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Think outside the (SOCS) box.





ABSTRACT 
Mycobacterium tuberculosis is the world’s most successful bacterial killer. 

During infection, mycobacteria reside inside host cells encapsulated within a 
granuloma structure in the latent, asymptomatic phase of infection. Only 10% of 
latently infected develop active, infectious tuberculosis months or years after the initial 
infection. The mechanisms that determine latency and bacterial control as well as 
protection during active tuberculosis are still not fully understood. Members of the 
SOCS protein family are regulators of cytokine signaling via inhibition of JAK-STAT 
activation and their expression is increased during different kinds of infections. 
Therefore, the purpose of this thesis was to study the role of SOCS1, SOCS2 and 
SOCS3 during mycobacterial infections. 

We demonstrated that infection with M. tuberculosis in vitro and in mice 
strongly upregulated SOCS1 expression. Interestingly, SOCS1 reduced IFN-γ secretion 
by macrophages in response to IL-12 rather than responses to IFN-γ itself. In line, 
SOCS1-deficient macrophages showed improved growth control of mycobacteria in 
vitro. Furthermore, in a mouse model of infection, we demonstrated that SOCS1 
expression by macrophages impaired bacterial clearance before the onset of protective 
adaptive immune responses. However, SOCS1 did not hamper adaptive immune-
controlled bactericidal mechanisms at later time points. At this stage of infection, 
SOCS1 expression by non-macrophage cells protected mice from severe 
immunopathology. 
 Additionally, we showed that SOCS2 expression was induced in an IRF3-
dependent manner after infection with M. bovis BCG or incubation with LPS in vitro. 
However, SOCS2-deficient and control mice infected with M. tuberculosis displayed 
similar bacterial burdens in the lungs. 
 In studying the role of SOCS3 in different mouse models, we found that the lack 
of SOCS3 in either myeloid or T cells dramatically increased susceptibility to M. 
tuberculosis infection. During infection, SOCS3 expression in macrophages and 
dendritic cells was required to prevent an inhibitory effect of IL-6 on TNF and IL-12 
secretion and elevated IFN-γ expression by CD4+ T cells. More detailed studies 
revealed that the lack of SOCS3 in myeloid cells could be mimicked by mutating the 
SOCS3 binding site of the gp130 receptor. This indicates that among the receptors, 
which can be regulated by SOCS3, the control over the IL-6 family gp130 receptor is 
fundamental for proper immune responses. Surprisingly, mice bearing SOCS3-deficient 
T cells were not susceptible to BCG infection. Moreover, a proper defense against 
challenge with M. tuberculosis infection was restored if mice deficient for SOCS3 in T 
cells had been BCG-vaccinated. 

In conclusion, we demonstrated a pivotal role of SOCS1 and SOCS3 on the 
outcome of infection with M. tuberculosis. SOCS1 expression allows fast bacterial 
growth during the early phase of infection and protects from severe inflammation 
during later stages. SOCS3 expression in myeloid and T cells independently mediates 
resistance to M. tuberculosis infection by modulating T cell functions. Based on the 
obtained data, we suggest that SOCS3-regulated pathways are promising targets for 
future therapies as well as vaccination strategies. 



POPULAR SCIENCE SUMMARY 
  

Tuberculosis is a long known infectious disease that continues to cause 1.5 
million deaths every year. Although treatment is available, it is long lasting and the 
numbers of antibiotic-resistant cases are increasing. Moreover, the available vaccine is 
not efficient in adults. To combat tuberculosis, more knowledge about how the immune 
system can protect against M. tuberculosis is required. Members of the SOCS protein 
family have important functions in the inhibition of immune signaling pathways. Since 
proper regulation and balance of immune responses during mycobacterial infections is 
crucial for infection control, we investigated the role of SOCS1, SOCS2 and SOCS3 
during M. tuberculosis infection. 
 We chose mice as the animal model of infection for our studies. In order to 
investigate the role of the different SOCS molecules during mycobacterial infections, 
we took advantage of mice lacking these specific proteins and compared their outcome 
of infection with infected control mice.  
 Regarding the function of SOCS1 in M. tuberculosis-infected mice, we found 
that SOCS1 impaired early immune activation leading to increased bacterial numbers in 
the lungs. However, presence of SOCS1 was beneficial for the infected host restricting 
infection-induced inflammation at later time points. 
 For SOCS2, we demonstrated that SOCS2 expression was upregulated in 
mycobacteria-infected macrophages, but SOCS2-deficient mice did not show increased 
susceptibility to M. tuberculosis infection. 
 Furthermore, we studied the role of SOCS3 in different immune cells, which are 
known to be important during M. tuberculosis infection. We found that the lack of 
SOCS3 in myeloid cells, which belong to the first line of defense, as well as in T cells, 
which belong to the adaptive immunity as second line of defense, dramatically 
increased susceptibility to M. tuberculosis infections. Interestingly, if mice deficient for 
SOCS3 in T cells were vaccinated with the attenuated M. bovis strain BCG before M. 
tuberculosis infection, they could control M. tuberculosis infection equally well as mice 
expressing SOCS3.  
 Summarizing, we illustrated a role for SOCS1 and SOCS3 during mycobacterial 
infections, whereas the function of SOCS2 was shown to be minor or redundant. 
SOCS1 improves bacterial growth during the early phase of infection and protects from 
severe inflammation during later stages. SOCS3 expression in myeloid and T cells is 
required to mediate resistance to M. tuberculosis infection. This makes SOCS3-
regulated pathways promising targets for future therapies and suggests that their 
modulation may improve vaccination as well as the control of mycobacterial infections. 
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1 INTRODUCTION 
1.1 MYCOBACTERIUM TUBERCULOSIS 

Mycobacterium tuberculosis is the causative agent of the infectious disease 

tuberculosis1. It is estimated that around one third of the global population is 

currently infected with M. tuberculosis, but the probability of those infected to 

develop active tuberculosis during their lifetime is only around 10%2. Prediction for 

onset of clinical disease is difficult as critical biomarkers in infected but healthy 

individuals are not available3. However, the risk of developing active tuberculosis 

increases to 10% per year if a co-infection with the human immunodeficiency virus 

(HIV) and M. tuberculosis occurs4, suggesting that immune responses are responsible 

for the asymptomatic infection. In 2010, the World Health Organization (WHO) 

reported for tuberculosis an incidence of over 8 million people and 1.2-1.5 million 

deaths (including deaths from tuberculosis among HIV-positive patients) making 

tuberculosis the second leading cause of death from an infectious disease worldwide, 

after HIV5. Other immune suppressive conditions such as diabetes, alcoholism, 

smoking, advanced age and malnutrition are known to promote disease6,7. However, a 

detailed understanding of why reactivation of M. tuberculosis occurs in some 

individuals has yet to be determined.  

The treatment regiment for tuberculosis with combined antibiotics is long, but 

efficient when followed properly. Due to insufficient drug treatment, drug-resistant 

M. tuberculosis strains have developed over the last decades, including strains 

resistant to isoniazid and rifampicin, the standard treatment antibiotics, as well as 

extensively drug-resistant strains that additionally resist treatment with one 

fluoroquinolone or injectable second-line drug5,8.  

The only available vaccine against tuberculosis is the attenuated 

Mycobacterium bovis Bacille Calmette Guérin (BCG) that was first introduced in 

1921. BCG is one of the most used vaccines worldwide, but protection to 

tuberculosis, especially in adults, varies from 0% to 80%9-11. Moreover, BCG 

vaccination does not provide sterilizing immunity that is needed to prevent the 

establishment of a latent persistent M. tuberculosis infection or active pulmonary 

tuberculosis. However, over the last years several new tuberculosis vaccines have 

reached phase I clinical trials12. 

Mycobacteria are non-motile rods of 2-4 micrometers length. Due to the high 

lipid content of its cell wall, M. tuberculosis cannot be classified as Gram-positive or 
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Gram-negative, but it can be identified via acid fast staining (Ziehl-Neelsen stain). 

The cell wall consists of peptidogycans and complex lipids, where the major lipid 

components are mycolic acid, cord factor and wax-D. Different compositions of the 

cell wall can contribute to the virulence of different mycobacteria strains13. M. 

tuberculosis is an obligate aerobe and a facultative intracellular pathogen, and it 

usually infects myeloid cells. M. tuberculosis has a slow growing rate with a doubling 

time of 18 to 24 hours, so that cultures of clinical specimens must be held for 6-8 

weeks, which makes diagnostics difficult.  

 
1.1.1 Experimental models of M. tuberculosis  

As M. tuberculosis has a very limited host range with no known natural hosts 

beyond humans14, alternative models to study the disease have been tested. Based on 

the infection of phagocytes by M. tuberculosis, cell cultures of primary murine 

macrophages, human monocyte-derived macrophages and dendritic cells, have been 

applied to investigate pathogen-host interactions on intracellular and cellular levels15.   

The first animal model, the guinea pig, was used by Robert Koch when he 

identified M. tuberculosis as the causative agent of tuberculosis in 18821. Guinea pigs 

show clinical symptoms around 30 days after infection and survive for 100-140 

days16,17. Importantly, lung responses to mycobacterial stimuli in guinea pigs are 

similar to human responses, even leading to the development of  primary pulmonary 

granulomas, which closely resemble human granulomas17-19. The hallmark of human 

granulomas, necrotic centers, are found in infected guinea pigs making them a 

valuable model to test efficacy of tuberculosis vaccines and anti-mycobacterial 

drugs20,21. 

Mice are the most widely used experimental animal model today due to their 

lower overhead costs as compared to monkeys or guinea pigs, as well as their high 

reproductive rate, the availability of reagents to characterize mouse responses and 

established methods for manipulation of gene expression with knockout, conditional 

knockdown and transgenic mice. The infection of mice is performed either 

intravenously, intranasally or via aerosol, the latter mimics the natural infection route 

in humans. A major drawback of the mouse model is the relatively small protective 

effect of BCG vaccination that reduces bacteria loads after M. tuberculosis challenge 

around 1 log, in comparison to the 2-3 logs reduction seen in guinea pigs21. 

Furthermore, the formed granulomas in infected mice are not highly structured; 
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consisting of cellular infiltrations with irregular borders, whereas a central necrosis 

and caseation, as found in human tuberculosis, is absent22.  

Mycobacteria in aerosol-infected mice replicate progressively in the lungs 

during the first 3 weeks after infection (Fig. 1)23. The onset of adaptive immune 

responses slows down the bacterial growth, reduces bacteria levels approximately 1 

log, and after 4-5 weeks of infection, bacterial levels reach a level that will remain 

constant throughout the infection  (Fig. 1)24.  

Tuberculosis is typically manifested in the lungs but can also affect other 

sites, described as extra-pulmonary tuberculosis. In mice, bacterial dissemination to 

other organs such as the draining lymph node, spleen and liver can be detected after 

10 days of aerosol infection25. Depending on the initial dose and genetic background 

of infected mice, they may survive for longer than 200 days, but since all mice 

develop active disease, they do not provide a model to study latency26.  

One experimental option to mimic latency in mice is the treatment of M. 

tuberculosis-infected mice with anti-mycobacterial drugs to reduce the bacterial load 

to undetectable levels followed by either spontaneous or induced reactivation of 

infection27,28. However, it is difficult to evaluate how well this model reflects M. 

tuberculosis latency in humans. 

 
Figure 1: Kinetic of colony forming units (CFU) of M. tuberculosis in lungs of 
aerosol-infected mice (adapted from 29). 
Mycobacteria replicate progressively in the lungs during the first 3 weeks of 
infection, bacterial numbers peak after around 4 weeks and stay at a plateau for more 
than 10 weeks. 
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The outcome of infection in cynomolgus macaques displays strong similarities 

with human disease progression.  After a low dose infection some primates generate 

latent infections, an important stage of M. tuberculosis infection that cannot be 

investigated in the commonly used mouse model30.  

