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ABSTRACT

The F-box protein FBW7 is a tumor suppressor and SCF ubiquitin ligase targeting
several key oncoproteins for proteasomal degradation. In this thesis we addressed
whether the FBW7 gene is inactivated by mutations in various human tumor types and
explored alternative mechanism(s) for the inactivation of FBW?7. We also explored how
inactivation of FBW?7 relates to substrate degradation (including cyclin E, Notch1 and c-
Myc) and its potential prognostic significance. Furthermore, we have investigated novel

regulatory mechanism(s) for FBW?7 expression and activity.

Our results demonstrate that FBW?7 is a general TSG, which is frequently inactivated by
mutations (with an average mutation frequency of 6%) in various malignancies.
Heterozygous missense mutations altering specific arginines residues required for
efficient substrate interaction are the most frequent mutations in FBW7. Our functional
analysis indicates that heterozygous mutations might act in a dominant-negative
manner. The highest mutation frequency was observed in cholangiocarcinomas and
pediatric T-cell acute lymphocytic leukemias (T-ALL) (35 and 31 %, respectively). We
also found that FBW?7 gene mutation is an infrequent event in several malignancies,
including breast cancer and pediatric B-ALL. This finding prompted us to investigate
whether alternative mechanism for regulation and inactivation of FBW7 occurs in
cancer, including promoter hypermethylation and miRNA induced repression. Our
results demonstrate that both the 5’-UTR and the 3’-UTR of FBW?7 is epigenetically
regulated. The promoter of FBW7-beta is frequently hypermethylated in primary
breast tumors and its inactivation is associated with improved survival in certain
patient subgroups. Similarly, mutational inactivation of FBW?7 and/or NOTCH1 in T-ALL
is also associated with increased overall survival. Analyses focusing on the 3’'UTR of
FBWY7 revealed that FBW7 expression is regulated by miR-27a, a putative oncogenic
miRNA. miR-27a was identified as a critical repressor of FBW7 expression during cell
cycle progression with potential consequences for FBW7-mediated turnover of cyclin
E. These results indicate that miR-27a serves an important cell cycle regulatory
function by repressing FBW7 and at specific cell cycle stages, but releasing it from

repression during the G1 to S-phase transition.

In summary, our findings demonstrate that FBW7 is inactivated by several different



mechanisms, including mutation, deletion, promoter methylation and possibly miRNA-
induced repression of gene expression. Our pre-clinical analysis further suggests that
inactivation of FBW7 in certain malignancies might be associated with improved

survival, thus implicating FBW7 as a potential prognostic predictor in the some cancers.
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1 LIST OF ABBREVIATIONS

Ago
APC
ATM
ATR
B-ALL
BRCA
bTRCP
Cdk
CPD
CRL
CSL
CSN
Cull
DD
DNA
DUB
E6AP
ER
ERK
Farl
FBXW7
GSK
hCdc4
HECT
ICD
LOH
LRR
MAM
MCL1
Mdm?2
miRNA
mRNA
Myc
NICD
ORC
PARP

argonaute AMFR
anaphase-promoting complex

ataxia telangiectasia mutated

ataxia telangiectasia and Rad3 related
B-cell Acute Lymphoblastic Leukemia
breast cancer

Beta Transducin Repeat Containing Protein
Cyclin-dependent kinase

Cdc4 phosphodegron

Cullin-RING E3 ubiquitin-Ligase
CBF1 Suppressor of Hairless-Lagl
COP9 signalosome

cullinl

dimerization domain
deoxyribonucleic acid
deubiquitylating enzyme
E6-associated protein

endoplasmic reticulum

extracellular signal-regulated kinases
fatty acyl CoA reductase 1

F-box and WD-40 domain protein 7
glycogen synthase kinase

human cell division cycle 4
homologous to the E6-AP carboxyl terminus
intracellular domain

loss of heterozygosity

Leucine rich repeat

mastermind-like

myeloid cell leukemia sequence 1
mouse double minute 2

microRNA

messenger RNA

myelocytomatosis

Notch intracellular domain

origin of replication complex

Poly ADP-ribose polymerase



PEST proline (P), glutamic acid (E), serine (S), and threonine (T)

PI3K Phosphatidylinositol 3-kinases
Popl, 2 processing of precursor 1, 2

PP2A protein phosphatase 2 A

PTEN phosphatase and tensin homolog
RAS rat sarcoma viral oncogene homolog
RING really interesting new gene

RNA ribonucleic acid

RNAi RNA interference

SCF Skp1/Cull/F-box

Ser serine

Sicl stoichiometric inhibitor of Cdk1-Clb
Skp1 S-phase kinase-associated protein 1
Skp2 S-phase kinase-associated protein 2
T-ALL T-cell Acute Lymphoblastic Leukemia
TGF transforming growth factor

Thr threonine

™ transmembrane

TP53 tumor protein p53

TSG Tumor suppressor gene

Ub ubiquitin

Ubc ubiquitin conjugating enzyme

UBD ubiquitin binding domain

UPS ubiquitin proteasome system
USpP28 ubiquitin specific peptidase 28

UTR untranslated region

WNT wingless



2 INTRODUCTION

This thesis touches upon various concepts in cell biology including tumor suppressor
genes, oncogenes, gene regulatory mechanisms such as DNA methylation and
microRNA expression, phosphorylation, ubiquitylation and some other aspects of
processes that are dysregulated in cancer. The reason is that FBW?7, a gene originally
shown to be a tumor suppressor through its negative effect on proteins promoting
proliferation, is now known to be a multifunctional gene involved in many different
biological processes. Since it became apparent that FBW?7 is a master regulator of many
well-known oncoproteins, it was important to determine how it may be regulated and
how it is functionally inactivated in tumors. The studies in this thesis show that the
FBW7gene is in fact inactivated via various mechanisms in different human tumors.
Although is not fully understood how FBW?7 gene inactivation contributes to cancer
development and progression, it is the beginning of the way that will eventually lead to

better understanding of the role of FBW7 in tumorigenesis and treatment of cancer.

2.1 CANCER

2.1.1 History of cancer

The oldest documented case of cancer was recorded on a papyrus from ancient Egypt,
in 1500 b.c. However, Hippocrates, the great Greek physician (460-370 B.C), who is
referred to as the father of medicine is thought to be the first person who named
“cancer”. Hippocrates used the name karkinos (the Greek name for crab, in English
carcinos or carcinomas) to describe a skin wound that he thought of as a particular
disease. His writings contain detailed descriptions of different types of cancers

involving various sites in the body [1].

2.1.2 Development of cancer

In ancient Egypt, it was believed that cancer was caused by the Gods. Hippocrates
believed that an excess of black bile in any given site in the body caused cancer and it
was also the general thought for the cause of cancer in the next 1400 years. Despite

stunning progress in our understanding of the cells that build up the human body



during the last four decades, it is not yet possible to exactly define cancer in a way that
covers all its characteristics. In the simplest version, cancer has been defined as
increased proliferation and survival of cells. A normal cell knows when and to what
extent to grow and divide or maybe die. Normal cells are also responsive to the
negative regulatory signals that they receive from the external environment. A cancer
cell however, is insensitive to these signals. Cancer cells have achieved the capacity to
escape from many different kinds of controls, which have elegantly been summarized
by Hanahan and Weinberg in “ The Hallmarks of Cancer” [2, 3]. Today we know that the
development of cancer is a multistep process, and as recently described, there are 10
hallmarks of cancer [3] that collectively describe a malignancy (Figure 1). These
capabilities namely, self-sufficiency in growth signals, insensitivity to growth-inhibitory
signals, evasion of programmed cell death (apoptosis), limitless replicative potential,
sustained angiogenesis, and tissue invasion and metastasis are shared by most, and
perhaps all, types of human cancers. Hopefully, knowing these underlying mechanisms
of tumor development will facilitate the discovery of novel treatment strategies for the
clinic. Many of the anti-cancer drugs that have been generated during the last decades

target one or multiple of these characteristic hallmarks.
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Figure 1. Hallmarks of cancer

Globally, there are approximately 7.4 million cancer deaths annually. Cancer is a
leading cause of death worldwide and it accounts for approximately 13% of deaths

from all causes. Encouragingly, during recent years, cancer mortality has stabilized in



many countries. Part of this success may be attributed to the development of new

cancer agents, collectively called ‘targeted therapies’ [4, 5].

2.1.3 Oncogenes

The discovery of the double helical DNA structure in 1953 by James Watson and
Francis Crick was a revolution in biology since it explained DNA’s potential for
replication and information encoding [6]. Simultaneous development of techniques
such as DNA hybridization suddenly enabled scientists to address many key issues in
cancer biology. Although foreboded by earlier studies such as those of chromosome
abnormalities, hereditary cancer and the involvement of mutagens in tumorigenesis,
modern molecular biology enabled scientists to define the involvement of specific
mutations in cancer development. This led to the breakthroughs in the 1970s and
early 80s, when oncogenes and tumor suppressor genes were discovered. An
oncogene is a gene that when mutated into an activated form has the potential to
cause cancer. Oncogenes encode proteins that are involved in processes such as cell
proliferation and apoptosis [7]. The products of oncogenes act at multiple levels in
the cell and can be transcription factors [8], chromatin remodelers [9-11], growth
factors [12], growth factor receptors [13], signal transducers [14] and apoptosis

regulators [15, 16].

