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ABSTRACT
Background
Myocardial infarction remains a major health problem, despite recent improvements in 
detection and treatment. Infarct size is a major determinant of future mortality and morbidity. 
Management strategies aimed at limiting infarct size, beyond what is achieved with early 
revascularization in combination with platelet stabilization, could be of great prognostic 
importance. Although opening of the infarct-related artery is mostly beneficial, it also 
initiates harmful processes that contribute to the final infarct size, so called reperfusion 
injury. When performing studies aiming at myocardial protection, it is important to have 
methods that accurately quantify ischemic but viable myocardium and the final infarct size. 
Postconditioning, a method that consists of cycles of brief reperfusion and ischemia during 
early stages of revascularization, seems to limit reperfusion injury. Further knowledge is 
important for understanding how efficient this technique is and if the protection leads to 
long-lasting benefits.
 
Methods and results
Study I investigated if postconditioning in addition to primary percutaneous coronary 
intervention (PCI) would limit infarct size and improve left ventricular ejection fraction 
(LVEF), compared with standard PCI. This was determined with cardiovascular magnetic 
resonance (CMR) after one week in 76 patients with ST-elevation myocardial infarction 
(STEMI). There was no difference in infarct size and LVEF within the total study population. 
Postconditioning did, however, have a beneficial effect on final infarct size and LVEF in 
patients with the largest volumes of myocardium at risk (MaR). 
Study II investigated if the results from study I were consistent during long-term follow-up in 68 
patients. In order to quantify infarct size and LVEF, the patients were re-examined with CMR 
at three and 12 months. There was no difference between patients who were postconditioned 
and those who underwent ordinary PCI in the complete study group. Postconditioned patients 
in the upper quartile of MaR did, however, still have less myocardial damage and improved 
LVEF after one year.
Study III compared MaR estimated with a new modified contrast-enhanced CMR sequence 
one week after admission with the reference standard method, myocardial perfusion single-
photon emission computed tomography (SPECT), in 16 patients with STEMI. There was a 
good correlation between the two methods. 
Study IV investigated 21 patients with STEMI one week after revascularization with CMR. 
T2-weighted (edema) images were compared with contrast-enhanced CMR sequence for the 
assessment of MaR. A strong agreement was found between the two methods. 

Conclusions
Postconditioning did not decrease infarct size or improve LVEF one week or 12 months 
after the procedure in all patients with first time STEMI subjected to this method. Patients 
with large MaR seemed, however, to have a consistent benefit over time in the form of 
smaller infarct sizes and improved LVEF. There is a strong agreement between the newly 
developed contrast-enhanced CMR sequence compared with both reference standard SPECT 
and T2-weighted edema images. The implication is that the new technique can be used 
for quantification of MaR and final infarct size in patients with STEMI, through a single 
investigation performed several days after the event.
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SAMMANFATTNING
Bakgrund
Hjärtinfarkt är ett kvarstående hälsoproblem trots betydelsefulla förbättringar i handläggningen 
i form av tidig revaskularisering. Hjärtinfarktens storlek har stor betydelse för patientens 
framtida prognos. Strategier som kan minska hjärtinfarktens storlek är därför viktiga tillägg 
till tidig revaskularisering. Även om ett återställt kranskärlsblodflöde huvudsakligen är av 
godo initierar det också processer som leder till hjärtcellsdöd, så kallad ”reperfusionsskada”. 
Vid studier av möjligheten att reducera sådana skador är det av största vikt att förfoga över 
metoder som tillförlitligt kan mäta skillnaden mellan det hotade myokardområdet (riskarean) 
och den slutgiltiga hjärtmuskelskadan. S.k. postkonditionering, upprepade cykler av återskapat 
kranskärlsblodflöde med mellanliggande avstängning av flödet, är en metod som tycks minska 
reperfusionsskadan. Ytterligare studier behövs emellertid för att slutgiltigt värdera effekten av 
denna åtgärd.

Metoder och resultat
Studie I undersökte om postkonditionering i samband med perkutan koronarintervention 
(s.k. ballongsprängning; PCI) jämfört med enbart PCI utan postkonditionering minskar 
hjärtinfarktstorleken och ökar vänsterkammarens funktion mätt med magnetkamerateknik 
(MR) efter en vecka hos 76 patienter med förstagångsinfarkter. En sådan effekt kunde inte 
verifieras i den totala studiepopulationen. Dock utvecklade postkonditioneringspatienter med 
stora riskareor mindre hjärtinfarkter och hade en bättre hjärtmuskelfunktion jämfört med 
motsvarande kontrollindivider. 
Studie II studerade de långsiktiga effekterna av postkonditionering. Efter tre och 12 månader 
återundersöktes 68 patienter från Studie I med MR. Liksom i den första studien förelåg 
ingen skillnad mellan grupperna vad avser infarktstorlek eller vänsterkammarfunktion, men 
postkonditionerade patienter med stora riskareor hade fortfarande mindre hjärtmuskelskador 
och bättre vänsterkammarfunktion jämfört med sina motsvarande kontrollpersoner. 
Studie III: Riskarean hos 16 patienter med hjärtinfarkt bestämdes med en ny modifierad, 
kontrastförstärkt MR-sekvens en vecka efter insjuknandet och jämfördes med riskarean 
uppmätt med hjärtscintigrafi som referensmetod. Överensstämmelsen mellan de två metoderna 
var god.
Studie IV: Tjugoen patienter med hjärtinfarkt genomgick MR-undersökning av hjärtat en vecka 
efter ballongsprängning. De då erhållna T2-viktade ödembilder jämfördes med motsvarande 
fynd med den modifierade kontrastförstärkta MR-sekvensen. Även här förelåg en god 
överensstämmelse. 

Slutsats
Postkonditionering hade, i studiepopulationen som helhet, ingen effekt på hjärtinfarktstorlek 
eller vänsterkammarfunktion, varken en vecka eller 12 månader efter en förstagångsinfarkt. 
Patienter med stora riskareor tycks emellertid ha nytta av postkonditionering, som hos dessa 
minskade hjärtmuskelskadan och förbättrade vänsterkammarfunktionen på ett bestående 
sätt. Det förelåg en god överensstämmelse mellan den nyutvecklade, kontrastförstärkta MR-
sekvensen jämfört med både referensmetoden hjärtscintigrafi och T2-viktade ödembilder vad 
avser fastställande av det hotade myokardområdet. Fortsättningsvis kan den nya sekvensen 
användas i framtida infarktstudier som behöver mäta både riskarea och infarktstorlek samt 
utföras med endast en undersökning flera dagar efter det akuta insjuknandet.
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LIST OF ABBREVIATIONS
ACEi/ARB	 angiotensin converting enzyme inhibitor/ angiotensin receptor blocker
ACS	 acute coronary syndrome
ADP	 adenosine diphosphate
ATP	 adenosine triphosphate
CABG	 coronary artery bypass grafting
CK	 creatine kinase
CKMB	 creatine kinase isoenzyme MB
CMR	 cardiac magnetic resonance
DTPA	 diethylenetriamine penta-acetic acid
ECG	 electrocardiography
Erk1/2	 extracellular regulated kinase
GP	 glycoprotein
GSK3β	 glycogen synthase kinase-3β
IS	 infarct size
LAD	 left anterior descending artery
LCx	 left circumflex artery
LDL 	 low density lipoprotein
LGE	 late gadolinium enhancement
LV	 left ventricle
LVEF	 left ventricular ejection fraction
MaR	 myocardium at risk
MI	 myocardial infarction
MPS	 myocardial perfusion SPECT
MVO	 microvascular obstruction
mPTP	 mitochondrial permeability transition pore
NO	 nitric oxide
NOS	 NO synthase
PCI	 percutaneous coronary intervention
PET	 positron emission tomography
PKC/G	 protein kinase C/G
PI3K	 phosphatidylinositol-3-kinase
RCA	 right coronary artery
RISK	 reperfusion injury salvage kinases
ROI	 region of interest
ROS 	 reactive oxygen species
SAFE	 survivor activating factor enhancement
SNR	 signal-to-noise ratio
SPECT	 single-photon emission computed tomography
CE-SSFP	 contrast-enhanced steady-state free precession
STEMI	 ST-elevation myocardial infarction
STIR	 short inversion time inversion recovery
99mTc	 technetium
TE	 echo time
TI	 inversion time
TIMI	 thrombolysis in myocardial infarction 
TNFα	 Tumor necrosis factor α
TR	 repetition time
TTC	 triphenyltetrazolium chloride
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INTRODUCTION
Acute myocardial infarction

Worldwide coronary heart disease remains a major health problem despite substantial 
improvements in detection and treatment.1 In 2010 the SWEDHEART registry, comprising 
information on all Swedish hospital admissions for acute myocardial infarction (MI), recorded 
approximately 19,600 patients of whom 5,100 had ST-elevation myocardial infarctions 
(STEMI). The risk profile of patients with STEMI has changed during 1995-2010 with an 
increasing proportion of subjects with obesity, treated hypertension and hyperlipidema and 
also smokers. The proportion of patients with diabetes mellitus has remained around 20 
% persistently. Reperfusion treatment, either by percutaneous coronary intervention (PCI) 
or thrombolysis, was performed in 70 % of the STEMI population during 1995-2004 and 
successively increased to 90 % in 2010, above all in the form of primary PCI. During the 
period 1995-2010, there has been an increase in the short- and long-term survival of patients 
with STEMI regardless of sex and age. This is most likely the result of improved reperfusion 
treatment, more aggressive anti-platelet therapy, increased use of betablockers, statins and 
angiotensin converting enzyme (ACE) inhibitors or angiotensin receptor blockers.2 Still, 
many STEMI patients develop large areas of myocardial necrosis and infarct size is a 
major determinant of subsequent mortality and morbidity.3, 4 Accordingly, early instituted 
therapeutic strategies aimed at limiting infarct size should be of great prognostic importance 
as a supplement to current management focused on primary revascularization in combination 
with platelet stabilization.5 The development of such treatment modalities is critically 
dependent on methods that accurately determine the size of the ischemic myocardium at risk 
(MaR) and final infarct size. Moreover, these methods must be feasible to use in connection 
to the acute revascularization procedure, usually a PCI.

Pathophysiology

All acute coronary syndromes (ACS) comprising unstable angina, non-STEMI and STEMI, 
share a common pathophysiological sequence: the disruption of an atherosclerotic plaque 
leading to platelet aggregation, thrombus formation and a nearly or completely occluded 
coronary artery. This causes myocardial ischemia due to insufficient blood supply in relation 
to the demands of the jeopardized myocardial area. If blood flow is not restored within 
an appropriate time period the ischemia will result in cellular necrosis, which starts in the 
subendocardial myocardium and progresses like a “wave-front” towards the epicardial region, 
eventually developing into a transmural myocardial infarct.6, 7 The ischemic cardiomyocytes 
generate lactic acid from anaerobic metabolism, thereby reducing the intracellular pH which 
activates their sarcolemmal Na+-H+ channels exchanging H+ at the expense of intracellular 
Na+ accumulation. This is followed by an activation of the Na+-Ca2+ channel resulting in an 
increased intracellular Ca2+ concentration and elevated levels of Ca2+ in the mitochondria. 
At the same time, attempts to maintain the mitochondrial oxidative phosphorylation deplete 
adenosine triphosphate (ATP), which is broken down to adenosine diphosphate (ADP) and 
phosphate, resulting in high mitochondrial levels of phosphate. In the end, this will lead to 
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increased mitochondrial membrane permeability and the loss of viability (myocyte necrosis or 
apoptosis) and release of large molecules like creatine kinases and troponins into the blood.8 
Myocardial injury initiates cellular and extracellular processes in the reperfusion phase 
leading to cell death, inflammation and scar formation. Molecular, cellular and interstitial 
events, collectively termed LV remodeling, culminate in changes in the size, shape and 
function of the left ventricle (LV). The LV remodeling process thereby involves the entire 
LV: the injured myocardium, the surrounding border zone and the remote myocardium.   
 

