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“Let your food be your medicine and your medicine be your food.”                        

Hippocrates (460–359 BC) 



 

 

ABSTRACT 

Nitric oxide (NO) is an essential signaling molecule that plays a central role in a broad 

range of physiological functions. Classically, NO is synthesized from L-arginine and 

molecular oxygen by NO synthases. Once formed, it is rapidly oxidized to nitrite and 

nitrate. These two inorganic anions were previously considered to be inert end products 

but this view is now being seriously challenged by research revealing that nitrite can be 

physiological reduced to again generate NO. The reduction of nitrite in vivo seems 

particularly enhanced during hypoxia and acidosis; conditions when the oxygen-

dependent NO-synthase pathway is dysfunctional. Besides the endogenous formation 

of nitrate and nitrite by NO synthase, these anions are also ingested naturally via the 

diet. The first step in bioactivation of nitrate is formation of the more reactive nitrite 

anion; a reaction suggested to involve oral nitrate reducing bacteria. It has been 

generally viewed that mammalian cells cannot metabolize the stable nitrate anion.  

  

In the present thesis, we intended to further characterize NO generation from the 

nitrate-nitrite-NO pathway. In particular we have studied the importance of commensal 

bacteria in nitrate metabolism and attempted to explore if mammalian tissues are also 

capable of nitrate reduction. We also studied possible interactions between the classical 

NO synthase pathway and the nitrate-nitrite-NO pathway. 

 

We show that bacteria in the gastrointestinal tract play an interesting role in 

mammalian NO biology. Besides the bioactivation of nitrate in the oral cavity to form 

nitrite, bacteria in the small and large intestine can catalyze the same reaction and also 

the subsequent reduction of nitrite to form NO. NO formation in the gut can be 

stimulated in vivo by supplementation with dietary nitrate and probiotic bacteria.  

 

In further studies involving also germ-free mice, we surprisingly find that inorganic 

nitrate is enzymatically reduced to nitrite in tissues and we identify the enzyme 

xanthine oxidoreductase (XOR) as the dominant nitrate reductase. Mammalian nitrate 

reductase activity is enhanced during hypoxic conditions but is also active during 

normoxia. The functional consequences of this nitrate reductase activity were studied 

after nitrate administration in vivo. Nitrate attenuated the increased blood pressure 

caused by an NO synthase inhibitor and prevented the severe decline in blood flow 

during post-ischemic reperfusion.  

 

The expression of XOR is enhanced in tissues of germ free mice, which may reflect a 

feedback response to the absence of bacterial nitrate reduction in these animals. Such 

crosstalk is further supported in a study of long-term dietary nitrate supplementation in 

rats, in which expression of phosphorylated eNOS in aortic tissue and eNOS activity 

was down-regulated after nitrate supplementation. All together these data suggest a 

crosstalk between NOS-independent and NOS-dependent pathways in control of NO 

vascular homeostasis.  

 

In summary, the present thesis helps to draw a new picture of mammalian NO gene-

ration which occurs by serial reductions of the supposedly inert anions nitrate and 

nitrite. In this pathway both eukaryotic and prokaryotic pathways contribute to 

formation of NO and maintenance of homeostasis. Intriguingly, NO formation from 

nitrate in the gastrointestinal tract, the cardiovascular system and elsewhere, can be 

controlled by simple dietary interventions with resulting physiological effects. 
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1 INTRODUCTION 

 

Nitrogen is essential for any life. It is a component in all amino acids and is present in 

the bases that constitute nucleic acids, such as DNA and RNA. The by far dominating 

source of nitrogen in nature is the atmosphere, where it exists mainly as nitrogen gas 

(N2). However, N2 is extremely inert and must be fixed and interconverted to other 

forms of nitrogen before it can be utilized by plants and animals. This occurs in a 

fundamental process known as the nitrogen cycle
1,2

. In this cycle, which is mainly 

orchestrated by bacteria, nitrate (NO3
-
), nitrite (NO2

-
) and nitric oxide (NO) are 

essential intermediates. NO is of particular interest in mammalian biology since it 

represents a potent signaling molecule
3,4

. While bacteria can generate NO anaerobically 

via reduction of higher nitrogen oxides, mammals have instead developed an oxidative 

pathway for the generation of this gas. This occurs via oxidation of the amino acid L-

arginine, in a process governed by specific enzymes - the NO synthases (NOSs).  

Recent lines of research suggest that formation of NO in mammals might actually stem 

from both reductive- and oxidative pathways
5-7

. The present thesis explores 

mechanisms of NO generation in mammals and how prokaryotic and eukaryotic cells in 

our bodies interact to produce this potent biological messenger.  

 

Nitrate and nitrite have been in use for long to preserve food and even in medical care. 

Potassium nitrate (saltpetre) was used to treat heart diseases as early as in the medieval 

times according to a medical recipe discovered in a Buddhist grotto in Dunhuang, the 

crossroads of the ancient Southern Silk Route in China. Throughout history, several 

drugs that contain nitrogen molecules have been used: nitrous oxide (N2O), so call 

laughing gas discovered in the 19
th

 century, is used as a partial anesthetic. 

Nitroglycerine and nitroprusside are used as vasodilators, acting via release of nitric 

oxide to regulate blood pressure and heart conditions such as angina and chronic heart 

failure.  

 

1.1 NITRIC OXIDE – FROM AIR POLLUTANT TO CELEBRATED 

BIOLOGICAL MESSENGER 

Nitric oxide was discovered in 1772 by Joseph Priestley. He described it as a colorless 

and toxic gas which he referred to as “nitrous air”. For over two hundred years NO 

received the label of being a toxic gas and unwanted air pollutant. NO is produced 

during combustion processes and is present in high concentration in car exhaust and 

cigarette smoke. The view of NO being solely a dreaded air pollutant ceased abruptly in 

the 1980s when several lines of research converged, ultimately culminating in the 

discovery of endogenous NO formation
8-11

. As it turned out, not only did our bodies 

produce NO themselves, but it was made for specific purposes. In fact, it was shown to 

be a central signaling molecule involved in essentially all important aspects of 

mammalian biology, including regulation of blood flow, peripheral nerve transmission, 

brain function, gut motility, penile erection, metabolism, immunity and more. In 1998 

three American researchers were awarded the Nobel Prize in Physiology or Medicine 

for their discoveries of NO as a signaling molecule in the cardiovascular system.  
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Box 1. Some relevant biological reactions involving NO, nitrite and nitrate 

NO generation from the L-Arginine-NO synthase pathway 

 

L-Arginine + O2 → NO• + L-Citrulline 

 

NO formation from the nitrate-nitrite-NO pathway 

 

Bacterial nitrate reductase 

NO3
-
 + 2e

-
 + 2H

+
 → NO2

-
 + H2O 

 

Nitrite reduction 

Deoxyhaemoglobin/myoglobin 

NO2
-
 + HbFe

2+
 + H

+
 → NO• + HbFe

3+
 + OH

-
 

 

Xanthine oxidoreductase 

NO2
-
 + Mo

4+
 + H

+
 → NO• + Mo

5+
+ OH

-
 

 

Protons 

NO2
-
 + H

+
 → HNO2 

2HNO2 → 2N2O3 + H2O 

N2O3 → NO• + NO2• 

 

Ascorbate 

NO2
-
 + H

+
 → HNO2 

2HNO2 + Asc → 2NO• + dehydroAsc + 2H2O 

 

Polyphenols (Ph-OH) 

NO2
-
 + H

+
 → HNO2 

Ph-OH + HNO2 → Ph-O• + NO• + H2O 

 

Mitochondral respiratory chain enzymes 

NO2
-
 + 2H

+
 + e

-
 → NO• + H2O 

 

NO oxidation 

2NO + O2 → 2NO2 

2NO + 2NO2 → 2N2O3 

2N2O3 + 2H2O → 4NO2
-
 + 4H

+ 

 

NO + HbFe
2+

 → NO3
-
 + HbFe

3+ 

 

NO + O2
-
 → ONOO

-
• 

ONOO
-
•

 
→ NO3

-
 

ONOO
-
 + H

+
 → HONOO → 0H• +NO2 
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1.2 THE CHEMICAL BIOLOGY AND PHYSIOLOGY OF NO 

Chemically, NO is a free radical consisting of one atom of nitrogen and one atom of 

oxygen, elements which are neighbours in the periodic table. The properties of NO 

being uncharged, lipophilic and very small, enables it to diffuse readily across cell 

membranes to reach specific target cells. NO has a high affinity to heme and other iron-

containing moieties, exceeding that of oxygen. This property is essential for many of its 

biological effects and its regulation, including the activation of heme-containing 

guanylyl cyclase (sGC), and the rapid inactivation of NO by hemoglobin. The in vivo 

life time of the tiny free radical NO is very short as it undergoes rapid oxidation or 

reacts with other radicals. Thus it acts primarily in local environments in a paracrine or 

autocrine manner. The biological chemistry of NO and related reactive nitrogen oxide 

species is highly complex and involves many potential reactions including direct 

interaction and binding to targets such as metal complexes, or reactions with radicals to 

form other potentially bioactive nitrogen oxide species (RNS)
12

. A classic example is 

the ultrarapid reaction of NO with the superoxide anion radical (O2
-
) to form 

peroxynitrite (ONOO
-
) (Box 1). Formation of peroxynitrite and its subsequent 

breakdown into highly reactive radical species (OH•, NO2•) have been suggested to be 

responsible for many of the pathophysiological events associated with prolonged high 

NO generation in tissues
12,13

. 

