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ABSTRACT 
During mRNA biogenesis, a subset of newly exported mRNA is assembled into larger 
RNA granules which are transported to subcellular compartments for localized 
translation. These mechanisms are critical for asymmetric mRNA and protein 
distribution and have profound impact on cellular physiology. Yet, they are not fully 
understood at the molecular level. Transport and localization require cis-acting 
elements on the RNA that are recognized by cellular transacting factors. The main 
objective of this thesis has been to elucidate the mechanisms that lead to active mRNA 
sorting to specialized subcellular compartments for translation. 
 
Cytoplasmic transport and localization of certain mRNAs is mediated by a well 
characterized cis-acting element termed RNA trafficking sequence (RTS) found in the 
untranslated regions (UTR). In paper 1, we discovered that the heterogeneous nuclear 
ribonucleoprotein CBF-A binds the RTS in the 3’ UTR of the myelin basic protein 
(MBP) mRNA. CBF-A binding to the RTS occurs both in the nucleus and in the 
cytoplasm of oligodendrocytes. Since CBF-A gene knockdown impairs MBP mRNA 
transport to the myelin compartment, we conclude that CBF-A is a novel transacting 
factor that mediates MBP mRNA transport and localization via the RTS pathway. 
 
In neurons mRNA is present in dendrites and synapses but the mechanisms that 
mediate transport of specific transcripts are not understood in detail. In paper 2, we 
show that in hippocampal neurons CBF-A functions as transacting factor for transport 
of Arc, CaMKIIα and BDNF mRNAs to dendrites. This mechanism is RTS-mediated 
since CBF-A binds to RTS-like sequences in the UTRs of the transcripts and it is 
dependent on postsynaptic receptor activation. In the nucleus of brain cells CBF-A is 
excluded from dense chromatin and localizes to nascent pre-mRNPs in perichromatin 
region. Based on the the fact that CBF-A specifically interact with transcripts that 
contain RTS sequences, we propose that co-transcriptional RTS-binding by CBF-A 
may provide de facto a sorting mechanism for transport-competent neuronal mRNAs at 
an early stage in RNP biogenesis. 
 
In spermatogenic cells expression of haploid mRNA is temporally and spatially 
regulated, partly by controlling mRNA trafficking. In paper 3 we report that CBF-A is 
involved in transport and localization of protamine 2 mRNA during spermatogenesis. 
CBF-A binds to the conserved RTS in the protamine 2 mRNA 3’ UTR and in round 
spermatids, CBF-A accompanies protamine 2 mRNA to chromatoid body. The larger 
p42 CBF-A splice variant also appears in protamine 2 mRNA-containing polysomes 
and interacts with the 5’ mRNA cap structure. Since the smaller p37 isoform is 
excluded from polysomes, we propose that both CBF-A splice variants associate with 
protamine 2 mRNA and together transit through chromatoid body. In elongating 
spermatids in response to developmental cue calls when a distinct protamine 2 mRNP 
emerges in the cytoplasm to engage the translation machinery, the larger p42 isoform 
remains associated with the transcript via the RTS, presumably to facilitate targeting to 
the translation machinery. 
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PREFACE 
                                                      
In biology, the question of when and where genes are expressed  has been a major 

focus for at least 60 years. Although initial studies of spatial positioning of transcripts 

focused on differences in expression levels between tissues, approximately 40 years 

ago it was first reported that transcripts can also localize asymmetrically within cells 

(Bodian et al., 1965; Koenig et al., 1965). Interestingly, these early data were initially 

given little attention. Even after increasing evidence for asymmetrically localized 

RNAs and ribosome's from independent laboratories in the early 1980s (Colman et al 

1982;  Jeffery et al 1983; Steward & Levy., 1982) RNA localization continued to be 

considered something hard to perceive in cell biology. The notion was received with 

skepticism. However, In the late 1980s and early 1990s it became clear that individual 

mRNAs can be targeted to distal sites, sometimes even at considerable distances from 

cell body somatic regions (Verity and Campagnoni., 1988; Shiota et al.,1989; 

Barbarese et al., 1991). In recent years, the arrival of high throughput approaches has 

revealed that mRNA localization is much more common than previously thought. A 

recent study involving large-scale fluorescent in situ hybridization screens indicates 

that 71% of over 3000 transcripts are expressed in spatially distinct patterns in 

Drosophila melanogaster embryos (Lecuyer et al., 2007). Similarly, in mammalian 

neurons hundreds of mRNAs are present in neuronal processes, where they are likely to 

encode diverse functions (Eberwine et al., 2002; Martin and Zukin., 2006). Therefore, 

since mRNAs are transported, localized and locally translated in sub cellular domains 

of many cell types of different eukaryotic species RNA targeting and local protein 

synthesis provides an important mechanism for regulating gene expression in space and 

time. 
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INTRODUCTION 

Gene Expression  
The chromosomes of an organism contain genes that encode all of the RNA and protein 

molecules required to construct that organism. Like books in a library, the intention of 

genes in all living cells is to store information. Gene expression is a series of events 

through which information encoded in a gene is used to produce a specific protein or a 

functional RNA (ex. rRNA, tRNA and microRNA). The process of gene expression is 

irreversible and conserved from prokaryotes (bacteria) to eukaryotes (including multi 

cellular organisms) and viruses and it is essential for life. The work presented in this 

thesis comes mainly from mammalian cells, therefore from here onwards I will refer to 

eukaryote gene expression only. 

 
Eukaryotic gene expression 
In multi cellular organisms such as humans, distinct cell types differ dramatically in 

morphology, structure and function. For  instance, when we compare a mammalian 

neuron with a red blood cell the differences are so extreme that  it is difficult to imagine 

that two cells contain the same genome. Within an individual all cells contain the same 

genes. Nevertheless, there are hundreds of distinct types of cells in the human body, 

each expressing a unique set of genes and in turn this unique constellation of expressed 

genes makes each cell type distinct. Cells may also change the set of genes they express 

over time and they are constantly adjusting the amount of protein made in response to 

changing conditions. This is achieved through tight regulation of gene expression at 

multiple levels (see in fig.1). During expression of protein coding region cells need to 

integrate and coordinate different layers of control to implement the information in the 

genome. Thus a cell can control a protein that it makes by (1) transcription control 

specifying when and how often a given gene sequence is transcribed (2) Processing of 

the primary transcript altering the synthesized RNA molecule to form a functional 

mRNA molecule (RNA processing control), (3) selection of which mRNA is exported 

from the cell  to the cytoplasm and determining where in the cytoplasm they are 

localized (RNA transport and localization), (4) selecting which mRNAs in the 

cytoplasm are translated by ribosome's (translational control), (5) selectively 

destabilizing certain mRNA molecules in the cytoplasm (mRNA degradation control), 

and (6) selectively activating, inactivating, degrading, or compartmentalizing specific  

protein molecules after they have been made (protein activity control).  
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During my studies I have focused on post transcriptional aspects of gene expression 

regulation, mainly on the mechanisms that control cytoplasmic mRNA transport and 

localization. 

 

 
 
Figure 1. Where can eukaryotic gene expression be controlled? There are multiple steps at which 
eukaryotic gene expression can be regulated along the pathway from DNA to protein. Regulation of RNA 
transport and localization (as in point 3) is the focus of this thesis work. 
 
Overview of mRNA biogenesis 
 
Pre-mRNP/mRNP assembly 
 
During mRNA biogenesis, transcription is intimately coupled to co-transcriptional 

formation of pre-mRNPs and their preparation for nuclear export (Neugebauer et al., 

2002; Aguilera et al., 2005; Bentley et al., 2005; Daneholt et al., 2007).  

 
At the gene level, transcription requires alterations of chromatin structure (Groth et al., 

2007), which are necessary to lower the nucleosome barrier otherwise imposed on the 

RNA polymerase II machinery. Changes in chromatin structure are tightly regulated 

through numerous mechanisms that include histone modification, chromatin 

remodeling, histone variant incorporation and histone eviction (Li et al., 2007). These 

events are modulated by co-transcriptional recruitment of co-activators and repressors, 

they are actin-based and they are necessary for the RNA polymerase II in order to 

initiate, maintain and terminate mRNA synthesis (Percipalle, 2009). Already at the very 
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early stages of transcription, nascent mRNA molecules are assembled into pre--mRNPs 

by heterogeneous nuclear ribonucleoproteins (Dreyfuss et al., 2002). As discussed later 

on, nowadays it is widely accepted that hnRNP proteins have both a general role in 

packaging nascent mRNA and also specialized functions. Maturation of nascent pre-

mRNPs into mature mRNPs consists of several steps which are also mediated co-

transcriptionally by multiple protein factors that become associated with nascent pre-

mRNA while being components of specialized molecular machines. These proteins 

such as splicing factors play an active role in RNP maturation and therefore they are 

important determinants for mRNA export, localization, translation and stability 

(Dreyfuss et al  2002; Trcek and Singer, 2010). 

 
pre-mRNA processing 
 Processing of pre-mRNA to mature mRNA involves the following steps. Normally 5' 

capping, splicing and 3' end polyadenylation (Alberts, B., 2008). Capping occurs 

shortly after transcription begins and leads to the formation of 7-methylguanylate 

(m7G) to the 5' end of nascent RNA. Cap addition is coupled to transcription, and 

occurs co-transcriptionally to protect from exonuclease mediated RNA degradation. 5' 

Capping is also a requirement for nuclear export and importantly it is recognized by the 

translational machinery. Splicing is the process in which non coding introns are 

removed and coding exons are joined to one another. It is catalyzed by complexes of 

proteins and RNA called snRNPs (small nuclear ribonuclearprotein particles) with 

assemble to form the splicesome. These complexes recognizes special RNA sequences 

that flank the intron/exon junctions, bind to them and catalyze splicing reactions. Some 

primary transcripts can be spliced in a few different ways. One such case is alternative 

splicing which produces range of related proteins referred to as isoforms. To protect or 

stabilize  the 3' end against degradative exonucleases, the mRNA is also cleaved at the 

3′ end and several hundred adenosine nucleotides are added. This modification is called 

polyadenylation and  there is evidence that it may enhance translation efficiency. 

 
In addition to these processing events, nucleotides of RNA can be modified either at the 

ends or internal positions of the RNA molecule, such that they are protected from 

degradation. Some of these modifications can act as signal to guide the transport of 

molecule to a particular sub cellular compartment. Some internal modifications, 

particularly of tRNA and rRNA are necessary for these RNAs to carry out their 

functions in protein synthesis. Some internal modifications of mRNA change the 
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sequence of message and  so change in amino acid sequence of the protein coded for by 

the mRNA. After addition of the CAP to the 5 end, the poly-A tail to the 3 end, and 

splicing of the introns, the processing is complete and the mRNA is exported through 

nuclear pores to the cytoplasm of the eukaryotic cell where translation will takes place 

(Alberts. B, 2008).  

 
mRNA export 
Normally, once pre-mRNA processing is complete, the translation-ready mRNA is 

exported from the nucleus to the cytoplasm. The cell therefore requires a mechanism to 

ensure that only fully processed mRNPs are exported. Traffic of all molecules between 

the nucleus and cytoplasm essentially occurs via nuclear pore complexes (NPC) that 

perforate the nuclear envelope. In order to pass through the NPC molecules cargos 

must associate with different proteins called a transport receptors termed 

exportins/importins. These transport receptors then act as chaperones that guide cargos 

through the NPC. Recognition by the transport receptor takes place via a specific 

sequence of amino acids in the cargo protein called Nuclear localization signals (NLSs) 

and nuclear export signals( NESs). Besides cargo and transport receptors, another 

ingredient necessary for Nucleocytoplasmic transport is the signaling protein Ran, 

which hydrolyzes GTP (Cole et al., 1998). Ran is responsible for regulating the 

interaction of transport receptor and cargo and RanGDP/RanGTP concentration 

gradients across the nuclear envelope drive nuclear import and export. The mechanism 

by which the NPC selectively allows the transit of import or export complexes, while 

restricting the others is poorly understood. However, nuclear pore complex proteins 

called nucleoporins (Nups) thought to have been implicated in this process. Normally, 

once pre-mRNA processing is complete mRNA is exported from the nucleus to the 

cytoplasm for translation. mRNA export is a three step process involving the generation 

of a cargo-carrier complex in the nucleus followed by translocation across the nuclear 

pore complex and finally release of the cargo in the cytoplasm. The TAP/ NXF1:p15 

heterodimer is a key player in mRNA export. Overexpression of TAP increases the 

export of transcripts . As both TAP and p15 show low affinity for RNA, they associate 

with adaptor proteins, presumably RBPs (RNA Binding Proteins) to mediate the 

interaction (Katahira et al., 1999). The Aly/REF protein which directly interacts with 

TAP and recruits TAP to mRNA, although the precise mechanistic details of mRNA 

export remain unclear (Taniguch et al., 2008).  
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Heterogeneous nuclear ribonucleoproteins in mRNA biogenesis 

As mentioned above, immediately upon transcription pre-mRNA molecules associate 

with proteins to form ribonucleoprotein (RNP) complexes, usually referred to as pre-

mRNP or hnRNP (heterogeneous nuclear RNP) particles. These proteins are 

designated hnRNP proteins and have been extensively characterized (Dreyfuss et al., 

1993; Dreyfuss et al., 2002, Daneholt, 1997). In human, for example, the family of 

hnRNP proteins includes about twenty major components and a large number of 

minor ones (Krecic and Swanson, 1999). In vitro the various hnRNP proteins bind to 

RNA in a general manner but show sequence preferences. Binding to heterogeneous 

nuclear RNA is non-random, and each transcript seems to carry a specific subset of 

proteins. It is likely that the hnRNP proteins are involved in RNA packaging. 

