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ABSTRACT

With increased knowledge in dendritic cell (DC) biology, innate immune receptors and their
ligands, and the shaping of adaptive responses, refined approaches to modulate our immune
system are today emerging as treatment strategies for chronic infections and severe cancers. At
the center of attention stand DCs — the innate immune cells that orchestrate the adaptive
immune responses. In this thesis, strategies to activate and to inhibit DC activation are
described, and the effect of different types of activation of DCs on HIV-1 infection is also
investigated.

In paper I, we have characterized a novel strategy of TLR3 inhibition in DCs and in other
TLR3 expressing cells. The TLR3 ligand poly I:C normally activates DCs to upregulate
maturation markers CD80 and CD86 and to secreted pro-inflammatory cytokines. We found
that simultaneous addition of oligodeoxynucleotides (ODNs) based on a phosphorothioate (PS)
backbone together with poly I:C inhibited the TLR3-mediated DC activation. This inhibition
was dependent on the structure of the ODN backbone, since ODNs built on a phosphodiester
backbone did not have inhibitory effects, but independent of the sequence, since both CpG and
non-CpG containing PS-ODNs had the ability to inhibit the effect of poly I:C. We could repeat
the PS-ODN-mediated inhibition on poly I:C activation in three additional non-hematopoietic
cell types. Upon investigation of the mechanism behind this observation, we determined that
PS-ODNs are preferably taken up into DCs over poly I:C, and are thereby inhibiting the ligand
interaction with TLR3. To confirm this finding in vivo, we treated cynomolgus macaques
intranasally with the ligands, either alone or in combination, and measured the secreted
cytokine levels. Significantly reduced levels of IL-12p40 were detected in animals receiving
PS-ODNSs compared to animals treated with poly I:C alone, and a similar trend was observed
also for additional pro-inflammatory cytokines and chemokines measured. Hence, these
findings encourage the development of PS-ODNs as a treatment strategy during TLR3-
mediated pathology.

Our group has previously reported that irradiated activated PBMCs have the ability to induce
DC maturation. In paper II, we set out to determine the underlying mechanism for this finding.
First, we investigated whether the activated apoptotic cells (ACs) had to be phagocytosed for
mediating their effect, but cell-cell contact was shown to be enough for DC maturation when
co-cultured with ACs. We then tested if both cellular and supernatant fractions of activated ACs
had the ability to mature DCs. Activated ACs were previously shown to release low levels of
TNF-0, and we could confirm that the cytokine was a maturing agent in the supernatant
fraction. The cellular fraction also matured DCs, and to investigate what molecules could be
involved, we neutralized receptors previously shown to be stimulated by endogenous
substances. We found that DC-SIGN, TLR4, and 2-integrins all were involved in AC-induced
DC maturation, and a plausible ligand for TLR4 was shown to be heat shock protein 60. When
investigating the intracellular signaling pathways mediating this effect, we determined that
activated ACs induced signaling via Src family of tyrosine kinases, PI3K/Akt, JNK, and p38,
and activated the NF-kB and AP-1 transcription factors.

We further investigated the effect of activated apoptotic T cells on DC and HIV-1 infection in
paper III. These activated ACs, either HIV-1 infected or uninfected, had the ability to mature
DCs, and also to reduce HIV-1 infection in DCs. This reduction was partly due to TNF-a
produced by stimulated DCs, but mainly due to the increased expression of the HIV-1 host
restriction factor APOBEC3G in DCs. In paper IV, we continued to investigate the expression
of APOBEC3 family members in DCs upon treatment with TNF-o or IFN-a. We could confirm
previous reports on expression of APOBEC3A, F, and G in DCs, and we also concluded that
TNF-a, despite induction of DC activation, did not induce expression of APOBEC3 molecules,
but more probably stimulated additional host restriction factors in DCs.
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1 INTRODUCTION

In the beginning, the protocell was alone in the oceans, and no pathogens existed.
However, when life evolved into diversity, the condensed form of nutrition contained
in a cell quickly became an attractive source of energy for other cells. Only organisms
with mechanisms of protection and recognition of their own species survived. When the
organism then went from a single-cellular entity to a multicellular form, the need for
protection against microbial colonization increased. Cells specialized in defence
developed and what we today call the innate immune system started to take shape. A
great variety of mechanisms to prevent infection were created, and the features of the
innate immune system were refined by evolution to form the complex multilayer
system it is today [1].

As organisms grew larger and more complex, adaption to an ever-changing
environment merely on a generation basis was not sufficient. In addition to the diverse
repertoire of germline encoded pathogen recognition receptors, cells with adaptive
genes, with the ability to rearrange and mutate within the cell, coding for immune
receptors were evolved and can now be found in all jaw vertebrate species. Upon
differentiation of the cells, these genes are rearranged and a great repertoire of cells
with unique immune receptors is created, based on a limited amount of genetic
material. In theory, this enables an almost infinite repertoire of pathogen-specific cells,
but it is only the ones actually recognizing the encountered pathogens that will expand
and take action. After clearance of an infection, a fraction of the pathogen-specific cells
remains in the body as distant memories, and if the same pathogen is encountered
again, these memory cells will quickly be re-activated and protect from disease [1].

These two branches of defence strategies have co-evolved and are both important for
our survival. The inherited innate immune system acts immediately but unspecifically
upon infection, while the adaptive immunity is continuously progressing, to specifically
target and remember the pathogens we encounter. Despite the distinctive mechanisms
of action, cross-talk between the innate and adaptive immune systems is essential for
clearance of severe infections. As a translator between the two systems, the dendritic
cell (DC) is a crucial bridging component, and the message it carries from the site of
infection to the cells of the adaptive immune system determines what kind of response
will be initiated against the intruder [2].

This thesis will discuss how DCs can be activated, prevented from activation, and
prevented from viral infection, using various strategies. Enhanced knowledge in this
area will shed light on how the innate immune system can be facilitated to impact the
adaptive immune responses, and in the end, how vaccines and treatment strategies for
certain patient groups can be improved and better understood.

1.1 DENDRITIC CELLS AND CONTROL OF THE IMMUNE SYSTEM

The immune system consists of a diversity of cells, collectively called leukocytes, with
varying functional properties important in host defence against pathogens. Common to
leukocytes is that they all originate from hematopoietic stem cells in the primary
lymphoid tissue in the bone marrow. Two distinct developmental pathways have been
characterized — the lymphoid and myeloid linage. Myeloid stem cells differentiate into



distinct progenitor cells with varying capacity to further differentiate into myeloid cells,
such as monocytes, neutrophils, eosinophils, mast cells, erythrocytes, and DCs. The
lymphoid stem cell gives rise to progenitor cells that can further differentiate into cells
referred to as lymphocytes, which consist of T cells, B cells, natural killer (NK) cells,
and NKT cells. After differentiation, the cells exit the bone marrow and either home to
secondary lymphoid organs or peripheral tissue, or they circulate in the blood until they
receive signals to migrate into inflamed tissue or grow too old and are cleared from the
circulation. T cells go in an undifferentiated state to the thymus, which also is defined
as a primary lymphoid organ, where they finalize their maturation process to become
specific for self major histocompatibility complex (MHC) molecules in complex with
non-self peptides. Cells not fulfilling these criteria are not provided with enough
survival stimuli to continue development, or are actively killed if they are auto-reactive
and recognize MHC complexes with self-peptides. After this selection, the T cells
home to secondary lymphoid tissue, such as the lymph nodes. In addition to the T cells,
B cells and lymph node resident macrophages and DCs are also found in lymph nodes
and secondary lymphoid tissue. Antigens are transported here, either in a soluble form
in the afferent lymph or via migratory DCs, and presented to T and B cells. If the
antigen is derived from a foreign entity, it will be recognized as non-self by the
lymphocytes, and depending on the instructions accompanied from the innate immune
response in the tissue from which it was transported, an appropriate adaptive response
will be initiated [2].

1.1.1 Characteristics of dendritic cells

Dendritic cells are the main bridging component between the innate and adaptive
immune systems. They have a unique ability to acquire antigens in the periphery and
then present them to cells of the adaptive immune system. Although DCs are
considered to be part of the innate immune system, their antigen presentation is crucial
for activation of specific adaptive immune responses.

1.1.1.1 The discovery of dendritic cells

The first DC to be described was the Langerhans cell (LC) in 1868 [3]. Paul
Langerhans discovered a cell type in the epidermis of the skin with long, branching
dendrites spreading in the tissue. Due to its morphological appearance and the staining
method used, believed to be specific for neurons, Langerhans concluded that the cells
he had observed were epidermal nerve endings [4]. The function of LCs long eluded
researchers and was not properly determined until a comparison with other subsets of
DCs could be performed [5, 6].

In the early 1970s, Ralph Steinman and Zanvil Cohn published a series of articles
describing a novel cell type, which they named dendritic cell, in peripheral lymphoid
organs of mice [7-9]. Dendritic cells were soon shown to have superior capability to
induce proliferation of cells in mixed leukocyte reactions (MLRs) compared with other
leukocytes, such as B cells or macrophages [10]. Today, DCs are defined as
professional antigen presenting cells (APCs) that take up antigens, either in the
peripheral tissue or in lymphoid organs, process them, and present them to adaptive
immune cells [11].



1.1.1.2  Dendritic cell functions

Dendritic cells can be found in most tissue, but in particular at the body surface linings,
which are highly exposed to microbial intrusions, including the skin, gut, lungs, and
vagina. There are several subtypes of DCs and their function varies between location
and subtype, but generally they sense the surrounding milieu for threats or
abnormalities by responding to non-self structures and dying cells.

If nothing stimulatory is encountered, DCs act to maintain the tissue homeostasis
[12]. However, if a pathogen or inflammatory agent is detected by a DC, either by
sensing the antigen directly or by signals derived from other innate cells in the tissue,
the cell is activated and participates in the inflammatory response. Initially, activated
DCs secrete pro-inflammatory chemokines and cytokines to attract additional immune
cells and to have them exert their effector functions or to replenish the pool of DCs.
The activated DCs briefly enhance their uptake of antigen, and thereafter migrate to the
adjacent lymph node while maturing and enhancing their antigen presenting capacity
[13]. In the lymph node, DCs either transfer their carried antigen to lymph node
resident DCs, or directly present their cargo to T and B cells. An adaptive immune
response, custom made for the infection from which the DC migrated, is then initiated
[14-17].

1.1.2 Dendritic cell subsets

Since the discovery of DCs, an increasing number of subsets of DCs have been
described. This increase can partly be explained by the localization of the cells and
influence from the milieu to which they are exposed, but the focus on DC ontogeny has
also increased in recent years.

1.1.2.1 Ontogeny

Dendritic cells originate from a common myeloid progenitor (CMP) in the bone
marrow. The CMP has been shown to give rise to an intermediate macrophage-
dendritic cell progenitor (MDP) [18], which is thereafter differentiated to either
monocytes or to a common DC progenitor (CDP). This progenitor finally divides into a
pre-DC or plasmacytoid DC (pDC) [19]. When pre-DCs and pDCs are formed, they
exit the bone marrow and either home to peripheral or lymphoid tissue, where they
become finally differentiated, or circulate the blood and tissue, respectively.

Langerhans cells, the DCs of the epidermis, are however not derived from the bone
marrow, but from local stem cells that migrate to the skin during the late embryonic
period and replenish the LC population in situ [20].

1.1.2.2 Conventional dendpritic cells

Commonly, DCs that originate from CMPs but are not pDCs have been described as
conventional DCs (cDCs). However, the influence of monocytes on the cDC
population is debated. Monocytes have been shown to migrate to inflamed tissue,
where they replenish the inflammatory site with DC-like cells during infections, when
the resident DCs are activated and migrating to the lymph nodes [21, 22].



Conventional DCs are found in both lymphoid and peripheral tissue. Cells in the
lymphoid organs have in mice been divided into CD8a" and CD8a” DCs, where the
CD8a can be further subdivided into CD4" and CD4” DCs [23, 24]. CD8a" DCs are
highly efficient in promoting CD8" T cell responses via cross-presentation and are
mostly found in the T cell zones of secondary lymphoid organs [25], while the CD8a”
subsets have been ascribed to have more regulatory functions. If the CD8oCD4”
population is stimulated with the proper reagents though, an efficient immune response
can be activated by this subset as well [26].

There are several DC subpopulations in peripheral tissue. They are all characteristic
of their local environment, but at the same time they resemble each other in function
and marker expression, probably due to a common progenitor cell [19]. In addition to
the LCs, two DC subsets have in the murine system been characterized in the dermis of
the skin. One subset express langerin, a C-type lectin found to be involved in
endocytosis, and is positive for the integrin CD103 and negative for the integrin
CDI11b. Langerhans cells also express high levels of langerin, but the
langerin'CD103"CD11b” dermal DC is derived from the CDP progenitor and more
closely related with the lymphoid resident CD8a" DC. They are for example both
dependent on the cytokine fms-like tyrosine kinase 3 ligand (FIt3L) and the
transcription factors Batf3, interferon regulatory factor (IRF) 8, and Id2 for their
development [27-32]. Langerin’CD103°CD11b” dermal DCs and CD8o.” DCs are both
specialized in cross-presentation, they have the ability to produce high levels of
interleukin-12 (IL-12), and they have the capability to induce strong CDS" T cell
responses [33, 34]. The second DC subset of the skin is defined as langerin CD103"
CD11b" and rather interacts with the CD4" T cells in the draining lymph node [34]. The
origin of this subset has not been determined and the question remains whether it in fact
might be a heterogeneous population, consisting of both monocyte-derived cells as well
as cells derived from pre-DCs.

The expression of CD103 on DCs can be found on subsets in most peripheral tissue,
such as the intestinal tract, lungs, kidneys, and liver, and they seem to have similar
functions [30]. There are also CD103°CD11b" DCs in this tissue, but their origin is less
clear. Most probably they are a heterogeneous population, derived both from pre-DC
progenitors and monocytes.

Most research on DC subpopulations has been performed in mice, and less is known
about the human system. The dependence of transcription factors during cell
development however indicates that similar subsets are present in humans as well, as
deficiencies of these factors in humans lead to almost complete abolishment of
particular DC subsets in vivo [35, 36]. Recently, a subset of DCs in the human system
with similar features to the murine CD8a" and CD103" cells has been characterized
[37-40]. This subset expresses markers such as CD141, also known as blood DC
antigen (BDCA) 3, and C-type lectin (CLEC) 9A, and is found mainly in blood, but
also in the spleen, lymph nodes and bone marrow. It displays a similar ability as the
murine CD8a" and CD103" DCs to take up dying cell debris and cross-present antigens
to CD8+ T cells, as well as to produce pro-inflammatory cytokines, such as IL-12, and
is probably the human counterpart of these subsets. Two other conventional subtypes
described in human blood are the BDCA1" and CD16" DCs, and a CD14" and a CDla"
population have been described in skin, in addition to the LCs [41-43].



