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ABSTRACT 
The T-cell mediated adaptive immune response is important in controlling infection with 
Mycobacterium tuberculosis (M.tb). Several types of T-cells participate in the anti-M.tb 

defense, including CD4+ and CD8+ cells. CD8+ T-cells recognize small parts, so-called 
epitopes, of foreign antigens as well as self-derived antigens in association with MHC class I 
molecules. Identification of T-cell epitopes might therefore aid in the development of 
diagnostic markers and vaccine candidates. They may also guide to monitor CD8+ T-cell 
responses in disease settings where CD8+ T-cells play a role in biologically and clinically 
relevant immune responses. 
 
In this thesis, we evaluated the previously identified M.tb-derived T-cell epitopes (Paper V), as 
well as identified novel M.tb-derived CD8+ T-cell epitopes from several proteins (TB10.4, 
Ag85B, ESAT-6, glycosyl transferase I, glycosyl transferase 2 and cyclopropane fatty acid 
synthase) (Papers I–III). The epitopes were restricted by a wide range of MHC class I 
allotypes, including some of the most common alleles in Caucasian, Asian and African 
population groups. Most of the MHC class I alleles common in the African groups were not 
commercially available. Therefore, they were cloned and subsequently expressed as 
recombinant proteins in order to be used in peptide binding detection and to construct peptide-
MHC class I multimeric complexes for the first time (Papers II–III).  
 
We studied peptide-MHC interactions to 13 different allotypes by using overlapping peptide 
libraries. A variable broadness of peptide binding patterns was identified. Some alleles showed 
a diverse pattern, allowing binding of many epitopes, while others displayed a more restricted 
peptide binding pattern. Another interesting feature was the very frequent occurrence of 
promiscuous binding epitopes. Subsequent evaluation of the binding characteristics of a 
majority of the 672 identified binding epitopes showed a wide range of affinities and 
dissociation rates with both inter- and intra-allelic differences (Papers I–III).  
 
An extensive panel of 62 MHC class I multimers was constructed in order to validate some of 
the previously identified binding epitopes as being CD8+ T-cell epitopes. We also used these 
reagents to characterize M.tb-specific CD8+ T-cell responses in patients with pulmonary 
tuberculosis (TB) with diverse ethnic background (Caucasian, Asian and African). Generally, a 
low CD8+ T-cell response reflecting a diverse M.tb-specific reactivity could be detected, with 
only a few immunodominant epitopes. The majority of the M.tb-specific CD8+ T-cells had a 
precursor-like phenotype (CD45RA+CCR7+), despite expressing high frequencies of the 
degranulation marker CD107a, indicating that antigen-experienced effector cells reside in this 
population (Papers II–IV). One explanation for the high number of specific ‘naïve-like’ T-cells 
might be that they belong to a compartment of memory cells with ‘stem-cell like’ features, 
including expression of c-kit (CD117) and CD95 (Paper IV).  
 
This thesis shows that both MHC class I allotypes and epitope-derived proteins might influence 
immune recognition on several levels including peptide-MHC binding, T-cell receptor (TCR) 
engagement as well as T-cell effector functionality and phenotype of the antigen-specific T-
cells (Paper III); The T-cell phenotype and M.tb-specific T-cell frequency appear to be 
determined by both the restricting allele and the antigen. 
 
In conclusion, we identified and validated many novel CD8+ T-cell targets from M.tb-derived 
proteins restricted via a broad range of MHC class I molecules, with the hope that these tools 
will aid future diagnostics and prevention strategies in different disease settings. 



 

 

SAMMANFATTNING PÅ SVENSKA 
Det T-cellsförmedlade adaptiva immunförsvaret är viktigt för att hålla en infektion med 
Mycobacterium tuberculosis (M.tb) under kontroll. Flera olika typer av T-celler, t.ex. CD4+ och 
CD8+, ingår i vårt immunförsvar mot tuberkulos (TBC). CD8+ T-celler känner igen små delar, 
så kallade epitoper, av främmande antigen eller proteiner härledda från egna kroppen, bundna 
till MHC klass I-molekyler. Identifiering av T-cellsepitoper kan därför hjälpa till vid 
utvecklandet av nya diagnostiska markörer och vaccinkandidater. De kan också hjälpa till att 
övervaka CD8+ T-cellssvar vid sjukdomstillstånd där CD8+ T-celler har betydelse för 
immunförsvaret, både biologiskt och kliniskt. 
 
I denna avhandling har vi utvärderat tidigare identifierade epitoper härledda från M.tb-proteiner 
(delarbete V) samt identifierat nya CD8+ T-cellsepitoper härledda från M.tb-proteiner (TB10.4, 
Ag85B, ESAT-6, glykosyltransferas I, glykosyltranferas 2 och cyklopropan-fettsyra-syntas) 
(delarbete I–III). Epitoperna presenterades av många olika MHC klass I-alleler, inklusive några 
av de mest vanliga allelerna i kaukasiska, asiatiska och afrikanska befolkningsgrupper. På 
grund av att de flesta MHC klass I-alleler som är vanliga i afrikanska befolkningsgrupper inte 
finns att få tag på kommersiellt, klonade och konstruerade vi dem själva för första gången och 
använde dem för att detektera peptidbinding och för att konstuera peptid-MHC- 
multimerkomplex (delarbete II–III). 
 
Vi studerade peptid-MHC-bindning till 13 olika MHC klass I-alleler genom att använda 
överlappande peptidbibliotek. Variationer i bredden på peptidbindningen kunde identifieras. 
Vissa alleler hade ett brett bindningsmönster som tillät bindning av många vitt skilda epitoper, 
medan andra alleler uppvisade ett mer begränsat peptidbindingsmönster. En annan intressant 
upptäckt var vanligt förekommande korsbinding av epitoper mellan olika MHC klass I-alleler. 
Efterföljande analys av bindningsegenskaperna hos en majoritet av de 672 identifierade 
bindningsepitoperna visade ett brett intervall av affiniteter och dissociationshastigheter som 
varierade både inom och mellan olika alleler (delarbete I–III). 
 
En omfattande panel bestående av 62 MHC klass I-multimerer konstruerades för att bekräfta att 
några av de sedan tidigare identifierade bindningsepitoperna var CD8+ T-cellsepitoper. Vi 
använde också dessa reagenser för att karakterisera det M.tb-specifika CD8+ T-cellssvaret i 
patienter med lung-TBC från olika etniska befolkningsgrupper (kaukasiska, asiatiska och 
afrikanska). Generellt sett kunde ett lågt men brett M.tb-specifikt CD8+ T-cellssvar detekteras, 
med enbart ett fåtal immunodominanta epitoper. Majoriteten av de M.tb-specifika CD8+ T-
cellerna hade en naiv fenotyp (CD45RA+CCR7+), trots att de uttryckte höga frekvenser av 
degranuleringsmarkören CD107a, vilket indikerar att antigen-erfarna effektorceller finns i 
denna population (delarbete II–IV). En förklaring till de höga frekvenserna av antigenspecifika 
celler med naiv fenotyp kan vara att de tillhör en grupp minnesceller med stamcellslika 
egenskaper t.ex. uttryck av ytmarkörerna c-kit (CD117) och CD95 (delarbete IV). 
 
Denna avhandling visar vidare att både de presenterande MHC klass I-allelerna och de 
proteiner som epitoperna kan härledas ifrån kan påverka immunförsvarets igenkänning på flera 
nivåer såsom peptid-MHC-bindning, igenkänning via T-cellsreceptorer samt effektorfunktion-
alitet och fenotyp av de antigenspecifika T-cellerna (delarbete III); T-cellernas fenotyp och 
antalet M.tb-specifika T-celler verkar påverkas av både den presenterande MHC-allelen och av 
den tuberkuloshärledda antigenen.  
 

Sammanfattningsvis har vi identifierat och validerat många nya CD8+ T-cellseepitoper 
härledda från M.tb-proteiner och presenterade via många olika MHC klass I-molekyler, med 
förhoppning om att dessa ska hjälpa till i utvecklingen av nya diagnostiska metoder och 
förebyggande åtgärder för flertalet sjukdomar i framtiden.  
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1 INTRODUCTION 
Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis 

(M.tb). The bacterium has infected humans for more than 4 000 years, yet there were 

still 8.8 million new cases of TB, and 1.45 million deaths reported in 2010. Although 

the highest number of cases can be found in south-east Asia, the highest incident by far 

can be found in sub-Saharan Africa (Figure 1) [1]. Factors contributing to the epidemic 

include inadequate vaccine efficacy, inadequate diagnostics [2] as well as drug 

resistance and the human immunodeficiency virus (HIV) epidemic [3]. Therefore, more 

information about what constitutes and regulates protective immunity in TB needs to be 

gained.  

The cell-mediated adaptive immune response is important in controlling M.tb 

infections. An effective anti-M.tb response has been shown to be mainly cell-mediated, 

with different compartments of T-cells: CD4+ and CD8+ [4, 5] yet NK-cells [6], NK-

T-cells [7] and γδ-T-cells [8], also play an important role at different stages of the 

infection. T-cells recognize, and are activated by, small parts (so-called epitopes) of 

protein-derived antigens presented via major histocompatibility complex (MHC) 

glycoproteins. Identification of epitopes is highly valuable in diagnostics as well as for 

the development of novel vaccine regiments and for gauging of vaccine take. Although 

 

Figure 1. Estimated TB incidence rates 2010. 

Source: World Health Organization (WHO) [1].
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the CD4+ T-cell response is more well-studied, previous studies have shown that 

cytotoxic CD8+ T-cells are important in the defense against TB [5] and that they are 

induced early in the infection [9]. Identification of novel antigenic peptides recognized 

by CD8+ T-cells presented via the MHC class I complex, will therefore be of great 

value to better understand the cytotoxic T-lymphocyte (CTL)-mediated anti-M.tb 

immune response. 

 
1.1 IMMUNOLOGY 

1.1.1 Major histocompatibility complex (MHC) 

The MHC multigene cluster contains more than 200 genes. In humans, this cluster is 

called human leukocyte antigen (HLA), since the proteins were first discovered as 

transplantation antigens that varied among individual patients. The gene family is 

divided into three sub-groups (class I, II and III). The first two classes (class I and II) 

encode glycoprotein receptors involved in antigen-presentation of protein-derived 

antigens towards T-cells (MHC class I and II molecules) as well as antigen processing 

molecules and proteins involved in peptide loading such as transporter associated with 

antigen processing (TAP) and tapasin. The class III gene family encodes other proteins 

involved in the immune system, such as complement components (e.g. C4, C2 and 

factor B) and cytokines (e.g. tumor necrosis factor-α and lymphotoxin) [10].  

