reactive 

oxygen species and AMPs [23]. The PRRs are, as expected, essential for the 

recognition of microbial signatures and thus the innate immune response. Mutations in 

PRRs result in hyporesponsiveness to a wide variety of pathogens with increased 

susceptibility to infections [34]. For example, mutations in NOD-2 reduce the 

expression of defensins and are associated with Crohn’s disease [35, 36].  

 

1.2.3 Endogenous regulators of innate immunity 

Many molecules act as regulators of the innate immune response. One example is 

formed by cytokines, a heterogeneous group of proteins expressed and secreted by 

several cell types. Cytokines are part of complex signaling networks, regulating 

inflammatory responses both systemically and locally. Cytokines act upon specific 

receptors, commonly G protein-coupled, and initiate a number of responses in the target 

cells, e.g., chemotaxis or proliferation. Cytokines can be subdivided into two types 

depending on what type of immune response they produce. Type 1 cytokines are 

associated with innate immune mechanisms, mediating inflammatory responses and are 

commonly produced by phagocytes, dendritic cells, endothelial or epithelial cells in 
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response to pathogenic stimuli. Type 2 cytokines are primarily produced by T-cells and 

NK-cells in response to specific antigenic stimuli and invoke mainly humoral immune 

responses [37]. Alarmins are yet another group of molecules capable of activating both 

the innate and adaptive immune systems in response to injury or infection. Examples of 

alarmins are HMGB1 as well as antimicrobial peptides such as defensins, cathelicidins 

and azurocidin [38]. Hormones can also act as immunomodulators. Several 

autoimmune diseases that are associated with innate immunity present at puberty and 

display a gender bias. This implicates sex hormones in the etiology of these diseases. 

Some of these diseases are lupus erythematosus, rheumatoid arthritis, Sjögren’s 

syndrome and ankylosing spondylitis [39]. Other hormones that have been shown to 

modulate the immune response are insulin-like growth factor-1, prolactin, thyroid 

hormones and anti-inflammatory glucocorticoids [40, 41]. 

 

1.3 ANTIMICROBIAL PEPTIDES  

Historical background 

Already by the end of the 19th century a number of observations on antimicrobial 

actions of components present in tissues and secretions were presented [42, 43]. 

Between 1920 and 1950 several papers on the isolation and the antimicrobial activity of 

molecules from several different organisms were published. However, due to 

limitations in the isolation and characterization capabilities of the time these articles 

were not more than general descriptions. For example, already in 1922 Alexander 

Fleming described the antibacterial action of an antimicrobial polypeptide now thought 

to be lysozyme [43]. In 1928, the same year as the discovery of penicillin, the first 

lantibiotic was described as a substance produced by bacteria and capable of inhibiting 

the growth of other bacteria [44].  

 

For many years investigations into the innate antimicrobial defense was in large 

overshadowed in favor of research on adaptive immunity and oxygen-dependent 

mechanisms of host defense. In organisms with an adaptive immune system the 

research of innate immunity was with few exceptions overlooked and was instead 

focused on innate defenses in invertebrates or plants [45, 46]. However, in the 1950’s  

descriptions of proteinaceous antimicrobial compounds of rabbit leukocytes 

(phagocytin) showed that there was indeed antimicrobial molecules distinct from 

humoral immunity in animals [47]. In the early eighties seminal papers by Hans Boman 

on the first isolation and full characterization of invertebrate AMPs (cecropins) were 
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published [48, 49]. Boman’s observations were followed by papers on the structure and 

function of several AMPs expressed also in vertebrates [50-55]. This demonstrated that 

AMPs were not exclusively expressed in organisms lacking an adaptive immune 

response, but were ubiquitous and integral molecules of the innate defense of all 

multicellular organisms. To date more than 2000 unique AMPs have been described 

and are deposited into the antimicrobial peptide database [56]. 

 

1.3.1 Structure 

AMPs are a diverse group of molecules that display a great interspecies variability in 

structure, amino acid composition and tissue distribution. For example, mouse PMNs 

lack defensins [57], as opposed to human PMNs where defensins are a major 

constituent. This interspecies variability of structure and distribution probably reflects 

the differential selective pressures that microbes assert upon their host. Collectively, 

AMPs display a broad spectrum of antimicrobial activities against bacteria, fungi, 

protozoa and certain viruses [58, 59]. However, defined AMPs may display a more 

specific microbicidal activity to subsets of microbes [20]. This specificity is reflective 

of what microbes the AMP encounters in the host niche and of what microbe is to be 

present there [46, 60].  

 

Although AMPs are a heterogeneous group of molecules, one can make some 

generalizations about their structural characteristics. AMPs are between 5-60 amino 

acid residues in length and commonly ~30 residues long [56]. They are often generated 

by proteolytic cleavage from larger precursor proteins with or without antimicrobial 

activity [61]. AMPs carry a high proportion of cationic amino acid residues 

interspersed with hydrophobic residues, adopting a cationic amphipathic secondary 

structure [62]. Notably, there are also reports of anionic AMPs, e.g., dermcidin, that are 

proposed to be membrane active through interactions with receptors, by ionic bridges 

or by acting on internal targets [63].  

 

The cationic AMPs can be subdivided based on their primary and secondary structures. 

The predominant secondary structures of AMPs are antiparallel β-sheets (frequently in 

peptides rich in disulfide bonds exemplified by defensins and protegrins), α-helical 

folded peptides (magainins and many cathelicidins) and peptides enriched in specific 

amino acids such as arginine, glycine, proline or phenylalanine (PR-39) [53, 61, 64]. 
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The cationic properties of AMPs also increases their solubility in aqueous solutions, 

e.g., blood, urine or saliva, hence increasing their bioavailability [62].  

 

1.3.2 Expression and regulation  

The majority of AMPs are expressed by cells that are exposed to microbes such as 

epithelial cells and immune cells. Alternatively, as in the case of granulocytes, AMPs 

are stored in intracellular granules ready to be secreted in response to stimuli [65]. The 

distribution within a specific tissue and expression levels of AMPs are highly niche-

specific [66]. For example, the human α-defensins are expressed mainly in PMNs or by 

Paneth cells, whereas the human β-defensins are expressed mainly by epithelial cells 

[67]. This cell-specificity is most likely selected for by the inherent differences in the 

microenvironment, pH, salinity, etc. and the niche-specific composition of microbes the 

AMPs are acting upon [68]. Commonly AMPs are not secreted as individual peptides, 

but rather as a cocktail of several co-regulated or co-localized AMPs in a tissue- and 

context-dependent manner, acting in synergy to achieve optimal microbial killing. The 

expression of AMPs can be either constitutive or induced by several factors such as 

microbial components, pro-inflammatory stimuli, hypoxia or tissue injury [65]. 

Moreover, also exogenous factors, such as sodium butyrate and vitamin D, are capable 

of either inducing or repressing the expression and release of AMPs, some of these 

modulators may be suitable for future therapeutic use (discussed later and reviewed in 

[69]).  

 

1.3.3 Mode of microbicidal action 

The proposed model of microbicidal interaction of AMPs is through electrostatic 

attraction of AMPs to the electronegative components of the microbial surface. The 

microbial membrane is generally negatively charged as a result of exposed anionic 

phospholipids and molecules such as LPS, teichoic or lipoteichoic acids. This is in 

contrast to the eukaryotic cell membranes, carrying a more neutral charge state by the 

incorporation of zwitterionic phospholipids and cholesterol. After electrostatic 

attraction of an AMP to the membrane lipids it is integrated into the lipid bilayer, 

destabilizing the microbial membrane (Figure 2) [61, 62, 70]. This destroys the ionic 

gradient of the membrane, the osmotic potential and may halt the microbe’s respiration 

[61]. Since AMPs are structurally diverse there are also differences in how a specific 

AMP is integrated into the microbial membrane. Generally, at low concentrations the 

AMP is oriented in parallel to the membrane with resulting membrane thinning and as 
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the concentration increases the AMP is inserted into the membrane orthogonally, 

forming transmembrane pores. Presently there are three proposed mechanisms for the 

membrane-dependent antimicrobial action of AMPs. Specific membrane active AMPs 

may use one or a combination of these mechanisms to assert their direct microbicidal 

activities. In the barrel-stave model (Figure 2) the AMP, e.g., alamethicin, forms a 

multimeric helical bundle much like the staves of a barrel. Thus, the AMP cuts through 

the membrane by an interaction between the hydrophobic residues of the AMP and the 

acyl chains of the membrane phospholipids  [61]. In the carpet model (Figure 2) the 

AMP, e.g., cecropin and ovispirin, aggregates in parallel to the membrane surface, 

coating the lipid bilayer much like a carpet [61]. In the toroidial pore model (Figure 2) 

the AMP, e.g., LL-37 and magainin, thins and bends the membrane into a membrane 

pore, resembling a torus and interacts with the anionic head groups of the membrane 

phospholipids [61, 71].  