 

1.1.2 Transmission of M. tuberculosis 

When infected humans with active pulmonary tuberculosis cough or sneeze, 

they can spread infectious droplets that are required for transmission of M. 

tuberculosis. Infection occurs if inhaled droplets of bacilli reach the alveoli of the 

lungs. Exhaled droplets or nuclei are known to remain in the atmosphere for several 

hours and the infectious dose is low, probably under 10 bacteria31.  

 

1.1.3 Innate immune responses 

The first contact between inhaled mycobacteria and the host is the uptake of 

M. tuberculosis by resident alveolar macrophages within the airways. The ingested 

mycobacteria are often destroyed directly depending on the mycobactericidal 

capacities of the host phagocyte and the virulence of the mycobacterium. Pathogenic 

mycobacteria replicate in the phagosome of the primary host cell and successfully 

prevent fusion of the phagosome with late endosome/lysosome organelles32,33. 

Moreover, virulent mycobacteria were shown to escape from the lysosomes into the 

cytosol34. Phagocytosis of mycobacteria can be mediated by several receptors such as 

complement, mannose and scavenger receptors35-37. The binding of M. tuberculosis 

molecules to various pattern recognition receptors stimulates the activation of innate 

immune responses in the host. For M. tuberculosis, recognition mainly by toll-like 

receptor (TLR) 2, 4 and 9 and subsequent activation of MyD88 and TRIF-dependent 

pathways has been described38-42. This innate immune activation leads to up-

regulation of co-stimulatory molecules and production of cytokines by infected 

phagocytes. In addition to macrophages, dendritic cells and neutrophils can also be 

infected with M. tuberculosis43. However, innate immune mechanisms are not 

sufficient to control mycobacterial growth, so that adaptive immune responses need 

to be activated as a support. Infected dendritic cells migrate to the draining lymph 

nodes to activate naïve T cells, whereas macrophages recruit immune cells to the site 

of infection by secretion of attractant chemokines24. The following steps are required 

for a successful protective immune response to M. tuberculosis: (1) activation of 
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antigen-specific effector T cells that migrate back to the lung to activate infected 

macrophages and (2) the formation of granulomas. 

 

1.1.4 Adaptive immune responses 

Antigen-specific CD4+ and CD8+ T cells were shown to be required for the 

control of M. tuberculosis infection44-46. This is especially apparent in HIV patients, 

in which a decline of CD4+ T cells coincides with tuberculosis disease progression47. 

Moreover, deficiency of these cell populations increased susceptibility in murine 

models of the acute and chronic infection48,49. Dissecting the role of T cell subsets in 

mice demonstrated that the control of M. tuberculosis infection was to a greater 

extent dependent on CD4+ than on CD8+ T cells46.  

IL-12 produced by dendritic cells is crucial for the initiation of the adaptive 

immune response and stimulates the development of the CD4+ T cell subpopulation 

Th1 in response to M. tuberculosis infection. The importance of IFN-γ-secreting Th1 

cells during M. tuberculosis infection is well established in mice and humans50-53. 

Moreover, lack of IFN-γ as well as the Th1 specific transcription factor Tbet, 

increases susceptibility to M. tuberculosis infection in mice50,54. 

IFN-γ produced by Th1 cells during M. tuberculosis infection counteracts the 

generation of Th17 cells and thereby regulates the balance between Th1 and Th17 

cells55. Th17 cells are characterized by the secretion of IL-17 and the expression of 

RORγ transcription factor,56 and have been shown to be induced during M. 

tuberculosis infection57.  

Interestingly, the onset of adaptive immune responses after M. tuberculosis 

infection via aerosol is delayed in comparison to other pathogens. In the mouse 

model, the arrival of antigen-specific T cells into the lung associated with 

mycobacterial growth restriction, typically occurs 3 to 4 weeks after infection. 

Studies using transgenic mice that express T cell receptors specific for mycobacterial 

antigens suggested two time limiting steps: (1) the arrival of infected dendritic cells in 

the draining lymph node and (2) a threshold of around 1500 mycobacteria in the 

lymph node that are required for naïve antigen-specific T cells activation24. Studies 

comparing relatively resistant to more susceptible mouse strains showed that bacteria 

in resistant mouse strains appeared earlier in draining lymph node and could therefore 

sooner mount an antigen-specific T cell response 25. 
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The induction of pathogen-specific regulatory T  cells (Tregs) may contribute 

to the delay of T cell responses during M. tuberculosis infection. In humans and mice, 

regulatory T cells were found to expand and accumulate at the site of infection58-61. 

Regulatory T cells, characterized by expression of transcription factor foxp3 and 

surface markers CD4 and CD25, are important to down-regulate immune activation 

to prevent autoimmune diseases62, but their role during tuberculosis infection is under 

debate. On the one hand, transfer of M. tuberculosis-specific T regs in mice resulted 

in increased bacterial burdens in the lungs, whereas others reported an only transient 

reduction of bacterial loads after depletion of CD25+ T cells63,64.  

 

1.1.5 Granuloma formation 

The hallmark of tuberculosis and other diseases, the granuloma, typically 

consists of a core of infected macrophages or epithelioid cells, and giant cells 

surrounded by foamy macrophages and other mononuclear phagocytes encircled by a 

mantle of lymphocytes. Mature granulomas are further encapsulated by collagen 

fibers. The initiation of a stable granuloma during a subclinical stage of infection 

leads to containment of the mycobacteria and thus is considered to be a host-

protective structure65,66. This exclusive perspective is questioned by recent findings 

suggesting granulomas as a niche, in which the mycobacterium can grow and 

persist67. The environment of the granuloma is believed to respond to mycobacteria, 

and mycobacterial antigens were shown to be required for the granuloma formation68. 

Mycobacteria-infected macrophages undergo necrosis, resulting in a caseous center of 

the lesion that is characterized by low oxygen, pH and nutrient levels69. The 

replication of mycobacteria is reduced, and bacteria differentiate into a latent stage, 

but are not eradicated69,70. Yet, in less immune-competent or immune-compromised 

individuals, the fibrous walls lose their integrity, allowing the bacteria to reach the 

bronchi (transmission of infection) or the blood vessels (dissemination of infection). 

Tuberculosis can be manifested in almost any organ, but it occurs most frequently in 

the lungs and lymph nodes, or as generalized lesions resulting from haematogenous 

dissemination. Cases of genital, skin, meningeal, bone and hepatic tuberculosis are 

frequent in highly endemic countries71.  
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1.2 CYTOKINES 

Cytokines are usually soluble protein messengers that coordinate the 

development and function of immune cells, and therefore are indispensable for the 

initiation, maintenance and termination of immune responses72. The group of 

cytokines includes interleukins and other cell signal molecules, such as tumor 

necrosis factor and interferons, which are secreted by activated cells to trigger 

inflammation and respond to infections73. Cytokines have a short half-life; acting in 

either an autocrine or paracrine fashion. Their mode of action is regarded as pro- or 

anti-inflammatory, depending on the change of activation status of the target cell. The 

balance of pro- and anti-inflammatory cytokines is an important mechanism to 

modulate the effect of immune responses: excess of anti-inflammatory cytokines can 

suppress immune activation, whereas excess of pro-inflammatory cytokines can 

create harmful immunopathology.  

Cytokines exert their function by binding to specific cytokine receptors that can 

be either membrane bound or soluble, which need to bind to co-receptors on the 

target cell73. 

Cytokine receptors can be divided in different groups regarding structural 

homologies: type I and II cytokine receptors, TNF receptors, IL-1 family receptors, 

seven transmembrane receptors and G-protein-coupled receptors73. Type I and type II 

cytokine receptors do not possess an intrinsic cytoplasmic kinase activity and 

therefore are dependent on associated Janus kinases (JAKs) to mediate intracellular 

signaling after cytokine binding74. Binding of cytokines to their type I or II receptor 

chain leads to the formation of active receptor heterodimers (or cluster of 

heterodimers) and activation of associated JAKs, which cross-phosphorylate 

themselves and phosphorylate the cytokine receptor creating binding sites for the SH2 

domain of the transcription factors "signal transducers and activators of transcription” 

(STATs)74. Recruited STATs are in turn phosphorylated by the adjacent JAKs and act 

as binding sites for the SH2 domain of another STAT, which also will be 

phosphorylated. The phosphorylated STAT dimer is released from the cytokine 

receptor and translocates into the nucleus where it acts as a transcription activator of 

specific target genes (Fig. 2). The specificity of the intracellular pathways is due to 

the presence of 7 different STAT molecules, activated by different receptors75. 

Moreover, STATs can form homo- or heterodimers depending on the activated 



 

 8 

receptor, which increases the diversity of target promoters and thereby of gene 

patterns that can be activated. 

 
Figure 2: JAK-STAT pathway mediates responses to cytokines. 
Binding of cytokines to their receptors leads to activation of the associated JAKs. 
Thereafter, STAT molecules get recruited to the receptor and are phosphorylated 
resulting in activated STAT dimers that act as transcription factors in the nucleus. 
 

A tight regulation of cytokine functions is crucial for both the control of 

infections and the prevention of infection-associated immunopathology. Different 

intracellular mechanisms of cytokine signal inhibition are involved in the regulation 

of innate and adaptive immune responses. The JAK-STAT pathway can be negatively 

regulated at different stages: protein tyrosine phosphatases remove phosphates from 

cytokine receptors and activated STATs, SOCS proteins inhibit STAT activation and 

label cytokine receptors for degradation, whereas PIAS (protein inhibitors of 

activated STATs) act in the nucleus76-79. The role of several of these molecules in the 

control of infection and disease is not completely understood.  

 

1.2.1 Tumor necrosis factor  

Tumor necrosis factor (TNF, formerly TNF-α) is a pro-inflammatory cytokine, 

mainly produced by activated mononuclear phagocytes, but also by antigen-

stimulated T cells and mast cells80. TNF is a typical mediator of acute inflammatory 

responses, sepsis, cachexia and can cause fever but also systemic complications 

leading to septic shock81. During infections, TNF is an important early cytokine that 
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recruits neutrophils and granulocytes to the site of infection and evokes microbicidal 

activities in macrophages and neutrophils80.  

TNF plays a diversified role during M. tuberculosis infection contributing to 

the control of mycobacterial growth as well as to the immunopathology as it 

participates in granuloma formation. Genetic deletion and neutralization of TNF in 

mice led to increased bacterial burden and lethality after M. tuberculosis 

infection82,83. Furthermore, patients receiving anti-TNF therapy (used for treatment of 

immune disorders as rheumatoid arthritis) showed an increased rate of reactivation of 

latent tuberculosis84. Similarly in mice, TNF was found to be essential to prevent 

reactivation in a model of latent M. tuberculosis infection85-87.  

As TNF-deficient mice displayed decreased or disorganized granulomas after 

mycobacteria infection, part of its protective role could be assigned to its influence on 

granuloma formation and maintenance82,86,88-91. Accordingly, TNF modulates the 

expression of the chemokines by M. tuberculosis-infected macrophages that recruit 

effector T cells, monocytes and macrophages to the site of infection90,92,93. 

Neutralization of TNF in a chronic infection, when granulomas were already formed, 

disorganized existing granulomas and aberrant pathology was observed87. However, 

the exact mechanisms for how TNF contributes to the control of mycobacterial 

growth are poorly understood and recent data in the zebrafish model showed that 

granuloma formation in M. marinum infection may be independent of TNF94.  