Furthermore hnRNP proteins are likely to determine the fate of RNA. Several hnRNP 

proteins, including hnRNP A1, F, H, and I, are known to regulate splicing and 3´-end 

processing (Krecic and Swanson, 1999). The composition of hnRNP proteins in 

RNPs highly dynamic and  influence its downstream steps. The hnRNP proteins that 

are bound on intronic sequences are removed after splicing, leaving behind only the 

hnRNP proteins that are bound to exonic sequences. Some hnRNPs contain nuclear 

retention signals and are removed from the mRNP prior to nuclear export(Nakielny 

and Dreyfuss, 1996), where as others remain associate with mRNP all  the way from 

gene to polysomes to be shuttled between nucleus and cytoplasm. Thus, hnRNP 

composition in RNPs is highly dynamic and rearranges throughout the mRNA 

biogenesis pathway  as can be seen in fig 2.  

 
The most abundant hnRNP proteins belong to the A/B type and exhibit a well defined 

modular structure. The N-terminal domain is highly conserved and consists of two 

tandemly repeated, 80–90 amino acid long, RNA-binding domains (RBD). The C-

terminal part of the protein is considerably more divergent, is glycine-rich, and is 

called the auxiliary domain. Therefore, the A/B-type proteins are often referred to as 

2xRBD-Gly proteins. These proteins constitute a continuously expanding family of 

proteins with multiple post-transcriptional isoforms as well as extensive post-

translational modifications. They have a general function in RNA processing and 

transport as well as specialized functions. hnRNP A1 and A2/B1 proteins participate 

in constitutive (Sierakowska et al., 1986) and alternative splicing (Chabot et al., 

1997) where they seem to antagonize the SR splicing factor ASF/SF2 in the selection 
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of the 5′ splice site (Mayeda and Krainer, 1992). Certain A/B type hnRNP proteins 

are also known to shuttle between nucleus and cytoplasm (Pinol-Roma and Dreyfuss, 

1992). Because of This property it was proposed that hnRNP proteins could also 

mediate RNA transport; this view was further substantiated by evidence that an 

hnRNP A1-like protein travels with the RNA through the nuclear pore (Visa et al., 

1996). Subsequently, nuclear export signals were identified in both hnRNP A1 

(Michael et al., 1995) and hnRNP K (Michael et al., 1997), but it is not known 

whether these proteins bind directly to the nuclear pore complex or via a soluble 

receptor (Nakielny and Dreyfuss, 1999). 

 
The observation that certain hnRNP proteins accompany the mRNA into cytoplasm 

indicates that they may be involved in the regulation of mRNA translation. It is known 

that general RNA-binding proteins, such as hnRNP A1, render translation cap-

dependent and prevent internal initiations along the message by coating the mRNA 

(Svitkin et al., 1996). The hnRNP A2 protein, bound to a specific sequence in the 3´ 

end of myelin basic protein mRNA, enhances cap-dependent translation (Kwon et al., 

1999). There is also evidence that mRNA stability, mRNA targeting to specific 

cytoplasmic locations requires hnRNP proteins. Both hnRNP C (Zaidi and Malter, 

1995) and hnRNP D (Kiledjian et al., 1997; Loflin et al., 1999) bind to AU-rich 

elements which are known to regulate mRNA turnover. In Drosophila melanogaster the 

Squid protein (hrp40), an hnRNP A1-like protein (Kelley et al., 1993; Matunis et al., 

1994), governs the localization specific mRNAs, such as grk mRNA, during oogenesis 

(Kelley et al., 1993; Matunis et al., 1994) and it is essential for localization of 

transcripts the apical cytoplasm in Drosophila blastoderm embryos (Lall et al., 1999). 

In mammals, the hnRNP A2 protein has been implicated in directed transport of myelin 

basic protein (MBP) mRNA to the distal ends of the cytoplasmic processes of 

mammalian oligodendrocytes (Hoek et al., 1998). 

 
We recently discovered that the CArG box binding factor A (CBF-A) which was 

originally identified as transcriptional regulator (Kamada and Miwa, 1992; Bemark et 

al., 1998; Mikheev et al., 2000) is also a genuine hnRNP protein of the A/B type that 

displays considerable homology when compared to hnRNP A2. CBF-A, which is also 

denoted hnRNP A/B,  is abundantly present in the 40S pre-mRNP/mRNP fraction 

isolated from rat liver extract and it is therefore considered as a core hnRNP protein. 

We discovered that CBF-A binds poly A mRNA in nucleus and cytoplasm and rapidly 
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shuttles between the two cellular compartments. Interstingly, within the RNP particle 

CBF-A was found to directly interact with actin in nucleus and cytoplasm, suggesting 

that it is likely to accompany mRNA from gene to polysomes (Percipalle et al., 2002). 

CBF-A is also known to come into at least two well characterized isoforms namely p37 

and p42 that are generated by alternative splicing of the same transcript (Dean et al., 

2005). However at this stage it is unclear whether the two variants display different 

functions. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 

 
 
 
 
Cytoplasmic mRNA transport and Localization 
 
 After export from nucleus to cytoplasm, certain eukaryotic messenger RNA (mRNA) 

molecules do not undergo translation immediately, instead they are directed to specific 

sub cellular domains for translation. RNA Transport and localization is a widespread 

phenomenon that  has been observed  in many cell types of different species as shown 

in Fig 3. To date, the best studied examples of mRNA localization explore transcripts 

whose protein products play specialized roles within well defined sub cellular 

Figure 2. Posttranscriptional gene 
regulation and hnRNP proteins along the 
pathway of mRNA biogenesis. The protein 
composition of pre-mRNA and mRNA is 
highly dynamic and changes throughout 
mRNA biogenesis. RNA pol II, RNA 
polymerase II; hnRNP, heterogeneous 
nuclear ribonucleoprotein; SR, serine-
arginine-rich protein; m7G, 7-methyl 
guanosine; snRNP, small nuclear 
ribonucleoprotein; mRNP, mRNA–protein 
complex; EJC, exon junction complex; 
PABP, poly(A)-binding protein. (Adapted 
from Cooper, T.A., and Dreyfuss, G. 2009) 
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compartments. In budding yeast, many RNAs translocate from the mother cell into the 

budding daughter cell and concentrate at the bud tip (Shepard et al., 2003). One of the 

best studied examples of yeast is mRNA encoding  the transcriptional repressor ASH1 

(Long et al., 1997; Takizawa et al., 1997). ASH1 mRNA is transported to the bud tip of 

dividing cell such that it is only delivered to nucleus of daughter cell, thereby ensuring 

daughter and mother cells have distinct mating types (Paquin and Chartrand., 2008).  

In Drosophila, the localization of mRNAs, such as bicoid, oskar, and nanos to anterior 

and posterior poles of the oocyte, helps to establish morphogen gradients that underlie 

the proper spatial patterning of the developing embryo (Johnstone and Lasko., 2001). 

Similar processes occur in Xenopus, where several mRNAs are localized to the 

different poles of oocytes. mRNA encoding the T-box transcription factor VegT 

localizes to the vegetal pole of frog oocytes during oogenesis and induces endodermal 

and mesodermal cell fates in the embryo (Melton.,1987; King et al., 2005).  

 
In mammals, several mRNAs are localized to specific sub cellular regions or domains. 

Some of the best characterized examples are mRNAs encoding β-actin and myelin 

basic protein (MBP). In migrating fibroblasts, β-actin mRNA localizes to the leading 

edge (lamellipodia)  of the cells (Lawrence and Singer, 1986), where its  local 

translation is necessary for cytoskeletal-mediated motility (Condeelis and Singer, 

2005). Similarly, β-actin mRNA is also localized to neuronal growth cones and 

dendritic filopodia,  filopodial synapses (Bassell et al., 1998; Eom et al., 2003). In 

oligodendrocytes, MBP mRNA is targeted to the distal processes where myelination 

occurs  (Ainger et al., 1993, Smith., 2004). In neurons, CamKIIα mRNA is localized to 

dendrites (Mori et al., 2000; Miller et al., 2002) where its local translation is required 

for neuronal plasticity. During brain development, local axonal translation of mRNAs 

and new protein synthesis may function in growth cone mediated axon guidance (Lin 

and Holt, 2007). Similarly In the mature brain, the regulated translation of dendritically 

localized mRNAs allows each of the thousands of synapses produced by a given 

neuron to independently regulate its structure and function during synaptic plasticity, 

thereby greatly increasing the computational capacity of the brain ( for review, see 

Martin and Zukin, 2006; Martin, and Ephrussi, 2009). 
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Figure 3: Examples of localized mRNAs in many cell types of different species. A) In budding yeast, the 
ASH1 mRNA localizes to the bud tip. B) In Drosophila embryos, bicoid mRNA localizes to the anterior 
pole,  oskar and nanos mRNAs to the posterior pole. C) In Xenopus oocytes ,Vg 1 mRNA  localizes to 
the vegetal pole. D) In chicken and mammalian fibroblasts, β-actin mRNA localizes to lamellipodia. E) 
In developing,  immature  mammalian neurons, β-actin mRNA is present in distal growth cones; in 
mature neurons, CamKIIα mRNA is present in distal dendrites. F) In mammalian  oligodendrocytes, 
myelin basic protein (MBP)  mRNA localizes to myelinating processes, that ensheath neuronal axons ( 
Adapted from Martin, K.C. and Ephrussi, A. 2009). 
 

 
Biological significance of RNA sorting  
RNA localization not only targets the protein to the appropriate region of the cell, but 

also prevents its expression elsewhere. For instance, the mislocalization of oskar or 

nanos mRNAs in the Drosophila egg induces the development of a second abdomen in 

the place of the head and thorax ( Ephrussi et al., 1991; Gavis et al., 1992). For other 

localized mRNAs, it might not be possible to localize the encoded proteins to the 

correct compartments, because they bind to other factors wherever they are made. This 

is the case for Tau and MAP2, which will bind to any microtubules, and must therefore 

be localized as mRNAs to axons or dendrites, respectively (Aronov et al., 2001). 
There are several reasons why targeting mRNAs could be advantageous over targeting 

the protein product directly (for reviews, see St Johnston et al., 2005; Martin and 

Ephrussi, 2009).  
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1. RNA localization provides a mechanism for  gene expression to be spatially 

restricted  within the cytoplasm.  

2. Spatially restricted gene expression can be achieved with high temporal resolution in   

response to local stimuli or extrinsic cues. Local stimuli can regulate translation on-site, 

without sending signal to the nucleus to initiate transcription, followed by mRNA 

export, cytoplasmic translation, and subsequent targeting of the protein to the site of 

stimulation. 

