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ABSTRACT 
 
The function of the human brain is based on complex interactions between billions of 
neurons. The brain function declines as a result of normal aging, but is also disturbed in 
neuropsychiatric and neurodegenerative disorders. Huntington’s disease is a hereditary 
autosomal-dominant neurodegenerative disorder that manifests with a complex range of 
symptoms resulting in severe motor deficiencies, cognitive decline, behavioral 
disturbances, and premature death. To date, no preventive, disease-modifying, or even 
symptomatic therapy exists.  
 
Normal function of the brain is maintained by different neurotransmitters, which act 
through their receptors. One such example is the monoamine neurotransmitter 
dopamine, which plays a central role in normal brain function. The dopamine system is 
involved in a wide range of functions such as motor function, reward, cognition and 
emotion, and is importantly connected to the modulation of glutamate functions in the 
brain. There is evidence that dopaminergic systems are disturbed in Huntington’s 
disease, and that the delicate balance between dopamine and glutamate interplay is 
disrupted in the disorder.  
 
Dopaminergic stabilizers belong to a novel class of CNS compounds that can both 
enhance and counteract psychomotor activity depending on the initial level. Such 
effects are believed to be mediated by state dependent modulation of monoaminergic 
and glutamatergic functions. One such compound, pridopidine (ACR16), is currently in 
development for the treatment of Huntington’s disease. 
 
The aim of this thesis was to better understand the physiopharmacology of dopamin-
ergic stabilizers and to investigate their effects in healthy subjects and patients with 
Huntington’s disease. To explore the possibilities for this therapy in Huntington’s 
disease, three experimental studies using positron emission tomography were 
undertaken. These studies yielded a number of findings. It could be shown that the 
extrastriatal density of dopamine D2 receptors is well preserved in patients with 
Huntington’s disease. This finding has implications for pridopidine therapy since the D2 
receptor is believed to be the primary target receptor for the compound. In addition, it 
was shown that in patients with Huntington’s disease, pridopidine treatment induced 
general state dependent changes in cerebral metabolic activity, and increases in cerebral 
metabolic activity in brain regions believed to be important for mediating compensa-
tory mechanisms in the disorder. In another study elucidating the mechanisms of action 
of dopaminergic stabilizers in healthy subjects, it could be shown that a single dose of 
the compound produced modest reductions in the availability of striatal dopamine D2 
receptors, and more marked fluctuations in the availability of cortical and striatal 
dopamine D1 receptors. The results from this mechanistic study suggest that dopamin-
ergic stabilizers exert their glutamate modulating properties via indirect effects of 
dopamine D1 receptors. Moreover, in the framework of this thesis, an overview of 
available imaging biomarkers to study the progression of Huntington’s disease is 
presented, providing guidance for methods to be applied in studies aimed at modifying 
disease progression. 
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SAMMANFATTNING 
 
Människohjärnans funktion är baserad på ett komplext samspel mellan flera miljarder 
nervceller. Hjärnans funktion försämras som en följd av normalt åldrande, men är 
också störd i neuropsykiatriska och neurodegenerativa sjukdomar. Huntingtons 
sjukdom en ärftlig autosomalt dominant neurodegenerativ sjukdom som manifesterar 
sig med svåra motoriska brister, försämring av kognitiva funktioner, beteendestörningar 
och för tidig död. Än idag finns det för denna sjukdom ingen förebyggande, 
sjukdomsmodifierande, eller ens symtomlindrande behandling. 
!
Den normala hjärnfunktionen upprätthålls av olika signalsubstanser, vilka verkar 
genom sina receptorer. Ett sådant exempel är monoaminerga signalsubstansen 
dopamin, som spelar en avgörande roll i hjärnans normala funktion. Dopaminsystemet 
är inblandat i en rad olika funktioner såsom motorik, belöning, kognition och emotion 
och är en viktig modulator av en annan viktig signalsubstans: glutamatfunktionen i 
hjärnan. Forskning har visat att det dopaminerga systemet är stört vid Huntingtons 
sjukdom och att den ömtåliga balansen och samspelet mellan dopamin och glutamat har 
rubbats. 
 
Dopaminerga stabilisatorer tillhör en ny klass av läkemedel för det centrala 
nervsystemet, som både kan öka och motverka psykomotorisk aktivitet beroende på 
den ursprungliga aktivitetsnivån. Dessa effekter tros vara orsakade av modulering av 
monoaminerga och glutamaterga funktioner. En av dessa substanser, pridopidin 
(ACR16), är för närvarande under utveckling för behandling av Huntingtons sjukdom. 

!