 
1.2.2 Interleukin-12 

Interleukin-12 (IL-12) is an important initiator of adaptive immune responses 

promoting differentiation of naïve CD4+ T cells to Th1 cells, which produce IFN-γ 

and augment cell-mediated immune responses. Bioactive IL-12 (IL-12p70) is 

composed of two covalently linked subunits, p35 and p40, that bind to the receptor 

subunits IL-12Rβ2 and β195. Binding of IL-12 to the receptor leads to activation of 

the Janus kinases JAK2 and TYK2, mediating phosphorylation and activation of the 

transcription factor STAT4 (Fig. 3)95. 

The role for IL-12 during M. tuberculosis infection was highlighted by the 

discovery that deficiencies for IL-12p40 and IL-12Rβ1 can lead to “mendelian 

susceptibility to mycobacterial disease” (MSMD) due to non virulent mycobacteria96. 

Moreover, mice lacking IL-12p40 or IL-12p35 showed highly increased susceptibility 

to M. tuberculosis infection97. In turn, exogenous administration of IL-12p70 

increased resistance of BALB/c mice to M. tuberculosis infection98. 
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IL-12p40 can be induced in response to M. tuberculosis in mononuclear cells 

by ligation of TLR2 and TLR9 in vitro while TLR9 is required for IL-12p40 

induction in vivo38. Early induction of IL-12p40 during M. tuberculosis infection is 

crucial to enable the migration of infected dendritic cells to the draining lymph nodes 

followed by the activation of naïve T cells99. Although IL-12p40 homodimers  IL-

12(p40)2 
 can restore the delayed hypersensitivity response in IL-12p35/IL-12p40-

deficient mice, optimal expression of IFN-γ by antigen-specific T cells can only be 

achieved in the presence of IL-12p7097,100. Moreover, IL-12p70 is needed to maintain 

Th1 effector functions during M. tuberculosis infection, since exogenous IL-12p70 

can reconstitute protection in p40-/- mice that is again lost after IL-12p70 

removal101,102. This observation could be confirmed in humans with IL-12Rβ1-

deficiency that fail to maintain a Th1 effector memory population showing that IL-12 

plays indispensable roles not only in initiation but also maintenance of protection 

against mycobacteria102.  

 

 
Figure 3: Th1 cells activate infected macrophages. 
IL-12 induces IFN-γ production in Th1 cells via STAT4 activation that in turn 
activates infected macrophages. These macrophages induce the transcription of    
IFN-γ-responsive genes as iNos. 
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1.2.3 Interferon-γ 

Interferon-γ (IFN-γ) is critical during intracellular bacterial and protozoal 

infections as well as tumor growth control, but aberrant IFN-γ production can induce 

autoimmune diseases103-107. Responses to IFN-γ are mediated through its interaction 

with the IFN-γ receptor that initiates the activation of STAT1 (Fig. 3)108. 

The importance of IFN-γ for the defense against M. tuberculosis has been 

demonstrated in experimental studies using knockout mice and was confirmed in 

patients with defects in signaling or production of IFN-γ as both show dramatically 

increased susceptibility to mycobacterial infections50,109-112. As previously discussed, 

CD4+ T cells play an important role during M. tuberculosis infection and are 

considered to be the main source of IFN-γ, whereas IFN-γ secreted by natural killer 

(NK) cells appears to be redundant113,114. 

 Early appearance of antigen-specific IFN-γ-producing CD4+ T cells in the 

lungs coincided with earlier restriction of growth after aerosol M. tuberculosis 

infection115. Furthermore, a delay in priming of effector T cells led to increased 

bacterial burden in the lungs63.  

T cells elicit the bactericidal effects of infected macrophages. IFN-γ-activated 

macrophages were found to overcome bacteria-induced blockage of phagosome 

maturation and increased presentation of mycobacterial peptides to T cells and 

upregulated nitric oxide synthase 2 (iNOS2), an enzyme that produces nitric oxide 

(NO) and is involved in bacterial killing116,117. The role of NO in the control of 

mycobacterial intracellular growth is well established in the mouse model where  

Nos2-/- mice displayed increased susceptibility to M. tuberculosis infection. In 

humans, iNOS and NO production has been reported in alveolar macrophages in 

response to infection106,118-122. However, the role of NO in protection during human 

infection is controversial.  

In the addition to the effect of  IFN-γ on macrophages, it also was found in 

mouse radiation chimeras that responsiveness to IFN-γ by non-hematopoietic cells is 

involved in the protective immunity to M. tuberculosis55. 

Although the relevance of IFN-γ-producing T cells in protection is not up for 

debate, the numbers of IFN-γ-secreting T cells after vaccination do not always 

correlate with increased protection against M. tuberculosis infection123,124. This 
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suggests that more factors than IFN-γ production by CD4+ T cells should be assessed 

to determine protective immune responses to M. tuberculosis infection49. 

 

1.2.4 Interleukin-6 

IL-6 is involved in innate and adaptive immunity and is produced by 

mononuclear phagocytes, endothelial cells, fibroblasts, adipocytes and muscle cells73. 

It is induced in response to pathogens, TNF and IL-1. IL-6 signals are transmitted via 

a receptor complex consisting of IL-6Rα and gp130, the common IL-6 family co-

receptor. Binding of IL-6 to the receptor complex initiates activation of JAK1 

followed by recruitment of several signaling molecule such as STAT3 and SHP2. 

STAT3, once phosphorylated, dimerizes and acts as a transcription factor in the 

nucleus, and SHP2 links IL-6 to the Ras-MAP kinase pathway. Depending on the 

target cell, IL-6 stimulates secretion of acute phase proteins by hepatocytes, 

neutrophil production in the bone marrow, growth of B lymphocytes and generation 

of Th17 cells73.  

Historically, IL-6 has been regarded as a pro-inflammatory cytokine, but 

recently anti-inflammatory functions of IL-6 have also been described, which will be 

discussed in detail later125,126. 

M. tuberculosis-infected human and murine macrophages secrete IL-6 and 

elevated IL-6 serum levels are found in tuberculosis patients127-129. However, the role 

of IL-6 during infection with M. tuberculosis is not well understood.  

IL-6-deficient mice displayed increased susceptibility to M. tuberculosis 

infection compared to control mice, but only after a systemic high dose infection130. 

In the low-dose aerosol model, which mimics the natural route of infection, Il-6-/- 

mice only initially showed elevated bacterial levels131. In contrast, in vitro studies 

have shown that high levels of IL-6 impair T cell proliferation of antigen-specific T 

cells, reduce the responsiveness to IFN-γ of infected macrophages and counteract 

TNF-mediated mycobactericidal activities in macrophages132-134. 

 
 
1.2.5 Interleukin-17 

IL-17 can be produced by γδ T cells and Th17 cells and has been shown to be 

involved in the attraction of neutrophils to the site of infection135-138. The 
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development of Th17 cells depends on STAT3 activation (by IL-6, IL-21, IL-23) and 

TGF-β and is counter-regulated by Th1 cells139,140.   

 In mice, IL-17 is mainly secreted by γδ T cells during M. tuberculosis and 

early BCG infection141,142. Additionally, numbers of IL-17 producing γδ T cells were 

elevated in tuberculosis patients compared to healthy donors142,143. Although the lack 

of IL-17 or IL-17R does not impair the ability of mice to control a low dose aerosol 

M. tuberculosis infection, deficient mice were unable to control M. tuberculosis after 

a high dose intratracheal infection144,145. Thus, the relevance of IL-17 for the control 

of M. tuberculosis infection needs to be further investigated.  

However, the impact of IL-17 on granuloma formation and pathology have 

been suggested since BCG-infection of Il-17a-/- mice showed impaired granuloma 

maturation146,147. On the other hand, repeated BCG-immunizations of M. 

tuberculosis-infected mice led to increased infiltration of neutrophils and tissue 

damage in the lungs associated to elevated IL-17 levels146. 

Interestingly, high numbers of neutrophils have been associated with 

susceptibility to M. tuberculosis infection in mice 
55,146-148. In Ifn-γ-/- mice infiltrating 

neutrophils could be related to high levels of IL-1755. Another hint for a detrimental 

effect of high IL-17 levels in M. tuberculosis  infection was found in IL-27R deficient 

mice. These mice showed lower bacterial burdens compared to control mice but 

developed enlarged granulomas and succumbed earlier to infection most likely due to 

enhanced IL-17 responses148.  

 
1.3 SOCS PROTEINS 

The family of suppressor of cytokine signaling (SOCS) proteins consists of 8 

members (cytokine inducible SH2 protein, CIS, SOCS1-7), and all are main regulators 

of intracellular signal transduction mediated through the JAK-STAT pathway. All 

SOCS proteins share a modular organization with a C-terminal SOCS box, a central 

SH2 domain and an amino-terminal domain of variable length (Fig. 4).  The SOCS-box 

was shown to interact with additional proteins to form an E3 ubiquitin ligase complex, 

initiating ubiquitination of target proteins, followed by proteosomal degradation of 

bound signaling complexes as JAKs and cytokine receptors149-151. The SH2 domain of 

SOCS proteins determines the specificity for their receptors152,153.  

Both deletion and overexpression of SOCS proteins in animal models provided 

insights into their importance in regulating the responsiveness to cytokines, growth 
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factors and hormones but also showed the specificity of SOCS proteins for certain 

receptors154. In particular, SOCS1 and SOCS3 were found to balance immune functions 

by influencing sensitivity to cytokines, modulating the differentiation of immune cell 

populations as well as their activation.  

 To date, SOCS1 and SOCS3 are the most studied members of the SOCS family. 

They both contain an additional N-terminal kinase inhibitory region (KIR) that is 

absent in other SOCS proteins. The KIR of SOCS1 and SOCS3 can directly inhibit 

JAK tyrosine kinase activity by acting as a pseudo-substrate, and thereby blocks the 

interaction of JAK with their substrate STAT molecules. Although SOCS1 preferably 

binds directly to the JAK activation loop, the SH2 domain of SOCS3 binds to the 

cytokine receptor.  Using this mechanism, JAK inhibition by SOCS1 and SOCS3 takes 

place even in the absence of the SOCS box155,156.  

 

 

 

 

 

 

 

Figure 4: SOCS proteins. A: Schematic structure of SOCS1 and SOCS3 proteins is 
shown. B: SOCS1 and SOCS3 binding to JAK or cytokine receptor.  
 

1.4 SOCS1 

SOCS1 expression can rapidly be induced by many cytokines, especially IFNs, 

and serves as a classical feedback loop inhibiting its inducing pathways157,158. 

Importantly, Socs1 mRNA expression increases even in response to microbial 

molecules such as LPS, Pam3Cys and CpG oligonucleotides that signal via TLR159-162.  

Furthermore, hormones like insulin163, cardiotrophin164 or glucocorticoids165 have been 

shown to stimulate SOCS1 expression.  

SOCS1 can bind to the catalytic domain of JAK2 and to TYK2, another 

molecule of the JAK family, which mediates IFN-α/β signaling. SOCS1 has also 

been shown to bind directly to type I IFN receptors (IFNar1)166 and to the IFN-γ 

receptor, efficiently inhibiting STAT1-mediated signaling154,166,167.  