3. Increased cost effectiveness because of the production of multiple protein copies 

from single localized mRNA molecules. 

4. RNA targeting and local translation prevents proteins from acting ectopically during 

their translocation.  

5. Facilitating the assembly of macromolecular protein complexes by producing a high 

local concentration of mRNA molecules in sub cellular domains.  

 
The importance of cis-acting elements for mRNA transport and 
localization  
 
Eukaryotic mRNAs share common features that include exons and introns, 5' and 3'-

untranslated regions (UTRs). Most mRNA regulatory elements are located within the 5' 

and 3'UTRs, where they act as platforms for the assembly of protein complexes to the 

mRNA, thereby generating ribonucleoparticles (mRNPs). The 5'UTR is primarily 

involved in controlling mRNA translation (Pickering et al., 2004), whereas 3'UTR 

regulates multiple aspects of mRNA metabolism, including nuclear export, cytoplasmic 

localization, translational efficiency and mRNA stability (Moore et al., 2005). The 

targeting of mRNA to specific subcellular compartments is mostly determined by cis 

acting elements that are located in the 3' UTR, although in some cases they are present 

in the 5′UTR or in the coding sequence . Cis-acting elements are likely to express as a 

segments or motifs within RNA that contain codes to specify functionality (e.g., 

cellular targeting) and often named transport and localization elements or zipcodes. The 

first evidence indicating that cis-acting RNA elements are required for transport and 

localization involved genetic deletion analysis coupled with microinjection studies. In 

these studies elements of the localized mRNAs were fused to hybrid genes in order to 

identify sequences that were required for localization. These and many other 

subsequent reports revealed that localization elements are most often found in the 

3′UTR and can range in length from five or six to several hundred nucleotides. 

Different studies aimed at  identifying cis acting elements led to following principles 
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that these are often exist as multiple  copies of the same element or as a combination of 

different elements (Jambhekar and Derisi, 2007). Distinct localization elements mediate 

distinct steps in localization and localization elements can form secondary structures, 

usually stem loops that are critical for localization. Cis-acting elements can promote 

localization in three different ways: 1) by active and directed transport of the transcript 

to a sub cellular site (the most common mechanism described to date); 2) by mediating 

the local stabilization and regulated degradation of mRNAs and 3) by locally trapping 

an mRNA that diffuses throughout the cytoplasm (for reviews, see  St Johnston et al., 

2005; Martin and Ephrussi, 2009). 

 
In Drosophila, systematic approaches led to  identification of cis acting elements that 

mediate bicoid mRNA localization to the anterior pole.  First it was reported that 625 

base pairs of the 3′UTR are responsible for anterior localization of bicoid mRNA in 

Drosophila melanogaster embryos (Macdonald and Struhl., 1988). By expressing 

transgenes containing smaller deletions several elements (called bicoid localization 

elements, or BLEs) were identified within this 625 bp region that were necessary for 

localization (Macdonald et al., 1993). One of these elements BLE1, consisting of 50 

nucleotides formed a stem loop structure that was specifically required for bicoid 

mRNA transport from the nurse cells into the oocyte (Ferrandon et al., 1997). 

Furthermore it was shown that BLE1 directs the early steps of bicoid mRNA 

localization. Additional stem loop structures were required for later steps in localization 

and still an additional stem loop was required for RNA anchoring at the anterior pole 

(Ferrandon et al., 1997; Macdonald and Kerr, 1997). Mutations that disrupt the primary 

sequence of the localization element BLEs, but not the stem-loop structure formation 

were shown to permit mRNA localization (Ferrandon et al., 1997), demonstrating  the 

secondary structure plays critical role in mRNA localization. Finally, it was shown that 

bicoid mRNA dimerizes in vitro through interactions between specific hairpin loop 

structures and this dimerization was shown to be essential for binding of the RNA 

binding protein Staufen in embryo injection assays (Ferrandon et al., 1997). Staufen, in 

turn is required for bicoid mRNA localization to anterior pole during the late stages of 

oogenesis (St Johnston et al., 1991; Weil et al., 2006), suggesting that dimerization is 

an important step in bicoid localization.  

 
In Xenopus oocytes, microinjection of transcripts containing elements of the Vg1 RNA 

revealed that 340 nucleotides of the 3′UTR were required to localize the mRNA to the 
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vegetal pole (Mowry and Melton, 1992). Comparison studies of this region between 

two frog species revealed two 5–6 nucleotide-long sequences, called VM1 and E2 

elements or motifs (Lewis et al., 2004). The Vg1 3′UTR contains multiple, clustered 

copies of these localization elements that act synergistically to localize Vg1 mRNA 

(Deshler et al., 1997; Lewis et al., 2004). In Yeast the cis-acting sequences that mediate 

ASH1 mRNA targeting to the bud tip provide another example of repetitive and 

synergistic clustering of localization elements. ASH1 mRNA contains four localization 

elements, three of which (E1, E2A, E2B) are in the coding sequence of ASH1, whereas 

the fourth (E3) overlaps with the coding sequence and 3′UTR (Chartrand et al., 1999; 

Gonzalez et al., 1999). These elements were all predicted to form stem-loop structures 

and mutations that disrupt secondary structure formation are not localization 

competent. Each element on its own is capable of localizing a reporter RNA, although 

the presence of four elements increases the efficiency of localization (Chartrand et al., 

2002). 

 
In chicken fibroblasts and myoblasts, β–actin mRNA was found to localize to the 

leading edge of the cells (Lawrence and Singer, 1986). Different approaches to define 

cis-acting sequences in β–actin mRNA, revealed that a 54 nucleotide-long sequence in 

the 3′UTR is  essential and sufficient for mRNA localization (Kislauskis et al., 1994). 

This element was termed the “zipcode” because it contains the cytoplasmic delivery 

address for transport. Comparison studies among β–actin transcripts from many other 

species revealed, conserved hexanucleotide sequence ACACCC (Kislauskis et al., 

1994). Chicken β–actin mRNA contains tandem repeats of this hexanucleotide motif 

and mutations in this region inhibits localization (Ross et al., 1997). Secondary 

structure analysis predicted that the β-actin zipcode forms a stem-loop structure . 

 
Synergies between cis-acting elements and transacting factors for 

mRNA transport and localization. 
Transport and localization depends not only on the mRNA cis acting element, but also 

on cellular factors that specifically interact with these sequences to form the critical 

RNP complex. Trans-acting factors (TAFs) by definition are proteins that bind to cis-

acting elements to facilitate mRNA transport and localization to their subcellular  

destinations. Identification of transacting factors that are  involved in mRNA trafficking 

has emerged primarily from two kinds of studies, genetic screens for genes involved in 

mRNA localization and affinity isolation of proteins that bind the identified localization 
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elements. In genetic screens,  Staufen was first identified because of its role in pattern 

formation, reflecting  its function in localizing oskar and bicoid mRNAs in Drosophila 

oocytes (St Johnston et al., 1991). Staufen is one of the best studied  transacting factor 

and it is known that it directly binds a variety of mRNAs. It binds to stem-loop 

structures within the bicoid mRNA 3'UTR and is required in order to anchor bicoid 

(bcd) mRNA at the anterior pole (Ferrandon et al., 1994). Similarly, oskar (osk) mRNA 

is localized at the posterior pole, most likely through the interaction of Staufen with the 

oskar 3′UTR (Jenny et al. , 2006), a mechanism that occurs at two distinct stages of 

development. Its mammalian homolog is also involved in the targeting of mRNAs, 

such as CamKIIα mRNA, to neuronal dendrites (Kiebler et al., 1999; Tang et al., 2001) 

supporting the idea that mRNA localization is evolutionarily conserved (Roegiers and 

Jan, 2000). Staufen has 5 distinct double-stranded RNA binding (dsRNA) domains 

(four in mammalian Staufen) each of which binds dsRNA non specifically (St Johnston 

et al., 1992) indicating that additional proteins may be recruited to the RNP to achieve 

specificity (Ferrandon et al., 1994; St Johnston et al., 1992). Domain 2 is essential for 

microtubule-dependent localization of oskar mRNA (Kim-Ha et al.,1991; Ephrussi et 

al.,1991 ) and domain 5 is required for the interaction with Miranda protein that allows 

actin-dependent localisation of prospero mRNA (Matsuzaki et al., 1998; Schuldt et 

al.,1998).  

 
Affinity isolation methods led to the identification of zipcode-binding protein (ZBP1) 

that binds to the β-actin mRNA zipcode in chicken fibroblasts (Ross et al., 1997). ZBP1 

features two RNA recognition motifs (RRM) and four hnRNP K homology (KH) RNA 

binding domains. For each of these domains, different functions have been identified. 

Specifically, the KH domains (3 and 4) mediate binding to the zipcode, formation of an 

RNP and association with actin microfilaments (Farina et al.,2003), whereas the RRM 

domains are required for the localization of the β-actin RNP.  

 
ZBP1 Homologs have been identified in Xenopus, Drosophila, mouse  and human  and 

implicated in mRNA localization in each case. The ZBP1 homolog Vera binds to 

localization elements in Vg1 3′UTR and is required for localization to the vegetal pole 

in Xenopus oocytes (Deshler et al., 1997). ZBP1 is also present in mammalian neurons, 

where it binds β-actin mRNA (Zhang et al., 2001). In developing neurons, ZBP1 

localizes to growth cones, where stimulus induced local translation of β-actin is 

required for growth cone navigation (Lin and Holt, 2007). In mature neurons, ZBP1 
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undergoes activity-dependent trafficking and dynamic localization in dendrites and 

spines (Tiruchinapalli et al., 2003). Phosphorylation by src kinase, results in reduced 

binding of ZBP1 to RNA and to increased translation of β-actin in neuroblastoma cells 

(Huttelmaier et al., 2005). Altogether, these findings suggest that ZBP1 functions both 

in mRNA localization and translational repression. ZBP2, another zipcode binding 

protein was recently identified by affinity purification (through binding to the zipcode) 

and is a predominantly nuclear protein that also affects β-actin localization in the 

cytoplasm (Gu et al., 2002). ZBP2  is a homologue of human nuclear RNA splicing 

factor KSRP. Like ZBP1, ZBP2 orthologs identified in other species have also been 

shown to be involved in mRNA localization. 

 
In rat, the homolog of ZBP2 is MARTA1 ( MAP2-RNA Trans-Acting protein 1), 

which binds the 3 ′UTR of MAP2, a dendritically localized mRNA in neurons (Rehbein 

et al., 2000). In Xenopus, the ZBP2 homologue VgRBP71 also binds the Vg1 mRNA, 

which is localizes to the vegetal pole of the egg (Kroll et al., 2002). Recent work on 

chicken ZBP2 indicated that ZBP2 co-transcriptionally binds the nascent β-actin 

zipcode, and facilitates the binding of ZBP1 to the zipcode (Pan et al., 2007). 

Therefore, these results suggest that the role for ZBP2 in the nucleus provides support 

to the working model that the co transcriptional recruitment of proteins with the RNA is 

required for ultimate localization in the cytoplasm. It also provides an example of how 

interactions between RNA binding proteins and RNA serve to recruit and stabilize 

additional proteins to form a large RNP. One consequence of this cooperative binding 

is that it becomes critical to analyze the function of individual RNA binding proteins in 

cells that are null for the endogenous protein (Pan et al., 2007). 

 
In mammalian oligodendrocytes, the identification of RNA trafficking sequence (RTS) 

in 3'UTR of MBP (myelin basic protein) mRNA that mediated transport and 

localization to myelinating processes allowed the use of synthetic oligonucleotides 

containing this sequence to affinity purify RTS binding proteins from rat brain (Hoek et 

al., 1998). Among these proteins hnRNP A2 was found to be involved in MBP mRNA 

transport and localization and also in the  different mRNAs of dendrites of (Shan et al., 

2003; Gao et al., 2008). hnRNP I shares 87% amino acid sequence identity with the 

Xenopus VgRBP60 protein, which binds the VM1 element of the Vg1 mRNA 3'UTR 

and colocalizes with this messenger (Cote et al , 1999). The Drosophila Squid protein is 

a homologue of hnRNP A1 and it is required to localize gurken mRNA to the anterior 
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dorsal cortex of the oocyte through binding to two distinct regions of the 3'UTR 

(Norvell et al., 1999). 

