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ABSTRACT 

Humans are continuously exposed to a multitude of compounds present in the 

environment and in food. A major challenge in risk assessment is to determine the 

degree of exposure to multiple chemicals and the hazards associated with such 

combined exposure. The simultaneous exposure to persistent organic pollutants (POPs), 

such as dioxins and dioxin-like (DL) compounds, polychlorinated biphenyls (PCBs) 

and polybrominated diphenyl ethers (PBDEs), is one example of a complex group of 

chemicals which is of concern from a human health perspective. 

 

To assess the cumulative risk related to DL compounds eliciting aryl hydrocarbon 

receptor (AhR)-mediated biochemical and toxic responses, the WHO TEF/TEQ 

concept has been developed. Congeners which are assigned a TEF value are thereby 

covered by the risk assessment for dioxins. The TEF values have been derived using 

scientific judgments of multiple relative potency values from different studies and for 

various endpoints including increased liver weight, considered an early and sensitive 

marker of exposure to organohalogen compounds, decreased liver vitamin A levels, 

which can be considered a marker of retinoid system modulation, and hepatic EROD 

induction, which is not a toxic effect per se but is considered an early and sensitive 

marker of AhR activation. These effects have also been observed after exposure to 

PCBs, PBDEs and commercial mixtures, but in contrast to the DL compounds several 

receptors have been suggested to be involved. The similarity in effects, i.e. modulation 

of a common system or tissue, observed after exposure to several types of POPs 

indicates that the combined exposure to these chemicals could contribute to cumulative 

toxicity and that a cumulative assessment based on the biological system or target 

tissue affected rather than on the mechanism of toxicity might be warranted as a 

complement to the established TEF concept for DL substances. 

 

The aim of this thesis was to study the feasibility of developing an endpoint-specific 

cumulative assessment based on effects considered as markers of DL toxicity observed 

for different POPs in vivo. The studies focused on PCB 180 (Paper I), which is not 

included in the TEF concept, and the commercial penta-BDE mixture Bromkal 70-5DE 

(Paper II). 

 

Effects on liver weight, hepatic vitamin A levels and hepatic EROD activity were 

observed after exposure to PCB 180 as well as observations indicating that the effects 

were not mediated via the AhR. In a comparison to a series of studies including both 

congeners assigned a TEF (PCBs 77, 105 and 118) and congeners not assigned a TEF 

(PCBs 28, 128 and 153) in the WHO concept, relative potency values has been 

estimated for all included congeners as compared to PCB 126 based on one or more of 

the endpoints increased liver weight, decreased hepatic vitamin A and hepatic EROD 

induction, indicating that the observed effects of these congeners were similar to the 

effects of PCB 126, regardless if they are assumed to act mainly via the AhR or not. 

Based on a whole mixture approach, Bromkal 70-5DE was found to contain DL 

contaminants to an extent that could explain the observed effects on liver weight, 

hepatic vitamin A levels and hepatic EROD induction. 

 

In conclusion, the findings in this thesis support the suggestion to develop endpoint-

specific systems for cumulative assessment of POPs based on the criteria to include 

chemicals with similar effects, i.e. modulating a common system or target tissue via 

multiple pathways and/or mechanisms of toxicity. 
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1 GENERAL BACKGROUND 

 

1.1 INTRODUCTION 

Humans are continuously exposed to a multitude of compounds present in the 

environment and in food. A major challenge in health risk assessment is to determine 

the degree of exposure to multiple chemicals and the hazards associated with such 

combined exposure (Rider et al. 2010). The simultaneous exposure to several 

persistent organic pollutants (POPs) is one example of a complex group of chemicals 

which is of concern from a human health perspective. Within the scope of this thesis, 

the assessment of effects observed after combined exposure to multiple chemicals is 

defined as cumulative assessment. 

 

 

1.2 PERSISTENT ORGANIC POLLUTANTS 

POPs are bioaccumulative toxic compounds that are regulated both nationally and 

internationally in order to protect human health and the environment, but despite 

regulatory actions, these compounds are still found at considerable amounts in food 

and in human matrices (Törnkvist et al. 2011; Fürst 2006; Fängström et al. 2005). 

POPs include pesticides, industrial chemicals and unintentional by-products. The 

unintentional by-products include dioxins and dioxin-like (DL) compounds and the 

industrial chemicals include polychlorinated biphenyls (PCBs) and polybrominated 

diphenyl ethers (PBDEs). 

 

 

1.2.1 Dioxins and dioxin-like compounds 

Dioxins and DL compounds are unintentional by-products formed e.g. during the 

synthesis of organohalogen compounds or during the combustion of chloro-organic 

material. The group of dioxins and DL compounds includes polychlorinated dibenzo-

p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs) and polychlorinated 

biphenyls (PCBs) (Figure 1). Differing degree and pattern of chlorination generates 

75 possible PCDD and 135 possible PCDF congeners, of which 17 are chlorinated in 

2,3,7,8- position and are considered to be of toxicological concern. The industrial 

chemical PCB has 209 possible congeners, twelve of which are considered to be DL. 

The most toxic and most studied dioxin is 2,3,7,8-tetrachlo dibenzo-p-dioxin (TCDD) 

and it is often used as a model or reference substance for DL compounds. 
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Figure 1. Chemical structure of polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated 

dibenzofurans (PCDFs) and polychlorinated biphenyls (PCBs). The most toxic dioxin is 

2,3,7,8 tetrachloro dibenzo-p-dioxin (TCDD). 

 

 

The dioxins and DL compounds bind to and activate the aryl hydrocarbon receptor 

(AhR), a ligand-activated transcription factor mediating the biological responses to 

DL compounds. In the absence of a ligand, AhR is present in the cytosol associated 

with the molecular chaperone heat shock protein (HSP) 90 and co-chaperones p23 

and immunophilin-like protein XAP2. Upon ligand binding, the chaperones 

dissociate and the ligand-bound AhR is translocated to the nucleus where it forms a 

dimer with the aryl hydrocarbon nuclear translocator (Arnt) protein. The formed 

complex recognises specific xenobiotic or dioxin responsive elements (XRE, DRE) 

on DNA and the binding to these elements activates the transcription of a battery of 

dioxin-responsive genes (Figure 2). One of the most studied and highly inducible 

events is the induction of drug-metabolising enzymes such as cytochrome P450 

(CYP) 1A1 (Flaveny et al. 2009; Mimura and Fujii-Kuriyama 2003). 

