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ABSTRACT 

 

There are many layers of complexity involving the processes through which somatic 

cells transform into malignant cancers. Historically, cancer was considered to be a 

disease primarily caused by gene mutations, however it is now well established that the 

dysregulated expression of the genes leading to the tumorigenic phenotype involves not 

only mutations but also epigenetic changes. To understand the process of malignant 

transformation, it is thus important to determine the specific genes targeted by both 

types of changes. 

The studies in this thesis have focused on miRNA expression and its dysregulation in 

various malignancies and the subsequent role of such dysregulation in tumor 

pathogenesis. The work includes an analysis of the functional consequences of miRNA 

alterations in three distinct malignancies, (1) chronic lymphocytic leukemia (CLL), (2) 

Squamous cell carcinoma (SCC) and (3) Basal cell carcinoma (BCC). Furthermore, 

acute lymphoblastic leukemia (ALL) was used as a model to describe the role of 

miRNAs in anticancer treatment. Moreover, we analyzed the effect of the anticancer 

drug dexamethasone on miRNA expressions and the impact of manipulation of miRNA 

levels on drug efficacy. 

In the CLL study, we demonstrated that the frequently deleted DLEU2 gene functions 

as a regulatory host gene for two miRNAs, miR-15a and miR16-1, which negatively 

regulate the cell cycle by direct targeting G1 cyclins D1 and E1 at the post-

transcriptional level, and which, when expressed at high levels in cell line models, lead 

to the inhibition of colony formation ability. In addition, we demonstrated that the 

oncoprotein Myc negatively regulates DLEU2 transcription by targeting the DLEU2 

promoter. These results suggest that the loss of DLEU2 may be an important 

pathogenic factor in CLL development.  

Our studies on two non-melanoma-skin cancers, SCC and BCC, identified the 

preferential loss of expression of a skin-specific miRNA, miR-203, in these tumors. 

Our results further indicate a function of miR-203 in cell cycle regulation, migration 

and invasion, through the post-transcriptional targeting of the oncogenes c-JUN and c-

MYC, and ultimately leading to an inappropriate inactivation of Hedgehog pathway.  

Finally, in the ALL study we demonstrated dexamethasone mediated global down-

regulation of miRNAs, in particular the rapid downregulation of MIR17HG which 

occurred following direct binding of the glucocorticoid receptor protein to the 

MIR17HG promoter. The subsequent repression of miR-17 expression aids in 

dexamethasone cytotoxicity of ALL cells, possibly through de-repression of miR-17 

mediated targeting of the anti-apoptotic protein Bim. Analysis of primary B-ALL 

tumor samples also demonstrated that the cytotoxic efficacy of dexamethasone is 

associated with its ability to regulate miR-17 levels.  

Collectively, these results provide new evidence, not only on the function and 

importance of microRNAs in tumor pathogenesis, but also suggest the possibility of 

miRNA targeting to improve the efficacy of existing therapies. 
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INTRODUCTION 
This thesis work focuses on the diverse aspects of miRNAs in the context of the 

cellular and molecular biology of cancer development, diagnosis and treatment. As the 

thesis covers a variety of molecular events and specific diseases, it will function as a 

brief introduction to the growing field of research into the biology of microRNAs 

(miRNAs) and cancer. 

 

1.1 WHAT IS CANCER? 

Considering that the earliest record of tumors date from approximately 3000 BC in 

ancient Egypt it is presumed that knowledge and understanding of cancer developed 

in conjunction with human history and technological development [1]. At present, 

cancer is recognized as the second leading cause of death worldwide, with 7.6 million 

people dying worldwide from cancer in 2008, a figure expected to rise to 13.1 million 

deaths in 2030 [2]. The term “cancer” describes a wide range of distinct diseases 

originating from all human organs and tissues. Healthy human bodies have a process 

of homeostatic regulation to maintain tissue mass by means of genetic control of 

cellular division and death. This system is highly complex but well-organized and 

controlled, and is responsive to internal and external signals that help the body/tissue 

to sustain a healthy state. Cancers are the result of the accumulation of cells which 

have lost this homeostatic mechanism in a way that allows cells to expand in 

numbers, evading the various evolved anti-tumor mechanisms such as apoptosis and 

cellular senescence, to eventually form a malignant tumor. These may spread to other 

organs from their tissue of origin in a process, which is a typical feature for many 

types of advanced cancers and is the major cause of death in cancer patients. 

 

Causes of cancer are far more complicated than originally imagined. Commonly, a 

wide range of factors are now known to provoke tumor development and progression, 

yet the precise causes cannot be determined in many types. Inherited factors are 

predominant only 

in 5–10% of cases 

including many 

tumor types such as 

breast, prostate and 

colorectal cancers. 

The mutations 

which cause 

transformation of 

normal cells into a 

malignant tumor 

result from 

exposure to various 

carcinogenic risk 

factors and result in 

genetically and/or 
Figure 1. Hallmarks of cancer: the next generation.Hanahan&Weinberg, 2010 
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epigenetically damaged cells that can evade antitumor protective mechanisms and 

gradually accumulate in number before giving rise to symptomatic disease. 

How mutagens promote carcinogenesis is well studied but still incompletely 

understood. Hanahan and Weinberg proposed a number of “hallmarks of cancer” - 

novel capabilities acquired by cells resulting in the gradual gain of more aggressive 

neoplastic features as part of a multistep processes (Fig 1.) [3,4]. Both genetic and 

epigenetic alterations contribute to these novel tumor promoting traits. Although 

cancers are multicellular, they are generally thought to develop from a single 

originating cell. In recent years it has become apparent that some tumors appear to be 

driven by a type of undifferentiated originating cell, so called cancer stem 

cells.Tumors also exhibit a type of Darwinian evolution, Lamarckian inheritance, and 

neutral evolution at the genomic level, driving tumor progression. One of the 

hallmarks of cancer is genome instability & mutation that drives this successive 

progression and which gives rise to considerable genetic heterogeneity in the tumor 

mass [5] and providing the basis for malignant cellular evolution and survival. 

 

1.1.1 THE NATURE OF GENETIC CHANGES 

As discussed above, malignant tumors are precipitated by genetic or epigenetic 

alterations. However random mutations have to hit the correct gene in the genome to 

give rise to tumor cells. In order for cells to acquire the capability for progressive 

tumorigenesis, functional mutational events must occur that affect specific classes of 

genes that play a central role in tumor initiation and progression. The critical genes 

affected by these alterations are generally classified into two classes; oncogenes and 

tumor-suppressor genes [6]. 

 

1.1.2 ONCOGENES 

The term “oncogene” denotes a type of gene which, when overexpressed, can 

promote tumor development. These genes regulate processes such as cell growth and 

differentiation in normal cells, and are, in their un-mutated state, called proto-

oncogenes. However, once gain-of-function mutations cause them to become 

hyperactive, they become capable of promoting oncogenesis, and are thus called 

‘oncogenes’. More than 100 proto-oncogenes have been identified to date with the 

number increasing as research into the functional analysis of tumor associated genes 

progresses. The cellular function of proto-oncogenes is diverse and their gene 

products known to function at many levels of the various signal transduction 

pathways. Amongst others they include signaling components such as growth factors, 

growth factor receptors, cytoplasmic signaling molecules, transcription factors and 

cell-cycle regulators.  

So how can proto-oncogenes become activated to exert oncogenic properties?  

This can occur by processes such as amplification which produces extra copies of the 

gene resulting in increased levels of its expression. ERBB2 and MYCN are two well-

known examples of oncogenes that are genomically amplified in breast cancers and 

neuroblastomas respectively [6]. Another mechanism involved in turning proto-

oncogenes into oncogenes is the process of point mutation and this is frequently 

found occurring in the RAS family of genes. Ras family proteins mediate signaling by 
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G-protein coupled receptors following binding to GTP molecules and exerting 

GTPase activity, and are activated in a wide range of tumors. The point mutation that 

causes RAS activation increases the half-life of the activated Ras-GTP mutant 

resulting in an excessive response to the signals from the receptor [7]. A third 

mechanism of activation involves translocation events, which can be sub-divided into 

two types; translocation creating a novel chimeric gene; and translocations causing 

co-activation of an oncogene, by placing it under the transcriptional regulation of 

another, constitutively highly transcribed gene. The former cases are common in 

hematological malignancies and sarcomas. The first chimeric gene identified in 

human cancer was BCR-ABL – the fusion gene underlying the Philadelphia 

chromosome, and which is a product of the 3’ part of the ABL gene on chromosome 

9, and the 5’ part of the BCR gene from chromosome 22. The translocation results in 

a novel fusion gene, that expresses a tyrosine kinase related to the Abl protein with 

abnormal transforming properties and occurs in chronic myeloid leukemia (CML) 

acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML) [8].  