 
Nuclear events for cytoplasmic localization 

In Drosophila, nuclear shuttling proteins Y14/Tsunagi and Mago nashi are required for 

oskar mRNA localization, and they co-localize with oskar mRNA at the posterior pole 

of the oocyte (Hachet et al, 2001; Mohr et al, 2001). Their human homologues, 

Y14/RBM8 and Magoh, are core components of the exon–exon junction complex 

(EJC). The EJC is deposited on mRNAs in a splicing-dependent manner, 20–24 

nucleotides upstream of exon–exon junctions, independently of the RNA sequence. 

That indicated a possible role of splicing in oskar mRNA localization, challenging the 

established notion that the oskar 3' untranslated region (3'UTR) is sufficient for this 

process. However, later research demonstrated that the accurate localization of oskar 

mRNA to the oocyte posterior pole was shown to depend on the presence of the first 

intron and splicing at the first exon–exon junction of oskar RNA is necessary (Hachet 

and Ephrussi, 2004), in addition to the 3′UTR. The fact that both splicing and the EJC 

components Y14 and Mago nashi are essential for oskar mRNA localization, provides 

striking example that RNA splicing and cytoplasmic localization are mechanistically 

coupled by the splicing dependent deposition of the EJC. 

 
Cellular infrastructure for RNA transport  
 
For localization, mRNA must be targeted to appropriate cytoplasmic compartments. 

This is an especially daunting task given the long distances that may separate nuclear 

envelope and cellular periphery. Therefore there is a requirement for an active mRNA 

transport mechanism  which also provide directionality. It is now widely accepted that 

mRNA transport requires molecular motors to be delivered to their final destination. 

Whether messenger ribonucleoproteins (RNP)s on the move contain single or multiple 

RNAs and how they are linked to motors is still a matter of concern, but recent 

developments in live fluorescence imaging, RNP purification methods and genetic 

studies verified that active, motor protein-dependent transport occurs both along actin 

and microtubule filaments. Several recent publications indicated that these cytoskeletal 

networks provide highways for trafficking of mRNPs within the cytoplasm as shown 

see in fig.4. Molecular motor proteins such as kinesin, dynein, and myosin facilitate 

RNA trafficking along microtubule and actin filaments. Thus, active transport of 
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mRNAs along cytoskeletal filaments has been implicated as the major localization 

mechanism in most cells (Carson et al., 1997; Kanai et al., 2004; Singer et al., 2008). In 

this context, I will list below few model examples that have been described  in details.  

 
As I mentioned above briefly, In budding yeast, many RNAs are targeted from the 

mother cell into the budding daughter cell.  For instance, the localization of ASH1 

mRNA to the budding yeast provides a model example of myosin mediated mRNA 

transport along actin  filaments. She3p, one of the RNA binding proteins required for 

the localization of ASH1 mRNA, acts as an adaptor that links the ASH1 mRNA to the 

motor protein Myo4p (also called She1p).  Myo4p belongs to class V myosins and has 

been shown to direct transport of substrates along actin microfilaments in living yeast 

(Reck-Peterson et al. 2001). Yeast mutants that prevent bundling of actin filaments 

have been shown to result in mislocalization of ASH1 mRNA (Long et al., 1997; 

Takizawa et al., 1997). In addition to a role for actin in the targeting of ASH1 mRNA, 

actin plays a important role in anchoring ASH1 mRNA at the tip . Disruption of cortical 

actin at the bud tip alters ASH1 mRNA localization (Beach et al., 1999). The actin 

cytoskeleton is also shown to be important for targeting of a number of other localized 

mRNAs, including, bicoid mRNAs in Drosophila oocytes and embryos (Weil et al., 

2008) and Vg1 mRNA in Xenopus oocytes (Yisraeli et al., 1990). Recently it was 

reported that actin polymerization is required for Arc/Arg3.1 mRNA targeting to 

activated synaptic sites on dendrites (Huang et al., 2007). 

 
In fibroblasts, actin microfilaments are used to localize RNP particles that contain β-

actin transcripts and ZBP1 to the leading edge (Farina et al., 2003), On the other hand, 

in neurons,  ZBP1 and its β-actin mRNA target seem to move predominantly along 

microtubules (Bassell&Kelic 2004). Thus ZBP1 may act as an adaptor between mRNA 

and either microfilament- or microtubule based molecular motors. It is possible that in 

neurons, long-range RNA transport is mediated by microtubules, whereas localization 

in the destination microdomain is supported by actin filaments (Muslimov et al. 2002). 

 
In  oligodendrocytes and neurons, microtubules and corresponding motor proteins have 

been demonstrated to play a critical role in transporting RNPs or RNA granules to 

distal sites. As one example, in living neurons it was first reported that recruitment of 

staufen green fluorescent protein to large RNA containing granules and subsequent 

dendritic transport  is dependent on microtubules (Kiebler et al., 1999; Tang et al., 

2001). Microtubule anterograde motor KIF5 is implicated in transporting many 
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dendritically localized transcripts and further it was showed that distally directed 

movement was enhanced by the over expression of KIF5 and reduced by its functional 

blockage. In addition, kinesin (KIF5) associated complexes from mammalian brain 

were shown to contain several of the  above mentioned TAFs (Kanai et al. 2004) 

Neuronal CPEB granules contain both kinesin and dynein motors, and their 

bidirectional movement in dendrites is microtubule dependent (Huang et al. 2003). In 

the axon-like processes of P19 embryonic carcinoma cells, knock-down of another 

kinesin family member, KIF3A, impairs the sorting of tau mRNA (Aronov et al. 2002). 

In oligodendrocytes, inhibition of kinesin disrupts targeting of MBP mRNAs (Carson et 

al. 1997). In testis, kinesin KIF17b associates with TB-RBP, suggesting that a 

microtubule dependent RNA transport system operates in mammalian male germ cells 

(Chennathukuzhi et al. 2003).   

 
Inhibition of kinesins have been shown to inhibit FMRP (Fragile X mental retardation 

protein) transport into dendrites, and have further indicated that FMRP interacts with at 

least two distinct kinesin isoforms (Dictenberg et al., 2008). The finding that FMRP can 

use two kinesin motors indicates that molecular motors may play redundant roles in 

mRNA transport. Consistent with such redundancy, a recent study from Mowry and 

colleagues has shown that multiple kinesins coordinate the transport of mRNAs in 

Xenopus oocytes (Messitt et al., 2008).  

 
Evidence is thus accumulating that long-range mRNA transport in various mammalian 

cell types is mediated by microtubule based kinesin and dynein type molecular motors. 

In many cases, the mRNA is anchored/localized at its final destination in an actin 

dependent manner (for review, see Kindler et al., 2005)  
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Spatial and temporal regulation of mRNA transcripts 

Lessons from Brain 
In brain, oligodendrocytes and neurons are two post mitotic cells that have been 

extensively used  to study mRNA transport and local protein synthesis. Both cell types 

contain several processes or dendrites/dendritic spines in a given cell and many 

different mRNAs are targeted to these subcellular compartments. In both of these cell 

types certain genetic information is targeted from the nucleus to processes or dendrites 

in the form of RNA granules or RNP granules. In oligodendrocytes these granules 

contain RNAs coding for proteins required for myelination which insulates axons in the 

central nervous system. In neurons these granules contain RNAs coding for proteins 

required for axonal growth and Synaptic plasticity. Although these cells differ 

significantly in the molecular and cellular properties and in the morphology and 

function between  processes and dendrites/dendritic spines the process of translocation 

of RNA molecules from the nucleus to periphery appears to be similar.   

 

 

 

Figure 4. Cellular infrastructure for 
mRNA transport and localization. 
Following RNP export into the 
cytoplasm, the RNPs are remodeled 
and assembled into RNA granules. 
These RNA granules are then 
transported along cytoskeletal 
networks including microtubules and 
actin filaments, using molecular 
motors such as kinesin, dynein and 
myosin (Adapted from Martin, K.C. 
and Ephrussi, A. 2009). 
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RNA trafficking in myelinating oligodendrocytes 
The first experimental evidence indicating one of the major component of  myelin was 

synthesized near its site of assembly in the myelin sheath rather than in the cell body 

came from pulse-labelling studies and further it was revealed  that newly synthesized 

MBP reached the myelin compartment within minutes of translation, whereas 

incorporation of other myelin proteins such as proteolipid was delayed (Benjamins & 

Morell, 1978). Subsequently,  it was determined that isolated myelin fractions are 

highly enriched for mRNAs coding MBPs but not in mRNA for PLP (Colman et al., 

1982). Localization of MBP mRNA near sites of myelin assembly was later confirmed 

by in situ hybridization both in vivo and in cultured cells (Kristensson et al., 1986; 

Verity and Campagnoni, 1988). Co-culture studies indicated that localization of MBP 

mRNA to the myelin compartment was facilitated by neurons and inhibited by 

astrocytes (Landry et al., 1994) through a PDGF based mechanism (AmurUmarjee et al 

1997). Besides MBP mRNA, several other mRNAs including, myelin-associated 

oligodendrocytic basic protein (MOPB) mRNA (Holz et al., 1996), tau mRNA 

(LoPresti et al., 1995), carbonic anhydrase II (CAII) mRNA (Ghandour & Skoff, 1991; 

Tansey et al., 1996) and amyloid precursor protein (APP) mRNA (Garcia-Ladona et 

al.,1997) are also localized to the myelin compartment or the distal processes  of 

oligodendrocytes. 

 

RNA granule hypothesis 
The early work on RNA localization in myelinating cells mainly  came from  in situ 

hybridization studies. This  approach only yielded information regarding the steady 

state sub cellular distribution of RNA, but not much known about the dynamic aspects 

of RNA trafficking, in living cells. High resolution fluorescence in situ hybridization 

(FISH) revealed that  endogenous MBP mRNA appears as discrete particulate 

structures all along the oligodendrocyte  processes (Verity and Campagnoni, 1988; 

Ainger et al., 1993). Such organization of MBP mRNA in to morphologically 

distinguishable structures, facilitated the studies on intracellular trafficking. In 

subsequent studies, the dynamics of MBP mRNA transport have been studied using a 

combination of cell culture, microinjection and confocal microscopy. Fluorescently 

labeled exogenous MBP mRNA microinjected into the cell body of  cultured 

oligodendrocytes is rapidly assembled into granules within minutes after injection that 

can be visualized in living cells using confocal fluorescent microscopy (Ainger et al., 
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1993). This suggested that exogenous mRNA assembles into pre-packaged 

ribonucleoprotein complexes in the cell body. In fact, the granule assembly may be  

prerequisite for further trafficking of mRNAs.  Since, both endogenous MBP mRNA 

and microinjected exogenous MBP mRNA displays punctuated distribution, these 

mRNAs are termed  ''RNA granules''. After assembly in to RNA granules, mRNAs are 

transported in an anterograde direction along the processes and eventually localize to 

the myelin compartment (Ainger et al., 1993). A variety of different mRNAs have been 

visualized as granules in other systems, including fibroblasts, neurons, Drosophila 

embryos and Xenopus oocytes. Recent Co-localization studies and biochemical 

purification of RNA granules from embryonic and adult brain indicate that these 

granules consist of multiple RNA copies and  contain many proteins  including 

components of the translational machinery (Kanai et al., 2004; Elvira et al., 2006).  

 

Therefore, in eukaryotes a general RNA granule hypothesis may state that multiple 

mRNA copies are assembled with components of RNA binding proteins (RBPs) and 

the protein synthetic  machinery into complexes that can be visualized as RNA granules 

by a variety of imaging techniques, and that intracellular trafficking of RNA granules is 

determined by cis-acting elements in the RNA molecules contained in each granule and 

by transacting factors within the cell. 

 

Cis-acting elements 
Cis-acting elements have been identified in 3'UTR  by deleting various regions of MBP 

mRNA and analyzing the subcellular distribution of the injected RNA in the cell body. 