 

 
 

Figure 2. Mechanism of transcriptional aryl hydrocarbon receptor (AhR) activation. 

 
                   PCDD 

 

 
                 PCDF 

 

 
                       PCB 

 
                  TCDD 
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The common mechanism of action, initiated by activation of the AhR, is used as a 

criterion for including compounds in the established World Health Organisation 

(WHO) toxic equivalency factor (TEF) concept for cumulative risk assessment of 

dioxins and DL compounds. The TEF values for DL compounds (Table 1) only apply 

to AhR mediated response and in order to be included in the TEF system a compound 

must 1) show a structural relationship to the PCDD/Fs, 2) bind the AhR, 3) elicit 

AhR-mediated biochemical and toxic responses, and 4) be persistent and accumulate 

in the food chain (Van den Berg et al. 2006). The potency of individual DL 

compounds fulfilling the criteria is compared to the most toxic dioxin TCDD or the 

potent DL PCB 126 and a TEF is assigned to each congener. Based on an assumption 

of additivity, the individual TEF values of DL compounds can be used to summarize 

the dose of a complex mixture of individual DL compounds as one single number, the 

toxic equivalent (TEQ) dose. Congeners which are assigned a TEF value are thereby 

incorporated in the risk assessment for dioxins (EU 2001). 

 
Table 1. WHO 2005 TEF values 

Congener WHO-TEF
a
 Congener WHO-TEF

a
 

Chlorinated dibenzo-p-dioxins  Non-ortho-substituted PCBs  

2,3,7,8-TCDD 1 PCB 77 0.0001 

1,2,3,7,8-PeCDD 1 PCB 81 0.0003 

1,2,3,4,7,8-HxCDD 0.1 PCB 126 0.1 

1,2,3,6,7,8-HxCDD 0.1 PCB 169 0.3 

1,2,3,7,8,9-HxCDD 0.1 Mono-ortho-substituted PCBs  

1,2,3,4,6,7,8-HpCDD 0.01 PCB 105 0.00003 

OCDD 0.0003 PCB 114 0.00003 

Chlorinated dibenzofurans  PCB 118 0.00003 

2,3,7,8-TCDF 0.1 PCB 123 0.00003 

1,2,3,7,8-PeCDF 0.03 PCB 156 0.00003 

2,3,4,7,8-PeCDF 0.3 PCB 157 0.00003 

1,2,3,4,7,8-HxCDF 0.1 PCB 167 0.00003 

1,2,3,6,7,8-HxCDF 0.1 PCB 189 0.00003 

1,2,3,7,8,9-HxCDF 0.1   

2,3,4,6,7,8-HxCDF 0.1   

1,2,3,4,6,7,8-HpCDF 0.01   

1,2,3,4,7,8,9-HpCDF 0.01   

OCDF 0.0003   
a
Van den Berg et al. 2006 

 

 

Both polybrominated dibenzo-p-dioxins (PBDDs) and dibenzofurans (PBDFs) have 

been shown to have AhR agonist properties and to cause DL effects (Behnisch et al. 

2003; Birnbaum et al. 2003; Kuiper at al. 2006). Human exposure levels of PBDDs 

and PBDFs are lower than the levels of PCDDs, PCDFs and PCBs but could still 

contribute significantly to the total amount of TEQ and PBDDs and PBDFs should 

be given high priority for evaluation of a possible inclusion in the TEF concept 

(Van den Berg et al. 2006). Mixed haologenated dibenzo-p-dioxins and 

dibenzofurans have also been discussed in this context, and even though these 
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congeners seem to follow the same structure-activity rules as the PCDD/Fs the 

relevance for human exposure are not known (Van den Berg et al. 2006). 

 

The risk assessment of dioxins and DL PCBs in food is based on developmental 

effects in rat male offspring, which is the most sensitive effect of TCDD in 

experimental animals (EU 2001), but the database used as a basis for the 

establishment of TEF values contains a wide array of effects (Haws et al. 2006). The 

toxic responses observed after exposure to dioxins and DL compounds include effects 

on the immune system, carcinogenicity, disturbed reproduction and development, 

behavioural changes and disturbances of endocrine systems including thyroid 

hormones and retinoids. In laboratory animals, early and sensitive effects include 

increased relative liver weight, considered an early and sensitive marker of exposure 

to organohalogen compounds (Van Birgelen et al. 1995; Håkansson et al. 1991) 

resulting from hypertrophia and hyperplasia of hepatocytes (Bock and Köhle 2009) 

and AhR-mediated alterations in hepatic retinoid stores and enzyme induction 

(Murphy et al. 2007). The hepatic ethoxyresorufin-O-deethylase EROD activity 

catalyzed by CYP1A1, is not a toxic effect per se but is often used as an early and 

sensitive marker of AhR activation (Van Birgelen et al. 1995; Pohjanvirta and 

Tuomisto 1994; Brunström et al. 1991). In addition, alterations of the retinoid 

homeostasis have been suggested to be involved in the underlying mechanism of 

action of DL compounds and decreased liver vitamin A levels can be considered a 

marker of such alterations (Fattore et al. 2000; Nilsson and Håkansson 2002; Novák 

et al., 2008). REP values calculated based on sensitive subchronic effects including 

liver lesions have also been found to be similar to REP values derived based on 

hepatic vitamin A reduction for several DL PCDDs and PCDFs (Fattore et al. 2000). 