 

NO is an essential signaling molecule in many aspects of mammalian biology. It plays 

a key role in vascular homeostasis and acts in various ways to regulate vascular tone, 

neurotransmission, platelet aggregation, redox signaling, cellular respiration and host 

defense.  The paracrine actions of NO are typically mediated through activation of the 

sGC by binding to its heme group, with resulting activation and increased synthesis of 

3, 5-cylclic guanosine monophosphate (cGMP) from guanosine triphosphate (GTP) in 

target cells
14-16

. This secondary messenger phosphorylates protein kinase G (PKG), 

which has multiple intracellular functions including the phosphorylation of ion 

channels and the inhibition of voltage-gated calcium channels resulting in a decrease in 

intracellular calcium, thereby promoting relaxation of vascular smooth muscle cells 

with subsequent vasodilation
17-20

. 

 

Classically, endogenous NO is synthesized from L-arginine and molecular oxygen by 

NOS synthases (NOSs) to generate L-citrulline and NO. NO synthases are found in 

essentially all cell types including vascular endothelial cells, macrophages, platelets, 

nerve cells, epithelial cells and more. The mammalian NO synthase family consists of a 

group of 3 isoforms including neuronal NOS (nNOS, NOS1), endothelial NOS (eNOS, 

NOS3) and inducible NOS (iNOS, NOS2). These enzymes are named after the cell 

type where they were first discovered. The catalytic process involves a 5-electron 

oxidation of L-arginine and enzyme activity requires the presence of cofactors such as 

flavin adenine dinucleotide (FAD), flavin mononucleotide (FMN), heme, 

tetrahydrobiopterin (BH4) and calcium-calmodulin, as well as the co-substrates 

nicotinamide adenine dinucleotide phosphate (NADPH) and molecular oxygen. The 

enzymes are activated by a calcium-calmodulin complex. The bioactivity of nNOS and 

eNOS (constitutive isoforms) is strictly regulated by a number of transcriptional 

(expression and abundance) and post-translational (activity and function) mechanisms 

to maintain NO homeostasis, whereas iNOS (the induced isoform) is mostly modulated 
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transcriptionally. Thus, once iNOS is expressed, it generates large quantities of NO 

over a prolonged period of time.  

 

As mentioned above the reactive nature of NO renders it to oxidize quickly and this 

represents an additional very important control mechanism of NO bioactivity. The two 

major end products of NO metabolism are the oxidation products nitrite and nitrate. 

Ultimately the vast majority of endogenous NO is oxidized to nitrate. Because NO 

itself is difficult to measure directly, nitrate and nitrite have been used as surrogate 

markers of NO formation. Among researchers these inorganic anions have generally 

been considered completely inert. However, this view is now being seriously 

challenged by recent discoveries convincingly showing that nitrite and nitrate anions 

can in fact be reduced back to bioactive NO in blood and tissues
6,21-24

. Characterization 

of this nitrate-nitrite-NO pathway is a central part of the present thesis.  

 

1.3 GENERATION OF NO BY BACTERIA 

Compared to eukaryotic cells, the prokaryotic cells are vastly superior in adapting their 

biochemical capabilities in response to changes in the environment. Mammals are 

strictly dependent on oxygen as the terminal electron acceptor for respiration. Bacteria 

on the other hand can use a variety of other compounds for respiration and two classical 

examples are nitrate and nitrite. These molecules can function as alternative electron 

acceptors, allowing bacteria to respire and survive under anoxia. Thus, bacteria can 

thrive in extreme places ranging from hot sulphur-containing springs, in the deepest 

oceans, to the top of mountains. Mammals are also inhabited by bacteria. In fact, it has 

been estimated that >90% of all cells in an adult human are bacteria, with the highest 

densities in the oral cavity and the large intestine
5
. Bacteria have a predominant role in 

the biological nitrogen cycle since they catalyze most reactions. In this cycle (Figure 1 

A), inorganic nitrogen is converted to a biologically useful form in processes known as 

nitrification - the oxidative conversion of ammonia to nitrate, and denitrification - a 

respiratory process whereby nitrate is successively reduced anaerobically to nitrite, 

nitrous oxide and finally dinitrogen gas. Life would be impossible if the combined 

processes of nitrification and denitrification were not compensated by a third process, 

dinitrogen fixation, which completes the nitrogen cycle with release of nitrogen gas 

back to the atmosphere
25

.  

 

In the denitrification part of the nitrogen cycle in nature, NO is an obligate intermediate 

and it is produced by bacterial nitrite reductases
5,26

. One part of this thesis examines the 

possibility that NO can be formed also from bacteria that thrive in the gastrointestinal 

tract. The occurrence of such NO formation and its possible biological significance will 

be discussed later. 
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Figure 1.  Schemes illustrating the classical nitrogen cycle in nature along with a recently described 

mammalian nitrogen cycle. (A) In the nitrogen cycle in nature atmospheric nitrogen gas is fixed and the 

ammonia formed is oxidized to nitrate in an aerobic process known as nitrification. In another process 

termed denitrification, anaerobic bacteria catalyze the serial reduction of nitrate to nitrite, NO, nitrous 

oxide and finally dinitrogen gas, which is released back to the atmosphere thereby completing the cycle. 

(B) In mammals a similar nitrogen cycle has been discovered. NO generated from the NOS pathway is 

rapidly oxidized to nitrite and then nitrate. In a situation of hypoxia and acidosis, nitrate is reduced back 

to nitrite and then NO. 
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1.4 DISCOVERING NO SYNTHASE-INDEPENDENT NO FORMATION IN 

MAMMALS 

Until recently it was generally thought that the only source of endogenous NO 

generation in mammals is the L-arginine-NOS pathway. The classic NO synthase-

dependent pathway requires a complex 5 electron oxidation of the guanidine nitrogen 

of L-arginine and a number of co-factors to form NO. However, in 1994, two 

independent research groups showed that NO and other reactive nitrogen oxides were 

formed non-enzymatically in the stomach following protonation of nitrite in the acidic 

stomach
6,21

.  The NOS-independent pathway turned out to be fundamentally different. 

The reaction uses the simple inorganic anion nitrite (NO2
-
) as a substrate instead of L-

arginine, and the reaction involves only a one-electron reduction to NO (Figure 1 B). 

Nitrite reduction to NO in the stomach is strictly acid dependent and can be abolished 

by proton pump inhibitors that increase gastric pH
21

. The levels of NO in the human 

stomach are very high (10-100 ppm), i.e. several orders of magnitude higher than those 

required for vasodilation. Does this generation of NO in the gastric lumen have any 

biological significance? This question is yet to be fully resolved but studies have shown 

that the high levels of gastric NO may play a role in maintaining gastric integrity. First, 

it may be a part of first-line host-defense utilizing the potent antimicrobial effects of 

NO and related nitrogen oxides. Interestingly, E. coli, Salmonella, Shigella and other 

enteropathogens are remarkably resistant when exposed to acid alone in vitro
27

. 

However, those same pathogens can be killed when exposed to a mixture of nitrite and 

acid, thereby simulating the natural mixing of nitrite-containing saliva and acidic 

gastric juice
6
. Later studies show that the combination of authentic human gastric juice 

and nitrite-rich saliva inhibits a variety of pathogens
28

. The antibacterial effects of 

nitrite in the gastric lumen are likely due to multiple reactive nitrogen intermediates 

(RNIs) generated from this anion under acidic conditions. In addition to pH and nitrite 

concentrations, many other factors determine the magnitude of NO and RNI generation 

in the GI tract, including the presence of reducing agents e.g. vitamin C, thiocyanate, 

polyphenols, proximity to heme groups, proteins, thiols, as well as the oxygen 

tension
29

.  

 

Nitrite-derived gastric NO may also affect the host mucosa. Indeed, studies have shown 

that nitrite-rich saliva increases mucosal blood flow and mucus generation in an NO 

dependent manner
30,31

. These effects are associated with strong gastroprotective effects. 

As an example, in rats the ulcerogenic properties of orally administered Non-Steroidal 

Anti-Inflammatory Drugs (NSAIDs) are strongly attenuated by dietary nitrate, which 

greatly increased intragastric NO formation after conversion to nitrite in saliva
32

. 

 

 

1.5 WHERE IS THE NITRITE AND NITRATE COMING FROM? 

The inorganic nitrite and nitrate in our bodies stem from two major sources: the 

endogenous L-arginine-NOS pathway and the diet
33

. As discussed above endogenously 

generated NO rapidly oxidizes to form nitrite and nitrate in blood and tissues. The 

reaction of NO in blood with oxyhaemoglobin produces nitrate and methaemoglobin, 
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while nitrite is the major oxidation products in cells. Our diet represents the second 

major source of nitrate and nitrite. Green leafy vegetables such as spinach, beetroot and 

lettuce naturally contain large amounts of nitrate, whereas cured meats and bacon are 

particularly rich in nitrite which is added for preservation purposes, to enhance the 

appearance and to prevent from botulism
34

. Traditional Mediterranean, Chinese or 

Japanese diets are very rich in vegetables and will provide much more nitrite and nitrate 

compared to the Western-type diet. Drinking water may also contain variable amounts 

of nitrate although in most countries the levels are strictly regulated.  