These studies revealed, a 21 nucleotide cis-acting element termed the  RTS (RNA 

trafficking sequence), is necessary and sufficient for RNA transport along the 

oligodendrocyte  processes. When the RTS is deleted, RNA is not transported along the 

processes or localized to myelin compartment, but are remained in the cell body. When 

RTS is inserted to heterologous non transported RNAs such as GFP, it causes the 

chimeric RNA to be transported to processes, but not localized to the myelin 

compartment indicating that the RTS is necessary and sufficient for RNA transport 

(Ainger et al., 1997). A second element that has been termed the ‘RNA localization 

signal’ (RLS), is required for localization of RNA to the myelin compartment. When 

RLS is deleted, the RNA forms granules that are transported along the processes but 

not localized to the myelin compartment (Ainger et al., 1997). Insertion of the RLS 
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causes RNA to move from processes to myelin compartment. Therefore, RTS and RLS 

are necessary in MBP mRNA and sufficient to target any RNA to the myelin 

compartment.   Bio computational studies predicted that, the region containing the RLS 

in 3'UTR has a significant secondary structure that is conserved in all MBP mRNAs 

from different species (Ainger et al., 1997). Thus, the postulated function of the RLS is 

to anchor MBP mRNA in the myelin compartment. RTS homologous sequences are 

found in a verity of different mRNAs that are known to be transported in other systems 

as shown in table 1, Ainger et al., 1997). This means that studies of RNA trafficking in 

oligodendrocytes are probably relevant in order to understand other systems. 

 
Table 1. RTS homology in transported  mRNAs 
 

Species            mRNA                      Region                                   RTS sequence 
Rat                    MBP                           3′UTR                         GCCAAGGAGCCAGAGAGCAUG  
Mouse              MBP                           3′UTR                         GCCAAGGAGCCAGAGAGCAUG 
Human            MBP RTS1                  3′UTR                          GCCAUGGAGGCACACAGC UG  
Human             MBP RTS2                 3′UTR                          GCUGCAGAGACAGAGAGGACG  
Rat                    MOBP81A                 3′UTR                          ACCCCCGAGACACAGAGCAUG  
Rat                    GFAP                          ORF                             GCCAAGGAGCCCACCAAACUG  
Mouse              protamine 2              3′UTR                         GCCAAGGAGCCACGAGAUCUG 
                                                              consensus                 GCCAAGGAGCCAGAGAGCAUG 
 

 
Transacting factors          
The RTS identification as a cis-acting trafficking element in MBP mRNA and possibly 

other mRNAs, suggested the existence of cellular transacting factors that recognize the 

RTS. Trans acting factors that bind to the RTS have been isolated by RNA affinity 

chromatography. In these experiments RTS containing RNA oligonucleotides were 

coupled to beads and the beads  incubated with protein extracts. Analysis of the bound 

proteins were performed by mass spectrometry and Western blots. By following this 

approach a number of A/B type hnRNP proteins include hnRNP A2  (Hoek et al., 

1998), hnRNP A3(Ma et al., 2002) and CBF-A (Raju et al., 2008) were identified as 

RTS binding factors. Since chronologically hnRNP A2 was the first to be identified to 

interact with RTS, the RTS element is also referred to as A2 Response Element 

(A2RE). When hnRNPA2 expression is suppressed by antisense oligonucleotides 

treatment, transport of microinjected MBP mRNA or RTS containing RNA is inhibited 

to oligodendrocyte processes. Similarly, when hnRNP CBFA is suppressed by RNA 

interference, endogenous MBP mRNA retained in the cell body excluding in 
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cytoplasmic processes (Raju et al., 2008).  Interestingly  co localization studies indicate 

that, hnRNPA2, CBF-A and MBP mRNA are in the same granules. 

 
Translation regulation 
As mentioned earlier, eukaryotic mRNAs follow defined intracellular trafficking 

pathways from their sites of transcription to their sites of translation (Dreyfuss et al., 

2002). Localization of a specific mRNA to a particular sub cellular compartment 

provides mechanism to maximize the translation of the encoded protein in the region 

where they are needed most and to minimize ectopic expression elsewhere in the cell. 

This implies that translational regulation is an integral part of intracellular RNA 

trafficking pathway. Translation is thought to be repressed during mRNA transport and 

activated once the RNA is localized or  has reached its destination. Several proteins 

involved in suppression of translation during RNA transport have been identified in 

mammalian cells (Hüttelmaier et al., 2005). However, molecular mechanism of 

translation regulation during RNA trafficking has not been determined. There is 

evidence that  translation of specific mRNAs can be regulated by trans cting RNA 

binding proteins that bind to cis-acting sequences in the RNAs.  For instance, the cis 

acting RTS element is known to enhance translational efficiency of reporter constructs  

by several fold in vitro and in vivo (Kwon et al., 1999). Furthermore, using dicistronic 

RNA, the RTS specifically enhances cap-dependent translation without affecting 

internal ribosome entry site (IRES)-dependent translation. Subsequent studies indicated 

that hnRNP E1 is recruited to MBP mRNA/RTS RNA granules, presumably to 

suppress the translation, while transit to myelin compartment (Kosturko et al., 2006). In 

this study it was revealed that hnRNP E1 binds hnRNP A2 in vitro and  is co localized 

with hnRNP A2 and RTS RNA in granules in oligodendrocyte processes. Furthermore, 

it was shown that hnRNP E1 inhibits translation of RTS containing RNA in vitro and in 

vivo possibly by binding to hnRNPA2. Later studies indicated that phosphorylation of 

hnRNPA2 by Fyn kinase relieves translational inhibition of MBP mRNA after reaching 

the myelin compartment. Neuronal adhesion molecule L1 binding to oligodendrocytes 

results in Fyn activation, which leads to an increase in hnRNP A2 phosphorylation 

(White et al., 2008).  

 

Insights into mRNA transport in neurons 
Neurons are highly polarized cells and contain specialized sub cellular domains that 

usually include an axon and multiple dendrites, which extend great distances from the 
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cell body. Axons and dendrites have specialized functions that require different sub set 

of proteins for their respective functions. That implies demand for multiple proteins to 

be asymmetrically distributed and targeted to correct sub cellular domains. One strategy 

used by neurons to meet this challenge is differential RNA  localization and local 

protein synthesis. Many RNAs are localized along the length of axon and axon 

terminals. Within the axon, local protein synthesis is thought to be involved in growth 

and growth cone mediated axon guidance in response environmental cues. RNA 

localization is also prominent feature in dendrites.  Dendrites contain many small 

protrusions termed dendritic  spines onto each of which a single synapse is formed.  

Dendrites and dendritic  spines have acquired lot of interest in terms of RNA 

localization as local protein synthesis at these sites  is thought to modulate synaptic 

functions in learning and memory. Therefore, local protein synthesis provides growth 

cones and synapses with the capacity to autonomously regulate their structure and 

function. 

 
In neurons, the hypothesis that mRNAs are transported, localized, and locally translated 

in dendrites originates from evidence obtained by electron microscopy that 

polyribosomes are present in dendrites (Bodian et al., 1965) and  in the neck of spine 

heads of granular neurons (Steward and Levy.,1982). Later studies using radioactive 

uridine precursors, demonstrated that RNAs were transported to dendrites of cultured 

hippocampal neurons (Davis et al., 1987). Subsequent in situ hybridization studies 

revealed the presence of specific mRNAs encoding cytoskeletal, integral membrane 

proteins in dendritic layers and at postsynaptic densities of hippocampal neurons in 

vivo and in vitro. These transcripts include microtubule-associated protein 2 (MAP2) 

mRNA (Garner et al., 1988; Kleiman et al., 1990), the α subunit of Ca2/calmodulin 

dependent protein kinase II (CaMKIIα) mRNA (Miyashiro et al., 1994), brain-derived 

neurotrophic factor (BDNF) mRNA, activity-regulated cytoskeleton-associated protein 

(Arc) mRNA (Lyford et al., 1995). Dynamic translocation of endogenous mRNAs in 

neuronal processes was then described in live cells, using the membrane-permeable 

nucleic acid stain SYTO 14 (Knowles et al., 1996). Later on translocation of specific 

mRNA to neuronal processes was studied in cultured hippocampal neurons by tethering 

a green fluorescent protein (GFP) to the 3'-untranslated region (3′UTR) of the 

αCaMKII mRNA with the MS2 bacteriophage tagging system ( Rook et al., 2000). 

Unbiased approaches to amplify mRNAs from purified dendritic and/or synaptic 

compartments (Miyashiro et al., 1994; Tian et al., 1999; Moccia et al., 2003; Sung et 
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al., 2004) have identified hundreds of localized mRNAs.  Nowadays, different 

approaches are being used to show that RNA granules are mobile structures with 

anterograde, retrograde, and oscillatory movements. 

Now it is well established that many RNAs are targeted to both axons and dendrites 

(for review, see Bramham, C.R. and Wells, 2007). However, the molecular mechanism 

by which specific mRNAs are transported is not fully understood.  The present working  

model on how neuronal mRNAs are transported summarized in figure 5 and include the 

following steps. (1) recognition of RNA cis-acting elements by RNA-binding proteins 

(transacting factors) in the nucleus (2) export of mRNA/mRNPs from the nucleus to the 

cytoplasm (3) association of additional factors including molecular motors to form 

functional RNA granules (4) transport of RNA granules on cytoskeletal structures (5) 

localization and/or anchoring of RNA to its destination and (6) translational de 

repression of the localized mRNAs by specific signals. 

 

 

Figure 5. Working model for mRNA transport and local translation in neurons. Transport of mRNAs 
constitutively present in the dendritic domain is increased in response to stimuli at specific synapses. 
Transcribed mRNAs are first recognized in the nucleus by RNA-binding proteins (R) and exported to the 
cytoplasm. RNPs are then packaged with additional factors into granules that are transported into the 
dendrite by kinesin motors on microtubules. Following synaptic stimulation, the granules are dispersed 
and the mRNA is anchored/ localized to spines by the actin-based myosin motor proteins. Translation of 
localized mRNA is activated at the synaptic compartment by de repression of RNA binding protein. 
7mG, 7-methyl-guanosine; PSD, postsynaptic density ( Adapted from Bramham, C.R. and Wells, 2007) 
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It is currently believed that targeting of mRNAs to dendrites mainly depends on the 

presence of dendritic targeting elements (DTEs) or Zipcodes within RNA. As I 

mentioned in the introduction these RNA sequences are normally found in the 3'UTR 

of mRNAs. Recognition of cis-acting elements by trans acting RNA-binding proteins 

results in the formation of RNP complexes competent for their transport on the 

cytoskeleton. Deletion and expression studies have led to the identification of 

functional DTEs. These RNA elements are necessary and sufficient to mediate the 

dendritic transport of reporter transcripts. DTEs from different transcripts are quite 

different in length, sequence, number, and position ranging from 54 nucleotides in the 

case of β-actin mRNA to around 1200 nucleotides for the αCaMKII transcript. This 

diversity in the zipcode sequences/structures may parallel the complexity of the 

mechanisms of mRNA transport and translation. So far, no clear consensus “cis acting” 

sequence or structure has been identified. Given the complexity of DTEs, it is predicted 

that DTEs are recognized by RNA-binding proteins through complex structural 

elements rather than via linear sequences. 

Composition of neuronal  transported RNA granules  

Similarly to the MBP mRNA granules in oligodendrocytes, it is believed that localized 

mRNAs travel as large mRNP complexes or RNA granules that may be associated with 

ribosomes. Two different studies focused on the molecular characterization of mRNPs 

that were isolated from neural tissue to understand their roles in RNA transport and the 

nature of the molecules that regulate transport, translation, stability. The first study 

utilized the interaction of transport RNPs with the conventional kinesin KIF5 to isolate 

large RNase-sensitive granules and there by restricting the characterization to only 

transport RNPs (Kanai et al., 2004). Overall 42 proteins were identified by mass 

spectometry as well as at least two dendritically targeted mRNAs encoding CaMKIIα 

and Arc. The identified proteins include known regulators of mRNA transport (FMR1, 

FXR1, FXR2, Pur α, Pur β, staufen), protein synthesis (EF-1α, eIF2α, eIF2β, eIF2γ, 

Hsp70, ribosomal protein L3), RNA helicases (DDX1, DDX3, DDX5) and several 

hnRNP proteins (hnRNP-A/B or CBF-A, hnRNP-A0, hnRNP-A1, hnRNP-D, hnRNP-

U). Interestingly, these granules lack the cytoplasmic-polyadenylation-element binding 

protein 1 (CPEB1) a protein that was earlier shown to bind to CaMKIIα mRNA. 

