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ABSTRACT 
Viral replication, lymphopenia and microbial translocation at the mucosal surfaces lead 
to a chronic state of immune activation during HIV-1 infection. Chronic immune 
activation is believed to impact on the functionality of cell types that are not the main 
target for virus replication, including CD8+T cells, B cells and NK cells. 
In this thesis two main aspects of the pathogenesis of HIV-1 infection were studied: 1) 
how viral replication and disease progression affect the homeostasis of peripheral NK 
cell subsets and functionality of CD28- T cells and 2) the impact of the lymphopenia-
associated cytokine IL-7 in promoting immune activation via its priming role for T 
cells proliferation and its indirect effects on B cells and NK cells. Specifically, in paper 
I we show that an altered expression of CD70 and CD27 molecules on NK cells, as 
well as an altered distribution of NK cell subsets, occurs during HIV-1 infection in 
parallel with disease progression. Our data suggest that during the chronic phase of 
HIV-1 infection there is a general increased expression of CD70 on NK cells and an 
expansion of the immunomodulatory NK cell subset (CD56high). Since CD56high NK 
cells can secrete large amount of proinflammatory cytokines, our data imply that NK 
cells can potentially contribute to immune activation, via proinflammatory cytokines 
and bystandard activation of CD27 expressing cells. In paper II we demonstrate that 
IL-7 promotes Fas induced proliferative signals on suboptimally activated T cells. Our 
group has previously shown that during HIV-1 infection IL-7 induces Fas expression 
and increases Fas mediated apoptosis of T cells. Since IL-7 is a major inducer of 
lymphopenia induced homeostatic T cell expansion, and is often found at high level 
during lymphopenia, we propose that Fas-induced proliferative signals of weakly 
activated T cells can contribute to T cell activation in HIV-1 infected patients. In paper 
III we investigated the phenotypic, survival and proliferative characteristics of CD28- 
T cells and analyzed the impact of viral replication on their functionality. Our data 
suggest that viremia induces accumulation of apoptosis-prone, senescent CD28- T 
cells. Thus we propose that control of HIV-1 replication with an early initiation of 
ART, might be beneficial for survival and functionality of this effector/memory subset, 
often specific for pathogens that establish chronic infections. In papers IV and paper 
V we studied the indirect effects of IL-7 on B cell homeostasis, a mechanism which 
may be potentially important in the settings of HIV-1 infection or in other conditions 
characterized by increased levels of IL-7. In paper IV, we report that IL-7 induces Fas 
expression on resting B cells and increases their sensitivity to apoptosis via the 
induction of IFN-γ production by T cells. In Paper V we show that IL-7 is able to 
upregulate CD70 expression on T cells, which can ultimately lead to IgG production by 
triggering of the CD27 molecules on B cells. Lymphopenia, through the increased IL-7 
concentration, may thus confer non-antigen activated T cells with general effector 
function, as demonstrated by the release of IFN-γ and induction of CD70. Such 
mechanisms could contribute to improve immunological responses, in a situation when 
the immune system is weakened by lymphopenia, at the price of less regulated T cell 
responses contributing to bystander damage of the B cell pool. Overall paper IV and 
paper V illustrate novel mechanisms by which IL-7, a T cell trophic cytokine, can 
contribute to impaired B cell homeostasis; these findings should possibly be considered 
when using IL-7 therapy aiming at restoring T cells numbers in lymphopenic patients. 
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1 INTRODUCTION 
 
1.1 Immunodeficiency virus (HIV) 

In 1981, a novel disease characterized by an unusual clustering of rare pathologies, 

including Kaposi’s sarcoma, pneumocystis carinii pneumonia and candidiasis, was 

reported in 4 previously healthy homosexual men. The common anamnesis 

characterizing the 4 patients was a marked reduction of CD4+ helper T cell number (1). 

Two years later, the causative agent of this new immunodeficiency syndrome, acquired 

immune deficiency syndrome (AIDS), was isolated from biological specimens from 

patients and later on, the virus named human immunodeficiency virus (HIV) (2-4). 30 

years after its discovery, HIV infection remains an important problem worldwide, with 

over 30 million people deceased in AIDS, 33 million adults and children living with 

HIV/AIDS, 2.6 million of new cases and 1.8 million deaths per year, according to the 

report of the United Nations Programme on HIV/AIDS (UNAIDS) published in 2010 

(www.unaids.org/globalreport). 

 

1.1.1 The virus 

HIV is a lentivirus belonging to the family of Retroviridae. Is transmitted as a single-

stranded envelope RNA virus and is retrotranscribed to a double stranded DNA by the 

viral reverse transcriptase (RT) upon entry into the target cells.  The viral DNA is 

subsequently transported to the nucleus and integrated as a provirus into the host 

cellular DNA by a virally encoded integrase. The HIV-1 infection cycle begins when 

the envelope (Env) glycoprotein gp120 binds to the CD4 molecule on the surface of 

target cells. CD4 is expressed primarily by helper T cells, but can be expressed at 

variable levels also by macrophages and dendritic cells (DCs). Env is a complex 

composed by the transmembrane gp41 subunit, which is associated with the gp120, the 

protein anchoring to the CD4 molecule. Binding of gp120 to CD4 initiates the 

adsorption process; conformational changes of gp120 enable the binding of the gp120 

to the coreceptor CCR5 or CXCR4, which ultimately leads to the fusion of the gp41 

protein with the membrane of the target cells. Once the virus establishes a productive 

infection, a large number of viral particles bud from infected cells and can disseminate 

the infection to new cells.  
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HIV-1 can remain silent as an integrated provirus for a variable period of time 

establishing a latent infection of CD4+ T cells. Latent reservoirs represent a serious 

obstacle for HIV-1 eradication, owing that they can persist for long period of time, with 

the provirus being formally invisible for the immune system and not targeted by anti 

retroviral treatment (ART), which only acts on replicating virus (5, 6). 

 

Based on genetic variation, two types of HIV viruses exist, type 1 and type 2. HIV-1 is 

more virulent, is broadly distributed worldwide and accounts for the majority of HIV 

infections. Both HIV-1 and HIV-2 represent cross species transmissions of simian 

immunodeficiency virus (SIV) between primates and humans, with HIV-1 having its 

origin most probably in the SIV chimpanzee (SIVcpz) and HIV-2 having its root in the 

SIV of sooty mangabeys species (SIVsm) (7).   

 

1.1.2 Immune response to HIV-1 

HIV-1 has evolved several mechanisms to evade immune recognition and, as I will 

discuss in this thesis, HIV-1 can, directly and indirectly, induce several defects in both 

the innate and adaptive arms of the immune system. This translates into an inefficient 

immune response to the virus and favours its evolutionary persistence in the host. 

 

At the interface of mucosal tissues, HIV-1 gets access to DCs. DCs secrete pro-

inflammatory cytokines, which initiate an innate immune response, then migrate to the 

draining lymph nodes where they can activate and condition virus specific T cells 

responses. DCs can bind HIV-1 via pattern recognition receptor (PRRs), such as Toll-

like receptors (TLRs) and C-type lectins such as DC-specific ICAM3-grabbing non-

integrin (DC-SIGN). Two types of DCs can bindHIV-1 in peripheral tissues sites: 

conventional DCs and plasmacytoid DCs (pDCs). Upon endocytosis of HIV-1, pDCs 

are activated via the binding of viral RNA to TLR-7, and can induce large amount of 

type I Interferons (IFNs), promoting anti-viral responses. As part of the innate immune 

response, and being specialized in killing of viral infected cells, Natural Killer (NK) 

cells are activated early after HIV-1 infection. Nevertheless, as discussed later in this 

thesis, HIV-1 infection induces defects on NK cells and their responses appear to be 

“anergic” and unable to protect from viral dissemination (8). 
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1.1.2.1 Adaptive immune response 

 

The high degree of HIV-1 diversity, and the rapid mutation rate of HIV-1 structural 

genes, makes it difficult for the adaptive immune system to defeat the virus, and 

eventually, both the cellular and humoral responses lag behind the HIV-1 rapidly 

diversifying nature. However, cytotoxic T cell (CTL) responses appear quickly after 

HIV-1 infection and play a major role in controlling the spreading of the virus during 

the acute phase of infection (9, 10). A strong, cross-reactive CTL response has been 

demonstrated to occur in the SIV infection model and was also associated with the 

capacity to remain uninfected in subjects highly exposed to HIV-1 infection, as well as 

in long-term non-progressors (LTNP) (11-13). CD4+T helper responses arise few 

weeks after the establishment of HIV-1 infection, and are associated with control of 

viremia and with maintenance of antiviral CTLs responses (14, 15). The hallmark of 

HIV-1 pathogenesis is a gradual loss of CD4+T cells leading to a profound immune 

deficiency and CD4+T cells specific response slowly decline as a result of the viral 

infection (15).  

 

The initial antibody response to HIV-1 arises within 4-8 weeks following primary 

infection and is directed against non-neutralizing epitopes of the envelope protein as 

well as the core/matrix protein (16). Broadly neutralizing antibodies (bnAb) appear 

several months after the transmission, in a minority of patients, and generally do not 

associate with control of viremia (17, 18). The levels of IgA antibodies present at the 

mucosal sites, where HIV-1 infection is disseminated, are also low when compared to 

other subclasses of immunoglobulins (19). Overall, antibody responses to HIV-1 

infection are clearly ineffective to further control virus dissemination. 

 

The proposed mechanisms by which HIV-1 promote the functionality loss of T cells 

and B cells will be discussed extensively in the following chapters, but potentially these 

mechanisms arise as a result of direct effect of the virus and as a result of the virus-

induced immune activation. 