 

The classical MHC class I molecules, HLA-A, -B and -C (non-classical: e.g. HLA-E, 

-F and -G) are encoded by three loci located on chromosome 6 in humans and they 

present predominantly endogenously derived antigens to CD8+ T-cells. MHC class II 

molecules are subdivided into HLA-DP, DQ and DR (non-classical HLA-DM and 

-DO) and present mainly exogenous antigens toward CD4+ T-cells (T-helper [Th] 

cells). Exogenously derived peptides might also be presented via MHC class I 

molecules via cross-presentation [11, 12]. MHC class I molecules are expressed at 

different levels on all nucleated cells, while MHC class II molecules are only expressed 

on specific antigen-presenting cells (APCs) such as dendritic cells (DCs), macrophages 

and B-cells. The glycoproteins are not only important for antigen-presentation, but also 

for self-recognition.  

 

1.1.1.1 Diversity of the MHC class I 

The MHC class I glycoprotein is the most polymorphic molecule in the human body, 

with more than 5 000 different versions (alleles) identified. The individual MHC class I 
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alleles can differ by up to 20 amino 

acids, making each variant unique. 

The HLA-B locus is the most 

diverse with more than 2 000 

different alleles, followed by HLA-

A (~1 700) and HLA-C (~1 300) 

(Figure 2) [13]. Each individual 

can carry and co-dominantly 

express up to six different alleles, 

since in addition to being poly-

morphic the molecules are also 

polygenic, with each chromosome 

containing one HLA-A, one HLA-

B and one HLA-C allele. Both haplotypes (allele-combinations found on a 

chromosome) are subsequently co-dominantly produced and expressed on the cell-

surface. 

Table 1. 

Average frequencies (%) of a number of selected MHC class I alleles for different population groups. 

Adapted from numbers derived from the Allele frequency net database [14]. 

 

Allele Caucasians Asians Africans 

A*01:01 12 4 4 

A*02:01 25 7 9 

A*03:01 13 3 5 

A*11:01 6 18 1 

A*24:02 10 19 3 

A*30:01 1 3 6 

A*30:02 1 1 7 

A*68:01 3 2 3 

B*07:02 10 2 5 

B*08:01 8 1 4 

B*15:01 5 3 1 

B*58:01 2 7 5 

C*07:01 14 4 17 

 

The frequencies of many alleles are evenly distributed between different population 

groups (e.g. A*68:01 and B*58:01). However, different distribution of MHC class I 

alleles can be found based on geographic location or ethnicity for most of the MHC 

class I alleles (e.g. A*02:01, A*11:01 and A*30:02) [14] (Table 1).  

 

Figure 2. Number of MHC class I alleles for the 

different HLA loci.  

Adapted from numbers derived from IMGT/HLA database 

[13]. 
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1.1.1.2 Structure of the MHC class I glycoprotein 

The MHC class I glycoprotein consists of an invariant 12 kDa light chain (96 amino 

acids) (β2-microglobulin [β2m]) encoded outside the HLA-locus (on chromosome 15), 

non-covalently linked to a 43 kDa 

(340 amino acids) membrane 

anchored polymorphic heavy chain. 

The heavy chain consists of three 

sub-domains (α1, α2 and α3), of 

which the first two form the walls 

and bottom of the peptide binding 

cleft and the third ends in the 

transmembrane region anchoring the 

molecule to the cell-membrane, as 

well as containing a short cyto-

plasmic tail. A protein-derived 

peptide fragment, usually between 8 

and 10 amino acids long, constitutes 

the third part of the trimeric complex 

(Figure 3). Without the peptide, the 

trimeric complex remains unstable 

and the molecules will rapidly 

dissociate [15]. 

 

1.1.1.3 The peptide binding cleft and the peptide motif 

Two α-helixes, forming the walls on top of an antiparallel 8-stranded β-sheet forming 

the floor, create the peptide binding cleft of an MHC class I molecule. The cleft is 

closed at the ends by certain inter-allelic conserved tyrosine residues which interact 

with the amino and carboxy terminal ends of the presented peptide, limiting, in most 

of the cases, the size of binding peptides to 8–10 amino acids [16]. The peptides bind 

in an elongated conformation within the cleft and ‘kinking’ of the peptides explains 

peptide binding of additional length associated with some MHC class I alleles, e.g. 

HLA-35 [17]. Most of the polymorphism that defines the different MHC class I alleles, 

lies within the peptide binding clefts and, more specifically, within amino acid residues 

interacting directly with the peptide [18]. These residues form 6 binding pockets 

labeled A–F, that interact with specific amino acids positions within a potential peptide 

β
2
m 

α
1
 

 

Figure 3. Structure of the peptide-ββββ2m-MHC class I 

complex. 

Adapted from PDB file 1AKJ [49].
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(Figure 4) [19, 20], thereby allowing each individual MHC class I allele to bind a large 

repertoire of peptides that varies inter-allelic. Each MHC class I allele will therefore 

only accommodate a certain repertoire of peptides with properties (electrostatic, 

hydrophobicity or bulki-

ness) that match the 

specific biochemical en-

vironments within these 6 

binding pockets. Some 

positions within the 

peptide are more important 

for interaction with the 

MHC molecule than 

others; they are called 

‘anchor residues’. Anchor 

residues are therefore often 

conserved. They are 

usually situated at position 

two (P2) and at the 

carboxy-terminal (P9) end of a peptide interacting with pocket B and F. Yet, inter-

allelic variations exist with some alleles preferring peptides with anchor-residues at 

position 3 (P3) and C-terminus (P9) (e.g. HLA-A*01), or only at the C-terminal end 

(P9) (e.g. HLA-A*11:01 and A*31:01) [21]. However, these anchor residues are not 

sufficient for high-affinity binding, since not all peptides with suitable anchor residues 

bind to the respective MHC molecule. In addition, most alleles show auxiliary (or 

secondary) anchor residues critical or important for peptide binding. In the case of 

HLA-A*02:01 (one of the most well-studied human MHC class I molecules), the 

anchor residues have been described to be either leucine or methionine at P2 in the 

binding peptide and either valine or leucine at P9 [22]. In addition, the amino acid 

situated at P3 in the presenting peptide has been shown to be a secondary anchor 

residue [23]. Altogether, the primary and auxiliary anchor residues form the allele-

specific peptide motif. The motif is not absolute, as numerous peptides without the 

appropriate primary and auxiliary anchor residues have been identified as well as 

longer [24] or shorter peptides [25]. However, by using the sequence motif one can 

accurately predict peptide binding, at least for the more well-studied MHC class I 

alleles [21, 26, 27]. 

Figure 4. The peptide binding cleft of a MHC class I molecule, 

including the peptide binding pockets A-F. 

Adapted from PDB file 1AKJ [49] .
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1.1.1.4 Antigen processing and antigen-presentation 

The correct assembly and folding of the heavy chain of the MHC class I molecules take 

place in the endoplasmic reticulum (ER). This step is stabilized by the chaperon 

calnexin and is followed by incorporation of β2m and the formation of the peptide-

loading complex (PLC). The PLC is composed of two MHC-encoded components, 

TAP and tapasin, as 

well as two ‘house-

keeping’ ER proteins, 

calreticulin and ERp57 

[28]. They help in 

loading a broad range 

of high-affinity pep-

tides into the peptide 

binding clefts of the 

MHC class I molecules 

[29]. 

 

In the direct antigen 

processing pathway, 

endogenous peptides, 

i.e. ‘self’, viral or 

bacterial proteins form-

ed in the cytosol of the 

cell, are presented on 

MHC class I glyco-

proteins. Misfolded or 

foreign proteins are first tagged for destruction by ubiquitylation. Ubiquitinated 

proteins are then degraded in the proteasome and the peptides formed are transported 

to the ER via the ATP-dependant dimeric TAP-transporter system [30] before they 

are occasionally additionally trimmed by aminopeptidases [31]. In the ER, peptides of 

the approximate length of 8–10 amino acids bind to the MHC class I molecules and 

the trimeric complex is transported via the secretory pathway through the Golgi 

apparatus to the cell-surface. The peptides are subsequently presented to CD8+ T-

cells on the cell-surface [32] (Figure 5A).  

A 

B 

Figure 5. (A) The classical antigen presenting pathway and (B) 

pathways for cross-presentation of exogenously generated peptides. 
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Signal sequences of proteins, designated for the cell-surface, are cleaved off in the ER 

and peptides originating from them can be loaded directly in the ER, independently of 

the TAP transport [33]. Retrograde translocation of ER-associated proteins back to 

the cytosol is another mechanism for endogenous peptide generation [34].  

 

Exogenously generated peptides, e.g. most bacterial proteins, induce predominantly 

B-cell (humoral) and CD4+ T-cell responses; by recognition of the nominal antibody 

molecule and MHC class II restricted presentation respectively. Exogenously derived 

antigens can, via different pathways, also associate with MHC class I molecules, a 

phenomenon referred to as ‘cross-presentation’ [35]. In most cases, the peptides 

originate from intra-cellular pathogens escaping to the cytosol, phagocytosed 

pathogens or from phagocytosed apoptotic bodies. After uptake by e.g. DCs or 

macrophages, the proteins are retranslocated to the cytosol, cleaved by the 

proteasome and delivered to the ER, similar to the classical pathway (TAP-dependant 

pathway) [36]. Cytosolic access occurs either via leakage, pore formation, active 

transport through the vacuolar membrane, or via direct fusion of the vacuole to the 

ER. An alternative way of cross-presentation occurs when MHC class I molecules 

take up and present phagosome and vacuolar-degraded antigens directly within the 

vacuolar system [37, 38] (TAP-independent pathway) (Figure 5B). 

  

1.1.1.5 Epitopes 

An antigenic determinant, ‘epitope’, is the part of an antigen that the adaptive immune 

system (mainly T-cells and B-cells) recognizes. CD8+ T-cell epitopes consist of 

peptides bound to MHC class I molecules recognized by the T-cell receptor (TCR). The 

immunogenicity of an epitope depends on several criteria; 1) the epitope must be 

generated and transported to the endoplasmic reticulum, by overcoming limitations in 

proteasome dependent proteolysis [39] and restrictions related to the TAP-system [40] 

or by cross-presentation [41], 2) the epitope must bind to the MHC haplotype with 

appropriate affinity and dissociation rate, 3) the peptide-MHC complex must then be 

recognized by the individual’s specific TCR repertoire and subsequent trigger T-

lymphocytes. 