 

Normal plasma nitrate levels are in the range of 10-40 µM, whereas nitrite levels are 

typically 100-1000 fold lower (50-300 nM). The actual nitrite and nitrate levels in 

blood or plasma show significant variability depending on differences in dietary habits, 

life style, disease states and physical exercise.  Recent reports show that plasma nitrite 

levels of Tibetan, high altitude inhabitants well adapted to environmental hypoxia, are 

approximately 10 µM, i.e. 100-fold higher than in people living at sea level
35

. The 

suggested reason for this is an upregulation of vascular eNOS in response to the 

hypoxic environment. In systemic inflammatory situations such as sepsis or in gut 

inflammation such as severe gastroenteritis
36

 or celiac disease
37

, nitrite and nitrate 

levels can be greatly elevated owing to massive iNOS induction. In contrast, in a 

situation of endothelial dysfunction and reduced eNOS activity, plasma nitrite and 

nitrate levels are lower, as in patients with atherosclerosis and in eNOS knock-out 

mice
38

. 

 

1.6 THE ENTRO-SALIVARY CIRCULATION OF NITRATE 

After intake of nitrate-rich food such as spinach or beet roots, nitrate is rapidly 

absorbed in the gastrointestinal tract and then enters the circulation where it mixes with 

endogenous nitrate from the NOS pathway.  The level of plasma nitrate reaches a peak 

within 60 min after nitrate ingestion and the half-life in plasma is 5-6 h. About 25 % of 

circulating nitrate is actively extracted by the salivary glands and concentrated in 

saliva
39,40

. The reason for this exceptional 10-20 fold accumulation of nitrate in saliva is 

still unclear. Commensal facultative anaerobic bacteria in the mouth reduce parts of the 

nitrate to nitrite by the action of nitrate reductases
5,41

. The formed nitrite is continuously 

swallowed and can enter the systemic circulation after absorption
39

. 

 

 

1.7 SYSTEMIC NO GENERATION FROM NITRITE 

In 1995, a year after the original discovery of NOS-independent NO generation, Zweier 

and colleagues reported that N
15

-labeled nitrite was reduced to NO in rat ischemic heart 

muscle and the NO generation in this model could not be effectively blocked by NOS 

inhibitors
22

. This indicated that nitrite-reduction may be a ubiquitous phenomenon 

applicable also to the tissues. While the first studies in the field focused on non-

enzymatic nitrite-reduction, subsequent studies revealed that there are also enzymes 

capable of the one-electron reduction of nitrite to NO
42

. The list of mammalian nitrite 

reductases is rapidly increasing and it includes xanthine oxidoreductase
43-46

, enzymes 

of the mitochondrial chain
47

, deoxygenated hemoglobin/myoglobin (deoxy-
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Hb/Mb)
23,48-50

, aldehyde oxidase, cytochrome P450s
51

 and even the NOS itself
52

. 

Interestingly, while the NOSs are oxygen-dependent and therefore dysfunctional in 

hypoxic situations, the nitrite reduction pathways are instead greatly enhanced under 

these conditions. 

 

1.8 XANTHINE OXIDOREDUCTASE – NOVEL NITRITE REDUCING 

PROPERTIES 

Xanthine oxidoreductase (XOR) is a molybdoflavin enzyme that is widely distributed 

in mammalian tissues and it catalyzes the terminal two steps of purine degradation from 

hypoxanthine to xanthine and xanthine to uric acid. XOR is also well known as an 

important source of superoxide and reactive oxygen species (ROS) generation, not only 

in pathological conditions such as tissue ischemia, vascular inflammation or infection, 

but also in signal transduction
53-55

. There are two forms of XOR: xanthine 

dehydrogenase (XDH), which is the dominant form in tissues and xanthine oxide (XO). 

XDH is a single gene product transcribed from XOR, whereas during pathological 

conditions, XDH can be converted to XO by post-translational modification involving 

oxidation of cysteine residues or limited proteolysis
56,57

. The differences of structure 

conformation and electrostatic microenvironment surrounding the FAD cofactor result 

in XO with higher affinity to O2 compared to XDH
58

. Both XDH and XO catalyze the 

reactions hypoxanthine to xanthine and xanthine to uric acid. However, XDH requires 

NAD
+
 as an electron acceptor for the reductive process and generates a stable product 

NADH, whereas XO is not able to use NAD
+
 as an electron acceptor. Instead, for this 

purine oxidation process XO reduces molecular oxygen and thereby generates the 

highly reactive molecules superoxide and hydrogen peroxide
53,59,60

. The enzyme 

activity of XOR requires molybdopterin, iron-sulphur centers and FAD as cofactors to 

transfer electrons from xanthine to oxygen and NAD
+
, yielding superoxide, hydrogen 

peroxide and NADH. Of interest to the current thesis is the more recent finding that 

XOR can donate electrons not only to oxygen (to form superoxide) but also to nitrite 

with resulting reduction and possible formation of NO.  Interestingly, XOR is a 

molybdenum-containing enzyme with structural similarities to the bacterial nitrate 

reductases
46,61

. A specific aim of this thesis has been to explore if also the much more 

stable nitrate anion can be reduced by XOR, thereby forming nitrite. Such a pathway 

could then theoretically contribute to nitrite and NO formation in mammals in addition 

to the NO synthases. 

 

1.9 CARDIOVASCULAR EFFECTS OF NITRITE 

Nitrite has been known for its vasodilatory properties for more than half a century, i.e. 

long before the NO pathway was even discovered. However, the nitrite concentrations 

and acidity used in these early pharmacological studies were far outside physiological 

levels seen in tissues
62

. In 2001, Modin et al. showed that near-physiological 

concentration of nitrite can generate NO and dilate rat aortic rings in a buffer of pH 6.6, 

which is an acidity commonly seen in tissues during ischemia
24

. At the same time 

Gladwin et al. showed that nitrite levels in the human forearm circulation dropped from 

artery to vein, indicating the consumption of nitrite across the circulation
63

. The 

consumption of nitrite was increased during forearm exercise, a situation when blood 
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oxygen tension is reduced. These studies suggested an active role of nitrite in 

vasoregulation. Gladwins group later went on to demonstrate vasodilation in humans 

after infusion of near-physiological amounts of nitrite in the forearm
23

. The same group 

hypothesized that nitrite reduction occurred in the blood and that it was catalyzed by 

deoxygenated hemoglobin in an oxygen tension-dependent fashion. The mechanism for 

nitrite reduction in blood and tissues and its possible role as a physiological regulator of 

hypoxic/ischemic vasodilation has been the matter of extensive research ever since and 

has been discussed in detail in several recent reviews
7,64,65

 as well as in this thesis. 

 

Although the occurrence of endogenous NO generation from nitrate and nitrite has 

been clearly established and its physiological importance is starting to be explored, 

there are several questions remaining. Many of these relate to basic chemical biology, 

including mechanisms of NO generation in different tissues, controls of production and 

sites of release. In this thesis some of these areas have been investigated, in particular 

we have attempted to better clarify host-bacterial interactions in control of nitrate-

nitrite-NO homeostasis.  
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2 AIMS OF THE PRESENT THESIS 

 

The overall aim of the present thesis was to further characterize NO generation from 

the recently discovered nitrate-nitrite-NO pathway and its physiological and therapeutic 

potential. 

 

More specifically the aims were:  

 

1. To study if commensal bacteria in the gut can generate NO in vivo. 

2. To explore if mammalian tissues are capable of reducing nitrate and its 

biological consequences. 

3. To study the role of xanthine oxidase in nitrate and nitrite homeostasis. 

4. To study if a cross-talk exists between NOS-independent and NOS-dependent 

pathways in control of endogenous NO homeostasis. 



 

11 

 

3 MATERIAL AND METHODS 

 

Below follows a brief description of the methods used in this thesis work. For a more 

extensive account, the reader is referred to the individual papers. 

 

3.1 ANIMAL EXPERIMENTS  

3.1.1 NO measurements in the gastrointestinal tract (Paper I) 

Adult male rats were divided into four groups; supplemented with live lactobacillus 

rhamnosus (LGG) alone; LGG together with sodium nitrate (0.1 mmol kg
-1

 day
-1

) 

(LGG + Nitrate); sodium nitrate alone (0.1 mmol kg
-1

 day
-1

) (Nitrate) or sodium 

chloride alone (0.1 mmol kg
-1

 day
-1

) (Control) for 7 days. At the day of measurements, 

anesthesia was performed by administration of sodium pentobarbital (60 mg kg
-1

) intra-

peritoneally (i.p.), followed by laparotomy. Different volumes of NO-free air were 

inflated into the caecum (5 ml), stomach (4 ml), small intestine (2.5 ml), and colon (3 

ml) of rats using a 5 ml syringe with a thin needle. NO-free air was obtained by 

sampling room air via a charcoal filter. External clamps were used to prevent the air 

from passing into neighboring compartments. The air from different compartments was 

incubated for 15 sec, then aspirated and immediately injected into a chemiluminescence 

analyser (Aerocrine AB, Stockholm, Sweden) and the peak NO concentration was 

measured.  

