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ABSTRACT 
Type 1 diabetes (T1D) is a complex disease where the pancreatic β-cells are destroyed in an autoimmune 

attack. For the patients, this leads to lifelong daily insulin treatment and increased risk for various kinds 

of complications. It is thought that both environmental as well as genetic factors act in concert to cause 

T1D. The Human Leukocyte Antigen (HLA) region located on chromosome 6 accounts for about 50% of 

the genetic risk to develop T1D. Several other genes are also known to contribute to disease risk.  

Paper I. Previous publications indicate that the programmed cell death 1 (PDCD1) gene (chr.2) is 

associated to various autoimmune diseases.  PDCD1 is involved in maintaining self tolerance. The aim of 

our study was to test the involvement of the PDCD1 gene in T1D susceptibility. However, when two 

separate Swedish cohorts were analyzed no association or linkage was found between T1D and the 

PDCD1 gene. Nor did we observe any association in a meta-analysis with a previous study reporting 

association between PDCD1 and T1D. 

Paper II. We have in a previous study observed suggestive linkage to the chromosome 5p13-q13 region 

in Scandinavian T1D families. This region showed stronger evidence of linkage, when only the Swedish 

families were investigated. Genotyping of more than 70 markers in the Swedish families revealed two 

associated candidate genes: 5-hydroxytryptamine (serotonin) receptor 1A (HTR1A) and ringfinger protein 

180 (RNF180). Association of both genes has been confirmed by us in Danish families. The two genes 

are in strong linkage disequilibrium with each other. However conditional analysis data suggest that 

HTR1A may be most strongly associated. Further, we report that HTR1A is expressed in human β-cells 

and α-cells.  

Paper III. The class II transactivator (CIITA) gene (chr.16) is crucial for MHC II gene regulation and 

has been reported to associate with susceptibility to a number of complex diseases. By genotyping SNPs 

in Swedish T1D cohorts and the combined control material from previous studies of CIITA we have 

observed significant difference in the genotype distribution for three markers in CIITA with respect to 

age, in the collected control material. This phenomenon was confirmed in an independent control 

material. After adjusting for age we detect association to T1D for two markers in our T1D material. 

Further, we observed interaction between markers in CIITA and the protective HLA DR15 haplotype. 

These findings suggest that a polymorphism in the CIITA gene area may be associated with type 1 

diabetes susceptibility. Importantly, results also suggest that control groups should be properly matched 

for the cases. 

Paper IV. In complex diseases genes seldom act alone in disease susceptibility. Instead it is thought that 

genes may interact with each other. The aim of our investigation was to study the interaction of the most 

significantly associated genes in T1D (HLA-DRB1, HLA-DQB1, INS and PTPN22). This was done by 

comparing four different models for studying interaction; multiplicative and additive interaction models, 

Multifactor dimensionality reduction (MDR) model and Bayesian Networks (BN) model. Results indicate 

several interaction terms mainly in the additive model. Further, we show that the additive interaction 

model has the strongest prediction accuracy rate indicating that this is the model of preference. 

 

In summary, in order to better understand the cause of T1D the aim of this thesis was to identify single 

genes as well as gene-gene interactions which may influence the risk of T1D development.  
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1 

 

1 BACKGROUND 

 

 

 

1.1 GENETICS 

The word genetics comes from the Greek word “genitive” which in turn originates from 

the word genesis plainly meaning “origin”. Genetics refers to the genes involved in the 

heredity and variation in all living organisms.  

In 1856 an Austrian monk named Gregor Mendel also called the “Father of genetics”, 

planted pea seeds in his monastery garden and discovered that certain traits of the pea 

plant seemed to follow specific laws of so called dominant and recessive inheritance 

patterns. These findings later became known as the three Laws of Mendel´s 

Inheritance; Law of segregation, dominance and independent assortment. 

 

 

1.1.1 Genetic Diseases 

By using Mendel´s studies as a base, scientists later discovered that the genetic 

information of the cells of all living organisms is packed in what we call the “genome”. 

In some cases, errors occur in the genome leading to various genetic diseases.  

Genetic diseases can be divided into four categories: chromosomal, monogenic, 

mitochondrial and complex/multifactorial.  

Diseases caused by changes in the chromosomes involve mutations in large 

chromosome segments. Sometimes even whole chromosomes may be involved which 

is the case in Down syndrome (trisomy 21) where affected individuals carry an extra 

copy of chromosome 21. 

Monogenic diseases follow the Mendelian inheritance pattern (autosomal 

dominant/recessive, X-linked dominant/recessive or Y-linked). These types of diseases 

are relatively rare and their mutations are fairly easily identified. An example of a 

recessive condition is Cystic Fibrosis. 

Mitochondrial diseases are extremely rare and are only passed on by mothers to 

offspring. Maternally inherited diabetes with deafness is an example of rare 

mitochondrial disease. 

Multifactorial diseases do not follow traditional Mendelian inheritance patterns. Instead 

it is believed that these diseases are caused by multiple gene-gene interactions as well 
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as interaction with environmental factors. Most common diseases such as type 2 

diabetes, cardiovascular and autoimmune diseases are examples of multifactorial 

diseases. 

 

 

1.1.2 DNA Variation 

In 1962 James Watson and Francis Crick shared the Noble prize for the discovery of 

the structure of deoxyribonucleic acid (DNA). The DNA molecule is the basis of all 

heredity and it is the basic coding block for proteins and enzymes in living organisms. 

Watson and Crick determined that DNA is constructed of two chains, so called helixes. 

The two chains are held together by hydrogen bonds between pairs of bases; adenine 

(A) binding to thymine (T) and guanine (G) binding to cytosine (C). All four bases are 

also individually attached to a sugar-and phosphate molecule forming so called 

nucleotides. It is the sequences and combinations of bases on the DNA helix that build 

up and maintain an organism. Approximately 99% of all bases in the genome are in the 

same order in all individuals. However, the remaining 1% of all bases varies between 

individuals. These DNA sequence variations have been important for the process of 

human evolution and the creation of population heterogeneity and making individuals 

more fit to adjust in new environments. Variations in the DNA also provide useful help 

when trying to identify genes that cause multifactorial diseases [1]. 

 

 

1.1.2.1 Single Nucleotide Polymorphisms 

The most common example of DNA sequence variations are Single Nucleotide 

Polymorphisms (SNPs). A SNP is an alteration in a single base (A, T, C or G) in the 

DNA sequence, usually varying between two nucleotides in a specific base pair 

position (Figure 1).  

Thankfully, the vast majority of all the millions of SNPs that each individual carries are 

so called silent mutations and do not cause any harm or damage. 

However, in some cases SNPs located within genes may alter the expression level or 

lead to expression of alternative variants of a protein which in turn leads to a specific 

phenotype.  

One way of identifying disease susceptibility genes is to study the changes caused by 

SNPs and compare them in patients and controls. 
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1.1.2.2 Structural Variation 

The second most common type of DNA variation in humans is structural variations 

(SV´s). Unlike SNPs SV´s involve variation in more than only one base pair. Insertions, 

deletions, duplications, translocations and copy number variations are all examples of 

SV´s. Insertions and deletions (often called INDELs) range from 1bp up to 10.000 bp´s 

in length [2]. Translocations and duplications involve rearrangements of larger 

chromosomal segments. Copy number variations (CNV´s) are often longer than 1kb 

and sometimes ranges up to 3Mb. Longer forms of deletions, insertions, duplications, 

inversions and translocations are all termed CNV´s [3,4]. Like SNPs, all types of SV´s 

may be involved in disease susceptibility by interference with gene expression and 

subsequently altering the translation of proteins [5]. For example there is an enhanced 

susceptibility of HIV infection if one has a lower copy number of the CCL3L1 gene [6]. 

Furthermore, studies indicate that there is a higher risk of being affected by various 

types of cancer if one has homozygous deletions of the glutathione S-transferase genes 

(GSTT1 and GSTM1) [7].  

 

 

1.1.2.3 Repeats 

Throughout the human genome, there are DNA sequences that are repeated in a row. 

The number of repeats varies between individuals and populations and are therefore an 

ideal tool for identifying disease genes [8]. The repeats can be classified into three 

different groups: 

Microsatellites (also known as short tandem repeats) are short repeats of 1-6bp. 

Figure 1. Illustration of an alternation in a DNA sequence caused by a Single Nucleotide Polymorphism 

(SNP) in three separate haplotypes 
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Minisatellites (also called variable number of tandem repeats, VNTR) are longer 

repeats ranging from 9-80bp.  

Megasatellites can be up to several Kb long [9]. 

Examples of diseases caused by this type of polymorphisms include Huntingtons and 

Myotonic dystrophy.  

 

 

1.1.3 Genetic Approaches to Identify Disease Susceptibility Genes 

Since the mode of inheritance is unknown in complex diseases, finding disease causing 

genes and gene regions is a very difficult task. There are however two main ways to 

identify genetic regions or alleles that cause a specific phenotype; Linkage analysis and 

Association studies. Both methods can be used on candidate genes as well as in genome 

wide studies. 

 

 

1.1.3.1 Linkage Analysis 

Linkage analysis can only be used in family materials since it studies the inheritance 

pattern of certain markers together with a phenotype. In early days microsatellites were 

used for studying linkage but nowadays SNPs are used more often. 

Chromosome pairs randomly exchange genetic material during the early stages of cell 

division, so called meiosis. This trade is called recombination. 

The probability of two genes undergoing recombination is much higher in genes that 

are located far apart as compared to genes that are in close proximity to each other. 

Genes or markers located close to each other very rarely recombine and are therefore 

said to be linked (inherited together).  

The extent of linkage is measured by the recombination fraction, denoted θ (theta). 

Unlinked genes show 50% recombination and have a recombination fraction of 0.5. 

When θ is 0 the studied genes are thought to be in complete linkage. Linkage is 

calculated using the LOD score (the score of the logarithm of odds) which is a 

statistical method to calculate the significance of obtained genotyping results given the 

observed phenotypes in a pedigree and given a mode of inheritance for the trait. The 

LOD score represents the ratio of two hypothesis; the null hypothesis where there is 

free recombination, H0 (no linkage and θ=0.5) and the H1 hypothesis where linkage 

between loci is observed. The likelihood that the studied loci are linked rather than the 

likelihood of observing obtained data by chance is calculated as follows; 
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LOD=log10  Likelihood of linkage (H1) / Likelihood of free recombination (Ho) 

 

 

There are two categories of linkage analysis (parametric and non-parametric linkage 

analysis) where the transmission of inherited DNA markers can be studied and 

compared from generation to generation for identifying a disease affecting gene region.   

Parametric (model based) linkage analysis has been very successful in the search for 

genes causing monogenic diseases. Parametric analysis however requires information 

of certain parameters such as mode of inheritance, allele frequencies and mutation 

rates. This creates problems while studying complex diseases where the mode of 

inheritance is unknown. Instead, non-parametric (model free) linkage analysis is 

preferred since it does not require specification of the inheritance mode [10]. In this 

method the studied families must have at least two affected individuals, often sib-pairs. 

In affected sib-pair analysis the families are genotyped to see how often a genetic 

marker is shared identical by descent (IBD) in the siblings. The expected IBD allele 

sharing in siblings if no linkage is present is 25% for sharing both alleles; 50% for 

sharing only one and 25% for not sharing any alleles. Increased LOD scores will be 

observed if family members share alleles more excessively than expected. The non 

parametric analysis is considered to have less power than the parametric analysis since 

only shared alleles among cases are studied and no genetic mode is assumed. 

Therefore, a large number of families with at least two affected relatives are required.  