2.1.3.1 Mechanisms of activation
A proto-oncogene is a normal gene converted into an oncogene if altered and

activated. The resultant protein is called oncoprotein [17, 18]. Activation mechanisms
of oncogenes can be categorized into three main classes: 1) Chromosomal
rearrangements, 2) Mutations and 3) Gene amplification, all of which confer a growth
advantage or increased survival of cells carrying such alterations [19]. All three
mechanisms cause either structural alterations or an increased, deregulated
expression of the oncoprotein [7, 20]. Examples of proto-oncogenes frequently
dysregulated in cancer development are RAS, WNT and MYC. The expression of
oncogenes can also be dysregulated by other processes such as epi-genetic alterations
as well as microRNAs (miRNAs). The latter are a newly discovered group of small
regulatory RNAs, that control gene expression through either translational repression
or mRNA degradation [21]. Dysregulation of such miRNAs can thus lead to the

subsequent activation of the oncogene [22].
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2.1.4 Tumor suppressor genes

The discovery of proto-oncogenes and oncogenes provided a powerful explanation of
how the growth and proliferation of cells is positively regulated. Accepting the
assumption that biological systems are balanced indicated that there could be genes
that counteract proto-oncogenes-and prevent cells from uncontrolled growth. It was
in the 1970s and early 1980s a second, and fundamentally different type of growth
regulating genes began to accumulate [23]. These genes were named "Tumor
suppressor genes” (TSGs) and possess anti-proliferative properties [23]. TSGs are
defined as recessive genes that must sustain mutations or deletions of both alleles in
order to contribute to cancer formation. This definition was described by Knudson
and it known as Knudson’s 'two-hit' rule [24]. It was later shown that some TSGs are
exceptions to the Knudson’s 'two-hit' rule, referred to as haploinsufficient TSGs.
Those genes contribute to tumor development even in the presence of one functional
allele [25]. The functions of tumor-suppressor proteins are diverse but can be
classified into different categories, including cell cycle regulation (e.g pRb, p27, p53),
DNA damage (e.g ATM, ATR) and repair (i.e BRCA1, BRCA2), apoptosis (e.g p53, BAX),
migration and invasion (e.g DLC1, PTEN), senescence (e.g p16, p19) [26-33].

2.1.4.1 Mechanisms of inactivation
Haploinsufficient TSGs may become inactivated following deletion or mutation of one

single allele. However, since TSGs are often recessive, cells that contain one functional
and one mutated gene (heterozygous) still behave normally. There are several
mechanisms by which the normal allele may then become inactivated, which in turn
can predispose a cell to cancer development. Among these mechanisms are large
homozygous deletions or duplication of the mutated chromosome and complete loss
of the normal counterpart, leading to so called Loss of Heterozygozity (LOH), as well
as small deletions, point mutations, insertions, promoter hypermethylation and

dominant negative effects [34, 35].
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2.2 UBIQUITIN PROTEASOME SYSTEM (UPS)

2.2.1 Background/history

A requirement for normal cellular homeostasis [36, 37] is that proteins are
continuously synthesized and degraded inside our cells. This was first postulated by
Schénheimer in 1942 in his book "The dynamic State of Body Constituents [38].
Proteins that have served their functions and are no longer needed have to be removed.
Additionally, misfolded or damaged proteins also need to be rapidly eliminated which
could otherwise cause various kinds of problems to the cell [39]. For a long time,
proteins were thought to be degraded in lysosomes [40], and it took several decades
before the pioneering work by Ciechanover, Hershko and Rose resulted in the
discovery of a regulated energy-dependent protein degradation process which is
catalyzed by specific enzymatic activities and a small ubiquitous protein named
ubiquitin (Ub) [40]. This discovery was awarded the Nobel Prize in chemistry in 2004
[41]. Ubiquitylation is the covalent attachment of ubiquitin to one or more lysine
residues on a substrate protein and involves a cascade of key enzymatic activities: 1) a
ubiquitin-activating enzyme (E1), that activates ubiquitin in an ATP dependent
manner; 2Z) a ubiquitin-conjugating enzyme (E2); and 3) a ubiquitin-ligase (E3), that
transfers the ubiquitin to specific lysine residues on target substrates (Figure 2).
Ubiquitylated substrates are then recognized by a large multi-subunit protease
complex, which is named the 26S proteasome complex [42, 43]. Thus, the UPS can be
divided into two distinct steps: ubiquitylation and proteasomal degradation (Figure 2).
Importantly, ubiquitin contain seven lysines, which all serve as potential acceptor sites
for another ubiquitin molecule and can therefore result in different ubiquitin chains on
substrates [40]. In fact, the attachment of different types of ubiquitin chains on
substrates can take several forms, each with potentially different biological outcomes.
For example, attachment of a single ubiquitin (monoubiquitylation) often activates
transcription factors, regulates protein trafficking, or targets proteins to the
secretory/endocytic pathway [44]. Attachment of a chain of lysine-48 linked ubiquitins
(also called poly-ubiquitylation) usually targets the substrate to the 26S proteasome for
ubiquitin-mediated proteolysis [43] (Figure 2). However, other types of polyubiquitin
chains (e.g lysine-63) can exert nonproteolytic functions, including kinase and
transcription factor activation and chromatin remodelling [45]. In addition, many

proteins contain so-called ubiquitin-binding domains (UBDs) [46, 47] enabling an
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additional level of regulation and translation of ubiquitin modifications into diverse
cellular outputs, similar to protein phosphorylation. Finally, ubiquitylation is
counteracted by deubiquitylating enzymes (DUBs) highlighting the reversibility of this
enzymatic system [40]. Given the critical function of an intact UPS, altered degradation

of cellular regulators directly contributes to the development of hallmarks of cancer.
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Figure 2. Ubiquitin Proteasome System (UPS)

2.2.2 E3 Ubiquitin ligases

E3 ubiquitin ligases are responsible for facilitating the attachment of the ubiquitin
molecule to a lysine residue on the target protein via isopeptide bonds and therefore
act as substrate specificity factors [48]. There is a huge number of E3 ligases in the cell
and can be characterized by the presence of either a HECT (Homologues to E6AP C-
Terminus) domain or a RING (Really Interesting New Gene) domain [49, 50]. The HECT
domain containing E3s directly transfer ubiquitin from the E3 onto the substrate,
whereas the RING domain provides a docking site for the E2 enzyme, which mediate
the transfer of ubiquitin to the substrate [49]. E3 ligases can also be classified into
single subunit E3s (e.g. Mdm2, Cbl) and multi-subunit complexes. The multisubunit
RING E3s (e.g APC and SCF) includes several hundred members and can be further
subdivided into different families based on the complex composition [50]. E3 enzymes

bind their cognate target substrates through various protein-protein interaction
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domains (e.g WD40 repeats). However, for a substrate to be recognized by an E3 ligase
it generally first has to be post-translationally modified, for example by
phosphorylation or proteolytic cleavage [48]. The modified motif in the substrate has
been termed degron [51]. There are many different types of degrons (e.g
phosphodegron, PEST). Once modified, a degron in a substrate might be recognized by

a specific E3 ligase, which forms the basis for its subsequent ubiquitylation.

2.2.3 SCF ubiquitin ligases and Cancer

An important family of multimeric E3s is known as SCF (Figure 3). SCF ligases are
composed of an invariant core ligase comprised of the adaptor protein Skpl, the
scaffold protein Cullinl and the RING domain protein Rbx1 (also called Roc1 or Hrt1),
which recruits the E2 enzyme Cdc34 (also known as UBCH3) and one variable
component called the F-box protein. It is the F-box protein that provides substrate
specificity, usually through its C-terminal protein-protein interacting domains (often
containing WD 40 and LRR repeats). The F-box protein associates with the SCF core
through binding to the adaptor protein Skp1, via its conserved F-box domain (Figure 3)
[52, 53]. The F-box is a protein domain of approximately 40-50 amino acids in length. It
was first identified in cyclin F, as its name implies [52]. In the human genome, there are
about 70 genes with F-box domains, each likely targeting a unique set of substrates for
degradation [54]. Notably, a majority of the F-box proteins are still completely

uncharactierzed [55].