Diagnosis and current treatment

When managing patients with STEMI, the goals are early diagnosis, the earliest possible 
institution of reperfusion therapy and optimal secondary prevention.9 The diagnosis of an 
acute myocardial infarction is, according to internationally established criteria, based on 
typical symptoms in combination with ECG changes and the release of myocardial enzymes, 
in particular troponins.10 The initial diagnosis of acute coronary occlusion can be made 
using several different techniques and methods. Classic symptoms like severe chest pain, 
referred pain in either arm or the jaw and/or acute onset of shortness of breath are still the 
best indications of coronary occlusion. Electrocardiography (ECG) in the acute setting has 
a fairly good sensitivity and specificity for acute myocardial ischemia (ST-elevation, and 
T-wave changes) and necrosis (Q-wave development). Repeated ECG should be obtained if 
possible. Cardiac biomarkers, preferable high-sensitivity troponin I or T, are highly sensitive 
for myocardial necrosis. With strong suspicion from symptoms and ECG, one should not wait 
to see elevated biomarkers before the initiation of reperfusion treatment. Additional evidence 
from cardiac imaging regarding loss of viability or newly developed regional wall motion 
abnormalites will support the diagnosis of myocardial injury, but wall motion abnormalities 
are not specific for STEMI and may be due to ongoing ischemia or an old infarction.10 

For patients with a clinical presentation of STEMI less than 12 hours and with persistent 
ST-elevation or new onset left bundle-branch block, early mechanical or pharmacological 
reperfusion should be performed. If available within a short time, primary PCI – i.e. 
angioplasty and stenting without prior or concomitant fibrinolytic therapy – is considered 
the treatment of choice. Primary PCI decreases mortality and nonfatal re-infarctions and 
causes fewer haemorrhagic strokes compared with thrombolysis.11, 12 The procedure requires 
transportation to hospitals equipped for acute PCI which may delay the onset of reperfusion. 
It is, however, always preferred if the PCI can be performed within two hours after the first 
medical contact.12, 13 In patients presenting early with a large myocardium at risk (MaR), 
the delay should be shorter, and although not truly evidence-based a maximum of 90 min is 
recommended in such patients. Current guidelines stress the need for the shortest possible 
delay between the first medical contact and the onset of PCI, preferrably within 90 minutes or 
less in all patients.9 In the absence of contraindications, the use of pre-hospital thrombolysis 
should always be considered if the time to admission or PCI is significantly delayed. 

Activated platelets are critical to the mechanism following acute plaque rupture and thrombus 
formation. Specific and potent inhibition of platelet activation aims to protect the myocardium 
against ischemic events by maintaining the patency of the infarct-related coronary artery 
without significantly increasing the risk of major bleeding. Improved clinical outcomes have 
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been achieved by inhibiting platelet activation and aggregation.5, 14-19 Such therapy includes 
antithrombotic treatment with: a bolus dose of aspirin (320-500 mg), which inhibits the release 
of thromboxane A2 by the thrombocyte; a bolus dose of clopidogrel (300-600 mg) inhibiting 
the ADP receptor-mediated platelet activation and aggregation; intravenous glycoprotein 
(GP) IIb/IIIa inhibitors which inhibit fibrogen binding to the receptor preventing platelet 
aggregation and finally intravenous unfractionated heparin or inhibitors of the thrombin 
platelet receptor. Recent studies show that bivalirudin combines a comparable efficacy with 
a lower risk of bleeding complications, compared with GP IIb/IIIa inhibitors.20 Additional 
medical treatment, including beta-blockers, ACE inhibitors and aldosterone antagonists, aims 
at preventing early and late myocardial remodeling and decreasing the risk for arrythmias.21-

23 Lipid-lowering is also part of the standard therapy, reducing mortality and the likelihood 
for new coronary events by approximately 20 % per one mmol/l reduction of low density 
lipoprotein cholesterol.24  

Reperfusion injury

Even though reperfusion of an occluded coronary artery is a prerequisite for the salvage of 
ischemic myocardium, the restoration of coronary blood flow to the vulnerable myocytes 
leads to further metabolic and biomechanical injury in the first few minutes of reperfusion. 
This phenomenon is referred to as reperfusion injury (Figure 1). Reperfusion injury can be 
defined as injury (reversible or irreversible) sustained to tissue and organs after the onset of 
reperfusion. Experimental evidence reveals that such injury may be limited by mechanical or 
pharmacological therapy initiated at the onset of reperfusion.25 
Molecular and cellular events underlying the ischemic reperfusion injury are complex, but 
several key pathophysiologic factors have emerged. Reperfusion leads to rapid normalisation 
of ion flux and pH which paradoxically enhances myocardial cytotoxicity by activating ion 
channels leading to the accumulation of intracellular sodium. High sodium concentrations 
further promote an increase in intracellular Ca2+ concentration, which causes myocyte 
hypercontractility, ATP depletion and myocardial stunning.27 Impaired endothelial function 
with reduced bioavailability of nitric oxide (NO) which under normal conditions has benefical 
and protective effects by eliciting vasodilatation, inhibiting platelet aggregation, inhibiting 
leukocyte adhesion and scavenging reactive oxygen species (ROS)28-30, is of importance in 
the process. Paradoxically, high concentrations of NO may, in the presence of ROS, mediate 
additional toxicity by the formation of the highly reactive species peroxynitrite.31 Endothelial 
injury increases vascular permeability and recruitment of inflammatory cells. Cellular 
adhesion molecules promote the invasion of inflammatory cell into the tissue through the 
injured endothelium. Neutrophils in particular are toxic to the myocyte by secreting proteases, 
generating ROS and occluding the microvasculature.
The generation of free radicals through incomplete reduction of oxygen has been well 
described. ROS are highly reactive and can quickly inhibit the scavenging system of the 
myocytes. This in turn triggers cell injury by reactions with lipids, proteins and nucleic acids. 
The enzymes xanthine oxidase, NADPH oxidase and NO synthase are generators of free 
radicals in the reperfused heart.32 ROS triggers the opening of the myocardial permeability 
transition pore (mPTP). When the mPTP opens, this collapses the inner mitochondrial 
membrane potential, which is required to drive the oxidative phosphorylation, and this leads to 
further ATP depletion and cell death. 33, 34 The mPTP is a voltage- and Ca2+-dependent channel 
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located in the inner membrane of the mitochondria. Its opening increases permeability to 
solutes with molecular masses up to 1,500 Daltons.35 

In 1988 Cromptons et al36 were the first to propose the possible involvement of the mPTP 
in reperfusion injury in the heart. It was noted to be sensitive to calcium, oxidative stress, 
phosophate and ADP, all present during myocardial ischemia. The same group discovered 
that opening of the mPTP could be inhibited by the immunosuppressant drug cyclosporin-A 
through the cyclophiline-D matrix protein.37 Following this, Griffiths et al38 discovered that the 
mPTP remained closed during myocardial ischemia and opened during the first few minutes 
of reperfusion, thereby defining a critical time-window for cardioprotection. However, the 
mPTP still needs to be completely characterised.

There is general agreement on the fact that the reperfusion injury occurs very early 
after reperfusion based on the rapid formation of ROS that damage endothelial cells, 

Figure 1. The concept of reperfusion injury. During ischemia, irreversible cell injury leading 
to cell death occurs within the ischemic risk zone in a time-dependent manner. In the absence 
of reperfusion, ischemic injury would progressively kill more and more cells, eventually 
accounting for near total cell death (broken line). Reperfusion halts the process of ischemic 
cell death but in its early stages imposes injury that results in further cell death, beyond that 
due to the ischemic period: this is lethal reperfusion injury. The net result, however, is that 
the reperfused tissue sustains less cell death than would occur in ischemic tissue without 
reperfusion. Targeting cell death due to reperfusion has the potential to maximize cell salvage. 
Postconditioning applied at the onset of reperfusion might limit the extent of reperfusion injury 
and maximizes reperfusion salvage. Adapted from Garcia-Dorado and Piper.26
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rapid normalisation of tissue pH and the opening of the mPTP during early moments of 
reperfusion. Zweier et al39, 40 showed increasing levels of free radicals in rabbit hearts within 
10 seconds of the onset of reperfusion. These results demonstrated that ROS were produced 
in the hearts during ischemia and that free radical generation occurred within moments of 
reperfusion. A recent study in mice demonstrated limitation in infarct size development by 
ischemic postconditioning that was initiated as late as 30 minutes after the initial reperfusion, 
indicating that the time window for the reperfusion injury and effect of protective therapy 
might be longer than initially considered.41

Myocardial conditioning

Since the myocyte seems fairly resistent to prolonged ischemia reperfusion, injury has been 
suggested as a substantial contributer to the final infarct size.42 Experimental studies targeting 
mediators of reperfusion injury report sizeable reductions of the final myocardial injury, 
suggesting that processes induced by reperfusion may contribute to 30-50 % of the final 
infarct size.43 To be useful in clinical practice, reperfusion therapy has to be easy to implement 
in- or outside the hospital and safe, and must not significantly delay time to reperfusion. Also, 
myocardial conditioning needs to be implemented in conjunction with revascularization 
therapy to further limit infarct size and potentially decrease future morbidity and mortality. 
Therapeutic strategies may include activation of endogenous protective signaling mechanisms 
either by local or remote ischemic or pharmacological conditioning of the myocardium. Such 
strategies can be initiated before the ischemic event (preconditioning), during the event 
(perconditioning) or after the onset of reperfusion (postconditioning). 

Ischemic conditioning

Preconditioning 
In 1986, Murry et al44 showed that myocardial infarct size could be reduced if the myocardium 
was exposed to brief episodes of myocardial ischemia and reperfusion before the index 
ischemia, a technique they named ischemic preconditioning. Anesthetised, open-chest dogs 
were subjected to four cycles of five minutes of coronary artery occlusion followed by five 
minutes of reperfusion before the onset of 40 minutes of occlusion followed by four days 
of reperfusion. This procedure resulted in a significant limitation of infarct size: 25 % of 
that seen in the control group. Importantly, collateral blood flow did not differ between the 
two groups. This finding generated a massive research effort, both in vivo and in vitro, to 
identify cellular and molecular pathways behind the cardioprotective effect.45 Successful 
preconditioning is dependent on two distinct “time windows”. Myocardial protection is 
activated within minutes by activating complex signalling cascades triggering the release 
of several mediators, including a number of survival kinases (see below). The effect of this 
“first time window” lasts between one and two hours. A “second time window” opens 24 
hours after the induction of ischemia and lasts for 48-72 hours.46, 47 The requirement for 
preconditioning limits its clinical use in patients with acute MI, but it can be utilized in 
different controlled situations such as in coronary artery by-pass grafting (CABG) or cardiac 
transplantation.48 
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Postconditioning
In 2003, Zhao et al49 performed a study on anesthetized open-chest dogs in which LAD was 
occluded during 60 minutes and reperfused for three hours. In a preconditioned group, LAD 
was occluded for five minutes and reperfused for 10 minutes before the prolonged occlusion. 
In a second, postconditioned group, three cycles of 30 seconds reperfusion and 30 seconds of 
reocclusion preceded the three-hour-long reperfusion. Compared with controls, infarct size 
was significantly smaller in both the preconditioned and the postconditioned group. Indeed, 
as depicted in Figure 2, postconditioning limited infarct size by more than 40 %. Endothelial 
function of the postischemic LAD, assessed using the maximal vasodilator response to 
acetylcholine, was significantly greater in the post- and preconditioned groups. 

