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ABSTRACT 
Historically, quantitative health risk assessment of chemical substances is based on 
deterministic approaches. For a more realistic and informative health risk assessment, however, 
the variability and uncertainty inherent in measurements should be taken into consideration. 
The variability and uncertainty may be assessed by applying probabilistic methods when 
performing dose-response assessment, exposure assessment and risk characterization.  
The benchmark dose (BMD) method has been suggested as an alternative to the no observed 
(adverse) effect level (NO(A)EL) approach in dose-response assessment of non-cancer health 
effects. In contrast to the NO(A)EL that is limited to being one of the experimental dose levels, 
the BMD is estimated as the dose corresponding to a predetermined change in response, 
according to a model fitted to the dose-response data. 
In the present thesis, quantitative differences in sensitivity between dioxin sensitive Long-
Evans (L-E) and dioxin resistant Han/Wistar (H/W) rats following long-term exposure to 
2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)  was investigated. Sensitivity differences were 
analyzed by comparing BMDs for the two strains, considering a number of conventional 
toxicological endpoints, endpoints relevant for the endocrine system, and a group of bone 
parameters. Differences between the strains were most pronounced for hepatic foci; L-E rats 
were approximately 20-40 times more sensitive than H/W rats. For body and organ weight 
parameters, L-E rats were 10-20 times more sensitive than H/W rats. For retinoid parameters 
and hepatic CYP1A1 induction, estimated differences between the strains were generally 
about 5-fold. For bone effects, significant strain differences were observed with the L-E rat 
being the most sensitive strain. This difference was most pronounced (about 49-fold) for 
cross-sectional area of proximal tibia. It was also concluded that the BMD approach is a more 
suitable method for evaluation of bone parameters compare to the NOAEL approach. In 
another application, relative potency values (REPs) were established for a group of dioxin-
like (DL) and non-dioxin-like (NDL) polychlorinated biphenyl (PCB) congeners as the ratio 
between BMDs, median effective doses (ED50s), or NOELs. This analysis was based on 
increased liver weight, decreased hepatic vitamin A levels, and increased hepatic EROD 
activity. The findings indicated that the BMD approach results in more reliable REP values 
compared to the ED50 and NOEL approaches. The BMD approach also provides more 
information about the precision of the estimated REP values by the calculation of a two-sided 
90% confidence interval; a confidence interval may also be established for a ED50 ratio but 
not for a NO(A)EL ratio. Overall findings in this analysis supported further development and 
use of endpoint specific systems for assessment of human exposure to mixtures of chemicals 
with similar as well as different mode-of-actions. 
Finally, the potential health impact of a group of PCBs was characterized by estimating the 
cumulative margins of exposure (MOEs) for the adult Swedish population. A cumulative 
MOE distribution was quantified by simultaneous integration of a reference dose (RfD) 
distribution and a distribution for the human dietary exposure. Both a relative potency factor 
(RPF) based approach and an RPF-free approach were used for estimating the cumulative 
MOE. Results indicated that the cumulative MOE could be up to four times lower for women 
compared to men. The cumulative MOE reflected the MOE for PCB 126; other PCB congeners 
had little contribution. Compared to conventional MOE approaches, the newer approaches 
considered herein provide an improved tool under which potential health concerns can be 
assessed by accounting for both variability and various uncertainties, quantitatively, 
contributing to improving cumulative health risk assessments for the human population.  
  



 
 

 
  



 
 

LIST OF PUBLICATIONS 
 

I. Sand S, Fletcher N, von Rosen D, Kalantari F, Viluksela M, Tuomisto JT, 
Tuomisto J, Falk-Filipsson A, Hakansson H. 2010. Quantitative and statistical 
analysis of differences in sensitivity between Long-Evans and Han/Wistar rats 
following long-term exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin. Regul 
Toxicol Pharmacol 57(2-3): 136-145. 
 

II. Herlin M, Kalantari F, Stern N, Sand S, Larsson S, Viluksela M, Tuomisto 
JT, Tuomisto J, Tuukkanen J, Jamsa T, Lind PM, Hakansson H. 2010. 
Quantitative characterization of changes in bone geometry, mineral density 
and biomechanical properties in two rat strains with different Ah-receptor 
structures after long-term exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin. 
Toxicology 273(1-3): 1-11. 
 

III. Kalantari F, Westerholm E, Fattore E, Öberg M, Sand S, Håkansson H. 2012. 
Estimation of relative potency values for polychlorinated biphenyl (PCB) 
congeners based on hepatic endpoints of toxicity. Manuscript. 
 

IV. Kalantari F, Bergkvist C, Berglund M, Fattore E, Glynn A, Håkansson H, 
Sand S. 2012. Establishment of the cumulative margin of exposure for a group 
of polychlorinated biphenyl (PCB) congeners. Submitted. 

 



 
 

CONTENTS 
1  Background ................................................................................ 1 

1.1  Hazard characterization ...................................................................... 2 
1.1.1  Threshold vs. non-threshold assumption ............................... 2 
1.1.2  The NO(A)EL approach ........................................................ 3 
1.1.3  The Benchmark dose approach ............................................. 3 

1.1.3.1  Quantal data and dose-response models ............................................. 6 

1.1.3.2  Continuous data and dose-response models ....................................... 7 

1.1.3.3  Data requirement for BMD modeling .................................................. 7 

1.1.3.4  Selection of dose-response models and overall BMDL ...................... 8 

1.1.3.5  Definitions and specifications of the BMD and BMR ......................... 9 

1.1.3.6  Human dose-response data ................................................................... 12 

1.1.3.7  Comparison of dose-response relationships ........................................ 12 

1.1.3.8  Study design ........................................................................................... 12 

1.1.4  Extrapolation factors ............................................................ 13 
1.1.4.1  Interspecies and Intraspecies extrapolation ........................................ 13 

1.1.4.2  Sub-chronic to chronic extrapolation .................................................. 14 

1.1.5  Establishment of health-based guidance value ................... 15 
1.2  Exposure assessment ........................................................................ 15 

1.2.1  Deterministic and probabilistic methods ............................. 15 
1.2.2  Cumulative exposure ........................................................... 17 

1.3  Risk characterization ........................................................................ 18 

2  Present Investigation .............................................................. 20 

2.1  AIM ................................................................................................... 20 
2.2  MATERIALS AND METHODS .................................................... 21 

2.2.1  Data ...................................................................................... 21 
2.2.1.1  Dose-response animal data .................................................................. 21 

2.2.1.2  Human exposure data ........................................................................... 21 

2.2.2  Dose-response assessment ................................................... 22 
2.2.2.1  Assumptions and model fitting .............................................................. 22 

2.2.2.2  One way analysis of variance (ANOVA) .............................................. 22 

2.2.2.3  Dose-response models ........................................................................... 23 

2.2.2.4  Likelihood ratio test............................................................................... 23 

2.2.2.5  RfD distribution ..................................................................................... 24 

2.2.3  Exposure assessment ............................................................ 24 
2.2.4  Margin of exposure .............................................................. 25 
2.2.5  Software ............................................................................... 26 

2.3  Results and Discussion ..................................................................... 27 
2.3.1  Comparison of dose-response relationships ........................ 27 

2.3.1.1  Strain differences in sensitivity ............................................................. 27 

2.3.1.2  Establishment of relative potency values ............................................. 32 

2.3.2  Establishment of the cumulative margin of exposure ......... 35 
2.4  CONCLUSIONS .............................................................................. 39 
2.5  FUTURE PERSPECTIVES ............................................................. 40 

3  Acknowledgements ................................................................. 42 



 
 

4  References ................................................................................ 43 

 



 
 

LIST OF ABBREVIATIONS 
 
ADI 
AhR 
BMD 
BMR 
CYP 
DL 
GM 
GSD 
EFSA 
EROD 
H/W 
L-E 
LO(A)EL 
MOE 
NO(A)EL 
NFA 
NDL 
PCB 
PoD 
RfD 
REP 
RPF 
TCDD 
TDI 
TEF 
TEQ 
U.S. EPA  
WHO 
 

Acceptable daily intake 
Aryl hydrocarbon receptor 
Benchmark dose 
Benchmark response 
Cytochrome P450 
Dioxin like European Food Safety Authority 
Geometric mean 
Geometric standard deviation 
European Food Safety Authority 
Ethoxyresorufin-O-Deethylase 
Han/Wistar 
Long-Evans 
Lowest-observed-(adverse)-effect-level 
Margin of exposure 
No-observed-(adverse)-effect-level 
National Food Agency 
Non-dioxin-like 
Polychlorinated biphenyl 
Point of departure 
Reference dose 
Relative potency 
Relative potency factor 
2,3,7,8-tetrachloro-dibenzo-p-dioxin 
Tolerable daily intake 
Toxic equivalency factor 
Toxic equivalence (TCDD toxic equivalence) 
United States Environmental Protection Agency 
World Health Organization 

  



1 
 

1 BACKGROUND 
 

Humans are continuously exposed to a variety of compounds present in the 

environment and in food.  Human health risk assessments are performed to assess the 

risk of adverse health effects of exposure to chemical substances. According to the 

World Health Organization (WHO) this process consists of four different steps; hazard 

identification, hazard characterization, exposure assessment and risk characterization 

(WHO/IPCS 2004). 

 

The first step is to identify the type and nature of the adverse health effects that an 

agent has the capability to cause in an organism, system or population. The aim of 

hazard identification is to identify the potential critical endpoints that can be assumed to 

be relevant for humans. The second step, hazard characterization (dose-response 

assessment) involves investigating the relationship between the administered or 

absorbed dose of a chemical and the adverse effects it may produce in more detail. This 

assessment mostly relies on data from experimental animal studies, while consideration 

of data from human epidemiological studies is made from time to time. The overall aim 

of the hazard characterization is to determine the dose below which the compound of 

interest does not cause adverse health effects in humans. This is the estimated 

maximum exposure level of an agent, normally expressed on a body mass basis, to 

which individuals in a (sub) population may be exposed over a lifetime without 

appreciable health risk. Various terms are used to for such health-based guidance 

values; for example acceptable daily intake (ADI), tolerable daily intake (TDI) (the 

term “tolerable” is used for agents that are not deliberately added, such as contaminants 

in food), reference dose (RfD), and reference concentration (RfC). ADI/TDI are terms 

used e.g. by the WHO and the European Food Safety Authority (EFSA), while 

RfD/RfC are used by the U.S. Environmental Protection Agency (EPA). In this thesis 

the term RfD will be used. The RfD is estimated by applying uncertainty factors, such 

as inter- and intra-species factors, to a point of departure (PoD) derived from the dose-

response assessment.  