Syftet med denna avhandling var att bättre förstå fysiofarmakologin bakom 
dopaminerga stabilisatorer och att undersöka deras effekter på friska individer och 
patienter med Huntingtons sjukdom. Tre experimentella studier genomfördes med hjälp 
av positronemissionstomografi. Det kunde visas att den extrastriatala distributionen av 
dopamin D2-receptorer är välbevarad hos patienter med Huntingtons sjukdom. Detta 
resultat har konsekvenser för pridopidinbehandling eftersom denna receptor tros vara 
läkemedlets primära målreceptor. Dessutom visade det sig att pridopidin inducerar 
generella nivåberoende förändringar i hjärnans metaboliska aktivitet, samt ökar 
metabolismen i hjärnregioner vilka anses vara viktiga för att förmedla 
kompensationsmekanismer vid sjukdomen. Vidare belystes verkningsmekanismerna av 
dopaminerga stabilisatorer på friska individer, där det kunde visas att en enda dos av 
substansen producerade måttliga minskningar i tillgången på striatala dopamin D2-
receptorer, och mer markanta fluktuationer i tillgången på kortikala och striatala 
dopamin D1-receptorer. Resultaten från denna mekanistiska studie indikerar att 
dopaminerga stabilisatorer utövar sina glutamat-modulerande egenskaper via indirekta 
effekter av dopamin D1-receptorer. Inom ramen för denna avhandling genomfördes 
även en sammanställande studie över tillgängliga imaging-biomarkörer lämpliga för att 
studera utvecklingen av Huntingtons sjukdom hos patienter. I denna föreslås riktlinjer 
för metoder som lämpligen kan användas i studier som syftar till att modifiera 
sjukdomsförloppet. 
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RÉSUMÉ 
 
La fonction du cerveau humain est basée sur les interactions complexes entre des 
milliards de neurones. L'altération de la fonction cérébrale sa manifest du vieillissement 
normal, mais est également perturbé dans les troubles neuropsychiatriques et 
neurodégénératives. La maladie de Huntington est une maladie neurodégénérative 
autosomal-dominante qui se manifeste par un ensemble complexe de symptômes 
résultant de déficiences motrices sévères, déclin cognitif, troubles du comportement, et 
la mort prématurée. À ce jour, aucune prévention ou traitement modificateur de la 
maladie, même symptomatique, n’existe pas.  
 
La fonction normale du cerveau est maintenue par différents neurotransmetteurs, qui 
agissent par le biais de leurs récepteurs. Un exemple est le neurotransmetteur 
dopamine, qui est impliqué dans un large nombre de fonctions telles que la fonction 
motrice, le mécanisme de récompense, la cognition ainsi que l'émotion.  
 
Les stabilisateurs dopaminergiques appartiennent à une nouvelle classe de composés du 
système neurocentral, qui peuvent a la fois améliorer ou inhiber l'activité 
psychomotrice dépendante du niveau initial de cette activité. Ces effets seraient médiés 
par une modulation des fonctions monoaminergiques et glutamatergique. Un de ces 
composés, pridopidine (ACR16), est actuellement en développement pour le traitement 
de la maladie de Huntington. 
 
L'objectif de cette thèse était de mieux comprendre la physiopharmacologie des 
stabilisateurs dopaminergiques et à étudier leurs effets chez les sujets sains et les 
patients de la maladie de Huntington. Pour explorer les possibilités de cette thérapie 
dans la maladie de Huntington, trois études expérimentales ont été entreprises. Ces 
études ont donné un certain nombre de conclusions. Il a pu être démontré que la densité 
extrastriatal de récepteurs dopaminergiques D2 est bien conservée chez les patients de 
la maladie de Huntington. Ce constat a des implications pour la thérapie avec 
pridopidine, puisque ce récepteur est considéré comme le récepteur cible primaire pour 
le composé. En outre, il a été montré que chez les patients atteints de la maladie de 
Huntington, le traitement pridopidine induits des changements général de l'activité 
métabolique cérébrale, et augmente l'activité métabolique cérébrale dans des régions 
cérébrales considérées comme importantes pour la médiation des mécanismes de 
compensation dans la maladie. Dans une autre étude élucider les mécanismes d'action 
des stabilisateurs dopaminergiques chez les sujets sains, il a pu être démontré qu'une 
seule dose du ce composé, résulter en des réductions modestes de la disponibilité des 
récepteurs dopaminergiques D2 du striatum, et plus fortes fluctuations dans la 
disponibilité des récepteurs dopaminergiques D1 corticale et striatale. Les résultats de 
cette étude suggèrent que le mécanisme des stabilisateurs dopaminergiques exerce leur 
glutamate propriétés de modulation via les effets indirects de la dopamine récepteurs 
D1. Dans le cadre de cette thèse, un aperçu a été investigué des biomarqueurs 
d'imagerie disponibles pour étudier la progression de la maladie de Huntington, et 
propose des directions pour les méthodes à appliquer dans les études visant à modifier 
la progression de la maladie. 
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1 INTRODUCTION 