In parametric analysis obtaining a LOD score of 3 is considered to be significant and 

basically indicates that the probability that the studied locus is linked is a 1000 times 

higher than that it is not linked assuming that there is only one linked polymorphism in 

the disease. Having observed a significant LOD score of 3 leads to the conclusion that 

the studied marker is located by a disease susceptibility marker/locus [11]. A LOD 

score of 2 is thought to be suggestively significant while a LOD score of less than 2 is 

non-significant. Depending on which statistical method a computer program uses, 

significant LOD scores should always be presented with corresponding p-values. In 

most statistical analysis a p-value of 0.05 is considered to correspond to significant 

results. This value indicates that if the study is repeated a 100 times the chance of 

obtaining similar results purely by chance is 5%. However, it is important to distinguish 

between point wise (nominal) significance levels (where only a single locus is studied) 



 

6 

 

and genome-wide significance levels (where a large number of markers are studied). In 

order to reach genome wide (GW) significance levels of 0.05, the nominal significance 

levels must therefore be set to much more stringent values. Thus for non-parametric 

analysis where many polymorphisms may be linked to the disease, a LOD score of 2.2 

(nominal p≤0.00074) is regarded as suggestive linkage which means that the chance of 

obtaining similar results by chance is once in a genome-wide linkage analysis. A LOD 

score of ≥3.6 (nominal p≤0.000022) is evidence of genome-wide significant and 

indicates that in every 20 genome-wide linkage scans significant linkage will occur one 

time [12,13]. Even though linkage analysis has helped scientists to identify several 

disease susceptibility genes it has its draw backs. In monogenic diseases, linkage 

analysis manages to define small areas where only one or few genes are located. In 

complex diseases however, no robust methods which give sufficient statistical 

correlations with a specific locus have been developed. This leads to linked areas often 

contain hundreds and sometimes thousands of genes making it extremely tedious to 

find a susceptibility gene. A main reason for this is probably that we usually do not 

have large family materials with many affected individuals leading to few 

recombinations between phenotype and marker. Monogenic diseases on the other hand 

are more easily studied because of extended family pedigrees with large amount of 

recombination leading to fewer linked areas. An additional reason for these large linked 

regions is that many genes are involved sometimes mapping to the same region of the 

chromosome. 

 

 

1.1.3.2 Linkage Disequilibrium (LD) and Association Studies 

Identifying a SNP with strong association to a disease may not per se mean that the 

studied SNP is causative. Instead it may be in linkage disequilibrium (LD) with the true 

causative SNP. Therefore it is thought that the power of an association study increases 

with high LD. The definition of LD is as follows; non random association of two or 

more loci on the same chromosome. SNPs that are in LD with each other are therefore 

said to be inherited together on the same so called haplotypes. There are several factors 

that influence LD, such as random mating and migration, selection, rate of mutations, 

genetic drift and recombination fraction [14]. LD can be calculated in two ways; either 

using the Χ
2 
–test [15] or by calculating the excess of alleles [16]. The effect of the LD 

may then be measured using either r
2 
or D´ [17] where r

2
 is usually most preferably 

used. 
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Association studies can be divided into two types; candidate gene studies and genome 

wide association studies (GWAS). In the candidate gene study approach the 

investigated gene is picked due to prior knowledge about the gene in the disease while 

in the latter method, no specific pre-existing knowledge of genes is required. Recently 

the latter approach has been widely used since it is a rapid way of scanning whole 

genomes in search of genetic variations which could lead to certain diseases. This 

method however requires large amounts of patients and controls. 

Association studies involve testing whether a certain allele is more or less common in 

affected individuals compared to the healthy population. If association is found, it is 

thought that the studied allele is either directly involved in the susceptibility to disease 

or in LD with a susceptibility allele on the same or nearby locus. 

 Association studies can be both population based and family based studies. In the 

family based approach the transmission disequilibrium test (TDT) which detects 

association in the presence of linkage, is most commonly used. 

 

Unlike in traditional linkage analysis where large families are required, the TDT can be 

calculated using only trio families (two parents and one offspring). No affected siblings 

are needed. It is however necessary that at least one parent is heterozygous for the allele 

that is studied. The TDT evaluates the transmission frequency of the disease/non 

disease associated alleles from parent to child [18]. A transmission frequency of more 

than 50% indicates that the studied allele is associated with disease. On the other hand, 

a transmission frequency of less than 50% is considered to indicate disease protection. 

A further development of the TDT has been generated; the pedigree disequilibrium test 

(PDT). This test is used when larger families are studied and when several affected 

individuals are involved [19]. 

Samples from affected and unaffected unrelated individuals are collected in the 

population based (case-control) approach. Association analysis can be done by various 

methods depending of question, but a common way to test for allele frequency 

differences is by using a χ
2
- test. In the population based studies it is crucial that the 

cases and controls are matched to each other in regard of ethnicity. Proper matching 

may minimize the risk of population stratification and false positive results. Many large 

GWAS studies use the Principal Component Analysis (PCA) to reduce population 

stratification effects. 
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1.1.3.3 Interaction Studies 

Complex diseases arise from genetic as well as environmental factors yet not all 

genetically susceptible individuals respond to environmental factors in the same way. 

This difference can be explained by gene-environment interaction and gene-gene or so 

called epistasis. In epistasis it is considered that the effects of one gene is masked by 

one or several other genes. However, there is an disagreement regarding the meaning of 

the term epistasis. Most population geneticists claim that epistasis can only be applied 

on so called quantitative traits (due to certain statistical calculations) whereas others 

claim it refers to the same phenomena as genetic interaction [20]. In its original 

definition it refers to the masking of the effect of on gene by the genotype present at 

another gene.  Lately more and more focus is being given to interaction studies. It is 

thought that these studies may shed more light into which factors are involved in 

different pathways leading to the development of a multifactorial disease. 

Interaction studies can be performed using various statistical models. The most 

commonly used approaches are however the Additive model or the Multiplicative 

model. 

In the Additive model, it is assumed that no interaction is present between the studied 

factors [21]. In that case the estimated risk for individuals exposed to two risk factors is 

the sum of the risk for the individual factors.  For understanding a possible interaction, 

the so called “pie model” is used. In the pie model it is assumed that if the studied 

factors are not jointly required in a specific pathway leading to disease, the factors are 

not included in the same sufficient cause and hence are independent of each other (no 

interaction) (Figure 2) [22]. In other words, if the total effect of two factors deviates 

from additivity what is called causal interaction, is thought to be present [23]. Causal 

interaction is also referred to as biological interaction in the field of epidemiology. 
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The degree of interaction may in turn be estimated by the use of three different  

measures; Relative excess risk due to interaction (RERI), the attributable proportion 

due to interaction (AP) and the synergy index (SI) [24]. 

The additive model is thought to explain both causal and statistical interaction. This is 

not the case with multiplicative interaction where interaction is only explained on a 

statistical level [23]. The multiplicative model which is based on a logistic regression 

model is more widely used compared to the additive model. In the multiplicative 

model, the joint effect of the product of the total effect of each individual factor is 

estimated. If the interaction term is significantly associated then statistical interaction 

between the tested factors is present. 

Interaction can also be studied by using the Multifactor dimensionality reduction 

(MDR) and Bayesian Networks (BN) models. MDR is a non-parametric model where 

genotype data are divided into high risk and low risk individuals converting 

multidimensional variables into lower dimensional space. This step determines which 

combinations of risk factors predict affection status.  It is then possible to determine 

how well the classification of risk factors predict affection status [25] (Figure 3). 

 

 

 

 

Figure 2. The three pies represent three individuals with the same disease. E denotes an 

environmental factor while G denotes genetic factors. If all factors are present in each 

respective individual disease will be developed. These factors are then referred to as a 

sufficient cause for the disease. The structure of the pies may look different in different 

individuals where some factors are unique for an individual while others are shared. In 

conclusion, single associated genetic and environmental factors are necessary but not 

sufficient to cause disease.  
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The BN model may be used for both causal as well as probabilistic interactions and is 

therefore ideal for including prior knowledge. In the BN model principles from graph 

and probability theories are combined with statistics and computer science. Each so 

called node in figure 4 is thought to represent a random variable. The edges between 

the variables are estimated by using computer sciences and statistics. The edges are 

thought to represent probabilistic dependencies between various studied variable.   

The BN model is believed to be particularly good since it does not assume any 

statistical model for interaction, it avoids data “over fitting” and can be used even when 

data is missing. BN is an ideal method to get an overview of possible causal 

interactions [26].  

 

 

 

 

Figure 3. The figure illustrates a graphical model of MDR using two SNPs; SNP 1 and 2. The large 

table indicates the number of cases and controls for each genotype combination. The ratio of cases to 

controls for each genotype indicates whether a genotype combination is associated with risk (dark 

grey boxes) or protection (light grey boxes). The small table indicates the data being converted into a 

lower dimentional space including the total number of cases and controls carrying non risk and risk 

genotypes respectively (X and Y).  
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1.2 DIABETES 

The number of diabetes cases is rapidly growing throughout the world. However, 

diabetes is not a “new” disease for humans. It was first mentioned in 1550BC in Egypt 

that a rare disease causes the patients to urinate frequently and to rapidly lose weight.  

Later, an ancient Greek physician named Aretaeus (30-90CE) noted a condition with 

symptoms such as frequent urination, excessive thirst and severe loss of weight. 

Aretaeus named this condition diabetes which basically means “flowing through” [27]. 

Years went by and until the 20
th

 century patients suffering from diabetes rarely lived for 

more than a few years after being diagnosed with the disease. 

In 1921 Fredrick Banting and Charles Best started isolating insulin from animals. The 

first bovine insulin treatment was given to a patient suffering from diabetes and it was 

seen that the patient’s condition improved dramatically. From that day the lives of 

diabetes patients changed and now, if treated right, it is no longer considered to be a 

deadly disease.  

Science has come a long way after the discovery of insulin. It is now known that insulin 

is a hormone which is vital for the processing of glucose into energy. Diabetes is 

Figure 4. Example of a directed acyclic graph  used in BN analysis  where variables A-E 

represent different risk factors  for the assumed outcome. All factors influence the outcome. 

However, A affects the outcome directly as well as indirectly both through risk factor B, C and D. 

E has no interaction with the other risk factors.  
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classified as a chronic metabolic disease where patients have a change in insulin 

production caused by complex interactions of several different factors. In the pancreas 

cells called β-cells produce insulin. In turn insulin converts glucose into energy in the 

periphery. Energy is crucial for normal cell growth and cell survival. Inability to 

convert glucose into energy leads to high blood sugar levels (hyperglycaemia). There 

are two major types of diabetes; type 1 diabetes (T1D) and type 2 diabetes (T2D). T1D 

is unlike T2D an autoimmune disease and accounts for around 5-10% of all diabetes 

incidents. In general, T1D affects young people under the age of 35. At the time of 

diagnosis, T1D patients often lack the ability to produce insulin and suffer from 

ketoacidosis. 

The vast majority of all diabetes incident cases (90%) are classified as T2D patients. 

These patients usually have a later disease onset and are able to produce insulin but are 

not able to respond to the insulin production (so called insulin resistance) and if not 

treated properly the production of insulin later declines. 

The classic subdivision of diabetes with only two diabetes types however has been 

proven not to be entirely correct. Even older people have been diagnosed with type 

T1D. This form of diabetes is called latent autoimmune diabetes in adults (LADA). 

Further, more and more children are being diagnosed with T2D. This is most surely due 

to our modern lifestyle with increased obesity and physical inactivity. 

There are at least four more additional forms of diabetes; Maturity onset diabetes of the 

young (MODY) affects around 2% of all diabetes patients and is inherited in an 

autosomal dominant fashion. MODY has an early onset (before 40 years of age) and is 

non-autoimmune [28,29]. Other forms of diabetes is gestational diabetes which affects 

around 3-10% of all pregnant women depending on the studied population [30] and 

neonatal diabetes which can be transient or permanent. Findings suggest that neonatal 

diabetes does not have the same etiology as type 1 diabetes and an unbalanced 

duplication of paternal chromosome 6 has described as the trigger of neonatal diabetes 

[31]. The final diabetes form is secondary diabetes which is caused by something other 

than genetic factors. It is usually caused by some kind of primary health problem such 

as inflammation of the pancreas (pancreatitis) or cystic fibrosis. Even some medicines 

may interfere with insulin production (i.e decrease levels of insulin production) and 

there by lead to secondary diabetes (www.pamf.org/health/healthinfo).  