Similar infarct-limiting effects has been confirmed in different experimental models, for 
example about 50 % in canines and 25 % in rodents.50-53 The postconditioning algorithm 
differed between different animal models (from 10/10 seconds in mouse and rat up to 
60/60 seconds in rabbit) as did the ischemia/reperfusion time. In some studies performed 
in rabbits and rats, the outcome was similar in the postconditioned and control groups .53, 54 
Experimentally, the outcome of postconditioning in the presence of comorbidities (e.g. age, 
diabetes, hypertension and hyperlipidemia) has been variable, with some studies showing 
infarct limitation while others have been neutral in this respect.55 The postconditioning 
algorithm has not been consistent between different animal and clinical studies. The protocols 
have ranged from 30 to 90 seconds of reperfusion and ischemia and the number of cycles 
from two to four.56 

Coronary occlusion

Control

Precon

Postcon

60 min	                        3h

5  10 min	                           3h

                                            3h

30
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10
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0
Control Precon Postcon

p < 0.05

Infarct size
(% area at risk)

Figure 2. Infarct size limitation by pre- and postconditioning. Coronary occlusion followed 
by reperfusion is associated with infarct development in the ischemic risk zone (Control). 
Brief periods of ischemia and reperfusion performed either before index coronary 
occlusion (Precon=preconditioning) or immediately after index coronary occlusion 
(Postcon=postconditioning) can significantly limit infarct size. In animal models, such as 
the dog, subjected to coronary artery occlusion and reperfusion, either preconditioning or 
postconditioning can confer equivalent protection. Data from Zhao et al.49
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The advantage of postconditioning is that it can easily be implemented in clinical practice 
studying patients with STEMI. Postconditioning can be performed without delaying 
symptom-to-balloon time in connection to a primary PCI during which brief cycles of 
reperfusion and ischemia are instituted using the PCI balloon. In 2005, Staat et al57 performed 
a proof-of-concept study of postconditioning in patients with STEMI. The patients underwent 
primary PCI with direct stenting, with or without postconditioning applied as one minute of 
reperfusion followed by one minute of ischemia repeated four times. Area under the curve 
(AUC) of creatine kinase release over 72 hours was significantly reduced (36 %) in the 
postconditioning group (Figure 3). The same group demonstrated reduction in infarct size by 
postconditioning using single-photon emission computed tomography (SPECT) six months 
after the acute event.58 This effect was associated with improved left ventricular ejection 
fraction (LVEF) after one year determined by echocardiography. Laskey et al59, 60 reported a 
significant decrease in ST-segment resolution and an increased coronary blood flow reserve by 
applying two ischemic cycles of 90 seconds separated by three – five minutes of reperfusion. 
All patients received intracoronary adenosine before coronary flow reserve was measured.   

  
Remote conditioning
That remote conditioning, i.e. brief episodes of ischemia and reperfusion in a remote tissue, 
can protect the myocardial cells from the harmful effects of sustained ischemia, was first 
demonstrated by Przyklenk et al59 in 1993. They demonstrated, in dogs, that brief episodes 
of occlusion of the left circumflex coronary artery (LCx) significantly limited infarct size 
following sustained occlusion of the left anterior descending artery (LAD). Following 
the initial discovery of remote conditioning, it was reported that brief periods of ischemia 
in distant organs such as skeletal muscle, kidney and intestine also induced myocardial 
preconditioning.60-62 It has been postulated that some, still unknown, humoral, neural 
or anti-inflammatory signal is activated in the conditioned organ which then triggers the 
protection pathways of the heart. Remote conditioning can be effective when applied before 
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Figure 3. Top panel: Patients 
with STEMI treated with PCI 
(primary coronary interven-
tion) were randomly assigned to 
receive either no further inter-
vention (control) or four cycles 
of one min angioplasty balloon 
inflation followed by one min 
balloon deflation, starting less 
than one min after direct stent-
ing (PostC=postconditioning). 
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or during the index ischemia in line with the effect of local conditioning. In 2002, Kharbanda 
et al63 demonstrated that remote preconditioning prevents ischemia-reperfusion injury in 
the human forearm and that it limits the extent of myocardial infarction in experimental 
animals, observations with important clinical potential. Protective effects in the heart by 
means of remote ischemia of the arm have been seen in patients undergoing CABG.64 Li et 
al65 used lower limb conditioning during replacement of rheumatic valves and reported lower 
levels of troponin I release. Recently, Bøtker et al66 demonstrated a significant increase in 
myocardial salvage index and increased LVEF in patients with STEMI subjected to remote 
perconditioning. Five minutes of arm-cuff ischemia followed by reperfusion was initiated in 
the ambulance and repeated four times before opening the coronary occlusion by means of 
primary PCI. 

Pharmacological conditioning

Since the discovery that pre- and postconditioning exert substantial protection during 
reperfusion, a growing number of pharmacologic agents with protective effects against 
reperfusion injury have been identified and investigated in experimental studies.52, 67-70. The 
drug should be given before or at the time for reperfusion during the narrow window of 
reperfusion injury. The number of agents tested is large and includes NO donors, adenosine, 
bradykinin, inhalational anaesthetics, cyclosporine-A, erythropoietin, opioid agonists and 
endothelin.71-82 In general, these agents activate the same cardioprotective signalling pathways. 
So far, clinical trials have not shown overwelming results with these compounds. Many 
studies have been neutral and only a few partially successful.83, 84 Adenosine and an adenosine 
agonist were used in AMISTAD-I, -II (with thrombolysis) and ADMIRE (with PCI) trials.72, 

85, 86 In AMISTAD II, the patients given the higher dose of adenosine and early reperfusion 
(<3 hours) had significantly smaller final infarct sizes measured with SPECT. The AMIHOT 
II trial using supersaturated oxygen limited the size of anterior infarcts.87 Recombinant 
atrial natriuretic peptide administration was used in the J-WIND trial and demonstrated 
small limitations in infarct size and improved LVEF after six months.73 In the other arm 
of J-WIND, nicorandil was without beneficial effect. The use of cyclosporin-A (inhibits 
the mPTP through cyclophilin-D) as a intravenous bolus before reperfusion significantly 
limited infarct size measured with cardiovascular magnetic resonance (CMR) five days after 
reperfusion, in a pilot study by Piot et al.76 A European multicenter trial with cyclosporin-A is 
presently conducted in an attempt to confirm this observation. Recently Lønborg et al75 used 
exanatide (glucagon-like-peptid-1 analog) before reperfusion and reported a larger salvage 
index in the treatment group and a trend in absolute infarct size reduction. 

Although hypothermia is not a pharmacological intervention, it is worth mentioning. The 
two major clinical trials (COOL-MI and ICE-IT) investigating mild hypothermia failed to 
show any reduction in infarct size (unpublished observations presented at the transcatheter 
cardiovascular therapeutics meeting,Washington 2004). A subgroup of patients who reached 
a temperature of <35 °C before reperfusion had a significant reduction in infarct size. In 
2010, Götberg et al88 performed a pilot study showing promising results with smaller infarct 
sizes in relation to MaR and a smaller degree of microvascular obstruction (MVO) in patients 
randomized to hypothermia. 
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Potential mechanisms and pathways involved in ischemic conditioning    
 
The current paradigm proposes that ischemic conditioning stimulates a complex network 
of intracellular signalling pathways, which in the end affects specific components of the 
mitochondria such as opening of the mitochondrial KATP channel and/or inhibition of 
the mPTP. In 2001, Xu et al89 suggested that mPTP may be a target for calcium-induced 
preconditioning protection. Subsequent studies have confirmed that mPTP inhibition is part of 
the process of preconditioning in several different settings and species.90-94 Postconditioning 
is also believed to inhibit mPTP opening by regulating the levels of intracellular calcium, 
decreasing oxidative stress and increasing ATP levels, intracellular pH regulation, endothelial 
dysfunction and inflammation.95 Postconditioning delays the normalisation of tissue pH 
by delaying re-alkalinisation of the cardiomyocytes during reperfusion, which decreases 
intracellular calcium levels. This inhibits the opening of mPTP and early contraction of the 
myocytes; a sequence supported by the finding that administration of acidotic buffer during 
reperfusion limits infarct size in dogs.96 Postconditioning attenuates the generation of ROS 
which reduces intracellular and intra-mitochondrial calcium accumulation, inhibiting the 
opening of mPTP. Furthermore, postconditioning may have an anti-inflammatory effect by 
reducing the accumulation of neutrophils, diminishing endothelial activation and decreasing 
the levels of tumor necrosis factor (TNFα) and interleukin (IL-6/8).97, 98

Three major potential pathways will be discussed below, the reperfusion injury salvage 
kinases (RISK) pathway, the survivor activating factor enhancement (SAFE) pathway and 
the sphingosine kinase pathway (Figure 4). The details of these pathways are not fully 
understood and there may be substantial cross-talk between them. Several other mechanisms 
and pathways have been suggested as influencing prevention of ischemia-reperfusion injury, 
but will not be further discussed in this thesis.

The RISK pathway
In 2002, Schulman et al100 demonstrated that classic autacoids such as adenosine, bradykinin 
and opioids trigger cardioprotection through different receptor-mediated mechanisms. 
Extracellular regulated kinase 1/2 (Erk1/2) and phosphatidylinositol-3-kinase (PI3K) 
inhibited glycogen synthase kinase-3β (GSK-3β) via phosphorylation of Akt, thus 
subsequently inhibiting the opening of mPTP. Via another signalling pathway, PI3K-Akt 
activates endothelial NO synthase (eNOS) to produce NO, which stimulates cytosolic protein 
kinas G (PKG) and mitochondrial protein kinas C (PKC-ε) and subsequently opens the inner 
mitochondrial KATP channel, thus mediating cardioprotection through signalling ROS and/
or mPTP inhibition.51, 101-106 Specific receptors of the autacoids have different effects on the 
cardioprotection cascade when they are activated or inhibited.

The SAFE pathway
The activation of the Survivor Activating Factor Enhancement (JAK-STAT) pathway has 
been proposed as an alternative cardioprotective cascade.107 TNFα can have adaptive effects 
depending on its concentration and to which of its two receptors it binds. Activation of exogenous 
or endogenous TNFα at the time of reperfusion initiates the activation of TNF receptor-2 which 
phosphorylates the signal transducer and activator of transcriptin-3 (STAT-3). It is proposed 
that, after translocation to the nucleus, STAT-3 controls the transcription of factors that confer 
cardioprotection by inactivation of GSK-3β or direct inhibition of mPTP.99, 108 



Peder Sörensson

18

The sphingosine kinase pathway
Activation of sphingosine kinase generates sphingosine-1-phosphate which seems to recruit 
other components of the RISK pathway.109, 110 On the other hand, sphingosine is a downstream 
mediator of TNFα and also activates STAT-3 for inhibition of the mPTP.111 The cross-talk 
between these pathways is probably substantial and not fully understood. 

Quantification of myocardial salvage

As mentioned above, the clinical outcome after an acute myocardial infarction depends 
on several factors including the duration of ischemia, the extent of collateral blood flow, 
preinfarction angina and size of the initial MaR.112 An accurate quantification of MaR and 
infarct size is a prerequisite when evaluating treatment efficacy in studies aimed at limiting 
reperfusion injury. 113 Both the extent of the myocardium made ischemic by the coronary 

Figure 4. Schematic representation of the different pathways. The binding of tumor 
necrosis factor (TNF-α) to its TNF receptor-2, and the subsequent activation of signal 
transducer and activator of transcriptin-3 (STAT-3), confers cardioprotection via the 
survivor activating factor enhancement (SAFE) pathway. The SAFE pathway and the 
reperfusion injury salvage kinases (RISK) pathway may both confer protection through 
the mitochondrial permeability transition pore (mPTP). Activation of sphingosine kinase 
generates sphingosine-1-phosphate, which seems to recruit other components of both the 
RISK and SAFE pathways. Adapted from Lacerda et al.99 
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artery occlusion and the amount of finally damaged myocardium, the infarct, are crucial 
when expressing the relationship between these two parameters and thereby the proportion 
of salvaged myocardial tissue. As depicted in Figure 5, myocardial salvage is defined as the 
jeopardized MaR minus the actual infarct size. Relating these two entities to one another 
enhances the possibility to identify small cardioprotective effects and to compare large and 
small infarctions within the same study population, thereby permitting smaller sample sizes 
while maintaining enough power for the investigation.114 The following section will describe 
the techniques used for determination of MaR and infarct size in this thesis.

Cardiac imaging techniques

Left ventriculography
Abnormal wall motion can be assessed by left ventriculography allowing highly reproducible 
measurements of LVEF and the absolute LV volume. It is routinely used in the catheter 
laboratory when determining left ventricular function and in grading valvular insufficiency. 
Left ventriculography can be performed just prior to revascularization of STEMI patients 
with very little time delay in order to determine MaR. Field et al115 first described the method 
for estimation of the extent of circumferential wall motion abnormality. Other angiographic 
techniques for determination of MaR are the Bypass Angioplasty Revascularization 
Investigation (BARI) and the Alberta Provincial Project for Outcome Assessment in 
Coronary Heart Disease (APPROACH) scores.116 The BARI and APPROACH scores are 
calculated by grading all ending arteries. The MaR is then calculated as a percentage of the 
LV by dividing summed scores of a jeopardized area by the total score of the entire LV. The 
APPROACH score, which takes coronary dominance into account, has been validated against 
CMR117. Limitations with left ventriculography include the exposure to excessive amounts of 
contrast which can cause kidney failure, allergic reactions and the use of additional ionizing 
radiation.