 

 

1.2.2 PCB 

Polychlorinated biphenyls (PCBs, Figure 1) are abundant environmental 

contaminants also present in food (Törnkvist et al. 2011) and human tissues and milk 

(Fürst 2006; Fängström et al. 2005; Norén and Meironyté 2000). PCBs have 

previously been extensively used for industrial application, but the production and 

use is now prohibited (Giesy and Kannan 1998). The toxicity and mechanism of 

action of individual congeners vary depending on the number and pattern of 

chlorination. Many of the effects observed after exposure to DL compounds as well 

as PCBs are similar, but in contrast to the DL compounds, several mechanism of 

actions have been suggested for subclasses of PCBs including activation of the AhR 

(Van den Berg et al. 2006), the constitutive active (androstane) receptor (CAR) 

and/or the pregnane X receptor (PXR) (Kretschmer and Baldwin 2005). 

 

Cytosolic CAR is activated upon ligand binding, resulting in its dissociation from 

HSP90 and the co-chaperone cytoplasmic CAR retention protein (CCRP). Ligand-

bound CAR is translocated to the nucleus, presumably dependant on the activity of 

the protein phosphatase PP2A, followed by association with the retinoid X receptor 

(RXR) and binding to phenobarbital (PB) responsive enhancer modules (PBREM), 

resulting in transcription of responsive genes including the induction of CYP2B 

(Figure 3; Timsit and Negishi 2007; Saito et al. 2010). Similar to CAR, PXR is 

retained in the cytosol by CCRP and upon ligand binding the receptor dissociates 

and translocates to the nucleus where it forms a heterodimer with RXR and binds 

the xenobiotic responsive enhancer module (XREM), leading to the induction of 
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e.g. CYP3A (Timsit and Negishi 2007). Some overlap has been observed for CAR 

and PXR-mediated gene expression (Sueyoshi and Negishi 2001).  

 

 
 

Figure 3. Mechanism of transcriptional constitutive active (androstane) receptor (CAR) and 

pregnane X receptor (PXR) activation.  

 

 

Both CAR and PXR are functionally versatile and respond to distinct but overlapping 

groups of chemicals (Sueyoshi and Negishi 2001) but lack known physiological 

ligands (Kretschmer and Baldwin 2005). The activated receptors act as regulators of 

detoxification and elimination of both endogenous substances and xenobiotics, 

affecting the induction of several phase I enzymes such as CYPs, phase II enzymes 

such as uridine diphospho-glucuronosyltransferases (UGTs) and phase III 

transporters (Kretschmer and Baldwin 2005; Timsit and Negishi 2007; Saito et al. 

2010). 

 

In addition to the classic CYP2B inducer PB (Waxman and Azaroff 1992), 

compounds such as retinoic acid and highly chlorinated PCBs have been found to 

activate CAR (Timsit and Negishi 2007), highly chlorinated PCBs are also PXR 

agonists in rodents (Kretschmer and Baldwin 2005). Observations in vitro also 

indicate that highly chlorinated PCBs such as PCB 153 activate the CAR and PXR 

(Kretschmer and Baldwin 2005; Tabb et al. 2004; Sueyoshi et al. 1999; Schuetz et 

al. 1998). It has been suggested that in general, PCBs with 5-10 chlorines activate 

PXR and the potency to do so increase with the number of ortho chlorines (Tabb et 

al. 2004). 

 

Endpoints such as carcinogenicity, alterations in circulating thyroid hormone 

concentration and neurotoxicity could arise by both AhR and non-AhR mediated 
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mechanisms. Non-planar ortho-substituted PCBs have been shown to elicit a diverse 

spectrum of toxic responses believed to be non-AhR-mediated in experimental 

animals, including neurobehavioural (Boix et al. 2010), neurotoxic (Honma et al. 

2009; Piedrafita et al. 2008), carcinogenic (Jeong et al. 2008; Knerr and Schrenk 

2006) and endocrine changes. The endocrine changes include alterations in thyroid 

hormones (Hedge et al. 2009; Kobayashi 2009) and the retinoid system. Endpoints 

such as altered body and organ weights, altered tissue vitamin A levels and EROD 

induction included in the database used as a basis for the establishment of WHO 

TEFs for DL compounds (Van den Berg et al. 2006; Van den Berg et al. 1998) have 

also been observed after exposure to PCB congeners not included in the TEF concept 

(Chu et al. 1996a, b; Lecavalier et al. 1997). The most sensitive effects seen in studies 

with individual PCB congeners not included in the TEF concept were liver and 

thyroid toxicity (Chu et al. 1996a; Chu et al. 1996b; EFSA 2005; Lecavalier et al. 

1997). However, since the simultaneous exposure to PCBs and DL compounds 

hampers the interpretation of toxicological findings and the database on effects of 

individual PCB congeners not included in the TEF concept is rather limited, no 

health-based guidance value has been established for PCBs so far (EFSA 2005). 

 

The toxic responses observed after exposure to commercial PCB mixtures are 

dependent on several factors including the chlorine content and purity of the 

commercial mixture (Burgin et al. 2001; Kodavanti et al. 2001). These complex 

mixtures have been shown to induce both PB-type and DL-type enzyme activity, 

which could be due to the different action of individual components (Burgin et al. 

2001). Data on toxicity after exposure to a variety of commercial PCB mixtures 

indicate that the liver is a common target organ and various symptoms of 

hepatotoxicity have been observed, but effects also include acute lethality, body 

weight loss, dermal toxicity, thymic atrophy, immunosuppressive effects, 

reproductive and developmental toxicity, carcinogenesis, other genotoxic responses, 

modulation of diverse endocrine-derived pathways, including effects on several 

levels of thyroid hormone regulation, and neurotoxicity (Burgin et al. 2001; 

Kodavanti et al. 2001; Ma and Sassoon 2006; Royland and Kodavanti 2008; Safe 

1994; Silkworth et al. 2008; Steinberg et al. 2007). 

 

Analysis of environmental samples has shown that the PCB composition is highly 

variable and does not resemble the composition of the commercial mixtures 

(Ishikawa et al. 2007). However, PCB congeners which are not included in the 

WHO TEF concept for DL compounds represent by far the largest portion of 

constituents both in commercial PCB mixtures (Mayes et al. 1998; Schmitz et al., 

1996) and in human (Fürst 2006) and food samples (EFSA 2005; Törnkvist et al. 