Diabetes and pre-diabetes can be diagnosed relatively easily by performing a fasting 

blood glucose test at two separate occasions where a blood glucose level of 6.1mmol/l 

or more indicates diabetes. Diagnosis can also be made by a non-fasting blood glucose 
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test where a patient with blood glucose levels of >11 mmol/l is classified with diabetes 

(WHO 1998). 

 

 

1.2.1 Type 1 Diabetes 

As mentioned earlier, around 5-10% of all diabetes patients are classified as type 1 

diabetics. These patients require life-long insulin injections for survival. 

T1D is the only form of diabetes which is classified as an autoimmune disease. It is 

manifested by the loss of insulin production due to destruction of the insulin producing 

β-cells in the pancreas. The development of T1D in a genetically predisposed 

individual may take months or even up to years. It is thought that exposure to an 

initiating event, such as a viral infection may trigger progressive β-cell destruction and 

the development of auto antibodies towards the pancreatic islets. This event may not 

necessarily lead to T1D but in case of more triggering events cell mediated destruction 

of β-cells may continue finally leading to fully developed T1D (Figure 5). 

 

 

 

 

 

 

 

 

 

Figure 5. β-cell destruction and the stages in the development of to T1D.  

From Eisenberth, GS, New Engl J Med 1986; 314:1360-1368. 
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1.2.1.1 Symptoms and Complications 

The disease progression varies greatly, sometimes ranging from just a few months to 

several years. Common classic symptoms are high blood sugar levels and high levels of 

sugar in the urine, increased appetite despite weight loss and frequent urination. Typical 

symptoms also include fatigue, problems in eyesight and poor healing of cuts and 

scrapes. 

Due to greatly improved insulin treatment T1D is no longer considered to be a deadly 

disease. However, it has been observed that the life expectancy of T1D patients is 

shortened by 10-20 years due to complications. It is therefore of vital importance that 

all T1D patients lead a healthy life style which includes exercise, eating healthy meals 

and daily checks of blood sugar levels. Typical T1D complications include 

microvascular diseases such as; neuropathy (nerve damage throughout the body), 

retinopathy (damage of retina in eye), nephropathy (diabetic kidney disease) and 

cardiovascular damage; T1D patients may suffer from heart diseases and stroke due to 

high blood pressure. 

 

 

 

1.2.1.2 Incidence and Epidemiology 

The number of new cases occurring in a population during a given time period (i.e 

100.000/year) is referred to as the incidence rate. Between 1990 and 1999 the 

DIAMOND project analyzed trends of new T1D cases in each continent. Results 

revealed that excluding Central America and the West Indies, between 1990-1999 T1D 

incidence cases are increasing by 2-5% world-wide. However, there are still huge 

variations in the incidence rates on the global scale which are thought to be due to 

exposure to different environmental factors as well as genetic heterogeneity. For 

example in China, the T1D incidence rate is around 0.1/100 000 while in Finland, 

which has the highest T1D incidence rate to date, it is as high as 40/100 000 [32]. 

Studies show that second to Finland and the island of Sardinia in Italy, Sweden has the 

highest T1D incidence (≥20/100.000 per year, Figure 6). Approx. 50.000 individuals in 

Sweden suffer from T1D today and each year, >800 new T1D cases are diagnosed [33].  

Recent studies show that there is a dramatic increase in T1D cases in eastern European 

countries which have earlier had a rather low number of T1D cases. Poland and 

Romania have a yearly rise of new T1D cases of 9.3% and 8.4% respectively [34]. 

Furthermore, in almost all European countries is that more and more young children 
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between the ages 0 and 5 years are being affected by T1D. It is believed that between 

2005 and 2020 there is going to be a doubling of new young T1D cases [35]. The 

increase in incidence rates seen in the whole world cannot be a consequence of solely 

genetic predisposition it must largely be due to changes in life style and environment. 

Gene-environment interaction seems to play a major role in the susceptibility to T1D 

[36] and it is these interactions that should be studied in more detail in order to 

understand the rise in new T1D cases.  

 

 

 

 

 

1.2.1.3 Innate and Adaptive Immunity 

The immune system has developed to protect the host from pathogens and other foreign 

substances. The early defense against foreign substances is the innate immunity and the 

main components include physical epithelial barriers, dendritic cells, natural killer 

(NK) cells and macrophages. Unlike the adaptive immune system the innate immune 

system recognizes structures common for various microorganisms and is therefore 

thought to be unspecific. Dendritic cells and macrophages also act as a link between the 

innate and adaptive immune system through antigen presentation to T-cells.  

The adaptive immune response is antigen-specific and requires the recognition of 

specific “non-self” antigens during a process called antigen presentation. The adaptive 

Incidence 0-14 yrs/100 0000 in Europe  

 

Figure 6. Geographic variation of T1D in Europe in 1989-1998 (Soltesz G et al., 2007) 
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immunity also includes a “memory” that makes future response against a specific 

antigen more efficient. The adaptive immune system is composed of B-cells and T-

cells. B-cells mature in the bone marrow and are involved in the humoral immune 

response through the formation of antibodies. T-cells on the other hand mature in the 

thymus and are involved in the regulation of the immune system. There are several 

types of T-cells each with a special purpose.  CD4+ T-cells help B-cells in the 

production of antibodies and recognize peptide antigens in the context of MHC class II. 

CD4+ T-cells are also involved in activation of macrophages. CD8+ T-cells recognize 

peptide antigens presented in the context of MHC class I molecules and secrete 

granules containing chemicals that destroy a targeted cell and may also be involved in 

the activation of macrophages. Regulatory T-cells (Tregs) are subpopulations of CD4+ 

T-cells involved in the regulation of autoimmunity and suppression of immune 

response during infections. The most well characterized Tregs are those expressing 

CD4 and CD25 (IL2 receptor). Since activated normal CD4 T-cells also express CD25 

it has been difficult to distinguish Tregs from activated T-cells. Recent research has 

shown that the regulatory T-cells can be defined by expression of the forkhead family 

transcription factor Foxp3 in addition to CD4 and CD25 [37,38] 

 

 

                         

 

 

    

 

 

 

 

 

Figure 7. T-cells need two signals for activation; the binding of antigen which is presented by an 

antigen presenting cell (APC) on MHC I / II to the T-cell receptor (TCR) on CD8+ / CD4+ T-cells and 

the binding of co-stimulatory molecules B7 on APC and CD28/CTLA-4 on the T-cells. If both signals 

are present activation of T-cells may take place. Abnormalities in co-stimulatory molecules may lead to 

increased activity of auto reactive T-cells resulting in the development of T1D.  
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1.2.1.4 Immunologic Tolerance and Autoimmunity 

The ability to discriminate self from non-self is a fundamental property of the immune 

system. A functional immune system requires the selection of T-cells expressing 

receptors that are tolerant to self-antigens. T-cell progenitors migrate from the bone 

marrow to the thymus where the T-cell maturation starts. Pro- T cells are called 

“double negative” since they express neither TCR nor the co-receptors CD4 or CD8. 

Some of these cells undergo rearrangement of the TCR gene segment to produce a 

functional TCR/CD3 complex and the cells expressing TCR develop into CD4+ and 

CD8+ cells (double positive cells).Those cells bearing receptors that recognize foreign 

peptides associated with self-MHC will be selected and allowed to mature (positive 

selection) and others will die by default. Next the cells become single positive. Among 

the positively selected cells some cells will recognize self antigens associated with self-

MHC. In the following step of negative selection any cells with a high-affinity receptor 

for self-MHC molecules alone or self-antigen+ self-MHC are eliminated. 

Unfortunately, sometimes T or- B-cells manage to escape and become auto reactive 

cells. These cell types fail to see the difference between “self” and “foreign” substances 

leading to tissue damage and autoimmunity.  

The presence of auto reactive T-cells and autoantibodies are typical characteristics of 

an autoimmune disease. There are two types of autoimmune diseases; Systemic - and 

Organ-specific autoimmune diseases.  

Systemic Lupus Erythematosus (SLE) and Rheumatoid arthritis are two examples of 

Systemic autoimmune diseases. In these diseases the immune response is directed 

towards multiple organs and tissues with a broad range of autoantigens. Examples of 

organ specific autoimmune diseases include Addison´s disease, Graves´disease and 

T1D [39]. 

In T1D the immune system attacks the insulin producing β-cells located in so called 

islets of Langerhans throughout the pancreas. The destruction of β-cells is thought to be 

caused by the infiltration of CD4+ and CD8+ T-cells and macrophages in the islets 

[40]. Exact details of the mechanism behind the β-cell destruction through this 

infiltration is however still unknown but it studies involving recent onset T1D patients 

and NOD mice indicate that once autoimmunity towards β-cells has been developed, β-

cell autoantigens are presented to autoreactive CD4+ T-cells by macrophages, dendritic 

cells or B-cells in the periphery. The CD4+ T-cells then secrete cytokines which in turn 

activate β-cell specific CD8+ cytotoxic T-cells. The activated cytokine producing T-
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cells are recruited to the pancreatic islets and further activate macrophages and T-cells 

which lead to β-cell apoptosis [41] (Figure 7).   

Apart from auto reactive T-cells, autoantibodies are strong predictors of T1D. The first 

autoantibodies to be identified were the Islet cell antibodies (ICA). These 

autoantibodies are not antigen specific but are targeted against a variety of proteins in 

pancreatic islets. This discovery lead to more extensive research where four distinct 

autoantibodies targeted against β-cell specific autoantigens were discovered; insulin 

(IAA) [42], glutamic acid decarboxylase 65 (GAD 65) [43], protein tyrosine 

phosphatase-like molecule (IA-2) [44], and ZnT8Ab [45]. It is now documented that 

90% of patients with newly diagnosed T1D have autoantibodies for at least 1 

autoantigen. Further, reports indicate that both IAA and IA-2 autoantibodies are found 

more frequently in young children [46] with a dramatic decrease during post T1D 

diagnosis [47]. GAD 65 autoantibodies however seem to be present for a long time 

period even after T1D diagnosis [48].  

 

 

 

1.2.1.5 Disease Susceptibility Factors 

More than 85% of all patients with T1D do not have a positive family history for the 

disease. Yet the mean prevalence (percentage of population with disease at given time) 

of T1D in siblings is around 6% while in the general population it is only around 0.4% 

indicating that there is significant familial clustering (λ) of T1D.  The familial 

clustering for siblings (λs) is calculated as the disease prevalence in siblings divided by 

the prevalence in the general population (6/0.4=15).  This means that siblings of T1D 

patients have a 15-fold higher risk of developing T1D as compared to the general 

population [49].  

Understanding the role of environmental factors as well as genetic factors in the 

development of multifactorial diseases has not been easy. Twin studies have been 

important for distinguishing between hereditary and environmental factors in diseases 

such as T1D. Studies show that the concordance rate for T1D in MZ twins is between 

30-50%. These are twins who have almost identical genetic information. In DZ twins 

who only share their genetic information up to 50 % the concordance rate is only 

around 16% [50,51,52]. This is a clear indication that genetic predisposition has a 

major role in disease susceptibility. The concordance rate in MZ twins is not a 100% 
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and it is therefore believed that factors in the environment also play a major role in the 

development of T1D [50,53]. 

 

 

1.2.1.5.1 Environmental Factors 

Environmental factors are thought to approximately account for 50% of the risk in T1D 

susceptibility. Due to the vast number of possible environmental factors involved in 

disease development, little progress has been made in identifying them. Many studies 

indicate that microbes, viruses, environmental toxins and dietary factors are all 

somehow involved in triggering T1D development. The “Hygiene hypothesis” 

however, still remains prominent. It suggests that in the modern society and developed 

countries the lack of viral as well as parasite infections early in life results in lower 

frequencies of protective antibodies. This in turn may lead to severe infections later 

thereby triggering autoreactive cells in the body [54].  