 

3.1.2 Nitrate administration in vivo (Paper II, III, IV) 

In the animal experiments of paper II, sodium nitrate (10 mg kg
-1

) or placebo (NaCl) 

were given i.p. to germ-free mice, C57BL/6 wild-type (NOS3 
+/+

) and eNOS-deficient 

mice (NOS3
-/-

). In paper III, the same concentration of sodium nitrate or sodium 

chloride was given i.p. to germ-free and conventional (NMRI) mice. One group of 

germ-free animals was pre-supplemented with the XOR inhibitor allopurinol (100 mg 

kg
-1

 day
-1

) via the drinking water, before nitrate administration. After 1-2 hours, the 

animals were killed and blood and tissue samples were collected.  

 

In the long-term animal experiments of paper IV, the treatment group was given two 

doses of sodium nitrate in their chow (0.14 g or 1.4 g NaNO3 kg
-1

) to achieve a daily 

intake of 0.1 mmol and 1.0 mmol nitrate kg
-1

 day
-1

, respectively. The placebo group 

was supplemented with a standard chow. The supplementation of nitrate was carried 

out for 9 weeks. At the end of the experiment, animals were anaesthetized and a 

catheter was placed in the left carotid artery for blood sampling. The blood and tissue 

samples were collected.  

 

3.1.3 Blood and tissue sample collection (Paper II, III, IV) 

Blood samples were collected into tubes containing N-ethylmaleimide (NEM) (final 

concentration in 5 mM) and EDTA (final concentration in 2 mM). The blood was 

centrifuged immediately at 370-400 g for 5-10 min at 4
o 

C and stored at -80
o 

C until 

analysis. After blood sampling, the animals were sacrificed and liver, kidney, aorta, 

heart, lung, stomach, small intestine, colon and skeleton muscle samples were 

immediately removed and snap frozen on dry ice and stored at -80
o 
C for later analysis. 
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3.1.4 Blood pressure measurements (Paper II, IV) 

In the rat experiments of paper II, anesthetized animals received an intravenous bolus 

dose (10 mg kg
-1

) of sodium nitrate or placebo and continued infusion of sodium nitrate 

or placebo for 60 min followed by an intravenous bolus dose (50 mg kg
-1

) of the NOS 

inhibitor L-NAME (Sigma-Aldrich). Then the blood pressure was monitored during 10 

min with a Grass Polygraph (Grass Instrument Co., Quincy, Mass., U.S.A.) and arterial 

blood gases were measured using a clinical blood gas analyzer (ABI 505, Radiometer).  

 

In the rat experiments of paper IV, telemetric measurements were used to measure 

blood pressure. Animals were anaesthetized with inhalation of isoflurane (2.2 %) which 

continued throughout the surgery. A telemetric device (PA-C40) (DSITM, Transoma 

Medical, St Paul, MN, USA) was implanted into the aortic lumen as described 

previously
66

. Animals were allowed to recover for 10 days after surgery. The 

measurement of blood pressure and heart rate was conducted throughout a control 

period (72 h), then during L-NAME treatment (72 h) and finally after the abrupt 

termination of the long-term nitrate administration.   

 

3.1.5 Ischemia/reperfusion (Paper II) 

In the rat experiments of paper II, anesthetized animals received an intravenous bolus 

dose of sodium nitrate (10 mg kg
-1

) or placebo (NaCl) diluted in PBS (pH 7.4) followed 

by intravenous infusion of the same (3 mg kg
-1

 h
-1

) at an infusion rate of 3 ml h
-1

. 60 

min after the addition of sodium nitrate or placebo, L-NAME (50 mg kg
-1

) was given to 

animals as an intravenous bolus dose. 10 min after L-NAME administration, a 

suprarenal clamping of the abdominal aorta was performed, followed by a 30 min 

period of ischemia. The clamp was then released and the abdominal aortic blood flow 

was monitored using a Transonic flow probe 2SB, T206 (Transonic System Inc.). 

 

3.1.6 Studies in newborn infants and in vitro experiments with bacteria 

(Paper I) 

A total number of 34 healthy, newborn infants (14 girls/20 boys) were included in the 

study. Colonic gas samples were collected using a minimally-invasive tonometric 

balloon technique by inserting an all-silicone catheter equipped with an inflatable 

balloon tip 8-10 cm into the sigmoid colon via the rectum
67

. The balloon was inflated 

with 5 ml NO-free air and left to equilibrate in the intestine for 5 min, the air was then 

aspirated and immediately injected into the chemiluminescence NO analyzer to 

measure NO levels.  

 

Lactobacilli sp, E. coli, Bifidobacterium sp and Staphylococcus aureus isolated from 

faeces of two healthy neonates were incubated anaerobically at 37
o 

C for 24-48 hours 

on different agar plates supplemented with 0.1 mM sodium nitrate. 100 µl pre-cultured 

inoculates was put on either lactobactcilli agar AOAC for lactobobacilli and 

bifidobacteria, ISO-sensitest agar plates for E. coli and S. aureus. After inoculation, the 

plates were placed in infusion bags together with an anaerobic pouch system and an 

anaerobic indicator. The bags were sealed and injected with 300 ml air for 1 hour to 

achieve the anaerobic condition. The anaerobic pouch inside the bags was then sealed 

off and isolated from the plates since preliminary experiments showed that considerable 
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NO consumption by the anaerobic pouch system. The gas-tight bags were incubated at 

37
o 

C and after 1, 6, 9, 18, 24 hours, gas (10 ml) was aspirated and NO concentration 

was immediately measured by chemiluminescence.  
 

3.1.7 Studies involving human volunteers (Paper II) 

To study systemic nitrate reduction in humans, 4 healthy volunteers ingested sodium 

nitrate (10 mg kg
-1

) orally. To avoid any contribution from bacterial nitrate reduction 

by oral commensal bacteria, the subjects rinsed their mouths with an antimicrobial 

mouthwash solution (Corsodyl, Glaxo-SmithKline) immediately before the nitrate load. 

Plasma and salivary samples were taken repeatedly and nitrate and nitrite levels were 

measured. 

 

3.1.8 Levels of NO, nitrite and nitrate (Paper I, II, III and IV) 

3.1.8.1 Chemiluminescence assay for NO (Paper I, II) 

The chemical basis for this chemiluminescence assay is the reaction between NO and 

ozone (O3), which yields nitrogen dioxide that is partially in the excited stage (NO2*). 

When NO2* returns to its ground-state, the light is emitted in the near-infrared region of 

the spectrum and can be detected by a photosensitive surface and subsequently 

amplified by a photomultiplier tube. The intensity of this luminescence is then 

converted into an electric signal. To measure levels of NO, the gas sample is removed 

at a constant flow rate and immediately mixed with an excess of O3 in the evacuated 

reaction chamber. The subsequent fast reaction with O3 allows detection of rapid 

fluctuations in NO concentration. This chemiluminescence assay of NO is highly 

sensitive, with a detection limit of 1 parts per billion (ppb), and the amount of light 

emitted is directly proportional to concentrations of NO between 1 and 100,000 ppb. 

Interference by other gases, including other nitrogen oxides, is minimal.  

 

The concentrations of nitrite and nitrate were determined by a chemiluminescence 

assay after reductive cleavage and subsequent release of NO into the gas phase (Paper 

I, II, III). To measure nitrite and nitrate concentrations, samples were introduced via a 

gastight syringe into a purged reaction vessel containing the reducing solution and 

coupled to a condenser. The temperature of the reaction vessel was controlled by a 

heating jacket unit (Sievers, Boulder, Co., USA) through which warm water from a 

constant-temperature bath circulated. A constant flow of nitrogen served as the carrier 

gas for NO.  As a final step, the gas was bubbled through sodium hydroxide (1M 0
o
C) 

to trap any reminding traces of acid prior to introduction into the NO analyzer 

(Aerocrine AB, Stockholm, Sweden). The flow rate from the reaction vessel was 

adjusted with a needle valve. The data obtained were further analyzed with the 

Windows Azur platform and the levels of nitrite and nitrate were calculated and 

reported in M (mol/L) by comparing the areas under the curve with known 

concentrations of nitrite or nitrate. 

 

3.1.8.2 High performance liquid chromatography (HPLC) determination (Paper IV) 

In paper IV, nitrite and nitrate levels were measured by another sensitive and selective 

measurement, HPLC system (ENO-20, Eicom, Japan), which uses reverse phase 

chromatography to separate nitrite from nitrate and then nitrate is reduced to nitrite 
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through a reaction with cadmium and reduced copper inside a reduction column. 

Reduced nitrite is then derivatized with a Griess reagent and the level of diazo 

compounds is measured by a visible detector at 540 nm. 