 

 

Figure 2. The current models of interaction of membrane active AMPs with 

microbial cell membranes. An electrostatic attraction of the AMP is followed by a 

barrel stave, carpet or toroidial pore type of integration into the microbial membrane. 

Hydrophilic and hydrophobic regions of the AMP are indicated in red and blue, 

respectively. 

 

For a number of AMPs the disrupting activity lags behind its actual antimicrobial 

activity, indicating that these peptides have additional targets of microbial inhibition 

[61, 72]. Some of these intracellular targets are nucleic acids or essential enzymes of 

the microbial metabolism [62, 73, 74].  
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1.3.4 Additional activities  

Throughout evolutionary history AMPs have been the main mode of defense against 

infections. However, with the increasing complexity of the immune defense, AMPs 

have adopted additional roles in the immune system. A multitude of in vitro results 

indicate that specific AMPs are directly microbicidal and in vivo gene deletions of 

specific AMPs increase the host’s susceptibility to infections [75]. However, recent 

indications suggest that AMPs should be regarded as more broad-acting host defense 

peptides rather than merely direct antimicrobials [65]. In support of this view are 

observations that the antimicrobial activities of a number of AMPs are inhibited at 

physiological concentrations of salts, divalent cations and serum lipoproteins [65, 76] 

or are expressed at too low concentrations to be directly microbicidal. Yet, still these 

peptides have been proven essential in vivo in the inhibition of microbial infections 

[75]. One complementary opinion to this notion suggest that, since AMPs are generally 

not secreted as isolated entities, synergistic effects on the microbicidal activity will 

occur [77]. Moreover, removal of one AMP from this system will result in an impaired 

synergism and therefore an increased susceptibility to infection. However, in favor of 

AMPs as host defense peptides, several observations indicate that AMPs are not acting 

exclusively as direct antimicrobials, rather AMPs are modulators of immune responses. 

AMPs can modulate responses of immune cells of both adaptive and innate origin. 

Several AMPs have been shown to act as modulators of pro-inflammatory responses 

[78-82], or as modulators of cell differentiation and proliferation [83-85]. Other AMPs 

have been demonstrated as chemoattractants for immune cells [86-90], as inducers of 

cytokine expression [91-93], or as regulators of T- and dendritic cell responses [65]. 

Notably, AMPs have also been shown to attenuate pro-inflammatory responses in a 

tissue and context-dependent manner by either binding to key innate receptor ligands, 

thus inhibiting receptor mediated signaling, or by interacting directly with its cognate 

receptor [65, 94] 

 

These additional functions implicate that AMPs are important immunomodulators for 

both the innate and adaptive immune responses, as mitogenic, anti-inflammatory and 

pro-angiogenic molecules outside of their capacity as direct microbicidals. Hence, the 

proposition that AMPs should be regarded as host defense peptides rather than only 

antimicrobials does not seem too far-fetched [65].  
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1.4 CATHELICIDINS 

The cathelicidins are one of the major classes of AMPs in mammals. However, 

cathelicidins are also expressed in as distant species as humans, hagfish and snakes [54, 

95, 96]. Cathelicidins are translated as antimicrobially inactive pre-pro-proteins 

containing an N-terminal signal peptide (Figure 3). The signal peptide is connected to a 

highly conserved cathelin domain, sharing structural homology with the cathepsin L 

inhibitor cathelin. The cathelin domain that displays only limited antimicrobial 

activities [97] is connected in its C-terminus to a structurally variable cationic AMP 

[98]. The C-terminal AMP is evolutionary divergent both in sequence and in length. 

Structurally, the cathelicidin peptides are either α-helical, β-sheets stabilized by 

disulfide bounds or peptides enriched in proline or arginine residues [99]. Commonly, 

the mature AMPs of cathelicidins are 23-40 residues in length, adopting amphipathic α-

helical conformations in lipid bilayers [100]. 

 

The interspecies distribution of cathelicidins is great; all mammals examined have at 

least one copy of the cathelicidin gene. In organisms with only one copy, e.g., humans, 

rabbits, mice and rats, the peptide are generally α-helical. In examples of mammals 

with several copies of cathelicidin genes, e.g., cattle, sheep and pigs, the secondary 

structure is highly variable [100].  
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Figure 3. A schematic representation of the gene and protein structure of 

cathelicidins. The mature antimicrobial peptide (AMP) may include tertiary structures 

such as α-helical, β-sheets or peptides enriched in proline or arginine residues. Red 

and blue colors indicate hydrophobic and hydrophilic amino acid residues, 

respectively. The primary sequence of the human cathelicidin LL-37 is shown in the 

gray box. The 3D-structures of LL-37 and the porcine protegrin-1 (PG-1) and PR-39 

are shown to highlight the large variability cathelicidin tertiary structure.   
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1.4.1 LL-37 

1.4.1.1 Structure and processing 

The gene CAMP (Cathelicidin AntiMicrobial Peptide) encodes the sole human 

cathelicidin LL-37. From four exons a pre-pro-protein is translated and after cleavage 

of the signal peptide the inactive pro-protein hCAP-18 (human cationic antimicrobial 

protein 18 kDa) is produced. Exons 1-3 encode the cathelin prodomain and the signal 

peptide, whereas exon 4 encodes the C-terminal AMP LL-37 [101]. Once expressed, 

hCAP-18 can be stored or exported from the cell and be subjected to proteolytic 

cleavage, thus liberating LL-37. hCAP-18 has been shown to be cleaved by proteinase 

3 secreted from neutrophils [102], by kallikrein from keratinocytes [103] or by 

gastricsin present in seminal plasma [104]. In addition, other niche-specific proteases 

may further process LL-37 into fragments with altered activities [97, 103]. LL-37 is a 

37 residue arginine- and lysine-rich cationic peptide (+6 at physiological pH) adopting 

an amphipathic α-helical structure at physiological pH or in lipid bilayers [71, 105]. 

Furthermore, the antimicrobial activity of LL-37 is increased by divalent anions, 

increasing the α-helicity of LL-37 [106]. 

 

1.4.1.2 Expression and regulation 

LL-37 is constitutively expressed in epithelial cells, monocytes, macrophages, mast- 

natural killer- (NK-), B-, γδT-cells and is stored as its precursor hCAP-18 in large 

quantities in the specific granules of neutrophils [90, 107, 108]. The expression of LL-

37 can also be modulated by both host and pathogenic factors in a tissue- and cell-

specific manner. The expression of LL-37 is induced in wounds [109], hypoxia [110] 

inflammation [111], and by growth factors [112]. In contrast, glucocorticoids [113] and 

microbial virulence factors from Neisseria and Shigella [114, 115] have been shown to 

down-regulate the expression of LL-37.  

 

Also extrinsic factors have been shown to induce the expression of LL-37. For 

example, nicotinamide (vitamin B3) [116], histone deacetylase inhibitors (HDACis) 

such as trichostatin, phenylbutyrate (PBA) or the colonic fermentation product butyrate 

(BA) can induce the expression of LL-37 in colonic and lung epithelial cells [117, 118]. 

HDACis increase decondensation of the nucleosomes by increasing the degree of 

acetylation of histones, thus facilitating transcription. The effect of PBA and BA on 

LL-37 expression appears to be mediated via mitogen-activated protein kinase kinase-1 

and -2 (MEK1/2) and p38 mitogen-activated protein kinase (MAPK) pathways [66, 
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118]. The inducing effect of BA is associated with an inhibition of NF-κB signaling 

and a recruitment of the transcription factors AP-1, PU.1, vitamin D receptor (VDR), 

steroid receptor coactivator 3 (SRC3) and cAMP-response element-binding protein 

(CREB) to the CAMP promoter. [66, 117, 119-122]  

 

Several studies have also shown that the hormonal form of vitamin D, 1,25-

dihydroxyvitamin D3, is able to act as an inducer of LL-37 expression in keratinocytes 

and monocytes. The inducing effect of vitamin D is directly mediated by VDR and is 

associated with a recruitment of PU.1 to the promoter [122-124]. Also the secondary 

bile acid lithocholic acid, a ligand to VDR has been shown to recruit PU.1 and VDR to 

the CAMP promoter and induce the expression of LL-37 [122]. An overview of factors 

that are known to induce the expression of LL-37 is shown in figure 4. 

 

Figure 4. Schematic representation of factors known to modulate the expression of 

CAMP. Activating pathways are indicated by arrows, whereas inhibiting pathways are 

indicated by solid lines. The order here of transcription factor binding is arbitrary. 

Phenylbutyric acid (PBA), butyric acid (BA) and lithocholic acid (LCA). 