 

 

Viruses; It has long been speculated that viral infections may be involved in triggering 

T1D. Congenital rubella infections were long considered to be the main viral infections 

being involved in T1D progression. Around 20% of all infants infected with congenital 

rubella infection, develop T1D later in life [55]. The increase of T1D incidences cannot 

be solely explained by the rubella virus since it has been eradicated in high incidence 

countries like Finland and Sweden [56,57]. 

Enterovirus infections have been implicated in early T1D development in children 

[58,59]. Traces of enterovirus RNA in sera of T1D patients and prediabetic children 

suggest that having enterovirus in the serum is a T1D risk factor [60]. 

An additional T1D associated virus is the rotavirus. Rotavirus infection is the main 

cause of gastroenteritis among children worldwide and it has been seen that blood 

antibodies directed against the virus is associated with the findings of islet cell 

antibodies [61]. 

According to above mentioned studies, it can be concluded that viral infections may be 

associated with T1D development. The β-cell destruction caused by these viral 

infections depends on the strain of the virus as well as host genetics. 

There are two common hypotheses for β-cell destruction. Either the β-cells are 

destroyed in a direct manner through cytolysis [62] or by the involvement of the 
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immune system where during pancreatic tissue damage, β-cells release islet antigens 

that are presented to autoreactive T-cells (which in turn trigger T1D) [63].  

Further, it is known that more patients are diagnosed with T1D during the winter than 

during the summer season [64,65,66]. This can be explained by the increased number 

of viral infections during the winter months. Viral infections lead to increased sugar 

level in the blood due to stress. This may cause extra burden on the already damaged β-

cells leading to insufficient insulin production and diabetes symptoms. 

 

 

Seasonal variation and Dietary products; An important factor considered to trigger the 

development of T1D is seasonal variation. Countries like Sweden and Finland have 

significantly less day light during winter as compared to the summer period leading to 

insufficient vitamin D production. Vitamin D is synthesized in the skin through 

exposure to sunlight. It has been suggested that vitamin D supplementation in infants 

and young children may reduce the number of T1D cases [67]. This is probably not the 

only explanation for high incidence rates for young children in countries like Sweden 

and Finland where a major part of infants are given oral vitamin supplementation daily. 

It cannot be excluded that vitamin D may have a protective role against T1D [68,69]. 

Low vitamin D levels may be part of the reason why there is a high prevalence of T1D 

among older children in the Nordic countries. Therefore it can be speculated that the 

concentration of vitamin D supplementation given in the Nordic countries should be 

increased in order to gain protection. The seasonal variation could also be due to 

variation in infections as mentioned above. 

 

Several dietary products have also been suggested to be involved in triggering T1D. 

High correlations between high consumption of cow’s milk and T1D incidence have 

been observed [70,71]. Although it is believed that this association may mainly be 

observed in genetically predisposed patients. Further, children that are breast fed for 

approximately a year have a significantly lower risk of developing T1D as compared to 

non breastfed children [72,73]. This suggests that breast feeding is protective against 

T1D and that an early exposure to foreign proteins affects the development of the 

immune system in such a way that autoimmunity may be favorable later in life. 

Additional dietary products which have been linked with T1D susceptibility are; gluten, 

coffee, tea, meat and sugar [74,75,76]. Also, obesity and rapid weight gain early in life 
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have been seen to be associated with T1D development and could in part explain the 

increased incidence of T1D [77].  

 

 

1.2.1.5.2 Genetic Predisposition 

Due to the complex nature of T1D it is impossible to identify only one single T1D 

affecting gene. Studies indicate that a number of genes are involved in the development 

of T1D directly as well as through interaction.   

Researchers around the world have managed to identify and reconfirm the involvement 

of several genes and loci with T1D development.  

 

 

HLA association; In the 1970´s it was discovered that the human leukocyte antigen 

(HLA) class I locus, located on chromosome 6 is associated with T1D. It was however 

later seen that the HLA class I is in strong LD with HLA class II and the strongest 

association of type 1 diabetes was in fact to HLA class II [78,79]. This extremely 

complex locus including linked gene clusters which are highly polymorphic, is thought 

to account for almost 50% of the genetic risk for T1D [80,81]. The HLA class II 

molecules are located on the surface of antigen presenting cells (APC´s) with the 

function to present foreign antigen peptides to CD4+ T-cells. The HLA class II locus is 

divided into three specific gene regions; HLA-DR, HLA-DQ and HLA-DP each 

showing high polymorphism. Further, studies have identified three distinct HLA class II 

haplotypes which are involved in the development of T1D [39]. The DR-DQ 

haplotypes that show the strongest T1D risk, accounting for 30-50% of all genetic risk 

to T1D, are DR3-DQA1*05:01-DQB1*02:01 (DR3) and DR4-DQA1*-03:01-

DQB1*03:02 (DR4) [82]. In the general population around 40% carry one or two of the 

two high risk T1D haplotypes DR3 and DR4. On the other hand the DR3 and/- or DR4 

haplotypes are found in 90% of all children affected with T1D [83]. Additionally, 

individuals carrying both DR3 and DR4 haplotypes have an even more increased risk 

of developing T1D. Around 30-40% of all T1D patients carry both DR3 and DR4 

alleles whereas this combination is only found in 2.4% of the general population [84]. 

Children carrying both DR3 and DR4 usually have a very early T1D onset [85]. 

Conversely, the DR15-DQA1*01:02-DQB1*06:02 (DR15) which is found in less than 

2% of all T1D cases vs. 40% of general population, is dominantly protective against 

T1D [86]. The DR15 allele seems to be especially protective in young patients 
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suggesting that it protects from early onset of T1D [87]. How the different HLA 

molecules affect T1D is unknown but the hypothesis is that they bind more effectively 

to some antigens compared to others. 

 

 

Insulin gene; Polymorphisms in the insulin gene (INS) area which is located on 

chromosome 11p15 have been studied thoroughly and its involvement in T1D 

susceptibility is widely accepted. How the associated polymorphisms exactly influence 

the etiology of T1D is however not yet understood. Studies show that INS contributes 

to T1D susceptibility by around 10% [88]. 

The INS gene has a locus of variable number of tandem repeats (INS VNTR) located 

596bp upstream of the insulin gene
 
translation initiation site [89]. The 14-15bp long 

consensus repeated sequence is; 5'-ACAGGGGTGTGGGG-3' and varies in numbers of 

times it is repeated [90]. The short VNTR class I form consisting of 28-44 repeats is 

believed to be associated with T1D susceptibility while the long VNTR class III form 

consisting of 138-159 repeats is associated with protection to T1D [88]. Studies 

indicate that the VNTR class III form is strongly associated with increased expression 

of thymic insulin mRNA. It is therefore speculated that during maturation of the T-cells 

and the immune system, the increased insulin levels leads to the deletion of insulin 

specific (autoreactive) T-cells and thereby protect against T1D development [91,92].  

 

 

Additional T1D susceptibility genes; Excluding HLA class II and INS genes, 

researchers have managed to identify several more T1D susceptibility genes and gene 

regions (Table 1).  

One important T1D susceptibility gene is the cytotoxic T lymphocyte antigen 4 

(CTLA4) gene located on chromosome 2q33. Several other autoimmune diseases such 

as Graves’ disease, Hashimoto’s thyroiditis [93] and Addisons disease [94] show 

association to CTLA4. The CTLA4 gene is expressed on the surface of activated T-cells 

and is homologues to CD28 molecules. CTLA4 is thought to play an important role in 

immune regulation. Unlike with CD28 the binding of B7 to CTLA4 leads to a down 

regulation of the immune response [95].  

The non-receptor type 22 (PTPN22) gene located on chromosome 1p13 is in addition 

to T1D [96] also associated with rheumatoid arthritis [97], and systemic lupus 

erythematosus [98]. The lymphoid-specific phosphatase (LYP) is encoded by the 
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PTPN22 gene. LYP is believed to be involved in preventing T-cells to become 

spontaneously activated by dephosphorylating
 
and by inactivating T-cell receptor-

associated kinases [99,100].  

The interleukin-2 receptor α chain (IL2RA) on chromosome 10p15 shows significant 

association to T1D [101]. The IL-2 receptor complex has an α chain called CD25 and 

the receptor complex is expressed on activated T-cells and T-regulatory cells. The 

growth and survival of T-regulatory cells strongly depends on the expressed IL2RAα 

molecules [102]. It is thought that differences in circulating IL2RAα concentrations 

somehow leads to a functional defect in the T-regulatory cells leading to increased risk 

of getting various autoimmune diseases [103,104]. However, details of how IL2RA is 

associated with T1D are still unknown. Polymorphisms in IL2RA are also associated 

with Multiple Sclerosis (MS). It has been reported that there is at least one common  

SNP associated to both T1D and MS, while one SNP shows opposite association to 

both diseases and a third one only shows association to T1D [105]. 

Further, recently discovered T1D susceptibility genes include IFIH1 on chromosome 

2q24 [101,106] and CLEC16A on chromosome 5q14 [106,107].  Further, the DLK1 

gene located on an imprinting region on chromosome 14q32 has been seen to be 

associated with T1D [108]. Moreover, studies including genome wide association 

(GWAS) studies have located more than 40 additional areas in the genome which are 

thought to be associated with T1D susceptibility (Table 1).  

The above mentioned genes are generally believed to be “true” T1D susceptibility 

genes since their association has been confirmed in multiple studies. Many more areas 

in the genome will probably be identified and confirmed as being involved in T1D 

development. 
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Figure 8. T1D susceptibility regions. Stars represent regions which show evidence of association to T1D.  
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Table 1. T1D susceptibility regions 

Chromosome 

position 

Gene name Marker OR 

(95% c.i.) 

P-values Reference 

1p13 PTPN22 rs2476601 1.7 2.1 x 10
-80* 

[107,109,110,111] 

1q31.2 RGS1 rs2816316 0.9 3.1 x 10
-5

 [110,112] 

1q32.1 IL10 rs3024505 0.8 2.2 x 10
-6

 [112] 

2q11.2 AFF3-

LOC150577 

rs9653442, 

rs1160542 

1.1 7.0 x 10
-7

, 

7.2 x 10
-7

 

[107,112] 

2q24.2 IFIH rs1990760 0.9 1.8 x 10
-11* 

[101,107,113] 

2q32.2 STAT4 rs6752770 1.1 9.3 x 10
-6

 [112] 

2q33 CTLA-4 rs3087243 0.9 7.4 x 10
-4 

[101,114,115] 

3p21.31 CCR5  rs11711054 0.8 1.7 x 10
-5

 [112] 

4p15.2  rs10517086 1.1 2.8 x 10
-7

 [112] 

4q27 Tenr-IL2-

IL21 

rs17388568 1.1 2.9 x 10
-4 

[101,107] 

5p13 IL7R rs6897932 0.9 7.8 x 10
-6* 

[101,107] 

5q14 KIAA0305 Rs12708716 0.8 7.1 x 10
-9 

[107] 

6q15 BACH2 rs11755527 1.1 5.4 x 10
-8

 [112,113] 

6p21 HLA-DRB1 HLA 7.0 4.9 x 10
-52 

[107], 

6p21.3 B*5701 

B*3906 

A*1101 

HLA 0.2 

10.0 

0.3 

4 x 10
-11 

4 x 10
-10 

5 x 10
-8 

[116] 

6q22 CENPW rs9388489 1.2 5.1 x 10
-8

 [112] 

6q23 TNFAIP3 rs6920220 1.1 8.0 x 10
-4

 [112] 

6q25 TAGAP rs1738074 0.9 6.0 x 10
-3

 [112] 

7p12.2 IKZF1 rs10272724 0.8 1.4 x 10
-6 

[112] 

7p15.2 C7Orf71 rs7804356 0.9 3.3 x 10
-8

 [112] 

9p24 GLIS3 rs7020673 0.9 1.9 x 10
-9

 [112] 