CPEB1 was shown to participate in its localization into dendrites and regulate its 

translation (Wu, L. et al., 1998; Huang et al., 2003). In addition, these granules do not 

contain  hnRNP A2, a protein identified in neuronal RNA transport granules in 
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dendrites of cultured neurons (Shan et al., 2003).  β-actin mRNA and its trans acting 

protein ZBP1 are also absent in these RNA granules, which is consistent with the 

notion that the pool of RNPs is heterogeneous.  

The second study applied subcellular fractionation to isolate a fraction that was 

enriched in RNPs from developing rat brains  and subjected this fraction to proteomic 

analysis (Elvira et al., 2006). In contrast to the KIF5 granule, these large granules 

obtained in this study contained ZBP1 and mRNA encoding β-actin, but not CaMKIIα.  

In spite of these differences, the two RNP preparations share  many common 

components, including several heterogeneous hnRNPs, SYNCRIP, FMRP, Pur-α, Pur-

β, Staufen and DEAD (Asp-Glu-Ala-Asp) BOX 1, DDX3 DDX5.  Altogether these 

studies indicated  that there are core components of transport RNPs, which are always 

required and that additional RNA binding proteins are added or removed  based on 

brain region or developmental stage.  

Activity regulated transport 

Live-cell imaging techniques using fluorescently labeled RNA or RNA binding 

proteins revealed that a fraction of mRNA granules displayed either rapid  anterograde 

or retrograde movements that are  likely to be dependent on microtubules (Sánchez-

Carbente et al., 2008). In neurons, these movements can be altered by neuronal activity. 

In fact neuronal activity is known to increase the extent of mRNA transport in dendrites 

(Elvira et al., 2006; Kanai et al., 2004) indicating that mRNA transport is highly 

regulated. Neuronal activity resulted in an increase in the number of dendritically 

localized CaMKIIα  mRNA containing granules (Rook et al., 2000). Neuronal activity 

also lead to re localize mRNAs from Staufen1containing RNA granules to actively 

translating polyribosomes (Krichevsky and Kosik, 2001). However, the mechanism of 

translocation to the polyribosomes is not known. Similarly, RNG105 protein 

dissociates from RNA granules in dendrites following treatment of the cells with 

BDNF and this mechanism is correlated with the translation of a reporter transcript 

(Shiina et al., 2005). Neuronal depolarization is also consistent with increased ZBP1-

containing granules into dendrites and it is dependent on N-Methyl-D-aspartate 

(NMDA) receptor activation (Tiruchinapalli et al., 2003). In vivo, synaptic activation 

strongly up regulates Arc gene expression and the recruitment of newly synthesized 

corresponding transcripts to activated synapses requires NMDA receptors (Steward & 

Worley., 2001). The RNA binding protein TLS is translocated to dendritic spines by 
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mGluR5 activation and regulates spine morphology (Fujii et al., 2005). Similarly, 

activation of metabotropic glutamate receptors (mGluRs) promotes the localization of 

mRNAs encoding the AMPA receptor subunits GluR1 and GluR2 into dendrites 

(Grooms et al., 2006). Long-term potentiation (LTP) is a persistent increase in signal 

transmission between two neurons that results from high frequency stimulation. LTP 

induction in the CA1 region of hippocampal slices causes translocation of 

polyribosomes in to spines after 2 hours (Ostroff et al., 2002). Elevated levels of 

CaMKIIα mRNA were detected in synaptodendrosomes following LTP induction in 

the dentate gyrus of awake rats (Havik et al., 2003). Altogether these results indicate 

that that synaptic activity leads to increased levels of dendritic mRNA transport and a 

prolonged increase in dendritic protein synthesis.  

Translational regulation of dendritic mRNAs 

RNA transport granules have been reported to lack essential translational components 

and to be unable to incorporate radioactive amino acids indicating that they are not 

translationally competent (Krichevsky and  Kosik., 2001). It is believed that RNA-

binding proteins  bind to specific cis-elements and are capable of negatively regulating 

mRNA translation (Wells et al., 2006). One such example for this type is how ZBP1 

binds to β-actin mRNA, as mentioned earlier binding occur co transcriptionally and this 

mechanism probably keeps mRNA in a translationally dormant state. In the cytoplasm 

ZBP1 could be dissociated from the mRNA by src kinase nediated phosphorylation,  

therefore allowing β-actin mRNA to be translated (Huttelmaier et al., 2005). Likewise, 

the RNA binding protein RNG105 is a translational repressor that has been found 

associated with neuronal RNA granules (Shiina et al 2005). Other  RNA binding 

proteins such as  polyadenylation element-binding protein (CPEB) and FMRP are 

regulators of specific mRNA translation in neurons (Huang et al., 2002; Laggerbauer et 

al., 2001). 

The translation of an mRNA into a corresponding protein involves three sequential. 

steps, normally initiation, elongation, and termination. Regulation can occur at any of 

these steps, but initiation is usually rate limiting and thus often a primary target for 

regulation. Protein synthesis is critical for persistent synaptic modifications like LTP 

and LTD (long-term depression) (Kindler et al ., 2005; Bramham, C.R. and Wells., 

2007). Several signaling pathways have been reported in neurons that modulate 

translation by targeting translation initiation factor eIF4E. eIF4E is a subunit of the 
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eIF4F complex, binds to the 5'cap of mRNAs and promotes recruitment of the 43S 

preinitiation complex (Kapp and Lorsch., 2004). Cap-dependent translation in dendrites 

and postsynaptic domains can be stimulated by two receptor coupled kinase pathways. 

ERK (extracellular signal-regulated) signaling leads to phosphorylation of eIF4E and 

mTOR (mammalian target of rapamycin) signaling which leads to phosphorylation of 

eIF4E-BP (eIF4E-binding protein) and release of eIF4E, which eventually becomes 

available for cap binding (Raught et al. 2000;  Aakalu et al., 2001; Richter et al., 2005). 

In support of this, key components of the mTOR pathway, such as mTOR, eIF4E, and 

eIF4E-BP, have been identified in postsynaptic domains (Tang et al., 2002). Synapto-

dendritic protein synthesis that affects synaptic strength is also controlled at the level of 

peptide chain elongation. eEF2 is a GTP-binding protein that facilitates the 

translocation of peptidyl-tRNAs from the A-site to the P-site on the ribosome. 

Phosphorylation of eEF2 results in overall decrease in global protein synthesis, while 

increasing enhanced translation of two dendritic mRNAs such as Arc and CamKIIα 

mRNA that are important in synaptic plasticity (Nairn et al., 2001). NMDA treatment 

of synaptodendrosomes enhances eEF2 phosphorylation and suppresses global protein 

synthesis while increasing CaMKIIα expression (Scheetz et al., 2000). 

Translational control of gene expression in synapto-dendritic domains  is also 

controlled by microRNAs. miR-134, a brain-specific miRNA that is found in the 

synapto dendritic  compartment and negatively regulates dendritic spine morphogenesis 

in cultured hippocampal neurons by repressing translation of LIMK1 mRNA. BDNF 

application removes miR134 mediated repression of LIMK1 translation and promotes 

spine morphogenesis (Schratt et al., 2006).  

In summary, translational repression appears to be important during RNA transport to 

prevent ectopic expression in neurons. Appropriately controlled protein synthesis at the 

synapse is important neuronal excitation-inhibition balance and therefore, it may be 

essential to have multiple controls in place to keep local translation in the silent mode 

until a valid and correct signal is received. The nature of such a signal, and the 

mechanism by which it is transduced to the local translational machinery is a very 

challenging task to understand (for review, see Kindler et al., 2005; Bramham, C.R. and 

Wells., 2007). 
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RNA transport and translation during spermatogenesis 
In mammalian testis highly specialized control of gene expression both at the 

transcriptional and post transcriptional levels exists during spermatogenesis, which 

ensures the production of mature sperm and the maintenance of the species ( reviewed 

in Sassone-Cors et al., 2002). One of the unique phenomena in male germ cell 

development is the condensation of sperm chromatin. During late spermiogenesis, the 

chromatin of the haploid spermatids highly condenses and in fact all transcription 

activity stops (Söderström et al., 1981; Söderström et al., 1976 ). For this reason, the 

mRNAs coding proteins required in late spermatids are transcribed in the earlier stage 

of spermatogenesis and thought to be stored in special organelles termed “chromatoid 

body” (CB) in the cytoplasm and translated when spermatids need them. Consistent 

with this view, delayed translation of many mRNAs occurs in these post-meiotic cells 

(Tanaka et al., 2005; Kleene et al., 1993; Kleene et al., 1996). 

 
Chromatoid body 
The term chromatoid body (CB) is derived from the fact that this cytoplasmic structure 

is strongly stained by basic dyes similar to chromosomes and nucleoli. In mammals, the 

CB is observed in the cytoplasm from early spermatocytes to late spermatids and its 

shape is usually spherical. As spermatids develop, the CB assumes various shapes and 

its size gradually diminishes. First it appears adjacent to the nuclear envelope where it 

is juxtaposed to nuclear pore complexes (juxtanuclear cytoplasm) and then it moves 

towards the cytoplasm at the base of the flagellum. High resolution electron 

microscopy studies revealed material continuities exists between the nucleus and the 

CB as if the CB can selectively collect nuclear material (Söderström et al., 1976;  

Parvinen et al., 1979 ). The CB has never been biochemically isolated with high purity 

so far, hence to date there is no biochemical charecterization of this structure. However 

histochemical studies indicate CB contains RNA and many proteins (Kotaja et al., 

2007). Although its function remains difficult to understand, the CB may be involved in 

temporary RNA storage and processing due to the fact it contains various RNA-binding 

proteins and RNA (Fujiwara et al., 1994; Toyooka et al., 2000; Tsai-Morris et al., 2004; 

Nguyen Chi et al., 2009; Kotaja et al., 2006; Saunders et al., 1992). Therefore it is 

believed that CB plays a crucial role in post-transcriptional control during 

spermatogenesis. 
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 KIF17b is a testis-specific kinesin that shuttles between cytoplasmic and nuclear 

compartments and it is concentrated in the CBs of round spermatids. Based on its 

functional properties, it is suggested to transport of specific RNPs components from the 

nucleus to the CB (Kotaja et al., 2006). However in elongating spermatids, CBs are 

functionally transformed, presumably in response to developmental cue calls, releasing 

multiple components including such as the microRNA biding protein MIWI (Shang et 

al., 2010) and RNA transcripts which are then localized for translation.  

 

Protamines are  nuclear proteins which are expressed in mature sperm. Protamines are 

believed to replace histones in late phase of spermatogenesis and are essential for 

sperm head chromatin condensation (for review, see Sassone-Corsi et al., 2002). 

Interestingly, protamine 1 and 2 expression seems to be regulated at the mRNA levels.  

Protamine 1 and 2 mRNAs  transcripts are known to be stored for 2 to 7 days before 

their active translation (Balhorn et al., 1984; Kleene et al., 1984). Previous studies 

using transgenic mice demonstrated the importance of the 3’UTR sequence of 

protamine 1 mRNA which is also necessary for translational repression (Lee et 

al.,1995). Furthermore premature translation of protamine 1 mRNA leads to early 

nuclear condensation, resulting in male infertility (Lee et al.,1995). Many proteins 

which bind to specific sequences in 3’UTR of protamine mRNAs have been identified 

(Dadoune et al, 2003), however the molecular mechanisms that control temporary 

storage and regulation of  translation remain unclear. Less is known about protamine 2 

mRNA. However this transcript contain conserved RTS sequence in its 3'UTR (Carson 

et al., 1997). Therefore it is possible that RTS  mediated transport to localize protamine 

2 mRNA is important during spermatogenesis. 
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AIMS 

 
The overall  goal of this thesis work has been to dissect how hnRNP  proteins interact 

with the UTR of mRNA transcripts to regulate their transport and localization 

mechanism in different mammalian cell types. By focusing on the A/B type hnRNP 

protein CBF-A, the following specific aims were addressed. 