 

 

 



 
 

 
 
4 

1.2 Immune activation during HIV-1 infection 

In HIV-1 infected individuals it is estimated that a relatively small proportion of 

circulating CD4+ T lymphocytes carries the virus, ranging between 0.1 and 1%; yet, on 

a long run, HIV-1 infection leads to the death of a majority of CD4+ T cells, the 

destruction of the immune system and death of the host by opportunistic pathogens and 

tumours. Such an overwhelming impact of the virus has been attributed to the chronic 

and systemic immune activation initiated by the virus, more than solely to the direct 

cytopathic effect of HIV-1 for T cells (20, 21). Indeed, during HIV-1 infection, several 

different cell types, including CD8+ T cells, B cells and NK cells suffer from the viral 

insult despite not being the main targets for virus replication (22).  

 

The important role of immune activation in HIV-1 pathogenesis has been supported by 

studies on non-human primates infected by SIV, as well as by studies comparing HIV-2 

with the more virulent HIV-1 infection (23, 24). On the other hand, within the first 

weeks of infection, at the peak of viral replication, a massive CD4+ memory T cells 

depletion occurs in the intestinal mucosa as well as in lymph nodes and blood (25, 26) 

and this initial CD4+ T cell depletion was associated with a high infection frequency, 

ranging between 30 and 60% (27, 28). These findings indicate a direct, virus induced 

immunopathology during early disease stages.   

 

Chronic immune activation is manifested by increased lymphocytes activation and 

turnover, increased pro-inflammatory cytokine levels, the disruption of intestinal 

epithelium followed by microbial translocation from the gut to the circulation, the 

destruction of lymphoid architecture, as well as the loss of thymic functions. There are 

several mechanisms implicated in the maintenance of immune activation, including 

lymphopenia itself, the microbial translocation and the ongoing HIV-1 replication, as it 

will be discussed later (Fig. 1). However, causes and consequences of the generalized 

immune activation in a disease that paradoxically is characterized by immune 

deficiency are still subjects of an active debate. 
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Figure 1. Direct and indirect consequences of HIV-1-induced immune activation.  
HIV-1 infection induces chronic immune activation through direct viral replication 
(viremia), or through at least 2 indirect effects: microbial translocation and 
lymphopenia. Microbial translocation results from structural disruption of the 
epithelial barrier mostly in the gut, as a potential consequence to intra-epithelial T 
cells depletion. Lymphopenia results from total CD4+T cells depletion. 
 

1.2.1 Disease progression in natural and non-natural hosts of SIV 

Important indications for the role of immune activation in HIV-1 pathogenesis have 

been provided by comparing some natural and non-natural hosts of SIV: sooty 

mangabeys (SM) or african green monkeys (AGM) and Rhesus macaques (RM) 

respectively. SMs display high levels of viremia, but a preserved CD4+ T cell 

homeostasis during the chronic phase of SIV infection, with CD4+T cell numbers that 

normalize after the acute infection to a level that is comparable with uninfected 

animals. SMs can be naturally infected by SIV, and live an apparently normal life as 

the result of co-adaptation between the virus and the host (23, 24). On the other hand, 

RMs experience an immunopathology similar to that induced by HIV-1 infection in 
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humans, with high viral load, high levels of immune activation, massive CD4+ T cell 

depletion and progression to AIDS (23, 29).  

 

The different outcomes of SIV infection in the various hosts has been attributed to 

several factors, including the severity of intraepithelial CD4+ T cell depletion in early 

disease stages. In RMs, as well as in humans, memory and activated CD4+ T cells 

express the CCR5 chemokine receptor at the mucosal sites and, as a result, these cells 

are targets of SIV and HIV-1 infection and early depletion. In contrast, only a minority 

of mucosal T cells express CCR5 in SMs, mostly the short lived activated T cells and 

not the memory cells (23, 24).  

 

1.2.2 Role of mucosal T cell damage in immune activation 

The mucosa of the intestinal tract constitutes a unique anatomical and immunological 

barrier that discriminates commensal colonizing microorganisms from external 

pathogens. The gut associated lymphoid tissue (GALT) represents the largest of the 

secondary lymphoid tissues and comprise the majority of the lymphocytes in the body 

(30-32). Intraepithelial T cell depletion occurring during HIV-1 infection has been 

associated with damaged intestinal epithelium (25, 28) leading to enteropathy, 

increased intestinal permeability, malabsorption and to microbial translocation from the 

intestinal lumen to the tissues and circulation (33-35). In HIV-1 infected patients, as 

well as in SIV infected RMs, high levels of plasma LPS and sCD14, biomarkers for 

microbial translocation, can be found. Microbial products are potent immune-

modulatory molecules that might contribute to a generalized state of immune activation 

through their action on TLRs. On the contrary, SMs manifest only a transient 

appearance of microbial translocation during the acute phase of SIV infection, 

suggesting an important role of the epithelial damage and the flow of microbial 

products into the circulation in HIV-1 disease progression (23, 24).  

 

The effects of HIV-1 infection on the gut epithelium have been attributed at least in 

part to Th17 T cell depletion. Th17 cells can regulate epithelial cell homeostasis, tissue 

repair and wound healing via IL-22 (36, 37) and are potentially required for the 

integrity of the epithelium.  
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Microbial translocation might play an important role in inducing a persistent and 

widespread stimulation for the innate immune system. Chronic immune activation in 

non-natural hosts and HIV-1 patients is often associated with the presence of 

inflammatory cytokines, including IFN type I and II and Tumor Necrosis Factor alpha 

(TNF-α) (38, 39). Higher expression of IFN-induced genes was observed in the gut 

mucosa of SIV infected RMs when disease progressors were compared to non-

progressors (40). Notably, pDCs of SIV infected SMs have substantially reduced levels 

of IFN- α induction and a less marked TLR-7 and 9 signalling upon ex vivo activation 

compared with RMs (41). Recently, pDCs were shown to augment β7 integrins 

expression during SIV infection possibly increasing their recruitment to intestinal 

tissues and therefore contributing to the local immune activation (42). The dysregulated 

production of type I IFNs might lead to increased B cell activation and interfere with B 

cell tolerance, similarly to mechanisms suggested to take place in systemic lupus 

erythematosus (43). 

 

 
1.2.3 Lymphopenia and immune activation 

Humans experience lymphopenia as the result of congenital or acquired 

immunodeficiency syndromes or as the result of cytoreductive therapies (44). T cell 

regeneration can occur via thymopoiesis or homeostatic peripheral T cells expansion 

(HPE). Due to thymic involution occurring early in life, the significance of peripheral T 

cell expansions increases with age (45-47). HPE is initiated as T cells decrease their 

activation threshold under lymphopenic conditions and weak TCR signals, via 

recognizing low affinity, often self antigens, can trigger proliferation and acquisition of 

effector/memory phenotype (48, 49). Prolonged lymphopenia can therefore be 

considered a trigger of T cell activation and indeed, there are several indications for 

increased T cell responses in lymphopenic conditions (50). These include the NOD 

mice where disease progression correlated with levels of lymphopenia or the HIV-1 

associated immune reconstitution inflammatory syndrome (IRIS), a pathologic 

inflammatory response to a previously acquired infections that can accompany the 

initiation of ART(51, 52). There are several similarities in T cell phenotype between 

chemotherapy treated and HIV-1 infected individuals, all reflecting increased and 

generalized immune activation, including the increased ratio of activated or memory 

cells, the increase of CD8:CD4 ratio, the upregulation of expression of the Fas (CD95) 
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death receptor and the down-regulation of expression of the Bcl-2 anti-apoptotic 

molecule (53-55). 

 

The cytokine IL-7 is often implicated in the lymphopenia induced T cell stimulation 

(56). IL-7 levels are elevated in lymphopenic conditions, including HIV-1 infection, 

idiopathic CD4+ T cell lymphopenia or therapeutic T cell depletions (57, 58) and the 

concentration of IL-7 correlates with the severity of CD4+ T cell depletion. Due to the 

important roles for IL-7 in increasing survival and stimulating T cell responses upon 

antigen recognition, the high levels of IL-7 might contribute to a generalized T cell 

activation and HPE in lymphopenic patients (53, 57, 59).  

 
 
 
1.2.4 Interleukin-7 

IL-7 is a 25 KDa glycoprotein encoded by a six exons-gene segment located in the 

chromosome 8q12-13. IL-7 is a non-redundant cytokine for T cells development and 

survival. IL-7 signals through a heterodimeric receptor composed by IL-7Rα chain, that 

is part of the thymic stromal lymphopoietin (TSLP) receptor as well, and the common 

γ-chain, shared with other cytokines namely IL-2, IL-4, IL-9, IL-15 and IL-21 (60). The 

non-redundant role of IL-7 in T cell development and survival is manifested by the 

absence of T cells in humans with severe combined immunodeficiency (SCID), a 

genetic inherited syndrome resulting from loss of function mutations in the IL-7 or γc 

receptors (61, 62).  