1.1.2.3 Plasmacytoid dendritic cells

The DC subsets considered as non-conventional DCs are pDCs and monocyte-derived
DCs. Even though pDCs, like the cDCs, are derived from CDPs, they are considered
non-conventional due to their non-DC morphology before activation and their
specialization in type I interferon (IFN) production. Indeed, before they were
characterized as DCs, they were named natural IFN-producing cells [44, 45].
Plasmacytoid DCs can be found both in blood and in inflamed tissue. Sensing viral
nucleic acids stimulates the pDCs to produce high quantities of type I IFNs, which put
the surrounding tissue in an anti-viral defence mode when cellular activities, such as
gene transcription and RNA translation, are down-regulated [46]. Activated pDCs have
the ability to present antigens and activate T cells, but not as efficiently as cDCs [47].

1.1.2.4 Monocyte-derived dendritic cells

Monocytes is a heterogeneous myeloid cell population that circulates in the blood. This
enables them to monitor all sites of the body and to quickly migrate into inflammatory
tissue, where they, depending on stimuli, can act both to enhance the inflammation and
to eliminate cellular debris and toxic agents [48, 49]. A subset of monocytes can
replenish the macrophage population in the tissue during inflammatory conditions [50],
while certain DC subsets in the tissue have been shown to be replaced by a different
monocyte subset than the one replacing macrophages [49]. An important step for DC
research was when monocytes were shown to acquire a DC-like phenotype in vitro if
cultured with the cytokines IL-4 and granulocyte-macrophage colony-stimulating factor
(GM-CSF) [51]. Human DCs no longer had to be produced from precursor cells
derived from bone marrow or cord blood, but could easily be obtained in the lab from
normal blood donations. Inflammatory monocyte-derived DCs have been described in
several infection models [52, 53] and it has been confirmed that monocytes can give
rise to DCs in vivo [21, 54], but their contribution to the steady state pool of tissue DCs
is still not completely understood.

1.1.3 Induction of adaptive responses

The main function of DCs is to bring a message from the periphery to lymph nodes and
the adaptive immune cells and translate it to them. It might be a word of calm, making
sure none of the interacting cells are immunoreactive against self-antigens, or it might
be instructions on how to attack a harmful intruder. The message the DC delivers has to
be very fine-tuned; an erroneous response can be highly detrimental and lead to too
weak, too strong, or misdirected immune reactions.

1.1.3.1 Dendritic cell activation

When a DC first migrates into the peripheral tissue, it is considered to be immature.
This is characterized by a steady state sampling of components of the surrounding
milieu, for example cells undergoing programmed cell death — apoptosis. It is also
characterised by a moderate lysosomal degradation efficiency, and low cell-surface
expression of MHC-complexes. However, at the sense of danger, the DC initiates a



series of events, which culminates in interaction and activation of T and B cells in
secondary lymphoid tissue.

Dendritic cells ingest antigens by a set of mechanisms. Small molecules are taken up
via endocytosis, often triggered by engagement of specific high-affinity receptors such
as C-type lectins, scavenger receptors, or Fc receptors, whereas larger objects are
phagocytosed when bound by specific receptors. In addition, DCs sense the
surrounding milieu by engulfing large quantities of extracellular fluids without initial
triggering of any specific receptor in a process called macropinocytosis [55, 56]. A
captured antigen does not necessarily induce DC activation per se, since an interaction
with activating receptors expressed by DCs is required. This will be discussed in further
detail in chapter 1.2 of this thesis. Certain pro-inflammatory cytokines have also been
shown to mature DCs [57-59], even though the functionality of this activation has been
questioned [60, 61].

When DCs are activated in the tissue, they first act to alert surrounding cells to the
threat and to sample more of the pathogen. By secreting chemokines to attract
additional immune cells, such as neutrophils, CD8" cytotoxic T lymphocytes (CTLs),
and NK cells, the local inflammation is boosted by DCs [13]. A brief period of
enhanced endocytosis enables the DCs to acquire more of the antigen for processing
[62], and an altered phagosomal maturation trims the antigens to be better presented on
MHC molecules [63]. Next, activated DCs lose their ability to take up antigens, up-
regulate chemokine receptors, and home to secondary lymphoid tissue [64-66]. During
the migration, DCs up-regulate expression of MHC-complexes, co-stimulatory
molecules, and additional receptors needed for interaction with and stimulation of naive
T cells [67], which are attracted to the DCs by secreted chemokines upon lymph node
entry [13].

However, activation is not a prerequisite for DC migration to the lymph node.
Dendritic cells only exposed to self structures, such as apoptotic cells, without the
presence of any activating agents can also acquire a migratory and antigen-presenting
phenotype and home to the lymph node to present self-antigens to T cells [12, 68-70].
This maintains peripheral tolerance by inducing an anergic or regulatory response in T
cells specific for the presented self-antigens. Indeed, if DCs would not stimulate
tolerance, a lethal autoimmunological response would spontaneously be initiated [71].

1.1.3.2  Antigen presentation

Protein antigens are presented to the immune system as peptides bound by MHC
molecules on the cell surface. All nucleated cells express MHC class I, which form
complexes with endogenous peptides derived from a fraction of the proteins
synthesized within the cell, while only APCs express MHC class II molecules. The
MHC class II molecule is mainly loaded with peptides derived from exogenous
antigens actively taken up by the APC [72].

Antigen presenting cells, often DCs, present their cargo on MHC class II molecules
to CD4" T cells in secondary lymphoid tissue, such as lymph nodes. An immunological
synapse is however only formed between the two cells if the APC presents the antigen
for which the T cell receptor is specific, thereby ensuring that only T cells reactive
against the particular antigen presented are engaged [73]. If, in addition to the peptide
presenting MHC class II complex, co-stimulatory molecules like CD80 and CD86 are
expressed by the DC, the CD4" T cell gets activated and upregulates the ligand for



CD40, which is an activating receptor expressed on DCs. Triggering of CD40 licenses
the DC to further activate CD8" T cells. The activated CD4" T cell starts producing
cytokines to help additional APCs presenting the same antigen as the T cell is primed
for, like B cells in the lymph node or macrophages in the peripheral tissue, to exercise
their functions. Activated CD4" T cells are therefore entitled T helper (Th) cells. There
are several different classes of Th cells, depending on the cytokines they are instructed
to produce. Three common classes of responses are defined as Thl, Th2 and Th17
responses [74].

If a cell is infected by an intracellular pathogen that is hijacking its protein synthesis
machinery, or has acquired a genetic mutation resulting in production of proteins with
altered sequence and function, these proteins are exposed on MHC class I molecules
and recognized by specific CTLs, previously primed and licensed by activated DCs in
the secondary lymphoid tissue. They are instructed to kill cells expressing MHC
complexes presenting the specific antigen, and thereby eliminating the threat of
infection or malignancy [75].

However, DCs do not get infected with all viruses or intracellular bacteria, and they
are not producing mutated proteins for presentation on MHC class I molecules. For a
long time, it was a mystery how CD8" T cells were primed for these types of antigens.
In 1976, Michael Bevan introduced the concept of cross-priming, when exogenous
antigens were cross-presented to CD8" T cells on MHC class I molecules [76]. Exactly
how extracellular antigens are transported onto the MHC class I molecules is still not
fully understood, but this pathway has been shown to be highly important for immune
defences against intracellular pathogens [77-80]. Dendritic cells commonly also cross-
present antigens derived from various malignancies [81], but the induced responses are
often not as strong due to the lack of additional activating stimulus when the antigen is
taken up [82].

1.1.3.3 Dendritic cell influences on adaptive responses

In secondary lymphoid tissue, DCs present their acquired antigens on MHC-complexes
to naive T cells. This is however not sufficient to induce a strong adaptive immune
response against the antigen. In addition to the first direct presentation of the MHC-
antigen complex, two extra signals are required [61].

Signal 1 is the specific antigen recognition by the CD4" T cell, which if not
accompanied by additional signals leads to anergy or death of the T cell. Signal 2 is
provided from the DC via its co-stimulatory maturation markers, such as CD80, CD86,
and additional B7 molecules. These ligands interact with the co-stimulatory receptor
CD28 on the T cell, allowing it to respond to the presented antigen. Finally, the type of
response that will be induced is determined by signal 3, provided by the DC as
expressed ligands or produced cytokines. When instructed, the CD4" T cell is primed
and differentiates to a T helper cell with functions specific for the particular condition
[83]. This is also important for CD8™ T cell priming and their ability to differentiate to
efficient CTLs [84].

If the interacting DC secretes cytokines such as IL-12, IL-18 and type I IFNs, a Thl
response is initiated, priming CD8" T cells to differentiate to CTLs and an immune
response against intracellular pathogens is induced. Cytokines such as IL-4, IL-5, and
IL-13 induce a Th2 phenotype, instructing the immune response to fight extracellular
parasites. Extracellular bacteria and fungi are generally fought with a Th17 response,



induced by IL-23, IL-6, and transforming growth factor (TGF)-B secretion from DC. In
addition, by producing IL-10, DC can induce regulatory T cells (Tregs), vital for
maintaining tissue homeostasis [74, 85, 86].

1.1.4 Therapeutic opportunities

Due to their central part in regulation of immune responses, DCs are attractive targets
for immunotherapy. Dendritic cells can be targeted both for stimulation in vaccine
strategies or for tolerance induction in transplantations or autoimmunity settings.

During vaccination, the goal is to elicit a specific and qualitative immune response
against an antigen. Traditionally, protective vaccines induce high antibody titers, which
are mostly efficient against extracellular pathogens, although some intracellular
microbes also can be defeated with this strategy. Mostly though, cancers and
intracellular pathogens, such as HIV, are difficult to eradicate with a humoral response
only. In these settings, a cellular immune response with efficient CTL priming is
favorable to eliminate infected or mutated cells. With the increased knowledge about
DC subsets and function, more specialized vaccines can be developed. One examined
strategy is to culture DCs ex vivo, either from monocytes [87-90] or CD34" progenitor
cells [91, 92], and to load them with the desired antigen and stimulus, and thereafter
infuse them back to the patient to stimulate an appropriate immune response. However,
this is a cumbersome and expensive technique and the efficiency of using primary DC
populations is being investigated [93]. Also, an alternative option is to direct the
vaccine straight to DCs in vivo, using constructs targeting receptors expressed on DCs.
This has been tested in several systems, targeting different receptors with varying
constructs of antigen and adjuvant [94-98]. There are however many questions that
remain to be answered, such as which DC subsets and what receptors are beneficial
targets to achieve the desired immune response. Different DC subpopulations express
different combinations of activating receptors and the response from the same type of
receptor can vary between different cells [99]. Indeed, exploration of pDCs and the
newly characterized human BDCA3" DC subpopulation as a target for vaccines will be
very interesting [93, 100, 101].

How DCs acquire their regulatory phenotype is not fully understood and needs to be
further investigated before tolerogenic DCs can be induced as a treatment strategy. It
has been shown though that targeting an antigen to DCs in vivo without the presence of
additional stimulus or adjuvant can induce tolerance against the antigen [102, 103], and
strategies to use DCs in transplantation settings to prevent graft rejection or to dampen
autoimmune responses would truly be very intriguing [104].

Dendritic cells can in certain settings have detrimental effects, by priming too strong
or erroneous kind of responses. During HIV infection, DCs are believed to be exploited
as Trojan horses, carrying the virus from the mucosal site of infection to the lymph
node, highly populated with T cells that HIV can infect [105]. Furthermore, DCs can
during inflammatory settings be stimulated by self-antigens without the immediate
presence of pathogens, which can lead to immune pathology, autoimmunity, and severe
tissue damage [106-109]. Strategies for dampening of these DC functions are therefore
needed.



1.2 DANGER ASSOCIATED MOLECULAR PATTERN

One of the key duties of the innate immune system is to recognize and respond to
foreign pathogens that might induce harm to the organism. To do so, a great variety of
germline-encoded receptors specific for conserved microbial structures associated with
danger have evolved. These so-called pattern recognition receptors (PRRs) recognize
danger associated molecular patterns (DAMPs) and are expressed both on
hematopoietic and non-hematopoietic cells. Examples of DAMPs are nucleic acids,
bacterial wall components, and certain endogenous proteins, such as heat shock
proteins (HSPs). A common term in innate immunology is pathogen associated
molecular pattern (PAMP), which is a generic term for PRR ligands derived from
pathogens. However, since both exogenous and endogenous substances have been
shown to engage and activate PRRs, the term DAMP is in this thesis used to describe
both types of ligands. Nevertheless, DAMP is also an abbreviation for Damage
Associated Molecular Patterns, indicating molecules secreted by the own body in
response to tissue damage, for example during infections. In this thesis, DAMPs
includes both self and non-self molecules [110].

1.2.1 Pattern recognition receptors

Since the discovery of the first PRR there has been so many additional receptors
characterized that they now are divided into families of related types of receptors. The
first group to be described was the Toll-like receptors (TLRs). Toll is a gene initially
described in Drosophila melanogaster, where its product plays an important role in
establishing the dorsal-ventral axis during embryogenesis [111]. The name “Toll” is
said to come from the surprised comment made by the researcher Christiane Niisslein-
Volhard when she first saw the oddly shaped fly larva expressing the mutated gene
[112]. A decade later, Jules Hoffmann discovered that Toll mediated protection against
bacterial and fungal infections [113], introducing the gene into immunology. Soon
after, Bruce Beutler assigned the murine 7/r4 gene to be the long searched for receptor
responding to the potent bacterial endotoxin lipopolysaccharide (LPS) [114]. This was
the beginning of a new era in innate immunology, and in the last decade, innate
detection of DAMPs has grown to a field in it self. In addition to the TLRs, C-type
lectin receptors (CLRs), RIG I-like receptors (RLRs), and nucleotide-binding domain
LRR-containing proteins (NLRs) have been identified as sensors for pathogens and
certain self-structures.

1.2.1.1 Toll-like receptors

There are ten human genes coding for TLRs. The receptors are localized at varying
sites in the cell, but all have a type I transmembrane protein structure with leucine-rich
repeats (LRRs) recognizing their respective ligands and a cytosolic Toll-IL-1 receptor
(TIR) domain to further activate intracellular signaling cascades when the receptor is
activated (Figure 1) [115]. Examples of ligands for each receptor, except for TLR10, to
which no ligand yet is described, can be found in Table 1. Roughly, the TLRs are
divided into two groups, depending on their cellular location. Due to their cell surface
expression, TLR1, 2, 4, 5, and 6 recognize extracellular DAMPs, while TLR3, 7, 8, and
9 are found in the endocytic compartments, where they sense nucleic acids [116].



For activation to occur, the TLR binds its ligand, undergoes conformational changes,
and forms either a homo- or heterodimer with an additional TLR. This recruits
intracellular adaptor proteins to the intracellular TIR domain, such as myeloid
differentiation factor 88 (MyD88), TIR domain-containing adapter-inducing interferon-
B (TRIF), TIR domain-containing adaptor protein (TIRAP), and TRIF-related adaptor
molecule (TRAM), which in turn bind and activate additional signaling molecules
[115]. All receptors, except TLR3, engage MyD88, either directly or via TIRAP. Toll-
like receptor 3 will be further discussed in chapter 1.2.2 of this thesis. The only receptor
that signals both via MyD88 and TRIF is TLR4. Upon ligand binding on the cellular
surface, TLR4 recruits TIRAP, which binds MyD88. This mediates initial activation of
the transcription factors IRFS5, nuclear factor k-light-chain enhancer of activated B cells
(NF-xB), and activator protein 1 (AP-1). Meanwhile, TLR4 is endocytosed and recruits
TRAM, which binds to TRIF, and a second path of signals is initiated, also mediating
late-phase activation of NF-kB and mitogen-activated protein kinases (MAPKs), which
are upstream of AP-1 signaling, and IRF3, a transcription factor important for
activation of type I IFNs [117-119]. For TLR4, both MyD88 and TRIF are needed for
full activation, but the remaining receptors only use one of the adaptor molecules.