 

Exposure assessment involves estimating the exposure, via one or multiple routs, to a 

particular agent in a population of interest. The average exposure alone is a poor 

descriptor of the exposure in a population. Thus, assessment of the potential variation in 
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exposures is an important part of this step. More recently, there is also a focus towards 

assessing the uncertainty, besides the variability.  

 

Risk characterization involves the integration of the first three steps in the risk 

assessment process.  Ideally, it should produce a quantitative estimate of the risk in the 

exposed population, and/or estimates of the potential risk under different plausible 

exposure scenarios. Such estimates may be derived by combing the exposure 

information with information on the relationship between dose/exposure and the 

adverse health effect of interest. The potential health concern for a particular agent is 

often assessed by estimating the margin of exposure (MOE) or margin of safety 

(MOS), which involves comparison of the exposure situation with PoDs or reference 

points (RPs, i.e. equivalent to PoDs) derived in the dose-response assessment (Renwick 

et al. 2003; WHO 1999). 

 

The current thesis mainly relates to hazard characterization, but it also deals with 

exposure assessment and risk characterization to some extent. Even though human data 

sometimes is used for hazard characterization the case of using animal data as a basis is 

exclusively considered. The main objective within this work is the further development 

and application of new methods for quantitative health risk assessment of chemicals. 

 

1.1 HAZARD CHARACTERIZATION 

1.1.1 Threshold vs. non-threshold assumption 

Traditionally, different assumptions have been made regarding the shape of the dose-

response relationship in the low dose region depending on whether a non-genotoxic or 

a genotoxic effect is considered. For non-genotoxic effects an exposure threshold is 

assumed; i.e. there exists a dose level below which no biologically significant effects 

are observed. Since only differences in response that are higher than the experiment 

detection limit can be identified, it is hard to prove or disprove the presence of a 

threshold from the experimental data (Slob 1999). Therefore the existence of a 

threshold should be supported by expert judgment of the underlying biology of the 

effect. For genotoxic carcinogens, however, it has theoretically been regarded that even 

a single molecule of genotoxicants could damage DNA, leading to the development of 

a tumor. Therefore, a non-threshold assumption is considered for genotoxic 

carcinogens.  
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The present thesis relates to risk assessment based on non-gentoxic effects, such as 

organ weight effects, alteration of tissue retinoid levels, changes in bone parameters 

and it does not specifically discuss the case of genotoxic carcinogens. 

 

1.1.2 The NO(A)EL approach 

A purpose of the dose-response assessment is to specify the highest dose without 

appreciable risk (effect). Traditionally, the no-observed-adverse-effect-level (NOAEL) 

is used as the PoD for the establishment of such health-based guidance values (e.g. 

RfDs) when the health risk assessment is based on non-genotoxic effects. The NOAEL 

is usually derived from animal data, and is defined as the highest experimental dose 

level for which the (mean) response is not significantly different compared with the 

(mean) response in the control group (threshold assumed). The effects that are 

considered for derivation of a NOAEL should also be toxicologically relevant effects, 

meaning that they should be relevant to human health risk. Since, it is very difficult if 

not impossible to judge the health relevance of an induced effect, some has supported 

the use of the term no-observed-effect-level (NOEL) (Berry 1988). If a NO(A)EL 

cannot be derived, the lowest-observed-(adverse)-effect-level (LO(A)EL) is used 

instead and is extrapolated to NO(A)EL by the application of an extrapolation factor. 

The final PoD is normally determined as the lowest relevant NO(A)EL, among the 

potentially critical effects, in the critical study/s.  For establishment of health based-

guidance values for human, uncertainty factors are applied to the PoD. 

 

In this thesis the term NOAEL/LOAEL will be used when a studied endpoint can be 

considered as an adverse toxicological effect and the term NOEL/LOEL will be used 

when the investigated endpoint is not considered to be toxic per se but rather a marker 

of toxicity.  

 

1.1.3 The Benchmark dose approach 

Several limitations have been associated with the NO(A)EL approach (Crump 1984; 

Davis et al. 2011; USEPA 1995). Due to these shortcomings, the benchmark dose 

(BMD) approach was introduced by Crump (1984) as an alternative method. The BMD 

approach involves fitting of a mathematical model to the dose-response data and 

estimating the BMD as the dose corresponding to a predetermined change in the 
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response, referred to as the benchmark response (BMR). The BMD approach is 

illustrated in Figure 1. This concept was initially discussed for quantal dose-response 

data with a focus towards developmental toxicity (Allen et al. 1994a, 1994b; Faustman 

et al. 1994; Kavlock et al. 1995). However, this approach is now also frequently applied 

to (experimental and epidemiological) continuous data (Budtz-Jorgensen et al. 2001; 

EFSA 2009b; Sand et al. 2004; Slob 2002). 

 

For determination of health-based guidance values using the BMD approach the 

extrapolation/uncertainty factors are applied to the lower confidence bound of BMD, 

i.e. the BMDL, instead of the NO(A)EL. The BMDL is usually defined as the one-

sided lower 95% confidence limit on the BMD (which equals the lower bound of a 

two-sided 90% confidence interval); it can be interpreted as the dose corresponding to a 

response not likely to be larger than the specified BMR (with 95% confidence). Studies 

with larger sample sizes will produce tighter confidence intervals and therefore result in 

larger BMDLs (considering all else equal). 

 

The fact that the BMD approach accounts for sample size, by assessing the statistical 

uncertainty associated with the BMD, has been regarded as a major advantage relative 

to the NO(A)EL approach. When increasing the sample size of the experiment the 

power of the test to detect an effect increases; if there are significant differences 

between groups it is easier to detect this as the sample size increases (i.e. the NO(A)EL 

decreases). The opposite characteristics have been discussed to be more appropriate 

from regulatory viewpoint arguing that larger experiments should provide a greater 

evidence of safety and therefore result in a higher PoD, which is theoretically the case 

for the BMD approach. Because the BMD concept uses the entire data instead of 

comparing each dose group against the control, it should also be less sensitive to study 

design and experimental error compared to the NO(A)EL approach. The shape of the 

dose-response relationship is also taken into account to a higher extent relative to the 

case when using a NO(A)EL. 

 

Another advantage of using the BMDL is that the PoD for risk assessment then 

corresponds to an explicit response level which introduces consistency, but at the same 

time the specifications of suitable levels of response/risk has also shown to be one of 

the main challenges with BMD concept. The NO(A)EL may sometimes be interpreted 

as a dose threshold without adverse health effect. However, as pointed out previously, 
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based on the observed dose-response data the existence of threshold cannot be proven; 

an infinite number of measurements, both in terms of doses and effects, would be 

needed, and such an experiment cannot be conducted from a practical point of view 

(Edler et al. 2002; Slob 1999, 2007). As will be discussed below (section 1.3.1.5) when 

expressing response/risk as defined within the BMD framework (in terms of a BMR), a 

response/risk may also be present at the NO(A)EL in spite of it being a “no-effect 

level”. An extensive discussion and comparison of the BMD and the NOAEL is 

presented in (EFSA 2009a) and in (Sand et al. 2011). 

 

 
Figure 1. A dose-response model fitted to data. The triangles represent the observed mean responses at 

each dose level. The BMD which is a dose corresponding to a predefined change in response is 

determined from the fitted model (solid curve). The dashed lines demonstrate the upper and lower 95% 

confidence bounds for doses corresponding to specified response levels (BMRs). Their intersections with 

the horizontal line result in the lower and upper bounds of the BMD, i.e. BMDL and BMDU respectively. 

In this figure the BMD corresponding to 5% change in response relative to background is illustrated. The 

estimated background level from the fitted model is 8.7 and therefore 5% increase of that equals 9.14 

(8.7+0.05*8.7= 9.14). The BMD of 21.50 is obtained from the intersection of horizontal line at the 

response level of 9.14 with the fitted curve. 
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1.1.3.1 Quantal data and dose-response models 

Quantal data implies data where experimental animals are classified as responders or 

non-responders, e.g. the number of animals with (one or several) tumors in a particular 

dose group. Dose-response data may also be presented in ordinal format. Such data 

result when several sub-classes describing the severity of response (minimal, mild, 

moderate, etc) are defined. The simplest case of ordinal data is equivalent to quantal 

data and, theoretically, as the number of sub-classes in ordinal data approaches infinity, 

continuous data results. It has been discussed that quantal (or ordinal) data may be 

“connected” to an “underlying continuous response”, i.e. when subjects are categorized 

(e.g. by the experimenter) as responders they have exceeded a certain level of the 

“underlying continuous response” (Sand et al. 2008; Slob and Pieters 1998). This type 

of reasoning may however not be applicable to any type of quantal endpoint.  

 

A number of quantal dose-response models have been applied in health risk assessment 

of chemicals (Bailer et al. 2005; Sand et al. 2002). Some of these models are standard 

probability distribution function, such as the (log) logistic, the (log) probit, and the 

Weibull models, and some of them, like the gamma and the multistage models, are 

stochastic models that are based on the assumption that a positive response in an animal 

is the result of random occurrence of one or more biological event (Krewski and Van 

Ryzin 1981). The latter models were previously suggested for assessment of genotoxic 

carcinogens. To date, however, this distinction is not made; models that adequately 

describe the data are further considered in the risk assessment process regardless of 

whether a non-genotoxic or a genotoxic effect is considered. The minimum and 

maximum responses of quantal models are restricted to be in the range of 0 and 100%. 

For quantal data of general type it is assumed that the effect observed for an individual 

is independent of the effect observed for another individual. However, this is not the 

case for developmental toxicity data where fetuses from the same litter may respond 

more similar than fetuses from different litters. For such data intra-litter correlation 

should be regarded. Therefore, specific models and methods have been developed for 

evaluation of developmental toxicity data (Kodell et al. 1991; Kupper et al. 1986; Rai 

and Van Ryzin 1985).   
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1.1.3.2 Continuous data and dose-response models 

For continuous data, the degree of response is observed in the individual subject. 