A 

B 
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1.4.1 SOCS1-/- mice 

Mice deficient for SOCS1 die within 3 weeks after birth due to fatty 

degeneration and necrosis of the liver168,169. Additionally, these mice show retarded 

growth, lymphopenia and multi-organ haematopoetic infiltrates168,169. This 

inflammatory disease could be related to hyper-responsiveness of Socs1-/- mice to 

IFN-γ, because mice with an additional knockout of IFN-γ or STAT1 survive until 

adulthood170,171. Moreover, Socs1-/- mice that were treated with neutralizing IFN-γ 

antibodies from birth reached adulthood but died of myocarditis172. Indications for an 

involvement of T cells and NK T cells as a probable source of enhanced levels of 

IFN-γ  secretion were found in T and NK T cell-deficient Rag2-/-/Socs1-/- mice that are 

healthy to at least 3 month of age, and in the finding that Socs1-/- mice transgenic for 

SOCS1 in T cells survive171. However, conditional deletion of SOCS1 in T and NKT 

cells or in macrophages is not sufficient for the hyper-inflammation173.  Requirement 

of non-hematopoietic cells for detrimental inflammation could be excluded, as 

chimeric mice, which received Socs1-/- bone marrow after radiation, showed 

decreased survival174. Altogether, lethality caused by SOCS1-deficiency is mainly due 

to an exacerbated secretion of IFN-γ by T and NKT cells during the neonatal period 

and to an increased sensitivity of myeloid cells to IFN-γ.  

 In contrast, Socs1-/- mice crossed to IFNar1-/- mice survived beyond weaning, 

indicating that even type I IFN contributes to the lethal inflammation166. Besides the 

rescue of SOCS1-deficient mice by IFN depletion, Socs1-/- mouse strains crossed to 

Stat1-/-, Stat4-/- or Stat6-/- mice are partially protected from neonatal lethality, but 

nevertheless displayed chronic inflammation with aberrant T cell activation175-177. 

STAT6 and STAT4 are two STAT family members that specifically mediate signals 

that emanate from the IL-4/ IL-13 and IL-12 receptors, showing that SOCS1 also 

affects IL-4 and IL-12 signaling. Uncontrolled responses to IL-12, which is an 

important activator of IFN-γ secretion by T cells, could contribute to increased IFN-γ 

levels and therefore to the development of inflammation in Socs1-/- mice175.  

 

  



 

 16 

1.4.2 SOCS1 in immunity  

Socs1-/- mice are hypersensitive to LPS-induced endotoxic shock, associated 

with increased levels of IL-12 and TNF178,179. Surprisingly, even though Ifn-γ-/- mice 

are highly resistant to endotoxic shock180, additional deletion of IFN-γ or STAT1 

does not rescue Socs1-/- mice from lethal LPS injection, demonstrating that SOCS1 

even attenuates IFN-γ-independent mechanisms178-180. Furthermore, elevated 

sensitivity to endotoxin shock was observed in Socs1fl/fl LysM-cre mice (see 

description of mouse strain in material and methods) lacking SOCS1 specifically in 

macrophages and neutrophils181.  

 Increased sensitivity to LPS suggests an interaction of SOCS1 with 

components of the TLR signaling. In fact, binding of SOCS1 to IRAK1 and the p65 

subunit of NF-κΒ has been shown to destabilize and limit NF-kB 

activation178,179,182,183. SOCS1 can also bind to the apoptosis-regulating kinase 1 and 

regulates mitogen-activated protein kinases JNK and p38184. Moreover, SOCS1 was 

shown to mediate the degradation of the adaptor protein MAL that is involved in 

TLR2 and TLR4 signaling185. However, results from other investigators could not 

confirm a direct effect of SOCS1 on TLR signaling186,187. SOCS1 overexpression did 

not affect TLR signaling; instead the inhibition of IFN-α/β-mediated STAT1 

activation by SOCS1 may account for the observed sensitivity to LPS in                  

Ifn-γ-/-/Socs1-/- mice186,187. Thus, further work is required to clarify whether SOCS1 is 

directly involved in the regulation of TLR signaling.  

 

1.4.3 SOCS1 in infectious diseases 

A wide range of pathogens including parasites, bacteria and viruses are potent 

stimulators of SOCS1 expression. Despite obvious differences in the type of 

protective or deleterious immune response elicited by different pathogens, for most 

intracellular infections studied, SOCS1 expression is associated to an increase in 

susceptibility to the infection by facilitating pathogen replication. However, SOCS1 

may on the other hand also reduce the pathological outcome of infections by 

hampering inflammatory reactions.  

Several viral infections including herpes simplex virus, human respiratory 

virus, HIV and hepatitis C virus were found to induce SOCS1 expression188-191. 

Importantly, silencing of SOCS1 increased type I IFN signaling and resulted in 

inhibited viral replication in a human respiratory virus model189. Accordingly, Socs1-
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deficient mice showed increased type I IFN-mediated resistance to Semliki Forest-

virus166,170. However, unrestrained immune responses cause damaging 

immunopathology in other virus infections. In these cases, impairment of cytokine 

responses with SOCS1 may prevent inflammatory damage. Thus, in a vaccinia virus 

infection model, mice could be protected against lethal virus infection by the 

administration of a peptide mimicking the SOCS1 KIR region192.  

In parasite infections, SOCS1 has been shown to inhibit responsiveness to 

IFN-γ, as in an in vitro model Socs1-/- macrophages were capable of killing 

Leishmania major at significantly decreased IFN-γ concentrations compared to 

SOCS1-sufficient macrophages170. However, increased pro-inflammatory signaling 

was not beneficial in vivo as Socs1+/- mice infected with L. major showed worsened 

pathology without a reduction in numbers of parasites193. 

 Studies on the role of SOCS1 in bacterial infections mainly focused on 

intracellular infections, in which IFN-γ plays a major protective role. Research from 

our laboratory demonstrated that Chlamydia pneumoniae infection of macrophages 

induced SOCS1 expression194. Infected Socs1-/- macrophages displayed lower 

bacterial titers and higher levels of IFN-regulated genes as iNos and indoleamine 

dioxygenase that participate in the control of intracellular bacteria. Rag1-/-/Socs1-/- 

mice showed 10-fold lower bacteria numbers in lungs than controls 6 days after 

infection. However,  Rag1-/-/Socs1-/- mice died within seven days after infection with 

C. pneumoniae showing a severe pulmonary inflammation, whereas Rag1-/- mice 

survived for more than 60 days. Thus, SOCS1 has a crucial role in preventing acute 

lethal inflammation in C. pneumoniae infection. 

 Infections with different mycobacterial species such as M. bovis195, M. 

avium196 and M. tuberculosis were found to induce SOCS1 expression in 

macrophages195-198. This SOCS1 induction was shown to be mediated by different 

innate immune receptors as TLR2 and DC-SIGN in mycobacterial-infected myeloid 

cells198. Knockdown of SOCS1 using siRNA in mouse DCs resulted in increased 

killing of virulent M. tuberculosis198. However, whether deletion of SOCS1 is 

beneficial for the outcome of mycobacterial infections in vivo remains to be 

investigated and will be discussed in this thesis. 
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1.5 SOCS2 

SOCS2 is induced in response to growth hormone (GH), prolactin, insulin, 

lipoxin, LPS and several cytokines199,200. Compared to SOCS1 and SOCS3, SOCS2 

shows a complete different spectrum of functions, with GH and insulin-like growth 

factor signaling as main targets of SOCS2 inhibition. Additionally, several reports 

indicate that SOCS2 not only regulates GH receptor signaling but may also be involved 

in responses to infection201,202. In contrast to SOCS1 and SOCS3, SOCS2 lacks the N-

terminal KIR domain so that the inhibitory function of SOCS2 is dependent on 

competitive binding via its SH2 domain and, even more importantly, on the 

ubiquitination and proteasomal degradation of the interacting receptor200. 

In contrast to Socs1-/- mice, Socs2-/- mice are viable. However, Socs2-/- mice show 

a 40% increase in body weight alike GH-transgenic mice, and overgrowth of Socs2-/- 

mice could be attenuated by an additional deletion of STAT5, the STAT molecule that 

mediates GH signal transduction 203,204.  

 

1.5.1 SOCS2 in immunity and infection 

Silencing of SOCS2 in human immature DCs demonstrated that the expression 

of SOCS2 was required for maturation of DCs after LPS stimulation199. Furthermore, 

Socs2-/- DCs were refractory to anti-inflammatory mediators like lipoxin (LXA4) and 

showed in turn increased expression of pro-inflammatory cytokines in response to 

microbial stimulation202. Socs2-/- mice infected with Toxoplasma gondii showed 

uncontrolled production of pro-inflammatory cytokines, aberrant leukocyte infiltration 

and elevated mortality that was most probably due to hyper-responsive DCs202. 

Regarding T cell responses, SOCS2-deficient CD4+ T cells displayed a Th2 

predisposition, and Socs2-/- mice showed enhanced Th2 responses to helminthic 

infections, atrophic dermatitis and allergic lung inflammation201. This suggested 

SOCS2 as an inhibitor of Th2 development.  

Even though SOCS2 is expressed in Th1 cells, Leishmania major-infected  

Socs2-/- mice showed the same level of disease progression than control mice, 

indicating that despite its potential involvement in Th1 immune responses, SOCS2 is 

not involved in the control of cutaneous leishmaniasis193. Yet, a role for SOCS2 in 

other Th1-controlled infections has not been studied and will be discussed later as part 

of this thesis. 
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1.6 SOCS3 AND GP130 

SOCS3 can be induced by different cytokines like leukemia inhibitory factor 

(LIF), IL-11, IL-10, IL-2, IL-6,158,205-208 hormones including ciliary neutrophilic factor, 

leptin, prolactin and growth hormones209-212 but also by microbial molecular patterns as 

LPS or CpG162,213. 

SOCS3 is an important endogenous regulator of STAT3-mediated signaling. 

Interestingly, not all cytokine signaling pathways that activate STAT3 are SOCS3-

regulated since SOCS3 binds to the gp130 and selected receptor subunits, whereas the 

signaling of IL-10 that also stimulates STAT3-activation is unaffected by SOCS3 

(Fig. 5)77,125,126,214,215. This is explained by the ability of SOCS3 to bind to the IL-6 

receptor subunit gp130 but not to the IL-10 receptor (Fig. 5)126,153,216. Furthermore, 

SOCS3 inhibits non-gp130-mediated cytokine and hormone receptor signaling 

pathways activated by G-CSF, leptin, IL-12 and IFN206,215,217-220.   

The glycoprotein gp130 is a promiscuous cytokine receptor subunit that 

mediates signaling by IL-6 and all other cytokines belonging to the IL-6 family such 

as IL-11, IL-27, oncostatin M, cardiotropin 1, cardiotropin-like cytokine and LIF221. 

IL-6 binds to the IL-6R alpha chain, recruits gp130 and forms a hexameric complex 

consisting of two IL-6 bound to two IL-6Rα and gp130 subunits222,223. It was found 

that gp130 could be present on hematopoetic cells depending on their activation 

status but also on non-hematopoetic cells224-226.  

Binding of the ligand to gp130 induces activation of JAK1 kinases, which 

results in tyrosine phosphorylation of gp130. This creates binding sites for signaling 

transmitting factors at two different sites: phosphorylation of the four membrane-

distal tyrosines leads to binding of STAT1 and STAT3, whereas phosphorylation of 

the membrane-proximal tyrosine (Y757) enables binding of the Src-homology 

tyrosine phosphatase-2 (SHP2)227-230. These bound molecules are in turn activated 

and trigger distinct intracellular signaling cascades. 
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Figure 5: SOCS3-mediated inhibition of gp130 and non-gp130 signals but not of 
IL-10-signaling.  
Since SOCS3 cannot bind to the IL-10 receptor, STAT3 activation in response to IL-
10 is unimpaired in the presence of SOCS3, whereas gp130, GSCF and leptin 
receptor signals are inhibited by SOCS3. 
 

 

 Interestingly, Y757 (SHP2-binding site) is also the binding site for SOCS3 and 

required for SOCS3-mediated inhibition of STAT3 activation231. Therefore, a 

mutation at Y757 has two effects: abrogation of SHP2 signaling and deletion of 

SOCS3-mediated STAT3 inhibition.  

