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“yes, but the problem is…” 



ABSTRACT 

Tumors and immune cells interact in many ways: immune cells can 
recognize and even kill tumor cells, while the tumor on the other hand 
can induce cells of the immune system to participate in tumor-mediated 
immune subversion. 
We studied immunosuppressive effects that human tumors exert on 
immune effector cells, particularly T cells, by inducing suppressive 
myeloid cells and decreasing T cell functional capacity. 
Increased numbers of myeloid-derived suppressor cells (MDSC) have 
been found in tumor-bearing individuals in response to cancer-derived 
factors. We characterized a CD14+HLA-DR-/low MDSC population in 
patients with melanoma that could strongly suppress T cell function. 
Suppressive activity was dependent on cell-cell contact, arginase-1 
expression, oxidative stress, and STAT3 signaling. Melanoma MDSC 
exhibited a mixed phenotype including markers of both mature and 
immature cells. Due to their monocyte-like characteristics, we wondered 
whether the presence of MDSC could interfere with the generation of 
monocyte-derived dendritic cells (DC) for vaccine use. We found that 
melanoma MDSC exerted a dose-dependent negative effect on DC 
quality. The removal of MDSC from monocytes prior to DC generation 
could therefore be advisable in order to improve vaccine efficacy in 
diseases where CD14+HLA-DR-/low cells have been observed. 
Tumor-mediated immunosuppression has mostly been studied in 
patients with advanced cancer, thereby under-representing the group of 
early-stage cancer patients that should have a better chance to mount 
anti-tumor immunity and benefit from tumor immunotherapy.  
We found that even patients with early-stage breast cancer exhibit signs 
of tumor-induced immune modulation. Expression of the ζ-chain, an 
important transducer of activating signals in T and NK cells, was down-
regulated in patients compared with controls, but normalized after 
surgical tumor removal. Loss of ζ-chain expression was detectable in the 
blood, but strongest in the tumor, suggesting it to be mediated by tumor-
derived factors. Further, circulating T cells of breast cancer patients 
were more differentiated than those of controls and exhibited signs of 
altered homing capacity. Tumor-associated T cells were dominated by 
effector memory cells that showed signs of activation, but were 
accompanied by indicators of immunosuppression.  
The findings presented here show that various mechanisms of tumor-
mediated immunosuppression are active in patients with early- as well 
as late-stage cancers. Understanding such tumor-immune interactions is 
the first step towards the design and optimization of immunotherapeutic 
strategies for the treatment of cancer. 
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1 INTRODUCTION 

This thesis describes part of my research on interactions between tumors and 
the immune system in cancer patients.  
The first section will introduce important aspects relevant to the presented 
articles and should help even those who do not work in the field of tumor 
immunology to understand the contents and implications of my work. 
An introduction to basic immunology is beyond the scope of this thesis, but I 
will try to help everyone understand the main text by providing short and simple 
background information in the grey infoboxes. There will be many of these in 
the beginning, but they will get fewer, as the reader becomes an (almost) 
expert immunologist. For more information on basic immunology please 
consult a text book, for example ‘Janeway’s Immunobiology’ [1]. 
Animal models, especially preclinical studies performed in mice, have been 
crucial for advancing our understanding of basic biology and immunology.  
However, distinct differences exist between the immune systems of humans 
and mice. Obviously, the long-term goal of cancer research should be to 
improve the health, survival and quality of life of humans and not to cure mouse 
cancer (which has already been achieved successfully by many, including 
several of my colleagues).  
During the work on my thesis, I have put a strong focus on studying the 
immune system in cancer patients. I will therefore emphasize previously 
published human studies in the introduction and include the results of animal 
studies only where they are essential to our understanding of a concept.  
 
 
1.1 A FEW WORDS ON CANCER 

Cancer is characterized by uncontrolled cell growth. It is initiated by one 
aberrant cell in a specific organ, which with time grows into a tumor, usually 
developing the ability to infiltrate 
neighboring tissues and metastasize 
(=spread) to other organs. 
The survival and proliferation of healthy 
cells is tightly regulated, but this control 
is lost in cancer cells due to the 
occurrence of at least one, but most 
often many, DNA mutations. Mutations 
occur randomly, for example due to 
exposure to carcinogenic chemicals, 
UV irradiation, or just mistakes in the 
cellular machinery. Each mammalian 
cell contains an elaborate system to 
detect and repair such mistakes in the 
DNA, and does not allow a cell to 
divide before the mistake has been 
fixed, even causing the cell to undergo 

Apoptosis,	
   or	
   programmed	
   cell	
   death,	
   is	
   the	
  
organized	
   death	
   of	
   a	
   cell.	
   It	
   can	
   be	
   due	
   to	
  
intrinsic	
   reasons,	
   such	
   as	
   irreparable	
  
problems	
  during	
  cell	
  division,	
  or	
  induced	
  from	
  
the	
   outside,	
   for	
   example	
   by	
   cytotoxic	
   cells	
  
that	
  signal	
  through	
  death	
  receptors	
  or	
  release	
  
caspase-­‐activating	
   molecules	
   into	
   the	
   target	
  
cell.	
   Caspases,	
   so-­‐called	
   molecular	
   scissors,	
  
are	
   proteases	
   that	
   activate	
   each	
   other	
   in	
  
cascades	
   that	
   depend	
   on	
   the	
   apoptotic	
  
stimulus,	
   and	
   co-­‐ordinate	
   the	
   apoptotic	
  
process.	
   Apoptosis	
   is	
   characterized	
   by	
  
chromatin	
  condensation,	
  DNA	
  fragmentation,	
  
and	
   the	
   formation	
   of	
   apoptotic	
   bodies,	
  
meaning	
  blebs	
  of	
  the	
  cell	
  enclosed	
  by	
  the	
  cell	
  
membrane.	
  Apoptosis	
  is	
  generally	
  considered	
  
to	
  be	
  a	
  non-­‐immunogenic	
  form	
  of	
  cell	
  death,	
  
since	
   little	
   antigen	
   is	
   released	
   from	
   the	
   cell	
  
during	
  the	
  process,	
  however	
  this	
  notion	
  is	
  still	
  
the	
  subject	
  of	
  ongoing	
  discussions.	
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apoptosis if necessary. As a 
consequence, the most frequent 
mutations in cancer cells are within this 
very control system, or in genes 
encoding for molecules that drive 
survival or cell division and therefore 
can permit persistence of cells with 
defective genetic material. It is easy to 
imagine that once one such mutation 
has occurred, additional mutations can 
be introduced and transmitted to 
daughter cells with greater ease. If this 
process cannot be inhibited, the 
ultimate result is a cell exhibiting the 

traits described as the ‘hallmarks of cancer’: sustained proliferative signaling, 
resistance to cell death, induction of angiogenesis, replicative immortality, 
capacity to invade tissues and metastasize, and evasion of growth suppressive 
signals [2].  
During my thesis, I have mostly worked with samples from melanoma and 
breast cancer patients. Breast cancer is rare in men, but the most common 
cancer in women, with a lifetime risk of developing breast cancer close to 8% 
for Swedish women. Melanoma is a cancer of pigmented cells, and skin 
melanoma is amongst the top 10 most common cancers in both men and 
women, affecting more than 2600 and killing nearly 500 individuals in Sweden 
in 2009 [NORDCAN Cancer Database].  
Figure 1 shows that the incidence of both diseases has increased over the past 
decades, possibly due to population growth, improved detection methods, the 
increased age of the population, or lifestyle factors. 

 
Figure 1: Incidence (absolute number of newly diagnosed cases) and mortality 
of (A) melanoma of the skin and (B) female breast cancer in the Swedish 
population (age 0-85 years) between 1960 and 2009.  

Source: Socialstyrelsens statistikdatabas (http://www.socialstyrelsen.se/statistik/statistikdatabas) 

Angiogenesis	
   is	
   the	
   formation	
   of	
   new	
   blood	
  
vessels,	
   usually	
   by	
   ‘sprouting’	
   from	
   existing	
  
vessels.	
   This	
   is	
   important	
   during	
   embryonic	
  
development,	
  but	
  rare	
  in	
  healthy	
  adult	
  tissues	
  
that	
   are	
   already	
   equipped	
   with	
   functional	
  
vasculature.	
   Once	
   they	
   reach	
   a	
   certain	
   size,	
  
tumors	
  need	
   to	
   induce	
  angiogenesis	
   in	
  order	
  
to	
  get	
  a	
  sufficient	
  supply	
  of	
  nutrients.	
  Tumor-­‐
induced	
   angiogenesis	
   is	
   often	
   disorganized,	
  
making	
   tumor	
   vessels	
   leaky.	
   Vascular	
  
endothelial	
  growth	
  factor	
  (VEGF)	
  is	
  one	
  of	
  the	
  
important	
   factors	
   that	
  promote	
  angiogenesis	
  
and	
  is	
  targeted	
  in	
  cancer	
  therapy	
  by	
  the	
  anti-­‐
angiogenic	
   drugs	
   bevacizumab	
   (Avastin®),	
  
sorafenib	
  (Nexavar®),	
  and	
  sunitinib	
  (Sutent®).	
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Strikingly, though the incidence of both melanoma and breast cancer has more 
than doubled over the last 50 years, the mortality has remained nearly 
constant. This can be ascribed to greater prevention and screening efforts as 
well as to improved therapies. Unfortunately, a significant number of patients 
still die from their disease, stressing the need to develop additional curative 
treatments. 
When thinking about cancer in the context of tumor-immune interactions, it is 
important to keep in mind that, despite of the presence of mutations, a cancer 
cell originates from within the body and will in many aspects resemble other 
cells from the same organ. 
 
 
1.2 THE IMMUNE SYSTEM IN A NUTSHELL 

The natural task of the immune system 
is to protect us from infections by 
bacteria, viruses, and parasites. This is 
quite a complicated affair, so I will give a 
brief, T cell-centric, and highly simplified 
overview, using the example of a viral 
infection. 
The immune system consists of two 
arms: the innate arm, often termed the 
‘first line of defense’, consists of cells 
equipped with pattern recognition 
receptors. These receptors recognize 
pathogen-associated molecular patterns, 
such as single-stranded viral DNA, and 
as a consequence induce activation and 
effector functions in innate immune cells. 
Usually this means that the intruding 
pathogen will be captured, internalized, 
and killed. At the same time, elements of 
the pathogen, so-called antigens, will be 

transported from the site of infection to 
secondary lymphoid organs, such as 
lymph nodes and the spleen, to be 
presented to the adaptive arm of the 
immune system. This is done by 
professional antigen-presenting cells 
(APC), of which dendritic cells (DC) are 
the most potent. The adaptive arm of the 
immune system consists of T and B 
lymphocytes. Each of these cells has a 
receptor specific for only one particular 
antigen. A T cell will therefore sample 

An	
   antigen	
   is	
   a	
   molecule	
   that	
   can	
   be	
  
recognized	
   by	
   the	
   immune	
   system.	
   B	
   cells	
  
recognize	
  epitopes	
   (parts)	
   of	
   proteins	
   that	
  
are	
  expressed	
  on	
  the	
  cell	
  surface	
  using	
  the	
  
B	
   cell	
   receptor.	
   After	
   activation	
   and	
  
differentiation,	
   plasma	
   B	
   cells	
   will	
   secrete	
  
soluble	
   receptors	
   (antibodies)	
   specific	
   for	
  
that	
  same	
  antigen.	
  T	
  cells	
  mostly	
  recognize	
  
peptides	
   (small	
  parts	
  of	
  proteins)	
  between	
  
8	
   and	
   24	
   amino	
   acids	
   in	
   length.	
   These	
  
peptides	
   can	
   be	
  derived	
   from	
  any	
   protein,	
  
but	
   they	
   have	
   to	
   undergo	
   intracellular	
  
processing	
   and	
   loading	
   onto	
   MHC	
  
molecules	
  (see	
  p.5),	
  which	
  will	
  then	
  present	
  
the	
  peptide	
  on	
  the	
  surface	
  of	
  all	
  cells	
  (MHC	
  
I	
   presentation	
   to	
   CD8+	
   T	
   cells)	
   or	
   of	
  
professional	
   antigen-­‐presenting	
   cells	
   (MHC	
  
II	
  presentation	
  to	
  CD4+	
  T	
  cells).	
  This	
  means	
  
that	
   the	
   T	
   cell	
   receptor	
   is	
   actually	
   not	
  
reactive	
   to	
   the	
   antigen	
   itself,	
   but	
   to	
   the	
  
peptide	
   epitope	
   embedded	
   into	
   a	
   specific	
  
MHC	
  molecule.	
  Some	
  T	
  cells	
  also	
  recognize	
  
lipid	
   antigens	
   on	
   special	
   antigen	
  
presentation	
  molecules.	
  

Cytokines	
   are	
   a	
   family	
   of	
   soluble	
   proteins	
  
that	
  act	
  as	
  the	
  ‘messengers’	
  of	
  the	
  immune	
  
system.	
  When	
  a	
  cytokine	
  binds	
  its	
  receptor,	
  
it	
   usually	
   induces	
   an	
   intracellular	
   signaling	
  
cascade.	
  Cytokines	
   can	
  act	
  on	
  the	
  cell	
   that	
  
has	
   produced	
   them	
   (autocrine),	
   on	
  
neighboring	
   cells	
   (paracrine),	
   and	
   on	
  
faraway	
   cells	
   (endocrine),	
   as	
   long	
   as	
   the	
  
target	
   cell	
   expresses	
   the	
   correct	
   receptor.	
  
Cytokines	
   usually	
   have	
   specific	
   receptors,	
  
but	
   many	
   cytokine	
   receptors	
   share	
  
subunits,	
  such	
  as	
  the	
  common	
  γ-­‐chain	
  that	
  
is	
  part	
  of	
  the	
  receptors	
  for	
  IL-­‐2,	
  IL-­‐4,	
  IL-­‐7,	
  IL-­‐
9,	
  IL-­‐15,	
  and	
  IL-­‐21. 
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antigens presented by many different 
DC in the lymph node. If it encounters 
its cognate antigen, it will become 
activated, start dividing, and produce 
cytokines. Such activated T cells can 
then migrate to the site of infection in 
response to chemokines produced by 
the innate immune cells that first 
encountered the pathogen. 
So called helper T (Th) cells, which are 
CD4+, mainly produce cytokines, while 
CD8+ ‘killer T cells’ can recognize and 

kill pathogen-infected cells that present e.g., viral antigens on their surface. 
Even natural killer (NK) cells can kill infected cells, though this is antigen-
independent. NK cell activation is mediated through stress signals from the 
target cell and lack of inhibitory signals that prevent NK cells from attacking 
normal cells. Further, antibodies produced by activated B cells can bind and 
‘mark’ the microorganism for destruction by innate immune cells, such as NK 
cells and macrophages. 
Importantly, some of the activated, antigen-specific lymphocytes will persist as 
memory cells even after the infection is cleared and can be rapidly re-activated 
if we are infected by the same pathogen again. 
 

Chemokines,	
  a	
  subgroup	
  of	
  cytokines,	
  are	
  a	
  
family	
  of	
  small	
  soluble	
  proteins	
  that	
  bind	
  to	
  
G	
   protein-­‐coupled	
   transmembrane	
  
receptors.	
   Many	
   chemokines	
   have	
   more	
  
than	
   one	
   receptor.	
   Chemokines	
   are	
  
chemoattractants,	
   meaning	
   that	
   cells	
  
expressing	
  the	
  correct	
  receptor	
  will	
  move	
  in	
  
response	
   to	
   a	
   chemokine	
   gradient.	
   For	
  
example,	
   chemokine	
   receptors	
   are	
  
important	
   to	
   help	
   leukocytes	
   that	
   are	
  
circulating	
  the	
  blood	
  at	
  a	
  quite	
  high	
  speed	
  to	
  
stop	
   and	
   exit	
   a	
   blood	
   vessel	
   to	
   exert	
   their	
  
function,	
  e.g.,	
  at	
  a	
  site	
  of	
  inflammation. 
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2 CANCER AND THE IMMUNE SYSTEM 

The primary task of the immune system is to protect us from infection. 
However, the receptors expressed by cells of the adaptive immune system are 
generated in a stochastic way and can therefore recognize antigens of any 
origin. It is therefore possible for lymphocytes to recognize antigens expressed 
by tumor cells, so-called tumor-associated antigens (TAA). 
Here it is important to know that a 
number of tolerance mechanisms are in 
place to prevent autoimmunity. Newly 
generated T cells undergo ‘education’ in 
the thymus: T cells that have a T cell 
receptor (TCR) that reacts too weakly 
with autologous major histocompatibility 
complex (MHC) molecules ‘die by 
neglect’, while those that react too 
strongly with ‘self’ are killed due to 
negative selection. This mechanism, that prevents strongly self-reactive T cells 
from circulating through the body, is called ‘central tolerance’. 
T cell activation requires at least two signals, i) the interaction of the TCR with 
an antigen presented in the context of an MHC molecule, and ii) co-stimulation 
by molecules that are only expressed on professional APC, such as DC, that 
are mature and activated. Co-stimulation will only be provided if an antigen has 
been taken up in a situation where ‘danger signals’ were present. A T cell 
encountering antigen without co-stimulation will therefore not become 
activated, but instead tolerized or anergic. This is called ‘peripheral tolerance’ 
and prevents autoimmunity by T cells that have escaped negative selection. 

Since tumor cells are mostly ‘self’, 
they should normally not be efficiently 
recognized by T cells unless their 
mutations result in i) new, non-self 
antigens, representing truly tumor-
specific antigens or ii) changes in 
protein expression that make them 
different from normal cells or 
recognizable by T cells with low 
affinity TCRs. Furthermore, these 
tumor-derived antigens need to be 
accompanied by immune-activating 
danger signals.  
In addition, some tumors, such as 
many cervical carcinomas, are 
associated with viral infections and 
therefore have ‘tumor-specific’ 
antigens that are actually derived 
from the virus and therefore 
unaffected by (central) tolerance. 

Autologous	
  means	
   that	
   something	
   is	
   from	
  
the	
   same	
   individual,	
   while	
   allogeneic	
  
means	
   it	
   is	
   from	
   another	
   individual	
   of	
   the	
  
same	
   species.	
   For	
   example,	
   stem	
   cell	
  
transplantation	
   can	
   be	
   performed	
   with	
  
autologous	
   (the	
   recipients	
   own)	
   or	
  
allogeneic	
   (a	
   donor’s)	
   bone	
   marrow.	
  
Xenogenic	
   describes	
   the	
   process	
   of	
  
introducing	
   something	
   from	
   another	
  
species,	
   such	
   as	
   transplantation	
   of	
   a	
   pig’s	
  
heart	
  valve	
  into	
  a	
  human. 