 

In mice, where IL-7 was first discovered (63), deficiency in the IL-7 signalling leads to 

the absence of both T cells and of B cells, suggesting a differential regulation of IL-7 

mediated B cells homeostasis between mice and humans. Moreover, in SCID patients B 

cell development is preserved indicating that IL-7 might not be required for B cells 

ontogeny in humans (64). On the other hand, IL-7Rα is expressed by the common 

lymphoid progenitors as well as by the B cell progenitors until the pro-B cell stage in 

humans. IL-7 mediated signalling modulates the expression of transcription factors 

involved in B cell lineage commitment and represses Igκ transcription during 

immunoglobulin gene rearrangements (65-67). Furthermore, in vitro studies have 

shown that IL-7 can induce the proliferation and survival of immature B cells and 
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elevated levels of IL-7 in vivo, as a result of lymphopenia or IL-7 therapy, have been 

associated with the expansion of immature transitional B cells (68, 69). All together 

these findings suggest that, despite the apparently normal level of B cells in the SCID 

patients, IL-7 might exert important functions for B cell development in humans.  

 

1.2.5 IL-7 sources and regulation 

IL-7 is produced by non-hematopoietic cells, primarily stromal cells, but several other 

cell types have also been identified as possible source of IL-7, including fibroblast 

reticular cells (FRC), intestinal epithelial cells, keratinocytes, peripheral blood and 

follicular DCs, smooth muscle and endothelial cells (60, 70). The mechanisms that 

regulate IL-7 production are yet to be fully characterized. The prevailing theory 

suggests that IL-7 is produced at a fixed and constitutive rate by stromal cells, and the 

amount of IL-7 is just sufficient to maintain a finite number of T cells. According to 

this theory, T cells continuously compete for IL-7 and IL-7 levels are regulated by its 

consumption more than by its production (57, 60, 71, 72). Several lines of data support 

this hypothesis. Il-7 mRNA transcripts have been shown to be produced constitutively 

by stromal cells (72), in lymphopenic conditions the number of T cells inversely 

correlates with the levels of IL-7 (71, 73) and increased IL-7 concentrations in vivo, 

due to IL-7 therapy in humans or monkeys or transgenic IL-7 expression in mice, 

resulted in increased peripheral T cell numbers (71). IL-7 induces the down-regulation 

of its own receptor and transgenic IL-7Rα expression leads to a decreased number of T 

cells in the thymus as well as in the periphery, suggesting that IL-7Rα down-regulation 

might occur as an altruistic mechanism to maximize the availability of IL-7 (74, 75). 

 

On the other hand, other studies proposed an inducible IL-7 production. IFN-γ has been 

shown to induce IL-7 gene expression and protein release by keratinocytes, human 

intestinal cells, epithelial and stromal cells lines (76-78). During HIV-1 infection, some 

studies suggested an increased number of IL-7 producing cells in the lymphoid tissues, 

at least in certain disease stages (56, 79). Furthermore, it has been shown in mice that 

hepatocytes can produce IL-7 in an inducible manner (80). TLR ligands upregulated 

IL-7 production in the liver via a type I IFN dependent manner and the IL-7 released 

from hepatocytes was able to modulate T cell responses. These results indicated an 

alternative, inflammatory role of IL-7 in the regulation of the immune responses.  
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1.2.6 The roles of IL-7 and IL-7Rα in T cell development and 

homeostasis 

Maturation of αβ T cells takes place in the thymus, and involves a well-defined series 

of stages, including rearrangement of TCR genes, selection of the appropriate TCR 

repertoire and acquisition of CD4 and CD8 coreceptor expression.  The stages through 

which a T lymphocyte progenitor give rise to a naïve mature T cells progress as 

follows: double negative (DN)  double positive (DP)  single positive (SP). IL-7Rα 

is expressed at the DN stage, lost during the DP stage and then re-expressed at the SP 

stage (81, 82). IL-7Rα expression is considered to be essential for survival and 

proliferation of developing T cells (72). Indeed, the absence of IL-7Rα expression in 

the DP thymocytes was initially suggested to be the result of their selection process: DP 

thymocytes are negatively selected or die by neglect if their TCRs have too high or too 

low affinity for self peptides, respectively. Therefore DP thymocytes rely strongly on 

survival signals induced by their TCRs and the expression of IL-7Rα might select 

inappropriate T cells clones. However, transgenic expression of IL-7Rα on DP cells did 

not protect them from cell death and could not perturb their selection process (72, 83). 

Nevertheless, IL-7Ra down-regulation, both in the thymus and in the periphery, occurs 

when T cells receive stimulatory signals through the TCR molecules.  

 

Mature naïve T cells freshly migrating from the thymus are called recent thymic 

emigrants (RTEs).   IL-7 has a potent survival effect for RTEs and it can induce 

proliferation in the absence of TCR signalling (84, 85). Indeed cancer patients treated 

with exogenous IL-7 show a marked increase in the RTEs number (86). Peripheral 

naïve and memory T cells are maintained by homeostatic cytokines signalling and by 

the recognition of low affinity peptides presented on MHC molecules.  IL-7 is a crucial 

factor for the maintenance of peripheral T cells. Generally, different subsets of 

peripheral T cells express different level of IL-7Rα, and as a consequence, are 

differentially regulated by IL-7 availability (71, 72). Naïve T cells express high levels 

of IL-7Rα, and their survival is strongly dependent on IL-7 signalling (70). During 

antigen-specific T cell activation, IL-7Rα is down-regulated and only a small 

proportion of effector cells will maintain the expression of the receptor. It is suggested 

that this minority of effector T cells will give rise to the central memory T cells (87, 

88). IL-7Rα is expressed at similar level within CD4 and CD8+ T cells (72); however, 
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during lymphopenia, IL-7 promotes the regeneration of CD8+ T cells more efficiently, 

as compared to CD4+ T cells . A possible explanation for this differential effect of IL-7 

on CD4+ and CD8+ T cells might be the IL-7 induced MHC II down-regulation on IL-

7Rα positive DCs that could decrease the homeostatic CD4+ T cell expansion (89). 

 

During HIV-1 infection, as well as in chronic hepatitis C virus (HCV) infection or in 

aged individuals, T cells show a marked down-regulation of the IL-7Rα (58, 90, 91). 

The mechanism leading to the IL-7Rα down-regulation during persistent infections is 

currently unknown. For HIV-1 infection it was proposed that IL-7Rα down-regulation 

could be a consequence of IL-7 binding or alternatively induced by Tat HIV-1 protein 

(92, 93). However these mechanisms induced only a transient IL-7Rα down-regulation 

on T cells, whereas the low level of IL-7Rα is maintained when T cells from HIV-1 

patients are kept in culture in absence of IL-7. Moreover IL-7Rα down-regulation is 

sustained in vivo in T cells from HIV-1 infected patients and is only partially restored 

by ART treatment (94). IL-7Rα low T cells accumulating during chronic viral 

infections or in elderly individuals are previously activated, antigen specific T cell 

clones in late stages of differentiation. Interestingly, acute viral infections, like vaccinia 

or influenza virus, do not induce down-regulation of IL-7Rα but rather T cells express 

high level of IL-7Rα indicating an important role for chronic T cell activation in IL-

7Ra down-regulation (95, 96). Such hypothesis is supported by the mouse LCMV 

model where acute infection induced memory T cells maintained by IL-7 and IL-15 

whereas chronic infection led to memory T cells maintained by constant antigen-

dependent stimuli but not by cytokines (97, 98).  

 

1.2.7 Lymphopenia and impaired lymphoid tissue architecture 

Lymph nodes are secondary lymphoid organs anatomically suited to support the contact 

between T lymphocytes and antigen presenting cells (APCs). Their architecture is 

formed by a matrix of FRCs and follicular dendritic cells (FDCs). FRCs provide a 

network of conduits for the lymphocytes to migrate and in addition, these cells 

stimulate T cell survival via the production of chemokines and IL-7.  

 

HIV-1 infection induces collagen deposition in the lymph nodes, eventually leading to 

tissue fibrosis that might represent an irreversible obstacle for T cell regeneration. The 
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level of collagen deposition showed a strong inverse correlation with the number of 

naïve T cells and early initiation of ART, in conjunction with anti-fibrotic drugs, was 

suggested as treatment to prevent and improve the loss of naïve T cell niches (79, 99).  

 

Lymphopenia has been directly associated with the collapse of T cell maintenance by 

the FRC network in a model presented recently (79). Collagen deposition might be 

initiated by an increased transforming growth factor (TGF)-β production of regulatory 

T cells. Lymphoid tissue fibrosis inhibits the access of migrating T lymphocytes to the 

FRC derived survival factors, including IL-7, which leads to decreased T cell survival.  

Apoptosis of T cells, in turn, decreases lymphotoxin-β production in the lymphoid 

tissues that acts as a survival factor for FRCs. Based on this scenario, the inhibition of 

FRC - T cell interactions by tissue fibrosis has a detrimental effect on the maintenance 

of both cell types. Forming a vicious circle, T cell depletion leads to decreased FRC 

survival that, in turn, will lead to further T cell depletion (79). Considering the 

important role of the secondary lymphoid tissues in the maintenance and functionality 

of T and B lymphocytes, it is conceivable that HIV-1 infection can lead to an overall 

impairment of the immune system, affecting several cell types that are not directly 

targeted by the virus.  

 

1.2.8 Altered homeostasis of T cells during HIV-1 infection 

The hallmark of HIV-1 pathogenesis is a gradual loss of CD4+ T cells leading to a 

profound immune deficiency and occurrence of opportunistic tumours and infections 

(100). HIV-1 infection targets specifically T cells, via the interaction of its envelope 

protein gp120 with the CD4 and co-receptors. CD4+T cells can be directly modulated 

by viral factors, like the envelope protein gp120 or nef, the latter inducing intracellular 

signalling in T cells (101-103). On the other hand, the direct apoptosis induced by viral 

infection accounts only for part of the T cell dysfunctions occurring during HIV-1 

infection (22), as it has been discussed earlier. Paradoxically, the attempt of the 

immune system to control HIV-1 infection increases immune activation, generates new 

targets for HIV-1 infection (104), increases  T cell turnover (105) and exhaustion (106). 