Enzyme activities, organ weights, and hormone levels are examples of continuous 

responses. A wide range of dose-response models may be used to describe the 

relationship between the dose of chemical and the mean response of a continuous 

endpoint, for example, the polynomial models (including the linear model), the power 

model (Allen et al. 1994a; Allen et al. 1996; Crump 2002; Crump 1984; Crump 1995; 

EFSA 2009a; Kavlock et al. 1995), a family of nested exponential models (Slob 2002), 

and the Hill model family  (Barton et al. 1998; Davis et al. 2011; EFSA 2009a; Gaylor 

and Aylward 2004; Kim et al. 2002; Murrell et al. 1998; Sand et al. 2004; Toyoshiba et 

al. 2004; Zhou et al. 2001). The Hill and exponential families contain a parameter that 

describes the dynamic range of response (the absolute or relative difference between 

the maximum and minimum response levels) that allows the model to plateau at high 

doses. Therefore, these models can produce S-shaped dose-response relationships.  

 

Continuous response data is typically assumed to be normally or log-normally 

distributed. For simplicity, the variance is generally assumed to be constant among dose 

groups. However, this assumption is not always appropriate. For some datasets, the 

variance increases/decreases as the mean response increases/decreases, In such 

situations the variance can be modeled by a statistical function such as power function 

or exponential model (Davis et al. 2011; Sand et al. 2006). In the present thesis, the 

constant model (Papers II and III) and dose-dependent models for variance were 

considered (Papers I and II). 

 

1.1.3.3 Data requirement for BMD modeling 

There are some minimal data requirements for BMD modeling. For quantal data, the 

sample size and the incidence of response is needed for each dose group. For 

continuous data, the observed response data for each experimental animal or the 

summary data (the mean response, the standard deviation, and the number of animals at 

each dose level) are needed. It should be noted that outliers cannot be recognized when 

continuous summary data is used.  

 

In the process of dose-response modeling and BMD analysis it is investigated whether 

or not there is a statistically significant dose-response trend; a BMD is generally not 
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recommended to be derived if no such relationship can be demonstrated. It has been 

debated if a minimal number of dose groups are required for BMD analysis. According 

to U.S. EPA, a dataset should at least contain three dose groups in addition to the 

control group (Davis et al. 2011).  No specific recommendation is given by EFSA. 

Datasets with few dose groups may, depending on dose placement, provide limited 

information on the shape of the dose-response curve. Resulting BMDs and BMDLs 

may then differ substantially depending on the dose-response model used, which 

indicates that a PoD derived from such data will be uncertain. Importantly, applying a 

NO(A)EL approach in such a case is not a better approach. Rather it may be discussed 

if such data are adequate for use in quantitative risk assessment. 

 

1.1.3.4 Selection of dose-response models and overall BMDL 

There are numerous models that may be used to describe the dose-response 

relationships and subsequently drive the BMD. This results in BMD values that are 

model dependent i.e. by fitting different models different BMDs are obtained. To take 

model selection uncertainty into account, it has been suggested that a family of nested 

models such as Hill family or exponential family is fitted to the same dataset (EFSA 

2009a). From each family of models, the model with the appropriate number of 

parameters is then selected, e.g. based on a likelihood ratio test statistic. Considered 

models (e.g. the most appropriate member in each model family) also needs to fulfill 

standard statistical requirements for goodness-of-fit. Visual inspection of the plotted 

dose-response curve can give additional indication of how well the model fits the data. 

There may be cases where the goodness of fit test is violated whereas the model 

appears to fit the data well. There could also be cases where the goodness of fit test 

supports the model while an unrealistic curve fit is observed. 

 

The accepted models are then further considered. Thus, a range of BMDLs may result 

which becomes an indicator of the degree of model uncertainty for the particular data 

set considered (EFSA 2009a). Model averaging approaches have been discussed for 

deriving a single BMDL value from a given dataset (Wheeler and Bailer 2007, 2009), 

but at this point the most conservative (lowest) value is used in practice as the BMDL 

for that particular dataset. The overall PoD is then typically determined, similar as in 

the NOAEL approach, as the lowest BMDL, among the potentially critical 

effects/datasets, in the critical study/s (EFSA 2009a). 
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It should be noted that the proposed models are used descriptively based on some 

general considerations, and are not regarded as biologically based at any detailed level. 

The reliability of the BMD is more related to the quality of the data than the selected 

model. If the data contains sufficient information different models will result in similar 

BMD values (Slob 2002) (“Quality of data” and “sufficient information” here mostly 

refers to the number of dose groups applied).  

 

1.1.3.5 Definitions and specifications of the BMD and BMR 

Depending on the type of response data (quantal or continuous), the BMR associated 

with the BMD is defined differently. For quantal data, the BMR is commonly defined 

in terms of additional or extra risk: 

 

Additional risk: )0()( pBMDpBMR   .  (1) 

Extra risk:   
)0(1

)0()(

p

pBMDp
BMR




 ,  (2) 

 

Where )(BMDp denotes the probability of response at the BMD and )0(p is the 

background probability of response. 

 

For continuous data, several suggestions have been made for how to define the BMD 

(and BMR). The BMD for continuous data has for example been defined as the dose 

corresponding to a percentage change in response relative to background (Crump 1984; 

Slob and Pieters 1998): 

 

)0(

|)0()(|


 


BMD

BMR   (3) 

 

where )0( denotes the mean background response, and )(BMD denotes the mean 

response at the BMD. The BMR for continuous data has also been presented in terms 

of a change in response relative to the standard deviation of the control group, σ(0) 

(Crump 1984; Crump 1995; Kavlock et al. 1995); 
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)0(

|)0()(|


 


BMD

BMR   (4) 

 

In addition to the definitions presented above the BMD has alternatively been 

expressed as the dose corresponding to a change in response relative to the estimated 

dynamic range of response (the difference of the maximum and minimum response 

levels) (Murrell et al. 1998): 

  

)min()max(

|)0()(|

responseresponse

BMD
BMR







  (5) 

 

This definition is only applicable in situations where the model describing the dose-

response data levels off to some limiting value, i.e. consist of a parameter that describes 

the dynamic range of response.  

 

Observe that for quantal data the BMD corresponds to a change in the probability of 

response, while no probability based interpretation can (directly) be made for the 

BMD/BMR definitions discussed above for continuous data. However, an indirect 

probability based method has also been presented for continuous data (Crump 2002; 

Crump 1995; Gaylor and Slikker 1990), which has mostly been applied to 

epidemiological data in practice (Budtz-Jorgensen et al. 2000; Clewell et al. 2003; 

Jacobson et al. 2002). In this approach, a probability model that describes the 

proportion of the distribution (describing the variability in the population) below (or 

above) a specific cut-off value as a function of dose is estimated. The BMD is the dose 

where the probability of exceeding (or falling below) the cut-off level has increased by 

a particular percentage according to the additional or extra risk definition (equations 1 

and 2). BMDs calculated for continuous endpoints according to this approach have 

probability based interpretation in similarity to BMDs derived from quantal data. 

 

A critical issue concerns the specification of the BMR value in BMD analysis. The 

BMR should ideally be based on toxicological considerations (e.g. represent a non-

adverse effect size). However, it should not be set at levels outside the range of 

observed responses. Extrapolation far beyond the range of the data can result in BMDs 

which become dramatically different depending on the model used (EFSA 2009a). 



11 
 

Default values for the BMR for quantal and continuous data have been suggested; 

however the selection of other BMRs can be justified with biological and statistical 

considerations. 

 

For quantal data, U.S. EPA and EFSA have suggested a BMR of 10% as default, 

defined in terms of extra risk (Davis et al. 2011; EFSA 2009a). Some studies have 

compared NOAEL and BMDL values across several datasets to address the issue of 

suitable BMR levels. Results from those studies suggest that the risk at NOAEL 

corresponds to a BMR level in the range of 5-10% or more than 10% (Allen et al. 

1994a, 1994b; Fowles et al. 1999). More recently, dose-response analysis of 786 

dataset from the U.S. National Toxicology Program Carcinogenesis Bioassay Program 

indicated that the upper bound on extra risk at the NOAEL was close to 10% at median 

(Sand et al. 2011). Hence, while the NOAEL does not correspond to a statistically 

significant change in risk (or effect), a risk at the NOAEL is apparent in terms of BMR 

and depends on the dataset considered.  

 

In Sand et al (2011) the issue of BMR for quantal data was further addressed by the 

definition of a signal-to-noise crossover dose (SNCD). The SNCD is the dose at which 

the additional risk is equal to some fraction of background noise. The SNCD was 

discussed as an objective estimate of the lowest dose applicable as a PoD for a 

particular dataset, without having the signal (i.e. the point estimate of additional risk at 

a certain dose, d) overwhelmed by noise (i.e. the difference between the upper and 

lower bound of a two-sided 90% confidence interval on absolute risk at the same dose, 

d). 

 

For continuous data, EFSA recommends a BMR of 5% as default; defined as a 5% 

change in the mean response relative to the background mean response. EFSA states 

that a 5% response is often within the range of observation, and would provide BMDL 

estimates that are not critically dependent on the dose-response model. A re-analysis of 

a large number of U.S. National Toxicology Program studies showed that the BMDL05 

was, on average, close to the NOAEL derived for the same dataset, while in most 

individual datasets they differed within one order of a magnitude (EFSA 2009a). 

 

The data evaluated in the present thesis is continuous, and the BMD was defined as the 

dose corresponding to 5%, 10% and 100% (depending on the endpoint considered) 
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change in response according to Equation 3 (Papers I, II,  III and IV) and Equation 5 

(Paper I). 

 

1.1.3.6 Human dose-response data 

The definitions of BMD for quantal and continuous data discussed above are dependent 

on the response level in unexposed subjects. However, many epidemiological studies 

may not include an unexposed control group and therefore application of the BMD 

method may be problematic. In this situation a model can still be fitted to the data since 

fitting a dose-response model does not necessarily require observations at the control 

group. The response in the unexposed group can be determined by low-dose 

extrapolation, but it is important to note that a BMD derived in such a case may 

become highly model-dependent (Budtz-Jorgensen et al. 2001; EFSA 2009a). 