Myocardial perfusion SPECT
Noninvasive radionuclide cardiac imaging started in the 1970s. Since then, there have been 
major advances in the ability to image cardiac physiology and pathophysiology, including that 
of myocardial blod flow, metabolism and ventricular function.118 

Figure 5. Myocardial salvage. Corresponding left ventricular short axis views from a patient 
with inferior STEMI. Myocardium at risk (MaR) determined by contrast enhanced steady-
state free precession (CE-SSFP) at end-diastole (left), infarct size image (middle). The 
infarcted area is superimposed on MaR (right) and the pink area is the myocardial salvage. 
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Myocardial perfusion SPECT studies perfusion of the myocardium by means of radioactive 
tracers and tomographic imaging of the heart with a gamma camera. Modern tracers like 
technetium (99m Tc) labeled sestamibi and tetrofosmin have better distribution patterns than 
the previously used thallium, thanks to to a high extraction rate from blood, no re-distribution 
to the blood, a relatively high uptake into the cardiomyocytes and a moderate half-time decay. 
This makes it possible to inject the isotope before opening the occluded coronary artery and 
the implication is that MaR can be determined during a time window of four to six hours 
following reperfusion. After acquisition, the data is reconstructed to enable assessment of LV 
volumes, myocardial perfusion, MaR and, if ECG-gated, myocardial function. Myocardial 
SPECT is considered to be the reference standard for determining MaR. This technique 
was until recently also the reference standard for determining myocardial infarct size.119, 120 
During the last two decades, multiple studies have validated the clinical use of SPECT for 
measurement of infarct size and MaR.121-124 SPECT, which has few contraindications, has been 
used in several multicenter studies using infarct size estimation as an end point.72, 85-87, 125  

Problems related to SPECT are the limiting image resolution (subendocardial necrosis can 
be missed), problems with attenuation artifacts, the use of high doses of ionizing radiation 
and the short half-life of the nuclear tracers making the technique impractical in an acute 
setting.

Cardiac magnetic resonance imaging
The use of CMR, which is a non-invasive and non-ionizing technique, has grown considerably 
in recent years and is now firmly established in clinical practice and research. CMR is reliable, 
relatively easy to use, produces superb image quality and has excellent reproducibility which 
makes it well suited for studies of cardioprotection. 

Basic physics 
Hydrogen is present everywhere in the human body in the form of water and has good 
sensitivity to magnetic resonance, which is the basis when producing images with a high 
signal-to-noise ratio. The hydrogen nuclei behave like small magnets aligning to an external 
magnetic field. When exposed to a field of 1.5 Tesla, the nuclei precess at a resonance 
frequency of 63 MHz, which is within the radiowave range. A radiowave pulse can excite 
a region of the body at this frequency causing the hydrogen nuclei to rotate away from the 
direction of the main magnetic field in a coordinated way, thereby causing another small 
magnetisation field. After the pulse is switched off, the new small magnetisation field decays 
to its former position and energy is transmitted as a radio signal. This signal is transformed 
into a radiowave echo and can be formed into an image using a receiver antenna and computer 
processing. The contrast between different tissues in the image depends on the delay between 
excitation, the read-out signal (echo time, TE) and the time between repetitive radiowave 
excitations (repetition time, TR). 

CMR uses complex sequences to characterise different tissues based on specific nuclear 
properties including T1 and T2. The longitudinal relaxation, commenly referred to as T1 
relaxation, is responsible for the recovery of the protons to its original magnetization value 
in equilibrium. T1 is a rate constant defined as the time it takes for the hydrogen nuclei to 
regain 63 % of the original magnetisation. T1-weighted images can separate tissues if they 
differ in intrinsic or pathological T1. Such images are commonly used to visualize the tissue 



         Effects of postconditioning in myocardial infarction

21

distribution of gadolinium contrast. The gadolinium-based contrast agent is paramagnetic 
and increases tissue contrast by shortening T1-relaxation in tissue containing gadolinium. It 
distributes into the extracellular space and the concentration is proportional to the relative 
amount of extracellular space.126 In acute myocardial infarctions, the extracellular space is 
increased due to ruptured myocytes and edema. The transverse relaxation, commonly referred 
to as T2, describes how long protons remain in-phase after being flipped perpendicular to 
the main magnetic field. T2 is a rate constant defined as the time it takes for the hydrogen 
nuclei to decrease to 37 % of the initial value. In general T2-weighted images show fluids 
with bright signal intensity while solid tissues, like the myocardium. have an intermediate 
intensity. When imaged with T2-weighted sequences the MaR, because of its higher water 
content, appears slightly brighter than the remote myocardium. 

The major components of a modern CMR system consist of hard- and software: a 
superconducted magnet that produces a highly homogeneous and stable static magnetic field; 
the gradient amplifiers and coils within the bore of the magnet that generates the excitation 
pulses; and a radiofrequency antenna that receives the signal from the patient. An advanced 
computer controls all these components and performs a Fourier transformation of the radio 
signal to generate the final images. 

CMR sequences
There is a large variety of CMR sequences. The majority of imaging is performed using 
two basic sequences known as spin- and gradient-echo. Spin-echo sequences are usually 
referred to as “black-blood” and gradient sequences as “bright-blood”. Spin-echo sequences 
are routinely used for anatomical imaging and gradient-echo sequences are for functional 
assessment through cine acquisitions. The most commonly used prepulse is inversion recovery 
(IR), which gives a strong T1-weighting and is valuable when imaging infarcted tissue. 
CMR has high spatial resolution to discriminate subendocardial from transmural fibrosis and 
allows detection of micro-infarctions.127 CMR has a higher sensitivity for MI than SPECT 
and PET128 and can better differentiate viable from nonviable myocardium.129 The correlation 
between late gadolinium enhancement (LGE) and fibrosis has been extensively validated and 
is currently the standard reference for quantification of MI size. 129-132 LGE imaging has been 
validated in multicenter clinical trials.133 

Different CMR sequences have been applied to depict MaR and there is still no general 
consensus on which one to use. Several sequences characterise MaR by determining the 
myocardial edema retrospectively within two to seven days after the index ischemia.134-138 
MaR using T2-weighted sequences are the most extensively studied. Higgins et al were the 
first to quantify myocardial T2 in acute MI in dogs in 1983.139 They reported changes in both T2 
and T1 in infarcted myocardium. Two decades later, it was shown that different T2-weighted 
images could depict MaR several days after the ischemic event and also differentiated acute 
from chronic myocardial damage. 134-138 In 2009, Carlsson et al140 validated the T2-weighted 
sequence against SPECT and the method was subsequently used to demonstrate the rate of 
infarct evolution in man, without confounders.141 More recently, the possibility of quantifying 
myocardial T2 and T1 in normal and ischemic myocardium has been demonstrated. This 
may solve the problems related to subtle differences in signal intensity between normal and 
edematous myocardium.142, 143 Another CMR method to estimate MaR is the “endocardial 
surface area” which relies on the wave front of myocardial injury that occurs in acute MI.117 
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MaR is estimated from the endocardial extent of the infarction and calculated in relation to the 
whole left ventricle endocardial surface. Ubachs et al recently reported that the endocardial 
extent of LGE underestimates the MaR and consequently myocardial salvage.144

The limitations of CMR in cardioprotective studies have to be recognised. While LGE 
is accepted as the reference for the quantification of the final infarct size, the experience 
with different sequences regarding MaR is considerably smaller. Other limitations include 
problems with artifacts, sequences that are often vendor-specific and not available for all CMR 
centers and the lack of extensive validation of some sequences. Claustrophobia, high cost and 
pacemakers/defibrillators not compatible with CMR may also limit the use of CMR.  
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AIMS
The overall aim of this thesis was to investigate the effects of postconditioning on infarct size 
and to improve the methodology for the quantification of myocardial protection in patients 
with STEMI. 

The specific aims were to:

I.	 Evaluate the short-term effect of postconditioning on infarct size in patients with 
STEMI

II.	 Evaluate the long-term effect of postconditioning in patients with STEMI
 
III.	 Develop and validate a method for the quantification of MaR using contrast enhanced      

CMR one week after the infarction

IV.	 Explore the relationship between contrast enhanced CMR and T2-weighted edema 
imaging for the quantification of MaR 
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MATERIAL AND METHODS
The protocols and procedures were approved by the local ethic committees for human 
research at Karolinska Institutet and the University of Lund, Sweden. The studies were 
performed according to the declaration of Helsinki and good clinical practice.145 Written 
informed consent was given by all patients.

Study populations

Study I and II
Between April 2007 and March 2009, a total of 795 patients were referred to the coronary 
care unit of Karolinska University Hospital, Solna, for a primary PCI due to STEMI. As can 
be seen in Figure 6, 89 patients were randomized and 76 completed the study protocol in 
study I and 68 patients completed the long-term follow-up in study II. 
Inclusion criteria were chest pain ≥30 min and ≤6 h in combination with ST-segment 
elevation ≥0.1 mV (≥0.2 mV in V1-V3) in two contiguous ECG leads or left bundle branch 
block and a thrombolysis in myocardial infarction (TIMI) grade 0 flow in the infarct-related 
artery.146 Exclusion criteria were previous MI, previous CABG, cardiogenic shock, cardiac 
arrest, renal impairment (serum creatinine >150 mmol/l), ongoing treatment with metformin, 
contraindication for CMR, persistent atrial fibrillation and any condition that was considered 
to interfere with the possibility for the patient to complete the study protocol.  

Eligible
n = 795

Randomized 
n = 89

Standard PCI 
n = 45

Postconditioning
n = 44

Control group
Study I
n = 38

Postconditioning
Study I
n = 38

Control group
Study II
n = 35

Postconditioning
Study II
n = 33

Excluded	 7
Unwillingness	 3
Poor image quality	 3
Sudden death	 1

Excluded	 3
Unwillingness	 3

Excluded	 6
Unwillingness	 3
Protocol violation	 2
Poor image quality	 1

Excluded	 5
Unwillingness	 2
Misc	 2
CABG	 1

Inclusion criteria not met or 
fulfilling exclusion criteria

n = 706

Figure 6. Flow chart of patient recruitment in Studies I and II. 
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The main reason for loss to follow-up in Studies I and II was unwillingness to complete the 
protocol and poor image quality. One patient in the control group died suddenly. Recurrent 
MI did not occur in any of the two groups during follow-up.

Study III
Study III comprised 16 consecutive patients (age: 64 ± 8 years; 12 males) with a first-time 
STEMI fulfilling the inclusion and exclusion criteria as described for Studies I and II. They 
were admitted for primary PCI during the period February 2007 to December 2008 at times 
when myocardial perfusion scintigraphy was accessible. Twelve patients were included at the 
Karolinska University Hospital Solna and four at the Lund University Hospital. The culprit 
lesion was located in the right coronary artery (RCA) in 13 patients, the LAD in two and the 
LCx in one. There were no severe adverse events, including reinfarctions, prior to the CMR 
investigation. 

Study IV
Twenty-one patients (age 59 ± 10 years; 17 males) presenting at Lund University Hospital with 
a first-time acute STEMI, due to an occluded coronary artery confirmed with angiography, 
were prospectively included in study IV. All patients were treated with primary PCI with 
coronary stenting, resulting in TIMI grade 3 flow in the culprit artery. The RCA was the 
culprit vessel in 12 patients and the LAD in six patients. Furthermore, two patients presented 
with an occlusion of the LCx artery and one patient had a left main occlusion. 