Toll-like receptors are differentially expressed on various cell types. In DCs,
different subsets express a specific repertoire of different receptors [120, 121]. In
addition to this, the outcome of TLR stimulation also varies depending on which DC
subset it is expressed on [99]. Plasmacytoid DCs, for example, express fewer TLRs
than other DC subsets, but are highly responsive to single-stranded RNA (ssRNA) and
ssDNA via engagement of TLR7 and TLRY, respectively. These receptors signal via
MyD88, which forms a multiplex involving numerous kinases and signaling
components, among them IRF7 [122]. This transcription factor is constitutively
expressed in pDCs [123], and when activated, it is translocated to the nucleus and
mediates transcription of IFN-a. The activation complex also mediates activation of
additional transcription factors, such as NF-xB, IRF5, and AP-1, which induce
maturation and expression of pro-inflammatory cytokines like IL-6 and tumor necrosis
factor (TNF) a. In other DCs, TLR7 activation mediates maturation and pro-

. . . Synthetic triacylated
TLR1/2 Triacyl lipopeptides
/ acyitipopEpt lipoprotein
Peptidoglycan, .
TLR2 ult tidogl
Phospholipomannan rapure peptidoglycan
Cell surf:
e surtace TLR4 LPS, MPLA, Mannan Synthetic MPLA
TLRS Flagellin Recombinant flagellin
TLR2/6 Dlécyl Il'pop.eptlc.ies, Synthetlc dlacylated
Lipoteichoic acid, lipoprotein
TLR3 dsRNA Poly I:C
TLR7 ssRNA Guanosine analog
Endosomes
TLR8 sSRNA R848
TLR9 dsDNA CpG-ODN

Table 1: Human toll-like receptors examples and their ligands. Adapted from [115].
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inflammatory cytokine production, but only induces low levels of type I IFNs
compared with levels produced by pDCs.

In humans, pDCs are the only DC subset that expresses TLR9. B cells express the
receptor as well, but they are not primed to induce type I IFNs. An interesting
observation with TLR9Y signaling in pDCs is its dual functions depending on where in
the endosomal maturation process the signaling occurs. The ligand for TLR9 is ssDNA
oligonucleotides (ODNSs). Initially, it was believed that an unmethylated cytidine-
phosphate-guanosine (CpG) motifs in the DNA were needed to induce TLR9 activation
[124], but it was later shown that the CpG-motif was needed only in ssDNA with the
synthetic phosphorothioate (PS) backbone [125]. Natural DNA, based on a
phosphodiester (PD) backbone, activates TLR9 independent of sequence, while PS-
ODNS s can be either inhibitory or stimulatory, depending on sequence [125]. Still, PS-
ODNs containing CpG-motifs are the most commonly used TLRY agonist in
experimental settings, due to its higher stability compared to PD ODNs. Two common
ODNs are type A and type B ODNs. Type A CpG stimulates a high IFN-a response in
pDCs, while type B CpG to a greater extent induces maturation [126]. The reason for
this is explained by the ability of type A CpG to retain the endosomal compartment in
an immature stage for an extended time and thereby prolonging the IRF7-dependent
signaling, which takes place in early endosomes. Type B CpG, on the other hand,
rapidly mediates endosomal acidification, and thereby maturation, which leads to
proteolytic cleavage of TLR9 and the subsequent induction of pro-inflammatory
cytokines [127].

1.2.1.2  C-type lectin receptors

C-type lectins are transmembrane proteins containing a C-type lectin-like domain,
initially described in calcium-dependent carbohydrate-binding lectins, but later also
found in proteins not binding carbohydrates in a calcium-dependent manner. This is a
superfamily consisting of approximately one thousand members with assorted
functions, such as adhesion and endocytoses. In mammals, 17 CLR subgroups have
been identified, classified after their structure and phylogenetic relationships [128].
Subgroups II, V, and VI are expressed on myeloid cells, and these CLRs are receptors
with the ability to bind, and in some cases, respond to DAMPs [129]. Common
structures to be recognized are carbohydrates rich in mannose, fucose, and glycan,
often found in microbial cell walls, but also in endogenous structures.

For several CLRs, the intracellular signaling pathways is not known, but several
receptors have been shown to signal via immunoreceptor tyrosine based activation
motif (ITAM), expressed either by the receptor itself or via adaptor molecules
associated with the receptor [130]. When activated, ITAM is phosphorylated and spleen
tyrosine kinase (Syk) is recruited. Upon binding, Syk mediates activation of down-
stream transcription factors, such as NF-xB and AP-1 [131]. Engagement of CLRs
often results in Thl7 or Thl responses [132, 133]. Some CLRs express an
immunoreceptor tyrosine based inhibition motif (ITIM) with the ability to reduce
responses from other PRRs. An example of this is DC immunoreceptor (DCIR), which
acts to dampen TLR8-induced IL-12 and TNF-a production [134]. Even though several
CLRs cannot initiate cell activation by themselves, they sometimes act in collaboration
with additional PRRs. In contrast to DCIR, DC-specific intercellular adhesion molecule
3-grabbing non-integrin (DC-SIGN), which is expressed on dermal and mucosal DCs,
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acts to enhance the intracellular NF-kB activation and promote transcription of pro-
inflammatory cytokines when activated in parallel with TLR8 during binding of a
pathogen, even though it does not induce activation when triggered alone [135, 136].

In addition to activation, CLRs can also induce endocytosis when engaged, making
them suitable targets for in vivo antigen delivery in vaccine settings [137]. Examples of
targeted receptors are DEC-205, Dectin-1, and CLEC9A, which all are expressed on
several DC subsets [95, 96, 98, 138] and BDCA3" DCs in particular [40, 139]. When
triggered, DEC-205 has not been shown to have immunostimulatory functions per se,
while Dectin-1 stimulation can indeed induce DC maturation without additional stimuli
[132] and CLEC9A has been shown to mediate cross-presentation of endocytosed
antigens, although without induction of DC maturation [100].

1.2.1.3  Cytoplasmic DNA sensors and RIG-I-like receptors

In contrast to TLRs, which selectively are expressed by defined cell types, most cells
express RLRs. This is a group of DExD/H-box RNA helicases responding to viral
double-stranded RNA (dsRNA) present in the cytosol, and so far three receptors have
been described. Retinoic acid-inducible gene I (RIG-I) was the first receptor to be
characterized in this group [140], quickly followed by the identification of two
additional genes coding for DExD/H-box RNA helicases; melanoma differentiation
associated factor 5 (MDAS) and laboratory of genetics and physiology 2 (LGP2) [141].
Both RIG-I and MDAS express a C-terminal domain, a DExD/H-box RNA helicase
domain, and at their N-terminus, two caspase activation and recruitment domains
(CARDs). The CARD domains are however missing in LGP2. A repressor domain is
expressed in the C-terminal domain of RIG-I, which is missing in MDAS. Instead,
LGP2 is equipped with one and is hence believed to be a regulator of MDAS.

The RLRs recognize a variety of dsSRNA virus intermediates present in the cytosol.
Flavi viruses, such as dengue virus and West Nile virus, are detected by both MDAS
and RIG-I [142, 143]. Examples of viruses detected by RIG-I are influenza virus and
Epstein-Barr virus (EBV) [142, 144, 145], while picorna viruses are detected by MDAS
[145]. The receptors respond best to dsSRNA that have blunt triphosphorylated 5" ends,
which in the absence of 5" capping is a sign of non-self RNA [146]. Studies using the
synthetic dsSRNA analogue poly I:C show that MDAS preferably recognizes high
molecular weight poly I:C, while RIG-I responds to shorter sequences [147]. In
addition to RNA, DNA can indirectly also be recognized by RLRs. The enzyme RNA
polymerase III senses cytosolic DNA that is rich in A and T nucleotides, and
subsequently transcribes it to 5” triphosphate RNA, which is readily detected by RLRs
[148, 149].

In its inactive form, RIG-I is found with its repressor domain bound to the CARD
domain in a closed conformation [150]. Upon binding to a ligand, the repressor domain
releases CARD, which then interacts with the adaptor protein interferon-p promoter
stimulator 1 (IPS-1), located in the mitochondrial membrane. A signaling complex is
formed, involving members of the NF-kB family and IRF3, which upon activation is
translocated to the nucleus, where it initiates transcription of pro-inflammatory genes
and type I [FNs, respectively [151].

The RLRs enable most cells and tissue to produce type I IFNs in response to
cytosolic RNA, which additionally signals to the surrounding milieu to initiate an
antiviral defence. Interferon-f binds to the IFN-o/p receptor in an autocrine or paracrine
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manner and initiates the transcription of interferon-stimulated genes (ISGs), such as
IFN-a, IRF7, and additional PRRs [142].

Cytosolic DNA is sensed in a similar manner by recently characterized cytosolic
DNA sensors. These sensors have previously been described as components in various
intracellular type I IFN inducing signaling pathways, but are now shown to bind
directly and respond to transfected or viral dsDNA [152]. The two best characterized
members in this family are absent in melanoma 2 (AIM2) and DNA-dependent
activator of [FN-regulatory factors (DAI) [153-155].

1.2.1.4 Nucleotide-binding domain LRR-containing proteins

A growing family of cytosolic PRRs is the NLRs, with 22 members characterized so
far. The NLRs are divided into four subgroups, depending on their structure [156]. The
NLRs all express a nucleotide binding domain (NBD) and a LRR in their C-terminus.
Additionally, they express various domains at their N-terminus, which divides them
into the separate subgroups. The members in the NLRC-group express a CARD
domain, which can interact directly with other functional proteins containing CARD
domains. The NLRP-group contains a pyrin domain (PYD) that can interact with an
adaptor protein consisting of a PYD and a CARD domain, which in turn connects the
receptor with additional CARD-expressing effector proteins. The NLRB-group instead
has a baculovirus inhibitory domain, and the NLRX group consist of proteins with a
variety of N-terminuses that do not fit in the other groups. Among with two members in
the dsDNA binding pyrin and HIN200 domain-containing protein (PYHIN) family,
several, but not all, NLRs have the ability to form a large, multimeric structure called
the inflammasome [157], which has the ability to cleave pro-caspases into their active
form. Activation of caspase-1 can mediate inflammatory cell death and cleavage of pro-
IL-1P and pro-IL-18 to their active inflammatory forms [158-160].

So far, no actual interaction between NLR and ligand has been demonstrated, and
NLRs are not properly classified as receptors. However, several DAMPs have been
shown to activate NLRs and inflammasome formation. It is hypothesized that NLRs are
sensitive to changes in the cellular milieu [161]. Examples of inflammasome forming
NLRs are NLRP3 and NLRC4, which are expressed in myeloid and hematopoietic
cells, respectively [162, 163]. Generally, NLRP3 sense self-molecules like adenosine-
5'-triphosphate (ATP), cholesterol crystals and monosodium urate (MSU) microcrystals
if they are present in an erroneous compartment, such as extracellular ATP [164, 165].
Exogenous crystals and particles, such as asbestos and silica, can also induce NLRP3
activation, as well as the adjuvant Alum [165-167]. Microbial components have also
been shown to activate the NLRP3 inflammasome, but often in combination with other
NLRs, such as NLRC4. Additional structures that activate NLRC4 are the bacterial
protein flagellin [168, 169] and the bacterial type III secretion system [170]. A receptor
that mediates inflammasome formation upon recognition of dsDNA is the PYHIN
family member AIM2 [153, 171], which is activated in cells infected with vaccinia
virus and Francisella tularensis, but also in the presence of genomic dsDNA in the
cytosol [153, 172].
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1.2.2 Toll-like receptor 3

Toll-like receptor 3 recognizes dsRNA and resides in the endosomal compartment of
¢DCs and macrophages [107, 173-175], but can also be found in epithelial cells and on
the surface of fibroblasts [176, 177]. Furthermore, TLR3 expression has also been
detected in cells of the central nervous system (CNS) [178-180]. In accordance with the
other TLRs, TLR3 is formed by a LRR domain at the N-terminus, a trans-membrane
region and a cytoplasmic linker region that for TLR3 directs the protein to the
endosomal compartment upon translation, and cytoplasmic TIR domain at the C-
terminus. The LRR domain is shaped like a horse shoe and dsRNA binds to TLR3 in
the acidic environment of endosomes by interaction with the N- and C-terminus ends of
the LRR domain, which induces dimerization of two receptors with the ligand in
between and the C-terminal end in the center (Figure 1) [181, 182]. The close
interaction enables the two TIR domains to attract and activate TRIF [183-185], which
in turn mediates activation of IRF3, NF-«kB, and AP-1. This leads to DC
maturation and production of pro-inflammatory cytokines and IFN-B. Under certain
conditions, dsRNA-induced TRIF activation can additionally facilitate cell death via
the activation of receptor interacting protein 1 (RIP1) [186, 187].

Figure 1: The structure of a TLR3 homodimer bound to its ligand. Adapted from [181].

1.2.2.1 Detrimental effects of TLR3 activation

Toll-like receptor 3 has a role in sensing viral infections. The receptor detects and
mediates protective responses to viral genomes or their intermediates during
replication, such as during coxsackievirus or murine cytomegalovirus (CMV)
infections [188, 189]. Moreover, patients with loss-of-function mutations in 7LR3 or
genes involved in TRIF signaling have an increased risk of acquiring herpes simplex
encephalitis [190], indicating a protective role of TLR3 in CNS. However, patients with
deficiencies in TLR3-mediated responses are surprisingly healthy during other viral
infections [191], and in certain infections, a functional TLR3 gene can actually be
detrimental [192]. Indeed, immunopathogenic responses during viral infections have
been attributed to TLR3 in several studies [193-198]. Phlebovirus has for example been
shown to induce severe inflammation and liver damage in a TLR3-dependent fashion
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[193], influenza A virus infection in the lungs mediates increased tissue damage and
lethality in wild-type (wt) mice compared to TLR3™ animals [194], and EBV infection
leads to elevated levels of systemic viral dsRNA that mediate immunopathologic
disease [195]. In addition, TLR3 detects and responds to RNA released from dying
cells during sterile inflammation [107, 199-201], which can mediate pathogenic effect
in the lungs following hyperoxia-induced cell death [201], increased inflammation in
response to dying cells in rheumatoid arthritis [199], and increased risk for organ
rejection during liver transplantations following hepatitis C virus (HCV)-related
cirrhosis [200].