Major	
   histocompatibility	
   complex	
   (MHC)	
  
molecules	
   are	
   proteins	
   that	
   can	
   present	
  
antigens	
   to	
   T	
   cells.	
   In	
   humans,	
   they	
   are	
   often	
  
referred	
   to	
   as	
   human	
   leukocyte	
   antigen	
   (HLA)	
  
molecules.	
   There	
   are	
   nine	
   genes	
   encoding	
  
classical	
  MHC	
  molecules.	
   HLA-­‐A,	
   -­‐B,	
   and	
   -­‐C	
  are	
  
MHC	
   class	
   I	
   molecules	
   that	
   present	
   peptides	
  
derived	
   from	
   endogenous	
   (the	
   cell’s	
   own)	
  
proteins	
   to	
   CD8+	
   T	
   cells.	
   This	
   type	
   of	
   MHC	
  
molecule	
  is	
  expressed	
  on	
  every	
  nucleated	
  cell	
  of	
  
the	
   body.	
  MHC	
   I	
  molecules	
   are	
   also	
   important	
  
inhibitory	
   receptors	
   for	
   NK	
   cells.	
   HLA-­‐DP,	
   -­‐DQ	
  
and	
  -­‐DR	
  are	
  MHC	
  class	
  II	
  molecules	
  that	
  present	
  
peptides	
  derived	
  from	
  exogenous	
  proteins,	
  e.g.,	
  
from	
   bacteria	
   that	
   were	
   captured	
   outside	
   the	
  
cell,	
   to	
   CD4+	
   T	
   cells.	
   These	
  molecules	
   are	
   only	
  
expressed	
   on	
   professional	
   antigen-­‐presenting	
  
cells	
  such	
  as	
  DC,	
  B	
  cells,	
  and	
  macrophages.	
  The	
  
non-­‐classical	
  MHC	
  molecules	
   include	
  HLA-­‐E,	
   -­‐F,	
  
and	
   -­‐G,	
   as	
   well	
   as	
   CD1	
   family	
   members,	
   and	
  
usually	
   present	
   defined	
   epitopes,	
   including	
  
peptides	
  and	
  lipids,	
  and	
  have	
  mostly	
  regulatory	
  
function. 
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With this in mind, the next chapter discusses 
what happens when the immune system 
does recognize a tumor and how some cells 
of the immune system are ‘high-jacked’ by 
the tumor to promote immunosuppression 
and cancer progression.   

 
 
 
2.1 THE CONCEPT OF TUMOR IMMUNE SURVEILLANCE 

The concept of ‘tumor immune surveillance’ implies that the immune system 
can recognize and eliminate tumors. Sir F. McFarlane Burnet first postulated 
this theory in 1957 [3]. He believed that tumor immune surveillance was an 
“evolutionary necessity”, because if it did not exist, everyone would die from 
cancer due to the large number of mutations occurring in the body on a daily 
basis [4]. This idea was further based on the observation that some cancer 
patients do not progress for prolonged periods of time, and some even exhibit 
spontaneous regression, sometimes in parallel to clearing an infection. 
Early studies in mouse models showed that a vaccination with dead tumor cells 
could protect mice from a challenge with the same tumor cell line [5, 6]. This 
proved that there could be immune-mediated tumor rejection and that it was 
antigen specific, as vaccination did not work when a different cell line was used 
for the challenge. There is now ample evidence of tumor-specific T cells in the 
blood, bone marrow, and tumors of cancer patients [7-9].  
It has also been shown that T cell infiltration into the tumor often correlates with 
a good prognosis [10-12], suggesting that the immune system can, to some 
extent, keep tumors in check. 
It is of course difficult to ultimately prove the existence of tumor immune 
surveillance, crediting the immune system for a non-existing tumor. However, a 
large number of mouse models where one or several key immune mechanisms 
were deleted, has shown that such immunosuppressed animals often have a 
higher cancer incidence (reviewed in [13, 14]). Interestingly, loss of certain 
effector functions is often associated with susceptibility to particular types of 
cancer, suggesting that different malignancies are controlled by different 
immune effector mechanisms [15].  
Epidemiological studies in humans under immunosuppression after organ 
transplantation show an increased cancer incidence in transplant recipients 
compared with the general population [16, 17]. It should be noted that many of 
the most commonly observed malignancies in immunosuppressed patients, 
such as lymphomas, have been associated with viral infections, however, even 
lung cancer and melanoma exhibited strongly increased hazard ratios [17]. 

Danger	
  signals	
  are	
  needed	
  to	
  alert	
  the	
  
immune	
   system	
   when	
   something	
   is	
  
wrong,	
   e.g.,	
   pathogens	
   have	
   entered	
  
the	
   body.	
   They	
   activate	
   the	
   immune	
  
system	
  and	
  help	
  to	
  induce	
  recruitment	
  
of	
   additional	
   immune	
   cells.	
   Danger	
  
signals	
  can	
  include	
  i)	
  danger-­‐associated	
  
molecular	
   patterns	
   (DAMPs),	
   i.e.,	
  
molecules	
   released	
   from	
   dying	
   cells,	
  
such	
   as	
   free	
   DNA	
   and	
   uric	
   acid,	
   ii)	
  
pathogen-­‐associated	
  molecule	
  patterns	
  
(PAMPs,)	
   as	
   well	
   as	
   iii)	
   cytokines	
  
released	
  by	
  activated	
  immune	
  cells. 

When	
   T	
   cells	
   are	
   stimulated	
   in	
   the	
   absence	
   of	
   co-­‐
stimulation,	
   they	
  enter	
  a	
   state	
  of	
  anergy,	
  where	
   they	
  
are	
  functionally	
  unresponsive.	
  This	
  is	
  part	
  of	
  a	
  process	
  
called	
  peripheral	
  tolerance	
  that	
  prevents	
   immunity	
   to	
  
self	
  antigens. 
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Further, certain human immune 
deficiencies, such as perforin 
deficiency and FasL 
polymorphisms, are associated with 
an increased risk of developing 
lymphoma, lung and cervical 
cancer, among others [18-21].  

A prospective study in Japan showed 
that individuals with high cytotoxic 
activity in their blood lymphocytes had a 
decreased risk of developing cancer 
later in life [22]. 
It is therefore possible that the ability of 
the immune system to recognize cancer 
cells can prevent tumor formation and 
influence tumor development. However, 
the fact that cancers commonly occur 
and frequently cause death, suggests 
that cancers often wins over the immune 
system.  
 
 
 
2.2 TUMOR IMMUNE ESCAPE 

In 2011, an updated version of the ‘hallmarks of cancer’ was published, now 
including “avoiding immune destruction” as an ‘emerging hallmark’ [23].  
It appears that the pressure exerted by tumor-specific immune cells ultimately 
shapes the tumor to become less immunogenic. The current model proposes 
three phases: the immune system initially controls tumor growth (elimination 
phase), then reaches a stage of equilibrium between immune-mediated tumor 
cell killing and novel mutations allowing tumor progression. Finally, the tumor 
will lose immunogenicity to an extent that it can escape from, and even 
suppress, the immune system [24]. Though this is proposed as a stepwise 
model, of course all mechanisms are at play simultaneously and the inherent 
genetic instability of the tumor will favor tumor progression by immune escape. 
Figure 2 gives a schematic representation 
of the ‘3 E’ model of immunoediting, 
showing the balance between tumor and 
immune cells during the elimination, 
equilibrium and escape phase. 
Mechanisms of immune escape can 
roughly be divided into three categories:  
i) lack of recognition, ii) lack of 
susceptibility, and iii) induction of immune 
suppression.  
 

Perforin	
   and	
   granzyme	
   B	
   are	
   important	
   effector	
  
molecules	
  of	
  cytotoxic	
  T	
  cells	
  and	
  NK	
  cells.	
  As	
  the	
  
name	
  suggests,	
  perforin	
   is	
  a	
  pore-­‐forming	
  protein	
  
that	
   can	
   make	
   holes	
   into	
   the	
   membrane	
   of,	
   or	
  
vesicles	
   in,	
   a	
   target	
   cell.	
   These	
   pores	
   then	
   allow	
  
the	
   protease	
   granzyme	
  B	
   to	
  be	
   released	
   into	
   the	
  
cell,	
   where	
   it	
   cleaves	
   caspases	
   (see	
   page	
   1)	
   and	
  
thereby	
  induces	
  apoptosis. 

FasL	
   is	
   an	
   effector	
   molecule	
   of	
   cytotoxic	
  
cells.	
   Most	
   cells	
   in	
   the	
   body	
   express	
   its	
  
receptor,	
   Fas,	
   and	
   receptor-­‐ligand	
  
interactions	
   induce	
  apoptosis	
   in	
   the	
   target	
  
cells	
   via	
  activation	
   of	
   the	
   caspase	
   cascade.	
  
After	
   activation,	
   both	
   T	
   and	
   NK	
   cells	
   up-­‐
regulate	
   Fas	
   and	
   therefore	
   become	
  
susceptible	
   to	
   their	
   own	
   killing	
  
mechanisms.	
   This	
   is	
   called	
   ‘fratricide’	
   and	
  
thought	
   to	
   prevent	
   damage	
   by	
   over-­‐
activation.	
   There	
   are	
   also	
   some	
   reports	
   of	
  
tumors	
   launching	
   a	
   ‘counterattack’	
   on	
   the	
  
immune	
   system	
   by	
   expressing	
   FasL	
   and	
  
killing	
  infiltrating	
  T	
  cells. 

The	
   proteasome	
   is	
   a	
   multi-­‐subunit	
  
complex	
  containing	
  several	
  proteases.	
  Its	
  
role	
  in	
  the	
  cell	
  is	
  to	
  degrade	
  proteins.	
  This	
  
is	
  important	
  for	
  regulating	
  protein	
  levels,	
  
but	
   also	
   for	
   destroying	
   defective	
  
proteins.	
  Proteasomal	
  degradation	
   is	
  the	
  
first	
   step	
   of	
   antigen	
   processing	
   and	
  
presentation	
   and	
   the	
   resulting	
   peptides	
  
can	
   be	
   presented	
   to	
   T	
   cells	
   on	
   the	
   cell	
  
surface	
   after	
   being	
   loaded	
   onto	
   MHC	
  
molecules.	
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Figure 2: The balance of tumor elimination, tumor immunoediting and tumor 
immune escape 
 
 
Lack of recognition can be due to the loss of antigens or to defects in antigen 
processing and presentation. Yee et al. reported a patient who initially 
responded well to immunotherapy, but eventually progressed [25]. Consecutive 
tumor biopsies revealed that at the start of therapy the patient’s tumor 
expressed a range of tumor-associated antigens, but at progression, Mart-1, 
the antigen targeted by the therapy, had been lost, rendering the infused 
antigen-specific T cells useless. Similarly, there are many reports describing 
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defects in the antigen processing and presentation machinery [26-28]. Almost 
any of the molecules involved, including for example MHC, the transporter 
associated with antigen processing (TAP) and the proteasome subunits low 
molecular weight polypeptide (LMP)2 and LMP7, has been reported to be lost 
or down-regulated in cancer [29, 30]. This is particularly common in advanced 
disease and at metastatic sites, and has been shown to be a predictor of poor 
prognosis, e.g., in colorectal cancer, endometrial cancer, and melanoma [31-
36].  
 
Lack of susceptibility is often due to the tumor-intrinsic resistance to apoptosis, 
for example due to over-expression of anti-apoptotic molecules such as bcl-2 
[2]. The cytotoxic mechanisms employed by T and NK cells ultimately result in 
the induction of apoptotic pathways, which are frequently turned off or counter-
regulated in cancer cells [37]. Effector mechanisms that rely on receptor-ligand 
interaction, such as Fas-mediated killing or NK cell activation, can be rendered 
ineffective if the tumor cell down-modulates ligand expression or sheds key 
signaling molecules from its surface [38-40].  
 
Induction of immune suppression by tumors can involve a myriad of molecules 
produced by the tumor itself or the tumor-mediated recruitment of immune cells 
with suppressive functions. These mechanisms are discussed in greater detail 
in the following paragraphs. 
 
 
2.3 TUMOR IMMUNE SUBVERSION 

Tumor-mediated immune subversion, or induction of immune suppression, can 
entail a large variety of mechanisms. Some of these, such as the secretion of 
suppressive cytokines, the generation of reactive oxygen species (ROS), and 
the presence of a nutrient-poor, hypoxic, and acidic environment, can be 
mediated by the tumor itself [23]. However, similar and additional functions can 
also be exerted by various cells of the immune system, which are found to 
accumulate locally and systemically in cancer patients.  
 

2.3.1 Secreted factors 

Cytokines. Tumors can secrete a variety of different cytokines, such as 
interleukin (IL)-10, transforming growth factor (TGF)-β, IL-6, and vascular 
endothelial growth factor (VEGF) (reviewed in [41]). Some of these cytokines 
act directly on surrounding tumor cells, but most of them target cells of the 
tumor stroma, including tumor-infiltrating immune cells.  
Many of these secreted factors impair 
proinflammatory functions, for example 
by inhibiting DC differentiation and 
maturation [42], decreasing T cell 
cytotoxicity [43, 44], or up-regulating 
immunosuppressive molecules such as 
indolamine 2,3-dioxygenase (IDO) [45]. 

Indolamine	
   2,3-­‐dioxygenase	
   (IDO)	
   is	
   an	
  
enzyme	
   catabolizing	
   the	
   reaction	
   from	
   L-­‐
tryptophan	
   to	
   N-­‐Formylkynurenine.	
   The	
  
depletion	
  of	
  tryptophan	
  can	
  induce	
  a	
  stress	
  
response	
   in	
  T	
   cells,	
  causing	
  anergy	
  and	
  cell	
  
cycle	
   arrest.	
   Even	
   tryptophan	
   metabolites	
  
have	
   been	
   shown	
   to	
   exert	
   immuno-­‐
suppression. 
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Surprisingly, even molecules with proinflammatory function, such as IL-6 and 
IFN-γ, are often pro-tumorigenic because they activate suppressive cell 
populations. This is described in greater detail in section 2.3.3.	
   
 
Chemokines. Tumors can also secrete a number of chemokines. Some of them 
are directly associated with tumor progression and metastasis, such as CCL5, 
which has been shown to be expressed in breast cancer, but not normal breast 
tissue, and correlates with advanced disease stage and breast cancer 
progression [46, 47]. At the same time, chemokines can of course exert their 
normal chemoattractive function and promote tumor infiltration by myeloid and 
lymphocytic populations (see also 2.3.3). 
 
Reactive oxygen species (ROS). The oxidative burst, i.e., release of high ROS 
concentrations, is a natural mechanism by which granulocytes and 
macrophages respond to pathogens. Reactive oxygen and nitrogen species 
also function as important messenger molecules that can act over short 
distances, e.g., within a cell. Due to their reactiveness they are usually tightly 
controlled and can be neutralized by cysteine-containing proteins that function 
as redox buffers. 
The tumor microenvironment is known to be rich in ROS. There are only few 
reports about ROS production by tumor cells [48], possibly due to the difficulty 
of measuring ROS production by a specific cell type in vivo and the technical 
difficulty of determining ROS levels correctly in cultured cell lines. On the other 
hand, many tumor-recruited cells, such as myeloid-derived suppressor cells 
(MDSC), macrophages, and neutrophils, can release large amounts of ROS.  
Unfortunately, many lymphocytes, especially the effector subsets of T and NK 
cells, are sensitive to ROS exposure, which can induce loss of function or 
apoptosis [49, 50]. Other T cell subsets, namely regulatory T cells (Tregs), 
exhibit a striking resistance to oxidative stress [51], possibly explaining how 
these cells can accumulate in cancer patients and the ROS-rich tumor 
microenvironment. 
 
 
2.3.2 Regulatory T cells (Tregs) 

A great number of publications have shown that Tregs are increased in many 
different cancers and often correlate with poor prognosis (reviewed by [52]). 
There are several major Treg subtypes: natural Tregs are 
CD4+CD25+CD127low/neg and express the transcription factor forkhead box P3 
(FoxP3). Their suppression is mediated by contact-independent mechanisms 
such as the secretion of IL-10 and TGF-β, and cleavage of extracellular 
adenosine triphosphate (ATP), or contact-dependent mechanisms, mediated 
for example by membrane-bound TGF-β. FoxP3 expression is currently the 
most reliable marker for natural Tregs. However, like other proposed Treg 
markers, such as cytotoxic T lymphocyte antigen 4 (CTLA-4) and 
glucocorticoid-induced TNFR-related protein (GITR), FoxP3 can be transiently 
expressed even by activated T cells. The lack of a truly unique marker makes 
the study, isolation, and therapeutic targeting of Tregs difficult.  
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Conventional non-suppressive T cells can be converted into Tregs when 
stimulated under tolerogenic conditions. Induced Tregs include Tr1 cells that 
produce IL-10, and Th3 cells that mostly suppress via production of TGF-β. 
There are even CD8+ Treg subsets, which are less well studied. Tregs can 
suppress proliferation and function of B and T cells, as well as DC 
differentiation [52]. In addition to the production of suppressive cytokines such 
as IL-10 and TGF-β, Tregs can exert suppression via consumption of IL-2 and 
ATP, and cysteine withdrawal, disturbing the redox balance of the target cell. 
APC that have encountered Tregs provide less co-stimulation and up-regulate 
IDO, inducing anergy in the antigen-specific T cells they interact with. 
The main physiological role of Tregs is the prevention of autoimmunity, strikingly 
apparent in patients with FoxP3 mutations that develop severe autoimmune 
disease [53]. 
In cancer patients, an increased Treg/Teffector ratio is often observed in the blood 
[54-56], in tumor-draining lymph nodes [54], and in the tumor [54, 55, 57-59]. 
This increase in Treg frequency and their infiltration into the tumor tissue, as 
opposed to peritumoral localization, has been shown to predict poor prognosis 
in a number of diseases [60, 61]. 
Interestingly, Tregs have also been shown to have a beneficial effect in some 
malignancies, probably due to their dampening effect on the proinflammatory 
mechanisms in some cancers. Recent mouse models demonstrated that the 
timing of Treg activity might be essential, as Tregs favored tumor immune escape 
at an early stage, but did not affect outcome when depleted later during tumor 
progression [62]. In another tumor model, depletion inhibited or accelerated 
tumor growth when applied either early or late, respectively [63]. 
Therapeutic targeting of Tregs has achieved some clinical success. Certain 
types of chemotherapy have been shown to reduce the levels of circulating 
Tregs [64, 65], though the efficacy of the frequently used alkylating agent 
cyclophosphamide in this respect has been questioned [66]. A monoclonal 
antibody for the targeted delivery of diphtheria toxin to CD25+ cells could 
deplete Tregs and improve the response to anti-cancer vaccines [67, 68]. In 
2011, a monoclonal antibody targeting CLTA-4 was approved by the US food 
and drug administration for the use in melanoma patients. Though CTLA-4 is 
frequently expressed on Tregs, it is also up-regulated on activated T cells and its 
blockade by the antibody might act by preventing negative signals to 
conventional T cells rather than by acting on Tregs as originally intended [69] 
(see even chapter 2.3.4.2). 
When studying T cell responses in cancer patients, the suppressive presence 
of Tregs has to be taken into consideration. Suppression exerted by Tregs might 
mask antigen-specific responses that become detectable only after Treg 

depletion [70]. 
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2.3.3 Myeloid-derived suppressor cells (MDSC) 

2.3.3.1 Definition 

MDSC are a heterogeneous population of myeloid cells with suppressive 
activity, containing precursors of granulocytes, macrophages, and DC.  
The acknowledgement of these cells as important mediators of immune 
suppression has emerged relatively recently and the term ‘myeloid-derived 
suppressor cells’ was coined first in the year 2007 by a number of experts in 
the field [71]. 
MDSC have become a hot topic in recent years, with the number of 
publications yielded in a Pubmed search for the term ‘myeloid-derived 
suppressor cell’ shooting from 38 in 2007, to 60 in 2008, 82 in 2009, 136 in 
2010, and over 130 already by the middle of 2011.  
The role of MDSC in different diseases is now being thoroughly investigated 
and our understanding of their suppressive mechanisms has significantly 
increased. As a result, everybody likes to include MDSC in their 
immunomonitoring, though many probably fail to correctly identify their MDSC 
population of interest due to the phenotypic heterogeneity of human MDSC and 
the lack of functional studies. 
 