 

Interestingly, much like in disease or inflammation there are several instances of 

additional AMPs being co-regulated with LL-37 in response to stimulation with 

extrinsic molecules. For example, vitamin D is capable of inducing the expression of 
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both CAMP and the gene encoding β-defensin HBD-2 in keratinocytes and subsets of 

epithelial cells [123]. Furthermore, in response to treatment with phenylbutyrate the 

gene encoding β-defensin HBD-1 is induced together with CAMP in lung epithelial 

cells, but downregulated in monocytes [118].  

 

1.4.1.3 Antimicrobial activity 

LL-37 is an AMP with potent antimicrobial activities against both Gram+ and Gram- 

bacteria [58]. In addition, LL-37 has also been shown to act as an antifungal and 

antiviral AMP [58, 125, 126]. Most of the studies pertaining to the microbicidal activity 

of LL-37 have been performed in vitro. There are only limited data on the in vivo 

situation of the antimicrobial functions of LL-37. One example is the chronic 

congenital neutropenia, morbus Kostmann, signified by a lack of LL-37 in PMNs and 

in saliva and characterized by recurrent infections and chronic periodontal disease 

[127]. Thus, LL-37 is implicated in the defense against infection. In neutrophil-specific 

granule deficiency (SGD), mutations of the transcription factor CCAAT enhancer 

binding protein ɛ (C/EBPɛ) have been detected [128]. These mutations result in a lack 

of secondary and tertiary granule proteins in PMNs and an observed reduction in the 

expression of LL-37 [128]. SGD is associated with an increased susceptibility to 

infection of Staphylococcus aureus, Pseudomonas aeruginosa and Candida albicans 

[128, 129]. However, one confounding factor is that the genetic mutations resulting in 

morbus Kostmann and SGD also reduces the expression of additional AMPs present in 

neutrophils, e.g., α-defensins HNP1-3 [127, 128], making it hard, if not impossible, to 

distinguish the contribution of a specific lack of LL-37 in the etiology of these diseases.  

 

In the Cnlp-/- mouse, in which the gene encoding the mouse LL-37 homologue 

mCRAMP has been knocked out, further information of the functional role of 

cathelicidins can be found. The Cnlp-/- mouse exhibits an increased susceptibility to 

infection by Group A Streptococcus [75], Pseudomonas aeruginosa [130], Vaccinia 

virus [125] and Herpes simplex virus [131]. However, caution is as always advised 

when extrapolating results from animal models into functional information in man. 

There are also disease conditions in which the local expression of LL-37 is altered. In 

atopic dermatitis that is signified by a low to no induction of LL-37 in keratinocytes, in 

contrast to a dramatic induction of LL-37 in the skin of patients suffering from rosacea 

and psoriasis [132-134]. In psoriasis, Lande et al have shown that self-DNA in complex 

with LL-37 can activate plasmacytoid dendritic cells by triggering Toll-like receptor 9. 
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This activation results in an increased interferon-α production and can drive the 

inflammation associated with psoriasis [134].  

 

1.4.1.4 Additional activities 

LL-37 has been shown to be a proinflammatory orchestrator of the immune defense as 

a chemotactic agent for monocytes, neutrophils, and T-cells, mediated by the FPRL1 

receptor [89, 90]. LL-37 is also an agonist of the P2X7 receptor, thereby recruiting 

immune cells through the induction of chemokine production [91]. LL-37 has been 

demonstrated to induce chemokine production in epithelial cells and to induce 

degranulation of mast cells [135, 136]. Our group has reported that the lipid mediator 

leukotriene B4 (LTB4) can induce the release of LL-37 from PMNs by triggering the 

BLT1 receptor [82]. Conversely, LL-37 can stimulate the synthesis and release of 

LTB4 in PMNs through binding to the FPR2/ALX receptor [81]. Furthermore, LL-37 

also functions as a suppressor of immune responses by binding endotoxins such as 

LPS, lipoteichoic acid and lipoarabinomannan, thus dampening inflammatory 

responses [137-139]. Also wound healing or the resolution after infection can be 

augmented by LL-37 through the induction of re-epithelialization and pro-angiogenic 

effects [85, 140]. Recently, our group and others have shown that LL-37 can inhibit the 

formation of biofilm even at sub-microbicidal concentrations through several distinct 

mechanisms [141, 142]. 

 

In vitro LL-37 has also been shown to be cytotoxic to a number of cells, although these  

concentrations far exceed those of antimicrobial activity [106]. LL-37 is also capable of 

inducing or inhibiting apoptosis in a cell specific manner. While it is pro-apoptotic in 

subsets of T-cells, smooth muscle and epithelial cells [143-145] LL-37 is an anti-

apoptotic mediator of neutrophils [144].  
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1.5 DEFENSINS 

The defensins constitute an evolutionary ancient family of AMPs present in animals, 

plants, fungi and myxobacteria [67, 146, 147]. The defensins have been shown to have 

a broad and potent antimicrobial activity against Gram+ and Gram- bacteria, fungi and 

subsets of enveloped viruses [59]. They exert their antimicrobial activity mainly 

through the disruption of microbial cell membranes, but have also been shown to 

interfere with RNA and DNA synthesis [59]. The defensins are processed from 

preproproteins into 18-45 residue long peptides containing six conserved cysteine 

residues forming three disulphide bonds, stabilizing a cationic amphipathic β-sheet 

conformation [59, 148]. Based on the distribution of cysteines and the pairing of 

cystine bonds defensins can be subdivided into α-, β- and θ-defensins, of which humans 

only express the α- and β-peptides [59](Figure 5). In contrast to the single cathelicidin 

gene, the human genome encodes more than thirty variants of α- and β-defensins. 

 

 

Figure 5. Sequences of the human α- and β-defensins. The cystine linkages are 

indicated by black lines. Please note that HNP1-3 differ in only one amino acid residue 

and how the disulphide bonds are organized in α- and β-defensins. 

 

1.5.1 α-defensins 

Expression and regulation 

Six α-defensins are expressed in humans, of which human neutrophil peptide-1 to -3 

(HNP-1 to -3) differ in only one residue and are particularly abundant in the primary 

(azurophilic) granules of PMNs (Figure 5). HNP-4 is not as similar as the other HNPs 

and is present in PMNs at a much lower concentration [149]. In addition to neutrophils 

the HNP-1 to -4 are also expressed in monocytes, NK-, B- and γδT-cells [90]. The 

microbicidal activity of α-defensins is salt-sensitive and can be inhibited by 

physiological concentrations of cations, e.g., 2 mM divalent or 100 mM monovalent 

cations [65]. The neutrophilic α-defensins are generally not regulated in PMNs, instead 
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they are released by degranulation together with other AMPs in response to specific 

stimuli.  

 

The human defensins-5 and -6 (HD-5 and -6) (figure 5) are constitutively expressed in 

the small intestinal crypts by Paneth cells [19, 150] and are released in response to 

bacterial or cholinergic stimuli, or in some diseases, e.g., coeliac sprue [59, 151]. 

Interestingly, mice expressing the human defensin HD-5 are less susceptible to 

infection caused by oral administration of virulent Salmonella typhimurium. 

Furthermore, human HD-6 produces nanonets that inhibit the motility of infiltrating 

pathogens. These observations implicate enteric α-defensins as key effectors in the 

defense against enteric pathogens [152-154] and as essential in the maintenance of the 

gut microflora [19]. In addition to their direct microbicidal activity the α-defensins can 

act as mitogens for epithelial cells and as chemoattractants for monocytes, naïve T-cells 

and immature dendritic cells. The α-defensins are also pro-inflammatory by inhibiting 

glucocorticoid production and by induction of cytokine expression. [86, 155-158] 

 

1.5.2 β-defensins 

The human genome contains more than 30 β-defensin genes, however only the peptide 

products of four genes (HBD-1 to -4) have been identified (Figure 5) [159]. The β-

defensins are expressed by keratinocytes or mucosal epithelial cells [46, 59]. The β-

defensins can either be expressed constitutively (HBD-1), or be induced (HBD-2-4) by 

TLR ligands, cytokine stimuli, injury or in psoriasis and ulcerative colitis [59, 160, 

161].  

 

Interestingly, the reducing environment of the colon affects HBD-1 by reduction of its 

disulphide bonds, resulting in an increase in antimicrobial activity of the peptide against 

opportunistic fungi and commensal bacteria [162]. This suggests a further role of 

defensin disulfide bonds as regulators of microbicidal activity. 
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1.6 ADDITIONAL ANTIMICROBIAL POLYPEPTIDES 

1.6.1 Azurocidin 

Azurocidin, or heparin-binding protein (HBP), is a glycosylated 26 kDa protein present 

in the azurophilic granules of PMNs [25]. In addition, it is also stored in secretory 

vesicles of PMNs and facilitates the transmigration of PMNs and monocytes through 

endothelia [163, 164]. Structurally HBP is an enzymatically inactive member of the 

serpocidin serine protease superfamily together with cathepsin G, proteinase 3 and 

elastase. It is an AMP with antimicrobial activity against fungi, Gram+ and Gram- 

bacteria [165]. In addition, HBP can function as an opsonin and a chemoattractant for 

monocytes and macrophages [166]. 