The final mechanism of oncogenic activation involves the juxtaposition of a highly 

active promoter upstream of a growth promoting proto-oncogene. Such activation is 

frequently described in lymphomas, such as Burkitt’s lymphoma, where MYC 

oncogene activation occurs by juxtaposing the MYC oncogene with various 

immunoglobulin heavy-chain (H) genes, thereby causing an excess production of the 

c-Myc transcript [9] 

 

1.1.3 TUMOR-SUPPRESSOR GENES 

Another class of genes which plays a critical role in tumorigenesis is the tumor-

suppressors, whose normal function is to limit cell growth in particular contexts. 

Their function is typically inactivated in tumors as exemplified by the 

Retinoblastoma- (RB-), P53- and PTEN genes. It is noteworthy that mutation/loss of 

one allele of a tumor-suppressor gene is often not sufficient for malignant 

transformation of the cells. This was proposed as the “two-hit hypothesis” in 1971 by 

Knudson, who hypothesized that the recessive property of tumor-suppressor genes at 

the cellular level requires bi-allelic inactivation for tumor development to occur [10]. 

Several types of mechanisms behind inactivation of these genes have been found to 

date, including deletion, mutation and epigenetic silencing through hypermethylation 

of promoter regions [11]. The specific function of individual tumor-suppressor genes 

include regulation of apoptosis, cell-cycle checkpoint, DNA repair, senescence and 

many other cellular processes which are related to cancer development [6]. 

 

1.2 MYC 

 

1.2.1 The Myc Oncoprotein – an oncogenic transcription factor 

The MYC family of transcription factors (TFs) encode a group of well characterized- 

oncoproteins. The c-MYC gene is localized to chromosome 8q24.21 and its 

dysregulation is observed in more than 50% of cancer cases, which makes Myc an 

attractive target for cancer therapy. MYC was first identified as a cellular homolog to 

the MC29 avian myelocytomatosis virus gene (v-myc) which harbours transforming 
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capability. MYCN, activated in neuroblastoma cells and MYCL in small cell lung 

cancer also belong to the same family and are homologous with v-myc, which share 

motifs and some function in common [12]. The various Myc proteins are members of 

the basic-helix-loop-helix-zipper (bHLH-Zip) family that heterodimerizes with the 

small bHLHZip protein Max and thus have the ability to bind to CACGTG and 

similar E-box sequences and act as transcription factors [13,14]. Although the 

mechanism is less defined Myc can influence transcription negatively together with 

the partner protein Miz [15]. Importantly it has been demonstrated that c-Myc 

regulates the gene expression of miRNA genes, with both activation and repression of 

target transcription [16]. This will be mentioned later in the work. 

 

In healthy cells, the proto-oncogene Myc has diverse functions in various cellular 

pathways, including proliferation, cell growth, energy metabolism and apoptosis. As 

a transcription factor, Myc has numerous targets in cells that are regulated as a 

response to both external and internal signaling. It is interesting to note that c-Myc 

was one of the essential transcription factors required to generate induced pluripotent 

stem (iPS) cells from human fibroblasts which hints of its potential in neoplastic 

transformation. [17]. 

 

1.2.2 Myc Dysregulation in Cancer 

Although MYC dysregulation is prevalent in cancer cells, the story is not straight 

forward. An increasing number of studies using transgenic mouse models 

demonstrate that c-Myc activation can initiate tumor formation and contribute to 

tumor progression, however it is clearly evident that additional mutagenic events are 

required for transformation [18]. To date, MYC seems to be the most frequently 

deregulated oncogene in human cancer and is also found to be a major murine 

oncogene [19]. Overexpression or aberrant expression of c-Myc is seen in both solid 

and hematological tumor types including Burkitt's lymphoma, breast cancer, prostate 

cancer, gastrointestinal cancer, multiple myeloma and myeloid leukemia whereas N-

Myc dysregulation is observed only in neuroblastoma and L-Myc only in small cell 

lung cancer due to their tissue-specific expression [20]. 

 

1.2.3 Dysregulation of Myc in Malignancy 

Like many other protein encoding genes, the regulation of Myc occurs at multiple 

levels in normal cells. In this section I will first focus on Myc dysregulation in 

malignancies. 

 

Translocation 

The first and most studied mechanism for Myc dysregulation in tumorigenesis is the 

MYC related translocation found in Burkitt’s lymphoma [21]. Nearly 100% of 

Burkitt’s lymphoma cases harbor a translocation of MYC, located on chromosome 8, 

juxtaposing it to genomic sequences from chromosome 14, 22 or 3, which harbor the 

regulatory elements of the immunoglobulin μ heavy chain or λ and κ light chains 

respectively, resulting in Myc overexpression [20,22].  
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Gene Amplification 

The amplification of the MYC family of genes is common in various types of cancers. 

MYC amplification occurs in 9–48% of breast cancer cases, with MYCL amplification 

found in 20%, of lung cancer cases. MYCN amplification in found in 4% of 

Medulloblastoma, 25–30% of Neuroblastoma and 43–67% of Rhabdomyosarcoma 

cases [14]. 

 

Protein Stabilization 

Myc is a rapidly degraded short-lived phosphoprotein with a normal half-life of 20-30 

min [23]. Increased stability of Myc protein has been reported in several types of 

cancers such as gastric cancer, head-and-neck squamous cell carcinoma and 

lymphoblastic leukemia [24]. One well-studied pathway of Myc degradation involves 

the phosphorylation of the N-terminal Serine 62 (S62) by extracellular-regulated 

kinase (ERK) followed by phosphorylation of Threonine 58 (T58) by glycogen 

synthase kinase (GSK-3β), and subsequent targeting by Fbxw7, a ubiquitin E3 ligase, 

resulting in poly-ubiquitination and subsequent proteasomal degradation [24]. This 

pathway is regulated at various levels by several other pathways found to be 

consistently altered in cancer cells. For example, Cip2a, which is the Pp2a inhibitor, 

works as an endogenous Myc stabilizing protein and the ubiquitin-specific protease 

Usp28, which is a critical mediator of Myc protein stability, are dysregulated in 

several cancer types, making them potential c-Myc related therapeutic targets 

[14,24,25]. 

 

1.2.4 Myc in Action 

Myc is a transcription factor and is known to work both in the activation and 

repression of the transcription of target genes. Using an inducible Myc system 

coupled with ChIP-seq and gene expression change, it was demonstrated that more 

than 22% of gene promoter regions have c-Myc binding sites [26]. 

 

1.2.4.1 Transactivation by Myc-Max heterodimers 

Max, a helix-loop-helix zipper protein that forms a complex with Myc, was the first 

dimerization partner identified for Myc, and functions to promote binding to E-box 

(CACGTG) sequences in a sequence specific manner [27-30]. Myc activates gene 

expression by recruiting multiple cofactors such as the ubiquitin-proteasomal system 

(UPS), SWI/SNF, histone acetyltransferases (HATs), lysine Methyltransferase 

(KMT), lysine demethylase (KDM), an ATPase containing remodeling complex (P-

TEFb) and CyclinE/CDK2. An important feature of Myc-Max activation of gene 

transcription is that it regulates the activity of all three RNA polymerases, thus 

controlling both coding and non-coding genes[31].  