This implies that TLR3 might have an alternative function rather than initial sensing
of primary infection. Toll-like receptor 3 is highly expressed in cells specialized in
cross-presentation [40, 202, 203], and has indeed been shown to mediate antigen-
specific responses during exposure to dying cells [39, 204]. Also, type I IFNs, which
are induced by TLR3 activation, have been linked to a Thl type of response and
activation of antigen-specific CTLs [205, 206]. Hence, TLR3 might be important in
shaping of adaptive immune responses.

1.2.3 Dangerous death

In immunology, it was long believed that immune responses were only initiated upon
the recognition of non-self molecules. However, the realization that necrotic cells,
dying a dramatic death with ruptured cellular membranes and nucleic DNA and
cytosolic content shattered into the extracellular surroundings, mediate activation of
DCs and have the ability to initiate adaptive immune responses towards accompanied
antigens contradicted this theory [106]. Since then, several mechanisms to explain this
have been proposed, and it is today accepted that endogenously produced molecules
can have immunostimulatory effects.

1.2.3.1 Cell death

A cell can die in different ways, depending on location and stimuli, but the most
common are apoptosis and necrosis [207]. In addition, pyroptosis has recently been
described as an inflammatory type of cell death [207, 208].

Apoptosis is a programmed type of cell death involving activation of caspase 3 and
typical morphological changes, such as chromatin condensation, nuclear fragmentation,
and plasma membrane blebbing [209, 210]. During normal conditions, the apoptotic
cell displays so called ‘eat me’ signals, which is recognized by surrounding cells and
phagocytes rapidly engulf the dying cell [211]. But if not cleared, the apoptotic cell can
not keep its membrane integrity and becomes secondary necrotic and hence
immunostimulatory [212, 213]. Apoptosis is a natural phenomenon, constantly
occurring and clearing billions of cells in our bodies every day, either due to extrinsic
stimulus, like receptor mediated apoptosis, or intrinsic, for example in response to
DNA damage. This was long considered to be a silent process, leaving no marks, but
emerging evidence indicates that apoptosis is important in maintenance of self-
tolerance [214-216]. When occurring in immune privileged sites, apoptosis induces
tolerance, even to viral antigens [217], and in correlation to this, DCs phagocytosing
antigen-loaded apoptotic cells are shown to induce tolerance, rather than immune
activation [103]. Moreover, immunization with apoptotic cells from the donor prior to
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organ transplantation increases survival of the graft without addition of any immune
suppressants [104]. Apoptosis is not equivalent to tolerogenic responses though.
Stressed tumor cells can when undergoing apoptosis induce an immunogenic response
[218-222], and activated apoptotic PBMC and T cells have the ability to induce
maturation of DCs in vitro and anti-viral responses in mice immunized with HIV-1
DNA in vivo [223-226]. Also, particular chemotherapeutics have been shown to induce
expression of immunogenic find-me signals on the cellular surface of exposed tumors
[227], enhancing the phagocytosis and activation of DCs. Furthermore, even though
apoptotic cells have been shown to induce anti-inflammatory cytokines in macrophages
[228], this response is overcome if the apoptotic cell has been exposed to infection
[204, 229, 230].

Necrosis, on the other hand, occurs during tissue trauma and is an unregulated event
where the cell membrane integrity is lost, and an influx of fluids due to the higher
intracellular salt concentration mediates swelling of the cell and organelles, which
culminates in the release of the intracellular content to the extracellular space [207].
This event does indeed induce inflammatory responses and DC maturation in a sterile
environment [106, 231, 232], due to the release of various intracellular DAMPs [233].

In contrast to apoptosis, pyroptosis is mediated via caspase-1, but still results in lost
membrane integrity and release of DAMPs [159, 207]. Pyroptosis is mediated via
activation of the inflammasome and includes secretions of active IL-1f and IL-18 [157,
159, 160].

1.2.3.2  Endogenous DAMPs

Although necrosis has been known to induce inflammation since the signs of
inflammation was first documented, its ability to prime adaptive responses has not been
investigated until recently [106]. Mediators of inflammation that were characterized
early on were HSPs, uric acid, and high-mobility group box 1 (HMGBI) protein.
Stressed cells upregulate HSPs, to ensure correct folding of newly translated proteins,
which during necrosis or treatment with certain chemotherapeutics are subsequently
released [218, 233-235]. A suggested receptor mediating this effect is TLR4 [236]. Uric
acid is normally present in high levels in the intracellular compartments, but is also part
of the extracellular milieu. Upon necrosis, the intracellular content is released and the
elevated concentration in the sodium rich tissue interstitium leads to formation of MSU
crystals [237], which for example are found in high levels in patients suffering from
gout [238], and have the ability to induce the NLRP3 inflammasome [164].
Additionally, ‘find me’ molecules secreted by apoptotic cells can also activate the
inflammasome, such as ATP [165, 239]. Release of the nuclear chromatin binding
protein HMGBI induces activation of myeloid cells and mediates sterile inflammation
[240, 241]. The protein is bound to the receptor for advanced glycan end products
(RAGE) and is suggested to induce activation via TLR2 and TLR4 [242-244], but can
also complex with self nucleic acids to promote activation via TLR9 [245].
Host-derived nucleic acids also induce signaling via additional nucleotide binding
PRRs. Double-stranded DNA can activate the inflammasome via binding of AIM2
[153, 171], mitochondrial DNA has been shown to engage TLR9 [246], and both TLR7
and TLRY have been implicated in systemic lupus erythematous (SLE), since pDCs are
activated to produce IFN-o when cultured with sera from SLE patients [108, 109].
Binding of RNA or DNA by the antimicrobial peptide cathelicidin has also been shown
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to activate these receptors [247, 248], while TLR3 in several studies has been shown to
sense endogenously derived RNA [107, 199, 201, 249].

1.3 HIV

HIV (human immunodeficiency virus) was discovered in 1983 by Frangoise Barré-
Sinoussi and Luc Montagnier [250]. This was shown to be the causing agent of
acquired immunodeficiency syndrome (AIDS) — an epidemic of opportunistic
infections and rare cancers not controlled due to a severely weakened immune system.
This syndrome was initially detected in young healthy men who had sex with men, but
soon also in other groups [251]. Due to its reverse transcriptase (RT) activity, the virus
was characterized as a retrovirus, and later more specifically classified as a lentivirus.
Shortly after the discovery of HIV, an additional virus to cause AIDS was identified in
two West African patients [252]. It had similar features as HIV, but differed by 55 % in
sequence and was antigenically separate. Since these discoveries there are two viruses
in the lentiviral group of human retroviruses — HIV-1 and HIV-2.

Today, the viruses are mainly transmitted sexually via heterosexual intercourse.
Before a proper HIV screening methodology was set up, a large group of patients
receiving infected blood products were also infected. Still, intravenous drug users
transmit the infection by sharing infected needles. Approximately 34 million people are
living with HIV today, and nearly 30 million have died from the infection by the end of
2010 [253]. The number of intervention strategies for controlling the epidemic has
increased over the years. ABC — Abstinence, Being faithful, and Condoms — was the
only prevention strategies until the first anti-retroviral drug was released in 1987.
However, viral resistance to the drug soon became a problem. Combinational therapy
with three or more anti-retroviral drugs was introduced in 1996, and it led to markedly
increased life span of infected patients and decreased the transmission to sexual
partners. Since then, several prevention strategies have been developed with varying
degree of effectiveness, such as treatment as prevention, male circumcision,
microbicides, and even an so far unlicensed semi-effective vaccine concept [254].

1.3.1 The life cycle of HIV-1

HIV-1 is a small, enveloped virus containing two sSRNA copies as its genome. It codes
for nine genes, which translates to 15 separate proteins with distinct functions (Table
2). The three polyproteins Gag, Pol, and Env are proteolytically cleaved into smaller
proteins. Gag and Env encodes for structural proteins, like the viral capsid and gp120,
respectively, while Pol encodes for the enzymes necessary for HIV-1 infection [255].

1.3.1.1 The replication cycle

The primary host cells of HIV-1 are the CD4" expressing cells [259-261], such as T
cells, DCs, and macrophages, and they can either be directly pruned to produce large
quantities of new viral particles, or act as a latent reservoirs for the virus, to be
reactivated much later instead. However, CD4 molecules are not sufficient for infection
to occur. The cell membrane-bound CXC chemokine receptor 4 (CXCR4) or CC
chemokine receptor 5 (CCRS) is also necessary for viral entry into the cell, and
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depending on what co-receptor the virus isolate uses, it is defined as X4 or RS tropic
[262-266]. In addition, there are several CLRs expressed on DCs that have the ability to
bind HIV-1, such as DC-SIGN, DCIR, and the mannose receptor. However, interaction
of HIV-1 with CLRs is not strong enough to mediate viral penetration of the cell
membrane and direct, cis-infection [267-269]. Instead, HIV-1 is endocytosed by DCs
via binding of these CLRs. The virus has the ability to inhibit endosome maturation,
and can in a time span of a few hours also facilitate release from the carrying cell [105,
270]. This is called trans-infection, and is considered to be an important route for the
virus to get from the site of infection into the lymph nodes.

Upon entry into a host cell, HIV-1 first docks to CD4 with the gp120 part of Env.
An interaction with several co-receptors mediates conformational changes in Env, and
enables gp41 to penetrate the cell membrane and subsequently deliver the viral capsid
into the cytoplasm [271]. In the cytosol, the HIV-1 genome and proteins exit the capsid.
While still attached to the core proteins, the viral genome is transcribed into DNA by
the viral RT. First, a ssDNA minus-strand is formed, which is used as a template for
synthesis of the complementary strand of the viral dsSDNA molecule. The dsDNA
forms a pre-integration complex with the viral matrix protein, integrase and Vpr and is
transported into the nucleus. In the nucleus, the integrase inserts the viral DNA into
transcriptionally active regions of the host genome. The inserted viral sequence is
referred to as a pro-virus [255, 257, 272].

HIV-1 infects HIV-1-specific CD4" T cells to a high extent due to their interaction
with infected DCs that are presenting endocytosed HIV-1 antigens [273, 274]. This
leads to a reduction of HIV-1-specific adaptive responses and further deteriorates the
ability of the immune system to control the infection. HIV-1 is dependent on binding of
activated NF-kB to its 5 long terminal repeat (LTR) promoter to initiate transcription
of the pro-virus [275-277], and this occurs when the T cell binds to an activated,
antigen-specific APC [278]. The infection of DCs is, on the contrary, reduced upon cell

Gene | Protein/Designation Function
Matrix/pl17 Structural protein
Capsid/p24 Structural protein
s Nucleocapsid/p7 Protection of viral RNA genome
po Viral assembly before budding
Reverse transcriptase p66, p51 Transcription of viral ssRNA to viral dsDNA
ol Protease/pl0 Sﬁf?;anslational processing of viral proteins in the immature
Integrase/p32 Integration of viral DNA into the host genome
. Vifip23 Sir;)ig:::; I(;fb tlt;e viral genome from host restriction factors,
vpr Vpr/pl5 Transportation of the viral genome to the nucleus
tat Tat/pl4 Pro-virus transcription
rev Rev/p19 Regulation of viral mRNA processing
vpu Vpu/pl6 CD4 degradation, CD1d inhibition
Envelope surface protein/gp120 Binding of target receptors
o Envelope transmembrane protein/gp41 Penetration of cell membrane and mediation of viral entry
wp_| e e A
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Table 2: The genes, proteins, and protein functions of HIV-1. Adapted from [255-258].




activation [279, 280]. However, activation of NF-«B still has to occur for pro-viral
transcription in immature cells. This is mediated via cooperative signaling from TLR8
and DC-SIGN, but without induction of DC maturation [136, 281]. The initial proteins
to be transcribed from the pro-virus are the regulatory genes Tat, Rev, and Nef. These
then regulate transcription of additional HIV-1 components and facilitate the assembly
of the HIV-1 structural proteins. Finally, new ssRNA HIV-1 strands are formed and
incorporated into new virion particles together with essential viral and host proteins.
Before the virions bud off the cell, the host cell expression of CD4 is down-regulated,
which prevent re-infection of the same cell [255, 257, 271, 282].

1.3.1.2  Routes of transmission

Viral particles and infected cells can be found in blood, breast milk, and genital fluids.
Other body fluids, such as tears, urine, and sweat are not infectious. Hence, the main
routs of viral transmission are sexual, mother-to-child, and via blood [283].

Sexual transmission is the most common route of infection, and the male-to-female
transmission route is modelled in human ex-vivo explant models and in vivo in macaque
studies of the infection with simian immunodeficiency virus (SIV) [284-288]. It is not
clear whether HIV-1 is transmitted predominantly via infected cells or free viral
particles [284], but most experimental studies have been performed with free virus.
Known though is that a single founder virus most often initiates the HIV-1 infection,
which successfully replicates and facilitates systemic spread [289]. After infection, the
virus rapidly mutates and adapts to the new host [290]. At the mucosal site,
transmission can occur either through intact epithelial layers or via small ruptures,
which is not uncommon during normal intercourse [291]. The cells to first encounter
the virus are likely DCs, in particular LCs, or T cells, and the initial viral replication
can occur at the mucosal site, or, if the virus is captured in frans, in the adjacent lymph
node. HIV-1 does not infect epithelial cells, and it is likely that the virus is transported
over intact barriers via grabbing of LCs, which have the ability to stretch out their
dendrites in between the epithelial cells [292], or via transcytosis through the epithelial
cell layer [293]. The CD4" T cells, however, outnumber the DCs in mucosal tissue,
which make them a more likely target during epithelial layer breakage [294]. Most
mucosal CD4" T cells are in an unactivated state, but HIV-1 has been shown to infect
this population as well, although to a lesser extent [295, 296]. Ongoing mucosal
immune activation, such as during infection of other sexually transmitted diseases, is
correlated with higher risk of HIV-1 transmission [297], suggesting that the first cells to
be infected in the mucosa indeed are the activated T cells.

Mother-to-child transmission of HIV-1 either occurs during birth, when the child
swallows viral particles present in vaginal fluids and blood, or through breast-feeding,
since HIV-1 is secreted into the breast milk. The initial cells to be infected in the new
born child are probably located in the tonsils or gingiva, but within the first hours to
days after birth, HIV-1 might survive the route through the intestines and infect cells in
the small intestine [298]. HIV-1 transmission does not normally occur during oral sex,
since anti-viral factors are present in the human saliva [299].

If HIV-1 is introduced directly into the tissue, penetrating the epithelial barriers via
needles for example, the infection is more commonly initiated by several founder
viruses [300]. This could theoretically be both detrimental and beneficial for the host. A
greater genetic variation of transmitted viruses would enhance the risk for immune
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escape, while the founder viruses at the same time might be less resistant to the host
antiviral restriction strategies than the clones managing to penetrate mucosal barriers
and thereby less potent to initiate a swift immune escape.

1.3.2 Host restriction factors

Physical barriers, such as mucus and epithelial layers, are the first obstacles HIV-1
needs to overcome during sexual transmission. In addition to this, anti-viral substances
and chemokines blocking the co-receptors for HIV-1 are secreted, which further
prevent infection from occurring [298]. However, if cellular infection does take place,
the outcome of the infection is highly dependent on the initial restriction that limits the
viral spread. Indeed, if a cell is infected with a virus unable to escape the host
restriction mechanisms, it is likely that the infection will not disseminate.