 
1. To evaluate whether CBF-A binds RTS sequences on the MBP mRNA and 

functions as novel transacting factor to facilitate MBP mRNA trafficking to 

myelin compartment of oligodendrocytes. 

 

2. To determine whether and how the transacting role of CBF-A is required for 

transport of dendritic mRNAs in neurons and it is activity dependent.  

 

3. To evaluate the role of CBF-A in spatially and temporally regulated mRNAs 

during spermatogenesis. 
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RESULTS AND CONCLUSIONS 
 
Paper 1  
 
 In the first paper included in the thesis we were interested in identifying novel 

transacting factors implicated in MBP mRNA biogenesis in oligodendrocytes. As I 

mentioned in the introduction, the RTS cis-acting element plays an important role and 

in oligodendrocytes it is required for the localization of MBP mRNA to the myelin 

compartment. In order to identify novel transacting factors, we set out to perform RNA 

affinity chromatography. In these experiments biotinylated RNA oligonucleotides 

containing the MBP mRNA RTS found in 3'UTR are coupled to the streptavidin coated 

beads and incubated with Hela cells nuclear, cytoplasmic and cytoskeletal protein 

extracts. RNA oligonucleotides containing scramble versions of the MBP mRNA RTS 

sequence were coupled to the beads and used as a control. In all cases bound proteins 

were analyzed by Coomassie staining and Western blotting. Using antibodies against 

core hnRNP proteins we discovered that both CBF-A and A2 coprecipitated with 

wtRTS. Sub cellular fractions of Hela cells and protein-protein interaction studies 

revealed that hnRNP A2, A3, and CBF-A are physically associated in RNA dependent 

manner. From these results, we conclude that CBF A is in multiprotein complexes 

where it specifically associates with the MBP mRNA RTS element. 

 
Association of CBFA with wtRTS raises the question as to whether CBFA binds RTS 

directly or indirectly. In order to test this possibility, we performed electrophoretic 

mobility shift assay (EMSA). In this assay, radioactive labeled RTS containing RNA 

oligonucleotides  were incubated with the purified recombinant CBF-A along with 

hnRNP A2 or A3 and used as positive controls. The resulting RNA-protein complexes 

were resolved by native gel electrophoresis. We found that CBF-A retarded the 

electrophoretic mobility of wtRTS containing RNA oligonucleotides. We concluded 

that CBF-A directly binds to wild type RTS sequences and the specificity of the 

binding was confirmed by competition studies.   

 

Analysis of steady state expression on immunoblots showed that CBF-A is 

ubiquitously expressed in mouse tissues. Immunostaining of mouse brain sections with 

the anti-CBF-A antibody followed by confocal microscopy revealed that CBF-A is 

expressed all over in the forebrain, showing distinctive nuclear signals. Interestingly, a 

significant fraction of CBF-A was also found outside the cell nucleus in discrete 
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particles which are reminiscent of transported RNA granules in oligodendrocytes and 

neurons, also granules  displayed different sizes and signal intensities depending on the 

brain regions analyzed. Double Immunolabelling studies revealed that most of the 

CBF-A positive granules were found in close proximity to CNPase, suggesting a 

specialized cytoplasmic function for CBF-A, presumably in processes emanating from 

the cell body. Similarly, CBF-A positive granules were also revealed in cytoplasmic 

processes of primary oligodendrocytes, astrocytes, and neurons obtained by in vitro 

differentiation of fetal rat and adult mouse neural stem cells. In all these cases, CBF-A 

positive granules were revealed along the microtubule-rich processes. 

 
The above findings that CBF-A binds directly to RTS and is present in discrete 

granules in the processes of oligodendrocytes, prompted us to test whether CBF-A 

colocalizes with MBP mRNA transport granules along the cytoplasmic processes. For 

this reason, we have used oligodendrocyte precursor cells called oli-neu, which can be 

terminally differentiated into myelin producing oligodendrocytes (Jung et al., 1995). 

Differentiated oli-neu cells were subjected to fluorescent in situ hybridization (FISH) 

using antisense MBP mRNA probes followed by immunostaining with anti-CBF-A 

antibodies. Confocal microscopy revealed that CBF-A positive granules distributed 

along oligodendrocytes processes colocalize with MBP mRNA in granular structures. 

Quantification of fluorescent intensity of individual granules and statistical analysis 

indicate that approximately 90% of granules were simulntaneously positive for both 

CBF-A and MBP mRNA and showed linear correlations between the CBF-A and MBP 

mRNA signals. Similar results were obtained in the case of hnRNP A2. Triple labeling 

experiments revealed that more than 80% of the granules were positive for MBP 

mRNA, CBF-A and A2. From these results we conclude that cytoplasmic CBF-A 

colocalize with the RNA transport granules that include MBP mRNA and hnRNPA2 in 

oligodendrocyte processes. These results were further supported by 

immunoprecipitation and qRT-PCR experiments. Immunoprecipitation performed on 

total oli-neu cells using anti-CBFA antibodies precipitated hnRNPA2 in the absence of 

RNAse treatment. On the contrary, hnRNPA2 was not precipitated when  cell extracts 

were treated with RNAse A before immunoprecipitation. These results suggest that 

CBF-A and hnRNP A2 are part of the same RNA-containing complexes, but their 

association is dependent on RNA. Furthermore qRT-PCR analysis on 

immunoprecipitated samples indicate that significant enrichment was observed for 

MBP mRNA isoforms compared to SOX genes encoding transcription factors. From 
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the above results we conclude that in differentiating oli-neu cells a significant 

proportion of CBF-A is specifically associated with the MBP mRNA, presumably as 

part of MBP mRNA granules. 

 

If CBF-A binds RTS sequence and associates with MBP mRNA and a part of 

transported MBP mRNA granules CBF-A must be implicated in transport and 

localization of MBP mRNA to myelin compartment. In support of this hypothesis, we 

discovered that CBF-A gene knock down by siRNA affected the distribution of MBP 

mRNA in oligodendrocytes. We found that MBP mRNA was mainly detected in  the 

cell body, being excluded from  the processes.  

Finally, cryoimmunoelectron microscopy using anti CBF-A antibody revealed that 

CBF-A was detected in different cellular compartments of oligodendrocytes. As 

expected for hnRNP proteins, CBF-A is detected in the nucleus. In the cytoplasm CBF 

is found in distinctive granular structures presumably RNA transport  granules that are 

associated with cytoskeleton molecules both with microtubules and microfilamemnets. 

CBF-A labeling is also detected in concentric multilamellar structures which resemble 

formation of myelin membranes. Taken altogether these observations indicate that 

CBF-A  accompany mRNA from cell nucleus to myelin compartment in 

oligodendrocytes. 

 
In summary, the above findings suggest that CBF-A is novel transacting factor required 

for cytoplasmic MBP mRNA transport and localization to myelin compartment of 

oligodendrocytes. 

 

Paper 2 
In the second paper we analyzed the transacting role of CBF-A in transport and 

localization of dendritic mRNAs in neurons.  

 
In neurons, many different RNAs are targeted to dendrites and synapses where local 

expression of the encoded proteins mediates synaptic plasticity during learning and 

memory ( for review, see Kindler et al 2005; Bramham, C.R. and Wells, D.G. 2007). 

However, the mechanisms by which these mRNAs are targeted to dendrites and 

synapses are not fully understood. Previous evidence that CBF-A is a component of 

isolated RNA granules from embryonic and adult brain (Kanai et al., 2004: Elvira et al., 

2006) and our findings presented in paper1 (Raju et al., 2008) that in the brain CBF-A  
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present in discrete cytoplasmic granular structures led us to believe, CBF-A may act as 

transacting factor for certain mRNAs that are transported to dendrites and synapses. In 

support of this view, confocal and electron microscopy revealed that CBF-A  localizes 

to discrete granules along dentries and in pre and post synaptic terminals. Furthermore, 

immunoelectron microscopy on brain sections revealed that CBF-A is present in 

interchromosomal spaces (ICS) and in the perichromatin area where active transcription 

takes place (Fakan and Puvion 1980), indicating that CBF-A may present in nascent 

transcripts. Since CBF-A was also found associated with dense structures at the nuclear 

pores, presumably mRNPs, in transit to the cytoplasm, we concluded that in neurons 

CBF-A accompanies mRNA to the cytoplasm. 

 
The presence of CBF-A at distal dendrites and synaptic sites raised the question as to 

whether CBF-A associates with mRNAs that are targeted to dendrites and synapses. 

For this reason, we have purified synaptosomal fractions and performed RNA 

immunoprecipitation (RIP) using anti CBF-A antibodies. The precipitated RNA was 

then analyzed by RT-PCR. We revealed that significant enrichment for dendritically 

targeted Arc, BDNF and CaMKIIα mRNAs in comparison to α-tubulin and GAPDH 

mRNA. These results indicate that in synaptosomal preparations CBF-A associates 

with Arc, BDNF and CaMKIIα mRNAs. RTS and RTS-like sequences are reported to 

be present in different mRNAs (Carson et al., 1997) and dendritically transported 

mRNAs in the 3’ UTRs of CaMKIIα and Arc mRNAs (Gao et al., 2008). In the present 

paper, we also report such RTS-like motif exists in the 3'UTR of BDNF mRNA and it 

is likely to be functional. Our  previous findings that CBF-A binds directly to the RTS 

element from MBP mRNA, prompted us to test whether CBF-A binds RTS like 

sequences in dentritically targeted Arc, BDNF and CaMKIIα mRNAs. RNA affinity 

chromatography using RNA oligonucleotides containing RTS like sequences from Arc, 

BDNF, and CaMKIIα mRNAs was performed on total brain extracts. We found that  

CBF-A coprecipitated with the wtRTS like sequences, but not with control 

oligonucleotides containing scrambled RTS sequences. The direct binding to RTS like 

sequences from Arc, BDNF, and CaMKIIα mRNAs and the specificity of the binding 

was  further confirmed by EMSA. Therefore we conclude CBF-A specifically binds 

RTS like sequences present in dendritically targeted Arc, BDNF, and CaMKIIα 

mRNAs.  

We next wanted to study if CBF-A colocalizes with transport RNA granules in 

dendrites. Immuno-FISH experiments on cultured hippocampal neurons revealed that 
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CBF-A co localizes with Arc, BDNF, and CaMKIIα mRNAs in granules along the 

dendrites. Quantification of fluorescent intensity of individual granules demonstrated 

linear correlation between CBF-A and above mentioned mRNAs. Distribution of 

exogenous EGFP tagged CBF-A is also somewhat similar to endogenous one and 

shown to be incorporated into the cytoplasmic discrete granules along the dendrites. 

Furthermore, exogenous CBF-A granules partly colocalizes with endogenous CaMKIIα 

mRNA as revealed by in situ hybridization. Time lapse analysis on hippocampal 

neurons transiently expressing EGFP-CBF-A, found that a major fraction of EGFP 

CBF-A positive granules were immobile or stationary and a fraction of granules 

exhibited an oscillatory movement. A subset of EGFP CBF-A positive granules 

displayed a single direction motion either anterograde or retrograde, with a calculated 

speed of 0.028-0.13 μm/sec similar to that measured for Staufen 1, DDX3 and 

CaMKIIα mRNA-containing granules (Kohrmann et al. 1999; Elvira et al, 2006; Rook 

et al, 2000).   

 
In mammalian neurons many RNAs are present in dendrites, but some of these 

transcripts were shown to undergo activity regulated transport (Bramham, C.R. and 

Wells, D.G. 2007; Sánchez-Carbente., et al 2008). Synaptic activation in vivo strongly 

up regulates Arc gene expression and the recruitment of newly synthesized Arc 

transcripts to activated synapses requires NMDA receptors (Steward & Worley., 2001). 