Study design

Studies I and II
The study was conducted as a prospective randomized open study with blinded evaluation. 
All patients received aspirin, clopidogrel and enoxaparin. A GPIIb/IIIa inhibitor was given 
according to the choice of the PCI operator. A coronary angiography was performed to 
confirm TIMI 0 flow in the infarct-related artery. In order to determine MaR, a biplane left 
ventriculography was performed before revascularization.
Following these procedures, the patients were randomized to primary PCI only or PCI 
combined with postconditioning performed by reinflating the balloon at the same location to 
a pressure of 2-4 atmospheres for 60 seconds, starting 60 seconds after the initial reperfusion 
(Figure 7). Postconditioning was performed with the same balloon catheter as the one used 
for the initial inflation. The PCI intervention was completed through a coronary angiogram to 
determine the final TIMI flow. Collateral flow to the infarct zone was assessed on the initial 
angiogram before PCI and graded on a scale of zero to three.147

Blood sampling was performed at admission and every four hours during the first 24 hours 
and then every six hours until 48 hours after reperfusion. Both peak values and AUC of 
cardiac biomarkers were determined. A standard CMR was scheduled one week after the 
onset of symptoms (Study I) as well as at three and 12 months (Study II) for determination of 
cardiac volumes, infarct size and microvascular obstruction.  

Study III
The patients were consecutively recruited for Study III received an intravenous injection of 
99 mTc-labeled tetrofosmin or sestamibi prior to opening of the occluded vessel. All patients 
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received oral antiplatelet therapy with aspirin, clopidogrel and intravenous infusion of a GPIIb/
IIIa inhibitor in connection with the PCI procedure. Myocardial perfusion SPECT imaging 
was performed within four hours, to visualize and quantify MaR. A CMR examination was 
performed one week after the onset of symptoms.

Study IV
The patients treated with primary PCI due to STEMI were consecutively recruited and 
enrolled at Lund University Hospital. All patients received oral antiplatelet therapy with 
aspirin, clopidogrel and intravenous infusion of a GPIIb/IIIa inhibitor in connection with the 
PCI procedure. A CMR examination was performed one week after the onset of symptoms.

Methods

Angiographic determination of MaR (Studies I and II)		   
MaR was quantified by measuring the circumferential extent of abnormally contracting 
segments. Left ventriculography (30º right anterior oblique, 60º left anterior oblique) was 
performed immediately before coronary angioplasty during infusion of 40 ml of iodine 
contrast. An x-ray digital imaging software system (Integris HM 3000, Philips, The 
Netherlands) was used for determining the global and regional LV function. Global ejection 

Figure 7. The protocol used in Studies I and II. Patients with STEMI were randomized 
either to a control group (n=45) with standard PCI (primary coronary intervention) or to an 
intervention group (n=44) in which the PCI was followed by postconditioning in four cycles 
of reperfusion for 60 seconds followed by ischemia for 60 seconds. Cardiac biomarkers 
were measured for 48 hours after admission. Cardiovascular magnetic resonance (CMR) 
was scheduled at one week (n=38/38), three and 12 months (n=35/33) after the PCI. Left 
ventricular (LV) angiography for estimation of myocardium at risk (MaR) was performed 
prior to PCI. TnT (Troponin T). 
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fraction was calculated using the area-length method. Centerline chord motion analysis was 
used to quantitatively assess regional LV function. In this technique, endocardial motion is 
measured along 100 chords constructed perpendicular to a centerline. The motion of each 
chord was normalized by the end-diastolic circumference to yield a fractional shortening. 
This value was converted into units of SD from the normal mean motion of each chord 
as derived from a normal reference population. Wall motion and abnormally contracting 
segments were analyzed in the distribution territory of the LAD (10 to 66 chords) in patients 
with anterior infarctions, and in the distribution territory of the RCA or LCx (51 to 80 chords) 
in patients with inferior infarctions. Abnormal wall motion extent was defined as the number 
of chords displaying hypokinetic motion (<1 SD) expressed as a percentage of the LV.115, 148 
These measurements were performed by two experienced investigators unaware of the group 
to which each patient belonged.

Cardiovascular Magnetic Resonance (Studies I-IV)
A standard clinical CMR protocol, except for the time of administration of contrast, was 
scheduled to be performed one week, three and 12 months after the onset of symptoms. 
Timing was chosen at one week to avoid the early infarct phase during which a rapid decrease 
in infarct size has been reported.149 Two different 1.5 T CMR systems (Signa Excite Twin-
Speed, General Electric Healthcare, Waukesha, WI, USA or Philips Intera CV, Best, The 
Nederlands) were used in Studies III and IV. In Study I and II only the GE camera was used. 
Eight- and five-channel cardiac-coil was used and all patients were in the supine position 
with vector-ECG monitoring. A bolus of gadolinium contrast agent 0.2 mmol/kg bodyweight 
(Omniscan, GE Healthcare, Norway or Magnevist, Bayer Pharma, Berlin, Germany) was 
given intravenously just before positioning the patient in the scanner. The image protocol 
included scout images, localization of the short axis and then covering the whole LV with 
retrospectively gated steady-state free precession (SSFP) cines referred to as contrast-
enhanced (CE-SSFP) images in Studies III and IV. The following typical parameters on GE-
scanner was used; SSFP (TE 1.58 ms, TR 3.61 ms, flip angle 60 degrees, 25 phases, 8 mm 
slice, no gap, matrix 226 × 226). LGE images were acquired 15-20 minutes after contrast 
injection using an inversion recovery gradient echo sequence (TE 3.3 ms, TR 7.0 ms, TI 180-
250 ms to null the myocardium, 8 mm slice, no gap, matrix 256 × 192) and the same slice 
orientation as cine SSFP images. Typical parameters on the Philips scanner were; SSFP (TE 
1.4 ms, TR 2.8 ms, flip angle 60º, 30 phases, 8 mm slice, matrix 160 × 141). LGE images 
were acquired 15-20 minutes after contrast injection using inversion recovery gradient echo 
sequence (TE 1.14 ms, TR, 3.8 ms, TI 180-250 ms, 8 mm slice, no gap, matrix 240 × 180). 
Cardiac triggering was set for diastole to reduce motion artifacts. Each slice was obtained 
during end-expiratory breath holding. Two-, three- and four-chamber views were also 
obtained to confirm the findings. An additional T2-weighted triple inversion turbo spin-echo 
sequence (T2-STIR) was added in study IV before contrast bolus was given to depict the 
MaR. Imaging parameters for the T2-weighted sequence were: echo time, 100 ms; repetition 
time, 2 heart beats; number of averages, 2; inversion time, 180 ms; image resolution, 1.5 
x 1.5 x 8 mm; slice gap, 0 mm. No parallel imaging was performed to minimize signal 
inhomogeneities, due to differences in coil sensitivity. 

Image analysis
All CMR images were analyzed off-line using freely available segmentation software 
(Segment v1.7 – v1.8 http://segment.heiberg.se/).150 In the short-axis stack end-diastolic and 
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end-systolic volumes were measured in the phase with the largest and smallest LV volumes 
respectively. LVEF, stroke volume and LV mass were calculated on cine SSFP sequences 
using manual delineation of the endocardial and epicardial borders, including papillary 
muscles and trabeculations when contiguous with the left ventricle. For correct LV volumes 
and mass estimations the basal slices were examined in different cine projections. LV mass 
was calculated by multiplying the myocardial volume by the density of myocardial tissue 
(1.05 g/ml). All volumes were indexed to body surface area.

The MaR derived from T2-weighted imaging was assessed by tracing endocardial and 
epicardial borders of the LV in all short-axis slices, followed by manual delineation of the 
hyperintense regions. The papillary muscles were excluded from the myocardium. The MaR 
was then defined as the total amount of hyperintense myocardium in all short-axis slices 
and expressed as a percentage of LVmass. If present, hypointense myocardium within the 
area of increased signal intensity (microvascular obstruction) was included in the MaR. The 
contrast ratio for the T2-weighted images was determined for each patient as the mean signal 
intensity in the MaR divided by the mean signal intensity in remote myocardium. The MaR 
derived from CE-SSFP was also assessed by tracing endocardial and epicardial borders of 
the left ventricle in all short-axis slices in end-diastole and end-systole, followed by manual 
delineation of the hyperintense regions in both end-diastole and end-systole, by two observers 
blinded to LGE images. The values of MaR in end-diastole and end-systole were averaged 
and expressed as a percentage of the LV mass. The contrast ratio for the CE-SSFP images 
was determined for each patient as the mean signal intensity in the MaR divided by the mean 
signal intensity in remote myocardium. 

The infarcted myocardium was automatically quantified from the short-axis LGE images. 
The endocardial and epicardial borders were traced manually with exclusion of the papillary 
muscles. The LGE myocardium was then defined using a computer algorithm that takes into 
consideration partial volume effects within the infarcted region.151 Manual adjustments were 
made when the computer algorithm was obviously wrong. If present, a hypointense signal 
within the area of LGE (microvascular obstruction) was included in the analysis as 100 % 
infarction. Myocardial infarct size was expressed both as a percentage of the LV and as a 
percentage of MaR. The myocardial salvage index was defined as 100 x ([MaR – infarct 
size]/MaR), where MaR was assessed using both T2-weighted imaging and CE-SSFP.

In study II, change in LV sphericity index was used for detection of cavity remodeling.152 
The major axis was manually measured in an end-diastolic four-chamber view starting at 
the mitral annulus and ending at the apical endocardial border. The radius was used for 
calculating the sphere volume. End-diastolic LV volume was divided by the sphere volume 
creating a sphericity index for every patient.

SPECT (Study III)
Myocardial perfusion SPECT was used as reference standard for quantifying MaR. Prior to 
opening of the occluded vessel, the patients received a body weight-adjusted (350-700 MBq) 
intravenous injection of 99 mTc-labeled tetrofosmin (Amersham Health, Buckinghamshire, 
UK) or sestamibi (MIBI, Cardio-lite, Bristol Myers Squibb, USA). Myocardial perfusion 
SPECT imaging was performed within four hours to visualize and quantify MaR using 
either of two dual-head cameras: GE camera (Ventri, GE Healthcare, USA) or Sopha camera 
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(DSTXL; Sopha Medical Vision, Bue Cedex, France). The patients were placed in the supine 
position and imaged in steps of 5.6 degrees using a 64 × 64 matrix, with a typical pixel size 
of 5 × 5 mm and a slice thickness of 5 mm. The reconstructed voxel size was 3 × 3 × 3 mm 
(Sopha) or 6.4 × 6.4 × 6.4 mm (GE). Image acquisition time was approximately 15 minutes. 
Iterative reconstruction using maximum likelihood expectation maximization was performed 
with a low-resolution Butterworth filter and a cut-off frequency set to 0.5 of Nyquist and an 
order of 5.0. No attenuation or scatter correction was applied and short-axis images were 
reconstructed semi-automatically on the respective workstation for each camera.

Image analysis
Analysis of myocardial perfusion SPECT defect for MaR was performed off-line using the 
program mentioned above. The automatic segmentation finds the centerline through the LV 
wall and identifies the endo- and epicardium based on individually estimated wall thickness 
and signal intensity values within the image.153 Manual adjustment of the automatic delineation 
was sometimes required in the left ventricular outflow region and basalt slices. The perfusion 
defect was determined using an automated algorithm that considers myocardium with <55% 
of normal as being ischemic.154 MaR was quantified as percentage of the LV mass.

Blood analysis
In Study I, Troponin T was analyzed with an immunoassay (Modular Analytics E-module, 
Roche Diagnostics) and CKMB (creatine kinase, myocardial bound) with a chemiluminescence 
technique (UniCel DxI 800, Beckman Coulter AB). Sampling was performed at admission 
and every four hours during the first 24 hours after reperfusion and then every six hours until 
48 hours. Both peak values and AUC were determined. 

Statistics

The primary endpoint of Study I was infarct size after one week, expressed as percentage 
of MaR. Secondary endpoints were global left ventricular function and release of cardiac 
biomarkers during the 48 hours following the coronary intervention. Based on an expected 
reduction in infarct size of 20 % and SD of 30 %, 36 patients were needed in each group to 
achieve p<0.05 with a power of 80 % and a two-tailed test. To compensate for patient dropout, 
a total number of 90 patients was planned to be recruited. Computer-generated randomization 
in blocks of eight was performed following stratification for LAD and non-LAD occlusions. 
All data were presented as medians and 25th, 75th percentiles (Studies I and II). The Mann-
Whitney U test was used to test for differences in infarct size and cardiac biomarkers between 
groups. Fisher’s exact test was used to test for differences between dichotomized variables. 
Linear regression was used for comparing infarct size in relation to the MaR between groups, 
and regression analysis was performed with four residuals looking at the best equation.