 

1.2.4.2 Repression of gene expression by Myc 

The Myc oncoprotein can also function in the transcriptional repression of a large set 

of genes. In this case a different set of cofactors is required from those present during 

Myc-associated transcriptional activation. Until quite recently it was thought that the 

repression by Myc is achieved through binding to other transcription factors which by 
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themselves enhance the transcription of the target genes, such as MIZ1 and/or SP1 

TFs. Myc binding to these factors instead recruits DNA methyltransferase Dmnt3a 

and Hdac1, changing Miz1 and Sp1 from activators into transcriptional repressors 

[32-35]. However, recent reports suggest that Myc-Max heterodimer binding to E-box 

sequences may also play a role in the repression of transcription, making the role of 

the Myc-Max dimer less clear [36,37]. 

 

1.3 MIRNAS 

Historically, few non-coding RNAs were recognized as playing key biological roles in 

cells. These included transfer RNAs (tRNAs), ribosomal RNAs (rRNAs), small 

nucleolar RNAs (snoRNAs) and small nuclear RNAs (snRNAs), some of which were 

known to be involved in such processes as protein translation and mRNA biogenesis. 

Newly discovered classes of RNAs can be classified into two general categories; small 

non-coding RNAs and large intergenic non-coding RNAs (lincRNAs) [38]. Small non-

coding RNA types include piwi-interacting RNAs (piRNAs), antisense RNAs and the 

focus of this thesis, miRNAs, currently the best described small non-coding RNA 

known to play a role in posttranscriptional gene silencing (PTGS). 

 

1.3.1 MicroRNA – a class of non-coding RNAs 

MicroRNAs (MiRNAs) are small RNA molecules of 20-24 bp in length that are now 

known to post-transcriptionally regulate gene expression by binding to the 3’UTR of 

the target gene in a sequence specific manner. MiRNA target sites are often highly 

evolutionary conserved throughout species, and are partially complementary to the 

‘seed’ sequence of miRNAs - positions 2–7 at the 5' end of the mature miRNA. In 

general, the result of miRNA binding to the target mRNAs is the decreases in their 

stability or an inhibition of translation [39]. Lin-4, the first miRNA discovered in the 

nematode C. elegans, was found to cause a temporal decrease in lin-24 protein level 

and thus regulate the developmental timing of larval stages [40-42]. Today, there are 

1,898 mature human miRNA sequences listed in the Sanger updated miRNA registry 

(miRBase 18), and which are thought to regulate ~50% of protein coding genes. There 

has been a vast increase in the number of miRNA related publications in last 5-10 

years, covering almost all biological processes, indicating the importance of miRNAs 

within current biological research. 

 

1.3.2 Biogenesis 

In the canonical miRNA biogenesis pathway, miRNAs are transcribed by RNA 

polymerase II (Pol II) from the host genome as long primary transcripts (pri-miRNAs) 

in the nucleus and which partly fold into stem-loop structures [43,44]. The stem loops 

within pri-miRNAs are recognized by the microprocessor complex (Drosha-DGCR8), 

that processes them, using the the nuclear RNase III enzyme Drosha, into precursor 

miRNAs (pre-miRNAs) that are generally hairpin-loop structures of approximately 

~70nt in length [45]. Pre-miRNAs are then exported into the cytoplasm by exportin-5 

where another class of RNase III enzyme, Dicer, cleaves the loop part leaving a 

miRNA/miRNA* duplex. One strand of the miRNA is integrated into the miRNA-

induced silencing complex (miRISC) and subsequently directed to a site in 3’UTR of a 
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target mRNA, causing translational repression or deadenylation and degradation [46-

48] (Figure 2). It is worth noting that in miRISC complexes, Argonaute (Ago) protein 

and glycine-tryptophan protein of 182 kDa (GW182) proteins, which act as 

downstream effectors in the repression, are key players in the complex and function 

miRNA-mediated silencing [49]. Alternatively, in the Mirtron pathway, splicing can 

replace the Drosha cleavage when the excised intron has the appropriate size to form a 

hairpin-like pre-miRNA [50-52].  

 

 
Figure 2. MiRNA processing 

 

 

1.3.3 The Regulatory Function 

 

1.3.3.1 Target Recognition 

Many miRNAs that are expressed in a temporal- and tissue-specific manner are now 

known to play critical roles in various cellular pathways, including apoptosis, 

proliferation, migration, cell-cycle and development [53,54]. The regulatory functions 

of miRNAs in biological pathways are achieved through influencing the stability and 

the translational capacity of mRNAs. Mature miRNAs contain a characteristic feature, 

called the “seed” sequences, present between bases 2 to 7, which is the specificity 

determinant for target recognition [55]. Canonical miRNA targeting sites in target 

mRNAs often consist of 7 or 8 nucleotides of complementary sequence, however, 6 

nucleotide targets can be sufficient to target specific mRNAs for translational inhibition 

[56]. Although higher levels of complementarity throughout the miRNA will give 

better efficacy of action, there are several additional determinants that contribute to the 

efficacy of targeting, including; AU-rich nucleotide composition near the site, 

proximity to sites for coexpressed miRNAs (which leads to cooperative action), 



 

   11 

proximity to residues pairing to miRNA nucleotides 13–16, positioning within the 

3’UTR at least 15 nt from the stop codon, and positioning away from the center of long 

UTRs [57]. Information on putative miRNA targeting can be found in publicly 

available online bioinformatics databases including TargetScan (http://targetscan.org/) 

[58], PicTar (http://pictar.mdc-berlin.de/) [59], and MicroCosm Targets 

(http://www.ebi.ac.uk/enright-srv/microcosm/htdocs/targets/v5/) [60]. 

 

1.3.3.2 Translational Repression 

In human cells, mature miRNAs are bound to Ago2 proteins, which binds the mature 

miRNA, presenting its seed sequence for target recognition [61,62]. Upon recognition 

of the target RNA, miRISC complexes go through conformational changes, recruiting 

other components to the target RNA [63]. Complexes of higher complementarity cleave 

the target mRNA directly, similar to the process of RNAi directed mRNA degradation, 

however, this type of mRNA cleavage tends to be rare in miRNA-mediated gene 

silencing. Over the past few years there has been an intensive focus on delineating the 

molecular mechanism of miRNA-mediated gene silencing [64]. Some experimental 

evidences suggest that miRNA-mediated translational repression occurs at the post-

initiation stage[64]. Petersen and colleagues, discussing a situation where miRNA-

mRNA complexes are associated with polysomes which respond to translational 

inhibitors, alternatively proposed a model in which miRNAs cause ribosomes to 

dissociate (ribosomal drop off) [65]. 

 

1.3.3.3 Target Degradation 

The use of RNA transcriptome profiling techniques in recent years, have demonstrated 

the functional effect of miRNAs in promoting RNA degradation of some mRNA 

targets [66,67]. , In contrast to perfectly complementary siRNAs, miRNAs tend not to 

cause direct endonucleolytic cleavage. Instead, the miRNA/RISC complex directs 

target mRNAs to the cellular 5’-to-3’ mRNA decay pathway which involves the CCR4-

NOT complexes [68]. Following the deadenylation of the target mRNAs by the CAF1–

CCR4–NOT deadenylase complex, they are decapped by the decapping enzyme Dcp2 

and additional co-factors and subsequently subjected to degradation by the major 

cytoplasmic 5’-to-3’ exonuclease Xrn1 [54,69].  

 

1.3.3.4 The Changing Transcriptome Landscape 

Taking into the account that miRNA directly regulates approximately half or possibly 

more, of cellular mRNA transcripts it is appropriate to describe them as regulators of 

most biological processes and the equivalent, in terms of defining cell fate, to many 

transcription factors (TFs), previously seen as the “key” biological regulators. High-

throughput sequencing/screening technologies, such as microarray analysis, deep 

sequencing, genome-wide ChIP-Seq and RNA-Seq, and the use of various 

bioinformatics tools, allow an analysis of the interplay between TFs and miRNAs, 

which in turn adds another layer in the regulatory network of the transcriptome. Several 

studies to date have indicated combinational and cooperative regulations between TFs 

and miRNAs, suggesting the importance of miRNAs in gene regulatory networks, 

however, due to the novelty of the field, these studies should at best be considered 

http://targetscan.org/
http://pictar.mdc-berlin.de/
http://www.ebi.ac.uk/enright-srv/microcosm/htdocs/targets/v5/
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preliminary [70-72]. The next section will touch upon some examples of the role of 

miRNAs in biological systems, specifically regarding their function in cancer biology. 