 

  

gp130 e. g. GCSF, leptin receptor  

IL-10 receptor 
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1.6.1 SOCS3 and gp130 mutations in mice 

SOCS3 knockout mice die during embryogenesis due to placental 

defects232,233. Mortality is caused by enhanced LIF signaling in the absence of SOCS3 

causing an altered trophoblast differentiation234. However, mice with a conditional 

knockdown for SOCS3 in specific tissues or cell linages survive and have been used 

for targeted SOCS3 studies (see in materials and methods). 

Since the knockdown of gp130 leads to embryonic or perinatal lethality, mice 

with conditional knockdowns for gp130 or mutations ablating either the STAT1/3 

binding or SHP2/SOCS3 binding are used to dissect the role of gp130 in mouse 

models235. To study the role of SOCS3 within gp130 signaling, two different models 

can be used: One model, gp130F759 mice, the mouse gp130 is replaced with human 

gp130 mutant cDNA, in which the crucial tyrosine for SOCS3 binding in position 

759 (corresponds to 757 in the mouse) is replaced by phenylalanine (gp130F759 mice), 

and the other model, in which tyrosine 757 is directly substituted by phenylalanine 

(gp130F/F mice)236,237. These models show similarities, a prolonged activation of 

STAT3 in response to gp130-activating factors was found in both models confirming 

the impairment of SOCS3 function by these mutations236,238. Phenotypically these 

mice developed splenomegaly that could be accounted to increased STAT3 activation 

by IL-6 as it is also found in IL-6/IL-6Rα transgenic mice236,237,239. Furthermore, 

gp130F759 mice showed autoimmune arthritis and lymphadenopathy, whereas in 

gp130F/F mice gastric adenoma formation and a reduced life span was found225,226,240.  

Combination of gp130F/F mice with deletion of IL-6 (gp130F/F/Il-6-/-) or reduction of 

STAT3 levels (gp130F/F/Stat3+/-), allows to study the underlying mechanisms caused 

by the changed gp130 signaling238.  
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1.6.2 SOCS3 in myeloid cells 

Mice with a conditional knockdown of SOCS3 in myeloid cells highlighted 

the crucial role of SOCS3 in suppression and termination of IL-6/gp130-mediated 

signaling. SOCS3-deficient macrophages stimulated with IL-6 displayed an increased 

magnitude and duration of STAT1 and STAT3 activation in comparison to 

controls125,126,241. This prolonged STAT3 activation is a hallmark of anti-

inflammatory IL-10 signaling and LPS-induced pro-inflammatory responses like 

secretion of TNF and IL-12 were reduced in the presence of IL-6 in SOCS3-deficient 

macrophages (Fig. 6). The importance of SOCS3-regulated STAT3 activation was 

confirmed in gp130F/F macrophages that responded to IL-6 similar as to IL-10 under 

LPS stimulation242. Additionally, Croker (2003), Lang (2003) and co-workers found 

an increased STAT1 activation and elevated levels of IFN-γ responsive genes in 

response to IL-6 using SOCS3-deficient macrophages (Fig. 6)125,241.  

The anti-inflammatory properties of IL-6 in the absence of SOCS3 or SOCS3-

binding may explain why mice deficient for SOCS3 in myeloid cells are resistant to 

LPS-induced endotoxic shock whereas Stat3-/- mice are highly susceptible126,243. 

Moreover, SOCS3-deficient DCs were found to be capable of suppressing the 

development of experimental autoimmune encephalitis (EAE)244,245.  

Furthermore, deletion of SOCS3 in the myeloid or hematopoetic cells 

increased the numbers of neutrophils, which showed increased survival and 

proliferative capacity214,247. Following GCSF injection in vivo, SOCS3-deficient mice 

developed neutrophilia, and a spectrum of inflammatory pathologies characterized by 

neutrophil infiltration in multiples tissues248.  
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Figure 6: SOCS3 inhibits anti-inflammatory and IFN-inducible genes in 
response to LPS in presence of IL-6 (adapted from 246).  
LPS-induced SOCS3 modulates IL-6 signaling leading to pro-inflammatory 
responses (A). In contrast in the absence of SOCS3, anti-inflammatory responses and 
expression of IFN-γ-inducible genes are observed (B). 
 
  

1.6.3 SOCS3 in T cells 

Even though T cell development in the thymus is unaffected by SOCS3249, 

several models suggest a role for SOCS3 in T cell proliferation. One indication for its 

regulatory role is the fact that SOCS3 levels are high in resting T cells, whereas they 

are low in activated T cells250.  Furthermore, T cells overexpressing SOCS3 showed a 

reduced proliferation upon T cell receptor stimulation251,252, whereas SOCS3-

deficient T cells were hyper-proliferative towards T cell receptor stimulation253,254. 

Interestingly, T cells from gp130F/F mice behaved alike SOCS3-deficient T cells, 

A 

B 
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suggesting that hypersensitivity to gp130 cytokines may drive this enhanced 

proliferation253.  

 SOCS3 protein levels may influence the Th1/Th2 balance, as expression was 

found to be low in Th1 cells and high in Th2 cells255,256. Accordingly, overexpression 

of SOCS3 in mice resulted in elevated Th2 responses and hypersensitivity to allergic 

diseases256. A possible explanation for the increased Th2 development under high 

SOCS3 levels might be that binding of SOCS3 to IL-12Rβ2 inhibits IL-12-mediated 

STAT4 activation that in turn impairs Th1 differentiation256,257.  

Interestingly, a conditional knockdown for SOCS3 in T cells mice showed 

reduced Th2 responses together with increased numbers of Th3-like T cells secreting 

IL-10 and TGF-β258. Unexpectedly, Th1 responses were not elevated in the absence 

of SOCS3, which may have been caused by the presence of immunosuppressive 

cytokines258.  

Other reports indicated only minimal effects of SOCS3 deletion in T cells on 

the Th1/Th2 balance but found an increased Th17 generation and enhanced STAT3 

activation in response to IL-23249. This data was confirmed in a study of an 

atherosclerosis model using mice with a T cell specific SOCS3 knockdown as well as 

in a rheumatoid arthritis model, in which mice lacking SOCS3 in hematopoietic and 

endothelial cells showed increased Th17 development259,260. These findings fit well 

with the known mechanism for Th17 differentiation, as STAT3 activation either by 

IL-23 or IL-6 is crucial for Th17 development (Fig. 7). Furthermore, TGF-β, another 

cytokine necessary for Th17 generation, was shown to inhibit SOCS3 expression with 

the resulting prolonged STAT3 activation and thereby promoting Th17 

development261.  
 

 
Figure 7:  Role of SOCS3 in Th17 cell development. 
STAT3 activation is essential for the generation of Th17 cells and can be inhibited by 
SOCS3. 
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No SOCS3 protein expression was found in Tregs262. Accordingly, in SOCS3-

deficient T cells no defects in Treg differentiation and function were reported254. 

Recently, SOCS3 has been assigned a role in development of memory CD8+ T cells 

since numbers of memory CD8+ T cells were dramatically reduced in the absence of 

SOCS3 in T cells263,264.   

 

1.6.4 SOCS3 in infectious diseases  

Similar to SOCS1 and SOCS2, SOCS3 expression can be stimulated by both 

cytokines and TLR agonists.  Additionally, several pathogens including viruses, 

bacteria and parasites have been shown to induce SOCS3 expression. Due to the 

diversity of described SOCS3 actions, it is hard to predict in which cases SOCS3 

expression will be beneficial for the host.  

 SOCS3 was found to inhibit STAT1 activation in response to type I IFNs but 

was less effective than SOCS1 in such function215,219. Infections with several viruses 

stimulated SOCS3 expression that correlated with reduced STAT1 activation in 

response to type I IFNs. Silencing of SOCS3 significantly increased IFN signaling 

and hampered viral replication. Similar findings were obtained during different viral 

infections e.g. HSV, Influenza A, hepatitis C virus and Epstein Barr virus infection 

indicating that increased SOCS3 expression improves viral replication265-269. 

 Surprisingly, mice with a T cell-specific SOCS3 deletion showed increased T 

cell activation and viral clearance without development of immunopathology during 

the infection with lymphocytic chriomeningitis virus (LCMV)270. Treatment of 

LCMV-infected mice with IL-7 repressed SOCS3 expression and promoted IL-6 

production, which resulted in enhanced T cell effector functions and viral clearance. 

On the contrary, Leishmania major-infected mice were more susceptible in the 

absence of SOCS3 in T cells. In this case, SOCS3 deficiency in T cells led to 

increased anti-inflammatory TGF-β secretion promoting the infection258.   

 Infection of macrophages with M. avium and M. bovis raised SOCS1 and 

SOCS3 levels in a TLR2-NOTCH1 dependent pathway195,196,271. In clinical studies, 

patients with active tuberculosis were found to have higher SOCS3 expression levels 

in whole blood and T cells in comparison to latently infected controls272,273. 

Accordingly, SOCS3 expression decreased under chemotherapy treatment indicating 

that SOCS3 expression could be interpreted as an on-going infection response272,273. 



 

 26 

However, to prove that SOCS3 plays a crucial role for tuberculosis control, more 

work needs to be done. This was one of the objectives of my thesis. 

  Regarding SOCS3-ablations due to gp130 mutations, gp130F759 mice showed 

an attenuated early phase of defense against Listeria monocytogenes infection 

resulting in higher bacterial loads and mortality most probably due to insufficient 

elevation of IFN-γ levels274. Furthermore, low IFN-γ titers led to increased 

susceptibility to Toxoplasma gondii in mice deficient for SOCS3 in myeloid cells as 

well as in gp130F/F mice.275,276 In both mouse strains, lower IL-12p40 and therefore 

lower IFN-γ levels after infection compared to control mice were found. Interestingly, 

addition of IL-12 as well as neutralization of IL-6 could restore the wild type (WT) 

phenotype in both models demonstrating that an altered IL-6 signaling was 

responsible for the observed increased susceptibility275,276. 
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2 AIMS 
M. tuberculosis is a highly successful pathogen. Even though the literature is extensive, 

detailed reasons why a latent tuberculosis patient will convert to active disease and the 

mechanisms that regulate the control of M. tuberculosis are not completely understood. 

More knowledge about protective immune responses during M. tuberculosis infection 

is required for the design of prophylaxis and therapy.  

SOCS proteins are non-redundant regulators of immune responses through 

inhibition of cytokine signaling. Therefore, these molecules are interesting target 

candidates that may modulate the outcome of infections.  

In my thesis work, I have studied the role of SOCS1, SOCS2 and SOCS3, 

which have different specific cytokine signaling pathways as their targets, in the 

outcome of mycobacterial infections. 

 
Specific questions: 
 
SOCS1 

• How is SOCS1 expression regulated in mycobacteria-infected macrophages? 

• What is the role of SOCS1 in the regulation of intracellular bacterial levels and 

cytokine expression in mycobacteria-infected macrophages in vitro?  

• What is the role of SOCS1 in vivo during M. tuberculosis or BCG infection 

regarding  

o Bacterial loads 

o Cytokine responses 

o Immunopathology? 

 

SOCS2 

• How is SOCS2 expression regulated in response to TLR stimulation? 

• How is SOCS2 expression regulated in mycobacteria-infected macrophages? 

• Is there a role for SOCS2 during M. tuberculosis infection in vivo? 
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SOCS3 

• How is SOCS3 expression regulated in mycobacteria-infected macrophages? 

• Which function has SOCS3 in macrophages/DCs during mycobacterial 

infections regarding the regulation of  

o Bacterial loads 

o Cytokine responses 

o Immunopathology? 

• What is the role of SOCS3 in T cells during M. tuberculosis infection in vivo 

regarding the regulation of 

o Bacterial loads 

o Cytokine responses 

o Immunopathology? 