 

1.6.2 Lysozyme 

Lysozyme was early recognized as a muramidase, an enzyme capable of hydrolyzing 

the glycosidic bonds of peptidoglycans in cell walls of Gram+ bacteria. Lysozyme was 

later found to exhibit antimicrobial activities independent of its enzymatic activity [167, 

168] against fungi and, some Gram- bacteria [169, 170]. Lysozyme is present in the 

granules of PMNs and in several secretions, e.g., tears, saliva and breast milk [24, 171].  

 

1.6.3 Calprotectin 

Calprotectin is part of the large structural family of S100 calcium binding proteins. 

Calprotectin consists of a heterodimer of the proteins S100A8 and S100A9. It is present 

in high concentrations in PMNs, and is also expressed in the cytosol of monocytes, 

macrophages and endothelial cells [172, 173]. It has been found in high concentrations 

in NETs and acts as a chelator of divalent manganese and zinc ions, thereby depriving 

microbes these ions from their intended use as essential minerals or in the defense 

against reactive oxygen species [174, 175]. In addition to its microbicidal activity 

calprotectin has also been shown to act as an alarmin, alerting the immune response of 

cellular damage or infection [33]. Also other S100 proteins have been shown to display 

antimicrobial activities. Psoriasin (or S100-A7), a polypeptide first isolated from  

psoriatic scales is capable of efficiently killing Escherichia coli, while Staphylococcus 

epidermidis, a commensal of the skin, remains unscathed [60].  

 

1.6.4 Lactotransferrin 

Lactotransferrin (lactoferrin or LTF) is an 80 kDa iron sequestering glycoprotein 

present in secretions such as tears, breast milk and seminal plasma and in the secondary 
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granules of PMNs [176]. Primarily, it was regarded as a transporter of iron in breast 

milk and blood but is now also considered a powerful microbicidal polypeptide. It has 

been demonstrated to be antimicrobially active against bacteria, fungi and viruses. One 

mode of microbicidal action is by sequestering iron from its environment, thereby 

depriving microbes of essential iron. Secondly, it can interact with microbial cell 

membranes, much like an AMP, resulting in microbial lysis [177]. Furthermore, 

lactotransferrin can be proteolytically cleaved into several AMPs with extended 

antimicrobial activities [178, 179].  

 

1.6.5 Histones 

The histones H1, H2A, H2B, H3 and H4 are the main structural components of the 

nucleosome that are utilized in the packing of DNA in the nucleus. The 

posttranslational modifications of histones by methylation or acetylation result in either 

a decrease or increase accessibility of DNA for transcription factors, respectively. Thus, 

histones constitute key factors in the regulation of gene transcription. However, 

histones are not exclusively located in the nucleus and have since long been associated 

with antimicrobial activities against Gram+ and Gram- bacteria as well as fungi [180]. 

Their importance as antimicrobials has also been highlighted as constituents of the NET 

structures of PMNs. Also peptide fragments of histones are functional AMPs, for 

example the N-terminal segment of H2A corresponds to the toad AMP buforin I [181]. 

 

1.7 ADAPTIVE IMMUNITY 

The constant evolution of pathogens, a long lifespan and the sheer numbers of cells in 

larger multicellular organisms led to an evolutionary benefit of allocating precious 

resources for an additional adaptive immune response. The adaptive immune response 

evolved out of the innate immune system and is dependent on several innate immune 

molecules and cells, such as cytokines and macrophages for proper function [17, 182]. 

The adaptive immune system is also dependent on the innate immune system to 

recognize and hold the line against invading microbes until 3-5 days post-infection 

when the adaptive immune system is activated and operational [17]. The adaptive 

immune system is overall dependent on the B- and T-cells, whose activation and 

selective expansion is driven by antigen-presenting cells such as dendritic cells and 

macrophages [17].  
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An important difference between the innate and the adaptive immune system is the 

form of microbial recognition receptor each system is utilizing. Whereas the innate 

system relies on a limited number of germline encoded receptors with broad 

specificities (PRRs), the adaptive immune system generates a vast number of antigen 

receptors tailored for the recognition of highly specific epitopes (B- and T-cell 

receptors) [17, 183].  

 

The adaptive immune receptors are, in contrast to the innate and thus somatically 

invariant PRRs, rapidly adapted to the fast evolving pathogens by somatic mutation. 

Gene segments of the adaptive immune receptors are permutated by gene splicing 

known as somatic recombination. This recombination yields a large and diverse cell 

population of immune cells with clonally distributed immune receptors [17, 182]. This 

pool of cells is then purged of cells carrying auto-reactive receptors by the process of 

clonal deletion. The surviving immune cells are released into circulation and are 

allowed to clonally expand in response to antigen recognition [183]. Recognition of an 

antigen may additionally lead to the production of memory cells that confer an 

immunological memory of past infections. These cells will in turn mount a quicker as 

well as stronger defense in the event of re-infection [183]. 

 

1.8 IMMUNODEFICIENCIES 

Immunodeficiency is a disease state when the immune system’s ability to fight 

infectious diseases is reduced or absent, resulting in an increased susceptibility to 

infections. Commonly the immunodeficiency is secondary, i.e., acquired as a result of 

malnutrition, young/old age, immunosuppressant drug treatment or disease such as 

AIDS  [184]. The rarer genetically acquired primary immunodeficiencies (PIDs) are a 

heterogeneous collection of disorders. The PIDs affect both the adaptive and innate 

immune system, leading to a dysregulation of the immune response [185]. Over 120 

different genetic mutations affecting PMNs, macrophages, dendritic cells, the 

complement system, NK, T- and B- cells have been discovered, resulting in more than 

150 different PIDs, of which antibody-related PIDs account for 65% of all PIDs [185, 

186]. PIDs characterized by lack of antibodies include syndromes such as common 

variable immunodeficiency (CVID), selective IgA-deficiency and IgG-deficiency. 

These PIDs are signified by frequent respiratory tract infections (RTIs), but also 

autoimmune disease [187]. In order to alleviate symptoms the patients are commonly 

administered IgG preparations that generally reduce the incidence of RTIs [187].  
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CVID is the most common clinically relevant PID and this disease may be caused by a 

number of different mutations, resulting in low titers of IgG, IgA and/or IgM. 

Symptoms of CVID includes sinusitis, otitis media and pneumonia [186]. In the PID X-

linked agammaglobulinaemia (XLA), a mutation in the Bruton's tyrosine kinase (Btk)-

gene leads to a halt in the maturation of B-cells and therefore a lack of all 

immunoglobulin classes [188]. In contrast to the other PIDs mentioned, hyper-IgE 

syndrome (HIES) or Job's syndrome is associated with elevated titers of IgE, aberrant 

neutrophil chemotaxis and eosinophilia, resulting in recurrent skin and pulmonary 

infections by bacteria and fungi [185]. HIES has been linked to mutations of signal 

transducer and activator of transcription 3 (STAT3), causing defective signaling in the 

STAT3 pathway that is essential for functional immune signaling and the 

differentiation of Th-17 cells [29].  

 

1.9 NEONATAL HOST DEFENSE 

1.9.1 Neonatal immunity 

From the sterile environment of the womb the neonate will after birth have to fend for 

itself in a world teeming with microbes. The neonate will also have to switch from a 

sterile source of nourishment via the umbilical cord to a non-sterile supply of nutrients 

from breast milk absorbed in the microbial environment of the neonatal intestine. At 

birth and the months following, the neonatal adaptive immune system is naïve. During 

the maturation of the adaptive immune system the neonates rely, with the exemption of 

maternal immunoglobulins, mostly on innate immune factors, e.g., complement system, 

phagocytes, NK-cells, APCs and AMPs for the defense against infections [189, 190]. 

At birth the neonate is covered in a layer of vernix caseosa, a film composed of 

microbicidal lipids, antimicrobial polypeptides that protects the skin from unwarranted 

colonization [191]. Underneath the layer of vernix the neonatal skin is ramping up its 

defenses by the increased expression of AMPs such as defensins and cathelicidin [192]. 

Also the innate defenses of the gut are strengthened in the first weeks of life. For 

example, the concentration of LL-37 is higher in neonatal feces compared to fetal stools 

(meconium) [193]. Also Menard et al. observe a similar high expression of the mouse 

homologue of LL-37 mCRAMP in the gut epithelia of neonatal mice during the first 

two weeks postpartum, conferring protection against infection with Listeria 

monocytogenes [194]. 
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1.9.2 Immunological factors of breast milk 

Although the neonate is fighting its own battle against colonizing pathogenic microbes 

it also receives immunologic support from its mother by immune factors of breast milk. 