 

3.1.8.3 Diaminofluorescein-2 (DAF-2) assay for NO (Paper II) 

To measure NO production over time in liver tissue homogenates incubated with 

sodium nitrate and nitrite, a DAF-2 assay was used in vitro. The principle of this assay 

is that DAF-2 is oxidized by the NO reaction product NO2 whereby the diamino 

complex is oxidized to an aromatic radical yielding the highly fluorescent product 

DAF-2 triazole. The change in fluorescence was measured at excitation 485nm and 

emission at 538nm during 15 h at 37
o 
C in a micro plate reader (Molecular Devices). 

 

3.1.9 Tissue nitrate reductase activity (Paper II, III)  

Tissues were homogenized in 3 parts in 10 mM Tris-HCl pH 7.4 containing 250 mM 

sucrose using a polytron (Kinematrica) on ice or the Bullet Blender
TM

 (Next Advance, 

Inc., NY, USA). Supernatant protein concentrations of homogenates were determined 

by a Bradford assay (BioRad). Protein (7 mg ml
-1

) was incubated with a mixture of 

cofactors including NADPH, UDP glucuronic acid (UDPGA), glutathione (GSH), 

NAD
+
 and NADH in phosphate buffer (pH 7.4) with or without 300 µM NaNO3 and 2 

mM allopurinol. 100 µl of this mixture was taken and nitrite was measured 

immediately to represent time 0. The rest of the mixture was deoxygenated with a 

stream of N2 (0 % oxygen) for 2 min, sealed and incubated for 60 min at 37 
o
C and the 

levels of nitrite were measured subsequently.  A tissue pool from 3-5 animals was used 

for each experiment and data represent the mean of at least three experiments. 

 

3.1.10 Western blot analysis (Paper III, IV) 

For quantification of XOR (Paper III) and phosphorylated-eNOS (Paper IV) protein 

expressions, frozen tissue samples from animals were homogenized using a power 

homogenizer (KEBO-lab, Stockholm, Sweden, Paper III) or a Bullet Blender
TM

 method 

(Next Advance, Inc., NY, USA, Study IV) utilizing 0.5 mm stainless steel silicate 

beads (Next Advance, Inc., NY, USA) in 500 µl lysis buffer as described earlier
68

. 

Protein concentrations were determined by means of a BCA protein assay kit (Thermo 

Scientific, Rockford, IL, USA). Equal amounts of total protein were separated on 7.5 % 

SDS-PAGE gels and transferred to either nitrocellulose or polyvinylidene difluoride 

(PVDF) membranes. Blots were probed with a rabbit polyclonal antibody against XOR 

(Rockland, Gilbertsville, PA, USA, Paper III) or rabbit polyclonal antibody against 

phosphorylated eNOS (Santa Cruz Biotechnology, CA, USA, Paper IV) and a mouse 

monoclonal antibody against β-actin (Santa Cruz Biotechnology, CA, USA) as an 

endogenous control. Labeling was detected by SuperSignal West Pico 

chemiluminescence substrate (Themo Scientific, Rockford, IL, USA). Images were 

analyzed by a luminescent image analysis system LAS 1000+ (Fujifilm, Kanagwa, 

Japan). The results were quantified by densitometry and reported as relative optical 

density of the specific proteins. 
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3.1.11 Amino acid measurements (Paper IV) 

To analyze arginine, citrulline and ornithine levels in plasma, an HPLC method was 

used as described in detail previously
69

 with modified chromatographic separation 

conditions
70

.  Samples were cleaned up by solid-phase extraction on polymetric cation-

exchange columns using monomethylarginine as an internal standard and derivatized 

with orthophthadildhyde reagent containing 3-mercaptopronicacid. Chromatography 

was performed by isocratic reversed-phase HPLC with fluorescence detection.  For all 

data analysis the intra- and inter-assay coefficients of variation (CV) were < 1.5% and 

< 3.5%, respectively. 
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4 STATISTICAL ANALYSIS 

 

Data processing was performed with GraphPad Prism software 4.0 or 5.0 (GraphRad 

Software, Inc. La Jolla, USA). All data are shown as means ± SEM. Single 

comparisons between parameters were tested for significance with Mann-Whitney test 

or two-tailed independent Student‟s t test. Correlation was analyzed with the Spearman 

rank test. For multiple comparisons, ANOVA with the Bonferroni post hoc test or 

Dunnett‟s multiple comparison test was used. *P < 0.05 was considered significant.  
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5 RESULTS 

 

5.1 NO GENERATION BY COMMENSAL BACTERIA IN THE 

GASTROINTESTINAL TRACT (PAPER I) 

We measured NO levels in the small intestine, caecum and colon of rats supplemented 

with LGG in combination with sodium nitrate or saline as control. The NO levels were 

increased 3-8 times in the small intestine and caecum in animals supplemented with 

LGG and sodium nitrate compared to the control animals. The levels of NO in the 

caecum were increased in rats with LGG alone, whereas the NO in the small intestine 

did not change in those supplemented with nitrate alone (Figure 2).  

 

 

Figure 2.  NO formation in the GI tract. Levels of NO in the small intestine (A) and caecum (B) of rats 

supplemented with Lactobacillus rhamnosus (LGG), sodium nitrate (0.1 mmol kg
-1

 day
-1

), Lactobacillus 

rhamnosus + nitrate (LGG + nitrate) or control (saline). Data represent means ± SEM. ***P < 0.001 

compared to controls. 
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The nitrite levels in the small intestine and caecum were significantly higher in rats 

supplemented with sodium nitrate, alone or in combination with LGG. In addition, NO 

levels in the caecum correlated to nitrite levels in the caecum (Figure 3). 

 

 

 
 

Figure 3. Nitrite levels increase in the GI tract after supplementation with nitrate and probiotic 

bacteria. Levels of nitrite in the small intestine and caecum of rats supplemented with Lactobacillus 

rhamnosus (LGG), sodium nitrate (0.1 mmol kg
-1

 day
-1

), Lactobacillus rhamnosus + nitrate (LGG + 

nitrate) and control (saline). Data represent means ± SEM. *P < 0.05 compared to controls. 

 

When measuring NO generation in newborn infants (Paper I), we found that NO levels 

in colon correlated to nitrite concentrations in breast milk and faeces, but not to nitrate 

levels.  

 

To study NO generation and the interaction among commensal bacteria (Paper I), we 

grew lactobacilli, bifidobateria, E. coli and S. aureus alone or together on nitrite-

supplemented agar plates and measured NO formation. The lactobacilli and 

bifidobacteria, generated NO but E. coli and S. aureus did not. Moreover, when 

lactobacilli, bifidobacteria were co-incubated with E. coli or S. aureus, NO generation 

was decreased compared to those seen when lactobacilli and bifidobateria were grown 

alone indicating NO consumption by E. coli and S. aureus. Indeed, when exogenous 

NO gas (NO < 10 ppb) was injected to the bags of S. aureus, the NO levels were 

dramatically reduced in less than 8 h (Figure 4). 
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Figure 4.  NO generated in the gut is consumed by other microbes.  Consumption of NO by S. aureus 

grown anaerobically on agar plates at different time points.  

 

 

5.2 A MAMMALIAN NITRATE REDUCTASE (PAPER II, III, IV) 

5.2.1 Mammalian tissue enzymes generate nitrite from nitrate in vitro 

(Paper II, III)  

It is known that bacterial nitrate reduction is extremely effective but the general view 

has been that mammalian cells cannot metabolize this anion. This thesis demonstrates 

the existence of a mammalian nitrate reductase that is active under normoxic conditions 

in vitro as well as in vivo.  

 

To study mammalian tissue nitrate reduction (Paper II), we incubated mouse liver 

homogenates with sodium nitrate under anaerobic conditions at 37
o 

C for 60 min and 

then measured nitrite levels. Nitrate reduction was clearly demonstrated by the 

accumulation of nitrite and this activity was heat sensitive, indicating an enzymatic 

reaction (Figure 5 a, b, c, d). Nitrate reduction was present in liver homogenates from 

rats, mice and humans, with higher activity in rodents (Figure 6 a). Surprisingly, nitrate 

reduction was present not only during hypoxic conditions but also at physiological 

oxygen concentrations (Figure 5 b).  
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Figure 5. Mammalian nitrate reductase activity in vitro in mouse liver homogenates. (a) Nitrite 

formation after 60 min incubation in mouse liver homogenates with sodium nitrate (300uM)  under 

anaerobic conditions, in the presence of oxygen, after heating the homogenate or without addition of 

sodium nitrate. (b) Nitrate reduction in liver homogenates with sodium nitrate and varying concentrations 

of oxygen. The nitrite levels were measured after 60 min incubation. (c) Time-dependent nitrite 

generation in the presence of sodium nitrate under anaerobic conditions. (d) Dose-dependence nitrite 

generation in the presence of sodium nitrate under aerobic conditions. Data represent means ± SEM.  *P 

< 0.05 and **P < 0.01 compared to controls or 0% oxygen or zero point time.  