In Study II the same statistical methods were used for comparing groups at three and 12 
months, in addition to Wilcoxon sign rank test with Bonferroni correction for multiple 
testing, used for longitudinal follow-up on CMR measurements. In Studies III and IV, data 
were expressed as mean±SD. Wilcoxon Mann-Whitney Rank Sum test was used to test for 
differences between groups (SPECT and CE-SSFP). Wilcoxon Sign Rank test was used to test 
the relative signal enhancement in contrast-enhanced regions on CE-SSFP images compared 
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with remote myocardium. Pearson’s correlation was used to determine the relationship 
between T2-weighted imaging and CE-SSFP with regard to both MaR and the myocardial 
salvage index. Bland-Altman plots were constructed for comparing intra- and interobserver 
variability and calculated as the SD of the difference between two calculations divided by 
the average of the two observers. Statistical analysis was performed using GraphPad Prism 
version 5.00 (GraphPad Software, San Diego, California, USA) and SPSS version 17.0 
software package (Chicago, Illinois, USA).
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RESULTS
Study I: Short-term effects of postconditioning in patients with STEMI 

Clinical characteristics and angiographic details from the patients are shown in Tables 1 and 
2. As can be seen, the two study groups were well balanced. 

Table 1. Patient Characteristics in the Control and Postconditioning groups

Variables Control Group Postconditioning 
Group

p

Risk factors
Age, years (range) 62 (42-85) 63 (37-87) 0.52
Male sex, n (%) 34 (89) 31 (82) 0.52
Body mass index, kg/m2 27 (25, 29) 27 (25, 31) 0.56
Ischemia time, minutes 185 (141, 259) 165 (137, 223) 0.40
Current smokers, n (%) 11 (29) 10 (26) 1.0
Dyslipidemia*, n (%) 21(62) 27(77) 0.80
Hypertension, n (%) 11(29) 6(16) 0.27
Previous angina, n (%) 3 (8) 6 (16) 0.49
Diabetes**, n (%) 12 (36) 17 (47) 0.47
Treatment on admission
   aspirin, n (%) 3 (8) 2 (5) 1.0
   beta-blockers, n (%) 4 (11) 1 (3) 0.36
   ACE/ARB, n (%) 5 (13) 2 (5) 0.43
   statins, n (%) 3 (8) 3 (8) 1.0
Treatment during angioplasty
   opioids, n (%) 29 (76) 31 (82) 0.78
   aspirin, n (%) 38 (100) 36 (95) 0.49
   clopidogrel, n (%) 37 (97) 36 (95) 1.0
   glycoprotein inhibitors, n (%) 30 (79) 30 (79) 1.0
Treatment at discharge
   aspirin, n (%) 38 (100) 37 (97) 1.0
   clopidogrel, n (%) 38 (100) 38 (100) 1.0
   beta-blockers, n (%) 37 (97) 38 (100) 1.0
   ACE/ARB, n (%) 20 (53) 23 (61) 0.64
   statins, n (%) 37 (97) 37 (97) 1.0
Data are presented as median and quartiles for continuous variables except age which is median and 
range, or number of patients and percentage for dichotomous variables. 
ACE = angiotensin converting enzyme inhibitor, ARB = angiotensin receptor blocker.
*n=34 (control), 35 (postconditioning), **n=33 (control), 36 (postconditioning)
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Infarct size and left ventricular ejection fraction
The postconditioning protocol with inflation and deflation of the PCI balloon was well 
tolerated in all patients and no technical problems occurred during the procedure. Infarct 
size, presented as a percentage of MaR (Figure 8), did not differ significantly between the 
two groups: control patients 44 % (30, 56) and postconditioning patients 47 % (23, 63). In 
the multiple regression analysis, infarct size was significantly related to postconditioning and 
MaR (p=0.001) but not to age, sex, ischemic time or smoking habits. The regression analysis 
in which the final infarct size was related to MaR showed a significant difference in slope of 
the regression lines between the postconditioning group and the control group (Figure 9). A 
detailed analysis was therefore performed in patients with MaR in the upper quartile. Final 
infarct size in patients in this subgroup (n=19; Figure 10) was 54 % (50, 68) among those 
belonging to the control group and 33 % (21, 57) in postconditioned patients (p=0.03). There 
were no significant differences between patients belonging to the lower quartiles. 
Median LVEF after one week did not differ between the control and postconditioned patients: 
controls = 50 % (40, 55) and postconditioned = 50 % (41, 54). In patients with large MaR, 
there was a significant difference in the slopes of the regression lines, with a higher LVEF in 
patients in the postconditioning compared with those in the control group (Figure 11). 
Intra- and interobserver variation between two blinded readers for infarct size measurement 
(n=20) was 0.0±3.5 % and 0.7±1.1 % (difference and SD), respectively.

Table 2. Angiographic Data
Variable Control Group Postconditioning 

Group
p

Infarct related artery
   LAD, n (%) 14 (37) 14 (37) 1.0
   LCx, (%) 1 (3) 4 (11) 0.36
   RCA, n (%) 23 (61) 20 (53) 0.64
Collateral flow grade 2 or 3, n (%) 8 (21) 6 (16) 0.77
Number of vessels
   one-vessel disease 25 (66) 23 (61) 0.81
   two-vessel disease 11 (29) 11 (29) 1.0
   three-vessel disease 2 (5) 4 (11) 0.67
Abnormally contracting segments (%) 23 (15, 34) 30 (19, 40) 0.19
Direct stenting, n (%) 2 (5) 0 (0) 0.49
Bare metal stent, n (%) 38 (100) 37 (97) 1.0
TIMI flow grade 3 after PCI, n (%) 35 (92) 34 (89) 1.0
Data are presented as median and quartiles for continuous variables except age which is median and 
range, or number of patients and percentage for dichotomous variables. 
LAD = left anterior descending coronary artery; RCA = right coronary artery; LCx = left circumflex 
coronary artery; TIMI = Thrombolysis In Myocardial Infarction; PCI = percutaneous coronary 
intervention.
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Cardiac biomarkers
In the overall study population there were no differences troponin T and CKMB (AUC or 
peak values) between the control and postconditioning groups. AUC for troponin T was 
147 (80, 269) and 165 (95, 279) in the control and postconditioning groups while AUC for 
CKMB was 3890 (2388, 6264) and 4175 (2406, 6060) respectively. The regression analysis 
in which troponin T was related to the MaR showed a trend favoring the postconditioning 
group (p=0.09). There was no difference in troponin T release between the groups when 
comparing the upper quartile of MaR. When AUC for CKMB and troponin T was compared 
with both MaR and infarct size measured with CMR, a stronger correlation was seen with 
infarct size than with MaR (data not shown).   
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Figure 8. Infarct size in relation to the 
myocardium at risk (MaR) one week 
after admission. Infarct size did not differ 
significantly between patients in the control 
and postconditioning groups.
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Figure 9. Infarct size plotted against myo-
cardium at risk (MaR) for the overall study 
population. There are significant differences 
between the slopes of the regression lines 
between patients in the control (○) and post-
conditioning (●) groups. LV, left ventricular.

p=0.001

Upper quartile, 1 week

Control Postconditioning
0

20

40

60

80

100

p=0.03

In
fa

rc
t s

iz
e

(%
 M

aR
)

Figure 10. Infarct size in patients with 
myocardium at risk (MaR) in the upper 
quartile one week after admission. A 
significantly smaller infarct size can be 
seen in the postconditioning group.

1 week

0 20 40 60
0

20

40

60

80
Control
Postconditioning

p<0.01

MaR

LV
EF

(%
)

Figure 11. Left ventricular ejection fraction 
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week and plotted against myocardium at 
risk (MaR). There is a significant difference 
between the slopes of the regression line 
between patients in the control (○) and 
postconditioning (●) groups.

p=0.01



Peder Sörensson

34

Study II: Long-term follow-up of postconditioning in patients with STEMI 

Infarct size and LVEF
Median infarct size, expressed as a percentage of MaR, at three and 12 months did not differ 
between the control and postconditioning groups for the entire study population (Figure 12). 
The slope of the regression lines for the final infarct size in relation to MaR did, however, 
differ significantly between the two groups, an observation that was consistent over time 
(Figure 13). In the upper quartile of MaR (n=17) patients randomized to postconditioning had 
significantly smaller infarct sizes than the control patients at 12 months and a trend in the same 
direction was seen at three months (Figure 14). Median LVEF for the whole study population 
did not differ between the control and postconditioning groups. The slope of the regression 
lines describing LVEF in relation to MaR differed significantly between the two groups at 12 
months. In the group of patients in the upper quartile of MaR, LVEF was significantly higher 
in the postconditioning group than in the control group both at three and 12 months (Figure 
15). Adverse LV remodeling (defined as a consistent increase in ESV >15 %) occurred in nine 
patients equally distributed between the two groups. End-diastole LV sphericity index for the 
entire study population did not differ between or within groups over time.
The intra- and interobserver variation between two blinded readers for infarct size measurement 
(n=18) was 0.2±1.0 % and 0.1±1.3 % and for LV mass (n=12) was -0.8±7.0 g and -0.4±6.8 g 
(mean difference ± SD), respectively.
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Figure 12. Infarct size in relation to myocardium at risk (MaR) for the overall study population 
at (A) 3 and (B) 12 months in the control group and the postconditioning group.

Figure 13. Infarct size (expressed in relation to left ventricular mass) plotted against 
myocardium at risk (MaR) for the overall study population at (A) 3 and (B) 12 months in 
patients belonging to the control (○) and postconditioning (●) groups. Significant differences 
between the slopes of the regression lines of the two groups are indicated.
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Study III: Validation of contrast-enhancement SSFP

Myocardium at risk
MaR, defined as the non-perfused myocardial volume on SPECT, ranged from 11 to 51 % 
(mean 27 ± 10 %) of the LV wall volume. The CE-SSFP, calculated as the mean values 
obtained at end-diastole and end-systole, ranged from 17 to 47 % (mean 27 ± 7 %) of the 
LV wall volume. There was a good correlation (Figure 16) between MaR determined from 
CE-SSFP and that determined with SPECT (r2 = 0.78, p < 0.001). The difference between 
CE-SSFP and MaR on SPECT was 0.5 ± 5.1 % (p = 0.60). The location of the enhanced 
region on SSFP cines always agreed with MaR on myocardial perfusion SPECT images. 
Two typical examples of MaR and infarct area in the RCA and LAD regions are shown in 
Figures 17 and 18. The signal intensity ratio between regions of gadolinium-enhanced and 
remote myocardium was 1.42 ± 0.25 (p < 0.001). The interobserver variability for CE-SSFP 
between two readers was 1.6 ± 3.7 %. Infarct size determined using CMR ranged from 1 to 
30 % (mean 9 ± 7 %) of LV wall volume and mean transmurality ranged from 26 to 52 %. 
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Figure 14. Infarct size in patients within the upper quartile of myocardium at risk (MaR) at 
(A) 3 and (B) 12 months in the control group and the postconditioning group. 
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Figure 15. Left ventricular ejection fraction (LVEF) in patients within the upper quartile 
of myocardium at risk (MaR) at (A) 3 and (B) 12 months in the control group and the 
postconditioning (PostC) group.
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Figure 16. Agreement between MaR determined using CMR and SPECT. Panel A: Scatter 
plot showing MaR one week after reperfusion determined using contrast-enhanced SSFP 
(CE-SSFP) versus MaR as it was before reperfusion determined using myocardial perfusion 
SPECT together with line of identity. Panel B: Bland-Altman plot showing the agreement 
between MaR determined using myocardial perfusion SPECT and CE-SSFP. The difference 
was 0.5 ± 10 % (mean ± 2SD).
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Figure 17. Anterior STEMI. Corresponding 
left ventricular short axis views from a 
patient with anterior myocardial STEMI. 
MaR determined using (a) myocardial 
perfusion SPECT, (b) contrast-enhanced 
SSFP (CE-SSFP) at end-diastole, (c) infarct 
size images with LGE and (d) CE-SSFP 
at end-systole. It is clearly seen that the 
region of infarction does not correspond in 
size or endocardial extent to the region of 
myocardium at risk determined using either 
CE-SSFP or myocardial SPECT.