Cells have evolved several defence strategies to cope with retroviral infections.
Factors that were early characterized to restrict HIV-1 infection are the ISGs
apolipoprotein B mRNA-editing enzyme-catalytic polypeptide-like (APOBEC) 3
molecules, tripartite motif (TRIM) 5a, and tetherin [301-303]. Recently, several
additional factors involved in restricting the replication of HIV-1 have been identified,
such as SAM domain and HD domain-containing protein (SAMHD) 1 and zinc-finger
antiviral protein (ZAP) [304-306]. Furthermore, large, genomic screenings utilizing
small interfering RNA (siRNA) techniques have identified a great number of additional
factors involved in HIV-1 restriction [307]. Further evaluation of these factors will
provide extensive understanding on how HIV-1 replication is inhibited, and perhaps
overcome, in vivo.

The underlying antiviral mechanism of TRIMS5a is its ability to mediate pre-mature
un-coating of the viral capsid when HIV-1 enters a cell, which interferes with the RT
function and inhibits viral replication. It seems not to be highly significant in the
restriction of HIV-1 in humans, even though a certain mutation in the TRIMS5 gene has
been proposed to be protective against HIV-1 acquisition [308, 309]. In non-human
primates though, TRIMS5a plays an important role in restricting simian
immunodeficiency virus [310]. The newly identified restriction factor SAMHDI also
inhibits HIV-1 infection on a pre-integration level. A recent study shows that SAMDHI1
regulates the intracellular pool of deoxynucleoside 5'-triphosphates (ANTPs) [311]. By
reducing the levels of ANTP, SAMHDI1 prevents RT to properly replicate the viral
genome. Acting to restrict HIV-1 on a post-integration level, ZAP rather detects
transcribed viral RNA and marks it for degradation. Tetherin acts late in the viral life
cycle and restricts the release of HIV-1 and other enveloped viruses by tethering them
to the cellular surface and preventing the budding of new viral particles [312, 313]. The
viral protein Vpu however marks tetherin for intracellular degradation, thereby
counteracting its effect.

1.3.2.1 The APOBECS3 family

One of the first restriction factors for HIV-1 to be characterized was APOBEC3G
[301]. It belongs to a family of DNA deaminating enzymes shown to be important
restriction factors for the second round of infection by HIV-1. During the assembly of
new virus particles in the host cell, APOBEC3G molecules are incorporated and
subsequently accompany the virions to the next cell to be infected. There, APOBEC3G
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induces hypermutations in the viral genome by deaminating cytosines to become
uraciles during RT synthesis of the viral DNA minus-strand. This facilitates
incorporation of adenine on the DNA plus-strand and consequently introduction of G-
to-A mutations in a GG-context in the incorporated provirus [314-317]. Mutated viral
DNA containing uraciles, which normally only are found in RNA, is recognized and
degraded by the host cell, preventing integration to occur [318]. If integration still does
take place, the mutated sequence gives rise to truncated transcripts and translated
proteins with a high degree of errors [319]. It has been speculated that this increased
mutation rate could possibly contribute to the high genetic variability utilized by HIV-1
to escape adaptive immune recognition, but a recent study concludes that the
APOBEC3G-induced mutations are too prejudicial for the virus and likely result in a
dysfunctional pro-virus [320]. Another proposed mechanism of APOBEC3G is an early
inhibition of reverse transcription by reducing the presence of the primer needed for
initiation of the transcription [321]. The HIV-1 protein Vif counteracts these events by
targeting APOBEC3G for degradation via hijacking of the host’s ubiquitin-proteasome
pathway, and thereby preventing the enzyme from being incorporated into new virions
[322].

In addition to APOBEC3G, other APOBEC3 molecules also have been ascribed
antiviral activities. For instance, APOBEC3B and F have strong antiviral effects [323-
325], while APOBEC3C and D/E are weaker in their ability to insert mutations, but do
affect HIV-1 transcription [326, 327]. For long, APOBEC3A was considered only to
display weak antiviral properties, but this molecule has recently been shown to be
highly active in myeloid cells, such as DCs [328], and it is also less sensitive to Vif-
mediated degradation [329], thus making it an important player in the host restriction
against HIV-1.

1.3.3 The type | interferon response

In 1957, Alick Isaacs and Jean Lindenmann identified the causing factor behind a
phenomenon called viral interference, which had been observed in both animals and
plants. It dates back to Edward Jenners observation in 1804 that formation of vaccinia
virus lesions was prevented in patients with active herpes infection. The factor was
hence called interferon [330], and is today known as the type I IFN family [331]. The
type I IFN family consists of 17 members, of which 13 are partially homologous
variants of IFN-a, while separate genes encode IFN-f, -¢, -k, and -®. They all bind to
the IFNo/B receptor, but with varying affinity. The IFNo/B receptor can be found on
virtually all cell types, but the response following engagement varies.

1.3.3.1 Induction of type I [FNs

Recognition of viral and microbial, but also self, nucleic acids by TLRs, RLRs, NLRs,
and cytoplasmic DNA sensors initiates an interferon response [118, 122, 151, 155, 183,
199, 332-334]. Toll-like receptor 7 and 9 have in pDCs the ability to induce high levels
of IFN-a release via the MyD88 pathway due to the constitutive expression of IRF7
[123]. However, remaining type I IFN response-inducing PRRs are dependent on the
activation of IRF3, which facilitates production of IFN-B and IFN-04 [335]. When
released, these cytokines bind to the IFN-o/p receptor and stimulate an auto- and
paracrine production of additional type I IFNs.
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Triggering of the IFN-0/B receptor mediates activation of members of the signal
transducer and activator of transcription (STAT) family [336]. Activated STAT1 and
STAT2 form a heterodimer that subsequently binds IRF9 and forms a complex called
IFN-stimulated gene factor 3 (ISGF3). This complex translocates into the nucleus,
where it initiates transcription of various ISGs [337]. Furthermore, STATs can form
homodimers and activate additional genes, which are mediating both pro- and anti-
inflammatory responses [331].

1.3.3.2  Effector mechanisms for type I [FNs

The interferon response is most prominent during viral infections. In response to
infection, the targeted cell secretes type I IFNs, which instruct surrounding cells to
prevent production of viral proteins by shutting down RNA translation. Interferon-
stimulation also facilitates detection and degradation of viral genomes or their
intermediates by activated intracellular RNases, and a hostile intracellular milieu is
created by elevated production of nitric oxide [338]. Moreover, antigen processing and
presentation is enhanced, with elevated MHC class I expression and enhanced peptide
loading [339], and cells are sensitized to receptor-mediated apoptosis [340]. HIV-1 host
restriction factors APOBEC3, TRIMSa, and tetherin are other examples of ISGs
upregulated by interferon signaling [301-303]. An additional effect of type I IFNs is
activation of NK cells, which have the ability to recognize and kill cancer cells or
virally infected cells [341, 342].

Type I IFNs can also be beneficial against intracellular bacterial infections, for
example during Chlamydia infection [343, 344], but more common is that type I IFNs
obstruct the immune defence during extracellular infections. Type I IFNs have been
shown to be detrimental during Francisella tularensis and Listeria monocytogenes
infections [345-347], and it has been shown that virulent bacterial strains induce higher
type I IFN responses than less virulent strains [348]. A type I IFN response can during
bacterial infection increase susceptibility to apoptosis [347], or facilitates recruitment of
inadequate type of immune cells to the site of infection. This can be seen following
influenza infection, when the recruited monocyte-derived DCs mediate immune
pathology and the lack of neutrophil infiltration enables elevated bacterial growth [349,
350]. In addition, type I IFNs favor Thl responses, but suppress IL-17 secretion and the
formation of adaptive Th17 responses [346, 351].

The main regulator of Thl responses is IL-12 and its activation of STAT4 followed
by the subsequent activation of the transcription factor T-bet [86, 352]. In addition, type
I IFNs also induce STAT4 activation, hence shifting the adaptive response in the Thl
direction, but not as strongly as IL-12 [353]. However, in the combination with
additional Thl promoting cytokines, such as IL-18, type I IFNs are able to induce
sufficient STAT4 activation for a robust Thl response [354]. Type I IFNs can also
inhibit IL-4-driven Th2 responses, possibly via STAT2-mediated retention of STAT6
in the cytosol after activation [355, 356], and reduce Th17 development [346, 351,
357]. In addition, cross-presentation of antigens to CD8" T cells are enhanced by type I
IFNs [339, 358], and a central memory phenotype of CTL development is enhanced by
direct type I IFN-stimulation of the CD8" T cells [359, 360].
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1.3.3.3 Type I IFNs during HIV-1 infection

The role of type I IFNs in HIV-1 infection is contradictory. High levels of IFNs are
detected early in acute HIV-1 infection, indicating that the virus is readily recognized
by the innate immune mechanisms [294, 361]. However, even though type I IFNs have
anti-viral effects on most non-hematopoietic cells, they also act to activate immune
cells, like DCs [59]. In the case of HIV-1, which facilitates activated immune cells to
disseminate, a strong type I IFN response can in this setting rather become detrimental
to the host. High systemic levels of type I IFNs produced by pDCs sensitizes CD4" T
cells for activation-induced cell death, which contributes to a decrease also in the
number of bystander, non-infected cells [340]. Furthermore, a difference in type I IFN-
response is observed between sooty mangabeys, a natural host of SIV with high viral
levels but low type I IFN levels and virus-induced pathogenesis, and rhesus macaques,
which are not a natural reservoir for the virus and do develop AIDS [362]. Nonetheless,
IFN-treatment of HCV patients co-infected with HIV-1 results in a reduced viral load
[363], and a similar approach in HIV-1 patients indicates that IFN-a treatment indeed
reduces viral load in HIV-1 patients [364]. In addition, elevated levels of IFN-a in the
vaginal mucosa of uninfected commercial sex workers seems to be protective from
acquiring HIV-1 infection [365]. The production of type I IFNs is reduced during
established HIV-1 infection [366], denoting that HIV-1 acts to reduce release of the
cytokine. Indeed, IFN-a treatment upregulates the expression of the endogenous
restriction factors APOBEC3G and F and tetherin in HCV/HIV-1 co-infected patients
[367], and the disease progression would most likely be much swifter without the
protective effect of type I IFNs.
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2 AIMS OF THE THESIS

The general aim of this thesis was to investigate the monocyte-derived DC responses to
DAMPs, such as TLR ligands, apoptotic cells, and IFN-a, and to characterize how this
can modulate HIV-1 infection. More precisely, the aims were:

- To investigate the effect of combination of different TLR ligands on DCs

- To determine the mechanism behind the DC-stimulatory effect of activated
apoptotic PBMC

- To determine the mechanism behind activated apoptotic cell-induced HIV-1-
resistance in DCs

- To investigate the effect of [IFN-a on DCs in relation to HIV-1 infection
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3 RESULTS AND DISCUSSION

3.1 MODULATING DENDRITIC CELL RESPONSES

Since the discovery of DCs and PRRs, the field of immunotherapy has shifted from
empirical to strategic. The knowledge about DC function and PRR expression has
enabled specific vaccine adjuvants to be developed [368, 369], and novel routes of
antigen delivery to be explored [89-91, 95, 100]. By this day, a therapeutic cancer
vaccine based on the patients own APCs loaded with tumor antigen ex vivo is licensed
for treatment of prostatic cancer [370], and other projects are in development [371].
However, the requirements for therapeutic induction of effective adaptive immune
responses by activated DCs are still not fully understood, and further research is needed
to achieve better fine-tuning of immunomodulatory approaches.

Our immune system clears and protects us from harmful threats every day, elegantly
balancing between immunopathology and immune escape. But occasionally, a
pathogen evades the immune defence and mediates destructive damage, or the immune
system breaks tolerance and turns on self-structures in a chronic inflammatory
responses. Will it be possible for us to effectively direct the immune system towards
the pathogen, or repair the broken tolerance against self? And where do we start? With
a central role in cross-talk between the innate and adaptive immune systems, the
dendritic cell is a promising target.

3.1.1 Inhibiting dendritic cell activation (Paper I)

To fight an infection, the innate immune system most often inflicts harm on cells of the
host as well. This is partly to contain the infection and prevent it from disseminating
systemically, by facilitating the scorched earth policy and the killing of all potential
nearby targets [372], partly to clear infected or transformed cells from transferring the
disease. We normally identify inflammation as red, swollen, warm, painful, and
distressed local tissue or as a systemic fever response. In severe infections, the damage
to the tissue can be so advanced that its function is attenuated after clearance of the
infection. This kind of response can however also occur in low-pathogenic infections,
where the immune response itself is the damage-causing agent. In addition, responses
to harmless non-self antigens, such as allergens or the normal flora, are misdirected
immune reactions that can inflict tissue damage. In autoimmunity, the immune system
attacks self-structures without the presence of a triggering pathogen, although the
primary initiation of such responses might be pathogen-driven.

Treatments of allergy and autoimmunity are often focused on dampening of
mediators that induce the symptoms, such as the release of histamine or pro-
inflammatory cytokines, but not on the initial triggering of the immune response. When
studying immune regulation, several innate mechanisms for inhibition of immune
activation have been described. Engagement of TLR2 has been shown to inhibit TLR3-
mediated responses to dying cells in wounded skin, and NLR, TLR2, and TLR4
signaling is associated with decreased inflammation and increased tissue regeneration
following damage to the epithelia in the gut [373-375]. Indeed, by identifying the
pathways involved in immune pathogenesis, they can be directly targeted to prevent the
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release of pro-inflammatory mediators in the first place. An example of this strategy is
the development of inhibitors targeting TLR7 to prevent type I IFN-driven immune
exhaustion during HIV-1 infection [376]. Also, in autoimmune settings like SLE or
psoriasis, the pathogenesis is partly mediated by recognition and responses to self-DNA
and RNA and an enhanced IFN-a response, and specific inhibitors for TLR7 and 9 are
being developed to dampen this pathway [108, 109, 377, 378]. Similarly, in conditions
such as rheumatoid arthritis, necrotic cells act to stimulate TLR3 on fibroblasts, which
leads to the release of inflammatory mediators and enhanced inflammation [199], and
in lupus nephritis, expression of TLR3 is increased on mesangial cells and APCs and is
believed to aggravate the condition [379].