2011), illustrating the need for a reliable risk assessment of these compounds. The 

high levels in food are also reflected on the human dietary intake levels (Table 2, 

Törnkvist et al. 2011), where the intake of PCBs (∑PCB) is much larger on a 

bodyweight basis than the intake of dioxins and DL compounds. The intake has 

decreased concerning both total TEQ and total PCB between 1999 and 2005 

(Törnkvist et al. 2011). Based on effects observed after exposure to PCB congeners 

not included in the TEF concept, the European food safety authority (EFSA) 

estimated a factor 10 margin of body burden for humans which can be considered 

rather small. The margin is based on average intake and more highly exposed 

groups such as breast-fed infants and subpopulations with a dietary intake 
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exceeding the average could have an even smaller margin of body burden (EFSA 

2005). 

 

Table 2. Total intake of dioxin-like compounds, PCBs and PBDEs from food in 

Sweden in 1999 and 2005. 

 

 

Intake
a
, pg TEQ/day 

1999 2005 

PCDD/F TEQ
b
 54.4 24.7 

PCB TEQ
b
 41.4 26.2 

Total TEQ
b
 95.8 50.9 

    
 Intake

a
, ng/day 

 1999 2005 

∑PCB 615 362 
PCB 153 139 85.3 
∑PBDE 50.9 50.6 
BDE 47 26.5 20.6 
a
Törnkvist et al. 2011 

b
TEQ calculation based on 1998 WHO TEFs, Van den Berg et al. 1998 

 

 

1.2.2.1 PCB 180 

PCB 180 is a di-ortho heptachlorinated congener classified as a PB-type inducer of 

CYPs (McFarland and Clarke 1989). PCB 180 has previously been included in the 

TEF concept and was assigned a TEF in the 1994 establishment of values based on 

one acute in vivo study as compared to TCDD (Ahlborg et al. 1994). The TEF value 

for PCB 180 was however withdrawn in the 1998 WHO re-evaluation (Van den 

Berg et al. 1998). PCB 180 is commonly found in environment and food and is also 

included as one of the six analytical indicator PCB congeners (EFSA 2005). In a 

comparison between the congener composition of the commercial PCB mixture 

Aroclor 1260 and the congeners found in breast milk samples the congener 

composition was found to differ. However, PCB 180 was abundant in both the 

commercial mixture and in the human milk samples (Safe 1994). 
 

 

1.2.3 PBDE 

Commercial mixtures of polybrominated diphenyl ethers (PBDEs, Figure 4), 

including Penta-BDE products such as Bromkal 70-5DE, have been widely used as 

flame retarding additives. The concern for human and environmental health due to 

increased use of PBDEs combined with their tendency to bioaccumulate in humans 

has prompted the ban of penta-PBDE flame retardants both in the EU and in various 

states in the USA (EU 2003a; EU 2003b; BSEF 2009). However, some major 

applications relate to long-lived consumer products and continued release to 

environment and humans may be anticipated for many years to come. Similar to the 

PCBs, several receptors, including the AhR, the CAR and/or the PXR, have been 

suggested to be modulated by PBDEs (Figure 3; Fery et al. 2009; Pacyniak et al. 

2007). 
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                      PBDE 

 

Figure 4. Chemical structure of polybrominated diphenyl ethers (PBDEs). 

 

 

Individual PBDE congeners have a low acute toxicity but long-term toxicity studies 

have shown that the thyroid and liver are major target organs for BDE toxicity 

(Talsness 2008; Gill et al. 2004; WHO-IPCS 1994). Individual PBDE congeners do 

not have AhR agonist properties, although similar effects have been observed for DL 

compounds and PBDEs. The commercial PBDE mixtures however contain PBDD/Fs 

and have been shown to have AhR mediated activities (Van den Berg et al. 2006). 

Photolytical and combustion processes of PBDEs can produce PBDD/Fs, but it is 

unclear to what extent the use of PBDEs contributes to PBDD/F levels. PBDD/Fs are 

similar in behaviour to their chlorinated analogues and similar effects are also 

observed for PBDD/Fs and PCDD/Fs (Wahl et al. 2008; Hanari et al. 2006; Birnbaum 

et al. 2003). The structural similarities between PBDEs and classes of dioxin-like 

chemicals (e.g. PCBs), suggests that PBDEs might bind the AhR with low affinity. 

Unlike the DL AhR ligands, PBDEs are usually not coplanar and the AhR binding 

affinities of PBDEs is reported to be 10
-2

 to 10
-5 

times that of TCDD (Chen et al. 

2001). Though a low AhR affinity has been observed, the subsequent XRE binding 

and induced gene expression was not (Birnbaum and Staskal 2004; Peters et al. 2006; 

Talsness 2008). 

 

The most toxicity information is available for commercial PBDE mixtures and less 

for individual congeners. The target systems and organs appear however to be similar 

for the mixture and the individual congeners, and the effects observed after exposure 

to brominated flame retardants include developmental neurotoxicity, reproduction 

and development effects, hormone-related effects, morphological effects on liver and 

kidney and hepatotoxicity (Dunnik and Nyska 2009; Van der Ven et al. 2008; 

Darnerud 2008; Talsness 2008; Birnbaum and Staskal 2004; Zhou et al. 2001). The 

liver effects included liver weight changes, hepatocyte hypertrophy, retinoid 

alterations, induction of CYP and UGT enzymes as well as EROD and PROD 

activity. 

 

The commercial PBDE products are not exclusively one pure congener, but contain 

several PBDE congeners with different amount of bromination. The exact congener 

pattern is likely to vary slightly between manufacturers and batches. Even though the 

penta-BDE use is banned, the dominating congener pattern in human serum samples 

is still similar to the pattern in commercial penta-BDE products, namely BDE 47, 

BDE 99, BDE 100 and BDE 153 (Harley et al. 2010; Sjödin et al. 2008; Andersson et 

al. 2008). PBDEs are also found in human breast milk (Lignell et al. 2009; Fängström 

et al. 2008; Fürst 2006) and in food (Schecter et al. 2004; Törnkvist et al. 2011). The 

dietary intake of PBDEs is lower than the intake of PCBs, but still much higher than 

the intake of DL compounds (Table 2). Also the intake of PBDEs has remained quite 
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constant between 1999 and 2005, although the calculation for 2005 was based on a 

larger number of PBDE congeners (Törnkvist et al. 2011). 