10p11 NRP1 rs2666236 1.1 9.8 x 10
-6* 

[107], 

10p15 IL2RA 

(CD25) 

rs12251307 0.8 6.5 x 10
-8 

[107], 

10q22 ZMIZ1 rs1250558 0.7 8.0 x 10
-4

 [112] 

10q23 RNLS rs10509540 0.6 6.9 x 10
-9

 [112] 

11p15 INS rs3741208/ 

rs689 

2.0 7.4 x 10
-4

/ 

3.8 x 10
-31

 

[88,107,117] 

12p13 CLEC2D rs3764021 0.9 4.8 x 10
-5 

[101,112] 

12q13 ERBB3 

 

CYP27 B1 

rs2292239 

 

rs10877012/ 

rs703842 

 

 

1.2 

1.5 x 10
-20 

 

9.1 x 10
-5*

/ 

9.5 x 10
-3

 

[69,101,107,112] 

 

12q24 C12orf30 rs17696736/ 

rs3184504 

1.2 2.3 x 10
-16

/ 

2.8 x 10
-26

 

[101,107,112] 

13.23 UBAC2 rs9585056 1.2 2.1 x 10
-5

 [112] 

14q24 ZFP36L1 rs1465788 0.9 1.4 x 10
-8

 [112] 

14q32 C14orf64 rs4900384 1.1 1.1 x 10
-6

 [112] 

15q14 RASGRP1 rs17574546 1.2 8.1 x 10
-5

 [112] 

15q25 CTSH rs3825932 0.9 7.7 x 10
-8

 [112] 

16p13 CLEC16A rs12708716 1.1 2.2 x 10
-16

 [112] 

16p11 IL27 rs4788084 0.9 5.2 x 10
-8

 [112] 

16q23 CTRB1 rs72082877 1.3 5.7 x 10
-11

 [112] 

http://t1dbase.org/page/Overview/display/marker_id/rs10517086
http://t1dbase.org/page/Overview/display/gene_id/10320
http://t1dbase.org/page/Overview/display/marker_id/rs10272724
http://t1dbase.org/page/Overview/display/marker_id/rs7804356
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17q21 SMARCE1 rs7221109 1.0 9.9 x 10
-10

 [112] 

18p11 PTPN2 rs2542151/ 

rs478582 

1.3 1.9 x 10
-6

/ 

2.2 x 10
-12

 

[101,107,112] 

18q22 CD226 rs763361 1.2 1.3 x 10
-5

 [112] 

19q13 PRKD2 rs425105 0.9 1.5 x 10
-7

 [112] 

20p13 SIRPG rs2281808 0.9 5.0 x 10
-7

 [112] 

21q22 UBASH3A rs3788013 1.1 2.1 x 10
-6

 [112,113] 

22q12 HORMAD2 rs5753037 1.1 1.8 x 10
-14

 [112] 

22q13 IL2RB rs3218253 1.0 2.5 x 10
-5

 [112] 

Xp13-p11  DXS1068 0.9 2.7 x 10
-4 

[118] 

Xp22 TLR7 rs5979785 0.8 6.7 x 10
-6

 [112] 

Xq28 GAB3 rs2664170 1.2 3.0 x 10
-5

 [112] 

Genomic regions and genes which are associated to T1D.  

* = over-all p-values 

 

 

 

1.2.1.6 Animal Models 

When studying different diseases, animal models act as important tools in 

understanding biological mechanisms, dysfunctions caused by diseases and in the 

development of potential new therapeutics. For instance, the discovery of insulin 

therapy was first thoroughly tested on dogs.  

The non-obese diabetic (NOD) mice and the Biobreeding rat (BB rat) are often used as 

animal models for T1D studies for many years. These models have similar pathogenic 

and genetic T1D conditions as humans and are therefore of great use in understanding 

the causes and progression to T1D [119]. The NOD mouse strain was first established 

by a Japanese research group over 20 years ago. Repetitive sister-brother mating lead to 

a mouse strain which spontaneously develops diabetes [120]. The BB rat is a rat strain 

which was similarly inbred in the laboratory and develops T1D spontaneously just like 

NOD mouse [121]. Among many genes, the ctla4 gene region and mhc II genes have 

been identified as T1D susceptibility genes in the NOD mouse and BB rat respectively 

[122,123].  

 

 

 

 

 

http://t1dbase.org/page/Overview/display/marker_id/rs3218253
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2 STUDY AIMS 

 

 

 

I. To study the association of the Immunoreceptor PD-1 (PDCD1) gene to T1D in 

a Swedish case-control material and families. 

 

II. To narrow the previously T1D linked region (5p13-q13) in Scandinavian 

materials. As well as identify new T1D susceptibility genes in this region. 

 

III. To test the hypothesis that the MHC class II transactivator (CIITA) is a T1D 

susceptibility gene. Further, to study how the association is affected by 

differences allele distribution depending on age of controls.  

 

IV. To evaluate four different statistical methods for studying interaction by 

determining model and prediction accuracy by applying them to the study of 

interaction between HLA, INS and PTPN22 in Swedish case-control materials. 
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3 MATERIALS 

 

 

 

3.1 SCANDINAVIAN FAMILIES 

Family materials from the three Scandinavian countries Sweden, Norway and Denmark 

have been included in these studies.  

 

The Swedish families (paper I and II) consist of 184 multiplex and 8 simplex families 

and were collected from two nationwide T1D incidence registries (the Swedish 

Childhood registry [124] and the Diabetes Incidence Study in Sweden [125]). In the 

multiplex families, at least 2 siblings were affected with T1D. The family material 

includes a total of 200 T1D affected sib-pairs.  

 

The Norwegian families (paper II) were recruited through advertisements in the Journal 

of the Norwegian Diabetes Association. A total of 77 multiplex and 2 simplex families 

including 89 affected sib-pairs were collected.  

 

The Danish families (paper II) consisting of 147 multiplex and 5 simplex families were 

collected through the Danish Study Group of Diabetes in Childhood (DSGD) and the 

Danish IDDM Epidemiology and Genetics Group (DIEGG). A total of 175 affected 

sib-pairs were included in the cohort [126]. 

 

Patients were classed as T1D affected based on two criteria 1) if they had an early onset 

of diabetes (diagnosed before the age of 15 years), required insulin treatment at the time 

of onset and remained on the treatment afterwards or 2) suffered from ketoacidosis or 

required insulin treatment from onset while being T1D diagnosed after the age of 15 

years. 
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3.2 SWEDISH PATIENTS AND CONTROLS 

 

The Diabetes Incidence study in Sweden 1 (DISS1) (paper III and IV) material was 

collected from the Diabetes Incidence Study in Sweden (DISS) registry [127]. The 

patients were between the ages of 15-34 years, having been diagnosed with T1D 

between 1987 and 1989. The cohort consists of 702 patients and 618 sex, age and 

residence matched controls [128]. The patients were classified into four separate 

groups; T1D, type 2 diabetes (T2D), unclassified patients and secondary diabetes using 

WHO criteria by the treating physician. In our studies (Paper III and IV) the patients 

diagnosed with T1D were included in genetic analysis.  

 

The Diabetes Incidence study in Sweden 2 (DISS2) (paper I-IV) material was collected 

during 1992 - 1993 from the Swedish registry for newly diagnosed diabetes patients 

between the age of 15 and 34 years. Diagnosis was in the same way as in the DISS1 

material. Additionally, patients were followed with yearly classifications and 

measurements of C-peptide for 6 years. A total of 778 T1D patients and 836 matched 

controls were collected [127]. 

 

The Swedish childhood Study (SV2) (paper III and IV) cohort consisting of 494 cases 

was collected between 1986 and 1987 from the Swedish Childhood registry [124] 

which is a registry for young children between the ages of 0-14 years diagnosed with 

T1D. For all cases above the age of 7 years, geographically, age and gender matched 

controls were collected. Ethical reasons did not allow us to contact control groups for 

the cases under the age of 7 years. Instead, 53 children under the age of 7 years who 

were being treated for other reasons than T1D were collected as matched controls 

[129].  

 

The Better Diabetes Diagnosis Study (BDD) (paper II-IV) material was recruited from 

40 pediatric clinics in Sweden between May 2005 and September 2009. The cohort 

consists of 2700 incident patients under the age of 18 years at the time of diagnosis. At 

follow up, 95% of all patients were classified as T1D by the treating physician. The 

remaining 5% were classified as “other” type [130]. Only individuals of self reported 

Scandinavian origin were included in the studies. 
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Diabetes Registry in Southern Sweden (DR) (paper III) material consists of 804 patients 

(436 males and 368 females) with T1D with an age range between 1 and 75 years from 

the Diabetes Registry in Southern Sweden, all enlisted at the Dep. of Endocrinology at 

Malmö University Hospital, Sweden and collected between 1996 and 2005. The 

material also consists of 2312 healthy controls between the ages of 45 and 75 years 

(1695 males and 617 females) [131]. All individuals of self reported non-Scandinavian 

origin were excluded. 

 

Controls in Multiple Sclerosis (MS) study (paper II and III). 1215 healthy 

blood donors are included as a control group in the Multiple Sclerosis Swedish cohort 

1. All blood donors originate from Sweden or the Nordic countries and were resident in 

the Stockholm region [132]. In the Multiple Sclerosis Swedish cohort 2, 663 age, sex 

and residential area matched controls in incident MS cases throughout Sweden were 

included as part of the EIMS study [133]. In our study, all controls of self reported non-

Scandinavian origin were excluded. All MS controls were used in paper III while in 

paper II only 527 healthy controls were used. 

 

Controls in Rheumatoid Arthritis (RA) study (paper III).  The 1426 controls 

included as controls in the EIRA case control study of RA were matched to RA patients 

by residential area, gender and age as described earlier [134]. 97% of the controls were 

of self reported Caucasian origin. In paper III, 373 of the controls were used in the SNP 

tagging analysis. 

 

Controls in Myocardial Infarction (MI) study (paper III). The control group included in 

the MI cohort consists of 387 age and sex matched healthy individuals between the 

ages of 40-60 years. All controls were of self-reported Caucasian origin [135].  

 

Controls in Alzheimer’s disease study (paper III). This group of controls consists of 

463 healthy individuals between the ages of 56-91 years collected from the 

longitudinal study; The Swedish National Study on Aging and Care in Kungsholmen 

(SNACK), in Stockholm, Sweden [136]. 
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Population based control cohorts from Osteoporosis study (paper III). 

Between 1999 and 2003 1005 healthy women were selected from the Malmö city 

files to be included in the PEAK-25 study. All women were 25 years of age and of 

Swedish or North European ancestry [137]. 

Further, 1010 healthy controls were collected from the Malmö Osteoporosis 

Prospective Risk Assessment (OPRA) study. All controls had been randomly selected 

from the Malmö city files between 1995 and 1999. All controls were 75 years old and 

of Swedish or North European ancestry [138]. 

 

 

3.3 INDIVIDUALS FOR IMMUNOHISTOCHEMISTRY AND EXPRESSION 

STUDIES (PAPER II) 

55 human donors of pancreatic islets were obtained from Lund University Diabetes 

Center (LUDC) Human Tissue Laboratory. No donors were positive for GAD 

antibodies nor were they diagnosed with T1D.  
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4 METHODS 

 

 

 

4.1 FINE MAPPING OF CHROMOSOME 5 (PAPER II) 

43 microsatellites selected from NCBI (http://www.ncbi.nlm.nih.gov/), GDB 

(http://gdbwww.gdb.org/), and Marshfield 

(http://research.marshfieldclinic.org/genetics/) were used for fine mapping of the 

chromosome 5 region. Amplification (PCR) of microsatellites using fluorescence 

labeled primers was first done on the PTC-225 thermocyclers (MJ Research). PCR 

products from 10-12 different primer pairs were pooled prior to separation. Separation 

was carried out on denaturing 6% polyacrylamide gels using the ABI373 and ABI377 

(Applied Biosystems) respectively. GENESCAN (Applied Biosystems) version 1.2 or 

version 3.1 was used for final analysis (for further details about PCR conditions and 

separation conditions see article by Nerup et al, 2001).  