• Which function has gp130 signaling in SOCS3-deficient models in vivo and in 

vitro during mycobacterial infections? 
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3 MATERIAL AND METHODS 
The methods applied in our studies are described in detail in the published articles and 
in the manuscript. Here, I want to give an overview about the genetically modified mice 
that have been used. 
 
SOCS-unrelated 
mouse strain type of modification effect 
Rag1-/- knockout disruption of the Rag1 gene in all cells 

no mature B and T cells  
MyD88-/- knockout disruption of the MyD88 gene in all cells  
Irf3-/- knockout disruption of the Irf3 gene in all cells 
Ifn-γ-/- knockout disruption of the Ifn-γ gene in all cells 
 
SOCS proteins and SOCS-related 
mouse strain type of modification effect 
Rag1-/-/Socs1-/- double knockout no mature B and T cells   

disruption of the Rag1 and Socs1 gene in 
all cells 

Ifn-γ-/-/ Socs1-/- double knockout disruption of  the Ifn-γ and Socs1 gene in 
all cells 

Socs1fl/fl LysM cre* conditional 
knockdown 

excision of the Socs1 gene in myeloid 
cells 

Socs2-/- knockout disruption of the Socs2 gene in all cells 
Socs3fl/fl LysM cre* conditional 

knockdown 
excision of the Socs3 gene in myeloid 
cells 

Socs3fl/fl lck cre* conditional 
knockdown 

excision of the Socs3 gene in T cells 

gp130F/F knockin mutation of the SOCS3 binding site in 
gp130 in all cells 

gp130F/F/Il-6-/- knockin/knockout mutation of the SOCS3 binding site in 
gp130 in all cells  
disruption of the Il-6 gene in all cells 

gp130F/F/Stat3+/- knockin/knockout mutation of the SOCS3 binding site in 
gp130 in all cells  
heterozygous for Stat3 gene knockout 

 
*Conditional knockdown: 
Mice were generated using the Cre-lox combination system, in which the Cre DNA-

recombinase is expressed under a cell-specific promoter. Although the target gene is 

flanked by LoxP sequences in all cells for recognition by the Cre enzyme, it will only 

be deleted specifically in Cre-expressing cells. The corresponding WT mice contain the 

floxed gene (Socs1fl/fl and Socs3fl/fl) but are negative for Cre expression. 
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4 RESULTS AND DISCUSSION 
4.1 SOCS1 DURING M. TUBERCULOSIS INFECTION (PAPER I) 

 
IFN-γ is essential for protection against M. tuberculosis infection. SOCS1 is 

induced during infection of macrophages with Mycobacterium avium and 

Mycobacterium bovis BCG, and may thereby inhibit responses to IFN-γ and play a 

central role in the outcome of mycobacterial infections195,196. Thus, we hypothesized 

that stimulation of SOCS1 expression could constitute an immune-escape mechanism 

for the establishment and chronicity of M. tuberculosis infection.  

 

How is SOCS1 expression regulated in mycobacteria-infected macrophages? 

We found that Socs1 mRNA was stimulated during BCG and M. tuberculosis 

infections in vitro in human and murine macrophages as well as in a mouse model in 

lung tissue during infections. Using macrophages from genetically manipulated mice, 

we found that the expression of Socs1 mRNA during BCG infection required 

phagocytosis and the presence of NOD2 and IFN-α/β receptors, the adaptor protein 

MyD88 and the common transcription factor NF-κΒ. This shows that TLR and non-

TLR signals cooperate in optimal Socs1 mRNA expression in mycobacteria-infected 

macrophages. Furthermore, our data was confirmed by a recent publication, in which 

M. tuberculosis-induced Socs1 mRNA expression was dependent on TLR and DC-

SIGN receptor 1 in human DCs198. Moreover, our finding of SOCS1 induction in lungs 

tissue of BCG and M. tuberculosis-infected mice is further supported by clinical data 

that demonstrated increased SOCS1 expression in induced sputum of tuberculosis 

patients compared to healthy individuals and patients with other lung diseases277.  

Mechanisms of SOCS1 action in the mouse model may therefore provide insights into 

the role of the molecule in determining the onset and course of active tuberculosis in 

patients. 

 

What is the role of SOCS1 in the regulation of intracellular bacterial levels and 

cytokine expression in mycobacteria-infected macrophages in vitro?  

To study the function of SOCS1 in vitro, we took advantage of cells derived 

from Socs1 knockout and conditional knockdown mice as well as SOCS1 mimetic 

peptides. We found that SOCS1 inhibited growth control of M. tuberculosis and BCG 
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in macrophages. Infected Socs1-/- macrophages showed lower mycobacterial numbers 

and expressed higher levels of IFN-γ-responsive genes, but interestingly, also higher 

levels of IFN-γ itself than infected control cells. In agreement, Socs1-/- macrophages 

secreted higher amounts of IFN-γ in response to IL-12 that was associated with 

increased IL-12Rβ1 but not IL-12 expression in infected Socs1-/- macrophages. 

Neutralization of IL-12 reduced the elevated IFN-γ expression in infected Socs1-/-- 

macrophages. Of importance, the improved control of M. tuberculosis and BCG by 

Socs1-/- macrophages was lost in Ifn-γ-/-/Socs1-/- macrophages, demonstrating that 

IFN-γ secretion mediated the improved mycobacterial control of Socs1-/- 

macrophages. Moreover, M. tuberculosis-infected WT macrophages were unimpaired 

in their response to addition of exogenous IFN-γ despite SOCS1 expression. 

Altogether, our results suggest that SOCS1 regulates the secretion rather than the 

response to IFN-γ, via controlling responses to IL-12 causing the increased 

mycobacterial resistance of Socs1-/- macrophages (Fig. 8). This mechanism is 

unexpected, as to our knowledge, all described effects of SOCS1 on infected host 

cells were explained by the inhibition of STAT1 signaling leading to impaired type I 

IFN-signaling for viral infections or IFN-γ-signaling for intracellular bacteria and  

parasites 166,170,189,195,196.  Since SOCS1 binds to JAK2 that is also associated with the 

IL-12 receptor, this interaction probably influences IL-12 signaling. Furthermore, 

Socs1-/-/Stat4-/- mice, deficient for the IL-12 signal-transmitting molecule STAT4, 

live longer than Socs1-/- mice175. This suggests an inhibitory role of SOCS1 on 

STAT4 activation and increased responses to IL-12 in absence of SOCS1 have been 

found in T cells and DCs175,278. Thus, our findings broaden the inhibitory spectrum of 

SOCS1 from IFN responses in macrophages to IL-12 responses during infections 

(Fig. 8). 
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Figure 8: M. tuberculosis-infected macrophages in presence (A) and absence (B) 
of SOCS1. 
Infection of macrophages with M. tuberculosis stimulates innate immune responses 
(1) such as the production of IL-12. Responses to IL-12 are inhibited in the presence 
of SOCS1 (2) leading to reduced IFN-γ induction and IFN-γ−signaling (3). Therefore, 
presence of SOCS1 results in higher bacterial numbers (4) and reduced                 
IFN-γ−induced effector mechanisms. 
 
 

To obtain a detailed overview about SOCS1-affected genes during M. 

tuberculosis infection in macrophages, we performed a genome wide expression 

microarray. In agreement with previous results, a significant fraction of the 

macrophage genome was altered after M. tuberculosis infection116,279. Unexpectedly, 

A 

B 
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the majority of infection-regulated genes was even stronger regulated in the absence 

of SOCS1, suggesting a major role of SOCS1 in the control of macrophage activity 

during M. tuberculosis infection. The majority of genes involved in the defense and 

immune responses and almost all IFN-γ−regulated genes showed higher levels in 

infected Socs1-/- macrophages, whereas genes that were decreased in infected control 

cells were even further downregulated in infected Socs1-/- macrophages. Altogether, 

our data implicates that the presence of SOCS1 attenuates both the negative and 

positive regulation of the majority of genes that change their expression after 

infection.  

 

What is the role of SOCS1 during in vivo M. tuberculosis or BCG infection regarding 

bacterial loads, cytokine responses and immunopathology? 

Importantly, the improved bacterial control in Socs1-/- macrophages in vitro 

was reflected in the role of SOCS1 during M. tuberculosis infection in vivo. Aerosol 

infection with M. tuberculosis of Rag1-/-/Socs1-/- as well as Socs1fl/fl LysM cre mice 

showed lower bacterial loads in the lungs 7 days after infection compared to control 

mice (Fig. 9). Moreover, Ifn-γ and iNos mRNA levels in the lungs of Rag1-/-/Socs1-/- 

and Socs1fl/fl LysM cre mice were elevated compared to control mice (Fig. 9). At this 

early stage of infection, mainly innate immune mechanisms are present, and no 

increase of IFN-γ in lungs of infected control mice was detected. Consistent with our 

in vitro results, lungs from infected Rag1-/-/Socs1-/- and Socs1fl/fl LysM cre mice 

showed higher levels of IFN-γ that are sufficient to impair bacterial growth in vivo, 

since no improved bacterial control was observed in Ifn-γ-/-/Socs1-/- mice compared to 

Ifn-γ-/- mice. 

 
Figure 9: SOCS1 in myeloid cells 7 days after M. tuberculosis infection.  
7 days after M. tuberculosis infection, bacterial loads in the lungs of individual 
Socs1fl/fl and Socs1fl/fl LysM cre mice and median were determined (A). Expression of 
Ifn-γ mRNA in lungs is shown in (B) as mean ±	 SEM. 
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Three weeks after infection, in conjunction with the appearance of IFN-γ 

producing T cells in lungs of aerosol infected mice, similar bacterial counts were 

registered in the lungs of Rag1-/-/Socs1-/-, Socs1fl/fl LysM-cre and their respective 

control mice. We suggest that, at this later time point, the advantage of the SOCS-

deficient host is lost when IFN-γ secretion by T cells is prominent and macrophages 

even in the presence of SOCS1 are able to respond to IFN-γ. Relevant to our 

observation, SOCS1 expression is elevated in the blood of patients with pulmonary 

tuberculosis that at the same time express an IFN-induced gene signature280. As we 

found no differences in IFN-γ and IFN-γ-regulated genes in control and Rag1-/-/Socs1-

/- mice at these later stage, it is possible that the inhibitory effects of SOCS1 can be 

shadowed by a potent Th1-mediated immunity.  

Additionally, both Rag1-/-/Socs1-/- and also Ifn-γ-/-/Socs1-/- mice showed a very 

severe pulmonary inflammation 3 weeks after M. tuberculosis infection. This 

inflammatory response was mediated by SOCS1 deficiency in non-macrophage cells, 

because it was not observed in M. tuberculosis-infected Socsfl/fl LysM-cre mice, 

which are lacking SOCS1 only in myeloid cells. We conclude that SOCS1-expressing 

non-macrophage cells are responsible for preventing a detrimental inflammation that 

is elicited at least partially in an IFN-γ-independent manner. This is an interesting 

finding as in the absence of SOCS1 inflammation was reported to be mediated to a 

great extent by increased IFN-γ secretion by T cells and elevated responsiveness of 

macrophages to IFN-γ170,171,173. SOCS1 has also been shown to play a role in type I 

IFN, IL-4, IL-13 and IL-12 signaling, but apart from IL-12, these cytokines are not 

classically associated to resistance against M. tuberculosis infections281,282. However, 

whether these cytokines can contribute to mycobacterial infection-mediated 

inflammation remains to be examined.  