- 9
\< E2 | 7
Core ligase Ve Q..'
r,\"."(//
SKPIJ » )E)
0 F-
O

I
WD40 domain

Figure 3. SCF ligase

A wealth of evidence suggests that SCF ligases play importnant roles in the control of
cell division, which is almost a hallmark itself for this category of genes [Pagano]. Not

surprisingly, several F-box proteins have been directly linked to tumorigenesis [56]
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through their role in the regulation of critical substrates frequently dysregulated in
cancer. Skp2 (FBL1) is an oncoprotein that catalyzes the ubiquitylation of p27, a cyclin-
dependent kinase (CDK) inhibitor and tumor suppressor that negatively regulates cell
cycle progression. Interestingly, Skp2 also catalyzes ubiquitylation and degradation of
multiple other proteins regulating cell cycle progression and tumor development (eg,
p130, p21) [56, 57]. Indeed, many studies clearly show that E3 ligases and F-box
proteins themselves act as critical oncoproteins or tumor suppressor proteins
consistent with their role in ubiquitinating an array of substrates directly linked to the

development of cancer.

2.3 FBW7

2.3.1 History/function

FBW?7 (also known as FBXW?7, FBW7 or hCDC4 in humans, Cdc4 in Saccharomyces
cerevisiae, Sel-10 in Caenorhabditis elegans, or Ago in Drosophila melanogaster), is a
substrate specificity factor for the SCF ubiquitin ligase SCFFBW7[58]. FBW?7 was first
identified in a genetic screen for cell division cycle (Cdc) mutants in S. cerevisiae [59]
and was later implicated in the ubiquitin-dependent proteolysis of the cyclin-
dependent kinase (Cdk) inhibitors Sicl and Farl [60], among others. In mammals,
FBW?7 also regulates cell cycle progression and development through the degradation
of specific transcription factors and cyclins [48, 61] (see below). Thus, FBW7 is a
master regulator of cellular proliferation with important implications for several

pathways regulating differentiation and development.

2.3.2 Geneltranscript/protein

In humans, the FBW7 gene spans over 200 kb on the long arm of chromosome 4
(4q31). It contains 13 exons and is alternatively spliced into three transcripts with
unique 5’-exons termed alpha, beta and gamma [61] [62]. The 5-exon of each
transcript is linked directly linked to exon 2 and each mRNA thus share all C-terminal
exons (exon 2-11) (Figure 4). Importantly, the individual 5’ exons are coding and
therefore generate three distinct protein isoforms that differ only at their N termini

[63]. This genomic organization is highly conserved in mammals and also allows for
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isoform-specific transcriptional regulation, as each FBW7 isoform is expressed from
its own promoter [63]. The FBW?7 protein contains several protein-protein
interaction domains (Figure 4). The F-box domain that recruits the SCF core complex
through interaction with SKP1 protein [52] is localized in the N-terminal portion of
the protein. The C-terminal exons in FBW7 encode eight WD40 repeats that form a
barrel-shaped beta-propeller structure that is responsible for protein-protein
interaction [64]. An additional domain in the N-terminus of the protein, termed the
dimerization domain (DD), has been shown to mediate FBW7 dimerization [65-67].
While all FBW7protein isoforms share the DD, F-box and WD40 domains, the alpha
and gamma exons lack obvious domain structures, whereas the beta isoform encode a
putative transmembrane domain (TMD) [68-70]. The physiological significance for
having three protein isoforms with exactly the same substrate-binding domain is still
unclear, although the different FBW7 isoforms are differentially expressed among
different tissues. Importantly, the FBW7 isoforms occupy different subcellular
compartments in the cell [68]. A cis-acting signal in the 5’ specific exons directs the
alpha and beta isoforms to the nucleoplasm and cytoplasm, respectively [71]. In
contrast, the nuclear gamma isoform also localizes to the nucleolus [68]. The beta
isoform was recently reported to be localized to in the membrane of the
Endoplasmatic Reticulum (ER) [72], but may also localize to mitochondria (Steve
Reed, personal communication).
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Figure 4. The FBW7 gene structure
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2.3.3 Substrates/degrons

The interaction between FBW7 and its target substrates is dependent on a specific
motif common in all substrates [73, 74]. This motif was identified through structural
studies of Cdc4 in S. cerevisiae and a human phosphopeptide from cyclin E [74, 75]
and was named the Cdc4-Phospho-Degron (CPD). Importantly, data from several
substrates defined a CPD consensus sequence; ®-X-®-P-P-pT/PS-P-P-X-pS/pT/E (P
corresponding to a hydrophobic residue and X any amino acid) [76], which is found in
all target proteins. Structural and mutational studies demonstrated that the major
contacts between the FBW7 and its substrate(s) occurs through hydrogen bonds
between a phosphorylated threonine/serine in the CPD and several arginine residues
located in a binding pocket on the inner rim of the beta-propeller surface of FBW7
[69, 75]. However, the affinity for a specific substrate also seem to depend on the
number of CPDs, and on the actual amino acid sequence in each respective substrate
[76]. To date, FBW7 has been reported to target 20 different proteins for degradation
(Table 1) and as such, FBW7is involved in the regulation of multiple biological
processes (Figure 5, 6). Importantly, the common denominator for these substrates is
that they all act as critical oncoproteins. Some of these substrates are described in

greater detail below.
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Table 1. FBW7 substrates in mammals

Name Degron Protein category Function
0X660(S/T)PXX (S/T/E)
Cyclin E LLTPPQSGK Regulatory Proliferation*
IPTPDKEDD
c-Myc LPTPPLSPS Transcription factor Proliferation*
c-Jun GETPPLSPI Transcription factor Proliferation*
SREBP 1 TLTPPPSDA Transcription factor Metabolism
SV40 large T antigen PPTPPPEPE Oncoprotein Transformation
Notch 1 FLTPSPESP Transcription factor Differentiation*
Presenilin 1 IYTPFTEDT Regulatory signaling
Cyclin E2 LLTPPQSGK Regulatory Cell cycle*
IPTPDKEDD
MCL1 GSAGASPPST regulatory Apoptosis
ADAIMSPEEE
C/EBPalpha HPTPPPTP Transcription factor Differentiation
KLF5 LNTPDLDM transcription factor Proliferation
PPSPPSSE
NLTPPPSY
Aurora A ? Kinase Proliferation*
mTOR LLTPSIHL Kinase Proliferation*
c-Myb ? Transcription factor Proliferation
SRC SPMAS Transcription factor Proliferation
PGC1 PLTPESPN Transcription factor Metabolism
GLTPPTTP
n-Myc ? transcription factor Proliferation
TGIF1 FNTPPPTP regulatory signaling
Ebp2 (pseudosubstrate) ? Regulatory Ribosome
biogenesis
PKC (atypical substrate-no ? Kinase Signaling
degradation)

6, hydrophobic amino acid; X, any amino acid, * additional functions

2.3.3.1 CyclinEl
Cyclin E, an activator of Cdk2, is involved in the initiation of DNA replication and other

cell cycle functions [77]. Cyclin E/Cdk2 catalyzes the phosphorylation of many
substrates that are involved in diverse S phase processes such as histone biosynthesis,
centrosome duplication, and the licensing of origins of replication (ORC), among others
[78]. In normal cells, the level of cyclin E peaks at the G1/S phase boundary and rapidly
declines as cells progress into S phase. However, in many tumors cyclin E protein levels

are elevated and/or dysregulated relative to cell cycle progression and these
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alterations have a strong prognostic impact for poor outcome in patients with breast
cancer [79, 80]. Overexpression of cyclin E has been shown cause a premature
initiation of DNA synthesis [77, 81] and induce chromosome instability in cultured cells
[78]. Furthermore, deregulated cyclin E expression in mice leads to tumor formation
[82]. Finally, cyclin E can transform rat embryo fibroblasts together with oncogenic Ras
[83], in line with its oncogenic function. The first indication for ubiquitin ligase
mediated proteolysis of cyclin E was provided by reports of the Cull knockout mouse
[84, 85]. Cull deficiency in mice resulted in embryonic lethality with arresting cells
containing elevated levels of cyclin E [84]. In 2001, three groups including our own,
independently identified the F-box protein FBW7 as a novel SCF ligase responsible for
cyclin E ubiquitylation and degradation [69, 86, 87]. FBW7 was found to bind
specifically to cyclin E that is phosphorylated on two CPDs, one surrounding Thr62 and
one at Thr380 [88-91]. Phosphorylation of cyclin E1 is mediated by Cdk2 on residues
Thr380 and Ser384 through autophosphorylation and also by glycogen synthase
kinase 3 (GSK3) [89]. Interestingly, whereas FBW7-beta does not appear to be
involved in cyclin E turnover, both FBW7-alpha and gamma are required for cyclin E
degradation in cultured cells [91, 92]. Using in vitro and in vivo ubiquitylation assays,
we found that ubiquitylation of cyclin E requires sequential function both the alpha

and the gamma isoforms [91].