 

 

1.3 CUMULATIVE ASSESSMENT 

Although some potential environmental hazards involve significant exposure to 

only a single compound, most instances of environmental contamination involve 

exposures to a mixture of compounds (Kortenkamp 2007). Though the problem of 

assessing the combined exposure to multiple chemicals has been acknowledged for 

decades, only a few cumulative assessment models have been used for regulatory 

purposes. To assess the effects of exposure to groups of POPs, potency 

normalisation approaches have been developed. This method includes the selection 

of a reference or index compound against which the potency of related compounds 

are normalised, such as the WHO-TEF system for dioxins and DL compounds (Van 

den Berg et al. 2006) and the Relative Potency Factor (RPF) method developed by 

the USEPA for pesticides (Boobis et al. 2008; USEPA 2000). The RPF method is 

quite generalised and has also been used for PAHs (Pufulete et al. 2004). Studies 

regarding the feasibility of developing cumulative assessments have also been 

performed for reproductive toxicants acting via diverse mechanisms (Rider et al. 

2010) as well as for estrogenic (Kortenkamp 2006) and anti-androgenic chemicals 

(Kortenkamp and Faust 2010; Müller et al. 2009). The TEF system was developed 

to assess the total contribution of DL compounds in a mixture in order to assess the 

combined effects of structurally related compounds with a common 

mechanism/mode of action (Van den Berg et al. 2006) while the RPF method can 

be applied in situations where the mode of action appears to be similar, but the 

exact mechanism is complex and maybe not known in detail (USEPA 2000). 

 

Several of the POPs, including PCBs and PBDEs, have similar effect spectra as the 

DL compounds on an end-point basis, but since the criteria of acting via the 

common mechanism initiated by binding to the AhR is not fulfilled, they are not 

included in the TEF system (Van den Berg et al. 2006). The similarity in effects, i.e. 

modulation of a common system or tissue, observed after exposure to several types 

of POPs indicate that the combined exposure to these chemicals could contribute to 

cumulative toxicity and that a cumulative assessment based on the biological 

system or the target tissue affected rather than on the mechanism of toxicity might 

be warranted as a complement to the established TEF concept for DL substances. 

By focusing only on mechanism-based (AhR) TEF values and not taking effect-

related potencies into consideration, the combined effect of e.g. dioxins, PCBs and 

PBDEs might be underestimated.  

 

The inclusion of compounds modulating a common system or tissue in assessments 

has also been raised during the establishment of TEF values for DL compounds. 

Ahlborg and colleagues suggested already in 1994 to explore the possibility of 

developing endpoint-specific REP values for endpoints where effects are seen after 

exposure to both congeners included as well as not included in the TEF system 

(Ahlborg et al. 1994). Endpoint-specific REP values can be calculated based on 

single studies while the TEF values are based on REP values derived from many 

types of studies and endpoints. The REP approach seems to be appropriate in order 

to perform cumulative risk assessment, with the restriction that the REP values 
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should only be used for the endpoint for which they were obtained and not for all 

endpoints (Müller et al. 2009). 

 

The assessment of mixtures can be performed on three levels, i.e. using data on the 

mixture of concern, using data on a toxicologically similar mixture and using data 

on the mixture component chemicals (USEPA 2000). The whole mixture approach, 

where a mixture is studied as if it was a single compound, is useful for studying 

complex mixtures but leads to difficulties in extrapolating from one mixture to 

another (Kortenkamp 2007). 

 

Cumulative exposure to a group of substances with the same toxicological mode of 

action could be of concern even if exposure to either of the substances individually 

does not pose a risk to human health and the same could also hold true for 

compounds modulating a common system or tissue though acting via separate 

mechanisms. A cumulative risk assessment should hence include all chemicals 

which affect a specified system or tissue (Rider et al. 2010). The biological reality 

of combination effects from exposure to multiple agents at low doses highlights the 

potential for underestimating risks when mixture effects are not taken into account 

(Kortenkamp 2007). Also, the information required to establish membership of a 

common mechanism group is substantial, leading to a risk of failing to consider 

compounds that should have been included (Boobis et al. 2008). 
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2 PRESENT STUDY 

 

2.1 AIM 

The aim of the thesis was to study the feasibility of developing endpoint-specific 

cumulative assessments based on effects considered as markers of DL toxicity 

observed for different POPs in vivo. 

 

Paper I: The aim of paper I was to characterise the hepatotoxicity of PCB 180, not 

included in the TEF concept, with a specific focus on liver weight, hepatic vitamin A 

levels and hepatic EROD induction which are endpoints used as markers of DL 

toxicity. 

 

Paper II: The aim of paper II was to characterise the toxicity of the commercial 

PBDE mixture Bromkal 70-5DE based on a whole mixture approach and to assess 

the presence of DL compounds and their influence on the observed effects focusing 

on liver weight, hepatic vitamin A levels and hepatic EROD induction as markers of 

DL toxicity. 

 

 

2.2 EXPERIMENTAL DESIGN 

General study design 

The studies were performed according to the OECD 407 Guideline on Repeated Dose 

28-day Oral Toxicity Study in Rodents, which was enhanced for biochemical 

endpoints. The study design in Paper I was also improved to facilitate the assessment 

of dose-response relationships and subsequent calculation of benchmark doses (Slob 

2002). Groups of 5 male and 5 female Sprague-Dawley rats were exposed by oral 

gavage to PCB 180 dissolved in corn oil (Paper I) or Bromkal 70-5DE dissolved in 

peanut oil (Paper II). 

 

Clinical observations and chemistry, body and organ weights 

Recording of final body weight as well as complete necropsies, including 

macroscopic observations and tissue sampling for molecular biology, biochemistry, 

histopathology, analytical chemistry and organ weights, were performed on each rat. 