3.1.1.1 Inhibition of TLR3-mediated cell activation

Toll-like receptor 3 is, as discussed in chapter 1.2.2.1 of this thesis, involved in several
immunopathogenic settings, both in sterile inflammation [199-201, 249, 379, 380], and
during infections [192-198]. Inhibition of TLR3 could possibly have an ameliorating
effect in these conditions and several approaches to block TLR3 signaling have been
attempted [381-384]. However, the difference between TLR7/9 inhibitors and TLR3
inhibitors is that while TLR7 and 9 are sequence-specific in their binding of synthetic
ligands, TLR3 seems to respond to dsRNA regardless of sequence. Approaches to find
specific RNA aptamers with high binding affinity to the TLR3 RNA binding sites in
the LRR domain of the receptor have identified sequences with strong affinity to
purified TLR3 ectodomains, but with no effect on TLR3 expressing cells [383]. In
addition, screenings of small molecule inhibitors have identified compounds with the
ability to reduce TLR3 activity, but they have so far only been tested on murine cell
lines in vitro and their effect in the human system is not known [382]. A blocking
antibody targeting murine TLR3 has also been developed [381], but the efficiency of
this approach has not yet been tested on human TLR3. In addition, the ability to inhibit
endosomally located TLR3 with an antibody might be troublesome

In paper I of this thesis, we have characterized ssDNA-ODNs as a potential
inhibitor of TLR3-mediated monocyte-derived DC activation. Paper I started as an
unexpected finding when the combined effect of ligands to different nucleic acid-
sensing TLRs on DCs was tested. Although most studies on TLR expression in humans
conclude that TLR9 is mainly expressed on B cells and pDCs, there are some reports
on functional TLR9 expression in monocyte-derived DCs [385], which made us
investigate the effect of a TLRY ligand in our monocyte-derived DC cultures. Ligands
used were for TLR3 the synthetic dsSRNA analogue poly I:C, for TLR7/8 the chemical
imidazoquinoline compound R848, and for TLRY a synthetic type B ssCpG-ODN. As a
positive control for DC activation, the TLR4 ligand lipopolysaccharide (LPS) was used,
while untreated DCs in cell culture medium were used as negative control. Upon
activation, DCs upregulate the maturation markers CD80 and CD86, which are
important in transmitting signal 2 to the T cell during antigen presentation [83]. On
LPS-treated DCs, close to 100% of CDla" DCs expressed these markers, as measured
by flow cytometry, and a combination with additional TLR ligands did not enhance this
expression. However, the combination of R848 and poly I:C had an additive effect on
the CD80 and CD86 expression, while ssCpG-ODN did not affect the response to R848
and did not induce any upregulation of maturation markers per se. Surprisingly, the
increased expression of maturation markers following poly I:C treatment was
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diminished in the presence of ssCpG-ODN, as exemplified in Figure 2. The ssCpG-
ODN-mediated inhibition could be titrated down in a dose-response manner.
Furthermore, the release of all cytokines and chemokines secreted upon poly I:C
stimulation of DCs was inhibited by ssCpG-ODNs, and poly I:C-mediated activation of
IRF3 was lost in the presence of ssCpG-ODN.

To confirm that poly I:C mediated its effect via TLR3, and not cytosolic RLRs, we
pre-treated DCs with chloroquine before the addition of poly I:C. Chloroquine reduces
the acidification of the endosomal compartment, and thereby inhibits signaling from
endosomally located TLR3, which needs an acidic environment to properly bind its
ligand and initiate down-stream signaling [182, 386]. Cytosolic RNA sensors, such as
RLRs, are however not affected by chloroquine. Poly I:C-mediated DC activation was
significantly reduced in the presence of chloroquine, which indicates that poly I:C acts
via TLR3 and that ssCpG-ODNs have the ability to inhibit TLR3-mediated DC
activation.

Single-stranded CpG-ODNs have previously been shown to inhibit spontaneous
secretion of IL-8 in in vitro cultures of human skin keratinocytes [387]. Moreover,
while addition of ssCpG-ODNs to CMV-infected human fibroblasts boosted the viral
replication, simultaneous addition of the ligand and the virus actually inhibited
infection of the cells [388]. Infection with CMV induces upregulation of TLRY in
human fibroblasts, and addition of a TLRY ligand activates intracellular signaling
routes also facilitated by the virus, which could possibly explain the enhanced viral
replication. Similarly, infection of HeLa cells with herpes simplex virus type 2 (HSV-2)
has been shown to be reduced in the presence of ODNs [389]. We therefore
investigated the inhibitory effect of ssCpG-ODNs also on human keratinocytes,
fibroblasts, and epithelial cells. The reported expression of TLR3 and 9 on these cell
types varies, but in a resting state, we detected expression of TLR3, but not of TLRO,
mRNA in all cell types. Hence, poly I:C-stimulated production of IL-8 was inhibited by
ssCpG-ODNss in both keratinocytes and fibroblasts. In the epithelial cells, however, the
background levels of IL-8 were too high to detect a significant effect of poly I:C, and

Medium CpG poly I:C CpG + poly I:C
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Figure 2: The poly I:C-induced expression of maturation markers CD80 and CD86 on monocyte-
derived DCs is inhibited in the presence of ssCpG-ODNSs.
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ssCpG-ODN did not reduce the IL-8 levels. In these cultures, TNF-a secretion was
instead measured, which indeed was upregulated by poly I:C and inhibited by ssCpG-
ODNEs.

In previous studies, the inhibitory effect of ODNs was shown to be independent of
the CpG-motif [387, 389], which is in line with our observations. The inhibitory effect
was equally efficient when culturing DCs with poly I:C and a non-CpG-ODN as with
the ssCpG-ODN, indicating that the CpG-motif was not necessary for inhibition of poly
I:C-mediated cell activation. In extension to this, the importance of the ODN backbone
was investigated. Oligodeoxynucleotides based on a synthetic PS backbone were
compared with PD-ODNs. The inhibitory effect of ODNs was reduced with the
construct based on a PD backbone. In relation to that, when comparing different classes
of CpG molecules, the PD-based type A ssCpG-ODN did not inhibit poly I:C-mediated
DC activation, while the PS-based type C ssCpG-ODN did. This again is consistent
with previous observation of ODN-mediated inhibition of IL-8 release and HSV-2
infection [387, 389].

3.1.1.2 The underlying mechanism of the inhibitory effect of PS-ODNs

The mechanism of these observations is not fully elucidated, and several hypotheses on
where in the TLR3 signaling process the inhibition occurs can be made. First, we
examined the possibility of complex formation between the two ligands. Poly I:C and
ssCpG-ODNss differ greatly in length, and pre-mixing and subsequent separation of the
substances via polyacrylamide gel electrophoresis did not reveal any obvious ligand-
ligand interaction. As a confirmation of this, the effect of ssCpG-ODNs on TLR9-
expressing B cells was investigated. As expected, ssCpG-ODN-treated B cells
responded to the stimulation via proliferation, and addition of poly I:C did not affect
this response. Poly I:C itself, on the other hand, did not induce any proliferative
response in B cells, which was expected since expression of TLR3 was not detected in
these cells.

Alternatively, the intracellular signaling pathway activated by TLR3 might be
inhibited by ssCpG-ODN engagement of an unidentified inhibitory receptor. In
addition to TLR3, TLR4 also has the capacity to signal via the TRIF-mediated
pathway, and the TLR4 ligand monophosphoryl lipid A (MPLA) has been shown to
preferentially activate TRIF over MyD88 when engaging the receptor [119]. However,
ssCpG-ODNs did not have any inhibitory effect on MPLA-treated DCs, indicating that
the TRIF signaling pathway was not affected by PS-ODNs.

Next, inhibition of the TLR3 receptor engagement was investigated. We observed
that addition of PS-ODNs simultaneously or prior to poly I:C was required for full
inhibition to occur, and since the TRIF signaling pathway was not affected directly, this
indicates that the inhibition occurs on an upstream receptor level. To investigate
whether PS-ODNs reduced the transiently enhanced endocytic capacity that a
stimulatory reagent normally induces in DCs [62], the uptake of dextran beads was
measured in the presence of poly I:C, ssCpG-ODN, or a combination of the two.
Surprisingly, rather the opposite effect was observed. Even though ssCpG-ODNs do
not induce activation of DCs, they still stimulated dextran bead uptake in levels
comparable with poly I:C-induced endocytosis. Also, a combination of the two ligands
did not alter the level of endocytosis as compared to cells treated with either poly I:C or
ssCpG-ODNs alone. This implies that it is not primarily the stimulation via an
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endosomally expressed TLR that enhances initial endocytosis, but rather the
engagement of endocytic receptors. It is not fully characterized how poly I:C and
ssCpG-ODNs are taken up into cells, but they are all endocytosed via a clathrin-
dependent mechanism and poly I:C and type B and C, but not type A, ssCpG-ODNSs are
dependent on the cytoplasmic lipid raft protein Raftlin [390-393]. Since increasing the
concentration of poly I:C up to ten times higher than previously tested in this paper still
did not induce any upregulation of CD80 and CD86 on DCs in the presence of ssCpG-
ODN, the uptake of fluorescently labeled poly I:C was investigated in DCs. Indeed, in
combination with ssCpG-ODNs, the uptake of poly I:C was markedly reduced as
compared to cells treated with poly I:C only (Figure 3). Hence, PS-ODNs act inhibitory
on poly I:C by preventing the ligand from being taken up and thereby from coming in
contact with its receptor TLR3.

poly I:.C poly I:C + CpG

Figure 3: The DC uptake of fluorescently labelled poly I:C in the presence and absence of ssCpG-ODN
is detected with confocal microscopy.

Still, the precise receptors mediating the uptake of ODNs and poly I:C are not yet
known, but one could speculate that this route is also facilitated by certain viruses, such
as previously discussed CMV or HSV-2. Conformably with our conclusion, the PS-
ODN-mediated inhibition of infection is indeed occurring on the entry level [394, 395],
and this would also explain why later addition of ssCpG-ODNs did not rescue
fibroblasts from productive CMV infection [388]. Further exploration of the uptake
mechanism in both virus infection and TLR ligand uptake will provide valuable
information on how viruses uses uptake routes of the host and possibly the
development of novel strategies to prevent infection.

3.1.1.3 Non-CpG-ODNs have an inhibitory effect on poly I:C in vivo

To further evaluate the significance of PS-ODN-mediated poly I:C inhibition, we
treated C57BI6 mice intraperitoneally with poly I:C in the presence or absence of non-
CpG-ODNs, and then assessed the levels of pro-inflammatory cytokines in the serum.
Surprisingly, we could not detect any inhibitory effects of the PS-ODNSs in this model.
Similar results were obtained from bronchialveolar lavages after intranasal
administration of the ligands. Although not in line with our human in vitro
observations, the results coincides with several reports on synergistic effects of ssCpG-
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ODN:s and poly I:C in the murine system [396, 397]. Though, while the uptake of poly
I:C in human cells are dependent on raftlin, the homologue raftlin-2 is expressed in the
murine system and can mediate poly I:C uptake even in the absence of raftlin [393].
Whether the uptake of PS-ODNSs also can be mediated via raftlin-2 or not is not known,
but our results indicate that the protein at least not preferentially binds to PS-ODNs,
since poly I:C retains its ability to stimulate a response in mice.

Instead, the response to intranasal exposure of poly I:C and non-CpG-ODNs was
tested in non-human primates. Local production of cytokines and chemokines was
measured in nasal secretions from cynomolgus macaques treated with poly I:C, non-
CpG-ODNs, or the combination of the two. Compared with the effects of non-CpG-
ODN-treatment, a pro-inflammatory response was indeed induced following poly I:C
administration. Furthermore, a reduced response was detected in the animals receiving
the combination of poly I:C and non-CpG-ODNs, indicating that PS-ODNs have an
inhibitory effect in vivo in non-human primates.

These results describe a novel mechanism for inhibition of innate immune responses
to dsRNA in vivo. We have not confirmed that it in fact is TLR3 that mediates the in
vivo responses to poly I:C, but considering the in vitro experiments involving DCs,
fibroblasts and epithelial cells, it is a plausible route. In addition, other dsRNA
recognition receptors are located in the cytosol and are primarily engaged by viral
intermediates or poly I:C that has to be transfected into the cell to have an effect [142,
146]. Type B ssCpG-ODNs have been developed in clinic-grade settings, and are used
as adjuvants in a number of clinical studies [369]. The production of clinic-grade non-
CpG-ODNs would therefore be feasible and development of the compound as an
immunomodulatory substance would indeed be possible.

3.1.2 Activated apoptotic cell-induced dendritic cell maturation (Paper Il — III)

In several reports regarding endogenous activation of DCs, the causing agent is dying
cells. As discussed in the previous chapter, the effect of extensive cell death can be
detrimental to the host [194, 201, 212], and defect clearance of apoptotic cells has been
implicated in several autoimmune diseases [199, 398, 399]. However, cell death also
takes part in reducing the dissemination of infectious agents and to signal danger to
surrounding tissue when the homeostasis is disturbed [372], as well as maintaining self
tolerance [104, 215, 216]. In addition, dying cells can act as endogenous adjuvants,
both in inducing immunity against foreign antigens [106, 231], infectious antigens
[223, 229, 230, 400-402], as well as to dying tumor cells [218-220]. During necrosis,
immunostimulatory DAMPs are released and facilitate activation of nearby cells,
whereas apoptosis in the absence of exogenous stimulus is not considered to be
immunogenic. Previous studies from our lab have however suggested that activation of
peripheral blood mononuclear cells (PBMCs) prior to apoptosis induction enables DCs
to mature upon apoptotic cell (AC) co-culture [224, 225]. However, the underlying
mechanism for this was not described, and in paper II, we have further characterized
the receptors involved and intracellular signaling events in DCs following exposure to
activated ACs. Moreover, we have in paper III investigated the effect of infected and
uninfected activated apoptotic CD4"™ T cells on DCs and further studied the antiviral
response induced.
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3.1.2.1 The role of secreted factors in activated AC-induced DC maturation

The ability of activated apoptotic PBMCs to induce monocyte-derived DC maturation
has been shown previously [224, 225]. Even though we in present studies do not
always investigate all parameters needed for the definition of DC maturation [83], we
refer to this initial characterization of activated AC-induced DC maturation and from
here on describe DCs with upregulated CD80- or CD86-expression as mature in order
to prevent unnecessary confusion during the discussions involving both activated ACs
and activated DCs.

The methods used to induce PBMC activation are either activating antibodies
against CD3 and CD28, which is the T cell receptor and its co-receptor, respectively, or
phytohaemagglutinin (PHA) treatment. Both methods resulted in upregulation of
activation markers CD25 and CD69 on T cells with subsequent maturation of DCs
when co-cultured. In the presence of activated ACs, DCs matured and secreted pro-
inflammatory cytokines and chemokines, and also had the ability to induce strong
proliferation in vitro in autologous T cells in a system involving presentation of
alloantigens. To induce apoptosis in PBMCs or T cells, they were subjected to 150 Gy
y-radiation, which rendered approximately 90% of the cells to be apoptotic or late
necrotic 24 h post irradiation. Resting cells from the same donors, treated exactly the
same way with exception from the activation step, did not induce any DC maturation.
Also, when comparing the effect of ACs with freeze-thawed necrotic cells, activated
ACs were more efficient in inducing DC maturation than activated necrotic cells.
Neither necrotic nor apoptotic resting cells induced upregulation of maturation markers
on DCs [224].

Both strategies used to activate PBMC were directed against the T cells, either via
direct targeting of the T cell receptor complex or using the T cell mitogen PHA. In
paper III, we investigated the effect of activated apoptotic T cells on DCs. First, CD4"
T cells were enriched and activated with antibody stimulation of CD3 and CD28. T cell
activation and subsequent DC maturation following T cell irradiation and co-culture
was thereafter measured. The activation of the purified T cells, as determined by
expression of activation markers CD25 and CD69, was generally slightly lower for
enriched T cells than in the PBMC cultures, and we observed that the level of activation
seemed to be important for subsequent DC maturation (unpublished observations).
However, sufficiently activated apoptotic CD4" T cells induced similar levels of DC
maturation as activated apoptotic PBMCs.