HIV-1 is known to replicate more efficiently in activated T cells and HIV-1 specific T 

cells are eliminated rapidly due to viral infection (107, 108). Immune activation leads 

to increased proliferation and differentiation of naïve and memory CD4+T cells into 
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effectors, increased expression of CCR5, which renders CD4+T cells more susceptible 

to HIV-1 infection (104, 109).  

 

1.2.8.1 Increased T cells activation, senescence and exhaustion 

 

Immune activation, originating from the presence of microbial TLR ligands, viral 

antigens and lymphopenia induced stimulatory factors, like IL-7, leads to a decreased 

threshold for activation, increased proliferation, memory/effector differentiation and 

finally, functional exhaustion and increased apoptosis of T cells.  

 

Increased levels of CD38 and HLA-DR, markers for T cell activation, have been 

detected on CD8+ T cells in correlation with disease progression (38, 110). T cells with 

effector or effector memory phenotype accumulate in the circulation of HIV-1 infected 

individuals on the expenses of the naïve and central memory T cell pool (111, 112). 

This, on a long run, potentially reduces the capacity of the immune system to generate 

an efficient immune response to novel antigens.  

 

Using bromodeoxyuridine (BrdU) and deuterated glucose to label the DNA of 

proliferating T cells, as well as with Ki67 staining, increased T cell proliferation has 

been detected in HIV-1 infected patients (113-115). Replicative senescence of long 

term activated T cell clones has been suggested and associated with the down-

regulation of the CD28 molecules, with shortening of the telomeres and the 

upregulation of the CD57 molecules (116, 117). Parallels have been drawn between the 

ageing of the immune system and the HIV-1 induced T cell pathology (118). 

Interestingly, expanded clones of cytomegalovirus specific T cells have been detected 

in both HIV-1 infected and aged individuals (119-122) 

 

A large body of evidence indicates that sustained immune activation induces the 

expression of inhibitory receptors on T cells during HIV-1 infection, the best 

characterized of which are PD-1 and CTLA-4 (123, 124). PD-1 expressing T cells have 

impaired proliferative responses to cognate antigen and have higher susceptibility to 

spontaneous and Fas-mediated apoptosis. PD-1 and CTLA-4 are typically expressed on 

HIV-1 specific CD8+ and CD4+T cells respectively, therefore suggesting a strong role 

of these inhibitory pathways in the impaired functionality of T cells responses against 
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HIV-1 (123-125). Blockade of PD-1 ligand (PDL-1) binding greatly enhanced the 

survival of SIV infected RMs and increased SIV specific T and B cell responses. 

Blocking CTLA-4, on the other hand, promoted SIV replication, most probably 

because such treatment inhibited Treg functionality that induced a generalized T cell 

activation and thus, increased the cellular targets for SIV infection and replication (126, 

127).  

 

Over the past years, a number of studies have evidenced that the quality, more than the 

magnitude, of both CD4+ and CD8+ T cells responses are crucial for the control of 

HIV-1 infection. Comparing HIV-1 progressors or non-progressors patients, it was 

shown that frequencies of “multifunctional” CD4+ T cells, able to produce IFN-γ, IL-2 

and TNF represented over 50% of the total T cells in LTNPs when compared with 

progressors HIV-1 patients, whose T cells produced IFN-γ only (128, 129). Similarly, 

CD8+T cells of LTNPs had increased proliferative capacity and perforin-mediated 

cytolytic activity after in vitro culture as compared with CD8+T cells of HIV-1 

progressors (130).  

 

1.2.8.2 T cell apoptosis 

 

Apoptosis is considered as a major contributor for CD4+ and CD8+ T cells depletion 

caused by HIV-1 infection (105). Mechanisms accounting for increased apoptosis of T 

lymphocytes are induced directly by the virus or indirectly as a result of the immune 

activation (105). Direct mechanisms of apoptosis include the cytopathic effect of HIV-1 

or interference of viral proteins with apoptotic pathways. Although described only in in 

vitro systems, it has been shown that gp120 down-regulates Bcl-2 on primary CD4+T 

cells, Nef induces depolarization of the mitochondrial membrane and activation of 

caspase-3 and Tat mediates the activation of caspase- 8 (131-133).  

 

The levels of Fas expression and soluble form of TNF, FasL and (TNF)-related 

apoptosis-inducing ligand (TRAIL) are all increased in HIV-1 infected patients and are 

suggested to participate, as part of the indirect mechanism of damage, in the overall 

increased sensitivity of T cells for apoptosis (105). Specifically, immune activation 

correlates in humans with the sensitivity to apoptosis of effector/memory T cells and, in 

HIV-1 infected chimpanzee, with the sensitivity of T cells to Fas-mediated cell death 
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(134, 135). Fas is upregulated on CD4+ and CD8+ T cells during HIV-1 infection and 

is responsible for their enhanced susceptibility to apoptosis (136, 137). HIV-1 infected 

patients have increased plasma level of TNF and increased sensitivity to TNFR-induced 

apoptosis, as well as increased level of TRAIL, as result of HIV-1 activation of APCs 

(138, 139). 

 

1.3 Altered homeostasis of B cells during HIV-1 infection 

The contribution of HIV-1-induced immune activation in deteriorating the functionality 

of the immune system is very well manifested by the defects of B cell responses 

occurring during HIV-1 infection (140). B cells hyperactivation and low level of 

antibody responses were reported very early after the discovery of HIV-1 as the 

aetiological agent of AIDS (141-143). B cells are not the main targets of HV-1 

infection and the factors contributing to HIV-1-induced B cells dysfunctions remain 

largely unknown. However, since many of the B cells abnormalities associated with 

HIV-1 infection can be reverted by ART, it has become clear that viremia plays a major 

role in B cells pathogenesis of HIV-1 patients (140). B cell defects induced by HIV-1 

infection are either direct or indirect as a result of the systemic immune activation 

(144). Direct effects include activation of B cells via immune-complex of HIV-1 

virions binding to the complement receptor CD21 (145), or viral binding on C-type 

lectins receptor and DC-SIGN (146, 147).  Although these mechanisms have been 

described to occur in vitro, the frequency of virions associated with B cells in vivo is 

too low to be responsible for the magnitude of B cell pathogenesis occurring in HIV-1 

infection. Several cytokines and growth factors, which potentially can activate B cells, 

including IFN-α, TNF, IL-6, IL-10, CD40L and BAFF, are found increased in the 

serum of HIV-1 infected patients (41, 146, 148-150). 

 

Interestingly, most of the immune dysfunctions induced on B cells by HIV-1 infection 

appear to mirror the defects occurring on the T lymphocytes; these include B cells 

hyperactivation, increased B cells turnover and increased B cells exhaustion. Notably, 

HIV-1 induces a distinctive pathological signature on B cells, which has a long-term 

effect and is not reverted by ART, that is the loss of memory B cells and loss of 

serological memory (140, 151-153).  
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1.3.1 HIV-1 induced B cells hyperactivation 

HIV-1 induces increased level of immunoglobulin in serum (hyper-

gammaglobulinemia) and polyclonal B-cell activation as a result of increased B cell 

activation. Several mechanisms have been proposed to be responsible for 

hypergammaglobulinemia, including the direct effect of gp-120 binding to C-type 

lectins receptor (146), or the production of the acute phase protein ferritin. Specifically, 

HIV-1 infected macrophages were shown to secrete ferritin through a Nef dependent 

mechanism, and the level of ferritin in the plasma of HIV-1 patients correlated with the 

extent of hypergammaglobulinemia (154).  

 

Accumulation of activated B cells has been described in highly viremic HIV-1 patients 

(155). Activated B cells are defined by the low expression of CD21 and can secrete 

large amount of immunoglobulins and therefore are potentially responsible for the 

observed hypergammaglobulinemia (155). Hypergammaglobulinemia has been also 

proposed to result from bystandard CD27 signalling. During HIV-1 infection CD70 has 

been found upregulated in T cells together with an increased level of bone marrow 

plasmacytosis. Since CD70 can induce CD27-dependent IgG production, bystandard 

activation of CD70-CD27 axis could result in hypergammaglobulinemia (156). 

Interestingly, hypergammaglobulinemia and the accumulation of CD21 low activated B 

cells are both normalized by ART (144). 

 

Chronic T cells activation by HIV-1 results in their exhaustion. The term exhaustion 

refers to virus-specific immune cells that have lost the capability to respond to an 

antigen, due to expression of inhibitory receptors, such as, in the case of T cells, PD-1 

and CTLA-4 (123, 124, 157). It is now clear that a similar exhaustion phenomenon can 

occur in B cells during HIV-1 infection. In HIV-1 viremic patients, there is an 

accumulation of a B cells subset expressing inhibitory receptors, such as Fc receptor-

like-4 (FCRL4), normally present on memory B cells found in tonsils. This population, 

named tissue like memory B cells, is defined as CD20highCD10-CD27-CD21low (158). 