2.3.3.2 MDSC phenotype 

In the mouse, MDSC can be defined as CD11b+Gr1+ cells with suppressive 
function. Graded measurements of Gr1 expression or the use of two different 
Gr1 epitopes help to identify CD11b+Gr1high (CD11b+Ly-6G+Ly6Clow) 
granulocytic MDSC, that are CD49d negative, and CD11b+Gr1low 
(CD11b+Ly6G-Ly6Chigh) monocytic MDSC that express CD49d [72, 73]. 
Expression of the IL-4R α-chain (CD124) [74], the monocytic marker CD115 
[75], low levels of the macrophage marker F4/80 [76, 77], and surprisingly also 
the stimulatory receptor CD40 [78] have also been suggested as markers for 
MDSC, though they are not unique and mostly lack relevance for identifying the 
suppressive population. 
In humans, phenotypic characterization of MDSC is even more difficult. A great 
number of MDSC phenotypes has been described in many different human 
cancers. Some of these overlap at least partially, while others are mutually 
exclusive. Table 1 summarizes MDSC phenotypes described in human 
malignancies to date. 
In 1995, Pak et al. were the first to describe human MDSC, which they found 
infiltrating tumors and metastatic lymph nodes of head and neck cancer 
patients. These cells were CD34+ myeloid precursor cells and accumulated in 
response to GM-CSF secretion by the tumor [79]. 
Though this has not been tested in all studies, most human MDSC probably 
express both CD11b and CD33 and have low or absent expression of the MHC 
class II molecule HLA-DR.  
Many reports describe MDSC that are CD33+HLA-DR-/low and lineage (Lin) 
negative, meaning that they do not express CD3, CD19, CD56, or CD14, 
markers characteristic of T, B or NK cells and monocytes, respectively. This 
type of MDSC appears to be granulocyte-like and often suppresses via the  
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Table 1: MDSC phenotypes described in peripheral blood of cancer patients 

*RCC – renal cell carcinoma, HCC – hepatocellular carcinoma, NSCLC – non-small cell lung cancer, HNC – head and neck cancer 

Phenotype	
   Suppressive	
  
Mechanism	
  

Suspected/Excluded	
  
Mechanisms	
  

Cancer	
   Ref	
  

	
   	
   	
   	
   	
  
GRANULOCYTIC	
   	
   	
   	
  	
   	
  
	
  	
  Lin-­‐DR-­‐	
   unknown	
   soluble	
  factor,	
  not	
  	
  NO	
   HNC,	
  NSCLC,	
  breast	
  cancer	
   [80]	
  
	
  	
  Lin-­‐HLA-­‐DR-­‐CD33+	
   ROS,	
  NO	
   	
   RCC*	
   [81]	
  

	
   not	
  tested	
  
in	
  vitro	
  generated	
  

MDSC	
  produce	
  IL-­‐10	
  
+	
  TGF-­‐β	
  

glioma	
   [82]	
  

	
   not	
  tested	
   	
  

RCC,	
  ovarian	
  cancer,	
  bladder	
  cancer,	
  thymoma,	
  
leiomyosarcoma,	
   biliary	
   tree	
   adenocarcinoma,	
  
rectal	
   adenocarcinoma,	
   small-­‐cell	
   lung	
   cancer	
  
and	
  NSCLC*,	
  pancreatic	
  cancer,	
  thyroid	
  cancer,	
  
melanoma,	
   breast	
   cancer,	
   colon	
   cancer,	
  
esophageal	
   cancer,	
   sarcoma,	
   gastric	
   cancer,	
  
HNC*,	
   gall	
   bladder	
   cancer,	
   prostate	
   cancer,	
  
adrenocortical	
   cancer,	
   appendix	
   cancer,	
   HCC*,	
  
carcinoid,	
  unknown	
  primary	
  

[83-­‐87]	
  

	
  	
  Lin-­‐HLA-­‐DR-­‐CD33+CD11b-­‐/low	
   not	
  tested	
   	
   colorectal	
  cancer,	
  breast	
  cancer	
   [88]	
  

	
  	
  Lin-­‐HLA-­‐DR-­‐CD33+CD11b+	
   not	
  tested	
   ARG	
   pancreatic	
   cancer,	
   esophageal	
   cancer,	
   gastric	
  
cancer	
  

[89]	
  

	
  	
  CD11b+CD33+CD14-­‐	
   not	
  tested	
   	
   RCC,	
  soft	
  tissue	
  sarcoma,	
  pancreatic	
  cancer	
   [90,91]
h)	
  	
  	
  CD15+	
   ROS	
   	
   pancreatic	
  cancer,	
  colon	
  cancer,	
  breast	
  cancer	
   [92]	
  

	
  	
  CD15+CD14-­‐	
   ARG	
   trend	
  for	
  ROS	
   RCC	
   [93]	
  
	
  	
  CD15+CD11b+CD14-­‐	
   not	
  tested	
   Arg	
   RCC	
   [94]	
  
	
  	
  CD15+CD11b+CD33+HLA-­‐DR-­‐	
   not	
  tested	
   	
   breast	
  cancer	
   [95]	
  
	
  	
  CD11b+CD33+	
   not	
  tested	
   	
   NSCLC	
   [96]	
  
	
  	
  CD11b+CD33+CD14-­‐	
   not	
  tested	
   ROS	
   HNC	
   [97,	
  98]	
  
	
  	
  CD11b+CD33+HLA-­‐DR-­‐	
   not	
  tested	
   	
  

RCC	
   [99]	
  
	
  	
  CD11b+CD33+CD15+CD14-­‐	
   ARG,	
  iNOS	
   	
   NSCLC	
   [100]	
  
	
  	
  CD11b+CD14-­‐	
  	
  

ARG	
   	
   RCC	
   [101]	
  
	
  	
  CD14-­‐CD66b+	
   	
  
	
  	
  SSChighCD66b+	
   not	
  tested	
   	
   HNC,	
  bladder	
  cancer,	
  urothelial	
  cancer	
   [102]	
  
	
   	
   	
   	
   	
  MONOCYTIC	
   	
   	
   	
   	
  
	
  	
  CD14+	
   ARG,	
  iNOS	
   	
  

HNC,	
  multiple	
  myeloma	
   [103]	
  
	
  	
  CD14+HLA-­‐DR-­‐/low	
   IL-­‐10	
  

	
  
ovarian	
  cancer	
  (ascites)	
   [104]	
  

	
   TGF-­‐β	
   not	
  ARG,	
  not	
  iNOS	
   melanoma	
   [105,106]	
  

	
   ARG	
   ROS,	
  STAT3	
  
dependent	
  

melanoma	
   [107]	
  

	
   ARG	
   induction	
  of	
  Tregs	
   HCC	
   [108]	
  

	
   unknown	
  
NKp30	
  mediated	
  	
  NK	
  
cell	
  suppression,	
  not	
  

Arg/iNOS/IDO	
  
HCC	
   [109]	
  

	
   ARG	
   	
   B	
  cell	
  non-­‐Hodgkin	
  lymphoma	
   [110]	
  

	
   not	
  tested	
   IL-­‐10	
   prostate	
  cancer	
   [111]	
  

	
   not	
  tested	
   	
  

colon	
   cancer,	
   mesothelioma,	
   melanoma,	
  
fibrosarcoma,	
   osteosarcoma,	
   RCC,	
   cervical	
  
cancer,	
   pancreas	
   cancer,	
   NSCLC,	
   glioblastoma,	
  
multiple	
  myeloma,	
  melanoma	
  

[112-­‐
115]	
  

	
   	
   	
   	
   	
  UNKNOWN	
  
	
   	
   	
   	
  

	
  	
  CD3-­‐HLA-­‐DR-­‐CD33+	
   not	
  tested	
   STAT3	
  dependent	
   breast	
  cancer,	
  colon	
  cancer,	
  prostate	
  cancer	
   [116]	
  
	
  	
  CD34+	
  (myeloid	
  progenitor)	
   not	
  tested	
   	
   HNC	
   [79]	
  
	
   	
   	
   	
   	
  
BOTH	
  PRESENT	
   	
   	
   	
   	
  
	
  	
  CD14+,	
  PMN	
  	
   not	
  tested	
   	
   colon	
  cancer,	
  melanoma	
   [117]	
  
	
  	
  CD11b+CD15highCD33low	
  

not	
  tested	
   Treg	
  induction	
   bladder	
  cancer	
   [118]	
  
	
  	
  CD11b+CD15lowCD33high	
  
	
  	
  CD33+HLA-­‐DR-­‐CD15+	
  	
  

not	
  tested	
   ARG	
   glioma	
   [119]	
  	
  	
  CD33+HLA-­‐DR-­‐CD14-­‐CD15-­‐	
  
	
  	
  CD33+HLA-­‐DR-­‐CD14+	
  

	
  	
  CD11b+CD15+CD33+HLA-­‐DR-­‐	
  
not	
  tested	
   	
  

pancreatic,	
   esophageal,	
   colon,	
   gastric,	
  	
  	
  
appendix,	
   gall	
   bladder	
   cancer,	
   cholangio-­‐
carcinoma,	
  HCC	
  

[120]	
  
	
  	
  CD14+HLA-­‐DR-­‐CD33+	
  
	
  	
  CD14+HLA-­‐DR+CD33+	
  	
  
	
  	
  CD14-­‐HLA-­‐DR-­‐CD33+	
  

	
  
not	
  tested	
   	
   squamous	
  cell	
  carcinoma	
   [121]	
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production of arginase I (ARG) or ROS, though this was not experimentally 
validated in all studies. 
Some have observed neutrophilic MDSC with more distinctive granulocyte 
characteristics such as expression of CD15 and the characteristically lobulated 
nucleus. It is possible that this population has escaped the attention of many, 
since neutrophils are short-lived, highly sensitive to freezing, and mostly 
excluded when peripheral blood mononuclear cells (PBMC) are isolated by 
gradient centrifugation as is routinely performed in many laboratories. 
However, activated granulocytes (and MDSC) have been shown to co-purify 
with PBMC [92, 101, 102] and have increased resistance to apoptosis [101, 
102], though it is still likely that frequencies of such neutrophilic MDSC are 
often strongly underestimated due to sample handling. Further, a number of 
studies has detected expression of the granulocyte markers CD15 or CD66b in 
(Lin-)HLA-DR-CD33+ cells [93, 95, 96, 118-120], indicating that these 
populations overlap at least partially. 
CD14+HLA-DR-/low MDSC can be found in a great number of different cancers 
(see Table 1). They resemble monocytes in size and light scatter 
characteristics and express monocyte markers such as CD14 and S100A9.  
However, we could show that they express even markers of more mature 
myeloid cells, namely CD80, CD83, and DC-Sign [107]. This subset has been 
described to exert suppression via ARG, iNOS, and suppressive cytokines. 
As suppressive activity is a mandatory criterion for MDSC, some investigators 
have included expression of suppressive molecules, such as ARG1, into their 
phenotypic definition [94].  
Unfortunately, many studies have described ‘MDSC’ without evaluating their 
ability to suppress T cells. Table 2 lists malignancies where MDSC have been 
described, though the lack of functional testing often precludes the conclusion 
that there really is an increased frequency of suppressive myeloid cells or that 
a certain treatment does or does not affect MDSC numbers [83, 86]. 
 

2.3.3.3 MDSC expansion 

It is still not completely clear what the physiological role of MDSC is and how it 
is regulated. As for Tregs, that help to protect us from autoimmune disease, 
MDSC must have a natural function in regulating immune responses to self-
antigens or infections. There is evidence from a number of infectious disease 
models, as well as from patients that suffered traumatic stress, that MDSC are 
recruited to dampen immune responses in order to prevent collateral damage 
to surrounding tissues [122-124]. 
Clearly, inflammatory pathways are at work during cancer development and 
progression. The overlap of these pathways with mechanisms regulating 
normal immune responses allows tumors to recruit MDSC that become pro-
tumorigenic by suppressing anti-tumor T cell responses and contributing to the 
proinflammatory tumor microenvironment. 
Many factors are implicated in inducing the exit of immature myeloid cells from 
the bone marrow. Several of these, including prostaglandin  (PG)-E2, stem cell 
factor (SCF), macrophage colony-stimulating factor (M-CSF), granulocyte 
colony-stimulating factor (G-SCF), granulocyte-macrophage colony-stimulating  
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Table 2: Human cancers in which MDSC have been described 

Cancer	
   Phenotype	
  
T	
  cell	
  

suppression	
  
tested	
  

Suppressive	
  
Mechanism	
  

Suspected/Excluded	
  
mechanisms	
  

REF	
  

adrenocortical	
  cancer	
   Lin-­‐HLA-­‐DR-­‐CD33+(CD11b+)	
   YES	
   not	
  tested	
   	
  	
   [87]	
  
appendiceal	
  cancer	
   Lin-­‐HLA-­‐DR-­‐CD33+(CD11b+)	
   YES	
   not	
  tested	
  

	
  
[87]	
  

	
  	
   HLA-­‐DR-­‐CD33+CD11b+CD15+	
  	
  
CD14+HLA-­‐DR-­‐CD33+	
   NO	
   not	
  tested	
   	
  	
   [120]	
  

B	
  cell	
  non-­‐Hodgkin	
  
lymphoma	
   CD14+HLA-­‐DR-­‐/low*	
  	
   YES	
   ARG	
   	
  	
   [110]	
  

biliary	
  tree	
  
adenocarcinoma	
  

Lin-­‐HLA-­‐DR-­‐CD33+	
   YES	
   not	
  tested	
   	
  	
   [85]	
  

bladder	
  cancer	
  
CD11b+CD15highCD33low	
  	
  

CD11b+CD15lowCD33high	
   YES	
   not	
  tested	
   Treg	
  induction	
   [118]	
  

	
  
Lin-­‐HLA-­‐DR-­‐CD33+	
   YES	
   not	
  tested	
  

	
  
[85]	
  

	
  	
   SSChighCD66b+	
   YES	
   not	
  tested	
   	
  	
   [102]	
  
breast	
  cancer	
   CD15+	
   YES	
   ROS	
  

	
   [92]	
  

	
   CD15+CD11b+CD33+HLA-­‐DR-­‐	
   NO	
   not	
  tested	
  
	
   [95]	
  

	
   Lin-­‐HLA-­‐DR-­‐CD33+(CD11b+)	
   YES	
   not	
  tested	
  
	
   [87]	
  

	
  
Lin-­‐HLA-­‐DR-­‐CD33+CD11b-­‐/low	
   only	
  in	
  vitro	
  

MDSC	
  tested	
  
not	
  tested	
  

	
  
[88]	
  

	
   Lin-­‐DR-­‐/low	
   YES	
   unknown	
   soluble	
  factor,	
  not	
  NO	
   [80]	
  
	
  	
   CD3-­‐HLA-­‐DR-­‐CD33+	
   YES	
   not	
  tested	
  	
   STAT3	
  dependent	
   [116]	
  
carcinoid	
  tumor	
   Lin-­‐HLA-­‐DR-­‐CD33+(CD11b+)	
   YES	
   not	
  tested	
   	
  	
   [87]	
  
cervical	
  cancer	
   CD14+HLA-­‐DR-­‐/low*	
  	
   NO	
   not	
  tested	
   	
  	
   [115]	
  

cholangiocarcinoma	
  
CD11b+CD15+CD33+HLA-­‐DR-­‐	
  	
  
CD14+HLA-­‐DR-­‐CD33+	
   NO	
   not	
  tested	
   	
  	
   [120]	
  

colon	
  cancer	
   CD15+	
   YES	
   ROS	
  
	
  

[92]	
  

	
   CD14+HLA-­‐DR-­‐/low*	
  	
   NO	
   not	
  tested	
  
	
   [115]	
  

	
   Lin-­‐HLA-­‐DR-­‐CD33+(CD11b+)	
   YES	
   not	
  tested	
  
	
   [87]	
  

	
   CD3-­‐HLA-­‐DR-­‐CD33+	
   YES	
   not	
  tested	
  	
   STAT3	
  dependent	
   [116]	
  

	
  
CD15+CD11b+CD33+HLA-­‐DR-­‐	
  	
  
CD14+HLA-­‐DR-­‐CD33+	
  

NO	
   not	
  tested	
  
	
  

[120]	
  

	
  	
   CD14+,	
  PMN	
  (CD15+)	
   YES	
   not	
  tested	
   	
  	
   [117]	
  

colorectal	
  carcinoma	
  
Lin-­‐HLA-­‐DR-­‐CD33+	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
CD11b-­‐/low	
  

only	
  in	
  vitro	
  
MDSC	
  tested	
  

not	
  tested	
   	
  	
   [88]	
  

esophageal	
  cancer	
   Lin-­‐HLA-­‐DR-­‐CD33+(CD11b+)	
   YES	
   not	
  tested	
  
	
   [87]	
  

	
   Lin-­‐HLA-­‐DR-­‐CD33+CD11b+	
   NO	
   not	
  tested	
   ARG	
   [89]	
  

	
  	
   HLA-­‐DR-­‐CD33+CD11b+CD15+	
  	
  
CD14+HLA-­‐DR-­‐CD33+	
  

NO	
   not	
  tested	
   	
  	
   [120]	
  

fibrosarcoma	
   CD14+HLA-­‐DR-­‐/low*	
  	
   NO	
   not	
  tested	
   	
  	
   [115]	
  

gall	
  bladder	
  cancer	
  
HLA-­‐DR-­‐CD33+CD11b+CD15+	
  	
  
CD14+HLA-­‐DR-­‐CD33+	
   NO	
   not	
  tested	
  

	
   [120]	
  

	
  	
   Lin-­‐HLA-­‐DR-­‐CD33+(CD11b+)	
   YES	
   not	
  tested	
   	
  	
   [87]	
  
gastric	
  cancer	
   Lin-­‐HLA-­‐DR-­‐CD33+(CD11b+)	
   YES	
   not	
  tested	
  

	
   [87]	
  