2.3.3.2 Notch 1
The Notchl gene is a member of the Notch family of transmembrane receptors [93].

Notch proteins have an extracellular domain consisting of multiple epidermal growth
factor-like (EGF) repeats, and an intracellular domain. Notch proteins play a key role
in a variety of developmental processes and regulate differentiation, survival, and
proliferation through an evolutionarily conserved intercellular signaling pathway.
Canonical Notch signaling is initiated and activated following ligand (Jagged)
interaction and sequential proteolytic cleavages by ADAM metalloproteases and the
gamma-secretase complex [93]. Proteolytic release of the intracellular domain of
Notch (NICD) from the cell membrane results in translocation of the NICD to the
nucleus where it promotes the transcriptional activation of DNA-binding
transcription factor including CSL and MAM. NICD forms a trimeric complex with CSL
and the co-activator MAM, which is essential for NICD-dependent transcription in

vitro and in vivo [94]. The first Notch receptor gene to be identified in humans,
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Notch1, was discovered through the analysis of DNA flanking the breakpoints of a
recurrent t(7;9)(q34;q34.3) chromosomal translocation seen in a small subset (< 1%)
of human pre-T-cell acute lymphoblastic leukemias [95]. Notchl is frequently
mutated in T-ALL but is also deregulated in variety of other human tumors, including
breast cancer and various subsets of human lymphomas [96, 97]. The first link
between Notch and FBW7 came from studies demonstrating that LIN-12 (the
NOTCH1 orthologue in C. elegans) is regulated by SEL-10 (the Cdc4 orthologue in C.
elegans) [98, 99]. In 2001, the mouse and human homologs of FBW7 was shown to
target Notchl for ubiquitylation [100]. Interestingly, Notch1 is also controlled by
several other ubiquitin ligases [99, 101-103]. The PEST domain of NICD is known to
regulate protein stability and is often mutated in primary human and mouse T-ALLs
[104]. Indeed, the Notchl PEST domain contains putative CPD motifs [105]. The
important function of FBW7 in Notch regulation is underscored by the fact that FBW7
knockout mice die early during embryonic development mainly due to abnormalities
in vascular development which is attributed to failure in the degradation of Notch

[103, 106].

2.3.3.3 c-Myc
The MYC proto-oncogene encodes a nuclear transcription factor and regulates up to

15% of all genes [107]. Because of this, MYC regulates a broad spectrum of cellular
functions, including cell growth, proliferation and apoptosis among others [108-110].
Loss of Myc results in embryonic lethality in mice and depletion of Myc forces cells to
exit the cell cycle. Conversely, Myc expression stimulates progression through the cell
cycle and its overexpression in cells or animals induces transformation [111, 112].
Indeed, the MYC gene is one of the most frequently overexpressed oncogenes and is
estimated to contribute to as many as 70% of all human cancers [113-116]. Thus, a
tight control of Myc expression and activity is essential for normal cellular homeostasis.
Like cyclin E, MYC expression is regulated by upstream kinases such as the PI3K-AKT-
GSK3b pathways, which is responsible for the rapid degradation of Myc by the
ubiquitin-proteasome pathway. Increased stability of Myc is frequently observed in
various human tumors and this has mainly been attributed to point mutations in the N-
terminus of Myc, a region, which also encodes a CPD. Indeed, subsequent studies
showed that FBW7 targets Myc for ubiquitin-mediated proteolysis in a
phosphorylation dependent manner [117-119]. The exact mechanism for Myc
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ubiquitylation is not known. Like cyclin E, Myc degradation appears to depend on
additional cofactors (see below) and both the nuclear isoforms of FBW7 [68].
Interestingly, at least five ubiquitin ligases have been implicated in Myc ubiquitylation

and turnover, including three F-box proteins (Cdc4, SKP2 and bTRCP) [120].

1.3.3.4 Other substrates

As mentioned above, the list of novel FBW7specific target substrates is rapidly
expanding, as is the number of biological pathways regulated by FBW7. Figure 5 and
Table 1 summarize the extensive number of substrates we know today. From this list,
it is evident that FBW7is not only responsible for the tight regulation of the cell
division cycle, but also control growth, signal transduction, differentiation, survival
and metabolism. Although most established substrates are nuclear proteins degraded
by the nuclear isoforms of FBW7, alpha and gamma [68], it is intriguing that there are
yet no defined substrates for the cytoplasmic FBW7-beta isoform [61]. Whereas
knockout mice lacking FBW7 are not viable, a recent study shows that mice
specifically deleted for the FBW7-beta isoform do not exhibit any apparent
development defects. However, primary cultures of neurons prepared from the
mutant mice are more sensitive to oxidative stress than those prepared from the
wild-type mice. Conversely, overexpression of FBW7-beta renders cells resistant to
the oxidative stress. These results thus suggest that FBW7-beta might contribute to

the protection of cells from oxidative stress [72].
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Figure 5. FBW7substrates and regulators

2.3.4 Mechanism of regulation

2.3.4.1 Expression

As described above, FBW7 is a critical suppressor of mammalian cancerogenesis
through its negative regulation of various oncoproteins (Figure 5). However, we still
have very limited knowledge about the regulatory mechanisms controlling FBW7
expression and activity in cells. The fact that different isoforms posses distinct
promoters suggest that each isoform is differentially regulated [58]. Indeed, each
isoform specific transcript is differentially expressed in different tissues [62, 87].
FBW?7-alpha is ubiquituously expressed compared to [63] FBW7-beta which is highly
expressed in brain but absent in skeletal muscle and liver [121]. FBW7-gamma
expression is low in most tissues but high in muscle [62]. Very little is known how
isoform specific expression is regulated. The alpha promoter resides within a 2 kb
CpG island, whereas the gamma and beta promoters lack obvious CpG islands. The
FBW?7-alpha and beta transcripts are transcriptionally induced by the p53 tumor
suppressor [70, 122] in response to DNA damage. However, only the beta promoter
contains a consensus p53 binding site [70]. However, we have shown by ChiP-seq
analysis that p53 binds a region downstream of exon 11 (Selinova G., unpublished

observations) which could promote p53-induced transcriptional activation of the
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alpha isoform. Interestingly, the inflammatory response gene CCAAT/enhancer
binding protein-6, C/EBPS, has been shown to directly inhibit expression of
FBW7during hypoxia through targeting the promoter region of FBX7-alpha [123].
Interestingly, we recently discovered that the gamma transcript is induced upon
serum-withdrawal mediated myoblast differentiation of C2C12 cells (unpublished
data). Furthermore, gene expression data indicate that FBW7 expression may be
transcriptionally induced under low oxygene conditions. A potent epigenetic
mechanism for the regulation of gene expression during normal development and
cellular differentiation in higher organisms is DNA methylation [124]. We recently
demonstrated that the beta promoter is hypermethylated in multiple different tumor-
derived cell lines and primary breast tumors (paper III) and it is thus possible that
methylation of the different FBW7promoters determines isoform specific expression
in different normal tissues. Another potential mechanism for regulation of FBW7
expression is microRNAs (miRNAs). miRNAs are short non-coding RNAs of about 21-
23 nucleotides in length that regulate gene expression at the post-transcriptional
level [125, 126]. Despite their recent discovery, miRNAs are now widely accepted as
critical gene expression regulatory factors [125, 126]. miRNAs are expressed by RNA
polymerase II as parts of longer primary transcripts or miRNA precursors termed pri-
microRNAs [127, 128]. Maturation of miRNAs involves the sequential processing by
protein complexes containing an RNAse IIl enzyme Drosha and the Dicer-TRBP
complex respectively [129], followed by incorporation into a complex termed RISC
(RNA-induced silencing complex) [130, 131]. The degree of complementarity
between microRNA and mRNA will generally dictate the outcome; perfect or near-
perfect complementarity will result in cleavage of the mRNA, while imperfect
complementarity will trigger translational repression [132]. The human genome
contain between 400 to 1000 different miRNAs, as estimated by computational
methods [133]. Approximately 50% of all genes are predicted targets of miRNAs
[134]. Apparently, each miRNA targets many different genes and each 3’'UTR often
contains binding sites for many different miRNAs [135-137]. Because of their
widespread role in regulation of gene expression, it is easy to understand that
miRNAs have profound effects on tumor development. In fact, many miRNAs have
been shown to act as tumor suppressors and oncogenes [22]. With this in mind, we
set out to identify miRNAs that might regulate FBW7 expression. Using a combination

of different screening procedures, we found that the 3’'UTR of FBW7 is regulated by at
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least 5 different miRNAs. Interestingly, one of these miRNAs, miR-27a, was found to
regulate FBW7 expression during cell cycle progression (paper IV). In fact, this is the
first demonstration that FBW7 expression is regulated during specific cell cycle
phases under physiological conditions (paper IV). Interestingly, miR-223 was
recently reported to regulate FBW7 expression as well [138]. Interestingly, miRNAs
often act in concert with specific RNA binding proteins. It is becoming increasingly
clear that miRNA function often depends on RNA binding proteins [137]. There are
still no reports on the role of RNA-binding proteins regulating FBW7 expression.
However, our results indicate that miR-27a-mediated repression of FBW7 is minimal
at the G1/S border, without any obvious change in miR-27a expression levels. This
suggests that the interaction between miR-27a and the FBW7-3'UTR is regulated by
additional factors, as has been demonstrated for the cyclin-dependent Kkinase
inhibitor p27 mRNA and the miRNAs miR-221/miR-222 which is dynamically
regulated by the RNA-binding protein Pumilio-1 [139]. Future studies will reveal in
greater detail how FBW7 is regulated by miR-27a during the cell cycle and whether
it's regulated by specific RNA binding proteins.