 

1.3.4 MiRNAs in Cancer 

 

The first clue that miRNAs play important roles in cancer came from the evidence that 

many miRNA genes are located at fragile sites and genomic regions that are frequently 

altered in tumor cells [73]. Indeed, various groups have reported altered expression of 

miRNAs, or recurrent amplification or deletion of miRNA genes in tumors [73-76]. 

These early findings have been expanded to validate the individual tumor-altered 

miRNAs role and function in tumor pathogenesis, with several miRNAs being found to 

have oncogenic or tumor suppressive functions. The miR-17-92 cluster and miR-

155/BIC have been suggested as proto-oncogenes in B-cell lymphomas [77-79] and 

miR-15a and miR-16-1 are now known to act as tumor suppressor miRNAs (Paper I). 

 

The accumulating experimental evidence indicates that miRNA-mediated gene 

regulation has a broad impact on gene expression and regulation and that the functional 

role of this class of post-transcriptional regulators is critical in many human diseases 

including cancer.  

Some of the important aspects of the specific miRNAs described in my studies, in 

reference to their role in tumor biology, are described in this section.  

MiRNAs involved in tumorigenesis can be classified into two broad categories; tumor-

suppressor miRNAs and oncogenic miRNAs (OncomiRs). 

 

 

1.3.4.1 Tumor Suppressor miRNAs 

 

- miR-15a/miR-16-1 

miR-15a and miR-16-1 were the first miRNAs linked to a specific genomic alteration 

found in tumors, namely the frequent deletion of chromosome 13q14 that is seen in the 

disease chronic lymphocytic leukemia (CLL) [76]. The 13q14 consensus minimal 

deleted region (MDR) is lost in more than 50% of B-cell chronic lymphocytic leukemia 

(B-CLL), monoclonal B-cell lymphocytosis (MBL) patients [80,81] and about 50% of 

mantle cell lymphoma cases, as well as 16–40% of multiple myeloma patients [76]. 

Moreover 13q14 MDR was reported in solid tumor such as prostate cancer (60%) 

[82,83]. Calin and his colleagues identified 2 miRNAs located 30 kb downstream of 

this deleted region using chromosomal breakpoint mapping of a CLL case with a 

t(2:13)(q32;q14) translocation. The miRNAs described, miR-15a and miR-16-1 were 

discovered to be down-regulated in many other cases of CLL that showed allelic loss of 

13q14 [76]. The first mRNA target shown to be regulated by these miRNAs was BCL2 

which is overexpressed in various cancers, in particular CLL, and which is known to 

negatively-regulate apoptotic cell death pathway [84]. These findings implicate a role 

for miR-15a and miR-16-1 in the regulation of apoptosis, with the loss of such 

regulation contributing to CLL development. The importance of deletion of miR-15a 
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and miR-16-1 in the pathogenesis strongly suggested that these transcripts function as 

tumor suppressors.  

A more thorough analysis of these miRNAs is presented in paper I and the Results and 

Discussion section. 

 

- miR-203 

MiR-203 is another class of miRNA which is now known to function as a tumor-

suppressor in tumor cells. It is known as a “skin-specific” miRNA and is preferentially 

expressed in keratinocytes, which display a gradient of expression within the epidermis, 

with low expression in the basal layer and high expression in the more differentiated 

suprabasal layers [85]. The protein p63 is an essential regulator of stem cell 

maintenance in epithelial stratified tissues and a known target of mir-203, with one 

report suggesting that miR-203 acts as a switch between proliferation and 

differentiation, acting predominantly by restricting proliferative potential of progenitors 

[86]. A primary role for miR-203 is in the repression of the property of “stemness” 

within skin cells and the loss of miR-203 expression in keratinocyte is hypothesized to 

lead to various skin disorders including cancer, which is further discussed in paper III 

and IV. 

 

1.3.4.2 OncomiRs 

The term oncomiRs refers to miRNAs with oncogenic activities.  

These miRNAs, when constitutively overexpressed, promote tumor cell growth by 

inhibiting tumor suppressor genes or genes that control cell cycle progression, 

differentiation or apoptosis [87,88]. For example, miR-21 expression was shown to be 

strongly elevated in human glioblastomas [89] and later found to regulate cell cycle 

through the targeting of HNRPK and TAp63 [90]. It is reported that miR-21 level is 

over-expressed in different types of cancer, such as prostate cancer, colorectal cancer, 

lung cancer and osteosarcoma and contributes to tumorigenesis by altering the levels of 

cell cycle and apoptosis genes[91]. The other miRNAs exerting such oncogenic 

properties include miR-181, miR-222 and miR-155 [92] 

 

- miR-17 family 

The miR-17∼92 cluster (Oncomir-1) was identified as containing miRNAs that showed 

potent oncogenic properties, the first such growth promoting miRNAs described [78]. 

The precursor transcript derived from the mir-17-92 gene, MIR17HG, contains six 

tandem stem-loop hairpin structures that yield six mature miRNAs: miR-17, miR-18a, 

miR-19a, miR-20a, miR-19b-1, and miR-92-1 [93]. The 13q31.1 chromosomal region 

that contains this transcript has been found to be amplified in several hematopoietic 

malignancies and solid tumors, including diffuse B-cell lymphomas (DLBCLs), 

bladder cancer, squamous-cell carcinoma of the head and neck, and multiple myeloma 

[94,95].  

The MIR17HG transcript is a primary target for the oncogenic transcription factor, c-

Myc, which causes rapid upregulation of the transcription of the gene and the 

subsequent processing of its contained miRNAs.  
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Oncogenic activity of miR-17∼92 has been reported in lymphomas in which c-Myc 

associated overexpression of the miR-17∼92 cluster accelerates B lymphomagenesis in 

an in vivo mouse B-cell lymphoma model [78]. It is worth noting that MIR17HG is an 

E2F target gene, while at the same time miR-17 and miR-20, two of the miRNAs 

present within this cluster, target E2F1, while miR-20 additionally targets E2F2 and 

E2F3, implying a regulatory feedback loop between E2F and these miRNAs 

[77,96,97]. Diverse biological functions have been reported in relation to individual 

components of the miR-17∼92 cluster and the downstream effect of their expression 

after drug treatment, in addition to the regulation of the MIR17HG host gene, is 

discussed in paper II. 

 

 

1.4 CANCER TYPES STUDIED 

As the thesis is based on studies relating to various types of tumors, a brief introduction 

to each tumor entity is described in this section. 

 

1.4.1 Leukemia 

 

1.4.1.1 Chronic Lymphocytic Leukemia 

B cell chronic lymphocytic leukemia (B-CLL) represents the most common type of 

adult hematological malignancy in western society and accounts for ∼30% of adult 

leukemias and 25% of non-Hodgkin lymphomas (NHL) [98]. It affects mostly elderly 

people with a median age of around 65 years, with less than 10% of the patients being 

younger than 40 years of age [99]. A characteristic of B-CLL is the clonal expansion of 

B-lymphocytes that co-express T-cell antigen CD5 and B-cell surface antigens CD19, 

CD20, and CD23 [100]. There are two major subtypes of CLL; one harbors somatically 

mutated immunoglobulin variable region (IgV) genes, correlating with good prognosis 

and the other has unmutated IgV genes and a less favorable prognosis [100-102]. 