In addition to the inhibitory receptors, tissue like memory B cells express a profile of 

trafficking receptors that favour their migration to inflamed tissues, and preclude 

homing or trafficking in lymph nodes (158). 
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Tissue like memory B cells were shown to have a shortened replication history, as 

measured by κ-deletion recombination excision circles (KRECs), and to be enriched in 

virus specific responses, as measured by the frequency of antibody secreting cells 

(ASC) (158). The potential role of increased expression of inhibitory receptors for the 

exhausted functionality of tissue like memory B cells during HIV-1 infection has 

recently been reinforced. In fact, specific siRNA silencing FCRL4 and sialic acid-

binding Ig-like lectin 6 (singles-6) in tissue like memory B cells from HIV-1 infected 

patients restored tissue like memory B cells functionality and proliferation (159). 

 

There are evidences that PD-1 is involved in exhaustion of B cells, similarly as for T 

cells. This has been reported by two studies conducted in the SIV infected RMs, where 

memory B cells were shown to express high level of PD-1 after SIV infection. 

Interestingly, it was shown that rapid disease progression of SIV infected RMs strongly 

associated with loss of activated (CD21low) B cells expressing high level of PD-1. 

Nevertheless, blockade of PD-1 in vivo resulted in increased plasma level of SIV-

specific antibody, as well as improved B cells survival and proliferation (127, 160).  

 

1.3.2 HIV-1 induced B cells apoptosis 

B cells hyperactivation results in increased B cell turnover, as shown by the ratio of 

Ki67 expressing B cells during HIV-1 infection as well as in SIV infected RMs (112, 

161). Most of the Ki67 positive cells are activated CD21low B cells with phenotypical 

signatures of plasmablasts (158). Increased cell proliferation is physiologically 

regulated by increased cell death. Several studies have shown that B cells from viremic 

HIV-1 infected patients are decreased in number and have an apoptotic-prone 

phenotype (162, 163). Decreased B cell survival in HIV-1 viremic patients has been 

primarily attributed to an increased susceptibility of B cells for Fas-mediated apoptosis, 

or to their decreased Bcl-2 expression (152, 164). Specifically, the overall increased in 

apoptosis susceptibility resulted from the accumulation of two B cells subsets, normally 

present at very low frequency in healthy individuals, namely activated memory B cells 

(CD19+CD27+CD21low) and immature transitional B cells (CD19+CD10+CD27-). 

Activated memory B cells express high level of Fas, low level of BAFF receptor, and 

are susceptible to Fas-mediated apoptosis. Immature transitional B cells express low 

level of Bcl-2 and are sensitive to spontaneous apoptosis (158, 161, 162, 164, 165). 
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Interestingly, occurrence of immature transitional B cells in peripheral blood has been 

associated with increased level of IL-7, both as a result of HIV-1 infection, and in non-

HIV-related idiopathic CD4+T cell lymphocytopenia.  

 

ART induces an increase in B cell number, as a result of reduced frequency of both 

activated memory and immature transitional B cells. On the other hand, the increased 

expression of Fas occurring on resting memory B cells, does not normalize after 

initiation of ART (152). This suggests that other viremia-independent mechanisms 

might regulate the fate of B cell subsets during HIV-1 infection. Indeed, the 

mechanisms leading to Fas upregulation on B cells during HIV-1 infection are still 

elusive.  

 

Memory B cells are regarded as long lived, resting, antigen experienced cells that are 

rapidly engaged after exposure to cognate antigen (166). Mechanisms by which HIV-1 

infection induces loss of memory B cells are yet unsolved. Although ART has been 

shown to decrease the number of activated CD21low memory B cells, the increase in the 

number of resting CD27+ B cells is only partial (162, 167). Loss of memory B cells 

functions was proposed to occur early after HIV-1 infection. Indeed recent findings 

have shed light for the timing of ART as a crucial parameter in preventing the integrity 

and longevity of B cells humoral responses during HIV-1 infection. Specifically, in 

HIV-1 vertically infected children it was shown that initiation of ART within the first 

year of age translated in the normal development of HIV-1 specific memory B cell 

responses to HIV-1 gp160, as well as to common vaccination antigens measles and 

tetanus toxoid (168). These findings on paediatric HIV-1 infection were thereafter 

confirmed in adults HIV-1 patients, thus providing a strong suggestion that early 

initiation of ART may prevent memory B cells damage (169). 

 
 
1.4 Altered homeostasis of NK cells during HIV-1 infection 

NK cells constitute 15% of peripheral-blood lymphocytes and function as important 

mediators of innate immune responses against viruses and tumour cells (170). NK cells 

express a wealth of surface receptors that can either inhibit or activate their cytotoxic 

activity. Inhibitory receptors include killer cell immunoglobulin-like receptors (KIRs), 

which are highly polymorphic and specific for MHC class I molecules, and CD94, non-
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polymorphic and recognizing non-classical MHC molecule HLA-E.  NK cells 

activating receptors include NKG2D, the natural cytotoxicity receptors (NCRs) and the 

FCγ receptor CD16. The complex integration of signalling events from inhibitory or 

activatory receptors, expressed at the single cell level, determines the quiescence or the 

activation of a NK cell in response to a target cell (171).  

 

Two distinct subsets of peripheral NK cells can be defined according to the cell surface 

expression of CD56. CD56low NK cells are the largest population, they have high 

number of cytolytic granules, abundant levels of KIRs and NCRs and can readily lyse 

target cells in the absence of prior sensitization. The remaining 10% of peripheral NK 

cells are CD56high; they are poorly cytotoxic but can secrete large amounts of pro-

inflammatory cytokines, including macrophage inflammatory protein (MIP) -1α and β, 

CCL-5, IFN-γ, TNF and granulocyte/macrophage colony-stimulating factor (GM-CSF) 

(170). 

 

Due to their innate immune capabilities, NK cells have probably a considerable role for 

the prevention and control of HIV-1 infection. NK cell responses to HIV-1 include 

direct lysis of infected cells and antibody dependent cell mediated cytotoxicity 

(ADCC); in addition they can facilitate adaptive immune responses via the induction of 

pro-inflammatory cytokine and recruitment of lymphocytes to inflamed tissues. 

Furthermore, NK cells can secrete CCL3, CCL4 and CCL5, the ligands for the 

chemokine receptor CCR5, therefore inhibiting the entry of HIV-1 via receptor 

competition (172). 

 

Despite these potential opportunities, NK cells responses are functionally impaired 

during HIV-1 infection. Theoretically, HIV-1 infected cells are excellent target for NK 

cell killing, based on the ability of HIV-1 to down-regulate MHC-I molecules (173). 

Nevertheless, Nef is known to selectively down-regulate HLA aplotypes that are 

largely targeted only by CTLs, while maintaining the expression of HLA-C and HLA-

E, which inhibit NK cell activation (174, 175).  

 

NK cells from HIV-1 infected patients have decreased intracellular stores of perforin 

and granzyme A and show a phenotype of incomplete activation (176, 177). These 

features, together with an impaired ADCC activity (178, 179), result in a generalized 
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decreased cytotoxic capacity of NK cells during HIV-1 infection. Indeed, NK cell 

mediated suppression of HIV-1 replication inversely correlates with the level of HIV-1 

viremia (180).  

 

NK cells from HIV-1 infected patients show low in vitro responsiveness to cytokines, 

and impaired NK cell cytotoxicity after IL-2 activation is associated with higher 

probability to progress to AIDS (181).  Furthermore, during HIV-1 infection there is an 

accumulation of CD16highCD56- NK cells, at the expense of the CD16highCD56low 

cytotoxic NK population. CD56- NK cells have low cytotoxic activity and fail to 

condition adaptive immune responses due to their low production of IFN-γ and TNF 

upon activation (182, 183). Although it was shown that having higher NK cells 

functionality, in term of both cytotoxicity and immunomodulatory abilities, could 

predispose to protection from HIV-1 transmission in a cohort of intravenous drug users 

who remained seronegative despite several years of high-risk exposure (184), the exact 

contribution of NK cells for HIV-1 protection remains unclear. 
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Figure 2. Potential consequences of increased IL-7 levels.  
T cells: IL-7 induces T cells survival by increasing Bcl-2 expression and proliferation 
through upregulation of CD25 and induction of IL-2. IL-7 can also induce Fas 
expression on T cells, and prime T cells to context dependent Fas signalling, inducing 
proliferation of suboptimal activated T cells, or apoptosis in non- activated T cells. IL-
7 can also induce expression of activation markers on T cells (CD45RO, CD40L and 
CD70) and markers associated with T cell exhaustion (PD-1). 
B cells: High IL-7 levels have been associated with accumulation of Immature 
Transitional B cells and, as discussed in this thesis, IL-7 impacts on survival and 
differentiation of B cells, respectively, via secretion of IFN-γ and upregulation of CD70 
by T cells. 
NK cells: IL-7 induces CD70 expression on NK cells, most probably through an 
indirect effect mediated from IL-7 using cells; upregulation of CD70 expression may 
possibly induce bystandard activation of CD27-expressing cells. 
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2 AIM OF THE THESIS 

 
The present thesis focuses on unravelling how IL-7 can impact on the level of immune 
activation during HIV-1 infection and how IL-7 and immune activation relate with the 
homeostasis and dysfunctions of the immune system.  
 