  
1.1 HUNTINGTON’S DISEASE 

 
1.1.1 Historical aspects 

The first description of a patient with Huntington’s disease (HD) was made by Waters, 
in 1842 (Roos 2010). At that time, HD was called the “magrums”, a folk name for the 
disorder. In 1872, the physician George Huntington described a hereditary fatal 
disorder mainly characterized by uncontrollable movements (chorea) and mental 
impairment (Huntington 1872). A few years later, it was observed by Meynert that 
brains of patients with HD are affected by an extensive atrophy of the basal ganglia 
(Bates, et al. 2002). For a long time period, extensive research has been focusing on the 
neuropathology of this region. However, during the recent years more and more 
attention has been brought to the pathology in the rest of the brain, elucidating a better 
understanding of the heterogeneity of the disease. To date, there is no effective 
treatment for the disease; neither curative nor disease modifying or symptomatic, and 
patients affected with HD die within one or two decades after onset of manifest 
symptoms, which commonly occur in the ages of 35-45. 
 
 
1.1.2 Genetic aspects 

The mutant gene responsible for HD, IT15 (“interesting transcript 15”) or HTT, is 
located on the short arm of chromosome 4 (4p16.3), which codes for the protein 
huntingtin. The disease is caused by an increased number of cytosine-adenine-guanine 
(CAG) repeats located near the 5’-end in exon 1 of the gene. Healthy individuals have 
typically less than 36 CAG repeats, whereas 36-39 repeats indicates an incomplete 
penetrance and that the individual is at risk of developing HD (McNeil, et al. 1997), 
while repeats of 40 or above results in HD with complete penetrance (Gusella, et al. 
1993; Myers 2004).  
 
The CAG repeat length is a main determinant for HD onset, accounting for nearly 70% 
of the variability in observed age at onset, and has impact also on disease progression 
(Ashizawa T 1994; Aziz, et al. 2009; Ravina, et al. 2008). The number of CAG repeats 
varies considerably among patients; a repeat length around 40 is associated with adult 
onset of disease whereas juvenile onset is characterized by expansions of more than 60 
repeats (Brandt, et al. 1996; Trottier, et al. 1994).  
 
The protein encoded by the HTT gene, huntingtin, is a multifunctional protein widely 
expressed throughout the body, in neuronal but also in non-neuronal cells (Hoogeveen, 
et al. 1993; Trottier, et al. 1995). Huntingtin is primarily localized in the cytoplasm of 
the cell, but is also present in the nucleus (Landles and Bates 2004). This protein is 
believed to be involved in several cellular processes such as vesicular transportation 
(Engelender, et al. 1997), transcriptional mechanisms (Marcora, et al. 2003; Zuccato, et 
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al. 2003), and in the production of brain-derived neurotrophic factor (BDNF); a factor 
promoting survival and growth of neurons (Zuccato, et al. 2001; Zuccato, et al. 2005; 
Zuccato, et al. 2003). Furthermore, it has been shown that normal huntingtin is crucial 
for embryonic development and has neuroprotective effects, resulting in homozygote 
mice models being lethal and heterozygote mice models (where for example one allele 
is deleted) resulting in various deficits such as testis atrophy, weight loss and difficulty 
of switching strategy tasks (Leavitt, et al. 2006; Nasir, et al. 1995; Pouladi, et al. 2010; 
Van Raamsdonk, et al. 2006; Van Raamsdonk, et al. 2007). It might thus be the case 
that it is the lack of normal huntingtin rather than the existence of mutant huntingtin 
that result in these dysfunctional mechanisms. 
 
The classical hallmark of HD is degeneration of medium spiny neurons in the striatum 
(Folstein 1989), yet mutant huntingtin is expressed throughout the brain (Strong, et al. 
1993). The mechanisms underlying the particular pattern of neurodegeneration in HD 
and the exact functions of the protein in human is thus not fully understood.  
Mutant huntingtin has an expanded polyglutamine domain resulting in a misfolding of 
the protein, which leads to the formation of aggregates in the cells. Most of these 
aggregates are found as intranuclear inclusions (Lunkes, et al. 2002), in cell bodies, 
axons, and dendrites (Li, et al. 2003).  
 