Blood was collected for haematological analyses and serum chemistry. In paper I, 

total mRNA for real-time PCR analysis was isolated from frozen liver samples. 

 

Biochemistry 

In papers I and II, O-Dealkylation of 7-ethoxyresorufin (EROD) and 7-

pentoxyresorufin (PROD) were determined in liver microsomes, while in paper I the 

microsomal UGT activities were also determined using thyroxine (T4) as a substrate 

and beta-naphthoflavone as internal reference. 

 

Apolar retinoids were extracted from liver homogenates and retinol and retinyl esters 

were separated. Quantification was performed by the use of internal (retinyl acetate) 

and external (retinol and retinyl palmitate) standards. The summarized levels of 

apolar retinoids was computed as sum of retinol and retinyl esters. In paper II, 

retinoid levels were also measured in kidneys and lungs. 
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Chemical characterization and residues 

The dosing solutions were analysed for chemical impurities with GC-MS. The levels 

of DL-PCBs and PCDD/Fs in PCB 180 (Paper I) were found to be 2.7 ng TEQ/g 

PCB 180. For the analysis of Bromkal 70-5DE (Paper II), all the seventeen 2,3,7,8-

substitued PCDFs and PCDDs and ten of the 2,3,7,8-substituted PBDFs and PBDDs 

were used as reference compounds. The TEQ dose was calculated based on weight 

adjusted potency relative to TCDD adapted from Behnisch and colleagues (Behnisch 

et al. 2003) and was found to be 524 ng TEQ/g Bromkal 70-5DE. 

 

Tissue residue concentrations of PCB 180 (Paper I) were determined in perirenal 

adipose tissue and in liver tissue. 

 

 

2.3 RESULTS 

Paper I 

At the highest dose level a temporary decrease in body weight during loading dosing 

was observed in both genders, but no other signs of general toxicity were observed 

after exposure to PCB 180. Absolute liver weights were dose-dependently increased 

in both males and females and observations were made at a lower dose in males than 

in females. Liver histopathology showed centrilobular hypertrophy in exposed 

animals. Significant decreases in liver apolar retinoid concentrations as well as total 

amounts were observed in both male and female rats after exposure to PCB 180. The 

decrease was larger in males and also appeared at a lower dose (Figure 5). 

 
Figure 5. Dose-response relationship analysis and estimated benchmark doses based 

on decreased hepatic apolar retinoid concentration observed in male (○) and female 

(Δ) Sprague-Dawley rats after exposure to PCB 180. 
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Hepatic microsomal EROD and PROD activities were significantly induced in both 

males and females. The induction was seen at a lower dose in males and the PROD 

induction was more pronounced in males. Hepatic UGT activity towards T4 as 

substrate was significantly induced in males and females and at a lower dose in 

males. The observed induction of CYP and UGT activities was also analysed on 

mRNA and protein level. A slight CYP1A2 protein induction was found in the livers 

of both male and female rats at the higher doses only but on the level of mRNAs, 

CYP1A1 was only induced at the highest dose in females and no induction was 

observed for CYP1A2 or CYP1B1 mRNAs. In contrast, strong induction of 

CYP2B1/2 and CYP3A1 protein as well as CYP2B1 and CYP3A1 mRNA was 

observed in males and in females with the extent of induction being more pronounced 

in males. Also UGTs 1A1 and 1A6 were induced in males and females on both 

protein and mRNA level with males being more responsive to PCB180. The extent of 

induction was particularly high for UGT 1A6 protein in male rats. 

 

 

Paper II 

No clinical signs of toxicity were observed after exposure to Bromkal 70-5DE and no 

animals died during the study. The relative liver weights were increased in a dose-

dependent manner in male and female rats. Observed histological hepatic changes 

consisted of centrilobular hepatocellular hypertrophy of different grade and patchy 

fatty changes (lipidosis). Altered serum parameters associated with hepatotoxicity 

were also observed. The hepatic EROD activity was dose-dependently elevated in 

both male and female rats and the PROD-activity was also markedly elevated in a 

dose-dependent manner. Hepatic vitamin A content was decreased in a dose-

dependent manner in both male and female rats. 
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3 CONCLUSIONS 

Liver is a major target organ for DL compounds as well as for PCBs and PBDEs and 

endpoints such as liver weight, hepatic vitamin A levels and AhR-mediated enzyme 

induction are sensitive effects observed at low doses, with reported LOELs in rats of 

1 ng TCDD /kg b.w./day (lowest dose tested) for induction of hepatic EROD activity 

(Viluksela et al. 2000) and depletion of hepatic vitamin A (Fletcher et al. 2005). An 

increased liver weight was found from 10 ng TCDD /kg b.w./day (Viluksela et al. 

2000). These effects have previously been used for deriving REP values included in 

the database for the establishment of TEF values (Van den Berg et al. 2006; Van den 

Berg et al. 1998). However, the assessment of these effects after exposure to PCBs 

and PBDEs has been hampered by the use of a whole mixture approach employed in 

many studies, making it hard to attribute the effects to specific components, and the 

uncertainty regarding the level of potent DL compounds in mixtures or as 

contaminants in single compound preparations. Often an induced EROD activity has 

been regarded as evidence of the presence of DL compounds. 

 

 

3.1 PCB 

Effects observed after exposure to PCB 180 include liver enlargement, centrilobular 

hepatocellular hypertrophy, decreased hepatic apolar retinoid levels and liver enzyme 

induction. The effects observed were in general more prominent in males (Paper I). 

 

An induction of hepatic microsomal AhR-marker EROD and the CAR-marker PROD 

activity was observed. The CAR-activating potency of PCB 180 was also verified on 

mRNA and protein level with strong inductions of CYP2B1 and CYP3A1. In 

contrast, the transcripts of CYP1A2, and 1B1 were not induced, while CYP1A1 

mRNA was induced at the highest dose level in females only and a weak inducing 

effect on CYP1A2 protein was observed (Paper I). 