 

We also performed experiments looking at nitrate reduction in different mouse organs 

and found that nitrate reductase activity was present in colon, small intestine, stomach, 

liver, kidney, heart and lung, with the highest activity in gastrointestinal tissue and 

lowest in heart and lung (Figure 6 b). Notably, in most tissue homogenates the nitrate 

reductase activity was attenuated in the presence of allopurinol, an inhibitor of XOR 

(Figure 6 a, b). In the presence of the NO synthase inhibitor L-NMMA, nitrite 

formation was unaffected, suggesting that NO synthases are not involved.  
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Figure 6.  Mammalian nitrate reductase activity in different species and in a number of different 

organs. (a) Nitrate reductase activity in liver of rodents and humans measured as nitrite accumulation in 

liver homogenates after 60 min of anaerobic incubation with sodium nitrate (300 uM). The generation of 

nitrite was inhibited by the xanthine oxidoredctase inhibitor allopurinol (2 mM, Nitrate + Allo). (b) 

Nitrate reductase activity in different organs of mice. Tissue homogenates were anaerobic incubated with 

sodium nitrate and the changes in nitrite concentrations were measured after 60 min. The generation of 

nitrite was significantly inhibited by allopurinol (2 mM) in all measured organs except the lung and heart. 

*P < 0.05 compared to control. Data represent means ± SEM. *P < 0.05 and **P < 0.01 compared to 

nitrate alone.   

 

To study nitrate reduction in germ-free animals (Paper III), we incubated mouse gastro-

intestinal tissue homogenates with nitrate using the same protocol as we did for the 

liver and other tissues. Nitrite formation was even higher in germ-free mice compared 

to conventional mice (Figure 7), indicating an upregulated nitrate reductase activity in 

mice completely lacking bacteria. 

 

 
Figure 7. Nitrate reductase activity is enhanced in gastro-intestinal tissues of germ-free mice. 

Changes in nitrite were measured after 60 min incubation of the mouse gastro-intestinal homogenates 

with sodium nitrate under anaerobic conditions.  

 

5.2.2 Nitrate reduction in vivo (Paper II, III, IV) 

A bolus dose of sodium nitrate increased plasma nitrite levels during normoxic 

conditions in rats and this increase was attenuated by 40% in the presence of the XOR 

inhibitor allopurinol (Paper II) (Figure 8 a, b). This again suggests that XOR catalyzes 
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the reduction of nitrate in vivo, during normoxic conditions. However, the nitrate 

reductive activity was not completely inhibited by allopurinol suggesting the presence 

of other yet unidentified enzyme pathways for nitrate reduction in mammals.  

  

 

Figure 8. Nitrate reductase activity in vivo in mice. Plasma nitrate (a) and nitrite (b) concentrations 

increased after an intravenous infusion of nitrate. Anesthetized rats (n = 11) were given i.v. an bolus dose 

of  sodium nitrate (10 mg kg
-1

 body) and blood samples were collected at the indicated time points. 7 

additional rats were given allopurinol 30 mg kg
-1

 i.p. before sodium nitrate infusion and then blood 

samples were collected. Data represent means ± SEM. *P < 0.05 compared to nitrate infusion before. 

 

In humans, plasma nitrite level also increased after an oral nitrate load (Paper II). To 

exclude any contribution from oral nitrate reduction by oral commensal bacteria, 

subjects rinsed their mouth with an antibacterial mouthwash solution before nitrate 

intake. Despite abolishing salivary nitrite formation after the mouthwash, plasma nitrite 

levels increased 50-70 % after nitrate ingestion (Figure 9). This suggests the existence 

of a functional mammalian nitrate reductase activity also in humans. 

 

 

 

Figure 9. Nitrite levels in human plasma after an oral nitrate load. Plasma nitrite levels were 

measured repeatedly in 4 healthy subjects before and after an oral intake of sodium nitrate (10 mg kg
-1

). 

Before nitrate intake, the subject rinsed the mouth with an antibacterial mouthwash solution 

(chlorhexidine 2 mg
-1

) to exclude any contribution from oral nitrate reducing bacteria. Data represent 

means ± SEM of n = 4. *P < 0.05 compared to nitrate intake before. 
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Next, we compared plasma and tissue levels of nitrate and nitrite after nitrate 

administration in germ-free animals (Paper III). Mice were given nitrate 

intraperitoneally and levels of nitrate and nitrite were measured in plasma as well as in 

liver and kidney tissues after 1.5-2 h. In germ-free mice the nitrite levels in plasma, as 

well as in liver and kidney tissues, increased significantly (Figure 10 a, b) and this 

increase of nitrite in plasma was attenuated when mice were pretreated with the XOR 

inhibitor allopurinol (Figure 10 c). This provides final unequivocal evidence for a 

mammalian nitrate reductase, which is independent on bacteria. 

 

 

Figure 10. Nitrate reductase activity is enhanced in germ free mice in vivo. Plasma levels of nitrite (a) 

and nitrate (b) were measured 90-120 min after i.p. administration of sodium nitrate (10 mg kg
-1

) or 

placebo (NaCl) in germ free and conventional mice. (c) The increase in plasma nitrite was attenuated in 

germ free mice pretreated with allopurinol (100 mg kg
-1

 day
-1

). 

 

5.3 XOR- MEDIATED REDUCTION OF NITRATE TO NITRITE AND NO 

(PAPER II) 

To investigate whether the nitrite generated from nitrate is further reduced to NO, we 

used two different approaches. First, we incubated mouse liver homogenates with 

nitrite and we found that the nitrite was consumed over the observation period of time 

and this consumption was inhibited by allopurinol indicating that XOR was involved 

also in this reaction. Then we added the NO marker DAF-2 DA to mouse liver 

homogenates and incubated aerobically with nitrite and allopurinol, and analyzed the 

fluorescent signal indicative of NO generation.  A dose dependent increase of the signal 

was shown but in the presence of allopurinol the signal was inhibited already under 

basal levels (no nitrate and nitrite added) (Figure 11 a, b).  This suggests that XOR 
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catalyzes a serial reduction of nitrate to nitrite and then to NO in liver tissue under 

normoxic conditions. 

 

 

 

Figure 11.  XOR catalyzes a serial of reduction of nitrate to nitrite and then to NO.  NO generation 

was recorded by adding DAF-2 DA (10 µM) to the mouse live homogenates under 15 h aerobic 

incubation with 300 µM NaNO3 (a) or NaNO2 (1µM) (b). The NO generation was inhibited by 

allopurinol (2mM) and by heat inactivation of the liver homogenates before incubation.  

 

5.4 EFFECTS OF NITRATE ADMINISTRATION ON BLOOD FLOW AND 

BLOOD PRESSURE (PAPER II, IV) 

In recent studies it has been shown that nitrite infusions at near physiological levels 

vasodilate the human circulation
23,71

 and that dietary supplementation with nitrate 

causes a reduction in blood pressure
72,73

. To test whether nitrate reduction to nitrite and 

NO influences post ischemic perfusion (Paper II), we performed a suprarenal clamping 

of the abdominal aorta in rats for 30 min and then removed the clamp, and monitored 

blood flow. We found that rats with nitrate treatment maintained a higher post-ischemic 

blood flow compared to placebo rats. The blood flow decreased to 25% of pre-ischemic 

values in the control group at 60 min after reperfusion, whereas the rats treated with 

nitrate maintained blood flow at 65% of pre-ischemic values (Figure 12). These results 

indicate that the nitrate-nitrite-NO pathway is activated during ischemia-reperfusion 

injury to maintain blood flow.   
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Figure 12. The nitrate-nitrite-NO pathway is activated during ischemia/reperfusion injury. Rats 

treated with an intravenous bolus dose of sodium nitrate (10 mg kg
-1

) maintained a higher abdominal 

aortic blood flow compared to placebo after a suprarenal clamping of the abdominal aorta for 30 min 

followed by 60 min reperfusion. The clamp was released at time 0. 

 

To examine the effect on blood pressure after a long-term oral nitrate supplementation 

(Paper IV), we used telemetric measurements. Blood pressure was monitored for 3 days 

during nitrate supplementation and continuously for 2 days after an acute termination of 

the nitrate administration. The mean blood pressure was 5 mmHg lower in rats treated 

with the low dose of nitrate (0.1 mmol kg
-1

 day
-1

), whereas it was 15 mmHg higher 

with the high dose (1 mmol kg
-1

 day
-1

) compared to the control animals (Figure 13 A).  

 

After abrupt termination of nitrate the blood pressure increased by 4 mmHg at day 1 in 

the animals treated with the high dose nitrate and returned towards basal levels on day 

3 (Figure 13 B). In the group of animals treated with the NOS inhibitor L-NAME the 

acute increase in blood pressure was attenuated in animals treated with nitrate 

compared to placebo. Collectively, these data suggest that long-term nitrate 

supplementation down-regulates vascular eNOS activity. 
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Figure 13. Long-term dietary nitrate supplementation and blood pressure. (a) The mean blood 

pressure was 5 mmHg lower in rats supplemented with a low dose of sodium nitrate (0.1 mmol kg
-1

 

day
1
), whereas blood pressure was 15 mmHg higher in the group treated with a high dose of sodium 

nitrate (1 mmol kg
-1

 day
-1

). (b) After abrupt termination of dietary nitrate, blood pressure in high dose 

nitrate-treated rats increased by 4 mmHg (day 4) and returned to pre cessation levels at day 5. Data 

represent means ± SEM of n = 8. *P < 0.05 compared to controls or nitrate diet.  