To further characterize the mechanism behind activated AC-induced DC maturation,
we cultured activated and irradiated PBMCs for 24 h and then separated the culture into
a cellular and supernatant fraction and treated DCs with these entities (paper II). To
avoid losing some effect due to potential degradation of secreted products, we in
additional experiments cultured newly irradiated ACs in the top chamber of a trans-well
system. This prevented DCs in the lower chamber from having physical contact with
the dying cells, but enabled exposure of factors released from the ACs. Both fractions
indeed induced upregulation of maturation markers on DCs, although not as
prominently as unseparated ACs. The cellular fraction induced a stronger response than
the supernatant fraction. However, only the cellular fraction from activated apoptotic
CD4" T cells induced DC maturation in this setting (unpublished observations).

Activated apoptotic PBMCs have previously been shown to release low amounts of
TNF-a [224], but this could not be detected in cultures with activated apoptotic CD4" T
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cells (paper III). Since DCs can be activated by TNF-a [57, 66, 403], we investigated
the role of this cytokine in the supernatant fraction of the activated ACs (paper II).
Prior addition to DCs, the supernatant fraction from activated AC was treated with a
neutralizing antibody against TNF-a. This almost completely abrogated the supernatant
maturation stimuli, indicating that activated apoptotic PBMCs partly mediate its
maturing effect on DCs via secretion of TNF-o. The lack of TNF-a secretion from
activated apoptotic CD4" T cell cultures could perhaps also explain why these ACs
were sometimes less potent in their DC maturing ability. We have not further
investigated the cellular source of TNF-a, but the monocytes present in the PBMC
population are likely to produce this cytokine. These cells adhere to the plastic in the
cell culture flask during activation, and this has previously been shown to stimulate
release of TNF-a, IL-1, and other pro-inflammatory factors [404, 405]. However, DCs
treated with either activated apoptotic PBMC or CD4" T cells were also shown to
produce high levels of TNF-o. To investigate whether this production had any
paracrine effect on DC maturation, we collected conditioned medium (CM) from DCs
co-cultured with activated ACs for 24 h. The CM was thereafter pre-incubated either
with a control antibody or the TNF-a neutralizing antibody and then administered to
new DC cultures. Indeed, CM had a maturing effect on immature DCs and pre-
treatment with the TNF-o neutralizing antibody significantly reduced this effect,
revealing that TNF-a acts in a positive feedback-loop to enhance the DC maturation
response in the presence of activated apoptotic PBMCs or CD4" T cells. It has
previously been shown that many, but not all, DCs in the AC-DC co-cultures interact
with or take up apoptotic material [224]. The induced TNF-o production in DCs
encountering activated ACs could hence be a danger signal to further stimulate nearby
cells, and activate a pro-inflammatory response in the surrounding environment.

3.1.2.2 Cellular factors involved in activated AC-induced DC maturation

Previous reports on immunostimulatory effects of apoptotic cells have often been in a
context of infection [230, 400, 402], and we set out to investigate how HIV-1 infection
in activated CD4" T cells affected their ability to induce DC maturation (paper III).
Activated CD4" T cells were readily infected with the RS laboratory HIV-1 strain
HIVg, for 3-4 days before irradiation and co-culture with DCs. Similar to uninfected
controls, infected activated ACs significantly upregulated maturation markers CDS83
and CD86 on DCs. Also, the induced secretion of pro-inflammatory cytokines and
chemokines did not differ from uninfected activated ACs. If the infection process of the
CD4" T cells instead was prolonged to one week, an increased cell death was observed
in the cultures, likely due to the HIV-1 infection, and these cells did not mature DCs to
the same level when irradiated (unpublished observations). This implies that virus-
induced cell death might not be as efficient at inducing DC maturation. It might also
indicate that prolonged activation of the cells reduces their ability to mature DCs, since
longer kinetics of cell activation previously has been shown to have less effect on DCs
[224].

We further investigated if the uptake of activated ACs was necessary to induce DC
maturation by blocking phagocytosis (paper II). However, no reduction of DC
maturation was detected, neither with the usage of Cytochalasin D, a chemical inhibitor
of actin polymerization and thereby the ability of the cell to form phagocytic cups, nor
with a blocking antibody against avp5, a phagocytic integrin receptor. Hence, the
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initiation of activated AC-induced DC maturation is mediated via cell surface receptors
and not endocytic danger sensors.

To investigate which receptors on DCs could be involved in the AC-induced
maturation, we pre-treated the cells with neutralizing antibodies against receptors
known to mediate cell-cell adhesion as well as cell activation (paper II). Integrins are
important receptors in cell adhesion. They consist of a a and p subunit, which both are
products of individual genes [406, 407]. So far, 18 a subunits and 8 B subunits have
been identified in vertebrates, and they can be combined in 24 different structures. Best
known for mediating cell-cell adhesion are the B2 integrins, consisting of the B2
subunit, also named CD18, and either the aL. (CD11a), aM (CD11b), aX (CDl11c), or
the aD (CD11d) subunit. The B2aL integrin is also known as lymphocyte function-
associated antigen 1 (LFA-1), while the f2aM integrin is known as macrophage-1
antigen (Mac-1). They are both expressed on lymphocytes, macrophages, monocytes,
and neutrophils [407-409]. Indeed, blockage of CD18 on DCs significantly reduced the
AC-induced maturation. In addition, blocking either CD11a or CD11b also reduced the
expression of DC maturation markers, but not as efficiently as the CD18 neutralization
did. There are many structures known to interact with B2 integrins [407], and we have
so far not identified the specific ligand or receptor mediating the integrin-dependent DC
maturation.

The CLR DC-SIGN interacts with neutrophils via Mac-1 due to a neutrophil-
specific glycosylation pattern on the integrin, and DCs have also been shown to engulf
apoptotic neutrophils [229, 410]. In addition, DC-SIGN has the ability to bind several
pathogens and shape the intracellular signaling of TLRs [135, 136, 411]. Although our
PBMCs did not contain any neutrophils, we investigated the involvement of DC-SIGN
in our co-cultures. Dendritic cell maturation was reduced in the presence of two
separate neutralizing antibodies, indicating an involvement of the CLR. Since DC-
SIGN acts in collaboration with a number of TLRs, we also treated the AC-DC co-
cultures with a TLR4 neutralizing antibody. Toll-like receptor 4 is expressed on the cell
surface of DCs and interacts with several endogenous DAMPs [236, 244, 412, 413],
making it a conceivable receptor for the activated ACs. This as well reduced the DC
maturation following activated AC co-culture. To further confirm this observation, we
silenced TLR4 in DC, using siRNA. The knockdown strategy partly reduced the DC
response to the TLR4 ligand MPLA, and similarly reduced AC-induced DC
maturation. We also investigated the adjuvant effect of activated apoptotic splenocytes
in TLR4” and wt mice in vivo. The antibody titer against human serum albumin, the
antigen co-administered with activated apoptotic splenocytes in mice, was, in line with
above results, significantly reduced in TLR4”" mice, as compared to wt animals. These
results strongly suggest that TLR4 is involved in activated AC-induced DC maturation.

Several DAMPs in necrotic cells are shown to mediate immune activation via TLR4,
but this is less investigated for apoptotic cells. One secreted DAMP reported to interact
with TLR4 is HMGBI1 [244]. However, we could not detect any impact on DC
maturation with either neutralizing antibodies or an HMGBI1 antagonistic protein.
Instead, we investigated the impact of HSPs. Heat shock protein 60 was upregulated in
activated PBMCs and has previously been shown to engage TLR4 [236, 413], and
addition of a neutralizing antibody to the AC-DC co-culture indeed significantly
reduced the DC maturation. From this, we concluded that activated apoptotic PBMCs
mediate the DC-maturing effect partly via released TNF-a, partly via engagement of 2
integrins, DC-SIGN, and HSP60-stimulated TLR4.
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3.1.2.3 Intracellular signaling induced in DCs by activated ACs

Next, we investigated the intracellular signaling pathways induced in DCs by activated
ACs (paper II). Activation of the MAPK and the phosphatidylinositol 3-kinases
(PI3K)/Akt signaling pathways was detected at various time points in DCs co-cultured
with activated ACs. The response to resting ACs was either absent or less prominent
compared with activated ACs. Phosphorylation of MAPKs p44/42 and p38 was
detected after 10 minutes, while prominent phosphorylation of Jun-amino-terminal
kinase (JNK) was not detected until after 40 minutes. Akt was activated within 10
minutes, and remained activated at all time-points investigated. Furthermore, broad
inhibition of Src family of tyrosine kinases (SFK), which are important for TLR4-
stimulated cytokine production and integrin function [414, 415], in DCs prior to AC
addition reduced the maturation response, which indicates an involvement of this
pathway as well. However, no activation of Raf-1, which is reported to be down-stream
of DC-SIGN activation [135], could be detected. In accordance with activation of the
signaling pathways mentioned above, an activation of NF-kB and AP-1 transcription
factors could be detected. Only the AP-1 family members c-Jun and c-Fos were present
in nuclear extracts from AC-DC co-cultures, indicating that the AP-1 dimer was formed
of these two members.

To investigate the dependence of the individual components in the signaling
pathways, we blocked the different pathways using specific chemical inhibitors and
thereafter measured DC maturation. Blocking of the MAPKs p44/42, p38, or JNK,
resulted in significantly decreased DC maturation in the absence of p38 or JNK.
However, the activation of p44/42 did not reduce DC maturation and seems to be
indispensable for upregulation of CD80 and CD86 on DCs. As with SFK, p38, and
JNK, inhibition of PI3K activation, which is upstream of Akt activation, also reduced
the maturation of DCs. Hence, these signaling pathways are essential for DC
maturation in response to activated ACs. Inhibition of IKK kinase, which is an
upstream kinase required for NF-kB activation, also reduced the DC maturation
response, confirming the involvement of the transcription factor.

The next step was to connect the intracellular signaling pathways with the receptors
engaged by activated ACs (Figure 4). Previously used neutralizing antibodies against
CD18, DC-SIGN, and TLR4 were used to block their respective receptor on DCs prior
to the addition of activated ACs. Blockage of DC-SIGN reduced the activation of JNK,
but none of the other signaling pathways investigated here were affected. When
neutralizing CD18, both JNK and p38 activation was completely diminished, and
activation of Akt was also strongly reduced. Inhibition of TLR4 also diminished the
activation of Akt and p38, and reduced JNK activation. To further investigate the
influence of SFK on these intracellular signaling pathways, the impact of SFK
inhibition was measured. There are nine members in the SFK family, but we did not
investigate the role of each member in this project. A reduced activation of p38 and
complete block of JNK could be detected when inhibiting SFK activity. From this, we
concluded that JNK was activated by DC-SIGN, CD18, TLR4, and SFK, p38 was
activated by CD18, TLR4 and SFK, and PI3K/Akt was activated by CD18 and TLR4.
The receptors responsible for SFK activation were not investigated, since the individual
activation of the family members was not determined. Next, the impact of PI3K/Akt on
p38 and JNK activation was measured. Inhibiting PI3K reduced the activation of p38,
but not JNK, indicating that JNK is activated via a PI3K/Akt independent pathway.
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Finally, factors needed for activation of NF-kB and AP-1 transcription factors were
investigated. Activation of NF-kB was facilitated both upon CDI18 and TLR4
engagement. The importance of the different signaling pathways upon AP-1 activation
was thereafter examined, and JNK was shown to be important for c-Jun translocation to
the nucleus, while p38 was needed for c-Fos.

Taken into account that we could not confirm whether CDI18-mediated DC
activation was due to interaction with a ligand expressed on ACs or an integrin-
activated receptor on DCs, a direct connection between this interaction and down-
stream signaling in DCs could not be determined. Hence, the CD18-dependent
activation of PI3K might not be directly linked in DCs and this interaction is therefore
put as hypothetical in Figure 4. In addition, the pathways mediating SFK activation are
not known, but since DC-SIGN did not induce any other intracellular activation than
JNK, which was independent of PI3K activation but activated by SFK, it is plausible
that DC-SIGN activate SFK. Also, the murine DC-SIGN paralogue DC-SIGNRI is
reported to mediate JNK activation via SFK [416]. However, since this could not be
confirmed in our system, this interaction is also put as hypothetical. Both CD18 and
TLR4 have previously been shown to signal via SFK [414, 415], so these interactions
are also indicated in Figure 4.

DC-SIGN CD18 TLR4

Figure 4: The receptors engaged and signaling pathways induced by activated ACs cultured with DCs.
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3.2 PREVENTING HIV-1 INFECTION IN DENDRITIC CELLS

It is still not clear which cells are the most common to be infected by the founder virus
in HIV-1 sexual transmission. The most prominent HIV-1 target cell in the vaginal
mucosa are the CD4" T cells, but the vast majority of this population is in a resting state
and therefore not an optimal target for the virus [294, 296]. Dendritic cells conversely
are more sensitive to HIV-1 infection in an immature state, and in this state they also
have the ability to penetrate intact epithelial layers and reach the lumen in their search
for potential external threats in healthy mucosa [279, 280, 292, 417]. Since DCs in
peripheral tissue predominantly are immature, this would make them a more likely
target for HIV-1 during sexual transmission. Elevated immune activation in the vaginal
mucosa, as during the presence of additional sexually transmitted diseases, however
increases the risk of HIV-1 infection [297], again pointing to activated T cells as the
prime target cell during HIV-1 transmission. Whether the virus is transmitted in a free
form or cell associated is not fully elucidated either. In intact mucosa, cell-associated
HIV-1 does not penetrate the epithelial barrier [284], but it might be taken up by DCs
present in the outer layers of the epithelia.

As with the primary infection is the route of dissemination of HIV-1 is not fully
understood either. Shortly after infection, the virus spreads to the lymphoid tissue in the
gut, where it eradicates the majority of CD4" T cells [418, 419], and the systemic
spread facilitates latent infection in a multiplicity of CD4" cells [283]. The window of
prevention opportunities lies mainly in the primary infection — to prevent cells from
being productively infected — but also in limiting the dissemination and the T cell wipe
out. By reducing the loss of CD4" T cells, the adaptive immune system will function
better and more efficiently restrict the virus throughout the infection and delay the onset
of AIDS. In addition, by reducing the levels of systemic spread, the latent reservoir will
probably be less extensive and re-activation of the virus will not be as prominent later
during the infection. This will both prolong the healthy period of the patient, and reduce
the risk for further transmission [283, 298]. Approaches for preventing not only
primary infection, but also establishment of the infection and systemic spread will be
greatly beneficial for both the single patient and for the efforts to contain the epidemic.
Novel intervention strategies that could act both on the primary infection and systemic
spread are therefore desirable.