The specific aims of this thesis are: 
 

- Study the impact of disease progression and IL-7 in subset distribution of NK 
cells during HIV-1 infection 
 

- To evaluate the priming role of IL-7 for Fas proliferative signals of 
suboptimally activated T cells 
 

- To study the phenotype and functional characteristics of CD28- T cells in 
relation to disease progression and viral replication 
 

- To dissect the mechanism by which IL-7 can induce Fas upregulation on B cells 
and enhance their susceptibility to Fas mediated apoptosis 
 

- To evaluate the mechanism by which IL-7 induces IgG production by B cells 
 
 
 
 
 
 
 
All methods used to verify the aims are described in details in the enclosed articles. 
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3 RESULTS AND DISCUSSION 

 
3.1 Distribution of NK cell subsets identified by CD56, CD27 and CD70 

in primary and chronic HIV-1 infection (PAPER I) 

 

NK cells are cytotoxic lymphocytes constituting a major component of the innate arm 

of the immune system. NK cells play a prominent role in the rejection of tumours as 

well as in killing of viral infected cells. Due to their functional abilities, NK cells 

should have a considerable role in the prevention of HIV-1 infection; nevertheless NK 

cells present with phenotypical and functional impairments during HIV-1 infection 

(185, 186). Peripheral NK cells are defined within two major groups, based on the 

expression of CD56: the majority being CD56low and accounting for the NK cells 

characterised by cytotoxic activity, and around 10% of peripheral NK cells being 

CD56high with the primary features of cytokine producing cells.  

 

HIV-1 infection has been associated with an altered ratio of CD56low and CD56high NK 

cell subsets possibly indicating the presence of NK cell dysfunction during HIV-1 

infection (182, 183). Therefore we sought to analyze NK cell subsets in a cross 

sectional study in HIV-1 infected patients, during primary and chronic phases of HIV-1 

infection (PHI and CHI, respectively) in order to follow the distribution of NK cells 

subsets during disease progression. 

 

The ratio of NK cells in PBMCs was not affected by HIV-1 infection or disease 

progression. The CD56high population contracted during PHI, whereas the same subset 

became enlarged in patients with CHI as compared with PHI or healthy controls. In 

addition, the dysregulation of CD56high and CD56low subsets was not corrected by ART 

during CHI. In parallel with the expression of CD56, we studied the expression of 

CD27 and CD70 during disease progression, a receptor-ligand pairs belonging to the 

TNF family (187, 188).  It has been demonstrated that NK cells could be divided into 

CD27high cells, that possess strong effector functions, and CD27low cells, characterised 

by a higher threshold of activation through their NK inhibitory receptors (189). We 

found increased CD27 and CD70 expression in both the CD56high and CD56low NK cell 
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subsets during CHI, as compared to non-infected individuals. We studied the effects of 

the lymphopenia induced cytokine IL-7 on NK phenotype and we showed that IL-7 can 

upregulate CD70 expression of NK cells in PBMCs of both healthy and HIV-1 infected 

individuals. 

 

Based on our results, NK cell functionality might change during disease progression.   

In chronic HIV-1 patients CD56high NK cells are expanded at the expense of the 

CD56low subset. Since CD56high NK cells are mainly immunomodulatory and express 

lower level of inhibitory receptors, this could result in a less regulated NK cells 

activation with low cytotoxic function but potentially able to increase the level of 

immune activation via cytokine release. In addition, CD70 upregulation might 

contribute to immune activation by increasing the activation of CD27 expressing T, B 

and NK cells. IL-7 may participate in CD70 upregulation on NK cells during HIV-1 

infection; however, since the NK cells do not express the IL-7Rα, the effect of IL-7 is 

most probably indirect, mediated by another, IL-7 sensitive cell type. 

 

3.2 IL-7 priming to T cells proliferation during HIV-1 infection (PAPER II) 

Naïve and memory T cells in lymphopenic hosts proliferate in response to low affinity 

antigens presented on MHC molecules by professional APCs (190, 191). IL-7 is a 

major regulator of this mechanism, known as HPE, since it was shown that grafting 

depleted host with IL-7R-/- T cells abolished the proliferative response of T cells to low 

affinity antigens (59, 192). On the other hand, this ability of IL-7 to enhance T cell 

proliferation to low affinity peptides during lymphopenia might promote the system to 

less regulated tolerance; indeed IL-7 mediated T cell activation has been implicated in 

several autoimmune diseases (50, 193). Due to its harmful potentials in predisposing 

the immune system to autoimmunity, HPE is controlled by several negative regulators, 

including activation induced cell death (AICD) and competition for homeostatic 

cytokines (54, 72).  

 

Fas is involved in the maintenance of homeostasis and tolerance in the immune system, 

by transmitting apoptotic signals to repeatedly activated T cells as well as to auto-

reactive B cells (194, 195). Our group has shown previously that IL-7 can induce Fas 

expression and Fas mediated apoptosis of resting T cells, and that the plasma levels of 
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IL-7 correlated with Fas expression and Fas-mediated apoptosis of T cells in HIV-1 

infected patients (196). On the other hand, Fas has also been shown to act as a 

costimulatory molecule for T cell activation, inducing IL-2 production and proliferation 

upon suboptimal TCR triggering (197, 198). Fas has been extensively studied in T cell 

apoptosis during HIV-1 infection, however, little is known on Fas involvement in T 

cells proliferation under lymphopenic conditions.  

 

 
 

Figure 3. Fas-induced proliferation and apoptosis of purified T cells from HIV-1 
infected individuals.  
Proliferation and apoptosis of suboptimally anti-CD3 activated T cells from (A) HIV-1 
infected patients (n=7) and (B) healthy controls (n=5) combined with an anti-Fas 
antibody or isotype matched antibody control, at the indicated concentrations. 
 

In this project we studied whether Fas could act as a costimulatory receptor on T cells 

of HIV-1 infected individuals and whether the lymphopenia induced cytokine IL-7 
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could be a priming signal sensitizing T cells to stimulatory Fas signals. We found that T 

cells isolated from HIV-1 infected patients, showed an enhanced proliferation in 

response to suboptimal TCR triggering in the presence of Fas cross-linking as 

compared to healthy individuals. Proliferation greatly overcame the Fas induced 

apoptosis in the same conditions, indicating that Fas contributes primarily to 

proliferation of weakly activated T cells in HIV-1 infected patients (Fig. 3). 

 

As IL-7 has been shown to increase T cells proliferation and we have previously 

demonstrated its modulatory effect on Fas expression of T cells (57, 196), we tested 

whether pre-treatment of T cells from healthy donors with IL-7 for 5 days could prime 

their Fas-proliferative ability upon suboptimal dose of anti-CD3. Indeed, IL-7 greatly 

enhanced Fas induced proliferation of suboptimally activated T cells (Fig. 4).  

 

 
Figure 4. IL-7 priming of suboptimally activated T cells to Fas-mediated 
proliferative signals   
A representative experiment of purified T cells from healthy individuals (total n=3) pre-
treated with IL-7 for 5 days (right panel) or left untreated (left panel) and thereafter 
activated with a suboptimal concentration of anti-CD3 combined with anti-Fas 
antibody or isotype matched control. Thymidine incorporation measured at day 3 of 
culture. 
 

The costimulatory action on IL-7 treated T cells by Fas was reflected by the ability of 

Fas to increase IL-2 production as well as by stimulating CD25 expression on T cells. 

We studied the apoptotic and costimulatory roles of Fas molecules on different T cell 



 
 

 
 

27 

subsets following IL-7 treatment and we showed that memory T cells were more 

sensitive to Fas triggering than naïve T cells and that among CD8+ T cells, the Fas-

induced T cell proliferation exceeded greatly the level of apoptosis.  

 

As homeostatic proliferation occurs in lymphopenic hosts after recognition of low 

affinity peptide/MHC complexes presented to T cells by APCs (190, 191), we set up a 

model to address the contribution of Fas molecules in T cells activation driven by self-

antigens. IL-7 pre-treated, or freshly isolated T cells, were cultured together with 

autologous DCs for 4 days, in the presence or absence of recombinant FasL. 

Interestingly, Fas mediated signals increased the proliferation of IL-7 treated CD4+ T 

cells in the presence of autologous DCs further demonstrating the costimulatory role of 

Fas molecules on IL-7 treated T cells. 

 

Overall, in this project we demonstrated a context dependent regulation of T cell 

apoptosis and proliferation by Fas molecules. IL-7 increases the sensitivity of resting T 

cells to Fas signals and the presence of Fas ligand molecules can lead to increased 

apoptosis of non-activated T cells. On the other hand, increased IL-7 levels promote 

Fas induced proliferation of T cells that receive weak TCR stimuli, possibly 

contributing to homeostatic proliferation in T cell depleted hosts.  

 

3.3 Loss of CD28 expression on T cells as a marker of immune 
activation during HIV-1 infection (PAPER III) 

Excessive antigen-driven activation has been proposed as a mechanism inducing 

progressive loss of T cell effector functions when the immune system reacts with 

pathogens that are able to establish chronic long-term infections, including HIV-1, 

HCV, HBV and CMV (199, 200). Persistent antigen activation causes a sustained 

induction of T cell proliferation, which results in an increased ratio of T cells with a 

senescent, exhausted memory/effector phenotype (117, 118, 201). CD28- T cells have 

been reported as antigen experienced T cells with a limited TCR variability, arising 

from activation of their CD28+ T cells precursors (202, 203). CD28- T cells display 

shorten telomeres length and show an impaired proliferative ability in response to 

antigens (117, 204). CD28- T cells have been reported to be relatively resistant to 

apoptosis, and, as a result, they are found accumulated in several chronic infections 
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(205), in aged individuals (206) or in patients with diverse autoimmune diseases (207, 

208).  

 

 
Figure 5. Apoptosis and proliferation property of CD28+ and CD28- T cells   
Purified T cells from healthy individuals (n=10, blue) and treated (n=11, green) or 
untreated (n=14, orange) HIV-1 infected patients. Percentage of apoptotic (left panels) 
or proliferating (right panels) T cells among CD28+ (upper panels) and CD28- (lower 
panels) T cells cutured with anti-CD3 at the indicated concentration. 
 