Furthermore, epidemiological studies involve different sources of uncertainty that may 

lead to a biased estimate of the BMD. In order to obtain less biased estimates, factors 

such as imprecision in human exposure, confounders and effect modifiers need to be 

handled by suitable statistical methods or by including them in the model as covariates 

(Budtz-Jorgensen et al. 2004; EFSA 2009b). 

 

1.1.3.7 Comparison of dose-response relationships 

An important issue in risk assessment is to assess the relative potency between different 

chemicals or relative differences in sensitivity between subpopulations (e.g. animal 

strains, sexes or species). Such a comparison can be performed by introducing a 

covariate/s in the model. It is then possible to investigate whether the dose-response 

relationships of two sub-populations are similar or not, i.e. are the sub-populations 

equally sensitive or not. Comparison of dose-response curves in the context of BMD 

analysis and risk assessment has generally been discussed by (Slob 2002). In Papers I 

and II, a framework was developed for assessing quantitative and statistical differences 

in sensitivity following chemical exposure, and in Paper III, relative potency (REP) 

values for a group of polychlorinated biphenyls (PCBs) were estimated. 

 

1.1.3.8 Study design 

The question whether or not the typical study designs used in animal experiments are 

adequate for BMD analysis, and/or what the optimal design is for estimating the BMD 

has been discussed in a few studies. Slob et al. (2005) studied this for continuous data 
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considering the BMD defined as the dose corresponding to 5% change in response 

relative to background. It was concluded that the performance of a design is determined 

by the total number of animals, and increasing the number of dose groups while 

reducing the number of animals per dose group, does not result in poorer performance 

of the design. In addition to the sample size, the dose placement showed to be an 

important factor and to minimize the risk of inadequate dose placement, studies with 

multiple dose levels are favorable (Slob et al. 2005). Investigations have also been 

made for continuous data by Kuljus et al. (2006) considering the Hill model where the 

BMD was defined as a change in response relative to the dynamic range of response 

(equation 5). The main purpose of this study was to investigate the effect of increasing 

the number of dose groups and at the same time decreasing the number of animals per 

dose group. The results suggested that to avoid unfavorable dose placement, studies 

should be designed with more than four dose groups. To further improve the study 

design any prior information about the dose-response relationship, e.g. information 

from similar previous studies should also be taken into account (Kuljus et al. 2006). 

 

1.1.4  Extrapolation factors 

1.1.4.1 Interspecies and Intraspecies extrapolation 

The PoD derived from experimental or epidemiological studies cannot directly be used 

to set an RfD for the human population. To establish the RfD, the PoD is commonly 

divided by one or more extrapolation factors (EFs) depending on the characteristics of 

the study (e.g. animal study or human study) used for derivation of the PoD.  

 

In the mid-1950s, an assessment factor of 100 was introduced in the United States by 

the Food and Drug Administration for deriving safe exposure levels for food additives.  

This approach was later modified slightly and applied by U.S. EPA in setting RfDs for 

environmental pollutants (Falk-Filipsson et al. 2007). Although it is hard to find a firm 

scientific basis for a 100-fold assessment factor, it is generally considered to consist of 

a 10-fold EF for describing interspecies differences and a 10-fold EF for describing 

intraspecies differences. The default interspecies EF of 10 is intended to account for the 

difference between the average experimental animal and the average human, and the 

default intraspecies EF allows extrapolating from the average to the sensitive human. 
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In an attempt to replace default EFs with data-derived EFs by incorporation of 

mechanistic information, Renwick (1993) subdivided each of 10-fold EFs into a 

toxicokinetic factor of 4 and a toxicodynamic factor of 2.5. A more flexible framework 

that develops a series of EFs related to different processes of metabolism and excretion 

when chemical-specific toxicokinetic or toxicodynamic data are not available has also 

been proposed (Dorne et al. 2001, 2004; Renwick et al. 2000; Walton et al. 2004).  

 

Several authors have suggested data-based empirical distributions for inter- and 

intraspecies factors (Edler et al. 2002; Price et al. 1997; Slob and Pieters 1998; 

Swartout et al. 1998; van der Voet and Slob 2007; Vermeire et al. 1999). Most of these 

distributions are based on ratios of NOAEL values from different studies (for the same 

compounds). As an alternative, Bokkers and Slob (2007) have proposed an empirical 

data-based interspecies EF distribution based on the BMD ratio of mouse and rat 

studies. van der Voet and Slob (2007) suggested that the EF interspecies factor can be 

described by a log-normal distribution with geometric mean (GM) equal to 4 and a 

geometric standard deviation (GSD) equal to 1.48. Under these settings the 99th 

percentile of the log-normal distribution is equal to the default interspecies factor of 10. 

To describe the intraspecies EF distribution van der Voet and Slob (2007) combined 

both variability and uncertainty. They assumed that the variability among individuals in 

the population is log-normally distributed with GM of 1 and a GSD which has a chi-

square distribution. The log-normal distribution reflects variability while distribution 

for the GSD reflects the uncertainty of this variability. The degrees of freedom for the 

chi-square distribution was specified such that the default intraspecies factor of 10 

equals the 99th percentile of the resulting intraspecies (log-normal) distribution (van der 

Voet and Slob 2007). In the present thesis, the inter- and intraspecies EF distributions 

proposed by van der Voet and Slob (2007) were considered (Paper IV). 

 

1.1.4.2 Sub-chronic to chronic extrapolation 

The most relevant experimental exposure duration to be used as basis for establishment 

of the RfD is chronic exposure, since these health-based guidance values should protect 

the human population from adverse health effects of chemical substances after life-long 

exposure. However such data may not always be available. By default, a factor of 10 is 

applied to for sub-chronic to chronic extrapolation. A data-based EF has been 

suggested, by considering a certain percentile of the sub-chronic to chronic NOAEL 

ratio distribution (Pieters et al. 1998). Instead of using ratios of NOAELs, Bookers and 
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Slob (2005), derived a data-based EF distribution by estimating BMD ratios for sub-

chronic and chronic studies (body weight and liver weight data on mice and rats). They 

proposed a lognormal distribution with a GM of 1.7 and GSD of 2.9 to describe the 

sub-chronic to chronic EF (Bokkers and Slob 2005). In this thesis, the latter sub-

chronic to chronic EF distribution was considered (Paper IV). 

 

1.1.5 Establishment of health-based guidance value 

Traditionally, the RfD is established by dividing a deterministic PoD by various point 

estimates of EFs. As an alternative, a probabilistic approach may be applied. In this 

case bootstrap procedures may be used to assess the uncertainty in the BMD (the 

complete BMD distribution is considered as the PoD). The uncertainty distribution of 

the BMD is then divided by the distributions for different EFs (as discussed above) to 

derive an uncertainty distribution for the RfD for the sensitive human (Slob and Pieters 

1998; van der Voet and Slob 2007): 

 

ൌ.࢈࢏࢚࢙࢘࢏ࢊࢋ࢜࢏࢚࢏࢙࢔ࢋ࢙ࡰࢌࡾ
࢔࢕࢏࢚࢛࢈࢏࢚࢙࢘࢏ࢊࡰࡹ࡮

.࢈࢏࢚࢙࢘࢏ࢊ࢏ࡲࡱൈ…ൈ.࢈࢏࢚࢙࢘࢏ࢊ૛ࡲࡱൈ.࢈࢏࢚࢙࢘࢏ࢊ૚ࡲࡱ
     (6) 

 

To date a probabilistic approach for establishing human exposure guidelines has not 

been applied in risk assessments in practice. 

 

It should be kept in mind that treating the RfD as a definite level, and considering 

exposures above the guideline as being associated with a health risk can be misleading. 

More informative indications of  both severity and frequency of health effects that may 

occur in an exposed population should instead be provided (Clewell and Crump 2005). 

 

1.2 EXPOSURE ASSESSMENT 

1.2.1 Deterministic and probabilistic methods 

Human exposure to chemicals occurs as a result of inhaling air, drinking water, eating 

food, or through dermal contact with products that contain the chemical. For 

assessment of dietary exposure, information of consumption habits and chemical 

occurrence in foods are needed. Food consumption data is obtained from consumption 

surveys in the population, and the concentration of chemicals in different food items are 

e.g. derived from food monitoring programs. If the consumption data concern foods as 
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eaten (i.e. pancakes) while the concentration data is available only for the raw foods 

(i.e. egg), information on recipes and food processing is ideally needed to match the 

consumption and concentration data. 

 

Human exposure assessment can be performed using different methodologies. 

Routinely, a deterministic approach is applied by combining point estimates of food 

consumption with point estimates of concentrations of chemicals in corresponding food 

items. This approach regards only a single consumption scenario and assumes a 

constant concentration of chemicals present in the food. In order to protect the majority 

of the population worst case scenario approaches may be applied by using conservative 

estimates of the input parameters, i.e. the 95th/99th percentile or the maximum value 

may be considered (Kroes et al. 2002). This type of deterministic approach may be 

applicable as a primary step for evaluating the exposure situation. However, if a risk 

cannot be excluded under such an assessment a more realistic approach is required as a 

higher tier to judge whether or not the exposure may be associated with adverse health 

effects (Bosgra et al. 2009). 

 

In contrast to the deterministic approach, the probabilistic analysis accounts for both 

variability (due to variation between individuals in food consumption and variability 

between concentrations of chemicals in the consumed foods) and uncertainty. Hence, 

this approach results in a more realistic illustration of health risk that can occur in the 

population. This approach employs all available information and allows us to avoid 

choosing worst case estimates for input parameters (Bosgra et al. 2005; Kroes et al. 

2002; van der Voet and Slob 2007). Variability and uncertainty should be treated 

separately. Variability between individuals in exposure to chemicals is evaluated by 

Monte Carlo simulations. Bootstrap simulations can be used to assess the uncertainty; 

random values are drawn directly from the input data (non-parametric bootstrapping) or 

from probability distributions describing the input data (parametric bootstrapping). 