 

 

 

4.2 SNP GENOTYPING 

All used SNPs were selected from NCBI’s dbSNP 

(http://www.ncbi.nlm.nih.gov/SNP/), The SNP Consortium (http://snp.cshl.org/) or 

from previous publications. SNPs with minor allele frequencies of at least 0.3-0.5 were 

chosen for analysis. A lower allele frequency was only accepted for SNPs within genes 

for paper II. Average spacing between SNPs was 10-30kb. For paper II, all chosen 

SNPs were quality controlled, which included BLASTing of SNPs against the whole 

human genomes using the BLAST program in NCBI. Further quality controls included 

checking for primer dimers (which could prevent the sequencing process) and looping 

(which can cause sequencing of the primer itself). 

 

Taqman (paper I-IV); For SNP analysis with the Taqman method, all primers and 

probes were obtained from Applied Biosystems (Applied Biosystems Inc., Sweden) 

and genotyped as described [139]. The fluorescence intensity in each well of the plate 

was read using the SDS 2.2.1 Sequence detection system program in the Taqman 

7900HT machine (Applied Biosystems Inc., Sweden). The Taqman analysis consists of 

two probes with a fluorophore and quencher attached to it respectively. The quencher 

http://research.marshfieldclinic.org/genetics/
http://www.ncbi.nlm.nih.gov/SNP/
http://snp.cshl.org/
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inhibits a fluorescing signal from the fluorophore until it is released from the probe due 

to degradation by the Taq polymerase.  

 

Pyrosequencing (paper I and II); For determining SNP genotypes run using the 

pyrosequencing method the standard protocol from the vendor was used. Final analyses 

was carried out using version 1.1 and 1.2 AQ of the PSQ
TM

96 SNP Software. 

Pyrosequencing involves sequencing of one strand and the synthesis of the 

complementary strand enzymatically. Nucleotides are then added one at the time and 

the “right” strand can be determined by emission of light.  

 

Dynamic allele-specific hybridization (DASH, paper III); SNPs genotyped using the 

DASH method were typed according to manufacturers recommendations [140]. DASH 

is a method where the melting point of DNA is studied for determining a SNP. Through 

capturing a biotinylated DNA strand of interest by using streptavidin an allele specific 

oligonucleotide is added. When bound to another strand the nucleotide emits light 

which intensity is measured as the temperature is increased and the melting point can 

be determined. A lower than expected melting point will be observed for a SNP. 

 

MassArray chip-based matrix-assisted laser desorption/ionization time-of-flight mass 

spectrometer (Sequenom., San Diego, CA, USA) or IPLEX (Sequenom., San Diego, 

CA, USA, paper IV) were typed according to manufacturers recommendations 

[141,142] (paper III). The MassArray method is based on the fact that different strands 

including SNPs have different masses and can thereby be distinguished from each 

other. Up to 40 SNPs can be analyzed in one individual cocktail. 

 

PCR-RFLP (paper I); For polymerase chain reaction-restriction fragment length 

polymorphism (PCR-RFLP) studies, restriction enzymes MspI (TaKaRa Inc., Shiga, 

Japan) and PstI (Biolabs Bio Inc.,Ipswich, MA, USA) were used. PCR-RFLP is carried 

out by amplification of the region of interest and then adding a restriction enzyme (on 

SNP location). The enzyme then cleaves the strand and results can be detected by 

running a gel electrophoresis. Three possible bands will appear on the gel depending on 

whether the restriction enzyme has cleaved the strand or not.  

PCR conditions were used according to vendor’s recommendations.  
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4.3 SEQUENCING OF THE HTR1A GENE (PAPER II) 

Sequencing of the HTR1A gene and along with its upstream and downstream regions 

was carried out using the ABI Prism 3730 Genetic Analyzer method (Applied 

Biosystems Inc., Sweden). Primer pairs for each ~800 -1000bp fragment (twelve 

primer pairs) were designed by the Primer express computer program. All primers were 

first optimized followed by PCR amplification. Sequencing was carried out according 

to ABI recommendations and results were analyzed in the SeqScape software version. 

2.5 (Applied Biosystems Inc., Sweden). Sequencing in ABI Prism 3730 is carried out 

by a PCR reaction including a sequencing primer (forward and reverse separately in 

separate runs) and dNTPs with fluorescence molecules. Once a sequence has been 

established all fragments are separated on an acrylamide gel where the intensity of the 

individual fluorescence colors is read and the sequence of the fragment may be 

determined.  

 

 

4.4 HLA TYPING (PAPER III AND IV) 

HLA typing has been performed in six of our used materials (DISS1, DISS2, SV2, 

BDD, MS and RA); 

For DR typing in DISS1 and SV2 restriction fragment-length polymorphism (RFLP) 

was used. Typing of DQB1, DRB1 and DQA1 and allelespecific amplification for DR7 

and DR9 was carried out using PCR amplification followed by dot blot hybridizations 

[143]. 

DQA1, DQB1 and DRB1 in the DISS2 cohort were typed using PCR amplification 

followed by dot blot hybridizations and by RFLP as previously described [143]. For 

DRB1 alleles, allele-specific PCR amplification (PCR-SSP) was also used [144]. 

For HLA genotyping in the BDD cohort, a method which is based on an 

asymmetrical PCR followed by a subsequent hybridization of allelespecific probes 

was used [145]. In order to determinine DR genotypes for BDD individuals where 

only DQA1 and DQB1 were genotyped established haplotypes in the european 

population were used. 

HLA typing of the MS and RA individuals was carried out using allele specific 

amplification as described previously [144]. 
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4.5 IMPUTATION (PAPER II) 

In paper II imputation of three SNPs among the MS controls was performed using the 

MaCH v. 1.0.16 analysis program with default settings [146]. Results from previous 

SNP genotyping in a MS Genome wide association (GWAS) study were used. Typed 

SNPs were quality checked for call-rates (per sample and per SNP), heterozygosity, 

recent shared ancestry, non-European ancestry, MAF and deviation from Hardy-

Weinberg equilibrium [147].  

 

 

4.6 QUANTITATIVE-PCR OF HTR1A AND RNF180 MRNA FROM HUMAN 

ISLETS OF LANGERHANS (PAPER II) 

A total of 10 healthy age and gender matched donors were used for preparing mRNA 

of human pancreatic islets (mRNA Easy Plus mini kit, Qiagen, Hilden, Germany). 

Reverse transcription was performed to obtain cDNA (Maxima ™ First Strand cDNA 

Synthesis Kit, Fermentas, Thermo Scientific, Sweden). Quantification of mRNA 

levels was done using a Probe/ Rox Real-Time PCR (Maxima™ Probe/ROX qPCR 

Master Mix (2X), Fermentas, Thermo Scientific, Sweden) with an ABI PRISM 7900 

(Applied Biosystems, Inc., Sweden), and assays-on-demand were employed for 

HTR1A (Hs 00265014) and RNF180 (Hs 00400379) (Applied Biosystems Inc., 

Sweden). All samples were run as duplicates and normalization of the transcript 

quantity was done using the mRNA level of cyclophilin A, polymerase 2 and 

hypoxanthine guanine phosphoribosyl transferase (Applied Biosystems). 

 

 

 

4.7 TISSUE PREPARATION AND IMMUNOHISTOCHEMISTRY (PAPER II) 

Immunohistochemistry is an excellent method for localizing certain proteins or 

markers and understanding their distribution in cells of various tissues. The basic 

principle is that one directs antibodies towards the specific antigens of interest in the 

tissue or cells.  

We have in our study used the indirect form of immunohistochemistry. This method 

involves a primary antibody which reacts with tissue antigen and secondary antibody 

which in turn reacts with the primary antibody.  

Isolation of human pancreatic islets was performed through fixation of human 

pancreas biopsies. The specificity of immunostaining was tested using primary 

antisera pre-absorbed with homologous antigen. Immunofluorescence was finally 
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examined in an epi-fluorescence microscope (Olympus, BX60). The location of 

different antibodies in double staining was determined by changing filters. Images 

were captured with a digital camera (Nikon DS-2Mv).  

 

 

4.8 STATISTICAL ANALYSIS 

 

Linkage analysis (paper I and paper II)   

Mapping of microsatellites to the chromosome 5p13-q13 region was done using the 

CRIMAP program [148]. 

The Allegro program version 1.2 [149] designed for non-parametric linkage analysis 

was used for calculating linkage. For both single and multipoint analysis, the 

Exponential model with an equal weighing was used.  

The Linkage and Association Modeling in Pedigrees (LAMP) software program was 

used to combine Linkage and association analysis. The program was also used for 

identifying SNPs responsible for linkage in the Danish and Swedish families in paper 

II.  

 

 

Linkage Disequilibrium (LD, paper II and paper III) 

In paper II the bioinformatic software program Haploview version 4.2 [150] was used 

for identification of LD structure and tagging SNPs (htSNPs) using observed and 

HapMap genotype data. 

In paper III identification of LD blocks and htSNPs was done using the HapBlock 

analysis program [151,152]. The common haplotype method was used for block 

partitioning and the capability of the method to identify all common haplotypes using 

the htSNPs was > 5%. 

 

 

Association 

The Unphased program (version 3.0.6) [153] was used for studying the association in 

cases and controls and the PDT test as implemented in Unphased was used for studying 

association in families (paper I and paper II). The Unphased program was also used for 

calculating conditional analysis and haplotype association (paper I, II, III and IV). 

When analyzing more than one cohort the study cohorts were used as confounders. 
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The zGenStat 1.126 program (Henric Zazzi unpublished) was used to check mendelian 

inheritance of the genotypes on the multiplex/simplex families. Any inconsistencies 

were removed (paper I and II).  

Power calculations assuming an unmatched retrospective design were performed using 

the PS software [154] program (paper I).  

Meta analysis (paper I and III) is a method to exclude heterogeneity between separate 

studies. This is done by comparing and quantifying the detected effects in different 

studies. We have performed meta analysis with the Mantel–Haenszel summary method 

for estimating an overall odds ratio (OR) and Woolf’s method for testing for 

heterogeneity [155] in the rmeta package 2.14 in R [156]. 

Genotype association in materials including cases and controls were performed with 

standard Pearson's Chi-squared test. 

Logistic regression analysis using generalized linear modeling was used to correct for 

effects of age, HLA and gender when allele frequencies between diabetic and non-

diabetic individuals were compared. The analysis was carried out in the statistical 

computer program R (R version 2.6.2, The R Foundation for Statistical Computing, 

http://www.r-project.org/foundation, paper III and IV). 

 

 

4.9 COMPUTATIONAL ANALYSIS (PAPER II) 

For detecting potential transcription factor binding sites in the HTR1A gene we used 

the web based software program RAVEN (www.cisreg.ca/cgi-bin/RAVEN/a).  

 

 

4.10 ADJUSTMENT FOR AGE 

When correcting for age in logistic regression, the age-group 4 (15-19 years) (paper 

III) and the age group between 10-15 years (paper IV) were used as a reference group 

based on a large and equal number of individuals of both cases and controls in these 

groups. 

 

 

 

http://www.r-project.org/foundation
http://www.cisreg.ca/cgi-bin/RAVEN/a
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4.11 IMPUTATION (PAPER II) 

In paper II, MaCH v. 1.0.16 analysis program as implemented in BC|SNPmax v. 3.5-

191 was used for imputation of SNPs in the MS controls. All settings were set to 

default values used in MaCH v. 1.0.16.  

 

 

4.12 INTERACTION STUDIES (PAPER IV) 

Chi2 and logistic regression using the multiplicative model was carried out in the R 

program version 2.12.2 (The R Foundation for Statistical Computing, http://www.r-

project.org/foundation). A generalized log-linear model using allele and genotype 

results was used to study the interaction between HLA haplotypes, PTPN22 and INS by 

assessing the significance of the association to T1D of the interaction terms while 

keeping the original terms in the model [23].  