	
   Lin-­‐HLA-­‐DR-­‐CD33+CD11b+	
   NO	
   not	
  tested	
   ARG	
   [89]	
  

	
  	
   HLA-­‐DR-­‐CD33+CD11b+CD15+	
  	
  
CD14+HLA-­‐DR-­‐CD33+	
  

NO	
   not	
  tested	
   	
  	
   [120]	
  

glioblastoma	
   CD14+HLA-­‐DR-­‐/low	
  	
   indirectly	
   not	
  tested	
   	
  	
   [113]	
  

glioma	
   Lin-­‐HLA-­‐DR-­‐CD33+	
  
only	
  in	
  vitro	
  
MDSC	
  tested	
  

not	
  tested	
  
in	
  vitro	
  MDSC	
  make	
  	
  

IL-­‐10	
  +	
  TGF-­‐β	
   [82]	
  

	
  	
  
HLA-­‐DR-­‐CD33+CD15+	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
CD33+HLA-­‐DR-­‐CD14-­‐CD15-­‐	
  	
  	
  
CD33+HLA-­‐DR-­‐CD14+	
  

YES	
   not	
  tested	
   ARG	
   [119]	
  

head	
  and	
  neck	
  cancer	
   Lin-­‐HLA-­‐DR-­‐	
   YES	
   unknown	
   soluble	
  factor,	
  not	
  NO	
   [80]	
  

	
  
Lin-­‐HLA-­‐DR-­‐CD33+(CD11b+)	
   YES	
   not	
  tested	
  

	
  
[87]	
  

	
   CD11b+CD33+CD14-­‐	
   NO	
   not	
  tested	
   ROS	
   [98]	
  

	
   CD11b+CD33+CD14-­‐	
  
YES	
  (only	
  

tumor	
  MDSC)	
  
suppress)	
  

suppressive)	
  

not	
  tested	
  
	
   [97]	
  

	
  
SSChighCD66b+	
   YES	
   not	
  tested	
  

	
  
[102]	
  

	
  	
   CD14+	
   YES	
   ARG,	
  iNOS	
   	
  	
   [103]	
  
hepatocellular	
  
carcinoma	
   CD14+HLA-­‐DR-­‐/low	
  	
   YES	
   ARG,	
  Tregs	
   	
   [108]	
  

	
  
CD14+HLA-­‐DR-­‐/low	
  	
   YES	
  (NK	
  cells)	
  

suppression)	
  
unknown	
   NKp30-­‐mediated	
   [109]	
  

	
  
CD14+HLA-­‐DR-­‐CD33+	
  	
  	
  
HLA-­‐DR-­‐CD33+CD11b+CD15+	
   NO	
   not	
  tested	
  

	
   [120]	
  

	
  	
   Lin-­‐HLA-­‐DR-­‐CD33+(CD11b+)	
   YES	
   not	
  tested	
   	
  	
   [87]	
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Table 2 continued     

Cancer	
   Phenotype	
  
T	
  cell	
  

suppression	
  
tested	
  

Suppressive	
  
Mechanism	
  

suspected/excluded	
  
mechanisms	
   REF	
  

leiomyosarcoma	
  
	
  

Lin-­‐HLA-­‐DR-­‐CD33+	
   YES	
   not	
  tested	
  
	
  

[85]	
  

melanoma	
   CD14+,	
  PMN	
  (CD15+)	
  
CD124+	
  

YES	
   not	
  tested	
  
	
   [117]	
  

	
  
CD14+HLA-­‐DR-­‐/low	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  only	
  in	
  vitro	
  

MDSC	
  tested	
  
TGF-­‐β	
  

	
  
[106]	
  

	
   CD14+HLA-­‐DR-­‐/low*	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   NO	
   not	
  tested	
  
	
   [115]	
  

	
   CD14+HLA-­‐DR-­‐/low	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   YES	
   TGF-­‐β	
   not	
  ARG,	
  not	
  iNOS	
   [105]	
  

	
  
CD14+HLA-­‐DR-­‐/low,	
  CD11b+	
   YES	
   not	
  tested	
  

	
  
[114]	
  

	
   CD14+HLA-­‐DR-­‐/low*	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   YES	
   ARG	
   ROS/STAT3	
  dependent	
   [107]	
  

	
   Lin-­‐HLA-­‐DR-­‐CD33+	
   NO	
   not	
  tested	
  
	
   [83]	
  

	
  
Lin-­‐HLA-­‐DR-­‐CD33+	
   NO	
   not	
  tested	
  

	
  
[84]	
  

	
  	
   Lin-­‐HLA-­‐DR-­‐CD33+(CD11b+)	
   YES	
   not	
  tested	
   	
  	
   [87]	
  
mesothelioma	
   CD14+HLA-­‐DR-­‐/low*	
  	
   NO	
   not	
  tested	
   	
  	
   [115]	
  
multiple	
  myeloma	
   CD14+	
   YES	
   ARG,	
  iNOS	
  

	
   [103]	
  
	
  	
   CD14+HLA-­‐DR-­‐/low	
   NO	
   not	
  tested	
   	
  	
   [112]	
  
lung	
  cancer	
  	
  
(non-­‐small	
  cell)	
  

Lin-­‐HLA-­‐DR-­‐	
   YES	
   unknown	
   soluble	
  factor,	
  not	
  NO	
   [80]	
  
Lin-­‐HLA-­‐DR-­‐CD33+(CD11b+)	
   YES	
   not	
  tested	
  

	
   [87]	
  

	
   CD11b+CD33+CD14-­‐CD15+	
   YES	
  (ζ-­‐chain)	
  
levels)	
  only)	
  

ARG,	
  iNOS	
  
	
   [100]	
  

	
  
CD11b+CD33+(CD15+)	
   YES	
   not	
  tested	
  

	
  
[96]	
  

	
  	
   CD14+HLA-­‐DR-­‐/low*	
   NO	
   not	
  tested	
   	
  	
   [115]	
  
lung	
  cancer	
  (small	
  cell)	
   Lin-­‐HLA-­‐DR-­‐CD33+	
   YES	
   not	
  tested	
   	
  	
   [85]	
  

(Gab
rilovi
ch)	
  

osteosarcoma	
   CD14+HLA-­‐DR-­‐/low*	
   NO	
   not	
  tested	
   	
  	
   [115]	
  
ovarian	
  cancer	
  (ascites)	
   CD14+HLA-­‐DR-­‐/low	
   YES	
   IL-­‐10	
  

	
   [104]	
  
ovarian	
  cancer	
   Lin-­‐HLA-­‐DR-­‐CD33+	
   YES	
   not	
  tested	
   	
  	
   [85]	
  
pancreatic	
  cancer	
   CD15+	
   YES	
   ROS	
  

	
   [92]	
  

	
   Lin-­‐HLA-­‐DR-­‐CD33+	
   YES	
   not	
  tested	
  
	
   [85]	
  

	
   Lin-­‐HLA-­‐DR-­‐CD33+(CD11b+)	
   YES	
   not	
  tested	
  
	
   [87]	
  

	
  
Lin-­‐HLA-­‐DR-­‐CD33+CD11b+	
   NO	
   not	
  tested	
   ARG	
   [89]	
  

	
  
Lin-­‐HLA-­‐DR-­‐CD33+	
  

CD11b+CD33+CD14-­‐	
   YES	
   not	
  tested	
  
	
   [90]	
  

	
  
CD11b+CD15+CD33+HLA-­‐DR-­‐	
  	
  
CD14+HLA-­‐DR-­‐CD33+	
  

NO	
   not	
  tested	
  
	
  

[120]	
  

	
  	
   CD14+HLA-­‐DR-­‐/low*	
   NO	
   not	
  tested	
   	
  	
   [115]	
  
prostate	
  cancer	
   CD14+HLA-­‐DR-­‐/low	
  	
  

	
  
YES	
   not	
  tested	
   IL-­‐10	
   [111]	
  

	
   Lin-­‐HLA-­‐DR-­‐CD33+(CD11b+)	
   YES	
   not	
  tested	
  
	
   [87]	
  

	
  	
   CD3-­‐HLA-­‐DR-­‐CD33+	
   YES	
   not	
  tested	
  	
   STAT3	
  dependent	
   [116]	
  
rectal	
  adenocarcinoma	
   Lin-­‐HLA-­‐DR-­‐CD33+	
   YES	
   not	
  tested	
   	
  	
   [85]	
  

renal	
  cell	
  carcinoma	
  
CD11b+CD14-­‐	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
CD14-­‐CD66b+	
   YES	
   ARG	
  

	
   [101]	
  

	
  
CD11b+CD14-­‐CD15+	
   YES	
   not	
  tested	
   Arg	
   [94]	
  

	
  
CD15+CD14-­‐	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
Lin-­‐HLA-­‐DR-­‐CD33+	
   YES	
   ARG	
   trend	
  for	
  ROS	
   [93]	
  

	
   Lin-­‐HLA-­‐DR-­‐CD33+	
   NO	
   not	
  tested	
  
	
   [86]	
  

	
  
Lin-­‐HLA-­‐DR-­‐CD33+	
   YES	
   ROS,	
  NO	
  

	
  
[81]	
  

	
   Lin-­‐HLA-­‐DR-­‐CD33+	
   YES	
   not	
  tested	
  
	
   [85]	
  

	
   Lin-­‐HLA-­‐DR-­‐CD33+	
   NO	
   not	
  tested	
  
	
   [84]	
  

	
  
Lin-­‐HLA-­‐DR-­‐CD33+	
  

CD11b+CD33+CD14-­‐	
  
YES	
   not	
  tested	
  

	
  
[90]	
  

	
  
Lin-­‐HLA-­‐DR-­‐CD33+	
  

CD11b+CD33+CD14-­‐	
   NO	
   not	
  tested	
  
	
   [91]	
  

	
   CD11b+CD33+HLA-­‐DR-­‐	
   NO	
   not	
  tested	
  
	
   [99]	
  

	
  	
   CD14+HLA-­‐DR-­‐/low*	
   NO	
   not	
  tested	
   	
  	
   [115]	
  
sarcoma	
   Lin-­‐HLA-­‐DR-­‐CD33+(CD11b+)	
   YES	
   not	
  tested	
   	
  	
   [87]	
  

soft	
  tissue	
  sarcoma	
   Lin-­‐HLA-­‐DR-­‐CD33+CD11b+	
  
CD11b+CD33+CD14-­‐	
   YES	
   not	
  tested	
   	
  	
   [90]	
  

squamous	
  cell	
  carcinoma	
   CD14+HLA-­‐DR+CD33+	
  
CD14-­‐HLA-­‐DR-­‐CD33+	
  

YES	
   not	
  tested	
   	
  	
   [121]	
  

thymoma	
   Lin-­‐HLA-­‐DR-­‐CD33+	
  

	
  
YES	
   not	
  tested	
   	
  	
   [85]	
  

thyroid	
  cancer	
   Lin-­‐HLA-­‐DR-­‐CD33+	
  

	
  
YES	
   not	
  tested	
  

	
   [85]	
  
	
  	
   Lin-­‐HLA-­‐DR-­‐CD33+(CD11b+)	
   YES	
   not	
  tested	
   	
  	
   [87]	
  
urothelial	
  cancer	
   SSChighCD66b+	
   YES	
   not	
  tested	
   	
  	
   [102]	
  
unknown	
  primary	
   Lin-­‐HLA-­‐DR-­‐CD33+(CD11b+)	
   YES	
   not	
  tested	
  

	
   [87]	
  

*	
  No	
  difference	
  in	
  frequency	
  of	
  Lin-­‐HLA-­‐DR-­‐CD33+	
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factor (GM-CSF), IL-6, and VEGF, can be produced by tumors or their stroma. 
Normally, bone marrow-derived immature myeloid cells will distribute 
throughout the body and differentiate into macrophages, granulocytes, or DC. 
Instead, the presence of (tumor-derived) inflammatory mediators arrests MDSC 
in their immature state. 
In humans, it is difficult to assess which factors drive MDSC expansion. Mundy-
Bosse et al. have described that plasma IL-6 correlates with the presence of 
granulocytic MDSC (CD11b+CD15+CD33+HLA-DR-), and plasma IL-10 levels 
with circulating CD15- MDSC [120]. Gabitass et al. reported Th2 skewing in 
cancer patients and a correlation of plasma IL-13 with Lin-HLA-DR-

CD33+CD11b+ MDSC [89]. On the other hand, elevated plasma VEGF does 
not seem to be the mechanism behind increased Lin-HLA-DR-CD33+ MDSC in 
glioma patients or CD14+HLA-DR-/low MDSC in non-Hodgkin lymphoma [82, 
110].  
Recent studies, attempting to induce MDSC in vitro from PBMC or bone 
marrow aspirates, suggest that GM-CSF alone or in combination with G-CSF, 
IL-6, IL-1β, VEGF, or TNFα is sufficient to induce cells with MDSC phenotype 
and suppressive function [88, 125-128]. 
GM-CSF is frequently used as a vaccine adjuvant, though its role as an MDSC-
inducing factor has raised the question whether its addition really benefits the 
vaccine-induced immune response. Filipazzi et al. observed an increase in 
MDCS after vaccinating melanoma patients with a GM-CSF-containing 
vaccine, and patients with higher MDSC levels tended to fall into the group of 
immunological non-responders [105]. Parmiani et al. compared clinical trials 
and animal studies where GM-CSF was used as an adjuvant and found that 
low-dose GM-CSF indeed had immunostimulatory properties, while higher 
doses abrogated vaccine success [129], probably due to expansion of MDSC. 
 

2.3.3.4 MDSC activation 

Though even immature myeloid cells that are not MDSC can exert suppressive 
function, these populations are not synonymous. MDSC are impaired in their 
ability to differentiate as long as they are exposed 
to tumor-derived factors and develop strong 
suppressive function as a result of activation. 
Activation is mediated by cytokines that are 
naturally produced by activated immune cells, for 
example IFN-γ, which is secreted by activated T 
and NK cells, IL-4, produced by Th2 cells, and IL-
13, an immunoregulatory factor secreted by Th2 
cells and NKT cells. Other MDSC-activating 
molecules include IL-1β, PG-E2, and toll-like 
receptor (TLR) ligands.  
Solito et al. have shown that strongly activated T cells are more easily 
suppressed by MDSC than those that receive weak stimulation, suggesting 
that factors derived from strongly stimulated T cells contribute to MDSC 
activation [88]. The same group even showed that the presence of activated T 
cells was necessary for in vitro generated MDSC to proliferate and maintain 

Toll-­‐like	
   receptors	
   (TLRs)	
   are	
   a	
  
family	
   of	
   pattern	
   recognition	
  
receptors	
   expressed	
   by	
   cells	
   of	
  
the	
  innate	
  immune	
  system.	
  TLRs	
  
sense	
   the	
  presence	
  of	
  microbes	
  
inside	
   or	
   outside	
   the	
   cell	
   and	
  
induce	
   cell	
   activation.	
   TLR	
  
ligands	
   include	
   for	
   example	
  
bacterial	
   lipopolysaccharide	
  
(LPS),	
  bacterial	
  or	
  viral	
  DNA,	
  and	
  
RNA. 
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their immature and suppressive phenotype, while co-culture with resting T cells 
resulted in myeloid cell differentiation [88]. This is in accordance with the 
observation that treatment with IL-2, a T cell-activating cytokine, has been 
reported to increase MDSC frequencies [84, 86, 101] and serum ARG1 levels 
[101] in renal cell carcinoma patients. 
It should be noted that MDSC-recruiting factors, such as IL-1β and PG-E2, also 
promote MDSC suppressiveness, so they can stimulate MDSC expansion as 
well as activation. 
Importantly, MDSC can themselves produce proinflammatory stimuli such as 
IL-6, PG-E2, and VEGF, thereby providing a positive feedback loop of MDSC 
recruitment [72, 130]. 
 

2.3.3.5 Suppressive mechanisms 

MDSC can employ a wide range of suppressive mechanisms. Their ‘weapon of 
choice’ can depend on their monocytic or granulocytic subtype and often 
includes more than a single mechanism. Figure 3 provides an overview over 
the suppressive mechanisms that have been described in human MDSC. 
Unfortunately, many studies do not formally test the suppressive pathway at 
work (see Tables 1 and 2), while others are satisfied in identifying one 
suppressive mediator where there might be several. With regard to therapeutic 
targeting of MDSC in different diseases, it would be interesting to test the full 
panel of candidate suppressive mechanisms in each described MDSC 
population and report even those that are irrelevant together with those that act 
alone, in parallel, or in synergy. 
 

2.3.3.5.1 ARG1 and iNOS  

Production of the enzyme ARG1 is one of the most frequently reported 
mechanisms used by MDSC to suppress T cells. ARG1 catabolizes the 
reaction from the amino acid L-arginine (L-Arg) to ornithine and urea. There are 
two ARG isoforms: ARG1 is a cytosolic enzyme constitutively expressed in the 
liver that can be induced in cells of the myeloid lineage, while ARG2 is found in 
the mitochondria of cells in the kidneys as well as the brain, small intestine, 
mammary glands, and macrophages [131]. In human blood, neutrophils are the 
main ARG1-producing population [132]. Different from mouse ARG1, which 
remains cytoplasmic, human ARG1 is exported from the cell in azurophil and/or 
gelatinase granules [132, 133]. High ARG1 activity and low L-Arg levels can 
therefore frequently be detected in serum of cancer patients [94, 101, 134, 135, 
Poschke, unpublished]. 
T cells are dependent on importing L-Arg from the microenvironment via 
cationic amino acid transporters (CAT) [131]. L-Arg deprivation leads to cell 
cycle arrest and prevents protein translation via the amino acid deficiency 
sensor general control non-repressible 2 (GCN2) pathway. ARG1-mediated 
defects in T cell function are described in greater detail in chapter 2.3.4.1. 
Inducible nitric oxide synthase (iNOS), one of three NOS isoenzymes, is 
another L-Arg-catabolizing enzyme. As a byproduct of the conversion of L-Arg 
to citrullin by iNOS, nitric oxide (NO) is released. 
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NO can act as an intracellular 
messenger, but is converted to the 
radical peroxynitrite (ONOO-) in 
presence of ROS. Secretion of reactive 
nitrogen species can cause protein 
nitration, most frequently affecting 
tyrosine side chains. Nagaraj et al. 
have shown that nitrotyrosine 
accumulation in the T cell receptor 
impaired its ability to interact with 
peptide-MHC complexes and therefore 
prevented T cell responses in a mouse 
model [136]. Of course the TCR will not 
be exclusively affected by NO release 

from MDSC. Though this has not been studied yet, one can expect all proteins 
in close proximity to the NO source, for example those residing in the 
immunological synapse, to be affected by protein nitration. The observed 
immunosuppression could therefore be mediated by TCR dysfunction in 
combination with a variety of other mechanisms, such as lack of co-stimulation. 
Increased protein nitration has been observed in human cancers, though it was 
not confirmed whether this was mediated by MDSC [137, 138]. Recent data by 
Molon et al. suggest that reactive nitrogen species might even act over longer 
distances because nitration of chemokines in the tumor microenvironment 
hampers T cell recruitment into the tumor [139]. 
Normally, ARG and iNOS are not expressed by the same cell. For example 
M1- and M2-polarized macrophages are characterized by expression of iNOS 
and ARG1, respectively (see chapter 2.3.3.9). This is probably due to the fact 
that ARG1 and iNOS regulate each other. Particularly ARG1-mediated L-Arg 
consumption prevents iNOS expression [140, 141]. The ability to co-express 
ARG1 and iNOS seems to be a hallmark of MDSC and affects the suppression 
they exert. When iNOS is expressed under conditions of high L-Arg 
consumption, e.g., by co-expression of ARG1, the catabolized reaction is 
slightly modified and now yields ROS as a side product in addition to NO [142]. 
For more information see even Figure 4 on page 32. 