The cellular dysfunction and death caused by the mutant huntingtin could be induced 
through different mechanisms (Landles and Bates 2004). Such factor could be the 
saturation of the proteasome system by the misfolded protein, transcriptional 
dysfunction, mitochondrial impairment and oxidative stress (Browne and Beal 2004; 
Browne and Beal 2006; Lin and Beal 2006). HD cells are shown to have a reduced 
activity in different mitochondrial complexes (Arenas, et al. 1998; Gu, et al. 1996; 
Tabrizi, et al. 2000) thus resulting in a decreased ATP-production, an impaired 
metabolism, a decreased resting membrane potential and hence a reduced threshold for 
calcium induced depolarization, leading to an increase vulnerability for excitotoxicity. 
The theory of excitotoxicity leading to cell death in HD, is believed to be caused by an 
overstimulation of glutamatergic receptors such as N-methyl-D-aspartate (NMDA) and 
!-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), resulting in an 
increased influx of calcium in the cells, which amongst others leads to an activation of 
free radicals and enzymes such as proteases including caspases.  
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FIGURE 1  
Schematic overview of some of the main pathophysiological mechanisms in HD. Dysfunctional processes 
induced by mutant htt result in aggregate formation, transcriptional inhibition, reduced proteasomal activity, 
increased Ca2+ influx by activation of extrasynaptic NMDA receptors as well as mitochondrial impairment 
resulting in increased caspase activity causing further aggregate formation. These complex 
pathophysiological mechanisms all result in oxidative stress, apoptosis and cell death. 
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1.1.3 Anatomical aspects 

 
1.1.3.1 Basal ganglia 
The basal ganglia are a group of nuclei in the brain situated at the base of the forebrain 
and connected with areas such as the cerebral cortex and thalamus. These structures are 
associated with a variety of functions, including motor control and learning, cognitive 
function, and emotions. Anatomically, the basal ganglia consist of the striatum (caudate 
nucleus, putamen and nucleus accumbens) and the globus pallidus (internal and 
external segments GPi and GPe). In addition, the substantia nigra and the subthalamic 
nucleus are often included in the basal ganglia, particularly due to their close 
anatomical and functional associations. It has previously been believed that the basal 
ganglia is exclusively involved in the planning and the generation of motor commands. 
It is now recognized that the basal ganglia also play important roles in cognitive and 
affective functions. Several nuclei of the basal ganglia are involved in circuits or loops 
relevant to neuropsychiatric and neurodegenerative disorders; the striatum is involved 
in all these loops.  
 
 
1.1.3.2 Striatum 
The striatum is the anatomically largest component of the basal ganglia and receives 
input from many brain areas but sends output only to other components of the basal 
ganglia. Being the major input structure of the basal ganglia, the striatum receives 
information from the cortex (most areas, in particular the motor and prefrontal cortices) 
and thalamus through excitatory glutamatergic neurons (Parent and Hazrati 1995a; 
Parent and Hazrati 1995b). The pallidum receives most of its input from the striatum, 
and sends inhibitory output to a number of motor-related areas such as the thalamus 
that project to the motor-related areas of the cortex. The limbic sector of the basal 
ganglia consists of nucleus accumbens, ventral pallidum, and ventral tegmental area 
(VTA). The VTA provides dopamine to nucleus accumbens and the ventral striatum 
whereas substantia nigra provides dopamine to the dorsal striatum. The dorsal striatum 
includes the caudate and the putamen, and is predominantly involved in motor control 
and habit learning whereas the ventral striatum, connecting to the nucleus accumbens, 
is primarily involved in emotional and behavioral aspects such as reward-motivated 
behaviors.  
 
About 95% of striatal neurons consist of GABAergic medium spiny neurons (MSNs). 
The glutamatergic input from the cortex and thalamus is the essential drive behind 
excitatory synaptic transmission in the striatum. Apart from glutamatergic input, the 
striatum also receives dopaminergic input from the midbrain. Classically, it has been 
believed that the information that enters the striatum continues through two different 
pathways; either via the globus pallidus interna (GPi), which also is called the direct 
pathway, or via the globus pallidus externa (GPe), which also is called the indirect 
pathway (Albin, et al. 1989; Chesselet and Delfs 1996). In this model, the GABAergic 
neurons of the direct pathway express dopamine D1 receptors, and the indirect pathway 
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express dopamine D2 receptors. Disinhibition of the direct pathway facilitates 
movements while a disinhibition of the indirect pathway inhibits movements (Kandel, 
et al. 2000). The direct pathway inhibits the GPi while disinhibiting the thalamus. The 
indirect pathway inhibits the GPe resulting in a disinhibition of the subthalamic nucleus, 
leading to (through the glutamatergic neurons in subthalamic nucleus) an excitation of 
the GABAergic neurons in the GPi thus causing an inhibition on the thalamus. This 
strict division of pathways has however been questioned, and has been a matter of 
controversies, where some evidence is suggesting that dopamine D1 and D2 class 
receptors are co-localized in nearly half of all MSNs (Surmeier, et al. 1996).  
 