Breast milk contains molecules that can modulate the neonatal immune responses, as 

well as hamper microbial adherence or proliferation e.g., secretory IgA, 

lactotransferrin, lysozyme, glycans, lipids and cytokines [190]. In addition, milk 

oligosaccharides have been shown to function as prebiotics for beneficial commensals 

such as bifidobacteria and lactobacillae [190, 195]. Moreover, breastfeeding is 

associated with several health benefits for the neonate. These include a reduced risk of 

contracting otitis media, respiratory tract infections, inflammatory bowel disease, atopic 

dermatitis and childhood asthma [190, 196]. 
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2 AIMS OF THIS THESIS 

The general aims of the present thesis are to study the regulation and expression of 

selected human antimicrobial polypeptides. An emphasis has been put on the 

expression and the regulation of the human cathelicidin LL-37. The aims are divided 

into two separate parts where part I focuses on how the AMP armament of PMNs is 

directed to common human pathogens (paper I) and how the innate immune system is 

affected in PID patients (paper II). Part II focuses on how human breast milk can 

contribute to the innate defenses of human colonic epithelial cells by modulating the 

expression of mucosal epithelial AMPs (paper III). Furthermore, part II focuses on how 

lactose can synergize with phenylbutyrate to induce the expression of the gene CAMP 

encoding LL-37 and what pathways that are affected during this synergy (paper IV). 

 

Part I: “antimicrobial polypeptides in the defense against respiratory tract infections” .  

The aim of paper I was to determine the specific antimicrobial pattern of antimicrobial 

polypeptides present in PMNs and how these inhibit the proliferation of the common 

human pathogens Moraxella catarrhalis, Staphylococcus aureus, Haemophilus 

influenzae and Candida albicans. 

 

The aim of paper II was to evaluate if PID patients exhibit an impaired expression of 

AMPs in nasal fluid. The nasal fluids of PID patients were assessed for their capacity to 

invoke chemotaxis in PMNs of healthy donors. In addition, the IL-17A responses of 

PID patients were investigated to determine if PID patients exhibit functional Th17-cell 

responses.  

 

Part II “Regulation of LL-37 by lactose”  

The aim of paper III was to search for compounds in breast milk capable of inducing 

the expression of the genes encoding LL-37 and the β-defensins HBD-1-3 in colon 

epithelial cells.  

 

The aim of paper IV was to elucidate the signaling pathways contributing to the 

synergistic effect on the expression of the gene encoding LL-37 in colonic epithelial 

cells after stimulation with phenylbutyrate and lactose. 
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3 METHODOLOGY 

Most of the methodology utilized in paper I-IV has for a long time been established in 

our laboratory for the extraction, purification and characterization of antimicrobial 

polypeptides. These methods, e.g., Western and dot blot analyses, real-time and 

reverse-transcription PCR, have been described by our group in several papers [193, 

197]. Detailed descriptions of the methods utilized in paper I-IV can be found in the 

papers as referred below. 

 

Method    Paper 

Isolation of PMNs   I and II 

Extractions and enrichment of polypeptides I, II and III 

Extraction and purification of PMN components  I and II 

Inhibition zone assay   I 

Chromatography   I and III 

Western and dot blot analyses  I, II, III and IV 

Real-time and reverse-transcription PCR  II and IV 

Mass spectrometry   I, III and IV 

Luciferase reporter assay   IV 

Cell culture    I, II, III and IV  

Bacterial culture   I 

Image analysis   II and III 

Enzyme-linked immunosorbent assay, ELISA II and III 

Nuclear magnetic resonance spectroscopy III 

Pathway analysis    IV 

 

An evaluation of two novel methodologies 

One novel method used in paper IV is label-free quantitative mass spectrometry (MS) 

proteomics. Although the datasets generated typically are smaller than for microarrays, 

proteomics will, in contrast to transcript-based methodology, reveal information of the 

actual protein products, rather than inferring expression information from transcript 

abundances. Thereby proteomics removes artifacts associated with translational 

regulation and transcript stability. Specifically, using a label-free approach in 

proteomics will provide several benefits compared to the alternative and established 

proteomic techniques such as two-dimensional difference gel electrophoresis (2D-
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DIGE), stable isotope labeling by amino acids in cell culture (SILAC) or isotope tags 

for relative and absolute quantification (iTRAQ). Advantages of label-free MS 

proteomics over the gel based 2D-DIGE is a lower sample requirement and a shorter 

turnaround time from sample to quantification of a given protein [198]. Label-free 

quantification reduces the number of experimental steps and costs associated with the 

label-based techniques. In addition, the dynamic range of the label-free methodology is 

greater than label-based methods and there are no limitations of how many samples that 

may be compared at any given time [198]. By pipelining the proteomic results through 

pathway analysis software, the information of detected protein abundances are 

organized into comprehensive regulatory models of how cells respond to specific 

stimuli in a fast and extensive manner. These regulatory models may then be tested 

using complementary methods with the aim to further elucidate how these regulatory 

models affect your gene of interest. 

 

A second method utilized in paper IV is the CAMP gene reporter system. There are 

several benefits for utilizing a reporter system for screening a large number of 

compounds. The system is, compared to conventional methodology including Western 

blot analysis and ELISA, fast, convenient and shows a wide linearity over several logs 

of concentrations [199]. However, it is important to note the limitations of this method.  

For example, the cloned section of the promoter may not entirely reflect how the native 

gene is regulated. Additional regulatory elements may have been omitted and the 

chromatin environment of the construct may be different from that present in the 

parental cell-line. This may result in an altered regulation of the reporter protein 

compared to the native target gene. Since the introduction of a reporter construct may 

also alter the phenotype of the cells, it is important to confirm obtained results in the 

parental cell-line using orthogonal methods such as Western blot analysis or chromatin 

immunoprecipitation.  
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4 RESULTS AND DISCUSSION  

4.1 AMPS IN THE DEFENSE AGAINST RESPIRATORY TRACT 

INFECTIONS 

The respiratory tract mucosa is an interesting niche of the human body in regards to its 

host-microbe interactions. The upper respiratory tract is inhabited by commensal and 

opportunistic microbes, whereas the lower tract is kept sterile. It is a difficult task to 

uphold the defenses due to the sheer volume of air flowing over the mucosa and 

depositing potentially harmful microbes. In the respiratory tract, epithelial cells and 

PMNs are at the forefront in the defense against pathogenic infestation. The defense is 

to a great extent dependent on AMPs released by these cells. In a normal setting the 

epithelia and infiltrating PMNs release AMPs to the extracellular environment to 

incapacitate microbes by a host of different mechanisms. An aberrant expression or 

release of these polypeptides may result in an increased susceptibility to infection.  

 

4.1.1 Specificity in killing pathogens is mediated by distinct repertoires 

of human neutrophil peptides 

Protein and peptide-enriched PMNs extracts from healthy human donors were assayed 

for their antimicrobial activity using the inhibition zone assay against four clinical 

isolates of common human pathogens Staphylococcus aureus, Haemophilus influenzae, 

Moraxella catarrhalis and Candida albicans. Thus, Gram- (H. influenzae and M. 

catarrhalis), Gram+ (S. aureus) and fungal (C. albicans) pathogens were assayed for 

their sensitivity to neutrophil peptides and proteins. The sensitivity of the pathogens to 

PMN extracts were ordered as followed: M. catarrhalis > C. albicans > S. aureus >H. 

influenzae. Although H. influenzae is a pathogen that is difficult to culture due to its 

fastidious nature requiring NAD+ and hemin (X and V-factor), it was the microbe most 

resistant to microbicidal insults from the antimicrobial polypeptides of PMN extracts.  

 

Interestingly, Lysenko et al. show that when H. influenzae is co-inoculated with 

Streptococcus pneumoniae into the nasal cavity of mice it leads to an influx of PMNs, 

resulting in clearance only of S. pneumoniae from the nasopharynx [200]. This suggests 

H. influenzae may use an environment rich in PMNs as a survival strategy in the 

competition with other microorganisms and that it therefore is adapted to the 

microbicidal effects of PMNs.   
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Despite the similarity of H. influenzae and M. catarrhalis in their surface structure 

(both Gram-) and host habitat (nasopharynx) M. catarrhalis is significantly more 

sensitive to PMN extracts than H. influenzae (11 vs. 7 mm in the zone assay). Despite 

this shortcoming, M. catarrhalis is still a common and successful pathogen, especially 

in otitis media. This may be attributed to other defensive mechanisms present in M. 

catarrhalis such as a failure to invoke a PMN response as observed by H. influenzae in 

mucosa [200]. Another explanation may be co-operation of M. catarrhalis with other 

microbes co-infiltrating or already present, as shown by Armbruster et al. [201]. 