 

 

5.5 PROTEIN EXPRESSION IN GERM-FREE ANIMALS AND THE 

EFFECTS OF NITRATE (PAPER III, IV) 

To study XOR protein expression in germ-free mice (Paper III), we used Western blots. 

In livers of germ-free mice, XOR expression was significantly increased compared to 

conventional animals (Figure 14 A, B). 

 

 

Figure 14. XOR expression is enhanced in germ free mice. XOR protein expression in mouse liver 

was analyzed by Western blotting. Data represent means ± SEM of n = 4.  

 

To study the effects of nitrate supplementation on eNOS expression (Paper IV), we 

analyzed eNOS levels in aortas of rats supplemented with nitrate for 8-11 weeks.  The 

expression of phosphorylated eNOS (Ser
1177

) was dose-dependently reduced by nitrate 

(Figure 15 A, B).  
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Figure 15. Expression of phosphorylated eNOS is dose-dependently reduced by nitrate. 

Phosphorylated eNOS (Ser
1177

, phospho-eNOS) protein expression in rat aortas supplemented with 

sodium nitrate (0.1 or 1mmol kg
-1

 day
-1

) for 8-11 weeks was analyzed by Western blotting. Data 

represent means ± SEM of n = 4. *P < 0.05 compared to controls or between nitrate groups.  

 

 

5.6 CITRULLINE-ARGININE RATIOS IN PLASMA (PAPER IV) 

We measured citrulline to arginine ratio in plasma after the long-term nitrate treatment 

in rats by HPLC as an indicator of overall vascular NOS activity (Table 1). The 

citrulline-arginine ratio was significantly decreased in the group treated with a high 

dose of nitrate suggesting that NOS activity was reduced after the nitrate treatment. 

 

 

Table 1. Citrulline to arginine ratio is decreased in rats supplemented with a high dose of nitrate. 

Data represent means ± SEM of n = 8. *P < 0.05 compared to controls. 
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6 GENERAL DISCUSSION 

 

Eukaryotic cells developed long after the prokaryotes during evolution and these two 

cell types have been forced to co-exist ever since. The human body is no exception to 

this and in fact the majority of cells in an adult human are prokaryotes. While 

pathogens are clearly unwanted and therefore constantly fought, other bacteria exist in 

peaceful harmony with the host. When such co-existence is of mutual benefit for both 

parties the relationship is known as symbiotic. Microbes that reside in our body are 

primarily located in the gastrointestinal tract, with the highest density in the oral cavity 

and the large intestine.   

 

The interplay between the host and some of these gut bacteria is clearly symbiotic with 

benefits for the host in maintaining integrity of a variety of mammalian processes, 

including metabolism, immune defense, inflammatory responses, nutrient processing 

and a broad range of other host activities
74-76

. In sharp contrast to this, the generation of 

nitrite by some gut bacteria has traditionally been viewed as harmful with formation of 

carcinogenic nitrosamines as a possible result
77

. This view is slowly changing and we 

may now be close to a paradigm shift in our view of nitrogen oxide metabolism in 

humans
5,33,78

.  

 

The results presented in this thesis add to this growing body of evidence suggesting a 

symbiotic rather than pathological relationship between nitrate-reducing gut bacteria 

and the host. Gut bacteria help the host to bioactivate inorganic nitrate to nitrite and 

then to nitric oxide, a powerful signaling molecule with numerous beneficial effects in 

the gut, cardiovascular system and elsewhere. In return they are provided with a 

substrate necessary for their own respiration. In addition, this thesis describes a 

previously unknown pathway for the reduction of nitrate by mammalian cells that may 

contribute to tissue NO homeostasis. Finally, we put forward evidence to suggest a 

crosstalk between eukaryotic and prokaryotic NO pathways within the human body. 

Central to all this - and representing the first obligate step in bioactivation - is the initial 

reduction of nitrate to form the more reactive nitrite anion. 

 

6.1 PROKARYOTIC NITRATE REDUCTION AND NO FORMATION IN THE 

GUT 

Bacterial nitrate reduction plays a critical role in the bioactivation of nitrate in humans. 

The nitrite formed by oral bacteria can enter the systematic circulation and be further 

reduced to NO by a variety of non-enzymatic and enzymatic processes in our body
7,42

. 

Recent studies have shown that if the oral microflora is abolished with the use of an 

antiseptic mouthwash, nitrite formation is attenuated and the resultant acute biological 

effects, including a reduction in blood pressure, are reduced or absent
79

. Moreover, if 

saliva is not continually swallowed after ingestion of nitrate, thereby interrupting the 

entero-salivary circulation of nitrate, the increase in plasma nitrite is attenuated as are 

the biological effects
39,80

. Altogether, this demonstrates a central role of oral bacteria in 

bioactivation of nitrate (Figure 16).  
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While these interesting effects of oral bacteria have been fairly well characterized 

recently, along with the NO formation and biological effects of nitrite-derived NO in 

the stomach, less is known about nitrate and nitrite metabolism further down in the GI 

tract. An aim of the present thesis was to study the metabolic fate of nitrate in the small 

and large intestine. Specifically we analyzed if NO could be generated by probiotic 

bacteria. Indeed, dietary supplementation with live probiotic bacteria and nitrate 

enhanced NO formation locally in the gut. Interestingly, some bacteria in the gut can 

also effectively consume NO formed by other microbes. The reduction of nitrite to NO 

by probiotic bacteria is likely a result of their ability to reduce pH by production of 

lactic acid as demonstrated in our in vitro experiments. Under such conditions nitrite is 

effectively reduced non-enzymatically to form NO. In addition, an enzymatic 

component, for example by the action of bacteria nitrite reductases, cannot be excluded 

at this stage.  

 

The proposed beneficial health effects of probiotics have been intensively studied and 

although definitive proof is still lacking for most of these claims, it is clear that millions 

of people throughout the world consume such live bacteria on a daily basis in the form 

of beverages, yoghurts and more. The possible biological consequences of bacterial NO 

formation in the gut and its relation to any health effects of probiotics, can only be 

speculated upon at this stage. It is interesting however to note that the levels of NO 

obtained are clearly within the range where this potent messenger is active. Effects of 

NO and other nitrogen oxides produced by bacteria may include inhibition of pathogen 

growth but also effects on the host mucosa including stimulation of mucosal blood flow 

and mucus generation. Such effects of nitrite-derived NO have already been 

demonstrated in the stomach but evidence for the lower GI tract is still missing. In 

addition to effects on blood flow and mucus formation, nitrite and NO can also affect 

other processes in the cell. Such effects include potent cytoprotective actions and a 

possible target is the mitochondrion with inhibition of reactive oxygen species 

formation
81,82

. 

 

6.2 MAMMALIAN NITRATE REDUCTION TO FORM NITRITE AND NO 

A surprising finding in the present thesis was the fact that mammalian cells are also 

capable of nitrate reduction (Figure 16); a chemical reaction previously thought to be 

performed exclusively by anaerobic bacteria. From biochemical and pharmacological 

studies in rodents and humans we demonstrate that xanthine oxidoreductase, an enzyme 

structurally related to bacterial nitrate reductase, is a functional mammalian nitrate 

reductase. Clearly mammalian nitrate reduction is much less effective than bacterial 

nitrate reduction. Overall however, the relatively inefficient nitrate and nitrite reduction 

by mammalian cells might still be significant, especially in close vicinity to the 

mammalian nitrate reductase. Thus, micromolar nitrate yields high nanomolar nitrite 

and eventually picomolar NO in the target tissue, still enough to elicit powerful 

biological effects. Indeed, in the current thesis we demonstrate increases in post-

ischemic blood flow in animals treated with nitrate i.v. Such an effect is likely 

attributed to NO formation from the serial reduction of nitrate although definite proof 

for this was not obtained from the current study. Nevertheless, the true biological 

significance of mammalian nitrate reduction remains to be elucidated.  
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A specific remaining overall question in this field is if the normal levels of nitrate and 

nitrite generated endogenously by the NOS system are sufficient for biological effects? 

This occurrence would demonstrate a true physiological role for the nitrate-nitrite-NO 

pathway.  

 

Most studies so far have looked at administration of exogenous nitrate/nitrite, using 

either pharmacological doses or amounts achieved by dietary intake of these anions. 

The relative importance of mammalian nitrate reduction in relation to that performed by 

bacteria in the oral cavity is also an unresolved issue. As discussed above many of the 

NO-like effects of nitrate described, including effects on blood pressure and gastric 

protection, seem to be almost abolished if oral bacteria are killed. Does this leave any 

room for mammalian nitrate reduction to be of any significance? It is possible that the 

mammalian nitrate reduction is of greater significance in rodents compared to humans 

as these animals have much greater expression of XOR throughout most tissues. 

Another possibility is that mammalian nitrate reduction is a slower system meaning that 

a longer observation time is needed before the biological effects can be observed. 