 

Different strategies could be utilized for identification of CD8+ T-cell epitopes. Either 

one could start with identification of a positive T-cell response (e.g. by measuring 
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proliferation or cytokine production) and then track down the specific epitope. The 

opposite strategy could be utilized as well, starting with the identification of MHC-

binding peptides from an immunogenic protein (using e.g. in silico selected or 

overlapping peptide libraries and recombinant MHC molecules  or T-cell stabilization 

assays [42, 43]) followed by assessing the ability of these epitopes to elicit a T-cell 

response, e.g. by using MHC-multimers [44], or functional assays (e.g. enzyme-linked 

immunosorbent assay [ELISA], enzyme-linked immunosorbent spot [ELISPOT], intra-

cellular cytokine staining [ICS] or cytotoxicity assays). By utilizing these methods, a 

high number of CD4+ and CD8+ T-cell epitopes have been identified in many different 

disease settings. However, we still lack knowledge of T-cell epitope identification in 

many areas. For instance, knowledge of the exact restricting MHC allele is frequently 

missing or, if it is known, one can detect a clear bias towards epitopes presented on a 

limited number of well-studied ‘Caucasian’ MHC class I alleles such as HLA-A*02:01, 

A*03:01, A*11:01 and B*15:01 [45].  

 

1.1.2 T-cells  

T-cells are differentiated in the thymus from bone-marrow-derived common lymphoid 

progenitor cells. During this differentiation process, thymocytes undergo a series of 

defined maturation steps, including that each progenitor T-cell makes its own specific 

TCR by gene rearrangement. To create a self-tolerant T-cell repertoire which is able to 

recognize foreign antigens, T-cell clones carrying TCRs that recognize MHC molecules 

too weakly or self-antigens (too strongly) are subsequently deleted via positive and 

negative selection, respectively. Thereafter, the thymocytes are committed to either 

CD4 or CD8 linage before entering the circulation as mature T-cells. Upon antigenic 

encounter, naïve non-antigen-experienced T-cells need to be primed against their 

cognate antigen by APCs, before becoming competent effector cells as well as long-

lived memory T-cells. Antigenic encounter is mediated via the TCR which recognizes 

only antigens in association with an individual’s own MHC molecules, the ‘MHC 

restriction’ [46].  

 
1.1.2.1 The T-cell receptor  

In most T-cells, the TCR is a heterodimer composed of disulfide-linked α and β 

polypeptide chains (a minority of T-cells, so-called γδ-T-cells, uses γ and δ 

polypeptide chains instead), each having separate constant and variable domains. The 

constant domains of the TCR are anchored in the cell-membrane of the T-cell. Each 
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variable region of the TCR is assembled from a number of randomly selected gene 

segments called V, D and J, at the junctions of these segments additional diversity is 

introduced through imprecise joining thereby creating a large repertoire of putative 

TCRs. In addition, the variable domain contains three hypervariable regions or 

complementary determining regions (CDRs) that are responsible for antigen 

recognition. The CDR1s interact predominantly with the N and C terminal ends of the 

peptide; the CDR2s interact with the α-helixes of the MHC molecules and the 

CDR3s, which are the most hypervariable loops, interact with the central part of the 

presented peptide [47].  

 

1.1.2.2 CD8 co-receptor 

Another cell-surface glycoprotein that is present on the cell-surface of certain T-cells 

(CD8+ T-cells), as well as on other immune cells (e.g. natural killer cells and dendritic 

cells), is the CD8 molecule. In most cases, CD8 represents a heavily glycosylated 

disulfide-linked heterodimer consisting of an α- and a β-chain, but a homodimer 

consisting of two α-chains is expressed on a certain subset of T-cells (αα T-cells). On 

T-cells, CD8 serves as a co-receptor for the TCR by recruiting essential intracellular 

signaling molecules, e.g. Lck [48] to the TCR complex, as well as interacting with the 

constant regions of the α2 and α3 domains of the peptide-MHC complex [49, 50]. The 

interaction keeps the TCR of the CD8+ T-cell and the target cell bound closely 

together, thereby allowing for prolonged engagement. During antigen-specific 

activation, this is thought to increase the sensitivity of a T-cell to its antigen a 

hundredfold.  

 
1.1.3 MHC-TCR interaction 

Both CD8+ T-cell priming and target recognition of T-cells in the effector phase of 

the immune response are dependent on MHC-TCR interactions. T-cell priming needs 

a variety of receptor-associated signaling events to take place between the T-cell and 

the APC, including the formation of the peptide-MHC-TCR complex (signal 1), co-

stimulatory signaling (B7-1/B7-2 and CD28) (signal 2) as well as cytokine signaling 

(e.g. interleukin-12 [IL-12]) [51] (signal 3), while effector cells can respond to their 

target cells without co-stimulatory signals [52]. The frequency of individual peptide-

MHC complexes on the cell-surface of infected cells is thought to be very low; only a 

few (10–50) TCR-MHC interactions are thought to be needed for T-cell activation, 

and even less for subsequent CD8+ T-cell mediated cytotoxicity [53]. 
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1.1.3.1 The immunological synapse  

The initial contact between APC and naïve T-cells is mediated by cell-adhesion 

molecules like intracellular adhesion molecules (ICAMs) [54]. The binding between an 

individual MHC molecule and a TCR is characterized by low affinity and fast 

dissociation rate, which is required for enabling serial contacts of each TCR molecule 

to bind to multiple MHC-peptide ligands [55]. The interaction between the TCR and 

the peptide-MHC complex is a two-step process. In the first step, the TCR docks on 

the MHC molecule in a peptide-independent fashion. This is followed by contact 

between the TCR and the peptide, which stabilizes or abrogates the MHC-TCR 

complex [56]. The TCR orients itself diagonally across the peptide-MHC complex, 

with the TCRα-chain lying above the amino-terminal end of the bound peptide and 

the α2 domain of the MHC class I molecule and the TCRβ-chain interacting with the 

carboxy terminal end and the α1 domain. Certain residues within the TCRs loops then 

interact with individual protuberating residues on the MHC complex, small 

alterations within the peptide might consequently alter the T-cell response. Because 

of this, it is believed that certain variable TCR genes have co-evolved with certain 

MHC alleles [57].  

 

1.1.3.2 Immunodominance 

The immune recognition by antigen-specific CD8+ T-cells in many diseases is often 

directed against a few of the many potential epitopes originating from a complex 

pathogen. This ‘skewing’ of the immune system gives rise to immunodominant 

epitopes, which might be accompanied by less recognized sub-dominant epitopes [58]. 

The driving force behind immunodominance and sub-dominance in different disease 

settings is not completely elucidated, but factors that are considered crucial include 1) 

availability (time and receptor numbers) of the peptide-MHC complex on the cell-

surface [59], 2) the stability and the conformation of the presented epitope [17] and 3) 

the frequencies of T-cell precursors with the possibility of recognizing the epitope [60]. 

Recognition of certain epitopes might as well dampen the immune recognition of other 

epitopes, a process called ‘immunodomination’.  

 

1.1.4 Phenotype and effector functions of T-cells 

Before activation, naïve CD8+ T-cells are immunologically pluripotent with the 

possibility to differentiate either into effector or memory subsets upon activation [61]. 
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Therefore, the degree and time of antigenic stimulation, cytokine availability, co-

stimulatory environment and the presence of CD4+ T-cell help are important factors for 

complete activation to occur as well as for determining the fate of a precursor CD8+ T-

cell [51, 62]. Initially during infections, a massive heterogeneous response of antigen-

specific T-cells is elicited. Only a small percentage of these initially clonally expanded 

cells survive and proceed to long-lived heterogeneous memory subsets after clearance 

of the pathogen. 

  

1.1.4.1 T-cell phenotypic compartments 

Based on a number of cell-surface markers such as CD45RA and CCR7, mature CD8+ 

T-cells can be divided into four different phenotypic compartments [63, 64]. CD45RA 

is an isoform of the protein tyrosine phosphatase receptor type C and functions as a 

regulator of receptor signaling in T-cells and B-cells, while CCR7 (CD197) is a 

chemokine receptor responsible for migration of naïve and central memory 

lymphocytes to secondary lymphoid organs. Antigen non-experienced precursor T-cells 

express both markers on their cell-surface and are able to give rise to memory or 

effector T-cells upon antigen encounter. There are two different compartments of 

memory T-cells based on expression of the chemokine receptor CCR7. Central memory 

T-cells express this receptor, but have switched the expression of the CD45RA isoform 

to another isoform (CD45RO). They are lymph-node homing antigen-experienced cells 

with high proliferative capacity, and are believed to lack immediate effector functions 

(except IL-2 production) and upon rechallenge need co-stimulation in order to expand. 

The other memory compartment consists of effector memory T-cells, which have 

down-regulated both cell-surface markers and exhibit a high degree of effector 

functionality, low proliferation rate and preferentially reside as sentinels in tissues. 

Terminally differentiated effector cells (TEMRA) (CD45RA+CCR7-), which home to 

disease sites, constitute the last and most differentiated compartment. They are mainly 

effector cells with limited proliferating capacity [65].  

 

1.1.4.2 CD8+ T-cell effector functions  

T-cells produce two main classes of effector functions: cytotoxins and cytokines. CD8+ 

T-cells are called cytotoxic T-cells based on their main effector functions, i.e. cytolytic 

killing of infected cells by the help of cytotoxic granules containing cytotoxins (e.g. 

perforin, granzyme and granulysin). Perforin makes contact with the target cell and 

helps to release granzyme to the cytoplasm where the protease is activated to induce 
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apoptosis in the target cell [66]. However, many CD8+ T-cells also carry the Fas-ligand 

(CD178) by which they might induce apoptosis in Fas receptor (CD95/APO-1) 

expressing cells. A third effector function of the cells is cytokine production, for 

example interferon-γ (IFN-γ), IL-2 and TNF-α. IL-2, IFN-γ and TNF-α have a central 

role in the cellular immunity; IFN-γ is for example important for activation and 

differentiation of immune cells as well as up-regulation of MHC molecules and TNF-α 

is an important activating cytokine for macrophages and endothelial cells.  

 

Upon chronic infection, dysfunctional T-cells might arise. They are either characterized 

by the loss of proliferative capacity, due to telomere erosion or DNA damage 

(senescence) or characterized by expression of inhibitory receptors and an altered 

transcriptional profile associated with compromised effector functions (T-cell 

exhaustion). T-cell exhaustion is associated with high antigenic load and the exhausted 

cells most often display an effector memory phenotype characterized by the up-

regulation of inhibitory receptors such as programmed death 1 (PD1) receptor, 

cytotoxic T-lymphocyte antigen 4 (CTLA4) and lymphocyte activation gen 3 (LAG3) 

[67]. The effector functionality of these cells might become compromised starting with 

a decreased IL-2 production, followed by TNF-α production, decreased cytotoxic 

activity and finally a loss of IFN-γ production. This might occur generally, or more 

specifically in certain antigen-specific T-cell clones [68, 69].  

 

1.1.4.3 Other cell-surface markers 

Evaluation of cytotoxic effector functions of CD8+ T-cells can be done without 

measuring the intracellular cytolytic molecules themselves, by enumerating the 

frequencies of cells expressing CD107a (LAMP-1) on the cell-surface. CD107a is 

associated with the membrane of cytolytic granules carrying perforin and granzyme, 

and this marker can be measured on the cell-surface of T-cells upon exocytosis of these 

vesicles [70]. The measurements can be done either in ex vivo assays (which reflect the 

activation of immune cells without in vitro manipulation) [71] or, alternatively, after 

antigenic stimulation in vitro. 