 

In order to elucidate what antimicrobial polypeptides that are the main contributors to 

the observed microbicidal effect of PMNs, the material in the extracts was fractionated 

using reversed-phase chromatography. Samples from the resulting fractions were 

assayed against the four pathogens in the zone assay. Polypeptides present in the 

antimicrobially active fractions were subjected to mass spectrometric analysis and were 

identified by peptide mass fingerprinting. The identified antimicrobial polypeptides 

were HNP1–3, azurocidin, lysozyme, cathepsin G, S100A8, LL-37 and LTF. To 

evaluate the contribution of each polypeptide to the antimicrobial activity asserted by 

the fractions, antibodies specific to these antimicrobial polypeptides or non-specific 

control antibodies were added to the fractions. Antibody-depleted fractions were then 

assayed for their antimicrobial activity in the zone assay against the four pathogens. In 

addition to the blocking experiments synthetic or purified antimicrobial polypeptides 

were utilized in order to establish minimum effective concentration (MEC) values for 

these polypeptides against the four pathogens. 

 

Collectively, the blocking experiments and MEC values of the specific antimicrobial 

polypeptides against the four pathogens indicated that LTF is a major contributor to the 

observed antimicrobial effect against S. aureus. In line with observations of Aquila et 

al. we showed that LTF is a powerful inhibitor of S. aureus proliferation and that the 

effect was dependent on iron-chelation [202]. Moreover, it has been observed that LTF 

knockout mice display an increased susceptibility to spontaneous abscess formation 

(most often caused by S. aureus) compared to wild type mice [203]. We further 

demonstrated that lysozyme is not antimicrobially active against S. aureus or any other 

of the bacteria assayed. Instead, lysozyme was mainly active against C. albicans. 

Lysozyme was first regarded as an antimicrobial enzyme capable of hydrolyzing the 

peptidoglycans of Gram+ bacteria such as staphylococci. Nevertheless, many 
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pathogenic strains of S. aureus are resistant to lysozyme since the membranes of these 

strains contain O-acetylated peptidoglycans that cannot be degraded by lysozyme 

[204]. However, now the antifungal activities of lysozyme have been recognized and 

lysozyme is now regarded as one of the key effectors of the anti-candidal defense in 

immunocompromised patients [205].  

 

The most potent and broad-acting antimicrobial polypeptides of the PMN extracts were 

HNP1-3 and calprotectin. These polypeptides exhibited antimicrobial activity against 

all pathogens analyzed. Thus, it is probable that the major antimicrobial constituents of 

neutrophils, i.e., HNP1-3 and calprotectin, are present in such large quantities due to 

their potency and versatility [59, 172]. In our blocking experiments we observed that by 

removing azurocidin from the antimicrobial fraction a significant reduction of the 

antimicrobial activity was observed against H. influenzae, M. catarrhalis and C. 

albicans. This together with previous reports suggests that azurocidin, apart from acting 

as an alarmin, is also a potent antimicrobial polypeptide against Gram- bacteria and 

fungi [206]. In our assay we found that several of the antimicrobial fractions contained 

histones. By estimating the MEC values of histone extracts we noticed that histones 

were mainly active against C. albicans and to a lesser extent against M. catarrhalis. 

Histones exhibit antimicrobial activities, although a nuclear proteins acting as an AMPs 

may be regarded as of limited relevance due to their low extracellular bioavailability 

[180]. Nevertheless, recently it was demonstrated that neutrophils undergo NETosis 

and secrete extracellular structures containing nuclear histones and cytosolic 

calprotectin providing histones and additional antimicrobial polypeptides not normally 

secreted with a possibility to interact with and inhibit the growth of microbes [26]. 

 

The capacity of PMNs to kill microbes or inhibit their growth has long been recognized 

and novel mechanisms and effector polypeptides, contributing to the antimicrobial 

activity of PMNs are still being discovered. Here we show that the antimicrobial 

activity of PMNs against common respiratory tract pathogens is achieved by 

antimicrobial polypeptides. However, these polypeptides are microbicidal by several 

distinct mechanisms such as enzymatic, ion-chelating and membrane-active. The 

polypeptides that are most potent in the growth inhibition of our assayed pathogens 

display also a broad spectrum of antimicrobial activity, i.e. active against all or several 

classes of the pathogens tested. However, some of the antimicrobial polypeptides, e.g., 

LTF and lysozyme appear to be more specific in their antimicrobial repertoire, 
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inhibiting only one or two of the pathogens assayed. Thus, the antimicrobial 

polypeptide armament of PMNs is both specific and redundant in its capacity to 

eliminate microbes.  

 

The present antimicrobial polypeptide armament of humans is a snapshot in time of a 

system subjected to continuous change. The constant evolution of pathogens to adapt to 

the microbicidal environment provided by the antimicrobial polypeptides give rise to 

the evolution of defense mechanisms of the pathogens [207]. In turn, the host 

counteracts pathogenic defense mechanisms by a constant evolution of defense 

polypeptides directed at components essential for the proliferation or virulence of the 

microbe [208].  

 

The main mechanistic characteristics of pathogen defense aim to counteract several of 

the specific modes of action of host antimicrobial polypeptides. For example, several 

pathogens have modified their envelope in order to reduce its negative charge, the main 

attractant for several AMPs [207]. Other pathogens modify their envelope in order to 

reduce the capacity for select host digestive enzymes to degrade components of the 

microbial membrane [204]. The invading microbes may also produce chelating 

molecules capable of harvesting essential factors such as iron (siderophores), zinc and 

manganese, used as nutrients or in the defense against reactive oxygen species 

produced by the innate defenses of the host [175, 176]. Other microbes such as H. 

influenzae, Neisseria and Shigella evades defenses of the host by either not evoking the 

host immune response, or by down-regulating it [114, 115, 200].  

 

Although the development of resistance to antimicrobial polypeptides is rare, it does 

occur. The scarcity of AMP resistance is likely due to the non-specificity of AMPs 

microbicidal actions and possible multiple targets within a microbe [209]. Even though 

a pathogen at a given moment may have acquired resistance to one or a distinct class of 

antimicrobial polypeptides, there are still several more antimicrobial polypeptides that 

the host can rely on to achieve microbial clearance. Forcing a pathogen to modify 

factors essential for the survival and virulence comes with a tremendous cost on the 

fitness or on the virulence of the microbe. Thus, if several of these microbial factors are 

targeted, there is a reduced risk of microbial multi-resistance.  
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4.1.2 Impaired release of antimicrobial peptides into nasal fluid of 

hyper-IgE and CVID patients 

A comparison of AMP responses, PMN chemotaxis, nasopharyngeal (NPH) culture 

and the capacity to express proinflammatory cytokines was made between healthy 

controls and PID patients. The PID patients were diagnosed with either IgA-deficiency, 

IgG-deficiency, common variable immunodeficiency (CVID), X-linked 

agammaglobulinaemia (XLA), hyper-IgE syndrome (HIES), or as patients without an 

immunological diagnosis but with increased numbers of respiratory tract infections 

(Not Defined, ND-group).  

 

From PID patients and healthy controls nasal fluid was collected and assayed for AMP 

expression, IL-8 levels and the capacity to induce neutrophil chemotaxis of healthy 

donor PMNs. The expression of the cytokine IL-17A was monitored in culture 

supernatants from peripheral blood mononuclear cells (PBMCs) of PID patients and 

healthy controls after challenge with heat killed C. albicans and Staphylococcal 

Enterotoxin B. In addition patients and controls disclosed their health status in regard to 

symptoms of infection.  

 

There were no significant differences in the clinical score between groups nor was there 

any correlation between the clinical score and the presence of pathogenic bacteria in 

NPH cultures. We detected a significant increase in the levels of LL-37 and HNP1-3 in 

nasal fluid of patients and healthy controls colonized by a primary pathogen compared 

to individuals culture-positive for commensal bacteria or a negative bacterial culture. In 

individuals with a bacterial culture positive for H. influenzae, S. aureus or S. 

pneumoniae a higher induction of AMPs was observed, whereas a bacterial culture 

positive for Enterobacteriacae spp. or M. catarrhalis were not associated with a 

significant increase in the level of AMPs. In addition, we could observe an increase in 

HNP1-3 in individuals that were culture positive for commensals in comparison to 

individuals with a negative bacterial culture.  

 

As opposed to CVID patients, a significant increase in the levels of LL-37 and HNP1-3 

in nasal fluid in response to colonization by pathogens was observed in the groups of 

controls, ND, XLA and IgA/IgG. The HIES-group showed basal expression of LL-37 

but with no significant increase in response to pathogenic colonization. Moreover, no 

expression of HNP1-3 was observed in nasal fluids of culture-negative HIES patients 
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or those HIES patients colonized by pathogens. This observation may be explained by 

the fact that in a normal setting LL-37 is expressed both by epithelial cells and by 

infiltrating immune cells. However, HIES patients suffer from mutations of the CXCR1 

receptor, resulting in an impaired chemotactic response of their PMNs to IL-8 [210]. 