1.4.1.2 Activity

FBW7function and activity is also regulated at the post-translational level. As
described above, FBW7 function as a SCF ubiquitin ligase when bound the Skp1-Cul1l-
Roc1l complex. Thus, the general regulation of components in the core ligase is also of
importance for FBW7-specific substrate ubiquitylation. Indeed, it has been shown
that SCF activity requires an active neddylation system [140]. For example, recent
observations indicate that conformational changes induced by Cullin-RING E3
ubiquitin-Ligases (CRL) dimerization and by conjugation of the ubiquitin-like protein
NEDD8 on the cullin subunit stimulates substrate polyubiquitination [141].
Conversely, Deneddylation, in which the COP9 signalosome (CSN) removes NEDDS8
from cullins, inactivates CRLs [142]. Interestingly, it is very difficult to detect
endogenous FBW7 protein expression in cells although FBW7 mRNA levels are easily
detected. The reason for this is not completely understood, but could be due to
miRNA-mediated translational repression, or possibly, decreased protein stability.
Indeed, we, (unpublished data) and others [143] have shown that FBW7 protein is
unstable and auto-ubiquitylated in vivo. Notably, the WD40 beta-propeller structure

was recently shown to function as an ubiquitin-binding domain and ubiquitin
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interaction by Cdc4 was demonstrated to promote its autoubiquitylation and

turnover [144].

We have very limited knowledge of direct post-translational modifications regulating
FBW?7 activity. However, FBW7 is phosphorylated through ATM/ATR pathway upon
induction of DNA damage [145]. Additionally, FBW7 was recently reported to be a
novel substrate for PKC and mutational analysis revealed that PKC-mediated
phosphorylation of the FBW7-alpha isoform at serine 10 regulate its nuclear
localization [146]. There are as yet no reports for post-translational modifications of

the beta and gamma isoforms.

In addition to the F-box and WD40 domains, FBW7 contains a dimerization domain
(DD)(Figure 4) located immediately N-terminal to the F-box domain. The D-domain is
highly conserved among different species [66, 147] and is also found in other F-box
proteins. For example, human beta-TrCP1 and beta-TrCP2, form hetero- and
homodimers in vivo [66, 147] and the two FBW7 homologs in fission yeast, Pop1 and
Pop2, also form hetero- and homo-complexes [148]. Human FBW?7also forms
homodimers and possibly heterodimers [67]. The role of dimerization of F-box
proteins is not exactly understood, but has been proposed to increase the
ubiquitylation efficiency of substrates with low-affinity phosphodegrons [65, 66],
possibly through reducing the distance between the substrate and the SCF catalytic
site. Juxtaposition of two E2 sites in proximity to the substrate may also increase
reaction Kinetics [66]. However, FBW7dimerization is not an absolute requirement
for cyclin E degradation [65]. Additional studies need to firmly establish how
dimerization regulates substrate ubiquitylation. Moreover, SCF¥BW7 ]ocalization and
activity is also regulated by various cofactors. We, and others have previously shown
that SCFFBW7 mediated cyclin E and Myc ubiquitylation depends on the peptidyl-prolyl
cis/trans isomerase Pinl [91, 149]. Pin1 is a multifunctional enzyme that isomerizes
many proteins with S/TP motifs [150]. We showed that ubiquitylation of cyclin E
requires the sequential function of FBW7-alpha and gamma isoforms [91]. Whereas
FBW?7-gamma polyubiquitylates cyclin E, FBW7-alpha forms a ternary complex with
cyclin E and Pinl and isomerizes the cyclin E phosphodegron. Pin1 is also required
for FBW7 mediated Myc degradation, in conjunction with the protein phosphatase 2A
(PP2A) [118]. Thus, PP2A is another factor regulating FBW7 activity towards specific
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target substrates [118]. The functional effects of these cofactors during tumor
development are complex but may be of therapeutic potential in cancer treatment
[151-155]. The deubiquitylating enzyme, ubiquitin-specific protease 28 (USP28), is
an example of a negative regulator of SCFFBW7activity. USP28 also forms a complex
with FBW7-alpha and cyclin E or c-Myc [156] in the nucleus, possibly counteracting
ubiquitylation by the FBW7-alpha isoform in the nucleoplasm [156]. Interestingly,
upon DNA damage induced by UV irradiation, the USP28-associated ternary complex
is disassembled [157] which result in declined steady-state levels of Myc protein
rapidly after exposure [156]. Degradation of Myc and cyclin E (unpublished data) by
FBW7 may be compartmentalized, as both Myc and cyclin E have been shown to
accumulate in the nucleolus upon proteasomal inhibition ([91], Bhaskaran et al,
unpublished). Together, these data suggest that ubiquitylation of Myc and cyclin E is
catalyzed by the FBW7-gamma isoform in the nucleolus [91]. At present, it is unclear
whether ubiquitylation of other FBW7substrates are also regulated in a similar
compartmentalized manner. Nucelophosmin (NPM), also termed B23, is a dynamic,
multifunctional protein that is tightly regulated during proliferation and it was
recently shown to regulate FBW7-mediated Myc ubiquitination and transcriptional
activity [158, 159]. Our own unpublished data also support a function for NPM in the
regulation of cyclin E stability. Thus, it is possible that NPM may be involved in
shuttling these substrates to the nucleolus. Ebp2 is another potential factor regulating
the translocation of FBW?7 to nucleoli by functioning as a pseudosubstrate for FBW7
[71]. Finally, FBW7-dependent substrate ubiquitylation is also dependent on
upstream signaling pathways, including the PI3K/Akt/GSK3b pathway [160] and
possibly Ras signaling [161].
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2.3.5 Mechanisms of inactivation

2.3.5.1 Phenotypes

While FBW7 null mice die around 10.5 days post coitus due to a combination of
deficiencies in hematopoietic and vascular development attributed to dysregulation
of Notchl [103], tumors with inactivation of FBW7 exhibit various functional
alterations related to other FBW7 substrates. Considering the fact that FBW7
orchestrates the destruction of a number of key onco-proteins it is maybe not
surprising that FBW7 function has been linked to several important processes such as
proliferation, apoptosis and differentiation. Thus, FBW7 inactivation causes the
undermined regulation of several specific cellular programmes associated with the

major hallmarks of cancer (Figure 6).
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Figure 6. A simplified overview of cellular processes regulated by FBW7
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Recently FBW?7-beta deficient mice have been generated. Interestingly, no cancer
development was detected in these mice up to 1 year. Also these animals did not
exhibit any apparent abnormalities in development, however longer observation will
be necessary to determine whether Fbxw7b-deficient mice are predisposed to cancer

development [72].

One obvious phenotype in cells with FBW7 inactivation is genetic instability [162,
163]. The genetic instability phenotype might be mediated due to increased levels
and dysregulated expression of a several key oncogenic FBW7 target substrates,
including c-Myc, cyclin E1 and STK15/AURKA protein [164]. During recent years
there has been an effort to show which of these substrate(s) that is more likely to be
responsible for the genomic instability caused by FBW7 ablation, with ample data
supporting the relevance of dysregulated cyclin E1. Overexpression of cyclin E can
also recapitulate phenotypes observed in cells with inactivated or suppressed FBW7,
and conversely, knockdown of cyclin E expression in cancer cell lines with a genomic
instability phenotype reduces percentage of micronuclei formation [162]. Taken
together, cyclin E1 dysregulation phenocopies several phenotypes observed upon
ablation of FBW7[78]. The genomic instability of FBW?7-deficient cells is at the
microscopic level manifested as nuclear atypia characterized by micronuclei,
lobulated or elongated nuclei, aberrant chromosomal structures at metaphase,
abnormal number of centromeres and multipolar spindles [162]. Furthermore,
FBW?7-deficient tumor cells undergo extensive mitotic slippage and
endoreduplication when exposed to spindle toxins such as vinblastine or taxol, which

in turn render them polyploid [165].