Figure 18. Inferior STEMI. Corresponding 
left ventricular short axis views from a patient 
with inferior STEMI. MaR determined 
using (a) myocardial perfusion SPECT, (b) 
contrast-enhanced SSFP (CE-SSFP) at end-
diastole, (c) infarct size images with LGE 
and (d) CE-SSFP at end-systole.
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Study IV: Contrast-enhanced SSFP compared with T2-weighted images
 
Myocardium at risk
A region with increased signal intensity measured by T2-weighted imaging and CE-SSFP 
was observed in all patients (Figure 19), yielding a mean MaR of 29 ± 11 % (range 12 – 65) 
and 32 ± 12 % (range 8 - 70) of the LV, respectively. There was a strong correlation between 
the two methods (r2 = 0.89, p < 0.01) (Figure 20). The Bland-Altman plot showed a limit of 
agreement between T2-weighted imaging and CE-SSFP, demonstrating a difference of -3.0 
± 3.9 % of the LV (p < 0.01). 
The CE-SSFP images were acquired on average 8 minutes (2-12) minutes after contrast agent 
administration. There was no change in CE-SSFP assessment of MaR compared with T2-
weighted imaging with time after contrast agent administration. Signal-to-noise ratio within 
the MaR was 156 ± 7 and 132 ± 10 for the T2-weighted imaging and CE-SSFP, respectively 
(mean ± SEM). The contrast-to-noise was 58 ± 3 and 27 ± 6 for the T2-weighted imaging 
and CE-SSFP, respectively (mean ± SEM). The contrast ratio between MaR and remote 
myocardium for T2-weighted imaging was 1.7 ± 0.3 compared to 1.5 ± 0.4 for CE-SSFP, 
which was not statistically significant different. 
The interobserver variability was 5.0 ± 5.4 % of the LV for T2-weighted imaging and 0.1 ± 
6.2 % of the LV for CE-SSFP.

LAD LCx RCA

T2-Weighted 
Imaging

CE-SSFP

Late 
Gadolinium 

Enhancement

Figure 19. Single corresponding mid-ventricular short-axis images from a patient with an 
occlusion in the left anterior descending coronary artery (LAD), left circumflex coronary 
artery (LCx) and the right coronary artery (RCA), respectively. The epicardium is traced 
in green and the endocardium is traced in red. The hyperenhanced regions constituting 
the myocardium at risk (dashed arrows) and the infarcted myocardium (solid arrow) are 
traced in white. Note the similarity in location and extent of the affected region between 
T2-weighted imaging and contrast-enhanced steady-state free precession (CE-SSFP). Also 
note the significantly smaller infarction compared with the myocardium at risk, indicating a 
significant myocardial salvage accomplished through the acute reperfusion therapy.
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Figure 20. Relationship between T2-weighted imaging and contrast-enhanced steady-state 
free precession (SSFP) for myocardium at risk. Panel A: MaR by T2-weighted imaging 
versus CE-SSFP. Solid line = line of identity. Panel B: Bland-Altman graph showing the 
difference between MaR quantified by T2-weighted imaging and CE-SSFP versus the mean 
of the two methods. The difference between T2-weighted imaging and CE-SSFP was -3.0 ± 
3.9 %. Solid line = mean difference; dashed lines = ± 2SD.
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Figure 21. Relationship between T2-weighted imaging and contrast-enhanced SSFP for 
myocardial salvage. Myocardial salvage index measured by T2-weighted imaging versus 
myocardial salvage index measured by CE-SSFP. Solid line = line of identity.

Myocardial salvage index
The mean infarct size by LGE was 14 ± 11% (range 1 – 49) of the LV. The interobserver 
variability was 0.3 ± 2.2% of the LV. The infarct size was smaller in all patients when
compared with mean T2-weighted imaging (p < 0.01) and mean CE-SSFP (p < 0.01). When 
comparing the infarct size as determined through LGE in relation to MaR using T2-weighted 
imaging and CE-SSFP yielded a myocardial salvage index of 56 ± 22 % (range 15 – 93) and 
58 ± 23 % (range 16 – 95), respectively (Figure 21). There was a significant correlation (r2 = 
0.90, p < 0.01) between the myocardial salvage index measured using the two methods, with 
an insignificant bias of 2.3 ± 7.4% of the LV.  
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GENERAL  DISCUSSION
This thesis presents novel findings of short- and long-term effects of postconditioning in 
patients with STEMI measuring infarct size with CMR, in relation to MaR. For the entire 
study population, the short- and long-term effects of postconditioning were neutral regarding 
infarct size and LVEF. However, among patients within the upper quartile of MaR smaller 
infarct sizes and improved LVEF were observed in the postconditioning group in comparison 
with the control group.
A novel method for determination of MaR with a modified standard CMR sequence was 
developed and validated against the reference standard method, SPECT. When comparing 
the new CMR sequence against the current standard edema CMR-sequence there was good 
correlation and the new method had a high accuracy regarding calculation of salvage index.

Myocardium at risk and CMR

Determination of MaR is of importance in clinical studies using infarct size or myocardial 
salvage as endpoints, in particular when studying small populations.114 The variation in 
MaR is usually large and detection of differences in final infarct size without taking MaR 
into consideration requires large sample sizes. The reference method for determination of 
MaR has been SPECT, a method with limited applicability in studies of acute interventions 
in patients with acute MI. Limited availability of isotopes and limited access to a gamma 
camera are the most important obstacles. The handling of and exposure to isotopes are other 
concerns. The need to develop new feasible and accurate methods for determination of MaR 
is therefore great. Previous attempts to investigate MaR with CMR focused on different T2-
weighted sequences several days after the index ischemia. It has been suggested that MaR 
can be estimated using T2-weighted imaging with short inversion time inversion recovery 
(STIR) or T2-prepared single-shot SSFP or a combination of both.134, 137, 155 156 T2-weighted 
imaging as a tool to quantify MaR was first validated in humans with myocardial perfusion 
SPECT as the reference140 and the method was subsequently used to demonstrate the rate of 
infarct evolution in man without confounding factors.141 The (ACUT2E) TSE-SSFP study 
showed promising results when using a hybrid method of T2-weighting with bright-blood 
contrast.135 
The reliability of CMR for the assessment of MaR and myocardial salvage index by means 
of T2-weighted sequences after reperfusion of an occluded coronary artery was recently 
questioned in a study using different ways to measure MaR with T2-weighted sequences.157 
There were differences found between all T2-weighted sequences compared with angiographic 
BARI score and from one T2-weighted technique to another. These factors might lead to a 
risk of over- or underestimating MaR and should be considered when using T2-weighted 
CMR as an assessment of MaR.

The use of CE-SSFP was described and validated for the first time in Studies III and IV. CE-
SSFP showed a good correlation with SPECT (Study III) and there was an excellent correlation 
in determining MaR with CE-SSFP in the subsequent head-to-head comparison with the most 
commonly used T2-weighted CMR sequence (Study IV). Importantly, there was an equally 
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good correlation between the two methods, CE-SSFP and the T2-weighted sequence, when 
MaR was used for the assessment of the myocardial salvage index. The interobserver variation 
was indeed smaller for CE-SSFP than for the T2-weighted sequence. These observations are 
of considerable clinical importance allowing an accurate determination of MaR by means 
of CMR performed up to one week after the acute event. This will undoubtedly simplify the 
determination of MaR and salvage index in future studies of cardioprotection.

The mechanisms behind the enhanced myocardium observed in CE-SSFP are not completely 
understood. The contrast in SSFP images depends on the T2/T1 ratio.158 In the presence of 
paramagnetic gadolinium, T1 for the surrounding tissue is shortened. This is utilized for 
infarct visualization in T1-weighted LGE imaging, where the concentration of an extracellular 
gadolinium-based contrast agent is increased due to an increased distribution volume in 
irreversibly injured myocardium.126, 159-161 It has, however, also been shown that reversibly 
injured myocardium has an increased distribution volume after an ischemic episode. Hence, 
it is possible that the T2/T1 ratio in the entire MaR, including both reversible and irreversible 
injured myocardium, is affected by the presence of gadolinium. This might explain the 
increased signal intensity in the MaR as seen with CE-SSFP. Furthermore, it has been shown 
that the change in T1-relaxation rates before and after contrast agent administration remains 
constant from 4 to 29 minutes after administration in normal myocardium, as well as within 
the MaR and in infarcted myocardium.159 These earlier findings indicate that the rate of 
exchange of contrast agent between the myocardium (normal and injured) and the blood 
pool is constant and much faster than clearance rate in the kidneys during the first 30 min 
after contrast agent administration. Thus, these findings can explain why the relationship 
between MaR assessed using T2-weighted imaging and CE-SSFP did not change with time 
after contrast agent administration in Study IV and why the timing of CE-SSFP after contrast 
agent administration is not so critical. 

The pathophysiological basis for the enhanced myocardium observed using T2-weighted 
imaging is still not completely understood. Following an acute coronary occlusion, the 
ischemic myocardium shifts from aerobic metabolism to anaerobic glycolysis and ceases 
to contract. This failure of the energy-regulated membrane channels results in swelling of 
the myocytes due to influx of water and sodium.162 Furthermore, reperfusion leads to an 
inflammatory-like response increasing the amount of extracellular fluid.163 The increased 
water content in the affected myocardium is likely to explain the increased signal intensity 
compared with the non-affected myocardium as seen through T2-weighted imaging. 
Whether the increased water content is predominantly located in the intra- or extracellular 
space remains to be determined. The ischemic episode causes post-ischemic stunning and 
is associated with decreased contractility in the previously ischemic myocardium.164 It is 
reasonable to assume that the reduced contractility is associated with a decreased lymphatic 
drainage from the engaged myocardium, which may contribute to the increased water content 
one week after the acute event. 

Using T2-weighted imaging can sometimes be challenging, especially with regards to low 
signal-to-noise ratio, signal loss due to through-plane cardiac motion and/or increased signal 
from stagnant blood flow in the apical part of the LV.
These limitations can to a large extent be overcome by using CE-SSFP, since these 
shortcomings are not associated with SSFP imaging. Another advantage with CE-SSFP 
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imaging is that this technique is based on a multi-phase acquisition throughout the cardiac 
cycle. This enables tracking of the MaR and myocardial borders in multiple time frames, 
allowing delineation of both MaR and myocardial borders. Furthermore, CE-SSFP is ideal 
in situations where the time for scanning is limited e.g. due to heavy clinical workload or 
when handling an unstable patient. Gadolinium may then be injected prior to the examination 
and the imaging protocol can be shortened, since LV dimensions/function and MaR can be 
assessed from the same set of images. T2-weighted imaging for determination of MaR can, 
on the other hand, be performed in patients in whom a gadolinium-based contrast agent is 
contraindicated. Thus, there are several advantages of having access to more than one method 
for determination of MaR using CMR. 

Short-term effects of postconditioning in patients with STEMI 

The first groups to report effects of postconditioning in patients with STEMI were Staat et 
al57 and Laskey et al164, 165 who, in small populations, showed that postconditioning reduced 
the release of CK, a surrogate marker for infarct size, and improved coronary flow reserve 
and ST resolution. Thibault et al58 showed that postconditioning limited absolute infarct size 
and improved LVEF. They did not properly relate infarct size to the initial MaR, which is 
of importance as already discussed above. In this perspective, the recent report by Lønborg 
et al165 is of considerable interest. This group demonstrated that postconditioning resulted 
in a 19 % relative reduction of infarct size in relation to MaR. A problem is that there was a 
significant difference in myocardial mass between the intervention and control group, which 
may explain most of the differences in final infarct size. In addition, the method used for 
estimating MaR, endocardial surface area, has limitations, in particular introducing a risk of 
underestimating MaR.144 

In Study I, infarct size after one week was related to MaR determined through left 
ventriculography. Interestingly, the slopes of the regression lines differed significantly 
between the control and the postconditioning groups when infarct size was analyzed as a 
function of MaR. This observation, suggesting a cardioprotective effect in patients with large 
MaR, led to further analysis of the infarct size among patients with MaR in the upper quartile, 
revealing that these patients seemed to benefit from postconditioning. Thus, their infarcts 
were smaller irrespective of whether the infarct was LAD-related or not. LVEF also differed, 
supporting a beneficial effect of postconditioning in patients with large MaR. According 
to the regression analysis, a protective effect was detectable for MaR exceeding 36 %. In 
light of this observation it is important to note that the left ventricular MaR, determined 
from abnormally contracting segments, in previous studies was 35-40 %, which should be 
compared with 25 % in the present study in average. Collectively, these data might support 
the assumption that postconditioning is protective in patients with large MaR.