The R program was also used for logistic regression when calculating additive 

interaction (attributable proportion, AP) with a confidence interval (CI) of 95%. In 

paper III and IV, the vcov command was used to get the covariance matrix.  

MDR was calculated using the MDR package in the R program [157]. 

The Bayesian Network was run using the Hugin version 7.6 (Linux 64 bit distribution) 

software [158]. Both the greedy search and score algorithm were used. 

 

http://www.r-project.org/foundation
http://www.r-project.org/foundation
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5 RESULTS AND DISCUSSION 

 

 

 

5.1 PAPER I 

It has been suggested that the PD-1 7146 SNP in the immunoreceptor PD-1 (PDCD1) 

gene (chr 2) is involved in the pathogenesis of several autoimmune conditions such as 

SLE [159] and T1D [160]. PDCD1 is believed to be involved in the maintenance of 

self tolerance and is therefore a natural candidate gene for autoimmune diseases such as 

T1D. We tested PDCD1´s linkage and association to T1D in a Swedish family material 

and association in a Swedish case-control (DISS2) material. Studying a gene in both 

family as well as case-control materials is a great advantage since both linkage and 

association can be measured. Linkage analysis can be carried out in families, which 

allows us to identify rare marker variants which have been accumulated in families 

rather than in the general population. On the other hand, case-control materials (which 

are easier to get hold of) represent SNP allele variants in the general population.  

Since LD analysis of the PDCD1 gene has distinguished a block consisting of four 

haplotypes, we chose to genotype four tagSNPs; PD-1 7146, PD-1 7785 and PD-1 8738 

(one SNP was discarded due to being non-polymorphic) in order to gain full gene 

information in the Swedish families and DISS2 cohort [159]. No single SNP or 

haplotype association was observed for any of the SNPs in the family material (Table 1, 

paper I). Further, when linkage analysis was carried out no linkage was observed 

neither in the singlepoint nor in the multipoint analysis (LOD<0.01). In the DISS2 

material, modest association was observed for the PD-1 7785 SNP. However, 

permutation tests showed that the association was insignificant after correction for 

multiple comparison. No association was observed for the two additional SNPs (Table 

1, paper I).  

There are several possible reasons to why our results did not follow the significant 

association that was found in the Danish material. We performed our analysis in both a 

family material as well as a case-control material with proper matching of controls. 

Also, unlike the Danish material which only consisted of two small cohorts (94 and 98 

cases respectively and 155 unmatched healthy blood donors), both our materials were 

much larger meaning that there is a possibility that the Danish study may have got a 

significant association for the PD-1 7146 SNP purely by chance. Furthermore, we did 
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not observe any linkage to the PDCD1 area indicating that it is not accumulated in 

multiplex T1D families. The PDCD1 gene has not shown any linkage or association in 

large genome wide linkage and association studies. These results further support our 

results. 

We have also performed a meta analysis including our case-control material and the 

previously published findings in the Danish T1D study. Meta analysis is a way of 

estimating the overall evidence for association in several studies and for identifying 

heterogeneity between two or more studies. The main downside is that there is a large 

publication bias due to unpublished negative data. This means that many studies which 

show no association may not have been published and therefore it is likely that the true 

association between PDCD1 and T1D is even less strong than our meta analysis 

suggest. We observe no heterogeneity between our study and the Danish study for PD-

1 7785 and PD-1 8738. Only slight heterogeneity was observed for the PD-1 7146 

SNP. We have observed an error in the meta-analysis figures 1a-c in the published 

paper I and it should be noted that the figures in the thesis are the correct ones. The 

overall conclusions however, remain the same as in the published paper I.  

 

 

 

 

 

 

 

 

 

 

 

A. B. 
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Also, unknown gene-environment interactions and slight heterogeneity between the 

two populations may be the cause for the different results.  

Further, it is widely understood that a significant number of T1D patients also have 

Celiac disease. Many of the underlying susceptibility genes are the same for the two 

diseases (i.e HLA-genes). It has been reported that there is no association of the PD-1 

7146 SNP gene to Celiac disease in a Finnish study [161]. These results support our 

negative findings.  

The differences between our study and the SLE [159] study may be explained by the 

fact that different underlying genetic factors are involved in SLE compared to T1D.  

Considering our results from the Swedish T1D study and comparing the results with the 

Danish study, we conclude that the PDCD1 gene is not a major T1D susceptibility gene 

at least in the Swedish population. 

 

 

 

 

Figure 9. Meta-analysis of association of the (A) PD-1 7146G/A, (B) PD-1 7785C/T and (C) 

PD-1 8738C/T SNPs. The test was performed using the proportion of cases and control subjects 

having at least one A or T at each SNP position respectively in our current study (Swedish T1D 

material) and in the study by Nielsen et al., (Danish T1D material) 

C. 
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5.2 PAPER II 

Suggestive linkage to the chromosome 5 region (LOD<2.2) has been observed in a 

genome wide linkage study in Scandinavian T1D families [126]. In order to identify 

new T1D susceptibility genes in this area we have typed over 70 markers including 

microsatellites and SNPs in three separate Swedish materials as well as a Danish family 

material. Significant linkage (LOD 3.98 and LOD 3.66 respectively) was observed in 

the Swedish families for two SNPs (rs878567 and rs6295) located on either side of the 

5-hydroxytryptamine (serotonin) receptor 1A (HTR1A) gene. The rs6295 SNP also 

shows association to T1D (p<0.01). Furthermore a third SNP (rs356570) located 

upstream of HTR1A showed stronger association to T1D (p<0.002) than rs878567 and 

rs6295. HTR1A encodes a receptor for the neurotransmitter serotonin which has been 

seen to be expressed in the pancreas. Changes in serotonin signaling have been linked 

to several complex behaviors such as sleep, depression and suicide. It has also been 

reported that HTR1A is involved in the immune system and is involved in the 

regulation of T-cell activity and may thereby somehow influence the development of 

T1D.  

In order to identify SNPs within the HTR1A gene, sequencing of the gene and its 

flanking upstream and downstream regions was carried out. No SNP in the gene was 

identified, however several known SNPs around the HTR1A gene were observed. In an 

analysis of LD we saw that the rs356570 SNP also tags for several other SNPs around 

the HTR1A gene as well as SNPs in the ringfinger protein 180 (RNF180) gene (r
2
< 0.91 

between both genes). This discovery lead us to type three additional SNPs in and 

around RNF180 in order to verify its involvement in T1D susceptibility. Positive 

association was observed for rs6880454 (p<0.01). 

Further, haplotype association studies identified two haplotypes in the HTR1A-RNF180 

area (one positively associated and one protective, p<0.002 and p<0.03 respectively, 

Table 4, paper II). In order to confirm our findings we typed SNPs in the Swedish 

sporadic cases as well as Danish families. No single SNP or haplotype association was 

observed in the sporadic T1D cases. However, in the Danish families, positive 

association for rs356570 (p<0.001) was observed. Pooling of all four cohorts showed 

that both rs6295 and rs356570 were associated with T1D (p<0.01 and p<0.003 

respectively, Table 3, paper II). 

Moreover, in the Danish families, association was observed for the same haplotypes 

which were associated in the Swedish families (<0.05 and p<0.02 respectively, Table 4, 

paper II).  
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Having detected both linkage as well as association in our Swedish families is a good 

indication that our finding is indeed a positive association. The lack of linkage in the 

Danish families may be explained by the fact that HTR1A only seems to have a small 

effect on T1D susceptibility and certain SNP variants have been accumulated more in 

the Swedish families. A major down side of linkage studies is that very large linked 

areas are identified making it a tedious task to identify susceptibility genes. The lack of 

association in the cases and controls which represent the general population, support 

the fact that HTR1A only has low effect on T1D development. The WTCCC study 

[101] and T1DGC study [112] did not detect any association of this region in their 

analysis. However, their studies did not include our most associated SNP, thereby 

making it hard to say whether or not a positive association might have been missed. 

The study included only a small number of families and sporadic cases were over 

represented. The consortium however does have a larger T1D family material and it 

would be interesting to run our associated SNPs in only them. Although having small 

effect on T1D susceptibility our immunohistochemistry results clearly indicate a 

presence of HTR1A in the pancreas. Our results from the conditional association 

analysis indicate that HTR1A is associated with T1D independently of RNF180. 

However, the effect on T1D as mentioned, is small suggesting that it interacts with 

additional factors. RNF180 binds to zinc ions (Genecards homepage) and several 

studies indicate that zinc ions plays a major role in the synthesis, storage and secretion 

of insulin [162]. Additionally, it is suggested that RNF180 could be involved in the 

ubiquitin-proteosome pathway, in which target proteins undergo degradation. Also, our 

expression analyses detect the presence of both HTR1A and RNF180 in human 

pancreatic islets. Since RNF180 has a rather clear effect on several important processes 

and is expressed in the pancreas it may be suggested that together with HTR1A it has a 

significant effect on the initiation of T1D.  

Since the associated SNP rs6295 located close to the HTR1A gene maps to binding sites 

of two transcriptions factors, functional studies should be carried out to see whether or 

not it has a clear effect on T1D initiation. This could be done by studying how the 

binding of transcription factors to different constructs with alternative SNP variants 

affect HTR1A expression. 

In conclusion, I believe that since we were able to observe both suggestive linkage as 

well as association of HTR1A to T1D, the HTR1A gene is a T1D susceptibility gene at 

least in our T1D families. Further, we observe HTR1A expression in the pancreas which 

is the target organ in T1D. Although the effect on the risk of T1D is modest and it can 
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therefore not be ruled out that the associated SNPs in HTR1A affects transcription of 

nearby genes such as RNF180. Therefore expression and functional studies are an 

important next step in our study. By doing this we may get further insight to why and 

how these two genes are involved in the development of T1D.  

 

 

 

5.3 PAPER III 

When doing research studies, sometimes one discovers something unexpected and that 

is what happened to us in paper III. Our main aim of the paper was to try to study 

whether or not the class II transactivator (CIITA) protein located on chromosome 16 

was associated with T1D. CIITA is the main control factor for MHC class II gene 

expression [163]. This makes it a natural T1D candidate gene since MHC class II 

haplotypes are involved in T1D susceptibility. Four independent cell specific promoters 

are in charge of the expression of CIITA (PI-PIV) [164]. Evidence of suggestive linkage 

to this region on chromosome 16 has been observed previously (LOD=2.8) in 

Scandinavian families [126]. Also, heterogeneity in linkage depending on HLA DRB1 

genotype was observed. Furthermore, CIITA has previously been demonstrated to be 

associated with diseases such as myocardial infarction (MI), rheumatoid arthritis (RA) 

and multiple sclerosis (MS) [135]. Recently, association of CIITA has also been 

observed in celiac disease [165]. Our first results indicated that the rs11074932 and 

rs3087456 SNPs are modestly associated with T1D (p=0.004 and p=0.001 respectively) 

in our DISS2 case control material. This association was not confirmed in our 

additional T1D materials. In order to exclude any possible genotyping errors we began 

to look at the different allele frequencies for the SNPs in different materials. We soon 

realized that there seemed to be a skewed distribution of the allele frequencies in the 

controls, indicating that the allele frequency of the major allele homozygotes is 

increasing with age (Figure 1, paper III). This observation was confirmed in an 

independent control material. We do not have a fully satisfactory explanation for this 

phenomena but our hypothesis is that older people being homozygote for the major 

allele are generally less ill and therefore tend to participate as controls in genetic studies 

at a higher rate than other people. The CIITA polymorphism probably does not affect 

health so much in younger individuals. We have with great caution, made sure that the 

finding is not due to genotyping, calculation errors or population stratification. All 

individuals of self proclaimed non-Scandinavian origin have been excluded from the 
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study. Further, both SNPs are in Hardy-Weinberg equilibrium. After the discovery of 

the change in allele frequencies in controls, we have in order to gain more power, 

pooled together five different Swedish T1D materials and adjusted for age in a logistic 

regression analysis. We observe modest association for the two SNPs even after 

adjustment for age and the association is independent of the nearby CLEC16A gene 

which is a previously identified T1D susceptibility gene [101].  