Overall, we demonstrated that M. tuberculosis-induced SOCS1 by diminishing 

IL-12 responses impaired IFN-γ secretion by macrophages. This resulted in lower 

levels of IFN-γ-regulated genes and promoted M. tuberculosis infection leading to 

increased pulmonary bacterial levels in the lungs at early time points. Later during 

infection, mainly T cells produced IFN-γ and SOCS1 in non-macrophages cells 

protected mice from severe inflammation thereby allowing the establishment of 

chronic infection (Fig.10).  
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Figure 10: Role of SOCS1 at different stages of M. tuberculosis infection. 
SOCS1 in macrophages increases bacterial numbers at the early stage of infection, 
whereas it has no effect on bacterial control at later time points. SOCS1 in non-
macrophage cells (e. g. epithelial cells) hampers inflammation at later stages. 
 

 

4.2 SOCS2 (PAPER II) 

Little is known about the regulation of SOCS2 expression in immune cells. In 

paper II we investigated the regulation of SOCS2 expression in response to TLR4 

agonists and to Mycobacterium bovis BCG in macrophages.  

 

How is SOCS2 expression regulated in response to TLR4 stimulation? 

We demonstrated that LPS-induced SOCS2 expression in human monocyte-

derived DCs was dependent on the transcription factors IRF1 and IRF3 as shown by 

silencing IRFs. The expression and activation of IRF1 and IRF3 is known to be 

stimulated by type I IFNs, and neutralization of type I IFNs abolished Socs2 mRNA 

expression after TLR4 stimulation. Silencing of different STAT transcription factors 

revealed the requirement of STAT3 and STAT5 in LPS-induced Socs2 mRNA 

expression. TLR-signaling has been reported to mediate a direct induction of SOCS2 

expression283 but we clearly could show that inhibition of IRF1, IRF3 and IFN-α/β 

receptors severely impaired LPS-stimulated SOCS2 induction. 
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How is SOCS2 expression regulated in mycobacteria-infected macrophages? 

Socs2 mRNA levels increased in BMM after infection with M. bovis BCG. The 

reduction of Socs2 transcript induction in macrophages derived from Irf3-/- and  

MyD88-/- mice suggested the involvement of signaling via TLR or other innate immune 

receptors. 

 

Is there a role for SOCS2 during M. tuberculosis infection in vivo? 

Since Socs2 mRNA expression was stimulated by M. bovis BCG, we studied 

whether SOCS2 played a role in the outcome of infection with M. tuberculosis. Socs2-/- 

and control mice were infected via aerosol with M. tuberculosis and bacterial burdens 

in lungs and spleens were determined 6 weeks after infection (Fig. 11).  

 

Fig. 11: SOCS2 expression does not change M. tuberculosis infection. 
WT and Socs2-/- mice were infected via aerosol with M. tuberculosis Harlingen. Mice 
were sacrificed 6 weeks after infection and bacterial colony forming units (CFU) in 
lungs and spleens determined. Individual counts and median of each group is shown. 
 

  No differences in bacterial titers were detected, indicating that SOCS2 is mot 

involved in the control of M. tuberculosis. This result contrasts with the role of SOCS2 

during infection with Toxoplasma gondii that showed increased cumulative mortality in 

Socs2-/- mice202. The heightened morbidity and mortality of T. gondii-infected Socs2-/- 

mice was explained by the finding that Socs2-/- DCs were refractory to the anti-

inflammatory properties of the lipoxin LXA4202. Both M. tuberculosis and T. gondii 

induce LXA4, an eicosanoid mediator with potent anti-inflammatory properties, that 

e.g. reduces IL-12 secretion by DC284,285. However, only T. gondii-infected 5-

lipoygenase-deficient mice (that are deficient for LXA4) succumbed earlier to infection 

lung spleen 
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than control mice due to lethal encephalitis, whereas M. tuberculosis-infected 5-

lipoxygenase-deficient mice displayed an improved control of infection without 

concominant immunopathology285,286. This indicates a vital role for LXA4 and its 

regulation by SOCS2 during T. gondii infection in prevention of fatal immune 

activation. However, our results suggest that SOCS2-mediated lipoxin LXA4 

regulation is redundant for the control of infection with M. tuberculosis. 

Regarding a possible role for SOCS2 in controlling T cells responses, enhanced 

generation of Th2 cells was described in helminth-infected Socs2-/- mice201. For M. 

tuberculosis control, specific Th1 cell-mediated immunity is fundamental 6 weeks after 

infection. Thus, we conclude that the absence of SOCS2 does not hamper Th1 

responses during M. tuberculosis infection, confirming previous findings, in which 

SOCS2 was redundant for the control of Leishmania major infection 193. 

These results suggest that although SOCS2 is induced during mycobacterial 

infections, its role is minor or redundant for disease control. 

 

4.3 SOCS3 DURING M. TUBERCULOSIS INFECTION (PAPER III) 

SOCS3 was shown to be induced in macrophages in response to mycobacterial 

infection with M. avium and M. bovis and in T cells of patients with active 

tuberculosis195,196,272. Since SOCS3 has multiple functions in the regulation of different 

cytokine signaling pathways with some of them unapparent in their function of 

tuberculosis control, we investigated the role of SOCS3 in the regulation of M. 

tuberculosis infection.  

 

How is SOCS3 expression regulated in mycobacteria-infected macrophages? 

 In a first set of experiments, we found that Socs3 mRNA expression was 

increased in lung tissue of M. tuberculosis and BCG-infected mice with around 10-fold 

higher levels during M. tuberculosis than in BCG infection. Socs3 transcript induction 

in infected BMM was dependent on MyD88 and NF-κΒ but not on IRF3. To study 

whether this SOCS3 induction is important during M. tuberculosis infection, we 

examined the outcome of infection in different mouse models. 
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Which function has SOCS3 in macrophages/DCs during mycobacterial infections 

regarding the regulation of bacterial loads, cytokine responses and immunopathology? 

 Mice deficient for SOCS3 in myeloid cells (Socs3fl/fl LysM cre mice) showed 

increased bacterial burdens in lungs and spleens from 16 days after infection with M. 

tuberculosis. Socs3fl/fl LysM cre mice also displayed enhanced immunopathology and 

succumbed 82 days after infection (median survival), whereas control mice survived 

for 150 days until the experiment was terminated. Moreover, increased bacterial loads 

in lungs and spleen were observed after BCG infection of Socs3fl/fl LysM cre mice, 

although differences to bacterial loads in control mice were smaller compared to those 

registered during M. tuberculosis infection.  

Next, we studied whether SOCS3-deficient macrophages were hampered in 

their control of mycobacterial growth. Surprisingly, Socs3fl/fl LysM cre BMM displayed 

unimpaired control of intracellular of M. tuberculosis replication and reduced bacterial 

loads in response to exogenous IFN-γ. Thus, defects of the bactericidal/ bacteriostatic 

capacity of  SOCS3-deficient macrophages are unlikely to cause the  increased in vivo 

susceptibility to M. tuberculosis of Socs3fl/fl LysM cre mice. In line with our data, 

previous work revealed that SOCS3-deficient macrophages could control T. gondii 

infection even though Socs3fl/fl LysM cre mice were highly susceptible to the infection 

with the parasite276. 

Thereafter, we analyzed the presence of cytokines and inflammatory mediators 

in supernatants of mycobacteria-infected macrophages. We found lower levels of TNF 

and IL-12p40 and higher levels of nitric oxide (NO) in supernatants of  SOCS3-

deficient macrophages after infection with M. tuberculosis or BCG and after 

stimulation with TLR-agonists in comparison to control cells. All three molecules –

TNF, IL-12 and NO- have been demonstrated to be critical for control of clinical and 

experimental mycobacterial infections82,83,96,116,117. The elevated NO levels could 

explain the slightly improved bacterial growth control in vitro, whereas reduced IL-

12p40 levels mainly would be important in vivo due to its crucial role in the generation 

of Th1 responses97,99,101. Previous studies showed reduced secretion of TNF and         

IL-12p40 in Socs3fl/fl LysM cre BMM in response to LPS, but only in co-culture with 

IL-6126. Interestingly, differences in TNF and IL-12p40 levels between mycobacteria-

infected Socs3fl/fl LysM cre and control BMM were found even in absence of 

exogenously added IL-6. Addition of recombinant IL-6 to the cultures further 

diminished IL-12 and TNF concentrations in supernatants of mycobacteria-infected 

Socs3fl/fl LysM cre BMM. Furthermore, it has previously been shown that neutralization 
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of IL-6 in IFN-γ/LPS stimulated cultures of Socs3fl/fl LysM cre BMM enhanced IL-

12p40 production276. The increased NO and iNOS levels in BCG-infected Socs3fl/fl 

LysM cre BMM could reflect the described IFN-γ-like response to IL-6 in Socs3fl/fl 

LysM cre BMM125,241.  

 Moreover, we found lower IL-12p40 expression levels in M. tuberculosis and 

BCG-infected SOCS3-deficient BMDC. Thus, we studied whether IFN-γ levels and 

secretion were impaired in lungs of M. tuberculosis-infected Socs3fl/fl LysM cre mice. 

Sixteen days after infection, lungs from Socs3fl/fl LysM cre mice contained significantly 

lower levels of Ifn-γ mRNA compared to control mice. At this time point, Ifn-γ mRNA  

accumulation in lungs from M. tuberculosis-infected control mice was mediated by T 

cells because depletion of CD4+ cells in control mice reduced IFN-γ levels down to 

levels found in Socs3fl/fl LysM cre mice. Moreover, the differences in susceptibility to 

infection of SOCS3fl/fl LysM cre and control mice were abrogated under CD4+ cell 

depletion.  

Surprisingly, Ifn-γ mRNA levels were only transiently reduced in Socs3fl/fl LysM 

cre mice, and no differences were detected 4 weeks after infection, although differences 

in bacterial levels at this time point were remarkable.  However, a delayed recruitment 

of antigen-specific T cells to the lungs was shown to underlie increased bacterial 

burdens in susceptible mouse strains25. These results suggest that a delay of T cell-

derived IFN-γ secretion due to decreased IL-12p40 production in SOCS3-deficient DCs 

accounts for the increased susceptibility to M. tuberculosis infection of Socs3fl/fl LysM 

cre mice (Fig. 12).  
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Figure 12: Role of SOCS3 in myeloid cells during M. tuberculosis infection. 
SOCS3 increases the secretion of IL-12 and TNF in M. tuberculosis-infected 
macrophages and DCs (1). Infected dendritic cells prime Th1 cells in the draining 
lymph node (2) and in the presence of SOCS3 we found earlier high levels of          
IFN-γ in the lungs (3) activating infected cells.  
 

In line with our results, the increased susceptibility of Socs3fl/fl LysM cre mice to 

T. gondii was due to reduced IL-12 responses that could be restored either by IL-6 

neutralization or by administration of recombinant IL-12276. Since immune defense 

mechanisms to the intracellular T. gondii and intracellular M. tuberculosis resemble 

each other, it is not surprising that we found a similar setting during M. tuberculosis 

infection. Accordingly, in T. gondii–infected Socs3fl/fl LysM cre mice impaired        

IFN-γ secretion by T and NK cells was found276, but unlike M. tuberculosis defense 

mechanisms that mainly rely on T cells, IFN-γ produced by NK cells plays a crucial 

role in protection to T. gondii114,287,288.  

Together with our data, this demonstrates a so far unappreciated role of IL-6 

that, in the absence of SOCS3 in myeloid cells, becomes a potent antagonist of        

IFN-γ−mediated protection. 
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What is the role of SOCS3 in T cells during M. tuberculosis infection in vivo regarding 

the regulation of bacterial loads, cytokine responses and immunopathology? 