 

The cytokine IL-7 is important for T-cell homeostasis, growth, maturation and memory 

formation [72]. It acts by signaling through the IL-7R, which is a heterodimer 

composed of the IL-7Rα (CD127) and the cytokine common γ-chain (CD132). This 
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receptor is expressed, and can be measured, on the cell-surface of a majority of 

differentiated CD8+ T-cells, but it is transiently down-regulated during proliferation in 

response to antigenic stimuli [73].  

 

Other important cell-surface markers expressed by different immune cells including T-

cells are e.g. CD95, which is a receptor involved in modulation of T-cell activation and 

in pro- and anti-apoptotic signaling cascades [74]. CD117 is a cell-surface receptor 

expressed on different types of hematopoietic progenitor cells and plays a role in cell 

survival, proliferation, and differentiation [75].  

 

1.2 MULTIMERS 

1.2.1 Structure 

Due to too low avidity between individual MHC complex 

and TCRs, it is not possible to visualize individual MHC-

TCR interactions directly in ex vivo sampled blood 

specimens by flow cytometry. Instead, multimerization 

of the MHC molecules allows for simultaneous binding 

of multiple MHC molecules to TCRs on the cell-surface 

of T-cells, thereby increasing the avidity. Multimers (e.g. 

tetramers, pentamers and dextramers) are flow cytometry 

reagents initially developed in 1996 [44] that are used for 

detecting antigen-specific T-cells ex vivo. They consist of 

at least 4 soluble MHC class I molecules presenting the 

same peptide-epitope, linked together via a fluorescent 

labeled linker (e.g. streptavidin, avidin or dextran) (Figure 6). Today, multimers exist 

commercially for most of the common ‘Caucasian’ and ‘Asian’ MHC class I alleles. 

However, we do not have sufficient access to soluble MHC class I molecules covering 

the most frequent ‘African’ MHC class I alleles. 

 
1.2.2 Function 

Multimers provide an efficient way to identify, enumerate, visualize and sort antigen-

specific CD8+, and to a lesser extent CD4+, T-cells directly in blood, in frozen 

peripheral blood mononuclear cells (PBMCs) or in tissue samples [44, 76, 77]. They 

can be combined with other cell-surface markers to derive important information about 

the phenotype, effector functions, activation status, homing capacity, proliferation and 

Figure 6. Multimer 

recognition of an antigen-

specific T-cell. 



 

14 

apoptosis of T-cells [78]. The reagents can be used for measuring antigen-specific 

response in infection and after vaccination. They can also be utilized for sorting and 

purification of antigen-specific T-cells for subsequent analysis, therapeutic transfer [79] 

or TCR analysis. One advantage of the use of multimers is the fact that it is possible to 

assess T-cell frequencies without any in vitro manipulation [44]. The major drawback 

with this method is that it does not provide any direct evidence of function, e.g. killing 

capacity or cytokine production. However, MHC class I multimeric analysis can be 

combined with analysis of cytokine production, although the currently applied 

protocols may not allow accurate estimation of MHC class I-TCR interactions, since 

detection of intracellular cytokines requires fixation and permeabilization of the cell-

membrane and this may result in lower frequency of multimer positive events. 

 

1.3 TUBERCULOSIS  

1.3.1 The bacterium 

M.tb was isolated and identified as the causative agent of TB by Robert Koch in 1882. 

M.tb is a large rod-shaped bacterium (2–4 µm in length and 0.2–0.5 µm in width) 

belonging to the genus Mycobacterium. M.tb is a facultative intracellular parasite that 

usually infects human macrophages. The generation time is long, usually 15–20 h, 

defining it as a slow-growing pathogen. The bacteria are classified as acid-fast due to 

their complex cell-walls impermeability to a number of dyes. The cell-wall consists of 

peptidoglycan and complex lipids (e.g. mycolic acids, acyl glycolipids and sulfolipids) 

and is an important virulence factor of the bacteria [80]. M.tb has circular chromosomes 

about 4 200 000 nucleotides long containing about 4 000 genes [81]. Many of these 

genes are still unknown, although intensive research has been performed since the 

genomic sequence was revealed in 1998 [82]. Among the proteins with identified 

function, an unusual high amount participates in the fatty acid metabolism. Another 

distinctive feature of the mycobacterial genome is the large group of unrelated proteins 

containing specific repeats of proline (P) and glutamic acid (E) (PE and PPE proteins) 

[83] .  

  
1.3.2 The disease 

M.tb is able to cause disease in almost all organs in the human body (e.g. lung, central 

nervous system, the bones and the joints). However, since the bacteria are mainly 

transmitted via the airborne route, pulmonary TB is the most prevalent form of disease. 

Extrapulmonary TB is most common in immunosuppressed individuals, e.g. those 
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infected by HIV and young children. Not all individuals exposed to aerosols 

contaminated with M.tb acquire infection, usually repeated contact is required. An 

infection starts with the aspiration of bacteria to the pulmonary alveoli where they 

infect resident macrophages. Macrophages phagocyte the bacteria, but instead of being 

degraded in the hostile environment of the phagolysosomes that normally form and 

degrade phagocytosed pathogens, M.tb stops the fusion of the phagosomic and 

lysosomic compartments, thereby creating an immune privilege niche were they can 

survive and replicate [84]. Early during infection, professional APCs like alveolar 

macrophages, monocyte-derived macrophages and DCs take up the bacteria, 

subsequently DCs travel to the draining lymph nodes and present M.tb antigens to 

naïve T-cells [85]. The T-cells become activated and afterwards home to the infected 

lung tissues where they orchestrate the formation of granulomatous structures, 

together with neutrophils and monocytic cells, which may contain the M.tb bacilli. In 

a majority of cases, the host immune system is able to control the initial infection and 

keep the bacteria in a dormant, non-replicating state. In this state, the infected 

individuals are neither sick nor infectious, i.e. they are carrying latent TB. During a 

lifetime there is in general a 10 % risk of reactivation of latent TB into active disease. 

The only vaccine used today against M.tb is the M.bovis-derived Bacillus Calmette 

Guérin (BCG) originating from 1921. Billions of people have been vaccinated with this 

vaccine but its efficacy is questioned, as it seems to give limited effect against 

pulmonary TB in adult individuals, dependent on the geographic regions and previous 

exposure of environmental mycobacteria [86]. 

 

1.3.3 Adaptive immune responses to M.tb 

As previously mentioned, M.tb is an intracellular pathogen; therefore the adaptive 

immune response is primary directed by Th1 cytokines (e.g. IL-2, IFN-γ and TNF-α), 

i.e. cell-mediated. Many different T-cell subsets have been shown to be important, 

including CD4+ T-cells [4], CD8+ T-cells [5] and unconventional and regulatory T-

cells. However, anti-M.tb directed humoral immune responses have recently gained 

increased interest in protection against mycobacteria, both regarding modulation of the 

cell-mediated immune response as well as in a direct protecting role against M.tb 

infection [87, 88]. Another kind of adaptive immune response against M.tb infection is 

the IL-17 mediated Th17 response [89], associated with recruitment and activation of 

neutrophils [90].  
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1.3.4 Genetic variability and immune responses against M.tb 

The outcome of infectious diseases depends on a delicate balance between host (e.g. 

genetic variants of factors in the immune system and different MHC alleles) and 

pathogen-derived factors (e.g. virulence factors and escape mutations), as well as other 

external factors like co-existing diseases and environmental factors (including stress, 

malnutrition, poverty and helminth infections).  

 

Host-derived factors, differences in ethnicity and certain MHC class I alleles have been 

shown to be important for the specific T-cell responses in many disease settings, 

including hepatitis B [91], hepatitis C [92] and HIV [93]. Considering M.tb 

susceptibility, associations between specific lineages of M.tb and certain populations 

indicate local host-pathogen co-adaptation [94]. More recently, increasing evidence of 

host-derived gene polymorphisms (e.g. IFN-γ [95], DC-SIGN, vitamin D receptor [96], 

toll like receptor variants [97] and nitric oxide synthase [98]) affecting TB 

susceptibility have been identified. In addition, different studies have linked individual 

MHC class II molecules to increased or decreased susceptibility to M.tb infection in 

different population cohorts (e.g. HLA-DR2 in Indian and Russian populations [99, 

100] and HLA-DR4 in the Italian population [101]). Despite the fact that no significant 

association between MHC class I alleles and M.tb susceptibility has been found, inter-

allelic variations in the MHC class I locus may still have impact on immune recognition 

due to their possibility to present different peptide repertoires and thereby influencing 

immune recognition by antigen-specific T-cells.  

 

1.3.5 M.tb epitopes 

The sequencing of the entire H37Rv M.tb reference genome [82] opened many new 

possibilities to identify molecularly defined protein targets for CD4+ and CD8+ T-cell 

epitopes. Yet, a majority of the identified T-cell epitopes derived from M.tb proteins 

originates from a limited set of well-studied targets, like the early expressed virulence 

factors ESAT-6, CFP10, TB10.4 and the Ag85complex [102-104], as well as the very 

abundant PE and PPE family proteins [105]. 

 

1.3.6 Genetic diversity in M.tb 

The genetic diversity in the M.tb genome between different bacterial strains seems to be 

quite low, but some differences (insertions, deletions and point mutations) have been 

identified [106]. However, these variations may have both phenotypical and 
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immunological impact, e.g. by changing the ability of the infected individuals to induce 

a cellular immune response [107, 108]. Most variations in the TB genome reside in 

non-essential genes and it has previously been shown that human T-cell epitopes show 

little sequence variability in proteins derived from M.tb. This seems to hold true for 

many proteins, except for the small immunogenic protein TB10.4 being one exception 

[109].  

 

1.3.7 Immunogenic M.tb proteins  

1.3.7.1 TB10.4 (Rv0288) 

TB10.4 (Rv0288) (also known as ESAT-6-like 

protein esxH, CFP7) is a well-studied early 

expressed and secreted TB virulence factor of 10 

kDa (96 amino acids). It consists of two major α-

helixes and forms a dimer with TB9.8 (Rv0287) 

(Figure 7). It is expressed in both the vaccine 

strain BCG as well as in virulent M.tb strains 

[110]. TB10.4 is part of the 6 kDa early 

secretory antigenic target (ESAT-6) gene family 

which encodes a number of secreted 

immunodominant molecules such as TB10.3 and 

TB12.9 [103]. A few CD8+ T-cell epitopes 

have previously been described for this protein 

[111, 112]. TB10.4 is also a component in 

several novel TB-vaccine candidates [113]. 