 

The data suggest that PCB 180 can act as a CAR/PXR agonist, since strong effects 

were observed for enzymes that have been related to an activation of CAR/PXR. The 

nuclear transcription factor CAR has been reported to be more prominent in male 

than in female rats (Yoshinari et al. 2001), and the observed gender differences in 

decreased hepatic vitamin A levels and induced PROD activity adds further support 

to the importance of CAR in mediating effects of PCB 180. The analysis of hepatic 

PCB 180 levels did not reveal differences between male and female rats and the 

levels were roughly proportional to the applied dose. The CAR-dependent mode of 

action was also supported by an increased UGT activity towards T4 accompanied by 

an induction of UGTs 1A1 and 1A6 on protein and mRNA level (Barter and 

Klaassen, 1992; Shelby and Klaassen 2006; Vansell and Klaassen 2002). 

 

A weak AhR agonistic effect was also observed after PCB 180 exposure, with EROD 

induction observed at lower doses than those needed to induce the corresponding 

enzymes on mRNA and protein level. The analysed DL contamination was 2.7 ng 

TEQ/g PCB180, which would correspond to a total contaminant dose of 0.027 ng 

TEQ/kg b.w. in the 10 mg PCB 180/kg b.w. dose group where the EROD induction 

was significantly increased in males (Paper I). This TEQ dose is lower than the 

reported LOAEL for EROD induction, indicating that the induction might instead be 



 

  15 

due to an enzymatic specificity overlap resulting from the strongly induced CYP2B 

and 3A with possible minor catalytic EROD activity (Burke et al. 1994). It has also 

been suggested that conditions affecting the formation or metabolism of natural AhR 

ligands may modify the AhR activity and lead to misinterpretation of experimental 

data, such as EROD induction (Bergander et al. 2005; Wincent et al. 2009). 

 

The selected endpoints increased liver weight, decreased hepatic vitamin A levels and 

hepatic EROD induction were also evaluated by calculating REP values using data 

from a series of single compound experiments including PCBs 77, 105, 118 and 126 

(Chu et al. 1998; Chu et al. 1995; Chu et al. 1994) included in the TEF concept, as 

well as PCBs 28, 128 and 153 (Chu et al. 1996a, b; Lecavalier et al. 1997) not 

included in the TEF concept. Endpoint-specific REP values were estimated as NOEL 

ratios compared to the potent DL PCB 126 (TEF=0.1, Table 1).  

 

Significant dose-response relationships, analysed with a non-linear regression model 

in which dose-related changes in mean responses were described by a Hill function, 

were observed based on liver weight data after exposure to PCBs 105, 128 and 153, 

based on hepatic vitamin A data after exposure to PCBs 77, 105, 128, and 153 and 

based on hepatic EROD activity data after exposure to PCBs 28, 77, 105, 118, 128 

and 153 (Kalantari et al. 2010 abstract). In all cases where a significant dose response 

relationship was observed for an individual PCB congener the effect on the studied 

endpoint was similar to the effect observed after exposure to the reference compound 

PCB 126 and only differing in potency. Endpoint-specific REP values could hence be 

established both for congeners assigned a TEF (PCBs 77, 105 and 118) and 

congeners not assigned a TEF (PCBs 28, 128 and 153) based on one or more of the 

endpoints (Table 3). 

 

Table 3. Relative potency (REP) values estimated as NOEL ratios based on liver 

weight (%), hepatic vitamin A (µg) and hepatic EROD activity (nmol/mg protein/hr) 

observed in male and female Sprague-Dawley rats after exposure to individual PCB 

congeners
1
. 

PCB 

congener 

TEF
a Liver weight 

NOEL REP
b 

Hepatic vitamin A 

NOEL REP
b 

Hepatic EROD
 

activity LOEL
c
 REP

b 

MALE FEMALE MALE FEMALE MALE FEMALE 

28      2.6e
-07

 2.5e
-07

 

77 1.0e
-04

   1.1e
-04

 1.1e
-04

 1.3e
-06

 1.1e
-05

 

105 3.0e
-05

 2.0e
-05

 1.9e
-04

 2.0e
-05

 2.3e
-05

 2.3e
-07

 2.5e
-07

 

118 3.0e
-05

     1.5e
-06

 5.9e
-06

 

128   2.0e
-04

 1.9e
-05

 2.3e
-06

 2.4e
-07

 2.3e
-07

 

153  2.3e
-05

 2.0e
-04

 2.3e
-05

 2.3e
-06

 2.9e
-05

 2.4e
-05

 
1
Chu et al. 1998; Chu et al. 1996a, b; Chu et al. 1995; Chu et al. 1994; Lecavalier et al. 1997 

a
WHO TEF values (Van den Berg et al. 2006). 

b
The REP values have been adjusted to account for the use of PCB 126 as a reference compounds, i.e. 

by multiplying with the TEF for PCB 126 (TEF=0.1). 
c
For hepatic EROD activity data, a NOEL value could not be established for PCB 126 and the 

calculations have been based on LOEL values for all congeners. 

 

 

The potency of each PCB congener differed from endpoint to endpoint, with the 

highest NOEL REP values mainly corresponding to the endpoint relative liver weight 
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and NOEL REP values based on decreased hepatic vitamin A levels found to be 

slightly lower (Table 3). The lowest REP values were in general estimated based on 

hepatic EROD activity data. Based on liver weight and hepatic vitamin A data, the 

estimated potency of PCBs 77 and 105 were similar to their corresponding 

established WHO-TEF value, while the REP values based on EROD induction data 

for PCBs 77 and 105 as well as PCB 118 were lower than the corresponding TEF 

values (Table 3). Based on liver weight and hepatic vitamin A data, the estimated 

potency of PCBs 128 and 153 was similar to the common TEF established for low-

potency mono-ortho PCBs in the WHO concept (Table 3). For PCBs 28 and 128 a 

low potency effect was observed based on hepatic EROD induction data while PCB 

153 was the most potent congener in inducing this effect and the REP value was in 

the same range as the TEF value for mono-ortho PCBs (Table 3). 