Uncertainty distributions with respect to different percentiles of the exposure can be 

obtained since the exposure is evaluated for several bootstrap samples. While 

probabilistic modeling confers many advantages, in order to create reliable input 

distributions sufficient data on input parameters is needed (Kroes et al. 2002). 
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1.2.2 Cumulative exposure 

Health risks related to chemical exposures are mostly assessed separately for each 

compound whereas in reality humans are exposed to a complex mixture of chemicals 

(Kortenkamp 2007). Despite the recognition of this problem for decades, there are only 

a few models for prediction of cumulative exposure to chemical mixtures. The TEF-

system proposed by WHO is the most common method to characterize the toxicity of 

human exposure to dioxins and dioxin-like (DL) compounds (Van den Berg et al. 

2006). For pesticides, the relative potency factor (RPF) approach has been developed 

(Boobis et al. 2008; Muller et al. 2009; USEPA 2000), and this approach has also been 

applied for PAHs (Pufulete et al. 2004). Both the TEF and RPF approaches are based 

on selecting a reference compound and assessing the potency of other relevant 

compounds in relation to this reference. In the RPF approach, the cumulative exposure 

of the relevant compounds is then expressed in terms of reference compound 

equivalents, which are obtained by normalizing the exposure of each substance with its 

RPF. The RPF and TEF approaches are based on the assumption that there are no 

interactions between the considered chemicals; if the chemicals interact so that effects 

are modulated, information for the individual chemicals is not sufficient for predicting 

their combined effect. 

 

TEFs are determined based on a scientific judgment of multiple REP values from 

different studies for multiple endpoints. A set of criteria was developed to determine 

the REP values that can be included in the WHO TEF system. In order to assign a TEF 

value to a compound it should have a chemical structure that is similar to that of 

polychlorinated dibenzo-p-dioxins (PCDD) or polychlorinated dibenzofurans (PCDFs), 

bind to aryl hydrocarbon receptor (AhR), and show AhR mediated biochemical and 

toxic responses. The compound should also be persistent and accumulate in the food 

chain (Ahlborg et al. 1994; Van den Berg et al. 2006). The RPF method can be used 

when a class of compounds appears to share a common mode of action; however, the 

exact mechanism is complex and may not be known in detail (USEPA 2000).    

 

Several groups of compounds cannot be included in the TEF system as they do not 

fulfill the criteria of binding to AhR, although they have similar effect as the DL 

compounds on an endpoint basis. Therefore, when estimating the combined effect by 

only focusing on TEF assigned compounds, which have similar mechanism of action, 
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and not including the potency of other compounds with similar effects, the combined 

effect of mixtures might be underestimated. Hence, developing endpoint-specific RPF 

databases for endpoints that are observed after exposure to compounds with and 

without assigned TEFs seems to be appropriate (Ahlborg et al. 1994). When applying 

the RPF approach for estimating the cumulative exposure, one should bear in mind that 

the RPFs can be applied for the endpoints for which they were obtained and not for all 

endpoint (Muller et al. 2009). 

 

1.3 RISK CHARACTERIZATION 

The purpose of risk management is to protect the population from the adverse effect of 

chemicals. Advice to risk manager about the nature and magnitude of risk from 

exposure to chemicals can be given in a quantitative or qualitative form. Integrating 

exposure assessment and hazard characterization into risk characterization is an 

important step in risk assessment (Renwick et al. 2003).  

 

Normally, a deterministic approach is used at the level of risk characterization. A 

margin of exposure (MOE) or margin of safety (MOS) may be established by 

comparing a PoD like the NOAEL or BMDL with the mean/median or some percentile 

of the estimated human exposure. The MOE and MOS may be considered equivalent 

terms (IPCS 2004; sometimes the MOS is used when the health-based guidance value 

is applied as reference instead of the NOAEL or BMDL). For genotoxic carcinogens 

quantitative estimates of cancer risk at given exposure (using linear extrapolation 

models) have traditionally been performed by the WHO and the U.S. EPA. EFSA 

proposed a MOE approach for risk assessment of compounds that are both genotoxic 

and carcinogenic; the MOE is here defined as the ratio between the BMDL, obtained 

from animal dose-response data for the critical effect, and a point estimate of the 

human exposure (EFSA 2005). 

 

When appropriate data are available risk characterization may be carried out by 

probabilistic modeling. Such approaches have so far mostly been discussed at the level 

of the exposure assessment domain. The probabilistic approaches have not yet been 

used to aid the risk characterization or at the level of the hazard characterization 

domain in practice, e.g. for establishing health-based guidance values. A probabilistic 

MOE approach has been presented by van der Voet and Slob (2007). This is an 
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integration of the probabilistic approaches already described in this thesis at the level of 

hazard characterization and exposure assessment; it account for both variability and 

uncertainty in the estimation of the MOE. In Paper IV of current thesis, the model 

proposed by van der Voet and Slob (2007) was extended and refined to estimate the 

cumulative MOE for a group of PCBs using vitamin A as an example endpoint. 

Selected percentiles of the MOE distribution can be used to characterize the proportion 

of the population that can be considered to be at risk (Bosgra et al. 2009; van der Voet 

and Slob 2007; van der Voet et al. 2009). 
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2 PRESENT INVESTIGATION 
 
2.1 AIM 

The general objective of this thesis relates to development of methods applied for 

quantitative health risk assessment of chemical substances. The focus can be divided in 

two parts: 

 

In part one the objective was to further develop and promote approaches for 

comparison of dose-response relationships for estimating 1) differences in sensitivity 

between sub-populations, and 2) differences in potencies between chemical substances. 

The specific project objectives were: 

 

 To estimate the relative difference in sensitivity between L-E and H/W rat 

strains (with different AhR structure) considering a number of conventional 

toxicological endpoints as well as endocrine system relevant changes in tissue 

retinoid levels (Paper I). 

 To estimate the relative difference in sensitivity between L-E and H/W rat 

strains for changes in bone geometry, mineral density and biomechanical 

properties (Paper II).  

 To estimate REP values for a group of DL and non-dioxin-like (NDL) PCB 

congeners with the application of traditional approaches, i.e. using the ratio 

between NO(A)ELs/LO(A)ELs or median effective doses (ED50s), and a new 

approach, i.e. using the ratio between BMDs (Paper III).  

  

In part two the objective was to evaluate and further develop a generalized MOE 

approach for risk characterization of chemical mixtures by integrating dose-response 

modeling based on experimental effect data and exposure modeling based on human 

consumption data. The specific project objective was:   

 

 To implement and evaluate an approach for estimating the cumulative MOE, 

with and without incorporation of RPFs, considering a group of DL and NDL 

PCBs (Paper IV). 
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2.2 MATERIALS AND METHODS 

 
2.2.1 Data 

2.2.1.1 Dose-response animal data 

Some of the animal dose-response data used in this thesis were generated in our lab and 

some were obtained from scientific collaboration (Papers I and II) or derived from the 

literature (Papers III and IV). The dose-response data used was continuous in nature, 

describing the degree of severity of effect at the level of individual animals. 

 

For Papers I and II, dose-response data on body and organ weights, altered hepatic 

foci, hepatic ethoxyresorufin-O-deethylase (EROD) activity, as well as retinoid and 

bone parameters, observed in female Long-Evans (L-E) and Hans/Wistar (H/W) rats 

following long-term exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) was 

used.  

 

In Papers III and IV dose-response data on post-mortem observations, including gross 

changes such as fatty liver and spleen enlargement, organ weight, biochemical changes, 

tissue vitamin A levels, hematological changes such as anemia, etc, was derived from 

previously published studies (Chu et al. 2000; Chu et al. 1998; Chu et al. 1995; Chu et 

al. 1994; Chu et al. 1996a; Chu et al. 1996b; Lecavalier et al. 1997).  

 
2.2.1.2 Human exposure data 

For estimating the human dietary exposure, food consumption data and data on 

chemical concentrations in food was obtained by collaboration with the Swedish 

National Food Agency (NFA) (Paper IV). Data from the food consumption survey 

conducted by the NFA in collaboration with the Swedish Statistical Agency in 1997-

1998, on adult men and women (Riksmaten 97-98) was used (Becker and Pearson 

2002).  The concentration data on PCBs in food originates from the NFA dioxin control 

program from 2003 and onwards, and from NFA food monitoring studies from 1999 

and onwards. The concentration data for each PCB congener was extrapolated to the 

year 2009 with a 3.3 – 8.6 % decrease per year depending on the congener. 
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2.2.2 Dose-response assessment 

2.2.2.1 Assumptions and model fitting 

In Papers I, II and III data from two different sub-populations (Papers I and II) or 

two different compounds (Paper III) were analyzed simultaneously.  Data was 

assumed to be normally distributed. The log-likelihood function can then be written as: 
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where N is the total number of animals; gi is the number of dose groups for dataset i; ijn  

is the number of animals in the j’th dose group of dataset i; and 2
ijs and ijy  are unbiased 

sample variance and the sample mean response in the j’th dose group for dataset i, 

respectively. The parameters defining the mean response )( ijd  and the variance 

 ijd2  are estimated by maximizing the log-likelihood. 

 

In Papers III and IV, data was assumed to be log-normally distributed. However, 

equation 7 still applies since the response data was log-transformed before analysis. It 

should be noted, however, that in this case the estimated dose-response models describe 

the mean of the log-transformed response.  

 

In Papers I and II equation 7 was used for fitting a model to dose-response data on L-E 

and H/W rats simultaneously (for a given endpoint), while in Paper III it was used for 

fitting a model to dose-response data on PCB 126 and another PCB congener 

simultaneously (for a given endpoint). In Paper III, the log-likelihood function was 

also further extended so that a model was fitted to both the male and female dose-

response data for PCB 126 and another PCB simultaneously (for a given endpoint). In 

Paper IV, models were fitted to dose-response data on individual PCB congeners 

separately i.e. using equation 7, without summing over several datasets.  

 

2.2.2.2 One way analysis of variance (ANOVA) 

In Papers II and III in order to determine NO(A)ELs and LO(A)ELs, one-way 

ANOVA followed by Dunett’s  post-hoc test (Paper II) and pairwise t-test (Paper III) 
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was used to compare different dose groups against the corresponding control group at a 

significance level equal to 0.05.  