Moreover, recent reports suggest genomic abnormalities such as 17p and 11q deletions, 

expression of CD38 and ZAP70, as well as high β-2-microglobulin levels, correlate 

with chemotherapeutic resistance and a more aggressive clinical outcome [101,103-

105]. In CLL patients, genomic aberrations can be identified in about ~80% cases, as 

determined by fluorescence in-situ hybridization (FISH) using a disease specific probe 

set. The most common genomic alteration is 13q deletion which is seen in ~55% of the 

cases followed by ~18% with 11q deletion, ~16% with 12q trisomy and 7% with 17p 

deletion. However, the pathogenesis of CLL remains to be established because none of 

the above alterations have been conclusively demonstrated to be critical for developing 

CLL [80]. Sub-categorizing these genomic abnormalities is important since there is an 

established correlation between prognosis and the type of abnormality, such as poor 

survival in patients with 17p deletion and 11q deletion (commonly leading to the 

deletion of the TP53 and ATM TSGs respectively), or better survival for patients with 

trisomy 12q, normal karyotype and deletion 13q as the sole abnormality [80]. Due to 

the high frequency of deletions, both hemizygous and homozygous, sometimes as the 

sole detectable abnormality, the genomic region of 13q14.2 has been the focus of a 

search for the presence of a tumor-suppressor gene of importance to the pathogenesis of 
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CLL. These studies have included a delineation and subsequently a detailed analysis of 

the minimal deleted region (MDR), that has been shown to include the first exons of the 

two non-coding genes DLEU2 and DLEU1 [106-111]. Later Calin and colleagues 

identified 2 miRNAs, miR15A and miR16-1, within the intronic region of DLEU2 [76]. 

The relationship between DLEU2 and these two miRNAs are further discussed in paper 

I. 

 

1.4.1.2 Acute Lymphoblastic Leukemia 

Although Acute Lymphoblastic Leukemia (ALL) occurs in both adults and children, 

the disease is the most common form of cancer in children, with a prevalence peak 

between 2 and 5 years of age [112]. Infants under 1 year old have a worse outcome 

compared to older childhood ALL cases [113]. A higher incidence is seen in males than 

in females in all age groups, and in high income countries the long term cure rate for 

pediatric ALL is more than 80% with an almost 90% 5-year survival rate [114]. 

However, ALL remains the leading cause of non-traumatic death in children and young 

adults in these countries [115]. The World Health Organization (WHO) classification 

laid out two major sub-groups of ALL, namely precursor B-lymphoblastic leukemia 

and precursor T-lymphoblastic leukemia [116]. Precursor B-cell ALL accounts for 

approximately 70% of pediatric ALL cases, with the rest being mostly T-lineage, as 

diagnosed by immunophenotyping using flow cytometry [117]. Childhood ALL is 

characterized by a number of recurring cytogenetic alterations which can be divided 

into 3 sub-groups; chromosomal translocations which result in the creation of novel 

chimeric fusion genes which in turn express leukemogenic proteins or which lead to the 

over-expression of oncogenes, established ploidy subgroups characterized by the gain 

or loss of multiple non-random chromosomes and a miscellaneous subgroup [118,119]. 

Furthermore, 7 genetic subtypes have been defined by the WHO classification of B 

lymphoblastic leukemia, which are t(9;22)(q34;q11.2)/BCRABL1, MLL/11q23 

translocations, t(12;21)(p13;q22)/ETV6-RUNX1, t(1;19)(q23;p13.3)/TCF3-PBX1, 

t(5;14)(q31;q32)/IGH@-IL3, hyperdiploidy and hypodiploidy [119]. A number of risk 

factors have been identified for pediatric ALL, and risk-adapted therapy is playing an 

increasingly important role in the optimization of ALL treatment. Despite the relatively 

high (compared to other malignancies) rate of treatment success, the identification of 

additional prognostic variables and the discovery of drugs that can overcome resistance 

to therapy are needed if the remaining 20% of resistant cases are to be tackled 

[120,121]. Factors such as age, white blood cell count and immunophenotype and the 

presence of specific genetic aberrations have been associated with patient outcome 

[118]. Classically, combination based therapy is used to treat pediatric B-ALL, which 

includes glucocorticoids (GCs), vincristine and third type of drug such as asparaginase 

and/or anthracycline [112]. GCs have been used as important chemotherapeutic drugs 

to treat ALL and other lymphoid malignancies for decades [122]. Futhermore, the 

sensitivity to GCs is a major prognostic factor in childhood ALL [123,124]. However, 

the mechanism of how GC-induces cell death in ALL cells is still unclear. Paper II will 

touch upon one possible factor related to GC resistance. 
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1.4.2 Skin Cancer 

Both basal cell carcinoma (BCC) and squamous cell carcinoma (SCC) belong to the 

human non-melanoma skin cancers (NMSC) (or keratinocyte carcinomas). This is the 

most frequently observed type of human neoplasm in the world which is increasing in 

incidence rate by 3–8% every year in white populations in Europe, the U.S., Canada, 

and Australia [125,126].  

Accumulation of DNA damages by long-term sun exposure is the major cause of 

NMSC but other risk factors such as male sex, advanced age, immunosuppression 

(induced or acquired), human papilloma viruses (HPV), chronic inflammation, and 

genetic variants including somatic mutations in the patched 1 (PTCH1) gene and 

genetic variants in the melanocortin 1 receptor (MC1R) gene in the skin are also known 

[127]. Approximately 80% of cases occur in people aged 60 years and older [128]. 

Although nearly 80% of NMSCs are BCC, and around 20 percent are SCC [129], SCC, 

which is associated with a substantial risk of metastasis, accounts for the majority of 

NMSC related deaths. [127]. 

 

1.4.2.1 Squamous Cell Carcinoma (SCC) 

SCC is the second most common NMSC after BCC, and its incidence has been 

increasing during recent decades [130,131]. It is a locally invasive, malignant tumor, 

having metastatic potential, and arising from squamous cells found in the most outer 

layer of the skin, the epidermis. SCC is more likely to develop in injured or chronically 

diseased skin such as skin affected by long-standing ulcers, osteomyelitis, radiation 

dermatitis, vaccination scars and certain chronic inflammatory disorders [127]. The 

principal precursors of SCC are actinic keratosis (AK) and Bowen's disease (also 

described as SCC in situ), which are both found only in the epidermis and are not 

metastatic. Solar radiation and immunosuppressive treatment are the most important 

risk factors [132]. In non-caucasian populations, SCC incidence shows no correlation to 

solar exposure and chronic scarring processes and chronic inflammation are the most 

important risk factors [133,134]. Genetic analysis of SCC tumors have demonstrated 

that the most commonly deleted genomic region in SCC cells is chromosome 9p21 

which contains several TSGs such as 16INK4A (CDKN2A), p15INK4B, and MTAP 

[135]. Loss of Heterozigosity (LOH) on 3p, 2q, 8p, and 13 and allelic gain of 3q and 8q 

are also frequently found in SCC, and these can be used as markers in early diagnosis 

[136]. 

 

1.4.2.2 Basal Cell Carcinoma (BCC) 

BCC is the most common NMSC which also represents the most common malignancy 

in the Caucasian population [131]. Historically, it was thought that the cell-of-origin of 

BCC was from the epidermal basal cell layer, although later studies have favored a 

follicular derivation of BCC, however the exact cell-of-origin is, to date, uncertain 

[137]. An autosomal dominant disorder with distinct morphological features including 

multiple basal-cell carcinomas, results from germline mutations in PTCH1, a segment 

polarity gene (9q22.3) that plays an critical role in development, and frequent mutation 

of this gene is also detected in sporadic BCC cases [138,139]. PTCH1 encodes a 

putative transmembrane protein that acts as a receptor for the diffusible morphogen 
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protein, sonic hedgehog (Shh), and it has been shown to exert tumor suppressor 

functions [140]. Mutation of PTCH1 causes reduced suppression of intracellular 

signaling by the G-protein-coupled receptor, Smoothened (Smo), which targets the Gli 

family of transcription factors, resulting in sustained activation of target genes [139]. 

The understanding of pathogenesis of BCC is still partial and more detailed analyses 

are required. 

Recently, it has been proposed that epigenetic alterations contribute to tumorigenesis. 