Similarly, activity-dependent localization of BDNF (Tongiorgi et al., 1997) and 

CaMKIIα (Mori et al., 2000; Rook et al., 2000) transcripts has been reported in 

dendrites of cultured neurons. Neuronal depolarization also led to increase in the ZBP1-

containing granules into dendrites, a mechanism which is also dependent on NMDA 

receptor activation (Tiruchinapalli et al., 2003). Consistent with this view, treatment of  

cultured hippocampal neurons with the NMDA and AMPA agonists resulted in an 

increase in the levels of CBF- A containing granules in dendrites. Furthermore, the 

same treatment also led to increased levels of Arc, BDNF, and CaMKIIα mRNAs as 

revealed by qRT-PCR. Increased transcript levels also correlated with increased 

amounts of transcripts coprecipitating with CBF-A.  Finally, CBF-A gene knock down 

by siRNA caused the decreased mRNA levels (at least 2 fold drops) in dendrites.  We 

conclude that  CBF-A is required for targeting RTS containing mRNAs to dendrites.   
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Paper 3   
In the third paper we studied the role of CBF-A in the trafficking of  spatially and 

temporally regulated transcripts such as the RTS containing  protamine 2 mRNA 

during spermatogenesis.  

 

To assess the intracellular distribution of protamine 2 mRNA we carried out 

fluorescence in situ hybridization (FISH) on cryosections of mouse testis using 

antisense probe followed by confocal microscopy. These results show that in 

elongating spermatids, protamine 2 mRNA localized all over in the cytoplasm 

displaying diffuse staining, where as in round spermatids it is preferentially detected in 

the nucleus and in perinuclear structures, being excluded from the cytoplasm. These 

perinuclear structures were later confirmed to be chromatoid bodies as they are positive 

for  the marker protein MVH (mouse vasa homolog) by immunostaining. These results 

indicate that in round spermatids following transcription, protamine 2 mRNA is 

targeted and temporarily stored in chromatoid bodies and then dispersed into the 

cytosol of elongating spermatids. 

 

Similarly, we also evaluated the cellular distribution of CBF-A in spermatogenic cells  

by immunostaining followed by confocal microscopy. We found that CBF-A is 

expressed in spermatogenic cells at all developmental stages. CBF-A predominantly 

localized to nuclei  and cytosol in round spermatids and elongating spermatids 

respectively. When the sections were subjected to antigen retrieval, CBF-A also 

accumulate into perinuclear structures similar to chromatoid bodies. Squash 

preparations of seminiferous tubules to dissociate testicular cells into single intact cells 

that retain the morphology (Page et al., 1998)  followed by double immunolabelling of 

these specimens showed that a considerable fraction of CBF-A localizes in chromatoid 

body. Consistent with the previous evidence that CBF-A and hnRNP A2 are part of the 

same complex (Raju et al.,2008) similar degree of overlap was revealed after double 

immunostaining with antibodies to CBF-A and hnRNP A2. From these results, we 

conclude that in round spermatids CBF-A is abundant in the cell nucleus and 

accumulates in chromatoid bodies whereas in elongating spermatids CBF-A is 

preferentially found in the cytoplasm. Taken altogether these observations suggest that 
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during spermatogenesis CBF-A is transported to chromatoid bodies and it is later on 

dispersed in the cytoplasm presumably with haploid mRNAs. 

 
Since CBF-A and protamine 2 mRNA exhibit somewhat similar distribution in 

spermatogenic cells, we next wanted to determine whether CBF-A associates or 

interacts with the protamine 2 mRNA. For this reason, we prepared nuclear and 

cytoplasmic fractions from mouse testes and subjected to RNA immunoprecipitation 

analysis (RIP). In both cases CBF-A antibodies co-precipitated CBF-A and hnRNP A2,  

but did not precipitate MVH/VASA and the piRNA-binding protein MIWI which also 

localizes to chromatoid bodies and is involved in germline development (Lin et al., 

2007; Unhavaithaya et al., 2009).  However these co-precipitations were impaired 

when nuclear and cytoplasmic extracts were treated with RNase A prior to the 

immunoprecipitation assays indicating that CBF-A is part of specific RNP complexes. 

The RIP analysis from cytoplasmic fractions further demonstrated that the protamine 2 

mRNA transcript was coprecipitated with CBF-A antibodies, but was not detected upon 

RNase treatment performed prior to the immunoprecipitation step. On the contrary α-

tubulin and clusterin mRNAs were only marginally detected in the immunoprecipitated 

fractions independently of the RNase treatment. Densitometric quantifications showed 

a considerable two fold increase in the amount of protamine 2 mRNA precipitated with 

CBF-A in comparison with α-tubulin and clusterin mRNAs. These observations 

suggest that CBF-A associates with protamine 2 mRNA in cytoplasmic fraction. 

 
Previously it was predicted that protamine 2 mRNA contains RTS like sequence in its 

3'UTR, which is highly similar to the RTS sequences found in the MBP mRNA. 

Injection of a reporter plasmid containing the protamine 2 mRNA RTS like sequence  

induced transport of the reporter RNA to distal sites of oligodendrocytes (Ainger et al., 

1997) indicating that protamine 2 mRNA RTS is probably functional. In our studies, 

RNA affinity chromatography and EMSA revealed that CBFA specifically binds 

protamine 2 mRNA RTS which is consistent with the  RTS  binding property of CBF-

A in oligodendrocytes and neurons (Raju et al., 2008; 2011). 

 

Since protamine 2 mRNA and CBF-A are dispersed in the cytoplasm of elongating 

spermatids and they are part of the same RNP complex, we next examined whether 

CBF-A engaged in protamine 2 mRNA translation. For this purpose, cytoplasmic 

extracts from testis were subjected to ultracentrifugation on sucrose gradient to separate 
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RNPs, monosomes and polyribosomes. We found that CBF-A co sedimented with 

protamine 2 mRNA in the polyribosome rich fractions, where as EDTA treatment 

which disrupts translationally active polyribosomes, both CBF-A and protamine 2 

mRNA were mostly recovered in the RNP fraction. Interestingly analysis of the 

fractions with the antibodies to both CBF-A isoforms p37 and p42 showed that it is the 

p42 that co sediments with polyribosomes. However, upon EDTA treatment, both 

CBF-A splice variants were recovered at the top of the gradient cosedimenting with 

RNP and monosomes rich fractions. Based on above observations, we conclude that 

both CBF-A variants associates with protamine 2 mRNA, but only the p42 isoform 

accompany the transcript to translationally active polyribosomes. In support of this 

view, when cytoplasmic lysate were incubated with immobilized 7-methyl-GTP-cap 

analog beads (m7GTP beads), the p42 variant was pulled down together with the 

eukaryotic initiation factor eIF4E, MIWI and hnRNP A2. These results altogether 

suggest that CBF-A bound to the RTS in the 3’UTR of protamine 2 mRNA may be 

important for mRNA targeting to translationally active polyribosomes. 
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GENERAL DISCUSSION 
 
Here we provide evidence that the hnRNP CBF-A specifically binds the conserved 

RTS cis-acting elements which are in the 3’ UTR of mRNA transcripts that are 

expressed in several cell types. In oligondendrocytes, CBF-A binds to the MBP mRNA 

RTS, in hippocampal neurons we show specific interaction with the RTSs found in 

ARC, CaMKIIa and BDNF mRNAs and in testicular cells, we found a direct 

interaction with the RTS in the protamine 2 mRNA. These interactions were verified in 

vitro and in living cells. These findings and evidence that CBF-A gene silencing lead to 

an alteration in the distribution of these transported mRNA transcripts indicates that 

CBF-A has a general role as transacting factor in RTS-mediated mRNA transport and 

localization.  Therefore we propose that CBF-A is rather critical for the establishment 

of asymmetric mRNA and protein distribution, a mechanism that is required for 

specialized cellular function.  

 
Our data also support the view that CBF-A binds RTS-containing transcripts already in 

the cell nucleus and remains associated with these transcripts also in the cytoplasm. A 

close look at the distribution of CBF-A in the nucleus of brain cells by electron 

microscopy shows that CBF-A is excluded from dense chromatin and CBF-A is present 

in nascent pre-mRNA. These observations and evidence that CBF-A does not seem to 

interact with transcripts that do not contain RTS sequences (α-tubulin and GAPDH 

mRNAs) de facto provides a mechanism that sorts transport-competent mRNA 

molecules at an early stage during the mRNA biogenesis pathway during 

cotranscriptional assembly of pre-mRNPs. An interesting possibility is that CBF-A 

binding to RTSs lead to remodeling of the 3’UTR and this mechanism facilitates the 

establishment of a specific RNP configuration required for cytoplasmic transport and 

localization. 

 
Previously it was reported that hnRNP A2 binds RTS sequences in the 3'UTR of 

different mRNAs. Based on those findings it was suggested that hnRNP A2 is a 

transacting factor required for transport of MBP mRNA and dendritic mRNAs to 

myelin compartment and synapses, respectively. Our results show evidence that CBF-A 

and hnRNP A2 are present in the same transported mRNA granules and they are part of 

the same complex in an RNA-dependent manner. At this stage it is not clear why two 

transacting factors bind the same element and are required for mRNA trafficking. In 

any case the fact that they are part of the same transported granules suggests that CBF-
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A and hnRNP A2 cooperate for efficient mRNA transport and localization to 

subcellular compartments. An interesting possibility is that their roles are dependent on 

the local environment and the set of interactions required for the establishment of 

trafficking intermediates (Carson and Barbarese, 2005). In support of this view, a 

similar situation occurs in the case of β-actin mRNA. ZBP1 and ZBP2 bind to the same 

zipcode sequence and cooperate to localize beta-actin mRNA (Pan et al., 2007).  

 
Evidence from independent laboratories suggested that synaptic activity leads to 

increased levels of dendritic mRNA transport and a prolonged increase in dendritic 

protein synthesis. This observation led to the hypothesis that mRNA transport and local 

protein synthesis in dendrites is probably important for synaptic plasticity related to 

LTP (see for review Bramham and Wells, 2007).  In our work we found that treatment 

of hippocampal neurons with NMDA and AMPA agonists resulted in an increase in the 

levels of CBF-A at dendrites. Interestingly this increase correlated with increased levels 

of CaMKIIα mRNA granules as also revealed by Rook et al., 2000. These findings and 

evidence that binding of CBF-A to dendritic transcripts is enhanced upon postsynaptic 

receptor activation, indicate that the transacting role of CBF-A in neuronal mRNA 

transport and localization is activity-dependent. Furthermore, we found that CBF-A 

gene knockdown by siRNA resulted in a drop in the levels of dendritic transcripts 

including CaMKIIα. In a mutant mouse model expressing a truncated version of the 

CaMKIIα gene lacking the 3’ UTR which contains the RTS element, the RNA was 

restricted to the cell body. The same mouse model showed reduction in late-phase long-

term potentiation (LTP) and impaired spatial memory (Miller et al., 2002). Increased 

levels of CaMKIIα mRNA were detected in synaptodendrosomes following LTP 

induction in the dentate gyrus of awake rats (Havik et al., 2003). We conclude that 

CBF-A and cis-acting RTS in CaMKIIα mRNA may be important for transport and 

localization upon synaptic activity and a similar scenario is likely to occur for Arc and 

BDNF mRNA during synaptic activity. 

 
The fact that CBF-A recognizes the functional RTS element of protamine 2 mRNA and 

follows the transcript through the entire mRNA biogenesis pathway in testicular cells 

suggest that mRNA trafficking is a general mechanism to control gene expression for 

specialized cellular function. Here the interesting finding is that the well characterized 

CBF-A isoforms, p37 and p42, appear to have different roles in protamine 2 mRNA 

biogenesis. We find that in round spermatids, where protamine 2 mRNA is kept in a 
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translationally inhibited form,  both variants accompany the transcript to chromatoid 

body. On the other hand in elongating spermatids where protamine 2 mRNA is 

translated only the largest CBF-A isoform, p42, remains associated with the transcript 

and accompanies it to translationally active polyribosome. Evidence that the p42 

variant but not the p37 one binds to the 5’ cap structure of the mRNA suggests that p42 

may facilitate targeting of the protamine 2 mRNA transcript to polyribosomes. We 

speculate that p37 could be important to maintain a translationally inactive form. Taken 

altogether these observations point to the possibility that the differential functions of 

the CBF-A variants may be important to regulate protamine 2 mRNA trafficking in the 

context of spermatogenesis. 

In conclusion our results indicate that CBF-A acts as a general transacting factor in 

RTS-mediated mRNA transport and localization and these mechanisms are important 

for specialized cellular function by promoting asymmetric mRNA and protein 

distribution. 
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