 

The low chlorinated PCB 28 did not show a high potency in inducing the effects 

studied, while PCB 153 on the other hand had a similar or slightly higher potency 

than congeners included in the TEF concept in causing increased relative liver 

weight, decreased hepatic vitamin A levels and hepatic EROD induction. 

Observations in vitro indicate that highly chlorinated PCBs such as PCB 153 activate 

the CAR and PXR (Kretschmer and Baldwin 2005; Tabb et al. 2004) while an 

activation of CAR/PXR was not observed for the low chlorinated congener PCB 28. 

PCB 153 has previously been classified as a PB-type inducer (Mc Farland and Clarke 

1989) and after exposure to PCB 153 in ovariectomized mice, different gene 

expression pattern was observed as compared to TCDD and PCB 126 including 

CAR/PXR regulated genes but not AhR regulated genes (Kopec et al. 2010). The 

high EROD induction observed after exposure to PCB 153 could hence be a resulted 

of a marked induction of CAR/PXR-related enzymes or secondary effects in a similar 

manner as was described for PCB 180. 

 

 

3.2 PBDE 

Effects observed after exposure to the commercial penta-BDE mixture Bromkal 70-

5DE include a marked increase in relative liver weight, hepatic lipidosis, centrilobular 

hypertrophy of hepatocytes, hepatic vitamin A depletion and hepatic EROD and 

PROD enzyme activity induction (Paper II). The increased liver weight and the 

decrease in hepatic vitamin A was observed from 25 mg Bromkal 70-5DE/kg 

b.w./day, corresponding to an estimated daily PBDD/F-TEQ intake of 13 ng/kg 

b.w./day, while the hepatic EROD enzyme activity was increased from 2.5 mg 

Bromkal 70-5DE /kg b.w./day, corresponding to an estimated daily dose of 1.3 ng 

PBDD/F-TEQ/kg b.w. The estimated contribution of DL compounds found in the 

mixture may explain the effects observed on liver weight, hepatic vitamin A and 

EROD activity, at least it cannot be ruled out. The hepatic PROD enzyme activity 

was increased from and 25 mg/kg b.w./day, which may suggest a CAR-dependant 

activity of Bromkal 70-5DE. 

 

Van der Ven and colleagues studied a purified preparation of DE-71, another 

commercial penta-BDE mixture, and observed increased liver weights and 

centrilobular hepatocellular hypertrophy, decreased hepatic levels of retinoids as well 

as induction of both EROD and PROD activities and associated enzymes (Van der 

Ven et al. 2008). Their conclusion was that the enzyme activities, induced to similar 
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extent and at low doses, indicated activation of both AhR and CAR and that some 

mixture constituents may act via CAR while others have weak AhR agonistic 

activity. 

 

The Bromkal 70-5DE and DE-71 studies were performed under similar experimental 

conditions, following the OECD 407 28-day subacute toxicity guideline. However, in 

the Bromkal 70-5DE study Sprague-Dawley rats were used (Paper II) while in the 

DE-71 study Wistar rats were used (Van der Ven et al. 2008). Effects on liver weight 

and hepatic EROD and PROD induction were observed at similar dose levels in the 

two studies. Decreased hepatic vitamin A levels were observed at similar dose levels 

in female rats, while in male rats DE-51 was found to cause an effect at a 50 times 

lower dose. After exposure to Bromkal 70-5DE, the EROD induction was observed at 

10 times lower doses than the PROD induction in both males and females, the 

maximal induction was however similar and only differed 2.5 fold (Paper II). A 

similar maximal induction of EROD and PROD was also observed after exposure to 

DE-71, but the EROD induction was observed at a 10 times higher dose than the 

PROD induction in males and at a 2 times lower dose in females (Van der Ven et al. 

2008). 

 

 

3.3 CONCLUSION 

Effects on liver weight, hepatic vitamin A and hepatic EROD activity were observed 

after exposure to PCB 180 as well as observations indicating CAR/PXR activation. 

These findings support the influence of CAR and PXR activation on effects such as 

increased liver weight and modulations of the retinoid system. Based on a whole 

mixture approach, Bromkal 70-5DE was found to contain DL contaminants to an 

extent that could explain most of the effects observed. In a comparison to a series of 

PCB experiments, REP values could be estimated for all included congeners as 

compared to PCB 126 based on one or more of the endpoints increased liver weight, 

decreased hepatic vitamin A and hepatic EROD induction, indicating that the 

observed effects of these congeners were similar to the effects of PCB 126, regardless 

if they are assumed to act mainly via the AhR, i.e. have been assigned a TEF value, or 

not. The hepatic EROD activity does not appear discriminating enough to distinguish 

between AhR-mediated and non AhR-mediated enzyme induction. 

 

In conclusion, the findings in this thesis support the suggestion to develop endpoint-

specific systems for cumulative assessment of POPs based on the criteria to include 

chemicals with similar effects, i.e. modulating a common system or target tissue via 

multiple pathways and/or mechanisms of toxicity. 
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4 FUTURE PERSPECTIVES 

A next and important step after identifying endpoints that are affected in a similar 

way, but most likely involving several different mechanistic pathways, includes 

developing suitable methodology for assessing the cumulative effects observed after 

combined exposure to bioaccumulative and toxic substances. It is also important to 

incorporate uncertainty into the final risk estimates and this can be achieved by using 

REP values derived as BMD ratios including confidence intervals. The use of BMD 

methodology also allows for a statistical analysis of e.g. gender differences and 

detailed compound comparisons. 

 

Several studies characterising the toxic effects of PCBs and PBDEs report 

neurotoxicity and endocrine alterations, including effects on thyroid hormones. The 

study on PCB 180 (Paper I) also supports effects on thyroid hormone metabolising 

UGTs. Many different mechanisms have been suggested to be related to the 

neurotoxic as well as the endocrine modulating effects and it would be difficult if not 

impossible to define chemicals affecting these systems in terms of strict molecular 

similarity. Therefor it would be interesting to investigate such effects from a similar 

perspective as has been done in this thesis. 
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