 
2.2.2.3 Dose-response models 

In all papers, the model used for analyzing the dose-response data was the Hill 

function, which in its general form can be written as: 
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where   is a parameter that describes the background response; k is the location 

parameter (which equals the ED50 dose);   is a parameter that describes the shape of 

the dose response curve;   is a parameter that describes the dynamic range of 

response (the difference between the estimated maximum and minimum response 

levels); and where id  is the dose administered to the i’th treatment group. If   equals 

1, the Hill function coincides with the Michael-Menten equation. These two models are 

nested and therefore it was tested if the data could just as well be described by the 

Michael-Menten equation which is a simpler model. The variance was assumed to be 

constant among dose groups, c2 . In Papers I and II, in addition to the constant 

model, a dose dependent exponential model, )1ln(2  de  , was also considered 

for the variance. 

 

2.2.2.4 Likelihood ratio test 

The likelihood ratio test was used to assess individual model fit and for selecting the 

most appropriate model in a family of nested models. It can be shown that twice the 

difference of the log-likelihoods associated with the two models approximately follows 

a chi-square distribution with the degrees of freedom equal to the difference in the 

number of parameters between the two models. In addition, this test is the basis for the 

likelihood profile method, which was used to estimate the confidence interval for the 

BMD ratios in Papers I, II and III. 
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2.2.2.5 RfD distribution 

In Paper IV, an approach for estimating an RfD under a probabilistic framework was 

applied. A “new” dose-response dataset was generated using a parametric bootstrap 

procedure. The BMD resulting from fitting a selected Hill model to the new dataset was 

divided by an interspecies extrapolation factor (EFinter) that was drawn from log-normal 

distribution (with GM= 4 and GSD = 1.48) . The resulting value was divided by 20 000 

random values drawn from an intraspecies extrapolation distribution (EFintra) 

corresponding to a log-normal distribution (with GM = 1 and GSD = 2
5598.1  ) 

where 2
5 is a random value draw from a Chi-square distribution (with five degrees of 

freedom) (van der Voet and Slob 2007). This results in an RfD distribution describing 

variability among individuals. The RfD distribution was also divided by an additional 

factor to account for subchronic to chronic extrapolation; this factor was randomly 

drawn from a lognormal distribution (with GM = 1.7 and GSD = 2.3) (Bokkers and 

Slob 2005). In order to evaluate the uncertainty in the RfD distribution the process 

described above was repeated for 500 times. 

 

2.2.3  Exposure assessment 

In Paper IV, the human dietary exposure to single PCB congeners, as well as the 

cumulative exposure for a whole group of PCBs was estimated. 

 

A non-parametric bootstrap sample was drawn with replacement from the consumption 

data, with respect to individuals in the consumption survey (Riksmaten 97-98). 

Similarly, a non-parametric bootstrap sample was drawn with replacement from 

concentration data, with respect to each food item (correlation between compounds for 

each food item was accounted for in this process). A mean concentration was estimated 

with regard to each food category for each PCB congener. For all individuals in the 

consumption survey, the (average) daily body weight-adjusted dietary exposure over all 

food groups was estimated with regard to each PCB congener. To assess the 

uncertainty in the estimated exposures, the procedure described above was repeated 500 

times. 

 

For assessing the cumulative exposure, RPFs estimated for the PCBs in Paper III (using 

PCB 126 as the reference compound) were used. The RPFs were assumed to have a 
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log-normal distribution with GM equal to the RPF point estimate. The GSD of this 

distribution was estimated from the two-sided confidence interval for the RPF. In each 

uncertainty round, the estimated exposure for each PCB congener (described above) 

was multiplied by a random value drawn from the respective PCB-specific RPF 

distribution. The cumulative exposure was then estimated as the sum of the adjusted 

exposures (in terms of PCB 126 equivalents) of all PCBs.  

 

2.2.4 Margin of exposure 

In Paper IV, the cumulative MOE was estimated. This was performed with and 

without the incorporation of RPFs. In the RPF-based approach, the cumulative MOE 

was calculated as the ratio between the RfD distribution (based on 20 000 values) for 

PCB 126 and the cumulative dietary exposure distribution (20 000 values were 

randomly generated from a fitted log normal model) expressed in terms of PCB 126 

equivalents. In the RPF-free approach, PCB-specific MOEs were estimated as the ratio 

between the PCB-specific RfD distribution and the PCB specific dietary exposure 

distribution.  The inverse of the PCB-specific MOEs were summed, and the cumulative 

MOE was calculated as the inverse of this sum. Figures 2A and 2B describe the 

procedure to derive the RPF-based cumulative MOE. 

 

 
 
Figure 2A. Animal toxicity data for PCB126 (male rats) was analyzed using the BMD approach. The 
BMD was divided by extrapolation factors, EFinter, EFintra and EFsubchronic-chronic, by Monte Carlo 
simulations, resulting in a distribution for the RfD. To account for uncertainties, the process of estimating 
the RfD was repeated, n = 500 times.  
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Figure 2B.  The distribution for the cumulative exposure (expressed in terms of the PCB126 equivalents) 
is obtained by 1) combining consumption amounts and average PCB concentrations for each food group; 
2) adjusting the total exposure for each PCB by applying the appropriate RPF, and 3) summing adjusted 
exposures over all PCB congeners. The distribution of the cumulative MOE is the ratio between the RfD 
distribution and the cumulative exposure distribution, obtained by Monte Carlo simulations. To account 
for uncertainties, the process of estimating the cumulative MOE was repeated, n = 500 times. 
 

2.2.5 Software 

The mathematical and statistical procedures applied in this thesis were developed in 

Matlab (version 7.0).  
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2.3 RESULTS AND DISCUSSION 

 
2.3.1 Comparison of dose-response relationships 

2.3.1.1 Strain differences in sensitivity 

The differences in sensitivity between two strains, species or the difference in potency 

of two chemicals is traditionally assessed by the comparison of their corresponding 

NO(A)ELs (LO(A)ELs) or ED50s. As has been discussed previously, a NO(A)EL 

depends heavily on the study setup and therefore it is regarded to contain substantial 

error. This error becomes even larger for the NO(A)ELs ratio. Whereas, the BMD is 

derived by using the whole data and it is expected to be more informative compared to 

the NO(A)EL. 

  

In Papers I and II, differences in sensitivity between L–E (dioxin sensitive) and H/W 

(dioxin resistant) rats following long-term exposure to TCDD were quantitatively 

investigated. Although the effects of dioxin exposure in the two rat strains has been 

extensively studied before, this was the first time a detailed statistical analysis was 

employed to quantify the relative difference in sensitivity between the two strains 

following long-term TCDD exposure. 

 

In Paper I, the difference in sensitivity between L-E and H/W rats was investigated for 

a variety of toxicological endpoints including data on body and organ weights, hepatic 

foci, hepatic CYP1A1 induction, as well as tissue retinoid levels. For a given endpoint, 

the BMDs for L-E and H/W rats were estimated by the Hill function that was fitted to 

the dose-response data. In Paper I, the BMD derived for every endpoint was defined as 

the dose corresponding to a percentage change in response relative to background 

response as well as a percentage change in response relative to the range between 

maximum and background response (equations 3 and 5). The sensitivity difference was 

then estimated in terms of a BMD ratio, i.e. BMDH/W/BMDL-E. The BMD ratio 

becomes a constant value that is independent of the BMR level used in the BMD 

calculation when the dose-response models are parallel, i.e. when the two curves have 

the same dose-response shapes, but the location of the curves on the dose scale may 

still differ. The BMD ratio becomes dependent on the selected BMR level when the 

dose-response curves are not parallel. The BMD ratio confidence interval reflecting the 

uncertainty in the sensitivity difference was also estimated. If this confidence interval 
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contained the value 1, the two strains were not regarded to differ statistically in their 

sensitivity to dioxin exposure.    

 

The statistical analysis demonstrated that the assumption of parallel dose-response 

curves was accepted for most of the parameters investigated. The parallel curve 

assumption was rejected for the data on volume fraction of hepatic foci, and hepatic 

retinyl palmitate, and hence for these endpoints the BMD ratio is not constant. A 

range of BMRs were therefore employed for calculating the BMD ratio for these 

endpoints.  

 

It was concluded that L-E and H/W rats differed statistically in their response to 

TCDD treatment for most of the parameters investigated in this study, i.e. the 

confidence interval corresponding to the BMDH/W/BMDL-E ratio did generally not 

include a BMD ratio = 1. Differences in response between the strains were most 

pronounced for hepatic foci; L-E rats were approximately 20-40 times more sensitive 

than H/W rats. For body and organ weight parameters, L-E rats were approximately 

10-20 times more sensitive than H/W rats. For retinoid parameters and hepatic 

CYP1A1 induction, estimated differences between the strains were generally about 5-

fold, and associated with a low uncertainty (Paper I, Table 2). The dose-response 

model and profile likelihood curve generated for thymus weight data are shown in 

Figures 3A and 3B. 
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Figure 3A. The Hill function fitted to data on thymus weight observed in L-E (triangles) and H/W 
(circles) rats following long-term TCDD exposure. The point estimate of the BMD ratio presenting the 
strain difference in sensitivity to TCDD exposure is 11. The BMD is defined as a dose corresponding 
to 5% change in response relative to background. However, as the dose-response curves could be 
assumed to be parallel the BMD ratio is independent of the BMR level selected.  
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Figure 3B. Establishment of a confidence interval for the BMD ratio using the profile likelihood method. 
The 90% confidence interval for the BMD ratio was estimated to 4.1 - 23.6. Since the confidence interval 
does not include a BMR ratio = 1, the two strain are considered to differ statistically in their sensitivity to 
TCDD exposure. 
 
 
In Paper II, data on bone geometry, mineral density and biomechanical properties that 

were derived from the same toxicity study as presented in Paper I were considered.  In 

this investigation, for every endpoint, the BMD and BMDL were estimated and 

compared to the associated NOAEL value. The relative difference in sensitivity 

between L-E and H/W rat strains, in terms of the ratio between their corresponding 

BMDs, was also investigated for bone parameters where both strains showed 

statistically significant effects. The BMD was defined as corresponding to the default 

BMR level of 5% change in response relative to background, according to equation 3. 