3.2.1 Upregulating antiviral restriction factors in dendritic cells (paper Il — IV)

The first restriction factor during HIV-1 transmission is the mucosal barrier. It consists
of a multilayer of epithelial cells covered with viscous mucus highly concentrated with
antimicrobial factors and chemokines [298]. However, it is not uncommon with
microtrauma in the mucosal barrier during sexual intercourse [291], and this enables
HIV-1 to gain direct access to the submucosal tissue, which is highly populated with
attractive target cells. Likely, several viral particles infect target cells with various
degrees of success, but most of these events results in poor viral replication due to low
fit or defect functionality of the virus [283]. A strategy to prevent or to limit the initial
infection would be to harness the local tissue against retroviral infection.
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3.2.1.1 Activated ACs restricts HIV-1 infection in DCs

Despite in lower frequencies compared to activated CD4" T cells, immature DCs are
readily infected with HIV-1. Initially, there were contradictory reports on whether DCs
actually could replicate the virus or not, and it was later discovered that the activation
state of the DCs was correlating with infectability [420-423]. The inhibition of DC
infection was reported to be due to reduced membrane fusion, blocked RT function,
and reduced post-integration transcription [279, 280, 424]. However, no precise
mechanism of this reduced HIV-1 infection was provided. The more recently
characterized host restriction factors are likely to contribute to these observations [301,
302, 306], as shown for the APOBEC3 molecules [425].

Since activated apoptotic CD4" T cells efficiently mature human monocyte-derived
DCs, we also investigated the effect of this maturation on HIV-1 infection in DCs
(paper III). As productively infected cells express the viral protein p24, the frequency
of HIV-1-infected human monocyte-derived DCs was determined by flow cytometry
[426-428]. Although the HIV-1 infection frequency of DCs varied substantially
between donors, we found that the percentage of infected, p24 " cells was reduced in the
presence of activated ACs in all donors investigated (Figure 5). A similar trend was
observed for activated, infected ACs, as they, like the uninfected activated ACs,
induced high levels of DC maturation. No reduction of HIV-1 infection was however
detected in DCs co-cultured with resting ACs, which indicates that the maturation
stimuli of the DCs was the key event for reduced infection, not the exposure of ACs.
This was further confirmed by quantitatively assessing the number of HIV-1 DNA
copies/cell in DCs cultured with medium only, activated ACs, or resting ACs. Dendritic
cells co-cultured with activated ACs also displayed a reduced HIV-1 integration
compared to the same control groups. Addition of activated ACs up to 16 h after HIV-1
addition still protected the DCs from high infection rate. In vitro HIV-1 infection in
DCs is normally not detected by flow cytometry until after 72 h of culture, when
several rounds of infection have occurred [427]. Hence, the maturation of DCs
probably has inhibitory effect first on the second round of HIV-1 infection.
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Figure 5: The frequency of HIV-1 infected DCs in the presence or absence of activated AC. Paired
results from eleven donor is shown.
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3.2.1.2 Strategies to upregulate APOBEC3 molecules in DCs

The best studied host restriction factor to have an impact on the second round of
infection is APOBEC3G [301, 320]. We therefore investigated if the expression of
APOBEC3G was upregulated upon AC-induced DC maturation (paper III). No
significant upregulation of ABOBEC3G mRNA as compared to untreated and
uninfected DCs was detected 2 h after addition of stimulus, but an increased expression
was readily detected in DCs co-cultured with activated ACs for 4-48 h, both in the
presence and absence of HIV-1 in the culture. Neither HIV-1 alone nor resting ACs
induced significant expression of APOBEC3G. To confirm the importance of
APOBEC3G in our system, we knocked down the expression in DCs with siRNA and
then treated them with ACs and HIV-1, whereafter the infection rate was measured.
Indeed, after silencing of APOBEC3G in DCs, the protective effect of activated ACs
was lost. As a mechanism of restriction, APOBEC3G has the ability to induce G-to-A
hypermutations in the HIV-1 genome during RT synthesis of the viral DNA minus-
strand [314-317]. We subsequently cloned the Env gene of HIVg,. derived from DCs
co-cultured with either activated or resting ACs and compared the sequence from 26
and 35 clones, respectively, with a clone derived from infected but untreated DCs. The
frequency of G-to-A mutations in the virus derived from activated AC-DC co-cultures
was significantly elevated, as compared to resting AC co-cultures. Hence, the
mechanism of action in reduced HIV-1 infection in activated AC-matured DCs is an
upregulated APOBEC3G expression that reduces the second round of infection.

Since APOBEC3G induce hypermutations in a GG-context [324], our sequencing
results displaying G-to-A mutations both in GG and GA contexts in the Env clones
indicate the involvement of additional deaminases in our system. Two other members
in the APOBEC3 family have been shown to affect HIV-1 infection in DCs. Both
APOBEC3A and APOBEC3F are expressed in DCs [323, 324], whereof APOBEC3A
recently has been shown to be highly efficient at inducing hypermutations in this cell
type specifically [328]. Furthermore, both induce G-to-A mutations in a GA-context
[324, 429]. Since TNF-a was produced by DCs upon AC co-culture and induced
paracrine DC maturation, we used this cytokine instead of ACs to stimulate DCs
(paper IV). The APOBEC3 family is ISGs, and treatment with recombinant IFN-02b
reduces viral load and upregulates the expression of APOBEC3G and APOBEC3F in
HIV-1-infected patients [363, 364, 367]. To further investigate the response to type I
IFNs, we treated DCs with various types of IFN-a, even though no release of this
cytokine could be detected in our previous AC-DC cultures. Indeed, the expression of
APOBEC3A, F, and G was upregulated in HIV-1-infected DCs treated with LPS or
IFN-a. However, TNF-o. did not induce any significant APOBEC3 expression,
although treated DCs both upregulated maturation markers and secreted IL-12p40,
while only the highest concentration of IFN-a2b used induced expression of maturation
markers and no increased IL-12p40 levels. This shows that DC maturation per se does
not induce expression of APOBEC3 molecules, but the presence of type I IFNs, even in
levels that do not induce DC maturation, is most likely required. Upon engagement
with TLR4, LPS mediates signaling both via MyD88 and TRIF [117, 118], and TRIF
signaling mediates transcription of [FN-a4 and IFN-B [335], which when released have
paracrine effect on surrounding cells to initiate an antiviral defence mode.

When investigating the effect of the cytokines on HIV-1 infection in DCs, all tested
concentrations of IFN-a2b significantly reduced the infection levels. For TNF-q, the
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highest dose used was the only concentration to significantly reduce infection in DCs.
We thereafter investigated the effect of the lowest dose IFN-02b used on G-to-A
mutations in HIV-1-infected DCs. On average, 4.84 mutations/100 base pairs were
detected, whereof 30% were in a GG-context and 48% in a GA-context. This was
higher than our previous results, where also the mutations more preferably occurred in
a GG context. This indicates that IFN-02b treatment more effectively induces
APOBEC3 molecules, and perhaps most effectively, APOBEC3A, than activated ACs
in DCs. It also demonstrates that maturation of DCs is not a prerequisite for induction
of host restriction factors. Elevated expression of IFN-a is found in the cervix in HIV-1
uninfected commercial sex workers in communities with high HIV-1 prevalence, and
the longer the woman had been active as a sex worker and stayed uninfected, the higher
the levels tended to be [365]. This suggests that local treatment with low doses of [FN-
a might have anti-viral effects in a microbicide concept.

These results also shed a light on the effect of TNF-a and activated ACs on HIV-1
infection in DCs. Indeed, TNF-a secreted into the CM upon AC-DC co-culture had the
ability to reduce HIV-1 infection in DCs (paper III), but only if the cytokine was
added simultaneously as the virus. Moreover, addition of a TNF-a neutralizing
antibody to the AC-DC co-culture made a fraction of the cells more sensitive to HIV-1
infection. Hence, since TNF-a does not protect DCs from HIV-1 infection via
stimulation of the APOBEC3 family, but still protects the cells from elevated infection
if added before or simultaneously as the infection, it is likely that TNF-a mediates the
induction of additional early host restriction factors, thereby preventing productive
infection of DCs. This would also explain why neutralization of TNF-a partly increases
the HIV-1 infection in DCs co-cultured with activated ACs, since not all cells
physically interact with the dying cells [224], and the secretion of TNF-a into the
culture medium probably act to protect these cells. Hence, in the absence of both
elevated APOBEC3 expression and TNF-o-induced host restriction, the increased
infection of these unprotected cells will result in higher levels of infectious HIV-1
virions, which will further infect additional DCs. Although no type I IFNs were
detected in the AC-DC co-cultures, LPS has the ability to induce expression of
APOBEC3 molecules [425]. Our finding that activated ACs mediate DC activation via
TLR4 (paper II) makes this a likely route of APOBEC3 induction in the present
system. Since the effect of APOBEC3G is significantly protecting activated AC-
exposed DCs from HIV-1 infection, and the frequency of hypermutations in a GG-
context is elevated after activated AC co-culture as compared to after IFN-o treatment,
these results also suggest that different stimuli might induce different members of the
APOBEC3 family, but this has to be further investigated before any conclusions can be
drawn.
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4 CONCLUDING REMARKS

The dendritic cell relays messages from the peripheral tissue to the lymph nodes and
plays a key part in instructing the adaptive immune response. Depending on what
signals the DC has retrieved in the tissue, it can induce tolerance, humoral responses,
cytotoxic responses, or any adaptive response appropriate for the initial triggering of
DC activation. This makes the DC an optimal target for immune therapy strategies to
enhance, dampen, or specifically direct the immune response in varying conditions.
However, to be able to program the DC-mediated instructions to the adaptive immune
system, enhanced knowledge regarding which signals are essential for the specific
responses is required. In this thesis, the combination of two PRR ligands is
investigated, the mechanism behind activated apoptotic cell-induced DC maturation is
characterized and the impact of this maturation on HIV-1 infection in DCs is described,
and the resistance to HIV-1 infection of DCs matured with two different cytokines is
further characterized.

In vaccine settings, a prominent DC response is often desired. This will induce a
powerful adaptive immune response against the antigen of choice, which will protect
the vaccinee from disease. Since the discovery of PRRs, the understanding of how DCs
are primed has increased substantially. Toll-like receptors are PRRs expressed
preferably on immune competent cells and they have emerged as targets in the next
generation of vaccine adjuvants. However, their elevated expression in immune cells
can also make them mediators of immune pathology. Hence, specific antagonistic
substances are being developed for TLR7 and TLRY, which both recognize and
respond to self-nucleic acids in several autoimmune diseases with elevated cell death
responses. An additional TLR implemented in detrimental responses during necrotic
cell death is TLR3, which responds to dsRNA. This receptor does not sense nucleic
acids in a sequence-specific manner, and only a few specific inhibitors have been
developed and none has so far been tested in humans or non-human primates. We have
in paper I described a novel mechanism for TLR3 inhibition. Addition of ODNs with a
synthetic phosphorothioate backbone in combination with the synthetic dsRNA
analogue poly I:C effectively reduced the uptake of dsRNA into the endosomes of
treated cells, and thereby inhibited TLR3 engagement. Similar effects have previously
been described for PS-ODNSs in viral infections, which indicates that PS-ODNs could
be used as inhibitors of uptake of larger particles as well. Prevention of TLR3 signaling
would be beneficial during conditions of massive cell death, when released dsRNA is
taken up and sensed by phagocytic cells, but also in chronic inflammation,
autoimmunity and in certain viral infections. The usage of the PS based
immunostimulatory TLR9 ligand CpG-ODN has been approved in humans, and this
suggests that the development of clinic-proved non-stimulatory PS-ODNs is
conceivable. Characterization of the shared uptake mechanism between PS-ODNS, poly
I:C and certain viruses will increase our understanding on how these substances are
delivered into cells. Also, investigating the impact of PS-ODNSs on endocytic uptake of
additional substances and particles will further provide understanding of how
endocytosis of these structures is initiated. This knowledge could possibly be facilitated
in future vaccine delivery systems, or in anti-viral treatments.

Sterile necrotic cell death is seldom beneficial for the host and inhibition of its
detrimental effects is important. Apoptotic cell death, on the other hand, is often well
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regulated and takes part in maintaining the tolerance for self-structures. But also this
path of death can in particular settings induce immune activation. In paper II, we have
characterized the mechanisms of how activated apoptotic PBMCs stimulate DC
maturation. Both released and cellular DAMPs were shown to be important for this
response, and they engaged several receptors on DCs. Apoptotic cancer cells have been
used in therapeutic vaccination strategies, and the characterization of DAMPs relevant
for immune activation have provided an explanation to why some cancer cells have the
ability to evoke immune responses while others do not. Apoptotic cells are taken up by
DCs in vivo, and this makes them an intriguing vehicle for delivery of antigens and
adjuvant to relevant immune cells. Our characterization of the receptors engaged on
DCs upon co-culture with activated apoptotic cells have revealed the mechanisms of
how the DC maturation is induced, and this knowledge will enable a better prediction
of the responses induced by activated apoptotic cells in future studies and treatment
settings.

Activated apoptotic T cells also have the ability to induce DC maturation. This
induction of maturation was in paper III shown to reduce HIV-1 infection in DCs,
even if the apoptotic cells themselves were HIV-1 infected, and the activation status of
the apoptotic cells was also in this setting an important factor. The mechanism behind
this reduced infection was induction of the anti-retroviral enzyme APOBEC3G in DCs.
In addition to inducing DC maturation, activated apoptotic cells could hence also be
used to mediate anti-viral responses in settings for therapeutic vaccination or
prevention. The activation status of dying cells is in present settings crucial for immune
activation to occur, and it is relevant to investigate the immunogenic quality of the
induced cell death when developing viral vaccine vectors with lytic effects.

In paper IV, we additionally investigated how the expression of APOBEC3
molecules in DCs was affected by treatment with TNF-a and IFN-o. Both cytokines
used in high concentrations had the ability to activate DCs, while only IFN-a induced
APOBEC3 molecules, even at concentrations that did not induce DC activation. Hence,
IFN-a protects immature DCs from high levels of HIV-1 infection by inducing
APOBECS restriction factors. Treatment of HCV-HIV-1 co-infected patients with IFN-
a is already clinically used, and it would be interesting to investigate the effects of low
levels of IFN-o-treatment in a microbicide setting. The mutations induced in the viral
genome by APOBEC3 prevent a second round of infection. Hence, elevated levels of
the restriction factor would obstruct the transmitted viruses to disseminate and possibly
further alarm the immune system of the presence of the intruder and enable additional
resistance against infection.

In summary, this thesis provides suggestions of how of detrimental TLR3 activation
or high levels of HIV-1 infection in DCs can be prevented, and explains the mechanism
of how activated apoptotic cells induce maturation and upregulation of anti-viral
restriction factors in DCs. Dendritic cells can be activated and modulated by a vast
number of exogenous molecules, but in this thesis, responses to endogenously produced
substances is in focus. Detrimental stimulation of TLR3 by self-RNA can be inhibited
by PS-ODNs, activation of DCs can be achieved by activated apoptotic cells, and
prevention of HIV-1 infection can be mediated both via activated apoptotic cells or
endogenous cytokines. Hopefully, the enhanced knowledge of how structures produced
by the host itself can affect DCs will contribute to the development of novel strategies
for modulation of dendritic cell responses.
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