Striatal atrophy occurs early in HD, usually starting in the caudate nucleus, and 
progresses gradually (Vonsattel and DiFiglia 1998; Vonsattel, et al. 1985). MSNs are 
particularly vulnerable to this degeneration, while the aspiny interneurons are relatively 
unaffected (Ferrante, et al. 1987; Ferrante, et al. 1985). The MSNs projecting to the GPi 
contain substance P whereas those projecting to the GPe contain enkephalin and are the 
first to degenerate in HD (Reiner, et al. 2003; Sapp, et al. 1995). It is however not fully 
clarified why the striatum is particularly vulnerable to the degeneration in HD. 
 
 
 

 
FIGURE 2  
Brain magnetic resonance imaging of a healthy individual (left) and a patient with HD (right). Severe 
atrophy is apparent early in HD, in particular in the striatum. 
 
 
 
1.1.3.3 Thalamus 
The thalamus is a major relay station in the brain, since almost all information relays 
through thalamus en route to the cortex, and in turn, almost all areas of the cortex 
project to divisions of the thalamus (Taber, et al. 2004). Previous studies performing 
stereological quantifications have shown a neuronal loss of up to 55 percent in 
advanced cases of patients with HD (Heinsen, et al. 1996). Thalamic atrophy in patients 
with HD also correlates with cognitive performance (Kassubek, et al. 2005). In 
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addition, thalamus is part of the corticostriatal circuitry, connecting the basal ganglia 
and the neocortex, which might contribute to the motor dysfunctions seen in the disease 
(Cepeda, et al. 2007).  
 
The mediodorsal (MD) thalamus is of special interest in HD. It is suggested that this 
structure is a key region for mediating compensatory mechanisms in premanifest HD 
(Feigin, et al. 2007). The MD thalamus has major cortical and subcortical 
interconnections. This structure is considered to be a key relay structure in the brain and 
is involved in a multitude of functions including motor, cognition, emotion, arousal and 
sleep patterns, behavioral functions such as inhibition of inappropriate behavior and 
executive functions (Armstrong 1990; Bentivoglio, et al. 1993; Mega and Cummings 
1994; Taber, et al. 2004).  
 
The MD thalamus has interactions with the prefrontal cortex, which within its 
anatomically and functionally segregated networks play important roles in cognitive 
functions (Shenton, et al. 1992). Other than having major reciprocal connections with 
the prefrontal cortices, MD thalamus has major reciprocal connections with the cortex 
in e.g. anterior cingulate as well as with supplementary motor and parietal cortices 
(Bachevalier, et al. 1997; Baleydier and Mauguiere 1980; Barbas, et al. 1991; Cavada, 
et al. 2000; Giguere and Goldman-Rakic 1988; Goldman-Rakic and Porrino 1985; 
Hatanaka, et al. 2003; Ilinsky, et al. 1985; Powell 1973; Russchen, et al. 1987; Selemon 
and Goldman-Rakic 1988; Siwek and Pandya 1991; Tanaka 1976; Vogt, et al. 1979). 
The amygdala, substantia nigra, and cerebellum also project to MD thalamus (Ilinsky, 
et al. 1985; Price 1986).  
 
Several studies suggest an important role for the MD thalamus in HD. In a positron 
emission tomography (PET) study investigating premanifest HD gene carriers, 
activation responses during motor learning were abnormally increased in the left MD 
thalamus. Impaired learning performance in subjects with premanifest HD has been 
associated with increased activation responses in the precuneus. These data suggest that 
enhanced activation of thalamocortical pathways during motor learning can compensate 
for caudate degeneration in premanifest subjects (Feigin, et al. 2006; Feigin, et al. 
2007).  
 