The capacity to induce the expression of IL-17A in PBMCs was significantly lower in 

patients diagnosed with HIES and CVID compared to all other groups. In addition, 

nasal fluids of CVID and IgA/IgG-patients showed an impaired capacity to induce 

chemotaxis in healthy donor PMNs compared to controls.  

 

Thus, subsets of PID patients, specifically CVID and HIES patients, are suffering from 

a immunological condition that in addition to affecting their  adaptive immune system 

also perturbs their innate immune responses.  These patients may benefit from 

treatments that restore their impaired innate immune function. A representation of our 

main observations coupled to our proposed model is presented in figure 6. 

 

Figure 6. The proposed model explaining the observed differences in HIES and 

CVID patients. HIES patients (blue line) show impaired release of IL-17A and low 

levels of LL-37 and HNP1–3, despite normal IL-8 levels and functional chemotaxis of 

nasal aspirates against healthy donor PMNs. This may be due to CXCR1 dysfunction. 

CVID patients (red line) show reduced release of AMPs (spheres), probably due to an 

impaired Th17 response or the reduced chemotaxis observed by nasal aspirates by IL-8 

or alternative inducers of chemotaxis (*). The picture is adapted from paper II.  
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4.2 REGULATION OF LL-37 BY LACTOSE 

A reduced expression of AMPs may lead to, or is the result of, infectious disease [114, 

115, 127, 131]. Excessive expression of AMPs is, on the other hand, associated with 

inflammatory conditions and autoimmunity [132, 134]. Enhancing AMP expression 

would be a valuable therapeutic strategy in infectious diseases signified by a reduced 

AMP expression and may result in an increased bacterial clearance [211]. Hence, 

discovering modulators that are able to correct the expression of AMPs may be an 

alternative or a complement to traditional antibiotics in anti-infective and prophylactic 

therapies. 

 

4.2.1 Lactose in human breast milk: an inducer of infant innate 

immunity with implications for a role in intestinal homeostasis 

Our group has reported on an increase in the expression of LL-37 in stools of neonates 

in comparison to fetal stool (meconium) [193]. This result led us to further examine the 

mechanism behind this observation. The increase in LL-37 expression may be a result 

of the maturation of the infant gut, of microbial colonization or of dietary factors. Since 

breast milk is rich in immunomodulatory factors we examined if breast milk also can 

induce the expression of LL-37.  

 

In stimulations of several human cell lines with fractions of breast milk we could 

observe an increased expression of both CAMP transcript and LL-37 peptide. We 

showed that the inducing effect was only present in a hydrophilic fraction containing 

low-molecular weight components of breast milk. Moreover, the induction of LL-37 

was detected after 24 h of stimulation and was further increased at 48 h. The 

hydrophilic fraction of breast milk was capable of inducing LL-37 in the colonic 

epithelial cell lines HT-29, Caco-2 and T-84. The expression was also induced in THP-

1 monocytes and macrophages. No induction of CAMP was observed in the bronchial 

epithelial cell line VA-10. This indicates that the inducing compound in breast milk is 

to some extent cell-specific, much like what has been observed with other CAMP 

inducers, e.g., butyrate, phenylbutyrate and vitamin D [68, 197]. This suggests that, 

although innate immunity is not a highly tailored response to stimuli, the regulation of 

innate immunity is tightly regulated select tissues in response to specific stimuli.   

 

Hydrophilic fractions of breast milk from different lactation periods were assayed for 

their capacity to induce CAMP expression. Notably, breast milk from all postpartum 
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time points was able to induce the expression of CAMP in HT-29 cells. However, 

colostrum (collected 0-3 days postpartum) and transitional milk (4-11 days postpartum) 

were not as efficient as late milk (11 or more days postpartum) to induce CAMP 

expression. This indicates a compositional change in milk or in the efficacy of the 

CAMP inducing components over time.  

 

The main inducing compound of CAMP present in breast milk was characterized as 

lactose by mass spectrometric analysis and nuclear magnetic resonance spectroscopy. 

Furthermore, the inducing effect of commercially available lactose could be 

corroborated in HT-29, T-84 and in THP-1 monocytes/macrophages in a time- and 

dose-dependent manner. Similarly to the induction of CAMP by breast milk, the 

inducing effect of lactose was most prominent in THP-1 monocytes. This suggests that 

lactose is the major contributor to the induction of CAMP by breast milk. However, the 

induction of CAMP in T84 cells was 6-fold increased in stimulations with lactose 

compared to breast milk, suggesting compounds in milk capable of inhibiting CAMP 

gene expression. By inhibition of signaling pathways in cells stimulated with lactose 

we could demonstrate that the lactose-mediated induction was dependent on an intact 

p38 MAPK and JNK signaling. MAPK signaling is also associated with the induction 

of CAMP in butyrate and phenylbutyrate treated cells [66, 119, 212]. However, in 

experiments stimulating cells with both lactose and butyrate/phenylbutyrate a 

synergistic effect on CAMP expression was observed. This suggests alternative 

pathways of induction for lactose and butyrate/phenylbutyrate.  

 

In experiments using additional di- and mono-saccharides we observed an induction of 

CAMP in stimulations with the lactose moieties glucose and galactose in combination. 

Furthermore, we show that also maltose and trehalose were capable of inducing the 

expression of CAMP. This supports a more general effect of saccharides as inducers of 

CAMP transcription. Also β-defensin genes were induced in HT-29 and T84 cells by 

both breast milk and lactose. In HT-29 cells HBD-1 was induced in response to breast 

milk, whereas the concentration of HBD-2 and -3 transcripts were increased in 

stimulations lactose. The expression of HBD-2 returned to the basal level after 24h, 

whereas HBD-3 expression returned to the basal level already after 4h. Combined, 

these results suggest that there are shared regulatory elements present in both the β-

defensin and cathelicidin genes. Moreover, these observations suggest that there are 

compounds other than lactose present in breast milk capable of modulating the 
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expression of β-defensins. Since the initial isolation of lactose from breast milk utilized 

CAMP expression as the readout, it is not unlikely that there are additional components 

in breast milk capable of modulating the expression of additional AMPs.  

 

There is a large variability in the concentration of lactose in milk between mammals, 

with human breast milk containing the highest concentrations of lactose [213]. This 

suggests that humans have evolved a greater dependency on lactose during nursing than 

other mammals. Although the reasons for this increase may be several, e.g., nutritional, 

prebiotic etc., we have provided an additional function of lactose in the defense against 

infection that may account for the high concentration of lactose in human breast milk. 

The induction of AMP expression has previously most been associated with cytokines, 

lipid mediators, PAMPs and DAMPs [17, 59, 214]. However, now several exogenous 

and endogenous factors not strictly associated with immune function have been shown 

to induce the expression of AMPs. The short-chain fatty acid butyrate is a bacterial 

metabolite produced in the colon after dietary fermentation of starches. Butyrate is 

regarded as a key nutrient for colonic epithelial cells and is tightly associated with the 

colonic tissue homeostasis  [215]. Butyrate has been shown to be a key modulator of 

the colonic inflammatory response by inhibiting IFN-γ mediated STAT-1 activation 

[216]. Notably, now the important colonic nutrient butyrate has shown promise as an 

inducer of AMPs, suggesting that AMPs are regulated in association with the nutrient 

state of the colon. Lactose is also tightly associated with butyrate in that unhydrolyzed 

lactose is converted into butyrate by colonic fermentation [217], indicated as one 

causative agent in symptoms of lactose intolerance [217]. 

 

4.2.2 Characterization of signaling pathways in the synergistic 

induction of LL-37 by phenylbutyrate and lactose 

In paper III we demonstrated that HT-29 cells stimulated with lactose and PBA in 

combination (PBA/lactose) for 24 h responded with a robust synergistic increase of the 

expression of CAMP. In order to elucidate what mechanisms are responsible for this 

observation we performed a proteomic screen of cell lysates from HT-29 cells 

stimulated with vehicle, lactose, PBA or PBA/lactose. From these treatments more than 

1300 proteins were identified and quantified by mass spectrometric analyses. The 

protein identities and their associate abundances were subsequently used for pathway 

analysis. Several metabolic and regulatory pathways in cells treated with lactose, PBA 

or PBA/lactose were activated in comparison to vehicle treated cells. Out of these 
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pathways, eleven were further investigated for their contribution to CAMP expression 

using the CAMP promoter-reporter cell line MN8CampLuc (Nylén et al. Manuscript in 

preparation).  

 

Three pathways showed a differential expression of the reporter protein pro-LL-37Luc 

when challenged with specific cognate inhibitors or inducers. These pathways were 

thyroid hormone receptor/retinoid X receptor (TR/RXR) activation, eicosanoid 

signaling and steroid biosynthesis. In MN8CampLuc cells stimulated with the TR 

ligands triiodothyronine (T3) and thyroxine (T4) or the RXR ligand all-trans-retinoic 

acid (ATRA) the expression of reporter protein was significantly increased (Figure 7). 