 

1.3.7.2 Ag85B (Rv1886c) 

The 30 kDa (325 amino acids) Ag85B (Rv1886c) (also known as α antigen or MPT59) 

is the most abundant protein expressed by M.tb. The secondary structure of the protein 

consists of 7 α-helixes encircling a central parallel β-sheet (Figure 8). It is both a 

secreted and cell-wall associated protein that seems to be primarily expressed during 

the early stages of infection and is expressed both by M.tb and by the M.bovis-derived 

vaccine strain BCG as well as in mycobacteria other than tuberculosis (MOTT). The 

protein is one of three closely related mycolyl transferase molecules (the others are 

Ag85A and Ag85C) contributing to cell-wall biosynthesis synthesis by catalyzing the 

transfer of the fatty acid mycolate from one trehalose monomycolate to another. This 

Figure 7. Structure of M.tb protein 

TB10.4 (left part) and TB9.8 (right part). 

Adapted from PDB file 2KG7 [176].
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results in trehalose 6,60-

dimycolate and free trehalose 

[114]. The protein has been 

shown to be among the most 

potent antigens identified 

[115] and is a major target of 

human T-cell responses to 

M.tb [104], and it is also part 

of many novel TB-vaccine 

candidates [113, 116].  

 

1.3.7.3 ESAT-6 (Rv3875) 

ESAT-6 (esxA, Rv3875) is a 

95 amino acid long M.tb-

derived protein which forms a dimer with another M.tb protein: CFP10 [117]. It 

belongs to the RD1 region which is only present in a limited number of mycobacterial 

species including M.tb and e.g. M. marinum and M. kansasii, but is absent in BCG and 

many other mycobacterial species [118]. This makes it an interesting diagnostic marker 

for differentiating between vaccinated and M.tb infected individuals [119]. It belongs to 

an extended family (~23 members) of small (~100 amino acids) proteins from which 

many CD4 and CD8 T-cell epitopes have already been identified and most patients 

infected with M.tb recognize the antigen. The protein also contributes to M.tb 

pathogenicity, as deletion of the gene leads to attenuation of the bacteria [120]. ESAT-6 

is expressed early in infection and contributes to apoptosis of macrophages and lung 

epithelial cells, thereby permitting cell-to cell spread of M.tb. In addition, 

immunomodulatory effects on macrophages, like perturbation of intracellular signaling 

pathways affecting antigen-presentation and cytokine production have been reported 

[121-123]. 

 
1.3.7.4 Glycosyl transferases and cyclopropane fatty acid synthase  

Non-secreted M.tb-proteins like glycosyl transferase (1) (Rv2958c), glycosyl 

transferase (2) (Rv2957) and the cyclopropane fatty acid synthase (CFA synthase) 

(Rv0447c) are expressed predominantly in slow growing bacteria such as 

mycobacteria. The glycosyl transferases are enzymes involved in glycosylation steps 

downstream of branched lipids like phenolic glycolipid (which are associated with M.tb 

Figure 8. Structure of M.tb protein Ag85B. 

Adapted from PDB file 1F0N [177].
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hypervirulence [124]), and esters like glycosylated p-hydroxybenzoic acid methyl 

esters biosynthesis [125] (products that seems to be associated with resistance to 

intracellular killing by macrophages [126]). The CFA-synthase belongs to a group of 

enzymes involved in the creation of important components for making the cell-wall 

impermeable (i.e. cyclopropanation of the mycolic acids) [127].  

 

The proteins are known to be immunogenic, since they have been identified to be 

targets for humoral responses [128] and HLA-class II presentation [129], as well as T-

cells responses measured in whole blood assays, assessing CD4+ and CD8+ T-cell 

responses [130]. In addition, these proteins are mainly expressed by slow growing 

bacteria and might therefore show a different pattern of immunogenicity compared to 

the early expressed M.tb antigens.  



 

20 

2 AIM OF THE THESIS 
 

 
• Identification of MHC class I binding epitopes in the TB protein TB10.4 using 

a panel of Caucasian MHC class I molecules. 
 

• Construct monomers for some of the most frequent ‘African’ MHC class I 
alleles: HLA-A*30:01, A*30:02, A*68:01, B*58:01 and C*07:01. 
 

• Construct a peptide binding assay and identify MHC-peptide binding epitopes 
for the M.tb-associated antigens TB10.4, Ag85B and ESAT-6. 
 

• Further characterize the binding properties of the identified peptide binding 
epitopes from TB10.4, Ag85B and ESAT-6. 
 

• Construct MHC class I multimers presenting M.tb protein-derived epitopes 
(TB10.4, Ag85B, ESAT-6, glycosyl transferase 1, glycosyl transferase 2 and 
cyclopropane fatty acid synthase) to enumerate MHC class I restricted CD8+ T-
cells. 
 

• Employ the multimers for characterization of M.tb-specific T-cells directly in 
blood obtained from patients with M.tb infection with different ethnic 
background (Caucasian, Asian and African). 
 

• Evaluate the number of existing T-cell epitopes from M.tb-derived proteins. 
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3 METHODOLOGICAL DEVELOPMENT 
3.1 PATIENTS WITH PULMONARY TB 

In this thesis, PBMCs from patients with active pulmonary TB were used to enumerate 

and characterize antigen-specific T-cells in different settings. These patients had 

different genetic background and originated from different geographic regions. In 

Paper I we used T-cells from Caucasian patients originating from Mainz, Germany, in 

Paper IV we used cells from TB patients from South Korea and in Papers II and III we 

used cells from patient with a sub-Saharan African background, originating from two 

different sites in South Africa (Pretoria and Cape Town). 

 

3.2 DEVELOPMENT OF NOVEL MATERIALS AND METHODS 

3.2.1 African MHC class I alleles 

Today, the most frequently expressed MHC class I alleles in a Caucasian and Asian 

population exist commercially, but since different African population groups have a 

very diverse expression of MHC class I alleles, the lack of commercially available tools 

for many of the most common alleles in this area represents a major problem to directly 

enumerate T-cells in blood from patient with TB. In order to overcome this challenge, 

we constructed and produced some of the most common African MHC class I alleles 

[14, 131] recombinantly for Papers II and III (e.g. HLA-A*30:01, A*30:02, A*68:01, 

B*58:01 and C*07:01). This represents a major part of this thesis. 

 
3.2.2 Recombinant MHC class I molecules 

In addition to the above listed ‘African’ MHC class I molecules, several previously 

described MHC class I alleles (e.g. HLA-A*02:01, A*24:02 and B*07:02) were 

produced recombinantly during this thesis and used in Papers II, III and IV. Bacterial 

expression vectors (pET24d+ and pHN1) containing the nucleotide sequences for the 

soluble part of the heavy chain of the MHC class I alleles and the light-chain β2m 

were either newly cloned or contributed by Beckman Coulter, San Diego, CA. All 

recombinant MHC class I molecules (‘African’ and ‘Caucasian/Asian’) were 

produced as previously described [132]. In summary, heavy and light chains were 

produced in Escherichia coli Bl21 DE3 pLys as inclusion bodies and solubilized in an 

8 M urea buffer, pH 6.5, and folded to correct trimeric structure in a pH 8.0 Tris-

EDTA-arginine buffer together with allele-specific candidate peptides (Table 2). 
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Folded MHC class I-peptide monomers were biotinylated using the enzyme BirA. 

The biotinylated monomers were affinity purified using an avidin column. 

 

Table 2. 

The MHC class I molecules included in this thesis and their control peptides. 

 
Allele Control Peptide Original protein 

A*01:01 EVDPIGHLY MAGE-A3 

A*02:01 FLPSDFFPSV HBV CORE 

A*03:01 KVFPCALINK Consensus peptide modified at position 5 

A*11:01 AVFDRKSDAK EBV EBNA 3B 

A*24:02 RYLKDQQLL HIV env 

A*30:01 KTKDIVNGL F-actin capping protein beta 

A*30:02 KIQNFRVYY HIV-integrase 

A*68*01 KTGGPIYKR Influenza virus nucleoprotein 

B*07:02 TPRVTGGGAM  CMV pp65 

B*08:01 EIYKRWII HIV p24 

B*15:01 AMKGLPIRY DENGUE VIRUS NS3 

B*58:01 IAMESIVIW HIV RT 

C*07:01 KYFDEHYEY CDC28 protein 

 
3.2.3 Peptide binding assay 

In Paper I, a commercially available peptide binding assay (iTOPIA, Beckman 

Coulter, San Diego, CA) was used for the most common ‘Caucasian’ MHC class I 

alleles. A similar peptide binding assay was constructed for several MHC class I alleles 

(A*02:01, A*24:02, A*30:01, A*30:02, A*68:01, B*07:02, B*58:01 and C*07:01) and 

used in Papers II and III. Briefly, ninety-six-well plates were first coated with 

biotinylated bovine serum albumin, followed by avidin and biotinylated monomer 

(0.5 µg/ml). During the first step of the assay, the monomer-coated plates were 

stripped of the placeholder peptide leaving the heavy chain free to reassociate with an 

added candidate peptide after addition of β2m. Peptide binding was detected as 

fluorescence, after 18 h of incubation at 21 °C with a conformational antibody (either 

fluorescein isothiocyanate [FITC]-conjugated anti-HLA-A, -B and -C [A*02, A*24, 

A*68, B*07, B*58 and C*07] [Beckman Coulter, San Diego, USA] or anti-HLA-A30 

[One Lambda Inc, Canoga Park, USA]) (Figure 9). The binding of each candidate 

peptide was compared with the binding of an appropriate control peptide (Table 2). 
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This assay was not only used for assessing peptide binding, but also for assessing 

peptide-MHC affinity and dissociation rate (Papers I–III). The dissociation rate was 

measured as a t1/2 value, which is defined as the time point when 50 % of the initial 

peptide concentration has dissociated from the MHC-peptide molecule complexes. The 

measurements took place after incubating the refolded MHC molecules at 37 °C at 

eight different time points (0 h, 0.5 h, 1 h, 1.5 h, 2 h, 4 h, 6 h and 8 h). Affinity was 

measured incubating titrated peptide concentrations (10-4 to 10-9 M) overnight and then 

calculating the peptide quantity needed to achieve 50 % binding saturation. 

 
3.2.4 Multimers 

In this thesis (Papers I–IV), 62 M.tb-derived multimers (tetramers and dextramers) 

were constructed, of which 50 were never previously described (12 were described in 

[104, 133-137]) (Table 3). They were either purchased (Beckman Coulter, San Diego, 

USA and Immudex, Copenhagen, Denmark) or constructed in our laboratory as 

previously described [44]. A particular focus was made to construct M.tb multimers 

based on MHC class I alleles not commercially available and common in an African 

population (e.g. HLA-A*30:01, B*58:01 and C*07:01).  

 

 

Figure 9. Schematic structure of the peptide binding assay. In the first step, both the placeholder 

peptide and β2m are stripped away using an acidic buffer. By subsequent addition of a candidate peptide 

as well as new β2m, the trimeric complex is able to refold if the candidate peptide binds to the selected 

MHC class I allele. Formation of the trimeric complex can be measured using a conformation-dependent 

antibody.  
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Table 3. 