 
1.1.3.4 Precuneus 
The precuneus is a part of the superior parietal lobule, hidden in the medial longitudinal 
fissure between the two cerebral hemispheres. It is involved with episodic memory, 
visuospatial processing, reflections upon self, and aspects of consciousness; all 
functions being disturbed in HD. Functional imaging studies have linked the precuneus 
to the processes involved in self-consciousness such as reflective self-awareness, that 
involve rating the person’s own personality traits compared to those judged of other 
people (Kjaer, et al. 2002; Lou, et al. 2004). Precuneus has been suggested to be the 
'core node' of the default mode network that is activated during ‘resting consciousness’ 
in which people do not engage intentionally in sensory or motor activity (Fransson and 
Marrelec 2008; Wenderoth, et al. 2005). Precuneus is also involved in diverse cognitive 
processes such as attention, episodic memory retrieval, working memory and conscious 
perception (Lundstrom, et al. 2005). 
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The precuneus has been suggested to be involved in directing attention in space when 
observing movements as well as when imaging or preparing movements (Cavanna and 
Trimble 2006; Kawashima, et al. 1995). In addition, it is involved in motor 
coordination that requires shifting attention to different spatial locations (Wenderoth, et 
al. 2005). It is suggested that while the premotor area engages in the mental operation, 
the precuneus aids monitoring the success of that operation in terms of internally 
represented visual images (Oshio, et al. 2010). A functional magnetic resonance 
imaging (fMRI) study showed that precuneus together with the superior frontal gyrus 
and orbitofrontal cortex are the brain regions that get engaged when judging others' 
emotional states and the forgivability of their crimes (Farrow, et al. 2001). It has also 
been suggested that the precuneus together with the posterior cingulate, is pivotal for 
conscious information processing (Vogt and Laureys 2005). 
 
The MD thalamus sends projections to the precuneus (Schmahmann and Pandya 1990). 
Thalamic projections to the precuneus are known to be important for both movement 
accuracy and learning. Data from several studies have shown that parietal association 
regions, including the precuneus, might be implicated in aspects of sequence learning, 
specifically regarding movement accuracy (van Mier, et al. 2004) and retrieval during 
spatial learning tasks (Parsons, et al. 2004). A PET study found a negative correlation 
between motor learning and metabolic activity in the precuneus in premanifest HD 
(Feigin, et al. 2006).  
 
 
1.1.3.5 Cerebral cortex 
Although MSN degeneration is the classical hallmark of neuropathology in HD 
(Hersch, et al. 2004), neuronal loss has also been identified in many other brain regions 
including the cerebral cortex (Braak and Braak 1992; Halliday, et al. 1998; Hedreen, et 
al. 1991; Heinsen, et al. 1994). Prior to degeneration, morphological changes such as 
dendritic remodeling and altered size and number of dendritic spines occur in cortical 
pyramidal cells (Sapp, et al. 1997). Projection neurons from cortical layers III, V and 
VI seem to be more prone for the neurodegeneration in HD (Gutekunst, et al. 1999; 
Hedreen, et al. 1991; Heinsen, et al. 1994; Jackson, et al. 1995; Sieradzan and Mann 
2001). During the recent years, different magnetic resonance imaging (MRI) methods 
have demonstrated a specific regional cortical thinning pattern in patients with HD, as 
well as in premanifest individuals (Douaud, et al. 2006; Kassubek, et al. 2004; Rosas, et 
al. 2002; Rosas, et al. 2005). The selectivity, progression and heterogeneity of cortical 
atrophy in HD have been described, demonstrating the relationships between regional 
cortical thinning, progressive functional decline and prominent clinical features (Rosas, 
et al. 2008). 
 
 
1.1.4 Clinical aspects and phenotype 

The prevalence of HD is estimated to be around 70 per million in the Western world, 
and even more individuals are at risk for the disease. The gene responsible for the 
disease was identified as late as in 1993, making genetic testing possible and available. 
However, uptake of genetic testing has been low and seems to decrease (Bernhardt, et 
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al. 2009). HD is a stigmatizing disorder and as such there are indications that the 
prevalence of HD might be grossly underestimated (Rawlins 2010). 
 