In order to assess the influence of BMR level on the results, additional calculations 

were also performed considering a BMR level equal to a 10% change in response 

relative to background. 

 

The results in Paper II indicated that the BMD approach is a more suitable method 

for evaluation of bone parameters compared to the NOAEL method. For a few 

endpoints, NOAEL values could not be established whereas the corresponding BMDs 

could be identified. For the cases where a NOAEL value could be derived, it was in 
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the same range as the BMDL corresponding to a 5% response. This indicates that 

despite the assumption that NOAEL is considered as a risk/effect-free dose, it does in 

fact correspond to an unknown effect size. The effect size associated with BMD, on 

the other hand, is explicitly presented which may be considered to result in more 

transparent risk assessments. BMDLs corresponding to a response level of 10% were 

for most parameters higher than the corresponding NOAELs and 2-10 times higher 

than BMDLs corresponding to a response level of 5%. In overall, a response level of 

5% seems to be relevant for the estimation of BMDs and BMDLs corresponding to 

the different bone parameters that were investigated in Paper II.  

  

For those bone parameters where both strains showed a significant dose-response 

relationship, strain sensitivity differences were estimated by comparing their 

corresponding dose-response relationship as illustrated for data on cross sectional 

area of proximal tibia in Figure 4. For these nine parameters, the dose-response 

curves of L-E and H/W rats could be assumed to be parallel according to the 

likelihood ratio test; there was a 10-fold strain difference for energy absorption of 

proximal tibia and length of tibia, and a 49-fold difference for cross-sectional area of 

proximal tibia (Figure 4), while there was no statistically significant strain difference 

with respect to the other six parameters (Paper II, Table 6).  It should be born in mind 

that for some parameters there was no observed effect for H/W rats and therefore 

taken all endpoints together the data suggest a significant difference in sensitivity 

between two strains with the L-E rat being the most sensitive strain. This finding 

provides support for the distinct role of AhR for the effects of TCDD on adult bone. 

The results obtained in Paper II provide new quantitative information about TCDD-

induced bone alterations at doses which are of relevance from a health risk 

assessment point of view and suggest that the BMD approach is an appropriate 

method for such evaluation. 
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Figure 4. The Michael-Menten equation fitted to data on cross-sectional area of proximal tibia 
observed in L-E (circles) and H/W (triangles) rats following long-term TCDD exposure. The point 
estimate of the BMD ratio presenting the strain difference in sensitivity to TCDD exposure is 49. The 
BMD is defined as a dose corresponding to 5% change in response relative to background. However, 
as the dose-response curves could be assumed to be parallel the BMD ratio is independent of the BMR 
level selected.  

 

2.3.1.2 Establishment of relative potency values 

In Paper III,  REP values for individual PCB congeners compared to PCB 126 (as the 

reference compound) were established using traditional approaches, i.e. as the ratio 

between NO(A)ELs/LO(A)ELs or median effective doses (ED50s), and a more recent 

approach, i.e. as the ratio between BMDs. Data on male and female rats from a series of 

single compound experiments including DL PCBs 77, 105, 118 and 126 (included in 

WHO-TEF concept), as well as NDL PCBs 28, 128 and 153 (not included in the WHO-

TEF concept) was evaluated. Increased liver weight, decreased hepatic vitamin A, and 

hepatic EROD induction were the endpoints considered for this evaluation. Increased 

liver weight is a well-established organohalogen endpoint. Although alterations in 

hepatic vitamin A and hepatic EROD activity may not be toxic per se, hepatic vitamin 

A reduction can be considered as a sensitive indicator of an altered retinoid 

homeostasis, and induction of EROD activity is indicative of AhR activation. 
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The BMR associated with the BMD was defined as a percent change in response 

relative to the background (equation 3). The BMR level was specified to a 5% change 

for hepatic vitamin A and relative liver weight data, and a 100% change for hepatic 

EROD activity data. In Paper III, the data was analyzed on the log-response scale. The 

discussed response changes above concerns the normal response scale, and they 

translate to an absolute response change on the log-response scale which was used in 

practice (Paper III, Supplementary materials).  

 

In Paper III, results demonstrated that for hepatic vitamin A and liver weight data the 

BMD-based REP values were for some cases higher and for some cases lower than the 

NOEL-based REP values. The NOEL-based REP values were 1-5 times higher than the 

BMD-based REP values for female liver weight data after exposure to PCBs 128, 153 

and 156, female hepatic vitamin A data after exposure to PCBs 77, 153 and 156 and 

male hepatic vitamin A data after exposure to PCBs 77, 128 and 156. Whereas, for the 

remaining PCB congeners the BMD-based REP values were 1-3 times higher than the 

NOEL-based REP values. For the EROD activity data, the BMD-based REP values 

were in general 1-56 times higher than NOEL-based REP values (Table 1). 

   

The assumption of parallel dose-response curves was supported for most congeners 

considering the data on hepatic vitamin A and relative liver weight. This assumption 

was, however, not supported for most congeners considering the EROD activity data. 

Moreover, further statistical analysis showed that male and female BMD-based REP 

values were equal for most congeners in the case of hepatic vitamin A and liver weight 

endpoints, but only for PCB 128 in the case of hepatic EROD activity data (Figure 5, 

Table 1).  

 

Under the parallel curve assumption the BMD-based REP values become identical to 

the ED50-based REP values since the dose ratios do not depend on the selected response 

level, or BMR, in this case. In the case of non-parallel dose-response relationships the 

ED50-based REP values tended to be higher than BMD-based REP values (Table 1). 

Furthermore, in contrast to the BMD values that were derived in the low dose area, 

accurate estimation of ED50 values demands more reliable estimation of the maximum 

response level. Therefore in the cases where there is a lack of response information at 

high dose levels, ED50-based REP values can be less precise than BMD-based REP 

values. Among the endpoints investigated in Paper III this situation was most 
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prominent for PCB 156 (based on male liver weight data) where the very low ED50 

REP was due to estimation of ED50 for PCB 156 outside the range of observations.  

  

 

 
 
Figure 5. Michael-Menten equations fitted to hepatic vitamin A data (µg) observed in male and female 
Sprague-Dawley rats following subchronic exposure to PCB 156 (µg/kg bw/day) and PCB 126 (µg/kg 
bw/day). Squares and triangles indicate female and male data on PCB 126, respectively. Crosses and 
circles represent female and male data on PCB 156, respectively. According to the statistical analysis, the 
dose-response curves for PCB 126 and PCB 156 are parallel for the male data. The parallel curve 
assumption was also supported for the female data. The statistical analysis supports the assumption of 

equal REP values for the male and female data, i.e. 126malePCBk / 156malePCBk = 126femalePCBk /

156femalePCBk . Hence, the REP value (BMD ratio) is independent of the response level selected and can 

be summarized as a single value for male and female data.  
 
 

In Paper III, the uncertainty associated with the BMD-based REP values was 

presented as two-sided 90% confidence intervals. A confidence interval may also be 

implemented for ED50-based REP values, however such estimation is not possible for 

NO(A)EL-based REP values. The REP point estimates as well as the associated 

confidence intervals can be used as relative potency factors (RPFs) in cumulative risk 

assessments.   

 

REP values could be established based on one or more of the endpoints analysed for 

congeners assigned a TEF (PCBs 77, 105, 118 and 156) as well as congeners not 

assigned a TEF (PCBs 28, 128 and 153). The highest REP values were obtained for 
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relative liver weight; REP values based on decreased hepatic vitamin A levels were 

slightly lower; and the lowest REP values were in general obtained for data on hepatic 

EROD activity (Table 1). The BMD-based REP values corresponding to DL PCB 

congeners were similar to their corresponding established WHO-TEF values. For 

assessment of the cumulative effects of persistent chemical mixtures, the findings in 

Paper III suggest that in addition to the mode-of-action approach, development of a 

system that includes chemicals with similar effects despite their different underlying 

mechanisms of action could be useful.  

 
 
Table 1. Relative potency (REP) values estimated as BMD, ED50, and NO(A)EL ratios based on relative 
liver weight (%), hepatic vitamin A ( µg) and hepatic EROD activity (nmol/ mg protein/hr) observed in 
male and female rats after exposure to individual PCB congeners.  
 
 

PCB 
congener 

 TEFa 
Liver weight Hepatic vitamin A Hepatic EROD activity 

BMD 
REP 

ED50 
REP  

NOEL 
REP  

BMD 
REP 

ED50 
REP 

NOEL 
REP  

BMD 
REP 

ED50 
REP 

LOELb 
REP 

MALE 

28        6.8e-07 8.6e-05 2.6e-06 

77 1.0e-03    9.0e-04 8.6e-03 1.1e-03 1.8e-04 3.7e-04 1.3e-05 

105 3.0e-04 5.0e-04 5.0e-04 2.0e-04 5.7e-04 5.7e-04 2.0e-04 7.9e-05 6.5e-05 2.3e-06 

118 3.0e-04       1.2e-05 5.9e-05 1.5e-05 

128     4.0e-05 4.0e-05 1.9e-04 4.9e-06 4.9e-06 2.4e-06 

153  5.4e-04 5.4e-04 2.3e-04 2.7e-04 2.7e-04 2.3e-04 2.1e-04 1.3e-03 2.9e-04 

156 3.0e-04 1.5e-03 5.0e-16 1.2e-03 4.5e-03 4.6e-03 1.2e-02 3.0e-04 2.3e-04 1.4e-05 

FEMALE 

28        2.4e-06 2.3e-06 2.5e-06 

77 1.0e-03    6.0e-04 6.0e-04 1.1e-03 2.9e-04 7.2e-04 1.1e-04 

105 3.0e-04 3.0e-03 3.0e-03 1.9e-03 3.2e-04 3.2e-04 2.3e-04 1.4e-04 1.1e-04 2.5e-06 

118 3.0e-04       1.1e-04 1.1e-04 5.9e-05 

128  4.1e-04 4.1e-04 2.0e-03 3.9e-05 3.9e-05 2.3e-05 5.4e-06 6.5e-06 2.3e-06 

153  7.0e-04 7.0e-04 2.0e-03 4.5e-05 4.5e-05 2.3e-05 7.5e-03 3.6e-02 2.4e-04 

156 3.0e-04 9.8e-03 9.8e-03 1.0e-02 3.7e-03 3.7e-03 1.1e-02c 6.2e-04 5.3e-04 1.2e-05 
 

aWHO TEF values (Van den Berg et al. 2006) have been adjusted to account for the use of PCB 126 as a 
reference compounds, i.e. by dividing with the TEF for PCB 126 (TEF = 0.1). 
bFor hepatic EROD activity data, a NOEL value could not be established for PCB 126 and the 
calculations have been based on LOEL values for all congeners. 
 