 

2.3.3.5.2 Oxidative stress 

As discussed above, ROS production by MDSC can be a consequence of L-
Arg metabolism. An alternative and probably more dominant mechanism of 
ROS production involves the family of nicotinamide adenine dinucleotide 
phosphate (NADPH) oxidases. NADPH oxidases, of which NOX2 is the most 
important isoform in human neutrophils and macrophages, are multi-protein 
complexes that release ROS into the extracellular space upon activation [143]. 
NADPH oxidase expression in neutrophils is crucial to control infections, as 
patients with chronic granulomatous disease, who have a mutation in this multi-
subunit enzyme, suffer from frequent and severe infections [144]. Corzo et al. 
showed that MDSC derived from head and neck cancer patients produced 

Most	
   molecules/receptors	
   on	
   the	
   surface	
   of	
  
immune	
  cells	
  are	
  randomly	
  distributed	
  across	
  
the	
  cell	
  membrane,	
  though	
  some	
  of	
  them	
  can	
  
be	
   clustered	
   together.	
   When	
   a	
   lymphocyte	
  
and	
   an	
   APC	
   meet	
   they	
   start	
   to	
   re-­‐arrange	
  
molecules	
   relevant	
   for	
   antigen	
   presentation,	
  
recognition,	
  and	
  co-­‐stimulation,	
  so	
  that	
  most	
  
of	
   them	
   end	
   up	
   in	
   small	
   areas	
   of	
   the	
   cell	
  
membranes	
   that	
   are	
   facing	
   each	
   other,	
   the	
  
immunological	
  synapse.	
  This	
  re-­‐arrangement	
  
makes	
   receptor-­‐ligand	
   interactions	
   more	
  
likely	
   and	
   allows	
   longer	
   contacts,	
   thereby	
  
amplifying	
   the	
   exchanged	
   signals.	
   Secreted	
  
molecules	
   will	
   likely	
   give	
   signals	
   only	
   within	
  
the	
   immunological	
   synapse	
   and	
   not	
   affect	
  
surrounding,	
  uninvolved	
  cells. 



 

 
 

21 

more ROS than equivalent cells from 
healthy controls [98]. In a mouse model 
these investigators further showed that 
NADPH oxidase was overexpressed in a 
signal transducer and activator of 
transcription (STAT)3-dependent manner 
in immature myeloid cells from tumor-
bearing compared with tumor-free mice 
[98]. Knock-down of the important 
NADPH oxidase subunit gp91phox 
prevented suppressive activity of murine 
MDSC. This source of ROS in MDSC has 
not been thoroughly investigated in humans. Similar to Corzo et al., we 
observed increased ROS production in melanoma patient-derived MDSC and a 
connection between levels of oxidative stress in myeloid cells and presence of 
phosphorylated STAT3 (Paper I) [107]. These findings suggest that ROS 
production in human MDSC is also regulated in a STAT3-dependent way. 
However, mRNA levels of the NADPH oxidase subunits gp91phox or p47phox 

were similar in CD14+HLA-DR-/low cells from melanoma patients and controls 
(Paper I) [107], suggesting regulation on a different level or ROS production 
through an alternative pathway. 
Interestingly, Lechner et al. found up-regulation of NADPH oxidase in Lin-

CD33+HLA-DRlow MDSC that were induced in vitro by cytokines or tumor cell 
co-culture [125, 126]. 
 
 

2.3.3.5.3 Cytokines 

Besides overexpression of ARG1 and ROS production, the most important 
suppressive mechanisms of human MDSC seem to involve suppressive 
cytokines. In 1999, Loercher et al. published one of the first descriptions of 
MDSC in humans. They found that monocytes in ovarian cancer ascites 
expressed low HLA-DR and could suppress T cell responses via secretion of 
IL-10 in combination with TGF-β [104]. Similarly, Vuk-Pavlovic et al. showed 
that CD14+HLA-DR-/low MDSC from prostate cancer patients produced more IL-
10 than their HLA-DR+ counterparts, though they did not formally test whether 
this was the mechanism underlying the T cell suppression they observed [111]. 
TGF-β contributed to suppression exerted by MDSC generated in vitro [125, 
126] or by CD14+HLA-DR-/low MDSC isolated from melanoma patients by L. 
Rivoltini’s group [105, 106]. However, CD14+HLA-DR-/low MDSC isolated from 
melanoma patients by our laboratory (Paper I) [107] or from hepatocellular 
carcinoma patients by Hoechst et al. [108], as well as monocytic and 
granulocytic MDSC in bladder cancer patients [118], did not suppress via this 
mechanism. Interestingly, Hoechst et al. later showed that membrane-bound 
TGF-β on MDSC indirectly contributes to suppression by inducing Tregs [108]. 
 
 

Knock-­‐down	
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2.3.3.5.4 Collaboration with Tregs 

We did not find a correlation between natural Tregs and MDSC in the blood of 
melanoma patients (Paper I) [107], but this has been observed by others in 
renal cell carcinoma [93], glioblastoma [113], pancreas, esophageal and gastric 
cancer [89]. Several studies have also shown that isolated and in vitro 
generated MDSC can induce the expansion of regulatory T cells in MDSC-T 
cell co-cultures [108, 118, 125, 145]. Hoechst et al. recently showed that 
CD14+HLA-DR- cells convert conventional T cells into FoxP3+ and IL-10-
producing T cells with suppressive function, while CD14+HLA-DR+ monocytes 
instead promote conversion into Th17 cells [145]. 
These studies indicate that MDSC and Tregs can collaborate, and that Tregs can 
contribute to the suppressive activity observed as a result of MDSC expansion. 
Interestingly, there is one study showing that, under certain conditions, even 
the opposite can be the case: in a tumor model including long-term Treg 
depletion, MDSC were gradually induced due to lipoxin A4 production and 
could accelerate tumor progression [63]. 
Several other studies have addressed the collaboration of MDSC and Tregs in 
mouse tumor models. MDSC can take up, process, and present antigen to Tregs 
[75, 146]. Treg induction was dependent on ARG1 but not TGF-β in a preclinical 
model of B cell lymphoma [146] and required IFN-γ and IL-10, but not iNOS, in 
a colon cancer model [75]. Pan et al. showed that blocking of the murine SCF 
receptor on MDSC restored T cell proliferation and reduced Treg expansion 
[78], and Yang et al. reported that CD80 expression on MDSC could induce 
Treg expansion via CTLA-4 stimulation [147].  
 

2.3.3.5.5 Suppressive mechanisms so far reported only in mouse models  

Cysteine sequestration 
T cells are unable to generate the amino acid cysteine, and, unlike many other 
cells, cannot import cystine, the oxidized form of cysteine, because they lack 
the xc

- transporter. This makes T cells dependent on cysteine provided by 
antigen-presenting cells. Due to the close proximity during antigen 
presentation, cysteine can be directly transferred between the neutral amino 
acid transporters (ASC) of APC and T cells or maintained in its reduced form 
by APC-derived reducing agents such as thioredoxin until taken up by the T 
cell. 
Murine MDSC express the xc

- transporter, but not ASC, allowing them to import 
and sequester cysteine within the cell. Depletion of the cystine pool requires 
APC to synthesize their own cysteine and limits the amount available for them 
to export, thereby depriving T cells of this essential amino acid [96]. 
In addition to its role in protein synthesis, cysteine is also a substrate for the 
production of glutathione, a redox buffer molecule. Consequently, conditions of 
low cysteine availability will also make cells more sensitive to oxidative stress 
[148]. Feeding mice with N-acetyl cysteine, a form of cysteine that cannot be 
oxidized in the extracellular milieu, alleviated MSDC-mediated suppression and 
arrested tumor growth [149, 150]. 



 

 
 

23 

In a comparison of mRNA levels encoding amino acid transporters in 
CD14+HLA-DR-/low cells from melanoma patients and healthy controls, we could 
not detect significant differences between these two populations [Poschke and 
Mougiakakos, unpublished], so the importance of cysteine sequestration in 
human MDSC still remains an open question. 
 
Impairment of T cell homing 
MDSC constitutively express active ADAM 17, a protease that cleaves the 
homing receptor CD62L. CD62L is normally expressed on naive T cells and 
allows them to enter lymphatic tissues, where they can sample antigens 
presented by APC. If CD62L is cleaved off by MDSC-expressed ADAM 17, T 
cell trafficking is impaired and their priming by activated APC in the lymph 
nodes is prevented [151]. 
 
CD80 
In a mouse model of ovarian cancer, Yang et al. showed that tumor-induced, 
but not naïve, CD11b+Gr1+ cells expressed CD80 [119]. This molecule was 
crucial for their suppressive activity, as CD80-/- MDSC exhibited reduced 
suppression. In vivo treatment with a CD80-blocking antibody significantly 
delayed tumor growth in this model. MDSC suppression was indirect via 
stimulation of regulatory T cells expressing the CD80 ligand CTLA-4 [119]. The 
same group later showed that tumor-bearing CD80-deficient mice exhibited 
reduced ARG1 expression and activity in their MDSC [152]. 
Of note, we also found overexpression of CD80 in melanoma MDSC as 
compared with CD14+HLA-DR-/low cells from healthy donors, though we could 
not confirm that this molecule contributed to MDSC-mediated T cell 
suppression (Paper I) [107]. 
 
Pro-angiogenic activity 
Due to their ability to secrete VEGF, MDSC have been implicated in promoting 
tumor angiogenesis. Interestingly, Yang et al. recently revealed a more direct 
role of MDSC in tumor vascularization by showing that MDSC co-injected with 
tumor cells lined the endothelial walls of newly formed tumor vasculature and 
could differentiate into cells with endothelial cell characteristics [153].  
The same group also showed that MDSC from tumor-bearing mice produced 
high levels of matrix metallopeptidase (MMP) 9, which favored their ability to 
promote tumorigenesis and angiogenesis [153]. MMP9 can enzymatically 
digest the extracellular matrix and has therefore been implicated in promoting 
metastasis, but also in increasing the bioavailability of VEGF [154, 155].  
These striking findings reveal a new level of MDSC plasticity and suggest a 
mechanism by which MDSC can promote metastasis that awaits confirmation 
in human cancer. 
 

2.3.3.6 Suppression of NK cells  

Little is known about the suppression of NK cells by human MDSC. Hoechst et 
al. demonstrated that CD14+HLA-DR-/low, but not CD14+HLA-DR+ cells, potently 
inhibited NK cell proliferation, cytokine production, and cytotoxicity [109]. This 
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was not mediated by ARG, iNOS, or IDO, but required MDSC-NK interactions 
involving the NK cell activating receptor NKp30 [109]. 
In the mouse, Liu et al. found an inverse correlation of NK cell activation and 
MDSC frequency and showed that MDSC from tumor-bearing mice could 
inhibit NK cytotoxicity in a cell-cell contact-dependent way by blocking perforin 
expression in the NK cells [156]. Furthermore, Li et al. showed that MDSC 
could inhibit NK cytotoxicity, NKG2D expression, and IFN-γ production both in 
vitro and in vivo. Suppression was mediated by membrane-bound TGF-β, and 
the function of hepatic NK cells in a liver cancer model could be restored by 
MDSC depletion [157]. 
Interestingly, and in contrast to the studies described above, Nausch et al. 
showed that MDSC did not suppress, but instead activated NK cells in a mouse 
model of lymphoma. NK cells were induced to produce IFN-γ via stimulation of 
their activating NKG2D receptor by Rae-1 expressed on MDSC [158].   
 

2.3.3.7 Role of STATs in MDSC recruitment, activation, and function 

Many MDSC-recruiting signals, including for example G-CSF, VEGF, and IL-6, 
converge in the signal-transducing molecule STAT3. Importantly, STAT3 
signaling controls a number of molecules important for MDSC recruitment and 
suppressiveness, such as iNOS, VEGF, cyclooxygenase (COX)-2, IL-6, and IL-
10, thus providing a positive feedback loop [159].  
STAT3 signaling prevents differentiation of MDSC, as pharmacological 
inhibition or knock-down of STAT3 facilitates the conversion of MDSC to 
differentiated cells without suppressive activity [98, 160, 161]. In mouse MDSC, 
this blockade of differentiation seems to be mediated by the transcription factor 
CCAAT-enhancer-binding protein beta (C/EBPβ), which has also been 
suggested as an MDSC-defining marker [127]. 
We were first to confirm an important role of STAT3 in human MDSC, showing 
that it was overexpressed, present in its active form and associated with ROS 
production, and that its inhibition completely abrogated the suppressive activity 
of melanoma MDSC (Paper I) [107]. 
As they are central signal-transducing molecules, even other STAT molecules 
have been shown to be important in (murine) MDSC. STAT1 plays a dominant 
role in activation and suppression exerted by (monocytic) MDSC, as it 
transduces IL-1β and IFN-γ signals into up-regulation of ARG1 and iNOS [162]. 
Further, STAT5 is an important transducer of GM-CSF signals involved in 
MDSC recruitment and STAT6 is downstream of IL-4Rα and can regulate T cell 
suppression by up-regulating ARG1 and TGF-β [142, 163]. 
 

2.3.3.8 Impaired differentiation 

As mentioned earlier, MDSC contain immature cells that are inhibited in their 
differentiation along the myeloid lineage due to tumor-derived factors or 
autocrine feedback through factors that they produce. 
Studies in mouse models suggest that particularly STAT3 signaling and ROS 
production seem to be important to keep MDSC arrested in an immature state. 
The reduced frequency of mature DC in the blood of cancer patients [83, 85, 
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112] could be due to impaired myeloid differentiation, as suggested by a 
number of in vitro studies: 
Almand et al. could differentiate Lin-DR- myeloid cells into DC but not into 
granulocytes. Only a minority of cells seemed capable of differentiation, but the 
combination of GM-CSF with all-trans retinoic acid (ATRA) improved DC yield 
and stimulatory capacity [80]. Ko et al. did observe up-regulation of DC 
markers such as CD80 and CD40 after culture of Lin-CD33+HLA-DR- cells with 
IL-4 and GM-CSF, though this was not compared with, e.g., a HLA-DR+ control 
population [93]. Hoechst et al. found that, while CD14+HLA-DR+ cells efficiently 
differentiated to immature and mature DC in presence of IL-4, GM-CSF, and 
bacterial lipopolysaccaride (LPS), CD14+HLA-DR-/low cells retained high CD14 
and did not acquire DC characteristics [108]. Interestingly, Vuk-Pavlovic et al. 
found that, while there was no difference in DC yield, the inability of CD14+ 
cells isolated from prostate cancer patients to differentiate into fully mature DC 
correlated with the percentage of HLA-DR- cells in the culture [111]. Further, 
we showed that, when high frequencies of HLA-DR- cells were present in 
monocyte cultures, the resulting DC were less mature, impaired in their ability 
to take up antigen, migrate, and induce T cell proliferation. This was partially 
due to the deficient differentiation of HLA-DR- cells, but also to a negative effect 
of this population on HLA-DR+ cells in the same culture (Paper II). 
Clearly, their suppressive activity should not be the sole concern when thinking 
of MDSC. The inability of cancer-recruited immature myeloid cells to 
differentiate into mature stimulatory cells will interfere with the priming and 
expansion of potentially tumor-reactive cells, and their secreted factors can aid 
the immunosuppressive milieu and promote Th2 skewing.  
 

2.3.3.9 Relationship of MDSC and macrophages 

Macrophages are mature myeloid cells that can be found in many tissues and 
that partially overlap with MDSC in phenotype, recruitment/activation, and 
effector mechanisms. The relationship between MDSC and macrophages is 
still not completely understood, especially in humans, where access to tissues 
is difficult, and both MDSC and macrophages are hard to define by single 
unique markers. 
Depending on the signals they receive, macrophages become either classically 
or alternatively activated, M1 or M2 macrophages, respectively. M1 
macrophages have antimicrobial and anti-tumor activity and produce high 
levels of ROS and reactive nitrogen species, as well as IL-12, while M2 
macrophages can express IL-10 and, in the mouse, ARG1, and are considered 
to be pro-angiogenic, pro-tumorigenic and immunosuppressive. Of note, the 
cytokines inducing macrophage polarization, including IFN-γ for M1 and IL-4 
and IL-13 for M2 macrophages, overlap with those leading to MDSC 
recruitment and activation. In cancer, tumor-associated macrophages (TAM) 
are frequently observed and considered to be a tumor-induced type of M2-
polarized macrophages. Due to the overlap in surface markers and function, 
MDSC and M2 macrophages are sometimes not clearly distinguished from 
each other, especially in older publications. Some evidence suggests that 
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MDSC can differentiate into TAM, explaining why these two populations share 
so many characteristics. 
Eruslanov et al. have shown that bone marrow cells exposed to tumor-
conditioned medium become enriched for MDSC and M2 macrophages [164]. 
This was mediated via increased PG-E2 production in the myeloid cells, though 
it was not investigated which cells were producing PG-E2 and whether one of 
the myeloid populations was controlling the induction of the other [164]. 
Kusmartsev et al. showed that, after adoptive transfer of Gr1+ cells into tumor-
bearing mice, the majority of donor cells recovered from the tumor three days 
later were TAM that could suppress T cells in ARG1- and NO-dependent ways 
[165]. Corzo et al. recently demonstrated that hypoxia in the tumor induced 
differentiation of MDSC into TAM that could suppress T cells in an antigen-
independent way. The shift in phenotype was associated with a loss of ROS 
production and increased ARG1 and iNOS expression mediated by hypoxia 
inducible transcription factor (HIF)-1α [166]. 
On the other hand, in vitro studies by Sinha et al. could show that there also is 
cross-talk between MDSC and macrophages. MDSC-macrophage co-cultures 
induced IL-10 production by MDSC and reduced IL-12 production by 
macrophages in a cell-cell contact-dependent way [167]. 
 