In contrast to previous reports, postconditioning did not influence the infarct size in all 
patients subjected to this procedure in Study I. This observation is, however, not the only one 
questioning the overall efficacy of postconditioning. A recent study determining infarct size 
and LVEF as outcome measures in patients with STEMI reported neutral results in the entire 
group of postconditioned patients.166 Subgroup analysis even suggested harmful effects of 
postconditioning. Postconditioning was associated with lower myocardial salvage and lower 
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myocardial salvage index. Although no significant differences in absolute infarct size and 
LVEF were found between the groups at one week and six months after MI.

There are several differences of potential importance that may explain the discrepancies 
between trials evaluating the impact of postconditioning. In study I, infarct size was 
determined using CMR one week after the index event. This differs from the time of three to 
six months used in previous studies.58, 165 The rationale behind determining infarct size after 
one week in Study I was to limit the possible influence of LV remodeling, a process that may 
influence infarct size. To determine infarct size after approximately one week seems optimal 
since the reduction of the hyperenhanced area is greatest during this period, balancing the 
early disappearance of the increased area of hyperenhancement against LV remodeling. To 
avoid any influence of spontaneous reperfusion, only patients with TIMI 0 flow were recruited 
to Study I, which differs from previous studies accepting a flow of TIMI grade 0-1.58, 165, 166 
Finally, the present postconditioning protocol was four cycles of 60 seconds reperfusion 
and 60 seconds of reocclusion. This is similar to the protocol used by Staat57, Thibault et 
al58 and Freixa et al166 but different from that applied by Lønborg et al.165 Although original 
observations suggested that brief cycles are optimal in small animal models (mice and rats), 
longer periods (30-60 seconds) may be more effective in larger species (pigs).56 A subsequent 
analysis was, however, unable to define an optimal postconditioning protocol.167 

Long-term effects of postconditioning in patients with STEMI

Data on the long-term effects of postconditioning on infarct size and LVEF are sparse, in 
particular data based on the use of CMR. Thibault et al58 measured LVEF after 12 months 
of follow-up using echocardiography and reported a difference in favor of postconditioning. 
Lønborg et al172, who compared NYHA classes and ST-resolution, noted a trend towards 
better NYHA class and ST-segment resolution in patients subjected to postconditioning. 
Freixa et al166 reported no differences between groups in LVEF or infarct size using CMR 
after six months. The objective behind Study II, based on the results from Study I, was to 
evaluate the long-term effects of postconditioning on infarct size and LVEF, with a special 
focus on patients within the upper quartile of MaR. In line with the results from Study I, the 
slopes of the regression lines for infarct size and LVEF as a function of MaR continued to 
differ, indicating a sustained benefit for patients with large MaR. Taken together, available 
data indicate that postconditioning might be effective in patients with large MaR and that the 
effect is maintained during long-term follow-up. 

LV remodeling after myocardial infarction is an important prognostic factor for the 
progression to heart failure and subsequent mortality.168 Multiple factors contribute to the 
remodeling process including infarct size, MaR, microvascular obstruction, patency of the 
infarct-related artery and baseline LVEF.169, 170 Recent studies have used CMR as a tool 
for identifying predictors of remodeling in reperfused STEMI populations. Lund et al171 
demonstrated that an infarct size ≥24 % of the LV predicts remodeling with high sensitivity 
and specificity. Masci et al173, 174 concluded that infarct size rather than location predicted LV 
remodeling in STEMI patients and Eitel et al172 concluded that myocardial salvage index 
assessed using CMR predicts long-term clinical outcome in patients with STEMI. In Study 
II, we only identified nine patients who met the remodeling criteria (>15 % increase of ESV). 
The generally small infarct sizes are the most reasonable explanation for the absence of 
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remodeling. The end-diastolic sphericity index, which indicates LV cavity remodeling, did 
not change over time within either of the two groups, indicating that there was no overall 
adverse long-term remodeling in the present study population. In addition the, vast majority 
of the patients were treated with beta-blockers and ACE inhibitors, pharmacological agents 
known to counteract remodeling. Thus the group of patients with adverse remodeling was too 
small to permit an analysis of possible predictors for that process. 

 

Cardiac biomarkers

The use of cardiac biomarkers has until recently been the method of choice for quantifying 
infarct size.173 Troponin I and T, which are expressed exclusively in the heart, are components 
of the contractile apparatus of the cardiac myocyte. Troponins are present both in the cytosol 
and myofibrils of the myocyte. Cardiac troponin I and T are currently the preferred biomarkers 
for detection of myocardial necrosis, having supplemented older biomarkers such as CKMB 
because of superior sensitivity and specificity.10 Peak and AUC of CKMB and troponin T 
correlate with infarct size measured with CMR.174 Recently, Turer et al175 concluded that high-
sensitivity troponin T could be detected after provoked ischemia in humans. These results 
may indicate that cardiac biomarkers reflect ischemic myocardium and not only necrosis. 
In the present material, analysis of AUC of troponin T and CKMB had a better correlation 
with infarct size than with MaR, which is in accordance with the general opinion that cardiac 
biomarkers reflect the extent of myocardial necrosis. 

In Study I, there were no differences in the AUC levels of troponin T and CKMB between 
the two study groups, suggesting the absence of cardioprotection in an overall perspective. 
In contrast, the regression analysis comparing troponin T in relation to MaR in the upper 
quartile favored postconditioning. 

Study limitations

The size of the study populations may have been too small for the detection of minor benefits 
of postconditioning in Studies I and II. The number of patients was based on a power 
calculation assuming an absolute reduction of infarct size by 20 % of MaR. This level was 
chosen as representing an effect that should be of clinical value. The extent of the final infarct 
size may depend on several factors, besides postconditioning, which are difficult to control in 
a clinical study. Known confounders are age, certain comorbidities e.g. kidney dysfunction, 
medication and pre-infarction angina known to precondition the myocardium as well as the 
presence of collaterals. The groups were well-matched regarding these factors, suggesting 
little impact on the primary endpoint. 

The angiographic method of MaR in Studies I and II may underestimate the actual MaR. 
These two studies were originally designed with this method for determination of MaR. Even 
though a new method of determining MaR was discovered during analysis of the examinations 
of Study I, it felt inappropriate to use this method in the patient material based upon which it 
was first described. The optimal postconditioning algorithm is not known and there may be 
more effective algorithms than the one used, even if it is the most commonly applied. 
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Finally, since the signal intensities of the MaR and the remote myocardium varied between 
slices and between patients, making it difficult to choose a fixed standard deviation of signal 
intensities to differentiate MaR from remote myocardium, no semi-quantitative method was 
used to determine the MaR either on T2-weighted or CE-SSFP imaging. 
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FUTURE  PERSPECTIVES 
AND COMMENTS

CMR sequences
CE-SSFP has the qualifications to become a useful research tool in trials looking at myocardium 
salvage index by different interventions. Still, there are questions to be answered regarding 
mechanistic features of this technique. For instance, the reason for the hyperenhanced signal 
on SSFP is not fully understood and the kinetics of the contrast agent in the MaR needs to be 
addressed further. Whether this sequence is influenced by edema reduction induced by any 
cardioprotective intervention remains to be explored. Experimental studies addressing these 
questions are currently lacking but would be highly interesting. 

New CMR sequences that quantify image T1 or T2 with T1- and T2-mapping are currently 
available and may perhaps allow a robust visualization of MaR.176 This area of research is 
new and will require additional validation before becoming clinically useful.

Postconditioning 
Regarding postconditioning, several questions need to be addressed. The postconditioning 
algorithm was initially based on empirical observations in experimental studies.55 There 
is still no optimal algorithm that has proven superior in humans. Thus it is not surprising 
that different groups applied different algorithms. One study reported on less myocyte 
apoptosis by means of 60 rather than 30 seconds of reperfusion and ischemia.177 The optimal 
number of cycles is another unresolved issue in need of further investigation. Is two better 
than four and is four better than six? There is no test telling us whether we have reached 
maximum conditioning or not. A recent study in mice reported decreased infarct size with 
a prolonged postconditioning protocol lasting up to 30 minutes after the initial reperfusion. 
Thus, it provides conflicting evidence indicating that the time window for protection by 
postconditioning may be longer than initially reported.41 Another unresolved question is 
which phase of the reperfusion is the most important: The reperfusion phase or the ischemia 
phase or are both equally important? Such information is necessary in order to optimize the 
postconditioning algorithm and number of cycles to be applied in future studies. 

The present results indicate that future attempts with postconditioning should primarily focus 
on patients with large MaR, i.e. with a substantial amount of myocardium to be salvaged. 
Changes in infarct size in patients with small MaR may be difficult to detect and reduction in 
their infarct size may be less important from a prognostic point of view. The follow-up period 
in Study II is presently the longest available, but there is a need for even longer periods. 
There is also a need  for studies looking not only at surrogate endpoints but also at clinically 
relevant outcome measures such as morbidity and mortality. This highlights the need for a 
large multicenter study to confirm the clinical value of postconditioning. 

Translation from preclinical to clinical studies 
The search for an effective, easily applied and safe cardioprotective intervention is still 
only beginning. Although it certainly requires substantial efforts, it is of great importance to 
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further reduce the remaining morbidity and mortality related to acute MI. There are several 
potential explanations behind the major differences in success in preclinical and clinical trials 
in this sector.178 
In preclinical studies: various pharmacological agents are usually tested in one laboratory 
and in one or two animal models before being transferred to clinical trials. Most preclinical 
experiments are randomized but open, which may be a source of bias. Moreover the relevance 
of commonly used animal models, usually young, male animals without any comorbidities, 
may be misleading. 
In clinical studies: the dosages and administration times for drugs may cause problems. 
Intravenous instead of intracoronary infusions distal to the occlusion may explain the lack of 
success in some trials. Insufficiently powered (small) studies and the recruitment of patients 
with small MaR may also cause problems, as indicated by the present results. Moreover, 
different research centers have different protocols as regards anticoagulation/antiplatelet 
treatment, reperfusion techniques including stenting, and thrombus aspiration, which may 
introduce discrepancies in outcomes, such as infarct size and LVEF.

Future attempts to find new effective therapies must take all these issues into consideration. 
An ideal study population for proof-of-concept trials would be patients with large MaR, with 
symptoms for less than six hours, no pre-angina, TIMI flow 0 and no collaterals and then later 
on expand the inclusion criteria to more general populations and multicenter studies with 
long-term follow-up. It would be reasonable to combine different cardioprotective modalities 
in such investigations considering the complexity of the reperfusion mechanism and the 
cross-talk between different pathways as outlined. A combination of remote conditioning and 
postconditioning would be interesting, with a potential for synergistic effects on the different 
pathways involved in the reperfusion injury. The chosen method should be easy to implement 
already in the ambulance and subsequently reinforced in the catheter laboratory. The future 
may also be to combine an optimal cocktail of different drugs targeting the different harmful 
effects of reperfusion. Currently there are >30 studies registered at ClinicalTrails.gov 
concerning reperfusion injury and myocardial infarctions. The research field is still open for 
new remarkable discoveries! 
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CONCLUSIONS
I. 	 Postconditioning did not affect infarct size, LVEF or cardiac biomarkers one week after 

STEMI in the entire study population. Infarct size was reduced and LVEF increased in 
the postconditioned patients with large MaR. 

II. 	 There was no difference in infarct size or LVEF between the postconditioning and 
control groups during 12 months of follow-up in the entire study population. In patients 
with large MaR, the early observations of a reduction in infarct size remained and these 
patients had a higher LVEF than patients in the control group at the 12-month follow-
up.

III. 	CE-SSFP after one week accurately depicts MaR and correlates well with MaR 
determined with reference standard SPECT in patients with STEMI.

IV. 	 There was a strong correlation between MaR assessed by CE-SSFP and MaR assessed 
by T2-weighted imaging in reperfused patients with STEMI one week after the acute 
event. Both methods can be used to determine MaR and myocardial salvage.  
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