List of constructed multimers for this thesis, including epitope-derived protein, epitope sequence and the 

restricting MHC class I allele.  

 

Antigen Sequence Allele Study Antigen Sequence Allele Study 

Rv02882-10 SQIMYNYPA A*02:01 I Rv0447c331-337 KYIFPGGLL A*24:02 III, IV 

Rv02883-11 QIMYNYPAM A*11:01 I Rv0447c396-404 RMWELYLAY A*30:02 III 

Rv02883-11 QIMYNYPAM A*30:01 II, III Rv1886c77-85 YLLDGLRAQ A*02:01 III 

Rv02883-11 QIMYNYPAM A*30:02 II, III Rv1886c100-108 WYYQSGLSI A*24:02 III 

Rv02884-12 IMYNYPAML A*02:01 I, III, IV Rv1886c110-118 MPVGGGSSF B*07:02 III 

Rv02884-12 IMYNYPAML A*24:02 I, III, IV Rv1886c133-141 QTYKWETFL B*58:01 III 

Rv02884-12 IMYNYPAML A*30:02 II, III Rv1886c140-146 FLTSELPQW A*24:02 III 

Rv02884-12 IMYNYPAML B*07:02 I Rv1886c145-153 LPQWLSANR A*68:01 III 

Rv02885-13 MYNYPAMLG A*24:02 III Rv1886c183-191 FIYAGSLSA A*02:01 III, IV 

Rv02885-13m3 MYNYPTMLD A*24:02 III Rv1886c184-192 IYAGSLSAL A*24:02 III, IV 

Rv028810-18 AMLGHAGDM A*02:01 III Rv1886c184-192 IYAGSLSAL B*07:02 III 

Rv028810-18m2 AMLDHAGDM A*02:01 III Rv1886c200-208 GPSLIGLAM B*07:02 III 

Rv028811-19 MLGHAGDMA A*02:01 III Rv1886c237-245 IPKLVANNT B*07:02 III 

Rv028811-19m1 MLDHAGDMA A*02:01 III Rv1886c239-247 KLVANNTRL A*02:01 III, IV 

Rv028820-28 GYAGTLQSL A*24:02 I Rv1886c241-249 VANNTRLWV A*30:01 III 

Rv028843-51 WQGDTGITY B*15:01 I Rv1886c241-249 VANNTRLWV A*30:02 III 

Rv028850-58 TYQAWQAQW A*24:02 I Rv1886c242-250 ANNTRLWVY C*07:01 III 

Rv028854-62 WQAQWNQAM B*15:01 I Rv1886c307-315 WGAQLNAMK A*68:01 III 

Rv028860-68 QAMEDLVRA A*02:01 I Rv295726-34 SIIIPTLNY A*02:01 III, IV 

Rv028861-69 AMEDLVRAY A*03:01 I Rv2957137-145 LVYGDVIMR A*68:01 III 

Rv028861-69 AMEDLVRAY A*30:02 II, III Rv2957183-191 PYNLRYRVL A*24:02 III, IV 

Rv028865-73 LVRAYHAMS A*30:01 II, III Rv2957249-257 IVLVRRWPK A*30:01 III 

Rv028870-78 HAMSSTHEA A*68:01 III Rv2958c22-30 AAPEPVARR A*68:01 III 

Rv028878-86 ANTMAMMAR A*11:01 I Rv2958c110-118 KYIAADRKI A*24:02 III, IV 

Rv028878-86 ANTMAMMAR A*68:01 III Rv2958c138-146 SARLAGIPY A*30:02 III 

Rv028881-89 MAMMARDTA B*07:02 I Rv2958c288-296 ALADLPVTV A*02:01 III, IV 

Rv028882-90 AMMARDTAE B*07:02 I Rv387528-36 LLDEGKQSL A*02:01 III, IV 

Rv028883-91 MMARDTAEA A*02:01 I Rv387550-58 AYQGVQQKW A*24:02 III, IV 

Rv028883-91 MMARDTAEA B*08:01 I Rv387564-72 ELNNALQNL A*24:02 III, IV 

Rv0447c31-39 AASAAIANR A*68:01 III Rv387582-90 AMASTEGNV A*02:01 III, IV 

Rv0447c110-118 VLAGSVDEL A*02:01 III, IV Rv387582-90 AMASTEGNV A*30:02 III 

 

 
3.2.5 Flow cytometry 

The multimers were used in flow-cytometric experiments together with other cell-

surface markers (Table 4). Panel 1 was used in Paper I, while panel 2 was used in 

Papers II, III and IV. In Paper IV, panels 3 and 4 were used. 
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Table 4. 

List of cell-surface markers used for defining T-cell phenotypes and effector functions. 

 
Panel 1 – Small multimer panel Panel 2 – Large multimer panel Panel 3 – ’Stem-cell’ markers Panel 4 – ICS 

CD3 CD3 CD3 CD3 

CD4 CD4 CD4 CD4 

CD8 CD8 CD8 CD8 

Multimer CD45RA CD45RA IL-17 

  CCR7 CCR7 IL-2 

  CD127 CD95 IFN-γ 

  CD107a CD117 TNF-α 

  Multimer(s) Multimer(s)  
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4 RESULTS AND DISCUSSION 
The main aim of this thesis was the identification of T-cell epitopes restricted via MHC 

class I molecules common in different ethnical population groups, and subsequent 

analysis of the nature of the antigen-specific T-cells that recognize them. Therefore, we 

have been studying M.tb-derived epitopes on several levels including: 1) peptide-MHC 

interaction, 2) T-cell epitope recognition and 3) phenotype and effector functions of the 

antigen-specific T-cells.  

 
4.1 MHC CLASS I BINDING EPITOPE IDENTIFICATION 

Many human T-cell epitopes originating from M.tb-derived proteins have been 

identified until today. We have, by using the immune epitope database [45], evaluated 

more than 800 human epitopes. By investigating the epitope-derived protein, we could 

see that all the M.tb-derived epitopes that have been identified thus far originated from 

only 170 out of an estimated total of ~4 000 proteins, i.e. only 4 % of the M.tb genome 

[81] (Paper V). This leaves most of the genome still unexplored regarding T-cell 

epitopes. For the majority of the 170 epitope-containing proteins, only a single epitope 

has been found. For other protein-derived virulence factors, a significant number (>20) 

of epitopes have already been identified (e.g. Ag85A, Ag85B, TB10.4, ESAT-6 and 

Cfp10) (Paper V). Although quite a number of epitopes have been identified, a bias and 

a lack of proper knowledge still exist regarding the nature of many of these epitopes. In 

line with previous findings regarding the nature of human M.tb epitopes [138], we have 

pinpointed challenging areas concerning M.tb epitope identification: 1) A majority of 

the epitopes are MHC class II restricted CD4+ T-cell epitopes based on the length (>11 

amino acids), 2) information is missing about the disease/vaccination status 

(active/latent M.tb and/or BCG vaccination) of the individual from which an immune 

response is originating, 3) information about the epitope-derived M.tb strain is not 

known, 4) information is missing about the function and expression pattern of the 

epitope-derived protein and, finally, 5) information about the restricting allele is in 

many cases either missing or it represents one of the alleles common in the Caucasian 

population groups, such as HLA-A*02:01. The last bias is particularly problematic, 

since high TB burden exists in many parts of the world, where the population groups 

express predominantly other MHC class I allotypes than HLA-A*02:01, for example 

populations in sub-Saharan Africa and Southeast Asia [1].  
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4.1.1.1 TB10.4-, Ag85B- and ESAT-6-derived MHC class I binding epitopes 

Due to the limited knowledge of M.tb-derived epitopes binding to a broad variety of 

human MHC class I alleles, we aimed at identifying novel immunogenic epitopes 

recognized by individuals with different genetic backgrounds. Therefore, Papers I–III 

reported the identification of a large amount of novel peptide binding epitopes from 

several different M.tb-derived proteins (TB10.4, Ag85B and ESAT-6) to a diverse 

panel of MHC class I molecules (HLA-A*01:01, A*02:01, A*03:01, A*11:01, 

A*24:02, A:30:01, A*30:02, A*68:01, B*07:02, B*08:01, B*15:01, B*58:01 and 

C*07:01) covering the most common alleles in Caucasian, Asian and African 

population groups [14]. In Paper I, we identified 53 binding epitopes in TB10.4 for 8 

MHC class I alleles common in the Caucasian population (Figure 10). In Paper II, we 

continued to study binding epitopes from the same M.tb-derived protein in association 

with two of the most common sub-Saharan African MHC class I alleles (HLA-A*30:01 

Figure 10. Identified binding epitopes in the M.tb-derived protein TB10.4. Binding of different 

epitopes to a panel of 13 different MHC class I molecules; HLA-A*01:01 (light purple), A*02:01 (red), 

A*03:01(apricot), A*11:01 (pink), A*24:02 (dark purple), A*30:01 (orange), A*30:02 (dark green), 

A*68:01 (middle blue), B*07:02 (light blue), B*08:01 (light green), B*15:01 (dark blue), B*58:01 (grey) 

and C*07:01 (black) (Papers I–III ).  
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and A*30:02). In this study, we could identify 25 novel epitopes, including the first 

M.tb-associated epitopes binding to HLA-A*30:02 (Figure 10). In Paper III, we 

identified 29 additional TB10.4 epitopes associating with three other ‘African’ alleles 

(HLA-A*68:01, B*58:01 and C*07:01) (Figure 10) as well as 292 peptide epitopes 

originating from Ag85B and 40 epitopes from ESAT-6 associating with HLA-A*02:01, 

A*24:02, A*30:01, A*30:02, A*68:01, B*07:02, B*58:01 or C*07:01. The 30 epitopes 

associating with HLA-C*07:01 were the first ever identified disease-related epitopes 

for this allele.  

 

4.1.1.2 Difference in MHC class I restricted peptide binding repertoires  

As has previously been reported [139, 140], a discrepancy in the peptide binding 

capacity exists between different MHC class I alleles (Table 5). We found that some of 

the alleles included in these studies exhibited a broad (A*30:02, A*02:01 and 

A*24:02), some an intermediate (A*68:01 and B*58:01) or some a restricted (B*07:02 

and C*07:01) peptide binding pattern. Particularly interesting is the fact that although 

the difference is only four amino acids [13], there is a remarkable discrepancy in the 

binding between the two alleles belonging to the A*30 family (i.e. A*30:01/A*30:02) 

(Paper II), in part due to structural constrains, electrostatic charges and 

hydrophobicities within the binding pockets responsible for the binding repertoire [20].  

 

Table 5. 

Number of identified epitopes restricted by selected MHC class I molecules for the M.tb-derived proteins 

TB10.4, Ag85B and ESAT-6.  
 