 

CD28- T cells comprise a large number of T cells in HIV-1 infected patients, and 

therefore they potentially account for T cell disorders observed during HIV-1 infection. 

In addition, the majority of CD8+ T cells specific for HIV or CMV derived antigens are 

CD28-, suggesting that the CD28- subset might represent a memory pool against 

pathogens that can establish persistent infections. Therefore, functionality of the CD28- 

T cells can strongly determine immunity against chronic infections. We decided to 

investigate the phenotypic, survival and proliferative characteristics of CD28- T cells in 

HIV-1 infected patients either under ART, or naïve to treatment, in order to evaluate 

the impact of viral replication for CD28- T cells functionality. 

 

According to published reports, CD28- T cells isolated ex vivo, or generated in vitro 

through the induction of several rounds of proliferation, were resistant to apoptosis and 

exhibited impaired proliferative ability (203, 209). CD28- T cells of our studied 

cohorts, displayed a senescent and apoptotic prone phenotype, with shorter telomere 
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length, high expression of CD57, Fas and PD-1 and low level of IL-7Rα and Bcl-2 

expression. 

 

Functionally, CD28- T cells of patients naïve to treatment showed a low threshold for 

both spontaneous and activation-induced apoptosis, while in patients under ART the 

values were comparable to those of healthy individuals. On the other hand, CD28- T 

cells of patients under ART showed the highest induction of T cell proliferation, using 

low or high levels of anti-CD3 stimulation, strongly arguing against the association of 

the CD28- phenotype with replicative senescence (Fig. 5).  

 

 
Figure 6. Correlation between viremia and apoptosis of CD28+ and CD28- T cells 
from HIV-1 infected patients. 
Correlation of HIV-1 viral load with spontaneous and activation-induced T cell 
apoptosis measured on CD28+ (upper panels) and CD28- (lower panels) T cells from 
HIV-1 viremic patients (2 under treatment and 14 naïve to treatment) activated at the 
indicated anti-CD3 concentrations. Calculated Spearman r and P values are indicated 
for each anti-CD3 treatment inside the panels.  
 

Interestingly, the level of viral replication correlated with both spontaneous and 

activation induced apoptosis of CD28- T cells (Fig. 6). Thus our data suggest that the 

control of HIV-1 replication with an early initiation of ART might be beneficial for 

HIV-1 infected patients by preserving highly functional, effector and memory T cells. 
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3.4 IL-7 promotes Fas-induced apoptosis in B cells via the IFN-γ/STAT1 
pathway (PAPER IV) 

B cells are not the main targets of HIV-1 infection; nevertheless they display a complex 

array of dysfunctions during HIV-1 infection (144). Disturbances in B cells responses 

are manifested by their increased turnover, activation, accumulation of immature, 

exhausted and apoptosis prone B cell subsets in the circulation as well as 

hypergammaglobulinemia, loss of memory B cells and reduced level of pathogen-

specific antibodies (144, 151, 158, 161, 210). Viral replication and viremia-induced 

immune activation are considered to be the primary causes of the B cell dysfunctions 

occurring in HIV-1 infection (144, 161).  On the other hand, B cell disturbances are not 

fully restored by ART indicating the role of viremia independent mechanisms in B cell 

dysfunctions during HIV-1.  

 

Fas upregulation and sensitivity to Fas mediated apoptosis have been often implicated 

in the accelerated B cell and T cell depletion during HIV-1 infection (105, 144, 161). 

Our group has previously shown that IL-7 upregulates the expression of Fas on T cells 

and render them more sensitive to Fas mediated apoptosis. In HIV-1 infected patients, 

IL-7 levels correlated with Fas expression on T cells, and with their sensitivity to Fas 

mediated apoptosis, suggesting that IL-7 might have a role in the accelerated T cells 

apoptosis in HIV-1 infected patients (196). We have also noticed that IL-7 stimulation 

of PBMCs induced Fas upregulation on B cells, similarly to T cells (Fig. 7). IL-7 

increased Fas expression on all subpopulations of B cells defined by the cell surface 

markers CD19, CD27, CD10 and CD21, namely naïve, resting memory, activated 

memory, tissue like memory, germinal center founder and immature transitional B 

cells. We showed that in addition to increasing Fas expression, IL-7 primed B cells to 

Fas mediated apoptosis (Fig. 8). Peripheral B cells do not express IL-7Rα and, 

accordingly, Fas upregulation was not induced by recombinant IL-7 protein if the 

cytokine was added to purified B cells, but only if T cells were present in culture.  
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Figure 7. Fas expression on T cells and B cells of IL-7 treated PBMCs 
Representative histograms of Fas expression on T cells (CD3+ CD19- PBMCs) and B 
cells (CD3-CD19+ PBMCs). Fas expression on freshly isolated (red) or after 5 days of 
IL-7 treatment of PBMCs (green) on T cells (upper histogram) or B cells (lower 
histogram). Isotype control staining is depicted in gray. 
 

 

Using IL-7 treated T cell supernatants and transwell experiments we concluded that IL-

7 induced Fas upregulation on B cells via a soluble factor released by T cells. To 

identify the IL-7 induced mediator molecule, we studied a broad range of intracellular 

phosphorylation events in B cells receiving supernatants from IL-7 treated or untreated 

T cell. The IL-7 treated T cell supernatants induced STAT1 phosphorylation and, 

indeed, the upregulation of Fas could be blocked using a STAT1 inhibitor.  STAT1 is a 

canonical signalling component in the IFN-γ pathway. We demonstrated that IL-7 

induces IFN-γ secretion from resting T cells and IFN-γ acts as the mediator molecule 

that upregulates Fas expression on B cells in response to IL-7. IL-7 shared the ability to 

induce Fas expression on B cells via induction of IFN-γ production with the other γ-

chain using cytokines IL-2 and IL-15, but not with IL-4 and IL-21. When T cells were 

cultured with stromal cells, the efficiency of IL-7 to induce IFN-γ production by T cells 

was readily increased. 

 



 
 

 
 
32 

 
 

Figure 8. Enhanced Fas mediated apoptosis of T cells and B cells upon IL-7 
treatment. 
Kinetics of Fas expression (left panels) and Fas-mediated apoptosis (right panels) on 
CD3+ T cells (upper panels) and CD19+ B cells (lower panels), measured in PBMC 
cultures. Apoptosis was induced using recombinant FasL for 24 hours in cultures. Data 
are representative of 3 independent experiments. 
 

Finally we studied the potential role of IL-7 in the regulation of B cell survival during 

HIV-1 infection, and we correlated plasma levels of IL-7, IL-2 and IFN-γ with Fas 

expression B cells. We found a strong positive correlation of IL-7 and IL-2 with IFN-γ 

concentrations and, in the case of ART patients, the levels of all the three cytokines 

correlated with Fas expression on B cells. As previously reported, highly viremic 

patients showed increased level of Fas expression and there was no apparent role of IL-

2, IL-7 or IFN-γ to induce further Fas expression. Overall, our results suggest a 

potential role of IL-7 in increasing viremia-independent susceptibility of B cells to Fas 

mediated apoptosis. 

 

3.5 IL-7 modulates IgG production (PAPER V) 

Increased level of IL-7 are often associated with conditions of lymphopenia, including 

HIV-1 infection or in patients under cytoreductive drugs (58). Owing to its potent 

ability in increasing T cell survival and proliferation, IL-7 is considered an excellent 

candidate for the treatment of T cell depleted individuals, with the aim of improving T 

cells regeneration (69, 211, 212). It is not known how IL-7 levels modulate B cells 
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responses. IL-7Rα is not expressed by resting B cells, yet we have demonstrated that 

IL-7 exerts an indirect effect for B cells survival via the induction of IFN-γ (Paper IV). 

In addition, high levels of IL-7 associate with an increased ratio of immature 

transitional B cells in HIV-1 infection, during CD4-T lymphocytopenia as well as 

during IL-7 therapy (69, 165, 213).   

 
Figure 9. CD70-CD27 costimulatory pathway 
CD70-CD27 pathway is involved in T cells - B cells communications. CD70 (ligand) 
expression is activation dependent, while CD27 (receptor) can be expressed in resting 
cells. Since CD70 and CD27 can be expressed by T cells and B cells, CD70-CD27 can 
induce intracellular signalling on both T cells and B cells. (1) CD70-CD27 interaction 
has been shown to increase IgG production and plasma cells maturation. (2) Activated 
B cells can efficiently present antigens and costimulate T cells to induce large 
production of IFN-γ via CD70-CD27 costimulation. 
 

 

We found that IL-7 treated T cells induced IgG production. This was mediated via an 

increased survival and activation of B cells, as measured by ratio of CD20-CD38+ 

plasmablasts and proliferating B cells induced by IL-7 treated T cells. Selective 

blocking IFN-γ, IL-6 and CD40L, all molecules inducible by IL-7 and involved in T 

cell dependent B cell activation (214, 215), did not lead to the reduction of IgG 

production mediated by IL-7.  
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IL-7 treated T cells strongly mediated CD27 down-regulation on B cell cultures. The 

CD27-CD70 co-stimulatory pathway can enhance the antibody production by purified 

peripheral B cells and induce plasma cell maturation (216, 217) (Fig. 9). Owing the 

ability of IL-7 to induce CD70 expression on NK cells, we analyzed the expression of 

CD70 in IL-7 treated T cells. Indeed, IL-7 induced upregulation of CD70, primarily in 

memory and activated CD4+T cells. The presence of a CD70 blocking antibody 

decreased IgG levels, as well as the ratio of plasma blasts and proliferating B cells 

induced by IL-7 treated T cells. There was no impact on survival of B cells in the 

presence of the neutralizing CD70 antibody. Altogether our data define a novel 

mechanism by which, via CD70 upregulation on T cells, IL-7 can modulate antibody 

production (Fig. 10). 