2.3.5.2 Mutation
Early reports analyzing the FBW7 gene sequence identified chromosomal

rearrangements and mutations in the FBW?7 gene in human tumor-derived cell lines
[86, 87]. Shortly thereafter, it was shown that primary endometrial tumors contain
FBW7 mutations [63]. Interestingly, FBW7 mutation was found to correlate with
cyclin E dysregulation in these tumors [63]. Mutations were subsequently identified
in colon carcinomas and pancreatic cancer [63, 166, 167]. Our original discovery of
FBW7 mutations in primary endometrial adenocarcinomas was the basis for

continued analysis of FBW7 mutations in primary tumors. Mutational analysis of
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FBW7 in pediatric T-ALL showed that this malignancy has a particularly high
frequency of mutations (paper I). These studies were followed up with a
comprehensive screen for FBW7 mutations in 1556 primary human tumor samples
from twelve different malignancies (paper II). The results from these analysis
established that FBW7 represent a general TSG in human cancers [168]. The overall
mutation frequency of FBW7 in different tumors is 6% and the highest mutation
frequencies were found in tumors of the bile duct (cholangiocarcinomas, 35%), blood
(T-cell acute lymphocytic leukemia, 31%), endometrium (9%), colon (9%), and
stomach (6%) [168]. The most common mutations in FBW7 are missense mutations
of three arginine residues (Arg#> and Arg%7’?) in the substrate binding pocket of
FBW7 [168, 169]. Interestingly, these mutations presumably function in a dominant-
negative manner, possibly through dimerization with the functional wild-type allele.
The reason why mutations frequently occur in these specific nucleotides of FBW7
(exon 8 and exon 9) is not known, but could be due to spontaneous deamination of 5’
methylcytosine to thymine in DNA. Indeed, the cytosine corresponding to the
mutation hotspot at nucleotides 1,435-1,436 (Arg479) is methylated in vivo [168].
Some discrepancies in the mutation frequencies have been reported. For example in
T-ALL samples, FBW7 has been shown to be mutated between 10 to 30 % [170-172],
but all laboratories report clustering of mutations in FBW7 binding pocket. One
plausible explanation for such differences is the ethnical differences between the
patients enrolled in different studies. Other factors could be differences in sample size
or other types of selection biases.

Various types of single nucleotide polymorphisms (SNPs)(Synonyme, nonsynonyme
and frameshift) possibly affecting FBW7 function have been reported to occur in all

three isoforms (ensembl.org).

2.3.5.3 Deletion
Deletion of the FBW7 gene, which localizes chromosome 4q31 is a frequent event in

human tumors and occurs in more than 30% of all neoplasms [173]. Several studies
have reported deletion of one allele at 4q31 [173, 174]. We have also demonstrated
small deletions of FBW7 occurring in a breast cancer cell line [87]. A previous report
showed that FBW7-/+ mice crossed with p53 heterozygous mice have a greater
susceptibility to radiation-induced tumors [122]. Interestingly, most of these tumors

retain and express the wild-type FBW?7 allele, indicating that FBW7 might be a p53-
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dependent haploinsufficient tumor suppressor gene [122]. In another study it was
shown that FBW7 exhibited intestinal tumors carry heterozygous FBW7 mutations,
again indicative of FBW7 being a haploinsufficient tumor suppressor gene [175].
However, in these studies, detailed analysis of FBW7 isoform specific expression was

not performed.

1.5.1.4 Methylation:

Several recent reports have shown that FBW7expression is downregulated in some
tumor types, including gliobastomas [176], gastric [177] and colorectal cancer [178].
However, the mechanism for loss of expression was not clarified in these studies
[179]. DNA methylation is generally defined as the addition of a methyl group to the 5
position of a cytosine base, but it can occur on adenine base as well. Methylation is
epigenetically inherited from parental cells to the daughter cells upon cell division.
[180]. DNA methylation is an important mechanism for the regulation of gene
expression during normal development and cellular differentiation in higher
organisms [124, 180]. Alterations in the methylation pattern, particularly at TSG gene
loci, is also a frequent event in cancer [124]. In paper III, we report that FBW7-beta
promoter is hypermethylated in human breast cancer and various tumor derived cell
lines [121, 181]. Comparison of FBW7-beta promoter methylation and FBW?7-beta
expression demonstrated that methylation correlates with loss of expression,
suggesting that promoter hypermethylation is an alternative mechanism for FBW?7
gene inactivation (paper III). Taken together, these data indicate that methylation
might be an important mechanism of FBW7-beta gene inactivation in different tumor
types [121]. A recent report showed that the FBW7-beta promoter is also methylated
in thymoma [181]. Whether the other FBW7 promoters are methylated in cancer
remains to be shown, but our methylation analysis in breast cancer specimens show

no evidence for hypermethylation of the alpha promoter (paper III).

1.5.1.5 microRNAs

miRNAs are now widely accepted as critical factors involved in the regulation of gene
expression [125, 126]. In most instances, the microRNA will bind to sites within 3’
untranslated regions (3’-UTRs) of the targets. Today, the link between microRNAs
and tumorigenesis is well-established [125] and microRNAs have been found to be

deleted, downregulated or overexpressed in many different tumor types and have
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been demonstrated to function as both tumor suppressors or oncoproteins [22].
FBW7 has a long and extremely well-conserved 3’-UTR with multiple putative
microRNA binding sites. Thus, FBW7 is likely to be regulated by miRNAs. The first
report that FBW7 is indeed regulated by miRNAs was just recently published [138].
The granulocyte specific miR-223 was identified as a regulator of FBW7 using a screen
for miRNAs downregulated in cyclin ET744 T393A knock-in erythroblasts (Xu et al, 2010).
Interestingly, miR-223 is responsive to acute alterations in cyclin E regulation by
FBW?7 and it was suggested that miR-223 is part of a feedback loop connecting cyclin
E activity to the regulation of FBW7 expression [138]. miR-223 is also overexpressed
in several solid tumors [182] and increased expression has also been reported in T-
ALL [183]. The relationship between miR-223 and FBW7 in tumors is however not
known. We recently identified miR-223 and five additional miRNAs, miR-27a/b, miR-
182 and miR-363/92 as potential regulators of FBW7 expression (paper IV).
However, our data suggest that miR-27a is the most general regulatory miRNA for
FBW?7. Indeed, our data indicate that miR-27a is a physiological regulator of FBW7
expression during cell cycle progression and that is required for tight regulation of
cyclin E degradation at the G1/S border. Thus, it is possible that overexpression of
miR27 may contribute to dysregulated cyclin E expression and tumor development.
Our findings were also confirmed by a recent study demonstrating miR27 as critical
suppressor of FBW7 expression [184]. Interestingly, in this study, upregulation of
miR-27a was shown to contribute to the malignant transformation of human

bronchial epithelial cells induced by the SV40 small T antigen [184].

2.3.5.4 Viruses
Many major TSGs have been shown to be inactivated by specific tumor viruses.

Simian virus 40 (SV40) is a well-characterized member of the polyomavirus family.
The SV40 encodes three proteins based on alternative splicing, the large T (LT), small
T (ST) and 17 kT antigens [185-187].

Interestingly, SV40 Large T Antigen can also inhibit FBW7-driven cyclin E turnover in
vivo resulting in increased cyclin E associated kinase activity. LT contains a CPD,
which is recognized by FBW7 and thus alters the normal capacity of FBW7 in
targeting other substrates [187]. Thus, the binding of LT to FBW7 occurs via a decoy
phospho-epitope within the C-terminus of LT that closely mimics the consensus Cdc4

phospho-degron (CPD) found within FBW7 substrates [187].

31



Human adenoviruses are a group of small DNA viruses that are capable of
transforming rodent cells in culture and also induce tumors in hamsters or rats. Two
viral oncogenes, termed E1A and E1B, have been identified as critical factors for
adenoviral induced transformation through inactivation of the TSGs RB and p53
[188]. A recent report suggests that E1A can interfere with FBW7 function by
targeting the SCFFfBW7complex [189]. E1A was found to directly bind to Roc1/Rbx1
and CUL1 and inhibit the ubiquitin ligase activity of core ligase, resulting in impaired
degradation of several proto-oncogene products that are normally degraded by the

SCFFBW7ybiquitin ligase [189].

2.3.5.5 Other factors
As mentioned above, SCFFBW7 activity is regulated by several cofactors and most likely

various post-translation modifications that could be of major importance for
inactivation of FBW7 in cancer. There are contradictory results regarding the role of
Pinl in tumorigenesis [152, 154, 155] but it could potentially interfer with FBW7
function [91]. The deubiquitylating enzyme USP28 has been shown to be
overexpressed in colon and breast carcinoma [156] and could possibly prevent
FBW7-mediated degradation cyclin E and c-Myc [157]. Other cofactors, including
NPM and Ebp2 could also in principle also interfere with FBW?7 substrate
degradation. Indeed, NPM is frequently mutated in AML and NPM mutations have
been demonstrated to mislocalize FBW7 protein [190]. Upstream signaling cascades
stimulating FBW7 substrate degradation, including the GSK3b [191] and the Ras
[192] pathway, are frequently dysregulated in human tumors and may therefore be of

major importance preventing FBW7 from degrading specific oncoproteins.