  Number of Epitopes 

Allele TB10.4 Ag85B ESAT-6 Total 

A*01:01 2 – – 2 

A*02:01 17 57 11 85 

A*03:01 2 – – 2 

A*11:01 3 – – 3 

A*24:02 10 41 2 53 

A*30:01 3 8 0 11 

A*30:02 22 78 21 121 

A*68:01 11 29 3 43 

B*07:02 7 25 0 32 

B*08:01 0 – – 0 

B*15:01 12 – – 12 

B*58:01 14 29 2 45 

C*07:01 4 25 1 30 
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For the majority of the most common MHC class I alleles, the peptide binding motif 

has been determined. Based on similar preferences for specific amino acids at certain 

positions, the MHC class I alleles have been divided into groups called supertypes 

[141]. In this thesis (Papers I–III), we identified epitopes matching perfectly with their 

assigned motif but also epitopes that matched only partially or did not match at all with 

the assigned MHC-peptide binding motif. For example, the very well-studied alleles 

HLA-A*02:01 and A*24:02 matched quite well concerning actual peptide binding data 

and peptide-MHC class I motifs (Papers I and III) [22, 142]. Also for the alleles HLA-

A*68:01, B*07:02 and B*58:01, the majority of identified epitopes correlate at least 

partly with their assigned motif [142-144]. On the other hand, for alleles with less well-

studied or disputable motifs (e.g. HLA-A*30:01), the majority of epitopes does not 

match the assigned motifs at all [145, 146]. Therefore, the data indicates that A*3001 

may, as has previously been suggested, be able to use different arrangements of 

primary and secondary anchor residues [27]. For the allele HLA-A*30:02, we could 

identify a very broad peptide binding repertoire with diverse amino acids (hydrophobic, 

charged and polar) at the anchor positions, indicating that HLA-A*3002 utilizes 

multiple secondary anchor residues in the C- and N-terminal regions and may 

therefore show a promiscuous binding motif. However, the allele also seems to prefer 

tyrosine (Y) residues at P9 (Papers II–III, all epitopes with Y at P9 bound strongly) 

which is in line with the determined peptide motif [145]. For C*07:01, no motif exists 

to our knowledge, but based on the identified binding epitopes (Paper III) we are able 

to identify a preference for tyrosine or phenylalanine at P9.  

 

4.1.1.3 Promiscuous MHC class I binding epitopes 

Another very interesting discovery documented in Papers I–III was the frequently 

occurring ‘cross-binding’ of epitopes to different MHC class I alleles. The epitope 

TB10.44-12 is, for example, recognized by no less than 9/13 tested MHC class I alleles 

including both HLA-A, -B and -C alleles (Papers I–III), indicating a potential very 

broad immune recognition (Figure 10). Promiscuous binding has previously been 

identified for other pathogens like HIV, HPV and tumor associated antigens [140, 147, 

148] and is likely to have clinical implications. In the field of vaccine design, the fact 

that a single peptide epitope is presented by a diverse repertoire of MHC alleles might 

facilitate the development of peptide vaccines, as fewer epitopes are needed to cover 

large population cohorts. On the other hand, a narrower focus on a few selected 

epitopes might facilitate immune escape variants, as described for viral pathogens (e.g. 
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HIV [149] and HCV [150]) although epitope-variations have only rarely been seen in 

M.tb thus far [109].  

 

4.2 CHARACTERIZATION OF THE PEPTIDE-MHC BINDING 

PROPERTIES 

The affinity and dissociation rate (off-rate) of a peptide-MHC complex determine the 

time-frame in which an epitope is available for T-cell priming on the cell-surface and 

for target recognition (in the effector phase) of the immune response. In Papers I–III, 

we determined these two parameters for most of the identified binding epitopes and 

could identify a range of intra-allelic differences (different peptides bound different to 

the same MHC class I allele) as well as inter-allelic differences (same peptides bound 

differently to different alleles).  

 

The stability (ED50 value) generally ranged between 800 µM and 5 nM, which is in 

line with previous studies [104, 139], and we could see no significant variations 

between the different MHC class I alleles (Papers I–III). The dissociation rate, on the 

other hand, ranged between 0.1 h and 27 h and varied considerably between different 

MHC class I alleles. HLA-A*02:01 showed the broadest range of off-rate with 

peptides dissociating very rapidly (~0.3 h) as well as very slowly (27 h). Generally, 

peptides that bound to the alleles with few identified binding epitopes (e.g. HLA-

A*30:01, B*07:02 and C*07:01) tended to dissociate more rapidly, a fact that might 

originate from intrinsic structural features of the allotype (Papers I–III). A more 

restricted binding repertoire, in addition to a faster dissociation rate, might suggest a 

disadvantage in immune recognition in individuals with certain MHC class I allelic 

background. However, a fast peptide off-rate seems to be able to be counter-balanced 

by a high affinity, as described in Paper III.  

 
4.3 ENUMERATION OF ANTIGEN-SPECIFIC T-CELLS 

Prior to this thesis, only a limited number of MHC class I M.tb-specific multimers had 

been utilized in different settings (active-latent TB, children, HIV co-infected 

individuals and vaccine settings). We evaluated them in Paper V and could detect that 

the vast majority of the multimers were constructed using the common ‘Caucasian’ 

MHC class I allele: HLA-A*02:01 [14]. In addition, we could detect a bias towards a 

limited set of epitope-derived proteins, like the Ag85 proteins (Rv3804, Rv1886c and 

Rv2905c) [104, 133-135, 137, 151-153], ESAT-6 (Rv3875) [135, 137], 16kDaAg 
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(Rv2031c) [137], Hsp65 (Rv0440) [137], 19kDaAg (Rv3763) [135, 154], probable 

membrane protein (Rv1490) [137] and lgt (Rv1614) [137], despite the fact that M.tb 

contains around 4 000 different proteins [81].  

 

4.3.1.1 Detection of antigen-specific T-cells using novel MHC class I multimers 

In order to gauge new immunogenic epitopes derived from M.tb antigens, we 

enumerated and characterized the antigen-specific T-cell repertoire in patients with 

acute pulmonary TB. A broad array of (62) novel M.tb-specific multimers (Papers I–

IV) was constructed, in order to test T-cells in peripheral blood from these patients.  

 

Generally, we could identify a low, yet clearly detectable, broad recognition of several 

co-dominant epitopes derived from different M.tb proteins in the peripheral circulation 

of most patients with acute pulmonary TB, independent of their genetic background 

(Caucasians 0–2.1 % [Paper I], Africans 0–3.9 % [Papers II–III] and Asians 0–6.5 % 

[Papers IV]). The frequencies of antigen-specific CD8+ T-cells varied between the 

recognized epitopes (0–6.5 %), with the majority being recognized at least in some 

patients with acute pulmonary M.tb infection. This broad recognition is in line with 

another recent publication identifying multimer-specific novel A*02:01-restricted 

epitopes from another set of novel M.tb-derived proteins [155]. However, we could also 

identify some epitopes that appeared to be associated with higher T-cell frequencies, 

including the ESAT-6-derived epitope ELNNALQNL restricted by HLA-A*24:02 

and the Ag85B-derived epitope KLVANNTRL restricted by A*02:01 (Paper III–IV). 

In Paper I (but not in Paper III due to too few HLA-B epitopes included) we were 

able to observe a predominantly HLA-B restricted T-cell response in line with 

previous studies on TB [104, 156], as well as in viral diseases like HIV [157], EBV 

[158] and CMV [159]. An HLA-B restricted dominant response might be linked to 

either differences at the MHC expression level on APCs and/or differences in the 

TCR repertoire that is available to recognize the respective MHC class I-peptide 

complex. Another reason for HLA-B dominance may be a selective interference of 

pathogens with HLA-A processing or up-regulation of HLA-B alleles [156]. 
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4.3.1.2 MHC class I allotype and epitope-derived protein might influence T-cell 

recognition 

When a large cohort of different MHC class I restricted multimers was used to 

characterize the M.tb-specific CD8+ T-cell response (Paper III), allele-specific 

recognition patterns could be identified. This observation also held true when 

combining the frequencies of antigen-specific T-cells detected in Papers I–IV. As can 

be seen in Figure 11A, HLA-A*03:01 and A*24:02 as well as HLA-B*07:02 and 

B*08:01 restricted epitopes were generally detected by a higher proportion of CD8+ T-

cells than for example HLA-A*02:01, A*30:02, A*68:01 and B*15:01 restricted 

epitopes. Certain immunodominant epitopes might of course skew these results to a 

A 

B 

Figure 11. Combined detection of multimer positive CD8+ T-cells (Papers I–IV) stratified by 

restricting MHC class I allotype (A) and epitope-derived protein (B). 
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certain extent, but the fact that we have included up to 16 different epitopes restricted 

by the same allotype strengthens the observed differences. 

 

In addition to allele-specific differences in the frequencies of antigen-specific T-cell 

recognition, differences based on epitope-derived antigens could be identified in 

Papers I–IV. For example within the group of well-characterized early expressed M.tb 

antigens (TB10.4, Ag85B and ESAT-6), we could detect higher frequencies of antigen-

specific T-cells recognizing ESAT-6-derived epitopes (0.69 %) compared to TB10.4 

(0.26 %) and Ag85B (0.27 %). However, we believe that this result is biased by the 

strong recognition of the immunodominant epitope A24-ESAT-6ELNNALQNL. While 

comparing antigen-specific recognition to other (not yet reported) M.tb-derived 

antigens, such as two glycosyl transferases and cyclopropane fatty acid synthase, 

expressed predominantly in slow-growing mycobacteria, additional differences in 

frequencies of antigen-specific T-cells could be seen. The glycosyl-transferase 2 

(Rv2957) was for example more strongly recognized (0.48 %) than some of the 

previously well-studied immunodominant antigens (TB10.4 and Ag85B) [103] (Figure 

11B). 