 Mice with SOCS3-deficient T cells (Socs3fl/fl lck cre mice) displayed a 

dramatically increased susceptibility to M. tuberculosis infection. In comparison to 

Socs3fl/fl LysM cre mice, SOCS3 deficiency in T cells led to higher bacterial loads in 

the lungs and spleen, increased pathology, and earlier mortality. Transfer of SOCS3-

deficient T cells in Rag1-/- mice did not convey resistance and suppressed protection by 

co-inoculated control T cells. Moreover, absence of SOCS3 in T cells in Leishmania 

major-infected mice increased parasite counts confirming a SOCS3-dependent 

protection mechanism258.   

However, the observed susceptibility to M. tuberculosis seemed to be a 

pathogen-specific mechanism because detected bacterial numbers after BCG infection 

in Socs3fl/fl lck cre and control mice were similar.  Surprisingly, BCG-vaccinated 

Socs3fl/fl lck cre mice showed the same protection to challenge with M. tuberculosis as 

control mice. This suggests that SOCS3 in T cells is not necessarily required for the 

resistance to M. tuberculosis if T cells are primed by BCG-immunization. In contrast to 

our results, Socs3fl/fl lck cre mice showed faster LCMV clearance than infected control 

mice demonstrating a very divergent function of SOCS3 depending on the pathogen270. 

Since we detected higher levels of Socs3 mRNA expression in M. tuberculosis 

than in BCG-infected lungs, we speculated that Socs3 expression levels in T cells might 

be elevated during M. tuberculosis in contrast to BCG infection.  Unexpectedly, we did 

not detect any upregulation of Socs3 mRNA in pulmonary T cells neither after M. 

tuberculosis nor after BCG infection. Our data obtained from mycobacteria-infected 

mice is consistent with earlier observations that describe a down-regulation of SOCS3 

in antigen-stimulated T cells in comparison to naïve T cells250. However, since the 

regulation of SOCS3 expression in T cells during BCG and M. tuberculosis infection is 

comparable, it does not explain the increased susceptibility to M. tuberculosis of 

Socs3fl/fl lck cre mice. 

 The immune responses of Socs3fl/fl lck cre mice were then investigated.  We 

chose 2.5 weeks after M. tuberculosis infection as first examined time point as antigen-

specific T cells were already present in the lungs, but bacterial loads in control and 

Socs3fl/fl lck cre mice were similar. We found that higher levels of IL-17 were secreted 

in response to antigen-specific stimulation of lung homogenates by Socs3fl/fl lck cre 

mice matching previously reported SOCS3-mediated inhibition of Th17 

generation249,254,259. However, no differences in IL-17 secretion were detected after re-
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stimulation of splenocytes from BCG-immunized Socs3fl/fl lck cre and control mice. 

Therefore, the increased IL-17 secretion and susceptibility to M. tuberculosis in 

Socs3fl/fl lck cre mice could be causally associated. The role of IL-17 in resistance to M. 

tuberculosis is controversial and the lack of IL-17 or IL-17R in a low dose model that is 

also applied in our experiments did not impair the ability of mice to control M. 

tuberculosis infection144,145. In contrast, high IL-17 levels may contribute to an 

increased bacterial dissemination and a neutrophil-mediated inflammation that may 

account for the early death and immunopathology of M. tuberculosis-infected Socs3fl/fl 

lck cre mice as described for other susceptible mouse strains55,289,290.  In fact, increased 

neutrophil-derived molecules and necrosis could be observed in M. tuberculosis-

infected Socs3fl/fl lck cre mice.  

Moreover, IFN-γ levels were elevated in Socs3fl/fl lck cre mice already 2.5 

weeks after M. tuberculosis infection and might be explained by the described binding 

of SOCS3 to IL-12Rβ2257. However, increased IFN-γ levels cannot justify the dramatic 

susceptibility to M. tuberculosis of  Socs3fl/fl lck cre mice. Kinjyo et al. reported that 

SOCS3-deficient T cells show enhanced development of Th3 cells that produce anti-

inflammatory cytokines such as IL-10 and TGF-β258. Nevertheless, IL-10 levels were 

not increased in Socs3fl/fl lck cre mice.  

Altogether, additional studies on IL-17 that is increased during M. tuberculosis 

but not during BCG infection in Socs3fl/fl lck cre mice may provide promising insights 

into its role during M. tuberculosis infection.  

 

Which function has gp130 signaling in SOCS3-deficient models in vivo and in vitro 

during mycobacterial infections?  

 SOCS3 inhibits different signaling receptors. We investigated whether SOCS3 

promoted resistance against M. tuberculosis via the regulation of gp130-dependent or 

independent receptor signals.   We found that gp130F/F mice were highly susceptible to 

M. tuberculosis infection, which was at least in part caused by aberrant IL-6 and 

STAT3 responses since gp130F/FIl-6-/- and gp130F/FStat3+/- mice displayed lower 

bacterial loads than gp130F/F mice. Cytokine responses of mycobacteria-infected 

gp130F/F BMM resembled Socs3fl/fl LysM cre BMM with decreased IL-12 and TNF 

levels compared to control cells. Previously, it had been demonstrated that gp130F/F 

BMM alike Socs3fl/fl LysM cre BMM induce reduced TNF and IL-12 levels in response 

to LPS and IL-6 compared to control BMM242. Moreover, we could demonstrate that 
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the reduction of cytokine concentration during mycobacterial infections was IL-6 

dependent since IL-12 and TNF levels in gp130F/F/Il-6-/-  BMM were restored to control 

levels. Accordingly, lower IL-12p40 expression levels were found in the lungs of 

gp130F/F compared to control mice, which were restored in gp130F/FIl-6-/- mice, 

implying that changed IL-6 signaling in the absence of SOCS3 inhibition of gp130 

signaling may account for the increased susceptibility.  

Taken together, we propose that, as in Socs3fl/fl LysM cre mice, delayed T cell 

priming due to impaired IL-12 induction contributes to the susceptibility to M. 

tuberculosis in gp130F/F mice. Similar results were obtained during T. gondii infection 

of gp130F/F mice that showed a transient reduction of IFN-γ serum levels275. Treatment 

of gp130F/F mice with either neutralizing IL-6 antibodies or exogenous IL-12 improved 

parasite control demonstrating that SOCS3 provides similar protection mechanisms by 

modulation of gp130 signaling during T. gondii and M. tuberculosis infection275. 

Interestingly, T cells from gp130F/F mice could transfer protection to Rag1-/- to 

the same extent as transferred control T cells, indicating that the protective SOCS3 

expression in T cells is gp130-independent. Since the susceptibility of gp130F/F to M. 

tuberculosis was significantly higher than of Socs3fl/fl LysM cre and T cells were not 

involved, we suggest that non-hematopoietic cells may also contribute to SOCS3-

mediated control to M. tuberculosis infection, a suggestion that remains to be tested.  

 Altogether, SOCS3 plays a critical and non-redundant role in myeloid and T 

cells during M. tuberculosis infection. Notably, mechanisms of resistance conveyed by 

SOCS3 are different in myeloid and T cells but in both cases necessary to enable a 

proper T cell differentiation.  
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5 SUMMARY 
 
In summary, we define the following roles for SOCS proteins during M. tuberculosis 

infection: 

 

SOCS1 

… reduces IFN-γ induction in response to IL-12 in macrophages. 

… inhibits IFN-γ-mediated growth control during early infection.   

… is a major controller of non-macrophage-mediated inflammation. 

 

 

SOCS2 

… has no influence on mycobacterial growth control. 
 

 

SOCS3 

… in myeloid and T cells reduces susceptibility to infection. 

… in myeloid cells impairs IL-6 dependent reduction of IL-12 and TNF 

secretion and leads to early induction of IFN-γ by CD4+ cells in the 

lungs. 

… in T cells hampers IL-17 and IFN-γ secretion during M. tuberculosis 

infection.  

… is redundant in T cells for M. tuberculosis protection if mice are BCG-

vaccinated. 

… mediates inhibition of gp130-transmitted signals and thereby reduces 

susceptibility that is dependent on IL-6 and STAT3. 
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6 CONCLUSIONS AND FUTURE PERSPECTIVES 
Summarizing the studies on SOCS proteins presented in this thesis, I would like 

to give an evaluation of the role of the different SOCS proteins during mycobacterial 

infections and discuss under which circumstances a modulation of SOCS levels may 

be of importance in controlling the infection. 

 SOCS1 plays a two-faced role during mycobacterial infections. During the 

innate phase, when bacteria replicate in macrophages without any adaptive immunity 

present, SOCS1 suppresses IFN-γ induction by macrophages and therefore enables 

mycobacterial growth. Deletion of SOCS1 could slow down this mycobacterial 

growth but did not lead to complete eradication of the bacteria. Since it has been 

proposed that a fraction of the M. tuberculosis-exposed individuals remain 

uninfected, it would be interesting to determine whether SOCS1 is involved in such 

innate control of infection.  In contrast, SOCS1 expression protected from severe 

inflammation in the lungs without impairing immunity to infection during later stages 

of M. tuberculosis infection. Thus, SOCS1 mimetic peptides may be useful to limit 

immune-mediated pathology in tuberculosis as it was shown in a vaccinia virus 

infection model192. 

 Regarding our data on SOCS2, its role can be addressed as minor or redundant 

during M. tuberculosis infection. Although enhanced Th2 responses were reported in 

the absence of SOCS2, we observed similar bacterial burdens in presence and 

absence of SOCS2 suggesting a well functioning Th1 response. However, it is 

possible that under Th2-stimulating conditions, such as a common co-infection with 

helminths, absence of SOCS2 may further enhance Th2 responses and thereby impair 

M. tuberculosis control.  

  In contrast to SOCS1 and SOCS2, SOCS3 expression by either myeloid or 

lymphoid cells had a central role in controlling M. tuberculosis infection,. Absence of 

SOCS3 in BMM has been described to prolong STAT3 activation in response to IL-6 

that in turn decreased IL-12 and TNF transcription126. The knockdown of STAT3 in 

DCs has been shown to increase cytokine production, antigen-specific T cell 

activation and resistance to IL-10-mediated suppression291. Moreover, increased 

STAT3 activation prevents recognition of tumor cells by the immune system in 

different kinds of cancer and inhibition of STAT3 activation by administration of 

small inhibitory molecules has been shown to impair the growth of cancer cells in 

vitro and in vivo292. Therefore, it would be a promising approach to limit STAT3 
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activation to improve resistance to M. tuberculosis infection by increasing IL-12 

levels and antigen-specific Th1 responses.  However, since STAT3 is unique in its 

capacity to direct anti-inflammatory activities of IL-10 and mice with a knockdown 

for STAT3 in myeloid cells showed a pro-inflammatory phenotype with spontaneous 

development of colitis243, it will be a challenge to keep the balance between pro- and 

anti-inflammatory signals. Additionally, it has to be taken in consideration that a 

knockdown of gp130 in myeloid cells did not improve control of M. tuberculosis 

infection in mice, demonstrating that ablation of all gp130-mediated signals may be 

contraindicated293.  Even considering these aspects, our data convincingly argue for 

further explorations in targeting STAT3 to improve immune control during 

tuberculosis. 

 Since SOCS3 expression in T cells was not required to mount protective 

immunity after BCG-vaccination, it would be of high interest to understand why 

SOCS3 in turn is required for resistance to primary M. tuberculosis infection.  

Furthermore, the high IL-17 levels in the absence of SOCS3 in T cells may have 

contributed to the observed susceptibility since we did not detect any elevated anti-

inflammatory immune responses that could account for increased bacterial growth. 

Understanding the role of these two factors, SOCS3 expression and elevated IL-17 

secretion by T cells during M. tuberculosis infection, may provide important 

information how to achieve protection against M. tuberculosis and thereby how to 

improve vaccine design. Summarizing, we suggest that modulation of SOCS3-

regulated pathways is a promising approach to improve vaccination and the control of 

mycobacterial infections.  
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