This, together with the fact that we have previously observed significant linkage to the 

CIITA region, indicates that the gene is involved in the development of T1D but exactly 

how it acts is unclear. However, keeping in mind that the associated SNPs are located 

in the promoter I and III (PI and PIII) region (expressed in macrophages and activated 

B-and T-cells respectively) suggest that change in CIITA expression may convert 

protective macrophages into “cytotoxic” macrophages by changing the level of 

different interleukins. Also, the expression of CIITA may influence how quickly a 

patient develops T1D. Further, our interaction studies on the additive scale indicate that 

CIITA directly interacts with the major T1D protective HLA haplotype DR15 (Figure 5, 

paper III). The CIITA association is seen among DR15 negative T1D patients. This 

could indicate that the risk caused by CIITA is mostly important among young 

individuals as DR15 is absent among young T1D cases.  In addition, it has been seen 

that increased expression of CIITA results in increased expression of MHC class II 

expression [135] which is the most significant risk gene for T1D. Therefore, any 

changes in CIITA expression may result in increased activation of the immune system. 

This may in turn lead to faster destruction of the pancreatic β-cells. In conclusion; we 

have identified CIITA as a T1D susceptibility gene. However, the main conclusion 

obtained from our study is that one should always try to carefully match controls to 

cases when performing association studies. 

 

 

 

5.4 PAPER IV 

Because of the vast number of genes involved in T1D susceptibility, it is almost 

impossible to identify the various pathways leading to disease just by studying one 

susceptibility gene at the time. It would also be naive to think that each risk gene 

“acts alone” in a disease pathway. Therefore, it is very interesting to study interaction 

between T1D risk genes. Although, since statistics simply deal with probability 

theories, it is often very difficult to decide which available statistical model one 
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should use especially when the interaction pattern are unknown (as is the case in 

T1D). This was the main reason why we chose to compare four interaction models 

(multiplicative, additive, MDR and BN) for investigating interaction between the 

most strongly T1D associated risk factors; INS gene, PTPN22 and the HLA 

haplotypes DR3-DQA1*05:01-DQB1*02:01 (DR3), DR4-DQA1*-03:01-

DQB1*03:02 (DR4) and DR15-DQA1*01:02-DQB1*06:02 (DR15) using a total of 

2466 cases and 1132 T1D controls. First we “built” a statistical model for each 

interaction model in a so called “test set” which consisted of 80% of the data and then 

testing the prediction accuracy of the affection status for each model in a smaller 

validation data set which consisted of the remaining 20% of the data. To determine 

the quality of each model we compared AIC and ROC values. The AIC value is a 

value which shows how good a model is statistically (taking factors such number of 

co-variants into consideration). It should be noted that the AIC value only gives you a 

goodness of fit value for the data which is being studied. On the other hand, the ROC 

value gives an estimate of how well your model predicts who is a case and control 

based on data on the studied factors (in our case, HLA, INS and PTPN22 genotypes).  

We wanted to study all four models in the most similar way as possible. Since the BN 

and MDR models looks at interaction of all risk factors at the same time (unlike the 

additive model where 2x2 interactions are studied) and thereby gets regression co-

efficient values “automatically”, we had to come up with ways to include all 

significant interactions on the additive scale in one single model. For this, we made 

so called “dummy variables” (all genotypes for each significant interaction) and 

included them in a “final” logistic regression model. In the multiplicative analysis, in 

order to avoid over fitting the model we first performed a 2x2 logistic regression 

analysis. Since none of the interactions were significant, only single significant risk 

factors were included in the “final model” (Table 4, paper IV). It should be noted that 

the “final model” is only used for obtaining ROC values using regression co-efficient 

values from the final model. According to Rothmans theories, the multiplicative and 

additive models go “hand in hand” meaning that if your data follows the 

multiplicative scale, interaction on the additive scale will be observed and vice versa 

[24]. The multiplicative model is based on a logistic regression model and is only 

thought to explain an interaction on the statistical scale while interaction on the 

additive scale is believed to explain interaction on both statistically and “causally”. 

We did not observe any significant interactions on the multiplicative model. On the 

other hand several interactions including all studied risk factors deviated from the 
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additive scale (Table 4, paper IV). This is in line with Rothmans theories and 

detecting interaction on the additive scale also indicates causal interaction. Hence 

these results indicate that these genetic risk factors are in combinations involved in 

some of the causes for disease. 

The MDR, model albeit a non-parametric model where few assumptions of 

interaction are made, is according to me not a really desirable model to use for 

calculating interaction. The calculation does not give a direct indication of which risk 

factors interact. Instead it gives a complex results table where one has to interpret 

which risk factors seem to be present more in cases vs. controls. The model does not 

give you an AIC value (instead it uses something called balanced accuracy which 

measures the mean of the sensitivity and specificity to determine cases and controls) 

and therefore we had difficulties in understanding how to obtain an AIC value. The 

only way of obtaining an AIC value was by include the results from the predict MDR 

script (script which predicted cases from controls in the validation set using data from 

the test set) and running it in a logistic regression model. Since the AIC calculated in 

the logistic regression analysis only assumed presence of one variable in the model, 

we then included the obtained AIC value in the AIC formula; AIC=2k-2ln(L) where 

k=5 risk factors. The MDR model scored lower than the additive and multiplicative 

models both on AIC as well as ROC values (Table 7, paper IV). 

The BN model is according to me the most difficult one to both understand and 

interpret. The model can be used using prior knowledge or “learnt” from the data in 

different ways. When we first started, we used no prior knowledge about our data. This 

resulted in unexplainable results where edges were directed in wrong directions (e.g. 

nodes from affection status to HLA genes or from HLA genes to gender).  Because of 

this we decided to start with a model with directed edges from each risk factor to 

affection status. This resulted in a final model where edges had also been added 

between genetic risk factors indicating interaction between them. The BN model scored 

the lowest in both AIC value and ROC value (Table 7, paper IV) indicating that 

perhaps it is not the most reliable model to study interaction with. Even though I am 

personally not a fan of the BN model yet, a huge positive thing about the model is that 

the interactions can be seen visually, making it easier to see how things interact with 

each other. Because of this, when studying large numbers of risk factors, perhaps the 

BN model could be a good first step just to see how things seem to interact. From the 

results, one may then pick out interesting interactions and study them on the additive 

scale. However, in my opinion, only people with very good statistical knowledge 
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should use the BN model especially if no prior knowledge is given to the network 

(because of the confusing results where one has to master probability theories). In 

conclusion, we observed no significant interactions on the multiplicative scale. On the 

additive scale however, several 2x2 interactions were observed. Also, complex 

interactions were observed in the BN and MDR models. Best AIC values and ROC 

values were observed for the multiplicative and additive models suggesting that these 

are the models that best predict case control status when interaction in the data set is 

present. In order to better understand our results, we plan to study all four interaction 

models in a synthetic data set where a number of predefined interactions on different 

scales are included. However, from our study so far, I believe that the additive model 

seems to be the most desirable one to use when studying interaction in diseases such as 

T1D since it showed one of the best AIC and ROC values and since it is thought to 

explain interaction on both statistical as well as causal level. Further, the additive model 

is also unlike, BN and MDR relatively easy to interpret. However, one should always 

remember that the additive model is only ideal to use when calculating interaction in 

relatively uncommon diseases such as T1D. Using the additive scale on e.g. T2D which 

is a fairly common disease, may if not used properly, lead to false interaction results 

since it calculates OR´s which in turn is converted into relative risk ratios. It should be 

mentioned that we have used the AP value for calculating deviation from additivity. AP 

measures the increased proportion of cases due to the interaction of two risk factors 

among individuals who have been exposed to both risk factors. This measure is 

believed to be the most robust value when converting relative risk into OR´s. Further, 

we see from our results that all of the studied risk factors seem to interact with each 

other in one way or the other. The interactions including HLA genes seem to be 

involved in the strongest interactions. It is likely that the interaction including all 

studied genes have an influence on autoimmunity in early development of the immune 

system. Our results remind us of exactly how complex the genetics behind T1D 

susceptibility really is that choosing different statistical models may give slightly 

different results.  
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6 CONCLUDING REMARKS 

 

As mentioned earlier, T1D is a very complex disease where even small genetic 

differences may alter the expression of a specific gene leading to changes in the 

immune system. The immune response is an extremely complex and sophisticated 

system and trying to fit all our genetic findings into this system is not an easy task. In 

figure 9 I have tried to fit in the genes that showed significant association in my 

studies into the immune system and indicate where they may act to increase the risk 

for T1D. It may be suggested that HTR1A is involved in the regulation of T-regs 

leading to inadequate inactivation of auto reactive T-cells and thereby leading to 

destruction of cells in the pancreas. RNF180 on the other hand may be involved in the 

destruction of β-cells through the ubiquitin-proteosome pathway as well as through 

interaction with HTR1A. The interaction may increase the negative effect of HTR1A 

on T-regs. The role of CIITA may be that certain polymorphisms alter the expression 

of MHC II which in turn may e.g. mean that auto reactive T-cells may escape the 

selection process in the thymus and break down central tolerance. Also, CIITA may 

somehow alter the cytokine production and activate macrophages which then destroy 

β-cells. PTPN22 is known to be involved in the activation of T-cells in the periphery 

and it may be suggested that changes in PTPN22 expression may inhibit or increase 

the activation of auto reactive T-cells.  The INS gene is as mentioned earlier believed 

to play a vital role in the thymus where it is together with HLA haplotypes involved 

in the deletion of auto reactive T-cells. In the periphery, the insulin gene is presented 

by MHC as an antigen and recognized by auto reactive T-cells. Further, INS may also 

be presented to B-cells which in turn produce autoantibodies towards it.  
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Figure 9. The figure represents the innate (in this case only macrophages) as well as the adaptive 

(cellular and humoral) immune systems. The black dashed lines represent possible interaction points for 

the studied genes which may initiate T1D development. 
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7 FUTURE PERSPECTIVES 

 

The overall aim of my studies has been to try to identify and understand the underlying 

genetic factors which are involved in the development of T1D.  

Multifactorial diseases such as T1D are characterized by the fact that both environment 

as well as genetics seem to be involved in disease development. Even though scientists 

have already identified the HLA gene as the T1D susceptibility gene with the strongest 

effect, it is crucial to identify other T1D risk genes with lower effect. Identifying as 

many genes as possible and understanding how they interact with each other will help 

us understand the etiology and pathology of T1D in more detail. This could lead to the 

discovery of new and refined T1D treatments. 

However, identifying susceptibility genes in complex diseases is not easy. One reason 

for this is that many of the genes when being studied alone, have modest effect and 

therefore may be missed in massive GWAS scans. Also, even though it is understood 

that other variations such as CNV´s may have great influence on the expression of a 

gene, no effective methods of studying CNV´s are available. Further, gene-gene and 

gene-environment interaction as well as epigenetics are additional factors which make 

it complicated to identify common susceptibility genes.  Therefore, one should always 

keep in mind that there will never be a “perfect” study which is ideally a cohort study 

or where e.g. all cases have at least two perfectly matched controls. Instead, one should 

try to look at the study from every possible angle making sure that one has thought 

about all possible interfering factors (e.g. correcting for all possible co-variants, making 

sure you have enough power, exclude possible errors in typing and calculation).  

 

Studying and understanding the behavior of complex diseases is a difficult task. 

However, keeping in mind the high increase in T1D incidence rates all over the world 

with patients being diagnosed with T1D at a much younger age than earlier and the 

complications caused by the disease, it is extremely important that we continue our 

research in order to understand T1D etiology and thereby develop better treatments, 

prevention strategies or even cures for the suffering patients.  

Finally, our studies remind us of exactly how incredibly complex and amazing the 

human being actually is.  
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