Despite being a strictly monogenetic disorder, the clinical phenotype of HD presents 
with considerable variability. The phenotype includes progressive motor impairments, 
cognitive deterioration, personality changes and susceptibility to severe mental 
disorder. As the disease progresses, gross motor functions, including gait and postural 
control, deteriorate. Such changes ultimately cause major impairment of function. 
Motor disturbances can be divided into positive (e.g. chorea and dystonia) and negative 
(e.g. bradykinesia) symptoms; most patients have a mixture of both. Although chorea 
remains the clinical hallmark of the disease, disruption of voluntary movement such as 
parkinsonism including bradykinesia and rigidity, clumsiness with impaired voluntary 
movement, and dystonia are also recognized motor features of HD (van Vugt, et al. 
1996). Similarly, patients with HD often suffer from both positive and negative 
behavioral symptoms. Psychiatric manifestations are very common including, among 
other symptoms, irritability, depression, anxiety, apathy and obsessive-compulsive 
symptoms (Anderson and Marder 2001; Craufurd and Snowden 2002; Di Maio, et al. 
1993; Harper 1992; van Duijn, et al. 2007). Another commonly clinically observed, but 
maybe less studied and subtler feature in these patients is sexual disinhibition and 
promiscuous behavior. The suicide risk is markedly increased in patients with HD as 
well as in the premanifest stages (Di Maio, et al. 1993). Cognitive difficulties in HD 
encompass multiple domains, including executive dysfunction, as well as disturbances 
in memory, visuospatial attention and praxis (Craufurd and Snowden 2002; Folstein 
1989). Thus, planning, intellectual speed and flexibility deteriorate with disease 
progression, making it more difficult to retrieve previously learned information as well 
as making learning of new information less efficient. As the disease progresses, 
memory deficits tend to appear and eventually dementia is developed. There is no 
satisfactory explanation as to the considerable variability of the clinical symptoms seen 
in HD.  
!
Albeit HD is primarily affecting brain functions, the disease affects many other parts of 
the body (van der Burg, et al. 2009). Patients with HD often suffer from muscle atrophy 
(Trejo, et al. 2004), osteoporosis (Bonelli, et al. 2002), weight loss  (Nance and Sanders 
1996), testis atrophy (Van Raamsdonk, et al. 2007) and cardiac failure (Lanska, et al. 
1988; Sorensen and Fenger 1992). Weight loss is a widespread feature in HD. 
Interestingly, it does not correlate with chorea scores and occurs despite adequate 
nutrition or even higher caloric intake. Cardiac failure is one of the most common 
causes of death in patients with HD. 
!
Traditionally, ‘onset of disease’ is considered as the occurrence of manifest motor 
symptoms of HD. Subtle clinical changes with soft motor and behavioral signs and 
symptoms evolve during years from premanifest stage towards manifest stages of the 
disease, thus determining the so called ‘zone-of-onset’ (Penney, et al. 1990). 
Furthermore, behavioral and cognitive symptoms are usually more subtle and difficult 
to characterize. Nevertheless, the Unified Huntington’s Disease Rating Scale (UHDRS) 
clinical assessment still represents the golden standard for assessing HD (Huntington 
Study Group 1996). Recently, a new technique has been developed for objective 
measurements of motor symptoms in patients with HD (Reilmann, et al. 2010a; 
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Reilmann, et al. 2010b; Reilmann, et al. 2001; Tabrizi, et al. 2009; Tabrizi, et al. 2011). 
However, the UHDRS has been developed to measure symptoms in patients with 
manifest HD, and is not suitable to assess subtle changes in the premanifest stage. The 
interpretation of the ‘zone-of-onset’ thus remains a very subjective evaluation by each 
physician with obvious limitations in the reliability of assessments. Theoretically, such 
limitations might be at least partially solved by including objective brain imaging 
biomarkers, directly recorded by modern imaging techniques. Although there is a 
progressive decline in UHDRS scores in manifest HD, the rate of UHDRS motor score 
progression in recently phenoconverted patients seem to be low (Mahant, et al. 2003). 
As an example, a longitudinal PET study investigating HD individuals close to 
phenoconversion over a period of 44 months, showed clear evidence of changes in 
cerebral metabolic patterns, while the UHDRS scores failed to show any significant 
changes in motor and cognitive scores (Feigin, et al. 2007). Similarly, MRI may detect 
degenerative processes years prior to onset of manifest disease (Antonini, et al. 1996; 
Aylward, et al. 1996; Aylward, et al. 2000; Paulsen, et al. 2004). In vivo neuroimaging 
studies have reported abnormalities such as reduced striatal volume (Aylward, et al. 
1994; Aylward, et al. 1998), decreased striatal dopamine D2 receptor density (Antonini, 
et al. 1996; Ichise, et al. 1993; Weeks, et al. 1996) and reduced striatal glucose 
consumption (Antonini, et al. 1996; Grafton, et al. 1992; Kuwert, et al. 1993; 
Mazziotta, et al. 1987) already in premanifest HD subjects. This raises possibilities for 
obtaining imaging biomarkers for monitoring disease progression and therapeutic 
effects already in premanifest HD subjects, which is further discussed in the appendix. 
 