In addition, the expression of the reporter protein was additively enhanced in 

stimulations of the cells with a combination of lactose and thyroid hormone. Moreover, 

by combining PBA with triiodothyronine the expression of CAMP was synergistically 

enhanced. In line with our results it has previously been established that ATRA induces 

the expression of the CAMP promoter in a human monocytic cell line [218]. 

Furthermore, retinoic acid can also induce the gene encoding the porcine cathelicidin 

PR-39 [219].  

 

Interestingly Schauber et al. may have provided a link between the inducer of LL-37 

1,25-dihydroxyvitamin D3 and thyroid hormones. They demonstrated that the 

induction of LL-37 in keratinocytes by vitamin D is influenced by histone 

acetyltransferases (HATs) [120]. HATs are in turn dependent on the nuclear receptor 

steroid receptor coactivator 3 (SRC3), also known as thyroid hormone receptor 

activator molecule 1 (TRAM-1). SRC3 has been demonstrated to interact with several 

nuclear receptors including, as the name suggests, the thyroid hormone receptor. By 

interacting with nuclear receptors SRC3 potentiates the induction of transcription by 

the nuclear receptors in a hormone-dependent manner [120, 220].  Additionally, there 

are putative binding sites for TRs in the promoter of CAMP, warranting further 

experiments to elucidate if this nuclear factor is recruited to the promoter.  
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Figure 7. Schematic representation of the actions of known and novel regulators of 

CAMP in colonic epithelial cell lines. Lactose induce the expression of both LL-37 and 

β-defensin genes. A synergistic effect is observed when combining lactose with PBA. 

This synergism can be inhibited by COX-2 inhibitors (COX-2i) and statins. 

Additionally, cells stimulated with all-trans retinoic acid or thyroid hormones T3 and 

T4 display induced expression of CAMP.   

 

LL-37 is induced by bacterial metabolites not strictly regarded as PAMPs such as 

lithocholic acid and butyrate or in response to nutrients (saccharides) and to metabolic 

hormones, e.g., parathyroid hormone [221], thyroid hormones, insulin-like growth 

factor I and transforming growth factor-α (TGF-α) [112]. These observations suggest 

that LL-37 is not exclusively expressed in response to pathogenic stimuli or wounding, 

but also in a normal situation, to obtain homeostasis in the gut between the mucosa and 

the microflora. The activation of TR/RXR signaling indicates that nuclear receptors 

other than VDR are involved in the activation of CAMP.  

 

The hypothalamic–pituitary–thyroid hormone axis in the control of inflammation has 

for a long time been investigated regarding the anti-inflammatory effects of the 

glucocorticoids [40]. However, thyroid hormone dysregulation is associated with 

proinflammatory states such as irritable bowel syndrome, SLE, rheumatoid arthritis and 

Sjögren's syndrome [40]. The duality of the anti-inflammatory effects of butyrate and 

vitamin D together with their capacity of inducing the expression of LL-37 can also be 

observed by the thyroid hormones. Commonly the effect of enhanced levels of thyroid 

hormones is associated with a decrease in inflammation. However, there are instances 

when thyroid hormones act in a proinflammatory manner by the induction of specific 
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cytokines [222]. In line with these results, we also observed an enhanced expression of 

CAMP with increasing levels of thyroid hormones in the colonic epithelial cell line HT-

29.  

 

Eicosanoid signaling was investigated for its involvement in the expression of CAMP 

in either lactose and/or PBA stimulations. Several inhibitors to eicosanoid biosynthesis 

were employed in stimulation experiments using MN8CampLuc cells. By inhibiting 

cytosolic phospholipase-A2 and cyclooxygenase-2 (COX-2) in cells treated with 

PBA/lactose, the expression of the reporter protein was significantly reduced. However, 

this reduction could not be rescued by exogenous prostaglandin E2 (PGE2). Moreover, 

no reduction of the reporter protein expression was observed in cells incubated with a 

5-lipoxygenase inhibitor in combination with PBA/lactose compared to cells stimulated 

with PBA and lactose, separately. Thus, the induction of CAMP is dependent on 

functional eicosanoid biosynthesis in general and on a functional COX-2 pathway in 

particular (Figure 7). Nevertheless, we have not yet been able to identify the specific 

lipid mediator responsible for the induction of CAMP. Interestingly, Chamorro et al. 

observed that keratinocytes subjected to LL-37 stimulation responded with an increased 

expression of COX-2 and production of PGE2, suggesting that eicosanoid signaling 

may be a secondary feed-forward effect of an increased expression of LL-37 [223]. 

Also our group has reported on the cross-talk between eicosanoids and LL-37, 

suggesting a tight interaction of specific lipid mediators and LL-37 [81, 82]. 

 

Furthermore, we evaluated if steroid biosynthesis contributed to the induction of CAMP 

in the reporter system after stimulation with lactose and/or PBA. The reporter cells 

were additionally incubated with statins, thus inhibiting the production of 3-hydroxy-3-

methyl-glutaryl-CoA, the precursor molecule of cholesterol and other steroids. All 

statins used in incubations were able to reduce the expression of the reporter protein 

that was induced by incubation with PBA/lactose. No rescue of this inhibition could be 

observed when adding exogenous cholesterol or mevalonate. In reporter cells treated 

with lactose or PBA, only PBA induction was significantly affected by addition of 

statins. This suggests that the effect of statins on the PBA/lactose-mediated synergism 

is specifically acting on the PBA-mediated signaling (Figure 7). Interestingly, Roy et 

al. has reported that PBA can lower the level of serum cholesterol, inhibiting the 

activation of NF-κB through the depletion of intermediates in the mevalonate pathway 

[224], thus acting to reduce inflammatory responses. Statins are also capable of 
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dampening pro-inflammatory responses of TLR2 by inhibition of the Ras homolog 

gene family member A (RhoA) [225]. These two observations indicate that statins act 

as anti-inflammatory mediators by inhibition of key regulatory pathways of innate 

immunity.  

 

In conclusion, coupling proteomics to pathway analyses appears to be a valuable 

method in generating information on how AMPs are regulated. By corroborating the 

generated information using a promoter-reporter cell line the validation can be 

performed in a high-throughput manner. Moreover, this methodology is a rational 

complement to large drug screens of compound libraries without a detailed a priori 

knowledge of inherent signaling mechanisms of the target cell.  
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5 CONCLUSIONS 

5.1 ANTIMICROBIAL POLYPEPTIDES IN THE DEFENSE AGAINST 

RESPIRATORY TRACT INFECTIONS  

• We demonstrate that although several antimicrobial polypeptides of PMNs (i.e., 

lysozyme, lactotransferrin and histones) were specific in their antimicrobial 

repertoire against the four human pathogens M. catarrhalis, C. albicans, S. 

aureus, H. influenzae, many revealed a broad antimicrobial spectrum (i.e., LL-

37, azurocidin, HNP1-3 and calprotectin). This suggests that the armament of 

PMNs is selected for a broad spectrum of antimicrobial activity, reflecting the 

broad spectrum of microbes the PMNs encounter.  

• We observe an impaired release of LL-37 and HNP1-3 in the nasal fluids of 

patients diagnosed with the primary immunodeficiencies HIES and CVID. In 

addition, PBMCs of HIES and CVID patients display an aberrant IL-17 

response to antigenic stimuli. Moreover, the nasal fluids of CVID patients 

exhibited a reduced capacity to induce chemotaxis in PMNs of healthy donors. 

Patients diagnosed with HIES and CVID suffer from deficiencies pertaining to 

the adaptive arm of the immune system. However, here we have now shown 

that these patients also suffer from deficiencies in the innate immune defense.  

 

5.2 REGULATION OF LL-37 BY LACTOSE 

• We demonstrate that lactose in human breast milk induces the expression of the 

genes encoding LL-37 and HBD1-3 in human colonic epithelial cell lines and 

LL-37 in a monocytic cell line. We also observe a strong synergistic effect on 

the induction of LL-37 with lactose and phenylbutyrate or butyrate in the 

colonic epithelial cell line HT-29. This indicates that endogenous molecules can 

synergize to achieve AMP induction and thus a strengthening of epithelial 

barrier function.  

• We observe that thyroid hormones T3 and T4 can induce the expression of the 

reporter-protein in a CAMP gene reporter system. This induction is additively or 

synergistically enhanced with lactose or phenylbutyrate, respectively. We 

further observe that the synergistic induction of reporter-protein by lactose and 

phenylbutyrate is sensitive to inhibition of HMG-CoA reductase, as well as to 

inhibition of the COX-2 branch of eicosanoid biosynthesis. These results reveal 

novel regulatory circuits capable of modulating the expression of AMPs. 
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