 

 
Figure 10. Blockade of CD70-CD27 interaction reduces IL-7 induced IgG 
production 
IgG concentrations measured by ELISA from B cells cultured for 5 or 10 days at  
different conditions as indicated by the figure. 
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4 GENERAL CONCLUSIONS AND DISCUSSIONS 
 
In the present thesis I have studied how immune activation influences the homeostasis 

of NK cells, T cells and B cells during HIV-1 infection, with a special emphasis on the 

effects of the lymphopenia induced cytokine IL-7.  

 

In paper I we studied the role of viral replication and disease progression in regulating 

the biology of NK cells by analysing the expression of CD56, CD27 and CD70. The 

message drawn from the project is that in ART treated patients there is an expansion of 

CD56high NK cells at the expense of the CD56low subpopulation. Since CD56high NK 

cells have mainly immunomodulatory functions and express lower level of inhibitory 

receptors (170), their increased ratio might lead to impaired NK cell functionality 

during chronic HIV-1 infection. NK cells from chronically infected patients expressed 

high levels of CD70, an activation marker belonging to the TNFR superfamily 

members. Interestingly, the lymphopenia-induced cytokine IL-7 was able to upregulate 

CD70 expression on NK cells from PBMC cultures. Since CD27 is expressed on 

different T, B and NK cell subsets, CD70 upregulation by IL-7 can lead to increased 

bystandard activation of CD27 expressing cells in conditions characterized by high 

level of IL-7, including HIV-1 infection. 

 

In paper II we demonstrate that IL-7 promotes Fas-induced proliferative signals on 

suboptimally activated T cells. This study complemented a previous publication of our 

group, where it was shown that IL-7 can induce Fas expression and sensitize T cells to 

Fas-mediated apoptosis during HIV-1 infection (196). IL-7 is a major regulator of 

lymphopenia induced HPE (57). We showed here that T cells from HIV-1 infected 

patients were sensitive to proliferative Fas signals and that IL-7 primed T cells of 

healthy individuals to Fas-induced proliferation upon suboptimal activation with anti-

CD3 antibodies. These results indicated that Fas-mediated costimulatory signals might 

contribute to HPE. Altogether it seems that during HIV-1 infection there is a context 

dependent regulation of T cells by the IL-7 induced Fas molecules. Fas triggering can 

lead to increased apoptosis of non activated T cells, or can promote Fas induced 

proliferation of T cells receiving weak TCR stimulation. As the IL-7 therapy clearly 

showed, high IL-7 levels can lead to increased peripheral T cell numbers in both 



 
 

 
 
36 

chemotherapy treated or HIV-1 infected patients via boosting thymic output, HPE and 

T cells survival (71). The stimulatory effects of IL-7 on T cells are associated with 

similar feedback mechanisms that can limit or terminate antigen-specific T cell 

responses, including the increased sensitivity to Fas mediated apoptosis or the IL-7 

induced upregulation of PD-1, a molecule often associated with a functional exhaustion 

of T cells (196, 218).  

 

In paper III we investigated the phenotypic, survival and proliferative characteristics 

of CD28- T cells and analyzed the impact of viral replication on their functionality. Our 

data suggest that the proliferative ability and apoptosis sensitivity of CD28- T cells are 

variables that correlate more with the level of active viral replication of the patients, 

than with markers of functional exhaustion and replicative senescence. The CD28- 

subset includes a big part of the CD8+ memory T cells specific for pathogens that can 

establish persistent infections, like HIV or CMV (205) and therefore, functionality of 

these cells can strongly determine immunity against chronic infections. Our data 

suggest that viremia leads to impaired T cell functionality via accumulation of CD28- T 

cells prone to apoptosis and unable to proliferate upon activation. Thus control of   

HIV-1 replication with an early initiation of ART, might therefore be beneficial for T 

cells survival and functionality.  

 

In paper IV and paper V we studied the indirect effects of IL-7 on B cell homeostasis, 

potentially important in the settings of HIV-1 infection or in other conditions 

characterized by increased levels of IL-7. In paper IV, we demonstrate that IL-7 

stimulates Fas expression on B cells and increase their sensitivity to apoptosis via the 

induction of IFN-γ production by T cells. In Paper V we show that IL-7 is able to 

upregulate CD70 expression on T cells, which can ultimately lead to IgG production by 

triggering CD27 molecules on B cells. These results may contribute to a better 

understanding of the mechanisms leading to impaired B cell functionality in HIV-1 

infected individuals.  

 

Fas-induced apoptosis has been reported to be associated with high level of viral 

replication (161) and we have also detected a strong increase of Fas expression on B 

cells of viremic patients. On the other hand, when viremia was controlled by ART, 

plasma levels of IL-7 correlated with IFN-γ concentrations, suggesting that the 
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production of IFN-γ might be regulated by IL-7. In addition, the concentrations of IL-7 

and IFN-γ correlated with Fas expression on B cells in the ART treated patients group, 

indicating a potential viremia-independent mechanism regulating the susceptibility of B 

cells to apoptosis during HIV-1 infection. To our knowledge, this is the first work 

showing that IL-7, a T cell trophic cytokine, can modulate sensitivity to Fas-mediated 

apoptosis of B cells. It has been shown that increased levels of IL-7 correlate with the 

occurrence of immature transitional B cells in conditions of lymphopenia, including 

HIV-1 infection and non-HIV-related idiopathic CD4+T cell lymphocytopenia (165, 

213). Since peripheral B cells do not express IL-7Rα, the mechanism of immature 

transitional B cell accumulation is not known. Our data indicate that IL-7 can indirectly 

impact on B cell homeostasis via its action of T cells. In line with this hypothesis, IL-7 

therapy in humans resulted in a significant decline of peripheral B cell numbers that 

was reverted 1-2 weeks after cessation of the therapy (69). Although the mechanism for 

such IL-7 induced B cell decline has yet not been clarified, whether it reflects 

redistribution or cell death, our results indicate that high IL-7 levels may lead to 

accelerated B cell apoptosis which in turn could contribute to the decreased number of 

circulating B lymphocytes.  

 

Lymphopenia, through the increased IL-7 concentration, may thus confer non-antigen 

activated T cells with general effector function, as demonstrated by the release of IFN-

γ. Such a mechanism could contribute to a better immunity, in a situation when the 

immune system is weakened by lymphopenia, at the price of less regulated and less 

localized TH1 type responses that could lead to bystander damage of the B cell pool. 

 

The CD27-CD70 co-stimulatory pathway enhances T and B cells activation, promoting 

survival and proliferation of T cells or IgG induction from B cells (216, 219). Our data 

suggest that IL-7 can enhance the B cell stimulatory potential of resting T cells via the 

upregulation of CD70, possibly contributing to a generalized B cell activation in 

conditions associated with chronically elevated IL-7 levels. Indeed, enhanced CD70 

expression found on T cells from HIV-1 infected patients was suggested as a possible 

mechanism inducing hypergammaglobulinemia (156). Due to its potent stimulatory 

effect on T cell proliferation, IL-7 has been considered as an adjuvant for therapeutic 

vaccines aiming at eradication of tumours (220, 221). These latter works mainly 

analyzed T cells responses boosted by IL-7. However, our data indicate that IL-7 might 
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also promote B cell responses. As discussed in paper I, IL-7 induces CD70 expression 

in NK cells, most probably via an indirect mechanism that at the moment remains 

unknown. Notably, CD70 transgenic mice succumb by opportunistic infections, such as 

Pneumocystis carinii pneumonia, after a fatal T cells immunodeficiency. Excessive 

CD27 signalling induced effector T cell differentiation at the expense of naïve T cells 

loss (222). IL-7, by upregulating CD70 expression on T and NK cells could possibly 

contribute to immune activation, which eventually exacerbates immunodeficiency. 

Indeed, it has been already reported that homeostatic cytokines can promote 

effector/memory T cell differentiation from naïve cells in the absence of antigen 

specific stimulation (214, 223). IL-7 therapy might be beneficial for T cell 

regeneration, but our data argue against prolonged treatments, in order to avoid the 

potential effects of IL-7 on abnormal immune activation.  
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Figure 11. Summary of the thesis findings with focus on potential pathways 
inducing immune activation during HIV-1 infection. 
HIV-1 influences the accumulation of CD28- T cells and CD56high NK cells. The former 
have proliferative senescence and apoptosis prone phenotypes which impact in immune 
activation as functionally exhausted T cells. CD56high NK cells are immunomodulatory 
and therefore can secrete large amount of pro-inflammatory cytokines potentially also 
fuelling immune activation. 
IL-7 is crucial for T cells homeostasis, inducing their survival and proliferation in 
conditions of lymphopenia. On the other hand, when IL-7 signalling is sustained and 
dysregulated, it can induce Fas expression on T cells, which can result in either 
increased Fas-mediated apoptosis of non-activated T cells, or in proliferation of T cell 
activated with weack TCR signaling. Overall these mechanisms can increase T cells 
turnover, and therefore, immune activation. 
Sustained IL-7 signalling induces IFN-γ production and CD70 expression by T cells. 
This in turn, can lead to increased suceptibility for apoptosis of B cells and to 
increased B cell differentiation.  
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