 
4.4 CHARACTERIZATION OF THE ANTIGEN-SPECIFIC T-CELLS 

4.4.1.1 Phenotypic characterization 

In Papers II–IV, we also examined the phenotype and effector functions of the antigen-

specific CD8+ T-cells. The phenotype of CD8+ T-cells can be defined by the usage of 

the cell-surface markers CD45RA and CCR7. M.tb antigen-specific T-cells have 

previously been described to predominantly belong to different T-cell compartments 

including terminally differentiated compartments CD45RA+CCR7- [137], memory 

compartments (CD45RA-) [104, 152] as well as precursor like compartments 

(CD45RA+CCR7+). In this thesis, we could detect that a majority of the antigen-

specific CD8+ T-cells belongs to a compartment with a precursor-like phenotype, 

despite the different genetic background of the M.tb-infected individuals. This is in line 

with a number of previous studies which have identified a large frequency of M.tb-

specific or BCG reactive T-cells in both adults and children expressing a ‘naïve’-like 

phenotype [134, 160, 161]. Reasons for the high number of antigen-experienced cells 

with a precursor-like phenotype might include an increase in lymphopoiesis in 

patients with TB as well as a recycling of terminally differentiated antigen-

experienced cells to the precursor CD8+ T-cell compartment by re-expression of 
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CCR7, as has been suggested in the field of HIV [162]. Another explanation might be 

that these cells belong to a stem-cell memory compartment, as we suggest in Paper 

IV, based on expression of CD45RA and CCR7, along with the stem-cell markers 

CD95 and c-kit (CD117). This has previously been seen in the context of other viral 

diseases and in the context of tumor antigens, where recent studies have identified 

‘naïve’-like T-cell populations based on the expression of the cell-surface markers 

CD45RA, CCR7, and CD127 as well as memory and stem-cell like markers such as 

CD95 and/or c-kit. It is hypothesized that these T-cells represent a long-lived subset of 

antigen-experienced multipotent cells [163, 164] 

 

The frequency of antigen-specific T-cells that reside in a certain phenotypic 

compartment varies, as could be seen in Paper III, in association with the restricting 

MHC class I allele. Restriction by certain alleles like HLA-A*30 and C*07 lead to 

higher proportions of antigen-specific, terminally differentiated CD8+ T-cells, which 

may be important in controlling the infectious disease [5]. In addition, T-cells restricted 

via these allotypes showed increased expression of the degranulation marker CD107a, 

indicating increased cytotoxic functionality. The nature of the epitope-derived M.tb 

protein also influences the phenotype of the antigen-specific CD8+ T-cells. For 

example, in Paper IV we could detect a significant difference in the proportion of cells 

belonging to the terminally differentiated and precursor compartments between T-cells 

recognizing epitopes derived from TB10.4, Ag85B and ESAT-6 as compared to 

epitopes derived from the glycosyl transferases and cyclopropane fatty acid synthase. 

This might be due to differences in expression pattern (secreted/intracellular retained 

and/or expressed early in infection/during active/latent infection) of the antigenic 

proteins influencing immune recognition and thereby the priming event of specific 

CD8+ T-cells.  

 

4.4.1.2 Expression of survival markers and effector functions 

As expected, CD107a is up-regulated on antigen-specific T-cells independent of the 

restricting MHC class I allele and independent of the presented epitope (Papers II–IV), 

indicating an increased cytolytic function of these antigen-experienced cells. However, 

as previously mentioned, T-cells restricted by certain MHC class I allotypes show 

higher expression of this cell-surface marker as well as expression of the IL7-Rα T-cell 

survival marker (Paper III).  
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In Paper IV, we investigated the frequencies of antigen-specific cytokine-producing 

cells (IL-17, IL-2, IFN-γ and TNF-α) and were able to detect a low, yet clearly 

detectable, cytokine production (0–0.2 % of the CD8+ T-cells) in response to 

stimulation with the M.tb antigens TB10.4 and ESAT-6. The frequencies of cytokine-

producing cells were similar or lower as compared to cytokine-producing M.tb-specific 

CD8+ T-cells identified in other studies [165-167]. In addition, we were able to 

compare the frequencies of cytokine-producing CD8+ T-cells to the frequencies of 

multimer-specific CD8+ T-cells in response to the same M.tb-derived antigen (TB10.4 

and ESAT-6). Although the cytokine production was measured in response to 

overlapping peptides covering protein we were often able to detect higher frequencies 

of CD8+ T-cells specific to a single epitope (derived from the same protein) using 

multimers. The fact that we were able to detect higher frequencies by ex vivo 

identification of multimer reactive T-cells (probably cytotoxic based on high CD107a 

expression) has previously been reported in the context of HIV, where the CD8+ T-

cells tend to exhibit either of these functions (cytokine production or cytotoxicity), but 

rarely both [168]. These results imply that functional T-cell assays based solely on 

detection of Th1 cytokines might underestimate the number of M.tb reactive T-cells. 

 

The biological consequence concerning T-cell effector functions needs to be further 

studied. Of note, the PBMCs analyzed in our studies derived from patients with active 

TB and may therefore not represent the potential breadth of a strong protective CD8+ 

T-cell response, due to decreased CD8+ T-cell effector functionality in active TB [137]. 

 

4.5 VARIANT M.TB EPITOPES 

The genome of M.tb is regarded as rather constant, with only minor polymorphism 

[169]. However, recently more frequent strain-to-strain variations have been reported. 

Most polymorphisms have been identified in non-essential genes, yet also in essential 

genes and in human T-cell epitopes from immunogenic M.tb proteins. One of the M.tb-

derived proteins with the highest frequency of single nucleotide polymorphism (SNP), 

compared to its size, is the well-studied immunogenic protein TB10.4 [109]. In Paper 

III, we compared MHC class I binding and subsequent CD8+ T-cell recognition of 

TB10.4 epitopes from the reference genome H37Rv with epitopes from SNP-

containing clinical isolates [170]. We showed: 1) Alteration of an epitope 

predominantly reduces its binding to the assigned MHC class I allele based on either an 

increased dissociation rate or a decreased affinity between the peptide and MHC 
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complex. 2) Variations in epitope sequences affect T-cell recognition. 3) Epitope 

variability leads to alteration of the phenotype and expression of cell-surface markers 

like CD107a and CD127 of the antigen-specific CD8+ T-cells. 4) Different T-cell 

repertoires seem to recognize the wild-type and variant epitopes (Paper III). 
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5 GENERAL CONCLUSIONS 
  

• The usage of recombinant MHC class I molecules is a fast and objective way of 
identifying novel T-cell epitopes, which can be confirmed by the usage of 
multimers. 

 
• Small differences in the peptide binding cleft between different MHC class I 

allotypes (e.g. HLA-A*30:01 and A*30:02) can give rise to completely 
different peptide binding repertoires. 

 
• Promiscuous binding of M.tb-derived epitopes to many different MHC class I 

allotypes (including both HLA-A, -B and -C alleles) occurs and the epitopes 
give rise to T-cell responses restricted via different alleles.  

 
• With the novel epitopes derived from M.tb proteins, it is possible to construct 

M.tb multimers and subsequently enumerate antigen-specific T-cell responses 
ex vivo. In combination with usage of other cell markers it is also possible to 
determine the phenotype and possible effector functions of M.tb-specific T-
cells. 
 

• The frequencies of antigen-specific T-cells recognizing different M.tb epitopes 
are usually quite low but broad. Non-immunodominant recognition of several 
different epitopes can be seen in blood from most patients with active 
pulmonary TB. 
 

• The antigen-specific T-cell responses against M.tb tend to be HLA-B restricted 
but some immunodominant HLA-A epitopes could also be detected.  
 

• The 1) restricting MHC class I allotype, 2) epitope-derived protein and 3) 
specific peptide sequence (including SNPs) seem to influence many levels of 
antigen-specific T-cell responses, including peptide-MHC binding, TCR 
recognition as well as effector functionality and the phenotype of the antigen-
specific T-cells. 

 
• A high proportion of M.tb-specific CD8+ T-cells express a precursor-like 

phenotype based on expression of the cell-surface markers CD45RA and 
CCR7. This might be due to cells that belong to a compartment of antigen-
experienced memory cells expressing both precursor markers (CD45RA/CCR7) 
and ‘stem-cell markers’ (CD95/c-kit). 
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6 FUTURE PERSPECTIVES 
 
We have developed novel MHC class I allotypes including previously not 

commercially available alleles (e.g. HLA-A*30:01, B*58:01 and C*07:01) with the 

hope that these might be useful not only in association with M.tb but also in other 

disease settings (infectious as well as malignant). Some alleles have previously been 

connected with protection or association with certain diseases. Expression of HLA-

A*30:01 has, for example, been associated with increased risk of type 1 diabetes [171] 

as well as with severity of plasmodium falciparum mediated malaria [172], B*58:01 

has been associated with HIV elite controllers [173] as well as for increased risk of 

certain drug hypersensibility reactions [174]. HLA-C*07 alleles have, on the other 

hand, been associated with predisposition for Graves’ disease [175]. Very little is 

reported on the peptide repertoire of this allele and it would in general be interesting 

and important to discover additional C*07:01 restricted immunogenic epitopes in 

different disease settings and also to determine its peptide binding motif and 

subsequently identify and analyze additional antigen-specific T-cells.  

 

Only a small fraction of the identified M.tb-derived binding epitopes identified in these 

studies were validated by multimer analysis as actually being CD8+ T-cell epitopes. 

Therefore, we have identified a reservoir of putative epitopes that could be selected for 

M.tb multimer construction, based on the binding characteristics (affinity and 

dissociation rate) determined within this study. Such multimers could then be used in 

future studies in which identification of M.tb-specific T-cells could provide additional 

value. It would also help to visualize a very broad array of T-cell responses restricted 

by a high number of different MHC class I molecules. 

 

Regarding the 62 M.tb-specific multimers used in these studies, additional verification 

needs to be made in larger patient cohorts. Yet, we hope to be able to validate the use of 

M.tb-specific MHC class I multimers in studies of the specific immune response in 

M.tb-infected patients, and to link these markers with clinical endpoints. Examples 

include gauging vaccine take of novel anti-M.tb vaccine candidates and testing novel 

diagnostic markers (e.g. ESAT-6 responses, independent of cytokine production) in 

well defined cohorts. 
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The immunogenicities of glycosyl transferases and cyclopropane fatty acid synthase 

were previously discovered by our group in the context of MHC class II presentation as 

well as for antibody recognition [128, 129], and we have in these studies also been able 

to demonstrate CD8+ T-cell recognition. It is of importance to further characterize the 

ability of these antigens to elicit a strong CD8+ T-cell response, since they are not 

secreted (like the majority of the previously characterized M.tb-derived antigens) but 

intracellularly retained. In the future, we would like to address other issues concerning 

these M.tb-derived proteins, e.g. expression patterns and their potential use as vaccine 

candidates.  

 

Other questions that arose during this thesis that we would like to examine include: 

- To decipher if the allele-specific recognition, phenotypic and cytolytic 

expression pattern identified in these studies in association with M.tb antigens 

are specific for this disease, or if it could be extrapolated to other infectious 

disease settings as well.  

- To further characterize the antigen-specific CD8+ T-cells with a precursor like 

phenotype based on expression of the cell-surface markers CD45RA, CCR7, 

CD95 and c-kit. It would also be of interest to study why those obviously 

antigen-experienced cells express these markers. What is the impact of these 

variations in vaccinated individuals that encounter an infection with an M.tb 

variant and what are their functions; is there an association with the biologically 

and clinically relevant endpoints (i.e. long-term immune memory formation)? 

- To validate the multimers expressing the altered TB10.4-derived epitopes in 

different population cohorts and further characterize the subsets of specific 

CD8+ T-cells recognizing the original and altered epitopes. 
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