Furthermore, the possible involvement of cancer associated dysregulated expression of 

miRNAs has been described. The skin-specific miRNA miR-203 discussed in paper III 

and IV, seems to represent one such example of a miRNA that may play an important 

role in the pathogenesis of skin tumors. 
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AIMS OF THE THESIS 

The overall aim of this thesis was to uncover the function of miRNAs in various types 

of cancers and the role of microRNAs in drug resistance. The specific aims for each 

paper are following; 

 

 Paper I: To characterize the regulation and the function of the miR-15a/16-1 

locus in relation to the MDR and DLEU2 host transcript in CLL 

 

 Paper II: To investigate role and mechanism of miRNA regulation in GC-

induced apoptotic cell death in ALL and determine the impact of miR-17 

regulation in GC-resistance in ALL cell lines and patient samples 

 

 Paper III: To explore the functional role of miR-203 in SCC pathogenesis 

 

 Paper IV: To define the mechanisms of how miR-203 dysregulation may 

contribute to carcinogenesis of the skin and BCC tumor formation 
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RESULTS AND DISCUSSION 

 
Paper I 

DLEU2, frequently deleted in malignancy, functions as a critical host gene of the 

cell cycle inhibitory microRNAs miR-15a and miR-16-1 

 
Several groups, including ours, have worked intensively over a number of years to 

characterize the genes located at the 13q14 chromosomal locus that is deleted in 

leukemic cells from more than half of CLL patients [106,108-110,141-144]. Our group 

had described a minimally deleted region or around 10kb encompassing the first exons 

of the two non-coding genes DLEU2 and DLEU1, indicating that one or more of these 

genes may be involved in the pathogenesis of CLL. In 2002, Calin and colleagues 

identified two miRNAs, miR-15a and miR-16-1,located within one of the introns of 

DLEU2, and which were downregulated in CLL, and thus the first miRNAs found to be 

altered in cancer [76]. Further studies by Calin et al demonstrated a germline C→T 

homozygous substitution in the pri-miR-16-1 transcript in 2 of 75 CLL patients, 

although this is probably a rare event [49]. Another group described a point mutation in 

the 3’ flanking sequence of the homologous miR-16-1 that correlated with down-

regulated expression of miR-16 in New Zealand black (NZB) mice with autoimmune 

and B lymphoproliferative disease (B-LPD), a condition that is regarded as a model for 

human CLL [49]. However, the exact role of these two miRNAs in relation to the 

adjacent genes is still under some debate. In particular the question remained whether 

miR-15a and miR-16-1 were independently regulated at the transcriptional level or 

whether they were in fact downstream products of the gene DLEU2, thus explaining the 

relationship between the minimal deleted region and the miRNAs that are located over 

30 kb downstream from this MDR.  

Our detailed breakpoint analysis revealed that the 13q14 MDR in CLL patients 

encompasses only 8.5 kb in size, and does not include the miR-15a/16 region but as 

mentioned above, does include the
 
first exons of DLEU1 and DLEU2 [145]. In contrast 

to the DLEU1 gene, the DLEU2 gene is evolutionarily conserved at the nucleotide level 

although it does not encode a conserved open reading frame, indicating that although 

there is no protein expressed from the gene, it may function at the RNA level [76]. In 

Paper I, we investigated whether the DLEU2 could act as a miRNA host gene and 

regulate the expression of miR-15a/16-1. In addition, this study included an initial 

characterization of one biological function of these miRNAs and a description of 

regulation of the expression of miR-15a/16-1 by the oncogenic transcription factor 

Myc. 

Most miRNAs are transcribed as part of non-coding host genes or from introns of 

protein-coding genes by RNA Pol II [53]. In almost every case they are transcribed in 

the same orientation as the predicted mRNAs, suggesting that most of these miRNAs 

are not transcribed from independent promoters but are instead processed from the 

introns or exons of their respective host gene. In an effort to establish the link between 

DLEU2 expression and miR-15a/16-1, we first assessed if the maturation of miR-

15a/16-1 was dependent on the nuclear RNAse III Drosha. RNAi knockdown of 
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Drosha led to a significant accumulation of a partially spliced isoform of DLEU2, but 

not the fully spliced DLEU2, suggesting that DLEU2 transcripts are processed by 

Drosha in order to produce functional miRNAs. It had been previously reported that the 

transcription factor Myc negatively regulates miR-15a/16-1 expression [16]. Together 

with our finding in relation to Drosha knock down, we hypothesized that miR-15a/16-1 

expression was regulated through the DLEU2 transcript, and that a Myc-mediated 

repression of DLEU2 transcription could consequently result in the down-regulation of 

miR-15a/16-1 expression. Using a doxycycline-regulated model system where Myc 

expression can be turned off [146], we found that both DLEU2 and miR-15a/16-1 

expression levels were induced following the repression of Myc expression. 

Furthermore, a chromatin immunoprecipitation (ChIP) assay demonstrated that the 

reduced expression of DLEU2 correlates with a direct Myc binding to two DLEU2 

alternative promoter regions. In contrast, Myc binding could not be detected to any loci 

immediately upstream of the miRNAs, the locus originally proposed by Calin et al as 

the likely promoter of miR-15a/miR-16-1. Taken together, these findings provide 

evidence that the regulation of miR-15a/miR-16-1 occurs at the two alternative DLEU2 

promoters, located within and upstream of the MDR and therefore that DLEU2 

functions as a host gene for miR-15a/16-1. 

Next, we focused on the functional properties of miR-15a/16-1 as tumor-suppressors. 

Bioinformatic analysis techniques were used to search the putative targets of these 

miRNAs, resulting in the identification of two cyclins, cyclin D1 and cyclin E1 as 

conserved high confidence targets. 

To assess the functional role of miR-15a/16-1, we cloned an alternatively spliced 

isoform of DLEU2 that retained part of intron 4 that contained the miRNAs. Using 

these constructs, rapid over-expression of miRNAs was achieved in transfected cell 

lines and western blot analysis was used to confirm the down-regulation of both cyclin 

D1 and cyclin E1 protein levels. In contrast, a DLEU2 expression construct lacking the 

miR-15a/16-1 sequence (DLEU2Δ-MIR) did not influence the level of these proteins. 

To test the physiological role of miR-15a/16-1, we performed colony formation assays 

in tumor cell lines transfected with these constructs, and confirmed that expression of 

DLEU2 led to an ~80% decrease in colony numbers compared to mock- or DLEU2Δ-

MIR- transfected cell lines. The reduction in colony formation was caused by G1 arrest, 

in line with the effects observed on the G1 cyclins. Additionally, we have performed 

apoptosis assays on these transfected cells and found no significant induction of 

apoptosis in contrast to the initial report of miR-15a/16-1 targeting and suppressing 

Bcl-2 expression [84].  

This study delineated a functional role for these miRNAs and provided important new 

information on the regulation of miR-15a/16-1, demonstrating DLEU2 as the regulatory 

host gene of these miRNAs, and also unraveled the mechanism underlying down-

regulation of miR-15a/16-1 expression in 13q14 deletion cases with a retention of the 

miRNA region. Moreover, the notion that the oncoprotein Myc binds and directly 

regulates the expression of these miRNAs implicates these miRNAs as downstream 

players of importance in Myc induced transformation. Interestingly, a recent report has 

shown that restoration of miR-16 expression in a New Zealand black–derived 

malignant B-1 cell line with impaired miR-16 expression, augments the apoptotic 
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effects of chemotheutics, nutlin and genistein [147]. These findings implicate miR-

15a/16-1 as possible therapeutic targets to improve drug efficacy in human CLL. 
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Paper II 

Involvement of the miR17 pathway in glucocorticoid-induced cell death in 

pediatric acute lymphoblastic leukemia 

 
GCs have been used as important chemotherapeutic drugs to treat ALL and other 

lymphoid malignancies for almost 50 years and continue to be significant elements of 

combination chemotherapy regimens [122]. With intensive multi-agent chemotherapy, 

the cure rate of childhood ALL is currently more than 80%, however the failure of this 

treatment in the remaining 20% necessitates the development of improved and novel 

therapies [114]. Hints to the mechanism of how GCs cause apoptotic cell death in ALL 

have, in recent years, been revealed using screening methods including gene-expression 

profiling [148]. Microarray technology led to the discovery of a "signature" list of 

genes that are dysregulated in GC-sensitive ALL cells [149]. In more mechanistic 

studies, other groups have demonstrated that GCs induce the expression of the pro-

apoptotic protein Bim in various ALL cell lines and primary patient cells, and that Bim 

induction is sufficient to cause apoptosis [150]. In addition, it was shown that Bim 

knock-down resulted in the inhibition of GC-induced apoptosis [151]. These reports 

demonstrate the importance of Bim to the chemotherapeutic function of GCs but the 

exact mechanism through which GCs induce Bim in lymphoid cells are still to be 

defined. MiRNAs are capable of altering both the stability of mRNAs as well as their 

capability to be translated. We hypothesized that GC-mediated cytotoxicity in ALL 

cells may, in part, be brought about through the regulation of the expression of specific 

miRNAs. To examine this, we performed an RT-PCR based expression array study, 

combined with bio-informatic analysis of the role of GC mediated changes in miRNA 

expression in ALL cells.  