2.3.3.10  MDSC and survival in cancer patients 

It seems clear that MDSC can pose a significant hurdle to anti-tumor immunity. 
At the same time, the extent to which the immune system really controls tumor 
growth is still debated. In favor of a role for tumor immunosurveillance, several 
recent papers have identified increased MDSC levels as predictors of poor 
prognosis. Mundy-Bosse et al. reported that in a mixed populations of cancer 
patients, the presence of CD14-CD33+HLA-DR- MDSC correlated with reduced 
survival, while, somewhat surprisingly, CD14+HLA-DR- cells were associated 
with a better survival [120]. Studies by Gabitass et al. and Solito et al. reported 
that Lin-CD33+HLA-DR-/low cells predicted poor overall survival in pancreatic, 
esophageal, gastric [89], as well as breast and colon cancer patients [88]. 
The finding that presence of MDSC can represent an independent prognostic 
factor in a number of different malignancies makes them an attractive and 
promising therapeutic target. MDSC-targeting strategies are discussed in 
section 2.3.3.12. 
 

2.3.3.11  MDSC in other conditions 

Much attention has focused on the role of MDSC in cancer. As of yet, very few 
studies have shown a role for MDSC in other human diseases: CD11b+ cells 
isolated after influenza virus infection inhibited MLRs by utilizing ARG and 
iNOS [128], and patients with inflammatory bowel disease have increased 
numbers of CD14+HLA-DR- MDSC that suppress T cell proliferation and IFN-γ 
production [168]. Very recently, increased levels of ARG1 expressing 
CD11b+MHC-II- myeloid cells were detected in patients with pulmonary 
hypertension, an inflammatory lung condition [169]. Though the evidence is still 
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sparse, these findings indicate a role for MDSC in both infection and 
(autoimmune) inflammation. 
Studies performed in mouse models further confirm this notion: MDSC were 
found to be expanded in bone marrow, spleen, and lymph nodes during sepsis 
[170, 171], and in the spleen after burn injury [172], traumatic injury [173], and 
many types of infections [123, 174, 175]. 
Under conditions of sepsis and trauma, an alternative function of MDSC 
deserves consideration. As they are efficient producers of ROS, MDSC could 
also exert antimicrobial function and thus protect the host from opportunistic 
infection while dealing with other stress. Interestingly, MDSC isolated from 
mice during sepsis or after burn injury also produce proinflammatory mediators 
such as TNF-α, macrophage inflammatory protein (MIP)1-α, monocyte 
chemotactic protein (MCP)-1, and ‘regulated upon activation, normal T-cell 
expressed, and secreted’ (RANTES), that have not been observed in tumor-
induced MDSC [176, 177]. Mice deficient in IL-6 signaling succumb to sepsis 
and can be rescued by adoptive transfer of CD11b+Gr1+ cells, suggesting that 
MDSC exert a protective role in this setting [171]. 
Increased myelopoiesis frequently occurs during parasite infection, and the 
accumulation of CD11b+Gr1+ cells has been described as a consequence of 
infection with several different parasite species [123]. This increase in potential 
MDSC could be a result of increased levels of GM-CSF, M-CSF, IL-3, IL-6, IL-
13, TLR stimulation, and IFN-γ production induced by parasite infections, 
especially in the acute phase. T cell suppressive activity of the accumulated 
myeloid cells was confirmed in several preclinical models [178-180]. 
Interestingly, Pereira et al. recently demonstrated that NO-mediated killing of 
parasites by MDSC helps to control Leishmania major infections in mice 
despite concurrent T cell suppression [181]. Of note, some parasite-derived 
factors can exhibit a direct inhibitory effect on myeloid differentiation [182] and 
trigger expansion of CD11b+Gr1+ cells in the spleen [183]. 
These reports suggest that, in contrast to cancer where MDSC predominantly 
contribute to immune escape, suppressive myeloid cells can be a ‘double-
edged sword’ during infection: they might favor microbe survival and 
establishment of chronic infections, but also prevent tissue damage, immune-
related morbidity and even eradicate the pathogen in some cases. 
Accumulation of myeloid cells has also been observed in a number of animal 
models of autoimmune diseases [184-188]. Isolated myeloid cells displayed 
characteristics of MDSC and could suppress T cell activity, though their 
depletion did not affect disease outcome in most cases [189]. 
A mouse model of IBD showed that MDSC could induce tolerance after 
repeated immune stimulation or early on, when given as an adoptive transfer 
together with the first autoreactive T cell infusion [168]. 
Somewhat surprisingly, MDSC were found to contribute to disease severity in 
experimental autoimmune encephalomyelitis, a model for the autoimmune 
disease multiple sclerosis [190]. The disease-supporting role of MDSC in this 
case could be due to their differentiation into mature DC and macrophages 
after reaching the central nervous system [190]. 
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2.3.3.12  Therapeutic targeting of MDSC 

Since MDSC are important hurdles for naturally occurring or therapeutically 
induced anti-tumor immunity, their therapeutic targeting is highly attractive. 
Unfortunately, a specific depletion is impossible due to the lack of unique 
markers. Therapies tested so far have therefore included a number of rather 
unspecific approaches. For example, the chemotherapeutic drug gemcitabine 
has been shown to induce MDSC apoptosis in preclinical models and has been 
successfully applied alone or in combination with other therapies, including 
immunotherapies, though the effect of gemcitabine on MDSC in cancer 
patients remains to be studied. It should be noted that the chemotherapeutic 
drug cyclophosphamide, which is often used in conjunction with 
immunotherapy, has been shown to increase MDSC frequencies [87].  
 

2.3.3.12.1 Differentiation  

As MDSC are immature cells, differentiating them could not only relieve 
suppression, but even increase the number of mature and possibly anti-
tumorigenic myeloid cells, such as DC or M1-polarized macrophages. As 
discussed above, MDSC can be differentiated in vitro with varying success 
using standard DC generation protocols.  
• A stronger differentiation stimulus can be provided by all-trans retinoic acid 
(ATRA), a vitamin A metabolite that is used clinically for the treatment of acute 
promyelocytic leukemia [191]. MDSC express high levels of the ATRA receptor 
RAR-γ [81] and can be induced to differentiate by ATRA via up-regulation of 
glutathione synthase and reduced ROS production [91]. Administration of 
ATRA to renal cell carcinoma patients reduced the number of circulating 
immature myeloid cells in those patients where high serum ATRA levels could 
be achieved. This was associated with an improved ability of mononuclear cells 
to stimulate proliferation of allogeneic T cells [86]. 
• Vitamin D3 is another molecule known to induce myeloid differentiation. 
Lathers et al. showed that vitamin D3 administration reduced the frequency of 
circulating CD34+ cells, increased HLA-DR levels, as well as plasma IL-12 and 
IFN-γ levels and T cell responses in patients with head and neck cancer. Of 
note, plasma IL-1β, IL-2, IL-4, IL-6, IL-10, GM-CSF, and TGF-β levels 
remained unchanged [192]. 
 

2.3.3.12.2 Prevention of MDSC expansion 

MDSC persistence seems to be tumor dependent, and tumor resection or 
curative treatment can normalize MDSC frequencies [87, 100], indicating that 
MDSC turn over and have to be replenished continuously. As a consequence, 
blocking MDSC recruitment could decrease MDSC accumulation over time, 
giving tumor-specific T cells a chance to act. This has been tried with a number 
of different molecules: 
• The tyrosine kinase inhibitor sunitinib which blocks pathways upstream of 
STAT3, such as signaling through the receptors for VEGF, platelet-derived 
growth factor (PDGF), fms-like tyrosine kinase 3 (Flt3)-ligand, and SCF, 
reduced MDSC levels and improved T cell responses in metastatic renal cell 
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carcinoma [93]. Preliminary data from the same group even showed that 
neoadjuvant sunitinib treatment in some cases reduced MDSC infiltration in the 
tumor [99]. In a mixed group of cancer patients, van Cruijsen et al. noted a 
slight but non-significant decrease of MDSC after sunitinib treatment and 
increased frequencies of myeloid DC in the blood of responding patients [115]. 
• Cancer patients treated with VEGF-trap, a VEGF-binding protein, did not 
show significant differences in MDSC levels. However, increased DC 
frequencies and improved T cell responses were observed in those patients 
that did have lowered post-treatment MDSC levels [85]. Similarly, treatment of 
renal cell carcinoma patients with the anti-VEGF antibody bevacizumab did not 
reduce circulating MDSC levels, but instead increased MDSC frequencies and 
plasma ARG1 levels when given in combination with IL-2 [101]. 
• In vitro studies using mouse MDSC showed that a COX-2 inhibitor (LM-
185) allowed myeloid differentiation even in the presence of tumor and reduced 
T cell suppression by MDSC [164]. Treatment of tumor-bearing mice with the 
COX-2 inhibitor SC58236 prevented MDSC accumulation in vivo and delayed 
tumor growth [167]. Talmadge et al. showed that the COX-2 inhibitor celecoxib 
delayed induction of chemically induced tumors, increased numbers of tumor-
infiltrating T cells, reduced MDSC, and normalized mRNA levels of iNOS and 
ARG1 measured in the spleen [193]. 
• Exosomes have been shown to contribute to MDSC induction in cancer 
patients and in vitro [105, 116]. Amiloride, a drug used to treat high blood 
pressure, reduces exosome release. Serum from cancer patients treated with 
amiloride had an impaired ability to activate MDSC, and MDSC isolated from 
their blood had a reduced suppressive activity compared with MDSC isolated 
before treatment [116]. 
 

2.3.3.12.3 Preventing suppression 

A third strategy to target MDSC is to inhibit their suppressive pathways. This is 
complicated due to the fact that suppressive mechanisms vary between MDSC 
subsets, and between different cancers, and that there can be more than one 
mechanism at work. 
Of course, the prime targets of drugs targeting MDSC-mediated suppression 
have been ARG1 and iNOS. Nor-NOHA and L-NMMA, ARG1 and iNOS 
inhibitors frequently used in vitro, are not suitable for in vivo usage due to their 
side effects. Currently, several molecules that can target both enzymes 
simultaneously seem to be promising candidate drugs:  
• Nitroaspririn is acetyl-salicylic acid with an additional NO-releasing group 
and was originally developed to reduce side effects of long-term aspirin intake. 
Work in preclinical models showed that nitroaspirin can exert direct inhibitory 
effects on both iNOS and ARG1, but also act indirectly by preventing up-
regulation of these molecules. In addition, nitroaspirin acts as an antioxidant, 
thereby detoxifying the tumor microenvironment and preventing the ROS-
mediated differentiation arrest of MDSC [128]. Interestingly, nitroaspirin alone 
has only a minor effect on tumor growth, but can act as a potent adjuvant when 
given in combination with immunotherapy [128]. 
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• The phosphodiesterase 5 inhibitor sildenafil (sold as Viagra®) down-
regulated both ARG1 and iNOS, as well as IL-4Rα, in mouse MDSC. It delayed 
tumor growth, and acted synergistically with adoptive T cell transfer in a mouse 
model of cancer. In vitro addition of sildenafil to cancer patients’ PBMC could 
significantly improve T cell proliferation [103]. It was suggested that 
destabilization of iNOS mRNA is in part responsible for alleviating suppression, 
while ARG1 expression is probably inhibited due to interference with signaling 
from IL-4Rα [194]. Several clinical trials, for example using sildenafil to treat 
erectile dysfunction in prostate cancer patients or to prevent heart damage by 
doxorubicin treatment, are underway, and probably enrolling patients fast 
(http://www.cancer.gov/clinicaltrials). Hopefully, immunomonitoring in these 
trials will be performed to reveal whether sildenafil can be used to target MDSC 
in vivo in cancer patients.  
• The synthetic triterpenoid CDDO-ME completely abrogated in vitro 
suppressive activity of MDSC isolated from renal cell carcinoma patients. A 
clinical trial combining CDDO-ME with gemcitabine was well tolerated but 
showed no difference in MDSC levels after treatment. Interestingly, T cell 
responses were significantly improved after a 2-week treatment period. In 
mouse models, CDDO-ME treatment significantly decreased tumor growth. 
Even in these models, MDSC frequencies remained constant during treatment, 
but suppressive activity by MDSC was abrogated due to decreased ROS 
production, while iNOS and ARG1 levels were unaffected [90]. 
 

2.3.3.13   Therapeutic application of MDSC 

Considering the potent immune suppression that can be exerted by MDSC, 
these cells promise to be useful in treating conditions of overwhelming immune 
activation.  
Dougast et al. found that rats tolerant to mismatched kidney transplants had 
high levels of MHC class II negative myeloid cells in their circulation as well as 
in the graft [195]. These cells suppressed T cell function in an iNOS-dependent 
fashion, and iNOS inhibition could induce graft rejection. Several other groups 
have shown that adoptive transfer of in vivo or in vitro induced MDSC could 
prevent allograft rejection in mice [196-198]. In vitro induced MDSC were also 
able to inhibit graft-versus-host disease by L-Arg-dependent mechanisms [199, 
200].  
It is surprising that MDSC that can suppress T cell responses in vitro 
accumulate in autoimmune disease and do not seem sufficiently able to 
suppress in vivo immune responses to inhibit the disease. However, one 
should keep in mind that adoptive transfer of MDSC has a beneficial effect on 
autoimmune pathology in some models [168, 187, 188]. This suggests that the 
infusion of ‘fresh’ MDSC unexposed to the inflammatory microenvironment 
might be capable of overcoming the mechanisms preventing their natural in 
vivo activity under conditions of autoimmune inflammation. 
In conclusion, while MDSC are an obstacle to tumor immunology, they might 
be an asset in the treatment of autoimmune diseases and for the prevention of 
graft rejection after transplantation. When considering MDSC as a treatment 
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option one should take into account the associated risk that infusing large 
numbers of MDSC could result in general immune suppression and accelerate 
progression of undiagnosed tumors. 
 
 

2.3.4 T cell dysfunction 

T cell differentiation, activation, and function are complex processes and 
almost every involved molecule can be affected in cancer. In this chapter I will 
therefore only discuss concepts relevant to the papers included in this thesis. 
 

2.3.4.1 Down-regulation of the ζ-chain 

The ζ-chain is a 16-kD transmembrane protein that is expressed as a disulfide 
linked homodimer by T and NK cells. In its cytoplasmic domain, it contains 
three immunoreceptor tyrosin-based activation motifs (ITAMs). Phosphorylation 
of these motifs transduces activating signals that, via the transcription factors 
nuclear factor κB (NFκB) and nuclear factor of activated T cells (NFAT), result 
in proliferation and cytokine secretion. In T cells, the ζ-chain transduces signals 
from the TCR complex and in NK cells, it is associated with the activating 
receptors NKp30, NKp46, and CD16. 
Down-regulation of the ζ-chain has been described in many different cancers 
[201-209] and often correlates not only with reduced lymphocyte function, but 
also with poor prognosis [210-213]. ζ-chain loss has also been observed in 
autoimmune diseases, during infection, or after traumatic injury [141, 214-217]. 
ζ-chain loss can also be detected after T cell stimulation, because TCR 
engagement results in internalization and degradation of the entire TCR 
complex. This renders the T cell temporarily unresponsive until new receptor 
complexes appear on the cell surface about 24 hours after initial stimulation, 
though levels are not normalized until about 72h after antigen encounter [218]. 
Of note, the mechanism of tumor-mediated ζ-chain loss appears to be a 
different one and depends on L-Arg starvation and exposure to oxidative stress 
[141, 214]. 
T cells with low levels of ζ-chain expression have also been reported to exhibit 
other defects, such as low expression of the CD3 γ-chain, TNF, granzyme, and 
LCK and FYN, two kinases involved in signal transduction from the TCR [219].  
Work by Bronstein-Sitton et al. suggests that chronic antigen exposure could 
lead to loss of ζ-chain expression in mouse models. However, not the chronic 
TCR stimulation itself, but rather the inflammatory microenvironment, including 
accumulation of MDSC, seems to mediate the T cell dysfunction [220]. The 
same group further showed that disappearance of the ζ-chain is a result of 
lysosomal degradation [220], while others find that it is also mediated on the 
transcriptional level [221]. This discrepancy could be explained by differences 
between human and mouse T cells and different diseases studied. 
ARG1 is an important mediator of T cell suppression by MDSC and has been 
shown to cause loss of T cell ζ-chain expression [94, 222]. 
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T cells activated under low L-Arg 
conditions retain some functional capacity, 
such as the ability to produce IL-2 and up-
regulate the activation marker CD69, but 
they fail to proliferate and instead become 
arrested in the G0-G1 phase of the cell 
cycle. In vitro studies with human T cells 
could show that absence of L-Arg 
prevented up-regulation of cyclin D3 and 
cdk4, and reduced Rb phosphorylation and 
levels of the E2F-1 transcription factor, 
which are all needed for the cell to 
progress through G1 and into the S phase. 

Decreased levels of these proteins were due to reduced transcription, mRNA 
stability, and translation [222, 223]. The same group also showed that the lack 
of L-Arg activates general control non-repressed (GCN)-2 kinase, a sensor for 
the accumulation of empty tRNAs that can prevent initiation of translation 
during amino acid starvation. Consequently, T cells from GCN2-/- mice could be 
activated and proliferated in absence of L-Arg [223].  
Even production of ROS by MDSC, granulocytes, or macrophages has been 
shown to induce ζ-chain loss in lymphocytes, and T cell function can be 
rescued by addition of ROS-scavenging molecules such as catalase [92, 224].  
Though it has been suggested by some [225-227], many investigators did not 
find a correlation between the loss of ζ-chain and T cell apoptosis [222, 228-
230]. Figure 4 provides an overview over L-Arg dependent mechanisms of T 
cell suppression. 
 