2.4 TARGETING THE UPS IN CANCER
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During recent years there have been major efforts to develop drugs targeting the UPS
system in cancer cells [193]. The fact that the UPS regulates important tumor
suppressors first raised the possibility that inhibition of the 26S proteasome might be
beneficial in the treatment of cancer patients. However, targeting the 26S proteasome
will also stabilize critical oncoproteins and it is not possible to predict whether the
inhibition of the 26S proteasome will necessarily be beneficial. Nevertheless,
Bortezomib (Velcade), a reversible inhibitor of the chymotrypsin-like activity of the
26S proteasome, was approved by the US Food and Drug Administration (FDA) for the
treatment of relapsed or refractory multiple myeloma in 2004. Today, Bortezomib is
used for the treatment of hematologic malignancies as well as solid tumors such as
breast cancer and several clinical trials, utlizing Bortezomib in combination with other
drugs are ongoing [190, 194-198]. However, more specific drugs are warranted. The E3
ligases are particularly attractive drug targets since they are responsible for the
recognition and ubiquitylation of specific substrates. In addition, it is now clear that
one single E3 ligase often targets multiple proteins for degradation. For example, the F-
box protein oncoprotein Skp2, targets several important tumor suppressor proteins,
including the CDK inhibitor p27 [199], which is frequently downregulated in many
different tumors [200]. As outlined in this thesis, FBW7 also targets multiple proteins
for degradation, all being critical oncoproteins. Furthermore, we recently showed that
the small-molecule inhibitor, RITA, reactivates p53-induced FBW7 expression resulting
in proteasomal degradation of several FBW7 target substrates [201]. Interestingly, our
results indicate that FBW7 inactivation is associated with a favorable prognosis and
increased survival (paper I, III, IV). The reason for this is presently unclear. However,
exciting results demonstrating synthetic lethal interaction for certain genes, including
ATM and p53 [202], and PARP and BRCA1 [203], may hint that FBW7 could also be
synthetic lethal with specific genes. A recent study identified a compound that act as
an inhibitor of SCFCdc# in yeast [204], demonstrating that this type of E3 ligase can in
principle be inactivated by small-molecules. The future will clarify whether targeting

FBW?7 or its cofactors with drugs can be used in the treatment of patients with cancer.
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3 AIMS OF THIS THESIS

The overall aim of this thesis was to explore the mechanisms by which FBW7is

inactivated in human cancers.

Specific aims:

- To investigate if FBW7is mutated in pediatric B- and T-ALLs (paper I)

- To elucidate if FBW7is a general tumor suppressor gene (Paper II)

- To explore if methylation is an alternative mechanism for inactivation of

FBW7expression in cancer (Paper III)

- To investigate if FBW7is regulated by microRNAs (Paper IV)
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4 RESULTS AND DISCUSSIONS

41 PAPERI

The Tumor Suppressor Gene hCDC4 Is Frequently Mutated in Human T-
Cell Acute Lymphoblastic Leukemia with Functional Consequences for
Notch Signaling.

At the beginning of this project, very little was known about whether FBW?7 is
mutationally inactivated in specific tumors. The findings that Notch1 is a novel FBW7
target substrate that is frequently targeted by gain of function mutations in T-ALL
prompted us to investigate the possibility that FBW?7 inactivation contributes to the
development of pediatric leukemia.

We used SSCP (Single Strand Conformation Polymorphism assay) and sequence
analysis to screen the entire coding region of FBW7 and Notch1 in 26 pediatric

leukemic T- and 20 B-lineage ALL samples.

Interestingly, FBW?7 mutations were found in 8 of the 26 T-ALL specimens (31%)
while no mutations were observed in leukemic cells from B-ALL patients. All
mutations were missense mutations and the majority (88%) led to aminoacid
changes of Arginine 465 and Arginine 479, which are located within the substrate
recognition site of FBW7. FBW7 mutations were absent in cells from matching
nonmalignant leukocytes obtained from the same patients, indicating that these
mutations were of somatic origin. Additionally, similar mutations were also found in
several cell lines derived from various hematological malignancies, particularly of T-
cell origin. No hCDC4 mutations were identified in any other leukemia or lymphoma
cell lines analyzed, with the exception of the multiple myeloma cell line U266-1984,
which harbored an Arginine 505 missense mutation. Notably, one leukemic sample
was found to harbor a Notch1 missense mutation resulting in a threonine to
methionine substitution at position 2,484 in the PEST domain of Notch1. The amino
acids surrounding threonine 2484 in Notch1 resembles a consensus CPD motif,
suggesting that this mutation might prevent its recognition by FBW7. However,
several truncating PEST domain mutations occur downstream of this motif, which
suggests that multiple CPD motifs may be present in Notch1 ICD and regulate its
degradation [74].
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In line with Notch1 being a FBW7 substrate, Notch1 protein analysis in T-ALL cell
lines showed that cell lines with hCDC4 mutations had elevated levels and increased
stability of Notch1 ICD, as compared with T-ALL cell lines where hCDC4 was not
mutated. Furthermore, we found that wild-type (wt), but not mutant FBW?7-
alpha/gamma isoforms, could restore ubiquitylation of Notch1 in vivo, and that

expression of wt-FBW?7 (but not mutant FBW7) decreased Notch1 signaling.

Importantly, our data indicated that mutations in Notch1 and/or FBW?7 associates
with a favorable long-term survival in children with T-ALL. This was the first report
showing that FBW7is mutated in pediatric T-ALL with functional consequences for
Notch signaling. Previous studies from our group and others reported FBW?7
mutations in endometrial adenomcarcinomas [63] and colon [167]. However, the

mutation frequency in those solid tumors were lower (16% and 6%).

In summary, previous work had shown that Notch1 signaling is commonly upregulated
in T-ALL. In this paper, we show that the negative regulator of Notch1, FBW?7, is
frequently mutated in T-ALL. This data also extends previous findings, and suggests
that mutation in hCDC4 and/or NOTCH1 is associated with improved overall survival of
children with T-ALL. The finding that two genes in the same pathway, NOTCH1 and
FBW?7, are both frequently mutated in children with T-ALL is remarkable and
emphasizes the importance of this pathway in T-ALL development and possibly

therapeutic intervention and refined risk stratification.

4.2 PAPERII

FBXW7/hCDC4 Is a General Tumor Suppressor in Human Cancer.

Inspired by the frequent mutations of FBW7 found in T-ALL, we wondered whether
FBW?7 is inactivated in other tumors as well, and if it could represent a general tumor

suppressor gene in human malignancy.

A total of 534 primary tumor specimens from 12 different tumor types were included

in this study and analyzed by SSCP (Single Strand Conformation Polymorphism assay)
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and sequence analysis for mutations in all 13 exons, including sequences unique to
the three isoforms, alpha, beta and gamma. We next compiled these results with pre-
existing FBW?7 mutation data (a total of 1556 samples). Table 2 summarizes of the

mutational analysis.

Table 2. Summary of FBW7 mutational analysis

Mutation type Percentage (%) Additional information

Single amino acid change 96 (missense 74%, nonsense 26%)

Deletion and insertion 4

Isoform specific mutations 6

Average mutation frequency 6 87 mutations out of 1556

Tumor types

Breast 0.8

Bladder 0

Cholangiocarcinoma 35

Colon 9.5

Endometrium 9

esophagus 0

Leukemia 31 T-ALL (31%), B-ALL (0), B-CLL (0),
HCL (0), AML (0)

Liver 0

Lung 3 NSCLC

Melanoma 0

Bone 0

Ovarian 0

Prostate 1 A proline insertion in Alpha isoform

Pancreas 9 Only one study (1 mutation in 11

patients)
Stomach 15

Abbreviations: B-CLL, B-cell chronic lymphocytic leukemia; B-ALL, B-cell acute lymphocytic leukemia; T-ALL, T-cell acute

lymphocytic leukemia; HCL, hairy cell leukemia; NSCLC, non-small cell lung carcinoma.

Analysis of this large set of tumors confimed and extended previous analysis. The
majority of the mutations cluster in the critical arginines previously shown to be

responsible for the interaction between FBW7 and the phosphodegron of specific

37



substrates. Thus, mutations clustered at hotspot codons, encoding several arginine

residues in the FBW7 WD40 repeats.

Investigation of the mutational hotspots showed that all are centered on CG
dinucleotides, which are potential sites of DNA methylation and a source for mutations

due to deamination of 5'methylcytosine to thymidine in DNA.

Indeed, we could show that the cytosine at the hotspot codon 479 was methylated in
all tumors analyzed. Thus, these mutations seem to correspond to methylated CG sites,

which could explain the high frequency of such missense mutations.

To examine the consequence on substrate binding of the hotspot mutations, we
analyzed their ability to bind one of the FBW7 key substrates, cyclin E. None of the
mutants could bind cyclin E (in contrast to wt-FBW?7) and this was not due to

mislocalization of the FBW7 mutants.

Regarding the fact that majority of the mutations were heterozygous raised the
possibility that these mutations might interfere with the protein expressed from the
normal wild-type allele of FBW7. Indeed, when co-expressed, mutant-FBW?7 resulted in
a marked accumulation of cyclin E1 despite expression of wt-FBW?7. These results are
well in agreement with findings that FBW7 forms dimers in vivo and it is therefore
possible that mutations in only one allele of FBWW7 is enough to compromise substrate

degradation through a dominant-negative function.