In this paper, we observed a trend of general down-regulation of large set of miRNAs 

after Dexa-treatment prior to the onset of cell death and identified 3 miRNAs which 

belongs to the same cluster, miR-17-92, that has previously been shown to harbor 

oncogenic properties. We demonstrated that miR-17 family members target Bim at the 

post-transcriptional level. We also analyzed the specific mechanism for how GCs 

downregulate the miR-17-92 cluster. ChIP analysis was used to reveal that the GC-

receptor binds directly to the promoter of the miR-17-92 host gene, MIR17HG, leading 

to a suppressed expression of the MIR17HG transcript. This in turn caused the 

downregulation of mature miR-17 expression, and hence the derepression of the miR-

17 target gene, Bim. We also showed that the introduction of miR-17 in a B-ALL cell 

line model system led to the down-regulation of Bim and that the inhibition of miR-17 

through the use of anti-miR-17 antagomirs resulted in Bim induction. Furthermore, we 

demonstrated that over-expression of miR-17 partially inhibits apoptosis whereas 

inhibition of miR-17 increases the apoptotic rate in GC-treated ALL cell lines, 

suggesting that modulation of miR-17 expression modulates the sensitivity to GC-

induced apoptosis. Confirming these results through an analysis of primary ALL cells, 

we also found an association between the ex-vivo sensitivity of these cells to GCs and 

the ability of GCs to downregulate mir-R17 levels. We thus suggest that GC-induced 
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apoptosis and sensitivity is regulated at least partly through miR-17 mediated 

regulation of Bim protein levels.  

The miR-17-92 cluster plays an important role in promoting cell proliferation and 

suppressing apoptosis in tumor cells as well as during the normal development of 

various organs [152]. Like many other miRNAs, the miR-17-92 cluster is located at a 

fragile site of the genome, and is often amplified in tumor cells including lymphoma 

[94]. Furthermore, overexpression of miR-17-92 increased tumor progression in the 

Eμ-Myc transgenic mouse model of lymphoma at least in part by inhibiting apoptosis 

[78]. The downregulation of miR-17-92 is essential for the B cell development at the 

pro-B to pre-B transition by inducing Bim protein, as a block of this transition is found 

in miR-17-92−/− hematopoietic precursor cells [153].  

Other miRs were downregulated as well during GC treatment of ALL cells. The 

micoRNA showing the highest levels of downregulation, namely miR-142-3p, has 

recently been shown to be a direct regulator of the glucocorticoid receptor, GR [154]. 

This result, in combination with our finding that GC directly regulates the expression of 

the miR-17-92 cluster, indicates the likelihood that there exists a complex regulatory 

network involving both positive and negative feedback mechanisms involving the 

glucocorticoid receptor and multiple miRNAs. 

Interestingly, the suppression of miR-15a, which is expressed as a part of the DLEU2 

Pri-miRNA transcript, was not due to the suppression of the primary transcript, 

although the level of the mature miRNA was suppressed. This suggests the possibility 

that GC may regulate miRNA expression in various ways and thus further investigation 

is needed to unravel the different processes by which GCs regulate other miRNAs. 

In summary, our findings reveal a novel mechanism of GC mediated regulation of miR-

17-92 transcription, and that this regulation plays a critical role in GC sensitivity in 

ALL. Furthermore, our data supports previous reports demonstrating the importance of 

Bim in GC-induced apoptotic cell death in human ALL cells. Importantly, these 

findings also suggest that constituents of the miR-17-92 cluster are potential future 

therapeutic targets. 
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Paper III 

Investigation of the role of miR-203 in squamous cell carcinomas of the skin

 
Although having an incident rate much lower than that of BCC, the death rate of SCC 

is the highest among non-melanoma skin cancer types, accounting for 20% of all skin-

cancer related deaths [155,156]. MiR-203 is a skin-specific miRNA which is highly 

expressed in the squamous cell epithelium [85] and plays an important role during 

development by repressing ΔNp63 and thus leading to the terminal differentiation of 

skin stem cells [157]. Recent reports demonstrate a tumor-suppressor function of miR-

203 such as G1 phase cell cycle arrest by targeting survivin in laryngeal cancer cells 

[158] and induction of senescence by targeting E2F3 in melanoma cells [159]. 

Furthermore, an aberrant regulation of miR-203 expression has been reported in 

hepatocellular carcinoma [160], bone metastatic prostate cancer [161] and T-cell 

lymphomas [162]. There are several reports regarding altered miR-203 expression in 

SCC however knowledge of a detailed mechanism of how miR-203 dysregulation 

contributes to the SCC pathogenesis is still lacking [163-165]. Saini and his colleagues 

showed regulation of pro-metastatic genes by miR-203 including ZEB2, Bmi, survivin, 

as well as bone-specific effectors including Runx2, a master regulator of bone 

metastasis in prostate cancer [161]. These findings indicate that miR-203 may also play 

a role in metastasis in SCC cells.  

In this paper, we demonstrated that miR-203 expression is progressively dysregulated 

in relation to the clinical grade in SCC samples as well as in SCC cell lines compared 

to non-tumor cells, indicating the likelihood that this miRNA participates in the 

pathogenesis of SCC. Gene expression profiling of SCC cell lines upon miR-203 

introduction demonstrated an overrepresentation of expression changes in genes 

involved in the regulation of cell proliferation as well as differentiation and cell 

motility. Moreover, gene network analysis showed that many of the genes regulated by 

miR-203 have been previously shown to be dysregulated in skin neoplasms. 

Next, we focused on defining the functional properties of miR-203 as a tumor-

suppressor. Bioinformatic analysis was used to search for putative targets of this 

miRNA and indicated the c-MYC proto-oncogene and COX-2 to be conserved putative 

targets. 

To validate these genes as targets of miR-203, we used a pre-miR construct to cause 

rapid over-expression of this miRNA in SCC cell lines and confirmed the down-

regulation of both c-Myc and Cox-2 protein levels using western blot analysis. The 

physiological role of miR-203 was tested using the same cell lines in colony formation 

assays. A significant reduction in colony density was observed in the cells transfected 

with pre-miR-203. A possible mechanism for causing the reduction in colony number 

was G1 arrest of these cells, which was indeed demonstrated using a cell proliferation 

assay with the same cells. Next, we assigned the metastatic potential of miR-203 in 

SCC cells using the wound-healing/scratch assay, demonstrating that miR-203 over-

expression slows down the speed of wound-healing, confirmed by both the migration 

and invasion assays. 
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The suppression of c-Myc may partially account for the observed reduction of cell 

proliferation by miR-203. The proto-oncogene MYC is well studied due to its high rate 

of alteration in cancer, leading to dysregulation of cell growth, proliferation, apoptosis 

and angiogenesis. C-Myc has therefore been considered an attractive future therapeutic 

target. Interestingly, bioinformatic analysis revealed binding of the c-Myc and E2F1 

transcription factors to the miR-203 promoter region, suggesting the existence of an 

autoregulatory feedback loop between miR-203 and the Myc/E2F1 pathway, similar to 

the feedback loop suggested for the miR-17 family of miRNAs [77]. Taken together 

miR-203 may be an upstream regulator of c-Myc, and its dysregulation may thus lead 

to the disruption of a number of downstream cellular events important to maintaining 

cellular homeostasis and hence contribute to tumor pathogenesis. Moreover, the direct 

regulation of Cox-2 by miR-203 also suggests another therapeutic implication, due to 

the capability of Cox-2 to induce angiogenic factors such as VEGF, bFGF, TGF-1, 

PDGF and endothelin [166,167]. Therefore we suggest that Cox-2 regulation by miR-

203 could be a putative target to inhibit metastasis in SCC for therapeutic application. 