 

 
 
Figure 4: L-Arg dependent mechanisms of T cell suppression. Effects of low  
L-Arginine concentrations are highlighted in red. 
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2.3.4.2 Co-stimulatory and co-inhibitory receptors and their ligands 

Successful T cell activation requires several signals: interaction of the peptide-
MHC complex with a TCR of the right specificity (signal 1), co-stimulatory 
signals (signal 2), and optimally also the presence of stimulatory cytokines 
(signal 3). Stimulation in absence of co-stimulation will induce tolerance and 
anergy in the antigen-specific T cell, a mechanism to prevent auto-reactivity. 
There are a number of co-stimulatory receptors, which mostly interact with 
ligands belonging to the B7 family of proteins. Members of this protein family 
can even convey inhibitory signals and consequently dampen T cell activation. 
So-called co-inhibitory receptors, such as programmed death (PD)-1 and 
CTLA-4, are often up-regulated after initial T cell stimulation and are thought to 
function as an ‘immunological brake’, preventing both activation-induced cell 
death of the effector cells and collateral damage due to the evoked immune 
response. 
One of the most important co-stimulatory receptors is CD28, which receives 
signals from CD80 (B7-1) and CD86 (B7-2) and induces effector functions, 
lowers the T cell activation threshold, and promotes survival [231]. After 
stimulation, CD28 is down-regulated. This loss of CD28 is sometimes 
interpreted as a sign of exhaustion since it indicates previous stimulation and 
the cells’ reduced ability to receive co-stimulation [232]. However, CD28 
expression is also decreased as a consequence of T cell differentiation, and 
memory T cells require less co-stimulatory signals [233-235]. 
As a consequence of T cell stimulation and CD28 engagement, the co-
inhibitory molecule CTLA-4 rapidly becomes up-regulated on the surface of 
activated T cells. CTLA-4 binds CD80 and CD86 like CD28, but with higher 
affinity, and conveys negative signals that lead to reduced proliferation and 
cytokine production.  
T cell stimulation also induces the expression of PD-1, a co-inhibitory receptor 
that interacts with the ligands PD-L1 (B7-H1), which can be ubiquitously 
expressed, and PD-L2 (B7-DC), which is expressed on monocytes and DC 
[231]. 
The fact that deficiency in CTLA-4 as well as PD-1 is associated with severe 
autoimmune disease illustrates the importance of this negative regulation of T 
cell function [231, 236]. It should be noted that CTLA-4 is also expressed by 
Tregs and has been implicated in their suppressive activity (see section 2.3.2). 
At this point, the reader will not be surprised to learn that tumors can make use 
of these inhibitory pathways to control anti-tumor immunity. Many types of 
tumors have been reported to express PD-1L [237-239] and are therefore able 
to inhibit T cells that find their cognate antigen on the tumor [240]. 
Consequently, high expression of PD-1 on tumor-infiltrating T cells or PD-1L on 
tumor cells has been found to correlate with poor survival in cancer patients 
[241-244]. 
As discussed in chapter 2.3.2, an anti-CTLA-4 antibody was recently approved 
for the treatment of metastatic melanoma [245]. ‘Taking the brake off the 
immune system’ has proven to be a successful strategy to induce immune-
mediated control of cancer, and future clinical trials combining anti-CTLA-4 
antibodies with immunotherapy are eagerly awaited. Not entirely surprising, 
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treatment with anti-CTLA-4, especially in subsequent therapy responders, is 
associated with autoimmune side effects. Though they can be severe, these 
immune-related adverse events can be managed with steroids without 
apparent impairment of anti-tumor immunity [246]. Similar trials are underway 
to elucidate the in vivo activity of PD-1 blockade in humans, which has shown 
some promise in pre-clinical cancer models [247-249]. 
 

2.3.4.3 Immunosenescence 

With increasing age, the immune system 
becomes exhausted. This is in part due to 
the fact that thymic output steadily 
decreases with age and causes the 
number of ‘fresh’ naïve T cells introduced 
into the circulation to decline [250]. At the 
same time, exposure to different antigens 
during our life time can exhaust the pool of 
naïve T cells, and their slow but 
continuous turnover reduces T cell 
telomere length over time [250]. Even 
signaling through T cell surface receptors 
becomes impaired. These events are 
summarized under the term 
immunosenescence [251]. Aging is also 
associated with a continuous low grade 

inflammation, cleverly termed ‘inflamm-aging’, that features many of the key 
mediators of tumor-mediated immune subversion, such as IL-6, IL-1, Tregs, and 
ROS [251].  
Newer data suggest that aging alone is not sufficient to induce 
immunosenescence, but that it instead could be a consequence of chronic viral 
infections that becomes more likely with age. For example, about 50% of the 
population become infected with CMV during childhood, and seroprevalence 
reaches >85% at the age of 85 [252, 253]. Population-based studies performed 
in Sweden since the 1980s indicate that 100% of elderly individuals exhibiting 
an ‘immune risk profile’, including a characteristic shift from naïve to memory T 
cells, were infected with CMV, but only 85% of the non-risk group [253]. Similar 
immunosenescence patterns have even been observed in individuals suffering 
from HIV infection [254] or cancer [255], suggesting that not old age, but 
chronic antigen exposure is the likely cause of T cell senescence.  
Immunity in very old individuals is currently not well studied, despite the fact 
that they represent an increasing population in our society. This might 
represent an important failure of public health evaluation, as studies from the 
past decade showed that for example individuals with an immune risk profile 
were less able to respond to vaccination and faced increased rates of mortality 
[256, 257]. 
In cancer patients, the concept of senescence induced by chronic antigen 
stimulation is somewhat puzzling, since the amount of immunogenic antigen 
supplied by a tumor appears to be low. Furthermore, the frequencies of 
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antigen-specific T cells, even in immunized, clinically responding patients, are 
negligible compared with those that can be induced by viral infections [7, 258, 
259]. It is possible that the increase in memory T cells instead reflects 
bystander expansion of this population, for example due to cytokine production 
by tumor-associated cells. 
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3 RESULTS AND DISCUSSION 

The four articles included in this thesis all deal with tumor-induced immune 
alterations, but can roughly be divided into two topics: i) tumor-induced immune 
suppression by MDSC in melanoma patients (Paper I and II); and ii) tumor-
dependent changes in T cell phenotype and function in patients with early-
stage breast cancer (Paper III and IV). The information provided in the 
following sections should help the reader understand what was studied in the 
papers and why, as well as the more general implications of our findings. For 
details on experimental set-up, results and specific discussion of the findings 
please see the appended articles. 
 
 
3.1 MDSC IN MELANOMA 

Paper I - Immature immunosuppressive CD14+HLA-DR-/low cells in melanoma 
patients are Stat3hi and overexpress CD80, CD83 and DC-Sign 

To study MDSC in melanoma patients, we collected blood samples from 34 
patients treated for metastatic (stage III, n=11, or stage IV, n=23) malignant 
melanoma at Radiumhemmet, Karolinska University Hospital. Initially, we 
performed flow cytometry on fresh blood samples to identify myeloid 
populations in melanoma patient blood that were altered in comparison with the 
blood of healthy, age-matched controls. We found that melanoma patients had 
a significantly increased frequency of a putative CD14+HLA-DR-/low MDSC 
population in total PBMC. Accumulation of CD14+HLA-DR-/low cells was only 
observed in patients with active disease, but not in patients that were tumor-
free at the time of blood sampling. The increase in CD14+HLA-DR-/low cells was 
due to the decreased expression of HLA-DR on CD14+ cells, as the total 
frequency of CD14+ cells (as well as that of CD3+ T cells and of putative Lin-

CD33+HLA-DR- MDSC) was similar in patients and controls.  
We therefore decided to investigate the suppressive activity of the CD14+HLA-
DR-/low population. Cells of this phenotype were isolated from fresh blood 
samples of melanoma patients or healthy controls and titrated into autologous 
T cell cultures stimulated with anti-CD3/CD28 beads. We found that 
CD14+HLA-DR-/low cells from melanoma patients strongly suppressed 
proliferation and IFN-γ production of CD4+ and CD8+ T cells in this setting and 
therefore deserved to be termed MDSC. Suppressive activity was significant at 
MDSC:T cell ratios similar to those observed in the blood of cancer patients. 
Although no side-by-side comparison was performed, the T cell suppressive 
activity of MDSC appears to be similar or slightly higher than that of Tregs in 
similar experimental set-ups [51]. CD14+HLA-DR-/low cells from healthy controls 
suppressed autologous T cells only when added in very high numbers, but not 
at ratios observed in blood of melanoma patients and, more importantly, not at 
the much lower CD14+HLA-DR-/low:T cell ratios observed in the blood of these 
healthy controls. These results indicate that CD14+HLA-DR-/low MDSC 
accumulate in melanoma patients and exhibit more potent suppressive activity 
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on a per cell basis than cells of similar phenotype observed in healthy 
individuals. 
Since MDSC can be suppressive through a range of different mechanisms, we 
measured the expression of candidate suppressive molecules in CD14+HLA-
DR-/low cells from melanoma patients and healthy controls by quantitative 
polymerase chain reaction (PCR). This analysis revealed that melanoma 
MDSC overexpressed ARG1 in comparison to CD14+HLA-DR-/low cells from 
healthy controls. In agreement with the reciprocal regulation of ARG1 and 
iNOS, patient MDSC exhibited decreased iNOS expression. We also noted that 
COX-2 expression was decreased compared to controls. To test whether 
ARG1 overexpression was responsible for T cell suppression, we added the 
ARG1 inhibitor nor-NOHA to patient PBMC stimulated with anti-CD3/CD28 
beads. This could partially rescue T cell proliferation, but did not increase IFN-γ 
production, suggesting that the mechanisms affecting these two functional 
measures are not the same. Interestingly, we noted in a number of patients that 
addition of the ROS-scavenging molecule catalase also improved T cell 
proliferation and that patients responsive to ROS scavenging usually also 
responded well to ARG1 inhibition. This led us to further investigate the 
oxidative potential of the melanoma MDSC. We found that patient CD14+HLA-
DR-/low cells had increased levels of intracellular oxidation, suggesting that ROS 
production could contribute to T cell suppression. We did not observe 
differences in mRNA levels of NADPH-oxidase subunits between patients and 
controls, though translational or post-translational modification of this enzyme 
in melanoma MDSC cannot be ruled out. An alternative ROS source lies in L-
Arg metabolisms by iNOS while ARG1 is simultaneously overexpressed (see 
chapter 2.3.3.5.1 and Figure 4). Interestingly, we also found that melanoma 
MDSC overexpressed STAT3 protein, but not mRNA, compared to controls. 
HLA-DR- cells also displayed increased levels of STAT3 phosphorylation, 
indicating STAT3-signaling activity. A correlation between pSTAT3 and levels 
of intracellular oxidation was revealed. Since oxidative stress did not seem to 
induce STAT3 phosphorylation, we believe that ROS production in melanoma 
MDSC could be controlled by STAT3 signaling. Our report was the first to 
confirm overexpression of STAT3, an important controller of MDSC activation, 
phenotype, and function, in human MDSC. Importantly, we could further show 
that inhibition of STAT3 in MDSC completely abrogated their ability to suppress 
T cell proliferation and IFN-γ production, suggesting that all suppressive 
mechanisms exerted by this population are under the control of STAT3. 
With regard to ARG1 as one of the main suppressive mechanisms in this 
study, the finding that T cell suppression was cell-cell contact dependent is 
somewhat puzzling. In contrast to the intracellular ARG1 in mouse MDSC, 
human ARG1 can be secreted and should therefore not act in a contact-
dependent way. However, it is possible that cell contact is not needed for T cell 
suppression, but rather for MDSC activation.  
While looking for markers that could be useful for the identification of human 
MDSC, we made the interesting observation that melanoma MDSC exhibited a 
mixed mature/immature phenotype. Compared to healthy controls, melanoma-
derived CD14+HLA-DR-/low overexpressed CD80, CD83, and DC-Sign. These 
molecules are normally expressed on mature myeloid cells, such as dendritic 
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cells, and all seem to be involved in myeloid cell-T cell contact. Though we 
could not decrease the suppressive activity of MDSC by adding blocking 
antibodies to CD80, CD83, and DC-Sign, it is possible that complete and/or 
simultaneous inhibition of these three markers, for example by RNA silencing, 
would prevent MDSC activation. Furthermore, it is of course possible that 
additional surface molecules that could be co-regulated with the differentially 
expressed markers identified by us contribute to the contact-dependent 
suppressive activity of melanoma MDSC. 
In conclusion, we found a significant accumulation of strongly suppressive 
CD14+HLA-DR-/low MDSC in patients with metastatic melanoma. ARG1 was 
one of the main, but not the only, suppressive mechanism employed. MDSC 
suppressive activity was dependent on direct contact with the T cells and on 
STAT3 activity. The phenotype of melanoma MDSC was puzzling, as it did not 
resemble that of normal or activated monocytes, but contained both elements 
of immature (HLA-DR-/low) and mature (CD80+, CD83+, DC-Sign+) myeloid cells.  
 
 
Paper II - Myeloid-derived suppressor cells impair the quality of dendritic cell 
vaccines 
In 2009, we initiated a phase I clinical trial that involves treating melanoma 
patients with a dendritic cell vaccine and adoptive transfer of autologous, in 
vitro expanded T cells.  
Based on the findings of Paper I, we were aware that MDSC can accumulate to 
high numbers in melanoma patient blood and can pose a significant hurdle to T 
cell function in this patient population. Since many groups have shown that 
MDSC are impaired in their ability to differentiate into DC, we worried that high 
frequencies of CD14+HLA-DR-/low MDSC could affect the quality of our DC 
vaccine, which is generated from predominantly CD14+ cells.  
This could be a concern for DC vaccine production in any type of cancer where 
CD14+HLA-DR-/low MDSC have been identified (see Table 2). 
To test the hypothesis that MDSC negatively affect DC vaccine production, we 
first investigated whether CD14+HLA-DR-/low cells co-purified with the 
monocytes used as a starting population for our DC vaccine. As large numbers 
of cells are needed, melanoma patients enrolled in our clinical trial undergo 
leukapheresis, followed by elutriation (counter-flow centrifugation) to isolate the 
monocytes. The ratio of CD14+HLA-DR-/low cells to total monocytes was 
constant in the leukapheresis material and the fraction of purified monocytes, 
suggesting that almost all MDSC co-purify with the monocytes. This is also in 
accordance with their related phenotype and identical scatter characteristics in 
flow cytometry. In order to mimic CD14+HLA-DR-/low frequencies representative 
of healthy individuals and cancer patients with intermediate to high MDSC 
levels, we separated the monocytes into HLA-DR positive and negative 
populations and re-mixed them into co-cultures containing 0%, 10%, 20%, 
50%, 70%, or 100% HLA-DR- cells, see Figure 5.  
Frequencies of 0-20% CD14+HLA-DR-/low cells, as found in the blood of healthy 
individuals, can be considered ‘physiological’ levels, while 50% or more 
represent the ‘pathological’ situation observed in many cancer patients [107]. 
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Figure 5. Set-up up of co-cultures from HLA-DR+ and HLA-DR- cells isolated 
from the monocyte fraction. An example of fluorescently labeled HLA-DR+ cells 
is shown. 
 
It should be noted that we have previously shown that CD14+HLA-DR-/low cells 
from melanoma patients and healthy controls differ in their suppressive activity, 
so that our ‘physiological’ set-ups could contain more suppressive potential 
than could be expected if healthy donor monocytes were used. 
During the preparation of Paper I, we observed that CD14+HLA-DR-/low rapidly 
up-regulate HLA-DR when placed in culture. We therefore fluorescently labeled 
one of the populations to be able to distinguish originally HLA-DR- and HLA-
DR+ cells in the co-cultures (see Figure 5), alternating the labeled population 
between experiments to prevent bias. Co-cultures were differentiated to DC 
according to the standard operation procedures (SOP) of our own phase I 
clinical trial and the phase II clinical trial of our collaborator Dr. Salazar-Onfray 
[260].  
For the outcome of these cultures, we hypothesized four different scenarios:  
i) no effect of MDSC on DC generation, ii) preferential death (or survival) of the 
CD14+HLA-DR-/low population, resulting in reduced DC yield, iii) reduced 
maturation and functionality of DC generated in presence of MDSC, or iv) a 
combination of ii) and iii). 
The viability of the generated DC was generally high, though the yield strongly 
varied between experiments. No effect of MDSC frequency on viability and 
yield could be detected. Moreover, the frequency of HLA-DR- cells observed in 
all cultures was very close to what was expected based on the culture set-up. 
Analysis of the phenotype and function of mature and immature DC revealed 
that there was a dose-dependent, negative effect of CD14+HLA-DR-/low on the 
resulting DC. DC generated in presence of high CD14+HLA-DR-/low frequencies 
were less mature, had reduced capacity to take up antigen, migrated less 
efficiently, and induced lower levels of IFN-γ when used to stimulate allogeneic 
T cells. These effects were most pronounced when 50% or more CD14+HLA-
DR-/low were added to the culture. Exposure of the DC to maturation signals 
reduced the negative effect exerted by the presence of CD14+HLA-DR-/low cells, 
suggesting that strong stimulation can partially restore normal DC 
differentiation. Interestingly, the reduced maturation and functionality of DC 
generated in the presence of high frequencies of HLA-DR- cells was not only 
due to the impaired differentiation potential of the CD14+HLA-DR-/low cells. 



 

 
 
40 

Comparison of originally HLA-DR+ cells cultured with physiological or 
pathological levels of CD14+HLA-DR-/low cells revealed that even this population 
was negatively affected when >50% HLA-DR- cells were present in the co-
culture.  The observed differences could not be explained by oxidative stress 
and cytokine content in the cultures, though increased levels of IL-6 and MIP-
1β were measured in supernatants of cultures containing pathological 
concentrations of CD14+HLA-DR-/low cells.  
Due to the high cell requirements of these experiments, only patients enrolled 
in our clinical trial were investigated and their number remains low due to a 
slow recruitment rate that is caused by the extensive cell culture that is 
required for each patient. Interpatient variability was quite high, a fact that 
became particularely obvious since most experiments were only performed 
with 3-4 patients. On the other hand, the same trends of MDSC-dependent 
impairment of DC vaccine quality could be observed across different patients 
and experiments, and in DC generated according to two different protocols. 
These SOPs differ in the medium and culture vessel used, as well as in the 
culture period and the maturation stimulus, but generate comparable results. 
Based on these findings, the negative effect on DC differentiation and 
maturation exerted by CD14+HLA-DR-/low cells seems rather robust. 
In conclusion, it was possible to generate DC vaccine products that fulfill the 
general release criteria of our clinical trial protocol, even if high MDSC 
frequencies were present in the starting material. However, both maturation 
and essential functions of the resulting DC were suboptimal, suggesting that 
such vaccines could be less efficient inducers of anti-tumor immunity in vivo, 
particularly if immature DC are used for vaccination. We suggest to monitor the 
frequency of circulating MDSC in enrolled patients and test depletion of 
CD14+HLA-DR-/low cells if they represent >50% of the total CD14+ population. 
This could potentially improve vaccination efficacy in cancers such as 
melanoma, hepatocellular carcinoma, lymphoma, and prostate cancer, where 
CD14+HLA-DR-/low have been reported. 
Unfortunately, depletion of CD14+HLA-DR-/low cells might prove technically 
difficult. It will require fluorescence-assisted cell sorting, which is currently 
challenging under good manufacturing practice (GMP) conditions, or positive 
selection of CD14+HLA-DR+ cells, which could lead to unwanted cell activation. 
Alternatively, in vivo depletion or differentiation of CD14+HLA-DR-/low cells could 
become an option once more MDSC-targeting drugs reach the clinic. 
 