 

  
2.3.2 Establishment of the cumulative margin of exposure  

In Paper IV, a probabilistic approach for integrated evaluation of dose-response and 

exposure data was further developed and applied to estimate the cumulative MOE for 
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the combined exposure to DL PCBs 77, 105, 118, 156 and NDL PCB 153. There are a 

number of studies that have used a probabilistic risk assessment framework for MOE 

estimation, but these studies have mainly focused on pesticides (Bosgra et al. 2009; 

Muller et al. 2009). In contrast to the conventional MOE approaches, which are 

calculated as the ratio between a BMDL (or NO(A)EL) and a point estimate of the 

human exposure, the variability and uncertainty in both components of the MOE are 

taken into account under a probabilistic framework. Along these lines, a distribution 

(describing variability) for the MOE was estimated as the ratio between a distribution 

for a reference dose and a distribution for the human dietary exposure in Paper IV. 

The uncertainty in the respective distribution was also assessed in this process. Data 

on hepatic vitamin A from the same series of toxicity studies on individual PCB 

congeners that was used as basis in Paper III was used as an example endpoint for this 

analysis.  

 

In Paper IV, an RPF-based approach as well as an RPF-free approach was considered 

for estimating the cumulative MOE. In the RPF-based approach, the cumulative PCB 

exposure was estimated by the use of RPFs. Individual REPs derived for PCB 28, 

105, 118, 153 and 156 (using PCB 126 as reference) in Paper III were used in Paper 

IV as RPFs to express the concentration of individual compounds in equivalents of 

PCB 126 (Table 2). The analysis in Paper III suggested that these REPs were similar 

for male and female data except for PCB 153. In Paper IV, however, a 

common/single RPF was also used for male and female data on PCB 153 since they 

were close enough to be considered as similar in a practical context. The RPFs were 

assumed to be log-normally distributed, characterized by a geometric mean equal to 

the point estimates of the RPFs (Table 2) and a geometric standard deviation that was 

estimated from a two-sided 90% confidence interval established for each RPF (Table 

2). 

 

Under the RPF-based approach, the cumulative MOE was estimated by comparing 

the RfD for PCB 126 with the cumulative exposure expressed in terms of PCB 126 

equivalents. Under the RPF-free approach, the cumulative MOE is estimated by the 

use of compound specific MOEs. Detailed description of these two approaches can be 

found in the materials and methods section in Paper IV. 
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Table 2. Relative potency factors (RPFs) for individual PCB congeners (relative to PCB 126), based on 
hepatic Vitamin A data for male and female Sprague-Dawley rats. 

PCB 
Congener 

RPF 
(Lower bound (P5), Upper bound (P95)) 

PCB 28  NAa

PCB 77  9.0e-04 
(5.6e-04, 1.3e-03) 

PCB 105 4.5e-04 
(2.6e-04, 7.8e-04) 

PCB 118 NA 

PCB 153 1.5e-04 
(1.0e-04, 2.0e-04) 

PCB 156 4.5e-03 
(2.6e-03, 6.9e-03) 

 

a Not applicable:  There was no statistically significant difference between the saturated model and the 
no-response model, i.e. no dose-response relationship was observed. 
 

The 0.1st, 1st, 5th, and 50th percentiles of the cumulative MOE were estimated under 

the two approaches considered (Paper IV, Table 5). The lowest value for the 

cumulative MOE was 20; it suggests that 1 out of 1000 women have a MOE less than 

20 (and with high confidence this value is not less than 5, if also accounting for the 

uncertainty). The corresponding value for men was about 70. Depending on the 

percentile considered, the cumulative MOE could be a factor of 2 - 4 lower for women 

compared to men. This difference was mainly due to differences in the estimated RfD 

values for men and women, while the estimated exposure levels for men and women 

were similar (Paper IV, Tables 3 and 4). The results indicated that the cumulative 

MOE, more or less, reflected the MOE for PCB 126; the other PCB congeners had little 

contribution to the cumulative exposure, and thus the cumulative MOE (Figure 6).    

 

It has been discussed that the RPF-based and RPF-free approaches used in Paper IV 

are equivalent (van der Voet et al. 2009). However in practice, the implementation of 

the two approaches is different. The RPF-based approach requires the direct use of 

RPFs; such values are usually established as single (average/median) values for each 

compound and the uncertainty in the RPFs can also be taken into account, as 

discussed in Paper IV. However, in van der Voet (2009), the RPFs have been defined 

as the ratio between individual reference doses that accounts for both variability and 

uncertainty, i.e. not conventional BMD ratios based on experimental data only. Hence, 

the RPF-free approach can be considered as indirectly accounting for both variability 
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and uncertainty in relative potency. Thus, the main difference between the 

implementation of the two approaches discussed in Paper IV is that uncertainty in 

relative potency is only accounted for in the RPF-based approach, while both 

variability and uncertainty in relative potency is indirectly accounted for in the RPF-

free approach. This may explain the minor differences observed between the two 

approaches (Paper IV, Table 5).  

 

While the RPF-free approach accounts for variability (beside uncertainty) at the level 

of relative potency, it may be regarded to be more data intensive, compared to the 

RPF-based approach, since it requires detailed dose-response data for all compounds 

included. An advantage of the RPF-based approach is that the implementation of this 

approach only requires detailed dose-response information for the reference 

compound (PCB 126 in this case), and RPFs that have been derived in previous 

studies can be used. 

 

 

 

 

 
Figure 6. The relative contribution of individual PCB congeners (in terms of mean values) to the 
cumulative dietary PCB intake, in terms of PCB 126 equivalents, for men 17-74 years of age. A similar 
result was observed for women. 
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2.4 CONCLUSIONS  

This thesis work provides an important input to the evaluation and application of 

quantitative risk assessment methods thereby contributing to further development in 

this area.  

 

Establishment of dose-response relationship for different categories of effects, 

identification of strain and species differences, and assessment of chemical potency 

differences are elements that can be identified in hazard characterization, which is a 

central step in the risk assessment process. Part one of this thesis has demonstrated 

such evaluations, and it has discussed the advantages of performing detailed analysis of 

the entire dose-response data compared to using a NO(A)EL approach. More 

specifically, it was concluded that: 

 

 For most parameters investigated in Paper I, L-E and H/W data differed 

statistically in their response to TCDD treatment. In general L-E rats were 5-20 

times more sensitive than H/W rats, and this difference was in the range of 20 

to 40-fold in the case of hepatic foci. The strain differences were less 

uncertain (shorter confidence interval) for the retinoid parameters and EROD 

activity.  

 The BMD approach is more suitable than the NOAEL approach for evaluation 

of bone parameters considered in Paper II. BMDLs corresponding to a 

response level of 5% were in the same range as the NOAEL. It was concluded 

that the two strains are significantly different in their response to TCDD 

treatment, confirming the distinct role of AhR, with the L-E rat being the most 

sensitive strain. This difference was most pronounced (about 49-fold) for cross-

sectional area of proximal tibia.  

 For the PCB congeners considered in Paper III the BMD approach resulted in 

REP values that were in general more reliable compared to the NOEL and ED50 

approaches. In addition, our results support further development and use of 

endpoint specific ranking systems based on BMD-derived REP values for 

assessment of human exposure to mixtures of chemicals with similar as well 

as different mode of actions.  
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Part two of this thesis concerned development of quantitative approaches for risk 

characterization. The cumulative MOE was in this study estimated for a group of 

PCBs using reduction of hepatic retinoids as an example endpoint. A framework that 

accounts for variability and uncertainty, with regard to both components of the MOE, 

was applied. From Paper IV, it was concluded that: 

 

 The median of the 0.1st percentile for the cumulative MOE was about 20 for 

women, and about 70 for men. The cumulative MOE, more or less, reflected 

the MOE for PCB 126; the other PCB congeners had little contribution to the 

cumulative exposure, and thus the cumulative MOE.  

 The RPF-free approach more completely accounts for variability and 

uncertainty compared to the RPF-based approach. On the other hand, the 

RPF-based approach is less data intensive and can be more easily 

implemented in practice, allowing for a use of historical data on RPFs.  

 Compared to conventional MOE approaches, the approaches discussed in 

Paper IV provide an improved tool under which potential health concerns 

can be assessed by accounting for both variability and various uncertainties 

involved quantitatively, contributing to improving cumulative risk 

assessments.  

     

2.5 FUTURE PERSPECTIVES 

As has been discussed, the BMD approach is considered to be preferred over the 

NO(A)EL method for establishment of health-based guidance values or for assessment 

of differences in sensitivity between species, strains, genders, etc. One of the major 

advantages of the BMD approach is that it involves uncertainty analysis (e.g. 

accounting for sample size). So far, there are not many studies that have investigated 

the influence of study design on the BMD, i.e. the impact of dose placement, and 

number of animals distributed at each dose level, on the uncertainty in the BMD or 

BMD ratio. Further investigation of this issue may help to optimize animal use in 

toxicological studies, resulting in a better allocation of available resources. 

  

In the case of non-parallel dose-response relationships, REPs cannot be established as 

single values, i.e. the REP will depend on the BMR. How to account for the case of 

non-parallel dose-response curves when assessing the health impact of cumulative or 
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combined exposures is a future challenge. In general, further investigation of how to 

deal with non-dose-additive compounds by analyzing dose-response data of individual 

compounds as well as mixtures of compounds is of interest. 

 

In the probabilistic risk characterization framework discussed in Paper IV, the overall 

variability and uncertainty was estimated. An additional step is to include an approach 

that identifies the relative contribution of each source of variability/uncertainty with 

respect to the overall variability/uncertainty. This will help to identify the most 

important sources of MOE variation between individuals and/or the most important 

sources of uncertainty (that perhaps can be reduced e.g. by additional data collection).  
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