Future long-term studies of nitrate effects in germ-free animals will definitely answer 

this last question. Such animals offer the unique possibility to study exclusive 

mammalian processes. 
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Figure 16. Scheme showing a mammalian nitrogen oxide cycle in which inorganic nitrate, nitrite 

and NO are interconverted in vivo. In this cycle nitrate and nitrite from endogenous and dietary sources 

are serially reduced by bacteria as well as mammalian cells to form NO and other bioactive nitrogen 

oxides. 
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6.3 INTERACTIONS BETWEEN NOS-INDEPENDENT AND NOS-

DEPENDENT NO PATHWAYS 

Generation of NO in a mammal is a tightly regulated system, which is controlled in 

most situations by negative feedback and feedforward controls. If the newly found 

pathway of NO formation from mammalian nitrate reduction is significant, one would 

expect that the classic L-arginine-NOS pathway and nitrate-nitrite-NO pathway could 

communicate with each other to orchestrate NO formation, metabolism and 

bioavailability. Studies from this thesis support this view (Figure 17). Long-term 

dietary nitrate supplementation results in not only down-regulation of eNOS protein 

expression but also decreased eNOS activity. Cardiovascular NO homeostasis is 

predominantly regulated by eNOS. It is therefore perhaps not surprising that NO 

generation from mammalian nitrate reduction influence synthesis and catabolism of NO 

in the cardiovascular system. This could then be reflected in changes in blood pressure, 

keeping in mind the vasodilating properties of NO. An interesting finding in this thesis 

is the apparent negative feedback on eNOS by the nitrate pathway, showing that a low 

physiological dose of nitrate decreased blood pressure, whereas a high pharmacological 

dose of nitrate paradoxically elevated blood pressure. It seems that when the nitrate-

nitrite-NO pathway is maximally boosted, the net effect is a reduced NO bioavailability 

since the inhibition of eNOS overrides the NO formation from nitrate. Importantly 

however, this was done in young healthy rats with a well-functioning highly active 

eNOS. Thus, inhibition of eNOS will have a dramatic effect. In a situation where eNOS 

activity in the endothelium is diminished, such as in older subjects or in patients with 

cardiovascular diseases, the effects of nitrate are expected to be different. In this case 

eNOS inhibition has a minor effect (there is not much eNOS to inhibit) so that the net 

effect of NO from the nitrate instead becomes significant. This is strongly supported by 

a recent study, in which we gave a high pharmacological dose of nitrate to rats with 

hypertension and decreased NO bioavailability. In these rats we observed a dramatic 24 

mmHg reduction in blood pressure after nitrate
83

. All together, we speculate that 

administration of nitrate will likely have a more obvious and beneficial effect on NO 

homeostasis in individuals where eNOS is not functioning properly. If this is correct, it 

could have a major impact on future dietary recommendations.  
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Figure 17. Scheme illustrating sites of a crosstalk between the nitrate-nitrite-NO pathway and the 

classical NO synthase (NOS) pathway. The enzymes affected are highlighted. When conventional mice 

are fed nitrate a downregulation of eNOS in the vascular system is observed, likely as a result of 

increased NO formation via the nitrate-nitrite pathway. By definition germfree animals cannot reduce 

nitrate via prokaryotic pathways (NaR). In these animals the expression of XOR, a mammalian enzyme 

with nitrate reductase activity is increased in tissues, possibly to maintain a certain degree of nitrate 

reductase activity in the absence of bacteria. 

 

 

6.4 THERAPEUTIC PERSPECTIVES 

Although the physiological and therapeutic effects of nitrate and nitrite reduction are 

yet to be fully verified, several lines of studies convincingly indicate therapeutic 

opportunities of the nitrate-nitrite-NO pathway in various diseases, most notably in the 

cardiovascular system. Many studies have demonstrated cytoprotective effects of low-

dose nitrite in mice, rats, sheep, dogs, rabbits, primates and humans exposed to 

different degrees of ischemia-reperfusion (IR) injury
84-90

. Nitrite and nitrate 

administration shows protective effects against IR injury in liver
91,92

, heart
87,91,93,94

, 

brain
94

, kidney
95

, as well as in chronic hind-limb ischemia
96

. These cytoprotective 

effects, which are unrelated to vasodilation, suggest therapeutic potentials of nitrite and 

nitrate to treat human diseases associated with ischemia-reperfusion, such as 

myocardial infarction, stroke, solid-organ transplantation, and cardiopulmonary arrest. 
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The mechanism for the cytoprotection needs to be clarified but research point towards 

the mitochondria as an important target
82,97

. Mitochondria is a well-known target of NO 

effects, and studies have shown that nitrite-derived NO may interact with the 

respiratory chain enzymes to control respiration and ultimately reduce the generation of 

potentially damaging reactive oxygen species (ROS).  

 

Therapeutic delivery of high doses of nitrite to vasodilate ischemic vascular beds also 

shows promise in preclinical studies. Systemic infusions of nitrite to a primate model of 

artery aneurysm can effectively protect against delayed cerebral artery spasm
89,98

. 

Inhalation of nitrite in newborn sheep with primary pulmonary hypertension can 

selectively dilate the pulmonary circulation and improve oxygenation via nitrite 

reduction to NO
86

. Recent clinical studies also showed that inhalation of NO has 

protective effects on liver function after orthotopic liver transplantation in humans
99

 

and on the inflammatory ischemia/reperfusion response after surgery
100

. In these 

studies, the authors suggested that nitrite (the oxidation product of NO) is the most 

likely candidate transducing the exptrapulmonary effects of inhaled NO. This is 

because NO itself is unlikely to survive blood passage to distal organs after inhalation.  

 

Moreover, an increasing number of studies show that supplementation of dietary nitrate 

or nitrite can reduce blood pressure
72,80,101

, protect against gastric ulcers
32

, prevent renal 

and cardiovascular dysfunction induced by a high-salt diet
83

, decrease platelet 

aggregation
102

, protect ischemic cardiac tissue
91

 and  reverse features of metabolic 

syndrome in mice lacking endothelial NOS
103

.  
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7 CONCLUSIONS AND FUTURE PERSPECTIVES  

In this thesis we have continued to characterize the biological chemistry, physiological 

effects and therapeutic opportunities of dietary nitrate - an inorganic anion generated 

endogenously and present in our everyday diet. We show that nitrate can be 

bioactivated in vivo to form nitrite and then bioactive nitrogen oxides including NO. 

The initial reduction of nitrate to nitrite represents an obligate first step in its 

bioactivation. We show that commensal bacteria in the GI tract as well as mammalian 

host cells are capable of nitrate bioactivation. Oral commensal bacteria generate nitrite 

via highly effective nitrate reductase enzymes, while our own cells use XOR for the 

same reaction albeit at a much lower efficiency. In the lower GI tract probiotic bacteria 

can generate NO locally from nitrate-derived nitrite with possible biological effects. 

The nitrite that is absorbed intact can be utilized by cells to generate NO in the tissues. 

Interestingly, nitrite generation to NO in the tissues is greatly enhanced during acidic 

and hypoxic conditions when the classic NO synthase system is malfunctioning. Thus 

the nitrate-nitrite-NO pathway can be viewed as a reserve system to allow NO 

generation when NO is needed the most. This is analogous to anaerobic glycolysis as a 

source of ATP under hypoxic conditions.  

 

The therapeutic opportunities for nitrate and nitrite are promising and larger clinical 

trials in humans are currently underway. Conditions that might be targeted by these 

pathways include hypertension, ischemia-reperfusion injury, metabolic disease, 

infections, vasospasm and gastric ulcers. There are at least four important differences 

that favor nitrate/nitrite as drug candidates compared to the organic NO donors, such as 

nitroglycerine  that have been in clinical use for several hundred years. These are their 

relatively low potency, the favorable pharmacokinetic profile, the selective activation in 

ischemic areas and the lack of tolerance. Nitroglycerine is an extremely potent 

vasodilator while nitrate and nitrite have relatively low potency. However, for 

treatment of hypertension, a rapid and short acting vasodilator is not optimal since 

blood pressure then becomes very difficult to control. Indeed organic nitrates have not 

found their way into the clinic for this condition. In addition, treatment with continual 

organic nitrates classically results in tolerance, a condition where repeated dosing leads 

to a severe decline in the effects. Such tolerance seems to be absent for nitrate and 

nitrite. Moreover, nitrate has a long t ½ which is desirable in the clinical situation. 

Lastly, nitrite is selectively bioactivated in ischemic areas, i.e. in areas where NO is 

needed the most. Thus, nitrite reduction to NO is redox sensitive and accelerated under 

these conditions. Organic nitrates on the other hand, release the NO unselectively in 

many tissues. 

 

The dietary implications of this research are particularly intriguing, since the doses of 

nitrate needed for significant effects are well within what is achievable from a normal 

diet. The traditional view of nitrate and nitrite is that they are only harmful. The 

proposed associations with cancer have resulted in strict regulations of the acceptable 

daily intake of these anions. However, despite 50 year of research into these 

detrimental effects of nitrate, evidence for a carcinogenic effect in humans is still 

lacking
104-107

. With the data accumulated during the past 15 years, a new picture is 

slowly emerging; a picture suggesting the exact opposite: Dietary nitrate may in fact 

have beneficial effects on human health and the mechanism is via the formation of NO 
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- a central biological messenger in the cardiovascular system. It is our hope that in 

some years people will regard dietary nitrate not as a toxic unwanted substance but 

rather as an essential nutrient. Time will tell if this provocative speculation is true. 
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