 
3.2 T CELL DYSFUNCTION IN BREAST CANCER 

The findings presented in Paper III and IV are the first results from a large 
study where we assessed the immunological status in the blood, lymph nodes, 
and tumors of patients with early-stage breast cancer. 
Studies on tumor-immune interactions have been performed predominantly in 
the blood of patients with advanced cancers. Though practical and informative, 
this approach has several flaws:  
i) One of the important aims in studies of tumor-mediated effects on the 
immune system is to understand why tumor immunotherapy frequently fails 
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and how it could be improved. Current immunotherapy trials are often 
performed in patients with advanced cancer that have exploited all other 
therapeutic options. However, patients with early-stage cancer or those with no 
measurable tumor or minimal residual disease after first-line therapy are the 
ones most likely to benefit from immunotherapy. The rationale behind this is 
that small and early-stage tumors will have experienced less immunoediting 
and will exert less immunosuppression. Furthermore, this patient population will 
generally be younger, in better health, and has experienced fewer 
complications due to treatment. Consequently, one can expect better T cell 
responses as there is no strong tumor-mediated immunosuppression, and T 
cells have a better chance to eradicate smaller tumors. 
ii) While systemic consequences of tumor-induced immune alterations will be 
visible in the circulation, peripheral blood can only provide a snapshot of what 
might be going on in the immune system. T cell priming usually occurs in the 
lymph nodes and tumor-immune interactions will first take place in the primary 
tumor and later at sites of metastasis. This suggests that tumor-mediated 
immunosuppression will be strongest in close proximity to the tumor and 
decrease with distance. This is in line with previous reportes by our group on 
immunosuppression in patients with advanced colorectal cancer [210]. 
We thought that early-stage breast cancer patients represented an interesting 
population for the study of tumor-mediated immune alterations, because they 
are usually treated with, and often cured by, surgery, allowing us to compare 
the immune status in the blood before and after surgery. During surgery, the 
first tumor-draining lymph node, the ‘sentinel’ lymph node (SLN), is removed for 
diagnostic purposes. If a metastasis is detected in the SLN, additional LN are 
removed from the axilla. This set-up allowed us to collect material from the 
tumor, as well as from tumor-draining lymph nodes with or without metastasis 
and, in very few cases, additional non-sentinel lymph nodes.  
We set out to test the following hypotheses: 

• patients with early-stage breast cancer show signs of immuno-
suppression when compared with healthy controls 

• surgical tumor removal alleviates tumor-mediated immunosuppression 
• immune cells in close proximity to the tumor exhibit more signs of 

immunosuppression or immunosuppressive potential than those located 
more distantly; e.g. T cell suppression in tumor > SLN > non-SLN ≥ 
peripheral (preoperative) blood  

 
Blood samples were collected before and after surgery from 43 female breast 
cancer patients (stage 1, n=20; stage 2, n=23; stage 3, n=1). Pre- and 
postoperative blood samples from ten women operated for benign tumors in 
the breast, such as papillomas or fibroadenomas, served as controls. On the 
day of surgery, samples from the tumor, the SLN and, if available, additional 
lymph nodes, were collected from the breast cancer patients. All samples were 
analyzed by multi-parametric flow cytometry freshly or after short-term culture. 
Remaining PBMC as well as serum and plasma samples were stored for future 
use. 
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Paper III - Tumor-dependent down-regulation of the ζ-chain in T cells is 
detectable in early-stage breast cancer patients and correlates with immune 
cell function 
Statistical analysis revealed that ζ-chain expression on circulating CD4+ and 
CD8+ T cells was significantly down-regulated in breast cancer patients 
compared with healthy controls in preoperative blood. This was most 
pronounced in patients with stage 2 disease. NK cells from stage 2 breast 
cancer patients showed a trend towards reduced ζ-chain expression compared 
with controls, though this was not significant. While ζ-chain levels remained 
constant in healthy controls, they increased significantly in CD4+ and CD8+ T 
cells as well as NK cells in post- compared with preoperative blood samples of 
breast cancer patients. Again, the strongest differences were observed in stage 
2 patients. Postoperative ζ-chain levels of cancer patients resembled those 
observed at all time points in the healthy controls, indicating that ζ-chain levels 
were normalized by tumor removal. Interestingly, ζ-chain levels in CD4+ and 
CD8+ T cells as well as NK cells were lowest in the tumor, somewhat higher in 
the SLN (in T, but not NK cells), and highest in peripheral blood in all studied 
populations. This is in support of our hypothesis that immunosuppression is 
strongest within the tumor and decreases with distance from the lesion. Tumor-
associated T cells in stage 2 tumors showed lower levels of ζ-chain expression 
than in stage 1 tumors, supporting the theory that tumor progression is 
paralleled by immune escape/immune subversion. 
As it could be detected in the blood as well as in tissues, immunosuppression, 
manifested as ζ-chain down-regulation, was systemic. This was further 
illustrated by the strong correlation between ζ-chain levels found on CD4+ and 
CD8+ T cells and NK cells. 
Loss of ζ-chain expression is usually associated with decreased lymphocyte 
function. We found that low ζ-chain expression in CD4+ and CD8+ T cells as 
well as in NK cells correlated with low production of IL-2 and TNF-α in CD8+ T 
cells. This is similar to what has been reported in other cancers [206, 261], 
though it is possible that we underestimated T cell dysfunction due to strong in 
vitro stimulation. When these experiments were designed we reasoned that a 
short, unspecific stimulation of peripheral blood-derived T cells would induce 
production of cytokines reflecting the in vivo status of the T cell, e.g., tumor-
mediated Th2 skewing. However, it is possible that the stimulus given was too 
strong to detect subtle differences in T cell activation. Furthermore, in this 
particular study, a TCR-dependent stimulus could have given better insight into 
T cell dysfunction caused by reduced ζ-chain signaling. Unfortunately, TCR-
mediated antigen-specific stimulation is difficult to achieve in this group of 
patients due to their unknown HLA profile and the lack of a universally 
expressed breast cancer antigen. Of note, proliferation assays performed on 
the same samples did not reveal any tumor- or ζ-chain-dependent differences, 
despite the use of TCR-dependent stimulation with anti-CD3/CD28 beads in 
these experiments. 
We also observed that patients with low T cell ζ-chain expression had an 
increased frequency of potentially exhausted CD28- effector memory T cells in 
the blood. In general, breast cancer patients had significantly fewer CD28+ Tem 
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cells, suggesting that circulating T cells of breast cancer patients had 
experienced more stimulation and could be less responsive to co-stimulation. 
This is interesting as regards the results published by Pages et al. showing that 
the presence of tumor-infiltrating CD28+ Tem predicted increased survival in 
colon cancer patients [262]. 
 
 
Paper IV - Tumor-induced changes in the phenotype of blood-derived and 
tumor-associated T cells of early-stage breast cancer patients 
Motivated by our finding of T cell dysfunction in form of ζ-chain down-
regulation, we looked in more detail into changes observed in T cell 
subpopulations of breast cancer patients. 
A comparison of total CD3+ or CD4+ and CD8+ T cells did not reveal any 
differences between breast cancer patients and controls. However, breast 
cancer patients with lymph node metastasis had higher frequencies of CD8+ 
cells in total CD3+ T cells in their blood and in the tumor than those without 
metastasis. Within the tumor, higher tumor aggressiveness (=higher Elston 
grade) also correlated with increased CD8+ T cell frequencies. CD4+ T cells 
usually showed a corresponding decrease, though this did not become 
significant. This is probably due to the fact that, besides single-positive CD4+ 
and CD8+ T cells, there are also low frequencies of double-positive and double-
negative populations. Even though none of these showed differences similar to 
those observed in the CD8+ population, small shifts in these subsets could 
prevent differences in CD4+ T cells from becoming significant.  
We further found that peripheral blood and tumor-associated CD8+ T cells in 
cancer patients contained more Tem and Temra cells. Figure 6 gives an example 
of the distribution of naïve and memory CD8+ T cells in the blood of a breast 
cancer patient and a healthy control and summarizes some of the key features 
of T cells at different stages of differentiation. Briefly, using CD45RA and the 
lymph node homing receptor CCR7, naïve (Tnaive, CD45RA+CCR7+), central 
memory (Tcm, CD45RA-CCR7+), effector memory (Tem, CD45RA-CCR7-), and 
terminally differentiated memory cells (Temra, CD45RA+CCR7-) can be 
distinguished [263, 264]. It is still debated whether T cell differentiation is linear 
and how it is controlled [265], but it is generally accepted that Tnaive and Tcm can 
enter the lymphatic system where they can get primed or rapidly expand in 
response to antigen re-encounter, respectively. Tem and Temra cells on the other 
hand recirculate through the blood and can only enter lymphoid organs through 
afferent lymphatic vessels, e.g., when drained from a site of infection. Tem and 
Temra cells enter sites of peripheral inflammation after receiving chemokine 
signals and can rapidly exert cytotoxic activity upon antigen encounter. 
The predominance of memory cells in the tumor is therefore not entirely 
surprising. Interestingly, Tem became the dominant population in tumor-
associated T cells with increasing Elston grade, while Tnaïve and Temra cells 
decreased, suggesting that T cell subset composition or tumor infiltration is 
controlled by tumor-derived factors.  
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 T naïve Tcm Tem Temra 
CCR7 + + - - 
CD45RA + - - + 
CD28 + +/- - - 
CD27 + + +/- - 
CD62L + + +/- - 
Cytotoxicity - +/- ++ +++ 
Homing to lymphoid 

tissues 
lymphoid 
tissues periphery periphery 

 
Figure 6: Characteristics of naïve and memory T cell subsets. Dotplots show a 
representative example of the T cell subset distribution in a breast cancer 
patient and a healthy control.  
 
On the other hand, the shift from naïve to memory T cells in the blood of breast 
cancer patients is striking, as it indicates that CD8+ T cells in breast cancer 
patients have either encountered more antigen, leading to priming of naïve T 
cells, or were expanded in a tumor-dependent fashion. It should be noted that 
T cell subset composition before and after tumor resection were similar, 
indicating that the expanded memory T cell pool did not contract after tumor 
removal. While blood-derived T cells in both healthy donors and breast cancer 
patients exhibited few signs of recent activation, the expression of CD69 in 
CD8+ T cells and PD1 in both T cells subsets was higher in patient-derived T 
cells, indicating previous activation. Furthermore, circulating CD8+ T cells in 
patients exhibited altered homing capacity in comparison with cells of healthy 
controls. Patient CCR7+ subsets displayed increased expression of CCR5 and 
CXCR3, suggesting an increased ability to enter non-lymphoid tissues and 
possibly providing an alternative explanation for the disappearance of naïve T 
cells from the blood. CCR5 was even more strongly expressed in tumor-
associated T cells than those circulating in patient blood, further pointing to this 
chemokine receptor as a possible molecule allowing T cell recruitment to the 
tumor. The expression of CCR5 and its ligand RANTES is well studied in 
breast cancer, where both molecules can be found in the tumor, but not in 
adjacent healthy tissue [46, 47]. Interestingly, CCR5 has been implicated in 
breast cancer aggressiveness and progression, suggesting a possible 
explanation for the altered T cell subset composition in tumors of different 
grades that merits further investigation. In agreement with Paper III, tumor-



 

 
 

45 

infiltrating T cells exhibited signs of exhaustion in the form of low CD28 
expression compared with blood-derived T cells. However, this phenotype is 
also in agreement with the high number of memory T cells in the tumor, which 
tend to be CD28 negative and less dependent on co-stimulation. Interestingly, 
tumor-associated T cells expressed high levels of CD69, suggesting their 
activation, though other factors such as the low ζ-chain expression reported in 
Paper III, as well as the increased presence of regulatory T cells in the tumor, 
questioning their functional capacity.  
Overall, changes observed in the blood of breast cancer patients resemble an 
immunosenescence phenotype with low frequencies of naïve and high levels of 
memory T cells, especially subsets re-expressing CD45RA and low in CD28. In 
elderly humans, this phenomenon has been suggested to result from chronic 
antigenic stimulation, for example due to CMV infection. The majority of 
patients included in our study would not be considered elderly. Furthermore, 
the age difference between patients and controls, though it is significant, is 
unlikely to be associated with significantly higher rates of viral infections in the 
patients, as infection with chronic viruses such as CMV or Epstein Barr virus 
(EBV) is nearly maximal in young adults [266]. On the other hand, it seems 
counter-intuitive to attribute the T cell differentiation observed in cancer patients 
to tumor-derived antigens. Most tumor-associated antigens described in breast 
cancer are self antigens that are overexpressed in the tumor. Consequently, 
immunity to these antigens should be limited by central tolerance. Searching 
the literature revealed that even in optimal cases, where immune-mediated 
tumor regression could be achieved, the number of tumor-antigen specific T 
cells represents a few percent of circulating T cells at best [259, 267, 268]. It is 
therefore more likely that the increase in memory T cells is not antigen but 
cytokine dependent, and the observed shift from naïve to memory T cells is an 
inflation of the memory subset rather than a true decrease of absolute numbers 
of naïve T cells. Absolute cell counts would be helpful in clarifying this issue, 
especially since no difference in CD3+ T cell frequency in breast cancer 
patients was apparent, suggesting that significant expansion of one T cell 
population should be associated with decrease of another subset. Based on in 
vitro studies of T cell plasticity, it is also unlikely that Tem or Temra cells undergo 
strong expansion in response to cytokines alone. This is a property associated 
mainly with Tcm cells, that can renew themselves, but also give rise to other 
memory subsets in response to homeostatic cytokine stimulation, e.g., with IL-7 
and IL-15 [263]. The mechanisms behind the altered T cell subset composition 
therefore remain currently unknown. The altered homing capacity observed in 
some T cell subsets in the blood, and those T cells that had reached the tumor, 
suggests an alternative mechanisms to shift the subset balance that should be 
further investigated. 

 

General conclusions for Paper III and IV 
Considering that, with one exception, all breast cancer patients investigated in 
Paper III and IV had stage 1 or stage 2 disease, our observations of tumor-
induced changes in the immune system were somewhat unexpected. We find 



 

 
 
46 

that tumor-induced immune suppression is not a hallmark of advanced 
disease, but that local, as well as systemic, T cell dysfunction can even be 
observed in early-stage breast cancer patients. Early-stage cancer patients are 
considered most likely to benefit from immunotherapy, due to limited disease 
burden and low or absent immunosuppression. Our results suggest that 
immunomonitoring could be useful for selecting patients who are 
immunocompetent or identifying an optimal time point for the application of 
immunotherapy, e.g., after surgery, when T cell function has improved. On the 
other hand, the decreased frequency of naïve T cells in our patient population 
suggests that successful active immunotherapy might be more difficult than in 
healthy individuals, as there are less naïve T cells available for priming. On the 
other hand, identification of tumor-associated antigens recognized by the 
expanded memory populations would allow the administration of booster 
immunization or the expansion of antigen-specific T cells in vitro. 
 

A technical note on Papers III and IV 

Data analysis of the material described in Papers III and IV is still ongoing. We 
performed a very broad multi-parametric flow cytometry analysis of all available 
material, covering T cell subpopulations and functions as described above. We 
also studied regulatory T cell subsets, myeloid populations including potential 
MDSC and different DC subsets, and additional functional measures such as 
the expression of ARG1, iNOS, and the production of oxidative stress. All these 
measurements have been correlated with clinical parameters and are now 
studied for their interconnection. Expression of some markers will be followed 
up by immunohistochemistry. Unfortunately, immunohistochemistry allows co-
staining of only two markers at a time and therefore makes the identification of 
specific subpopulations difficult. However, the spatial distribution of stained 
cells in immunohistochemistry will add information to the data collected by flow 
cytometry. 
While it was informative, this project was characterized by time-consuming 
sample handling and very tedious and work-intensive data mining. Technical 
advances, e.g., in modern cytometry, have lead to an exponential increase in 
the amount of data that can be generated. This is a great advantage, as more 
information can be extracted from lower amounts of material and the 
simultaneous analysis of many immune parameters will allow a better 
understanding of how things are connected. On the other hand, there is a great 
need for tools that allow us to handle and understand such large amounts of 
data, and the project described above is currently somewhat limited by the lack 
of appropriate data mining software.  
In an effort to approach thousands of variables in an unbiased way, we have 
attempted to perform unsupervised clustering analysis on our data set, similar 
to analysis of microarray data. We immediately noticed that the process of 
extracting and entering data needs to be streamlined to allow such analysis to 
be performed in a timely manner. Automatic data analysis software is 
becoming available, but is still in need of validation. Furthermore, gating 
strategies identifying populations of interest are still difficult without human 
supervision and input. After some first attempts to perform clustering analysis 
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on the data set introduced above, we are also still debating if gated frequencies 
of subpopulations or mean fluorescence intensity values of total cells and their 
subpopulations would be most suitable for this kind of analysis. A look on the 
cover of my thesis will give you an appreciation for the complexity of these 
analyses. The heat map shown on the cover is part of a clustering analysis 
performed with all patients and mean fluorescent intensity values of 
preselected cell populations, thus including only a fraction of the data and no 
clinical parameters at all. These analyses are still in their infancy and are 
therefore unfortunately not yet reflected in the articles presented here. We will, 
however, continue to explore data clustering methods for high-throughput 
analysis of flow cytometry data, using the data presented in Papers III and IV 
for validation.  



 

 
 
48 

4 CONCLUSION 

As the world’s population grows older and lifestyle changes alter our health, the 
incidence of many cancers has increased, while others are disappearing. 
Fortunately, some cancers have become highly treatable, especially if they are 
discovered early. Surgery remains our most potent weapon for combatting 
cancer, and chemotherapy has successfully prolonged the life of many cancer 
patients. However, some cancers, such as melanoma, remain difficult to treat 
and are associated with a very poor prognosis. Though it is currently highly 
individualized and very expensive, immunotherapy can represent an additional 
therapeutic option for patients with cancer. 
Everyone who has read this thesis (small test: the first 5 persons to tell me how 
many times I have used the word ‘MDSC’ on page 18 will get a price), and all 
of us working with tumor immunology, know that the interactions between 
tumors and the immune system are manifold. At the time we study these, the 
tumor has often spread and exerts significant suppression on the immune 
system. However, there is plenty of evidence suggesting that the immune 
system can indeed control tumors, even though the cases investigated by us 
usually represent those in whom the tumor has ‘won’. 
I have decided to play on the side of the immune system. When I graduated 
from high school I wrote in my yearbook that (among some other things) I was 
planning to cure cancer. Though I have not succeeded (yet), I have certainly 
tried to add to our understanding of tumor-immune interactions. I believe that 
adding small bits to our basic understanding of anti-tumor immunity and tumor-
mediated immune subversion is very important, as it provides a knowledge 
base that can be exploited for designing better cancer therapies. I was lucky to 
perform my PhD during a time when enthusiasm for immunotherapy was being 
rekindled and several immunotherapeutic products finally started to reach the 
clinics. In the year 2010, Sipuleucel-T, the first therapeutic anti-cancer vaccine 
in humans, was approved for use in advanced stage, hormone-refractory 
prostate cancer. In March of 2011, the American food and drug administration 
approved Ipilimumab, a monoclonal antibody targeting CTLA-4, for the use in 
metastatic melanoma, where it has been shown to nearly double 1-year 
survival rates in several phase 3 clinical trials. 
Even though the complexity of the immune system can sometimes be dazzling, 
clever tweaking of the system, most likely by a combination of several 
conventional and immunological therapies, should be able to shift the balance 
in favor of anti-tumor immunity. I believe that immunotherapy will become more 
successful as we better understand tumor-immune interactions and which 
patients are able to benefit from such treatments. The complex, time-
consuming and expensive manufacturing, particularly of cellular products, has 
deterred many companies from developing immunotherapies. However, as 
culturing procedures are streamlined and more off-the-shelf solutions, e.g., 
tumor antigen-specific T cell receptors, become available, more patients will be 
able to benefit from immunotherapy in the future. 
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