Interestingly, our analysis also demonstrates that mutations occur in the unique
isoform specific 5’-exons. The functional consequences of mutations in specific
isoforms are not fully understood, but could for example to mislocalization of a specific
isoform. Indeed, we could show that a proline insertion in a prostate cancer specimen
that resided at the amino acid 16 of the FBW7-alpha isoform mislocalized FBW7-alpha
to the cytoplasm and thus preventing it from interacting with cyclin E1. Additionally,
one FBW7-alpha specific mutation has been shown to disrupt the interaction between
FBW?7 and its cofactor Pin1 [91]. Together, these data suggest that FBW7 isoforms are

non-redundant.
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In summary, this paper is the first comprehensive screen for mutations in FBW7 in
diverse human tumor types. The results demonstrate an overall average mutation
frequency of 6% and potential dominant negative hotspot mutations clustering in

exon8 and exon9 of FBW?7.

4.3 PAPERIII

Inactivation of FBXW7/hCDC4-b expression by promoter
hypermethylation is associated with favorable prognosis in primary
breast cancer.

During the work with paper II, it became obvious that many tumors lack mutations in
FBW?7, although several of these tumors are known to have increased levels of specific
FBW7 target substrates. For example, elevated cyclin E levels are frequently observed
in breast tumors, but FBW7 is not found to be mutated in this malignancy. In addition,
our preliminary analysis of FBW7 expression in both primary tumors and derived cell
lines indicated that the expression of FBW7 varied significantly between and within

different tumor types.

In the present study, we therefore examined the possibility that FBW7 expression is
downregulated through promoter specific hypermethylation, as an alternative

epigenetic mechanism for inactivation of FBW7 in cancer.

The FBW7- beta isoform was chosen for further analysis; since it showed the most
variable expression pattern among a panel of different tumor-derived and
immortalized cell lines. Interestingly, using bisulphate sequenceing and methylation-
sensitive restriction digestion analysis, we found that the FBW?7-beta promotor is
heavily methylated in multiple tumor cell lines. Expression analysis showed that
hypermethylation of the beta- promoter associates with a decreased expression of the
FBW?7-beta mRNA. In order to establish a direct link between methylation and
expression we treated cells with a methylated beta- promoter with the demethylating
agent, 5-AZA cytidine (AZA). Bisulphite sequencing and expression analysis revealed
that expression of FBW7-beta was restored and its promotor was demethylated upon

5-AZA treatment. Additional investigations, including luciferase reporter assays with
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an in vitro methylated promoter, also support the conclusion that FBW?7-beta

expression is regulated by promotor specific methylation.

We next asked whether FBW7-beta methylation also occurs in primary tumors. A total
of 161 breast cancer specimens, from two independent cohorts (Austria and Sweden),
were subject to methylation and expression analysis. The methylation status in each
tumor sample was defined by restriction digestion test using McrBc enzyme. This
method uses methylation-sensitive restriction McrBc enzyme, to cleave DNA at specific
methylated-cytosine residues followed by amplification of the resultant products. The
PCR amplification bands were then subject to quantification using Image ] software.
FBW7 isoform specific mRNA expression levels were analyzed by real time PCR (RT-
PCR). Importantly promoter methylation was absent in normal breast tissue (and in
other noncancerous tissue DNA extracted from paraffin-embedded breast cancer

specimens).

A total of 71 out of 139 (51%) patient samples showed significant methylation of the
beta promoter as defined by McrBc digestion, compared to its undigested control. Thus,
as in tumor cell lines, there was a significant inverse correlation between promoter

methylation and FBXW7/hCDC4beta expression in primary breast cancer specimens.

Interestingly, comparison of the FBW7-beta promoter methylation status of the
individual samples with various clinicopathological factors, demonstrated that
methylation associates with high-grade tumors (p=0.017) and possibly estrogen
receptor-negative tumors (p=0.08), thus tumors usually associated with an adverse
prognosis in breast cancer. Remarkably, methylation of the FBW7beta promoter was
anyhow found to be associated with a decreased risk of death ((cohort 1 hazard ratio
0.53 (0.23 to 1.23) and cohort 2 (HR) 0.50 (95% CI 0.23 to 1.08)) in both cohorts
despite the correlation between methylation and high-grade tumors. When
methylation was compared to overall survival in defined subgroups of the breast
cancer, including patients with p53 mutation or lymph node negative tumors, patients

with a methylated beta promotor had an improved overall survival.

In summary, this study is the first report of FBW7 promoter hypermethylation and loss

of expression in primary tumors. Our data support promoter methylation as an
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alternative mechanism for FBW7 inactivation in cancer. The frequency of methylation
is high (>50%) and links loss of FBW7-beta expression to high-grade tumors. However,
patients with a methylated beta promotor still appear to have a decreased risk of death.
The reason why methylation is linked to improved survival is presently unclear, but
could possibly relate to increased sensitivity of methylated tumors to certain
therapeutic drugs. This possibility, and its potential as a novel biomarker are areas that

need further investigation.

44 PAPERIV

miRNA-27a controls FBW7 /hCDC4-dependent Cyclin E degradation and
cell cycle progression.

In paper IlI, we showed that FBW7 expression is regulated by methylation of specific
CpG dinucleotides in the 5 UTR of FBW7. Another mechanism for regulation of gene
expression is through miRNA binding to specific seed sequences in the 3’'UTR of genes
[205]. Interestingly, the FBW7 3'UTR is long and extremely conserved and contains a
large number of putative miRNA binding sites. The aim of this study was therefore to

investigate if FBW7expression is regulated by miRNAs.

An initial observation that FBW?7 protein expression is elevated in cells with a targeted
deletion of the miRNA-processing enzyme, Dicer, suggested that FBW7 3'UTR is indeed
controlled by miRNAs .

In order to identify relevant candidate microRNAs that potentially repress
FBW7expression, we employed a combination of computational predictions, luciferase
reporter assays, miRNA library screens and expression profiling analysis. Luciferase
reporter assays was initially utilized to identify cell lines where FBW?7 is repressed by
endogenous miRNA expression. miRNA expression profiling in combination with
computer-based prediction of candidate miRNAs and a miRNA library screen identified

miR-27a as a strong candidate for the repressive effect in the model cell lines utilized.

Further validation analysis confirmed that miR-27a is a negative regulator of

FBW?7expression. Mutation of two putative miR-27a binding sites located in the 3'UTR
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region of FBW7completely abolished the suppressive effect of miR-27a and inhibition
of miR-27a by antagomirs increased FBW?7 expression. In addition, miR-27a
overexpression reduced endogenous FBW?7 protein levels in a dose-dependent
manner.Together, these results confirm a direct function for miR-27a in the negative

regulation of FBW?7.

To evaluate the functional effect of miR-27a on FBW7, we performed several
experiments to test if miR-27a specifically regulates the stability and ubiquitylation of
FBW7target substrates. miR-27a overexpression resulted increased steady-state levels
of cyclin E and myc which was due to an increased stability and decreased
ubiquitylation of these proteins.

To date, we have very limited knowledge on if and how FBW7 is regulated during the
cell cycle. To directly test if miR-27a regulates FBW7 during the cell cycle, we
analyzed FBW7-3’UTR reporter activity (by comparing the wild-type 3’'UTR with the
miR-27a-mutated 3’'UTR) in U20S cells progressing from mitosis towards S-phase.
Importantly, miR-27a was found to potently repress FBW7 at the G2/M and early G1
phases, but not at the G1/S transition. First of all, these results provide evidence that
miR-27a regulates FBW7 in a physiological setting, during cell cycle progression.
Second, the lack of repression at the G1 to S-border, indicate that miR-27a may
release FBW7 from repression at this critical cell cycle stage, just prior to FBW7-
mediated cyclin E degradation at early S-phase. Third, overexpression of miR-27a
significantly elevated cyclin E levels in later cell cycle stages and increased the
number of cells S-phase. In line with these results, miR27 overxoression induced DNA
double-strand breaks (DSBs), as analyzed by gamma-H2AX foci formation, a
phenotype directly related to dysregulation of cyclin E protein. Importantly, our
results demonstrate that these effects are likely to be FBW7-dependent, as cyclin E
degradation and gamma-H2AX foci formation was rescued by expression of FBW7

lacking the 3’'UTR.

The fact that miR-27a is a negative regulator of FBW7 and is overexpressed in
tumors, suggest that it may act as a novel oncogene. Interestingly, analysis of miR27a
expression in pediatric B-ALL, a tumor type in FBW7 is not mutated, showed that
miR27 is significantly overexpressed in several B-ALL subtypes compared to normal

bone marrow cells and CD34+ B cells, Additionally, in hyperdiploid pre-B-ALL, a
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significant inverse correlation between miR-27a expression and FBW7 mRNA

expression was evident.

In summary, this study has unraveled a novel role for miR-27a, a ubiquitously
expressed and putatively oncogenic miRNA, in the fine-tuned regulation of FBW?7
function during the cell cycle. Our results also demonstrate that miR-27a is
overexpressed in pediatric B-ALL, and show that in hyperdiploid B-ALL cases,

increased levels of miR-27a are generally correlated with low levels of FBW7.

4.5 SUMMARY
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