The mechanism of miR-203 suppression in cancer is still unknown. In addition to a 

possible regulatory mechanism involving c-Myc and E2F1 there are reports of 

epigenetic silencing of this transcript in some diseases however a more precise analysis 

is required to determine the relevance of these finding in SCC. 

In summary, our findings show the downregulation of miR-203 in SCC. Furthermore, 

we found that miR-203 mediated suppression of c-Myc, a factor may play a role in the 

regulation of proliferation. In addition, our results strongly suggest that, miR-203 plays 

a role in migration and invasion in SCC through the regulation of Cox-2. The stage-

dependent reduction in the miR-203 expression level in the SCC patient material 

suggests that suppression of this miRNA may have a functional role in sustaining a 

high proliferation state and metastatic potential of this tumor. Taken together, we 

suggest that a suppressed expression of miR-203 contributes to oncogenic 

transformation through activation of proteins with oncogenic properties. Moreover 

these findings suggest that inducing miR-203 in SCC cells may be of therapeutic 

potential in this disease. 
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Paper IV 

MicroRNA-203 functions as a tumor suppressor in basal cell carcinoma

 
Basal cell carcinoma (BCC) represents ~80% of non-melanoma skin cancer, which is 

the most common human malignancy in the causasian population, with the incidence 

increasing due to an aging population and current sun exposure habits. Abnormal 

activation of the Hedgehog (Hh) pathway caused by inactivating mutations in PTCH1 

or activating mutations in SMO is indispensable in BCC pathogenesis [168-170]. 

Animal studies using transgenic mice models demonstrated that forced expression of 

the Gli transcription factors causes the development of BCC-like tumors in these 

animals [171,172] as well as the forced expression of sonic hedgehog (Shh) [173] and 

smoothened (Smo) [174], all of which are factors that contribute to the activation of the 

hedgehog pathway. To date, all investigations on BCC tumor onset and development 

have focused on mutations and/or expression of protein-coding genes, and although 

several advances have been made, a comprehensive molecular description detailing 

BCC pathogenesis is still lacking. At present the role of miRNAs in BCC pathogenesis 

has not been described.  

In this paper, we used a comprehensive, genome-wide analysis of miRNA to compare 

miRNA expression in human healthy skin and BCCs. Unsupervised hierarchical 

clustering based on miRNA expression clearly separated BCC tumor samples from 

healthy skin, and most miRNAs with significant differential expression were found to 

be expressed at lower levels in BCC, which is in line with previous reports relating to 

miRNA expression in solid tumors [175]. These findings suggest that the down-

regulation of miRNAs may contribute to BCC pathogenesis. Among those suppressed 

miRNAs, miR-203 was identified as the most significantly and consistently down-

regulated miRNA. This particular miRNA is known as a skin-specific transcript that 

functions to promote epidermal differentiation. In situ hybridization using miR-203 

specific locked nucleic acid probes showed that miR-203 was preferentially expressed 

in the suprabasal layer of healthy skin, while in BCCs miR-203 expression was largely 

absent. A correlation between activation of the Hh pathway and miR-203 suppression 

was suggested by quantitative real-time PCR, showing that both PTCH1 and GLI1 

were significantly upregulated (p<0.001) in BCC tumors as compared with healthy 

skin, in accordance with previously published data. Furthermore, correlation analysis 

showed a significant negative association between miR-203 expression and GLI1, as 

well as between miR-203 and PTCH1, suggesting that a loss-of-function of miR-203 

may be associated with aberrant Hh signaling in BCC.  

Next, we aimed to evaluate the potential mechanisms and/or pathways accounting for 

miR-203 suppression in BCC. Previous reports suggest that miR-203 is regulated by 

the protein kinase C/activator protein 1 (AP-1) pathway and suppressed by growth 

factors such as KGF and EGF in keratinocytes [176]. Recently, it was shown that the 

EGFR signaling pathway often synergizes with Hh/GLI1 in oncogenic transformation 

via activation of the MEK/ERK/JUN pathway [177], indicating one possible 

mechanism for miR-203 suppression in BCC. The miR-203 expression level was 

examined in primary human keratinocytes treated with inhibitors of EGFR, MEK1/2, 
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JNK, or Akt in combination with EGF or DMSO alone with the results showing a 

significant suppression of miR-203 in EGF-treated keratinocytes. Conversely, 

activation of the EGFR-MAPK signaling pathway represses miR-203 expression, 

implying a potential role of the EGFR-MAPK signaling pathway in miR-203 down-

regulation in BCC. A bioinformatic search for putative miR-203 targets identified 

several genes in the MEK/ERK/JUN pathway, including the c-JUN proto-oncogene 

which plays a role in cell proliferation. Reporter assays revealed a direct regulation of 

c-Jun by miR-203 through 3’UTR binding. In line with this, cell-cycle analysis of 

primary keratinocytes transfected with pre-miR-203 showed a clear inhibition in the 

G1to S-phase transition of the cell cycle. These results suggest that suppression of c-

Jun contributes to the antiproliferative effects of miR-203. In accordance with previous 

results [178], we also demonstrated that c-Jun in turn suppresses miR-203 expression in 

primary keratinocytes. Taken together, these results suggest a regulatory circuit in 

which miR-203 and c-Jun mutually inhibit each other and that the low-levels of miR-

203 may be caused by c-Jun activation leading to the basal phenotype in BCC, similar 

to that seen in basal keratinocytes which also show high expression of c-Jun. 

We also showed that activation of the Hh pathway suppress miR-203 expression. These 

finding suggests the activated Hh pathway in BCCs also contributes to pathogenesis 

through miR-203 suppression. This also indicates a cross talk with ERK signaling, as 

the suppression of miR-203 in turn affects the expression of multiple genes involved in 

the regulation of cell proliferation and cell cycle including c-Jun and other targets. 

In conclusion, our study represents the first analysis of miRNA expression and function 

in a non-melanoma skin cancer. These results indicate a complex molecular network, 

involving regulatory interactions between potent signaling pathways/oncoproteins and 

miR-203. The loss of miR-203 expression in BCC suggests that this miRNA could be 

used as a biomarker of the disease and may also represent a potential therapeutic target 

for the treatment of BCC. Further investigation will be needed to demonstrate whether 

the molecular reconstitution of miR-203 may serve as a novel therapeutic strategy in 

the treatment of BCC tumors. 

 



 

28 

GENERAL CONCLUSIONS 

 

• DLEU2 is a non-coding RNA gene that functions as a regulatory host gene for the 

microRNAs miR-15a and miR-16-1, which negatively regulate Cyclin D1 and Cyclin 

E1 at the post-transcriptional level. 

  

• DLEU2 transcripts that contain miR-15a/miR-16-1, exert tumor suppressor activity 

in proliferation and colony formation assays. 

 

• The oncoprotein c-Myc can directly repress DLEU2 transcription. 

 

• The miR-17-92 gene (MIR17HG) promoter is directly bound by the GC-receptor in 

ALL cells, through which it causes a transcriptional repression of the pri-miR-17 host 

transcript. 

 

• GC associated miR-17 repression partially mediates GC-induced cell death in ALL 

cells, possibly through an abrogated miR-17 mediated suppression of Bim. 

 

• A correlation exists between GC mediated miR-17-5p suppression and GC induced 

death ex vivo in primary ALL cells. 

 

• miR-203 levels are reduced both in BCC and SCC cell lines and primary tumor cells. 

 

•  c-Myc/Cox-2/c-Jun are identified as novel direct targets of miR-203 

 

•  miR-203 negatively regulates differentiation, G1/S arrest and migration/invasion, 

suggesting a putative role for this miR as a tumor-suppressor in non-melanoma skin 

cancer 
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