 
 
1.2 DOPAMINE SYSTEMS 

The neurotransmitter dopamine (DA) was discovered in the 1950s and has since been 
in focus for research in neuroscience. DA plays a fundamental role in the human brain 
and is involved in different physiological functions, motor function, higher-order 
cognitive functions and reward mechanisms, as well as in neurological and psychiatric 
disorders (Creese, et al. 1977; Girault and Greengard 2004; Goldman-Rakic 1987; 
Koob and Bloom 1988; Kopin 1993; Le Moal and Simon 1991; Vallone, et al. 2000).  
!
In the treatment of neurological and psychiatric disorders, modification of DA 
neurotransmission is an important and widely used pharmacological principle. Classical 
antipsychotic drugs act through blocking of DA receptors (by DA antagonists), 
reducing mainly positive symptoms in patients with schizophrenia. The DA precursor 
levodopa compensates for the shortage of DA in Parkinson’s disease, alleviating the 
hypokinesia, rigidity and tremor characteristics for the disorder. For the treatment of 
attention deficit and hyperactivity disorder, methylphenidate, a drug that increases the 
intrasynaptic DA levels, improves hyperactivity and attentional deficits. In addition, 
DA is intricately involved in reward and hedonistic responses, demonstrated by the 
effects of psychostimulant drugs such as cocaine and amphetamine. 
!
!
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1.2.1 Synthesis and degradation of dopamine 

Dopamine is synthesized in tyrosine hydroxylase (TH) containing neurons where it is 
stored in vesicles. The amino acid tyrosine passes the blood brain barrier, where it in 
catecholamine neurons is converted into L-3,4-dihydroxylphenylalanine (L-DOPA) by 
the enzyme TH. L-DOPA is then converted to DA by L-amino acid decarboxylase. The 
rate-limiting step in the synthesis of DA is the TH-activity. Dopamine is released into 
the synaptic cleft and extracellular space in response to action potentials. Once 
released, DA binds to receptors on the postsynaptic neuron as well as to autoreceptors 
on the presynaptic neuron, thereby evoking a cascade of intracellular biochemical 
events. Termination of the DA signaling is mainly dependent on the reuptake and 
degradation of DA. The membrane bound DA transporter (DAT), which allows rapid 
reuptake, removes extracellular DA. In addition, DA is removed by two degrading 
enzymes, monoaminoxidase (MAO) and catecholamine O-methyltransferase (COMT).  
 
!
1.2.2 Dopaminergic pathways 

The dopaminergic systems in the central nervous system (CNS) are divided into 
different pathways on the basis of the localization of dopaminergic neurons and their 
efferent projections (Di Chiara 2005; Missale, et al. 1998; Stahl 1996; Ungerstedt 1971; 
Vallone, et al. 2000). The mesostriatal system projects from the substantia nigra to the 
striatum, playing an important role for motor function. The mesolimbic system projects 
from the VTA to limbic structures such as the ventral striatum (i.e. nucleus 
accumbens), hippocampus and amygdala, while the mesocortical system projects from 
the VTA to cortical regions. These projections are important for emotions and 
motivation, thus being affected in e.g. schizophrenia. There is a fourth dopaminergic 
projection, the so-called tuberoinfundibular pathway, which originates in the arcuate 
nucleus of the hypothalamus and projects to the pituitary gland, where it regulates 
secretion of the hormone prolactin. 
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!
!

FIGURE 3 
Schematic overview of dopaminergic pathways in the human brain. Originating from substantia nigra (SN) 
and ventral tegmental area (VTA), the projections go to the striatum (Str), limbic structures such as 
amygdala (Am), hippocampus (Hip), and nucleus accumbens (NAc), the cerebral cortex, and the 
hypothalamus and pituitary gland (Pit).  
!
!
!
The nigrostriatal pathway constitutes about 80 % of all dopaminergic projection fibers. 
Having its cell bodies located in the substantia nigra pars compacta, this pathway 
projects to the MSNs in the dorsal striatum (caudate nucleus and putamen). Preclinical 
studies have estimated that one single presynaptic neuron results in an average of 
370.000 connections in the striatum (Oorschot 1996; Wickens and Arbuthnott 2005). 
Hence, once the presynaptic nigrostriatal neuron has reached the striatum, there is a 
vast divergence of release sites. This pathway is classically believed to be in charge of 
regulation of motor functions and is important for the coordination and execution of 
movement. A clinical example of dysfunction in this pathway is Parkinson’s disease, 
where symptoms are caused by degeneration of DA neurons in substantia nigra 
(Hornykiewicz 1966). 
 
The mesolimbic pathway originates from the VTA, projecting to several limbic brain 
areas such as the ventral striatum (nucleus accumbens), amygdala and hippocampus, as 
well as to limbic cortical areas. This pathway is believed to be involved in behavioral 
aspects such as motivation and emotions.  
 
The mesocortical pathway originates, as the mesolimbic pathway, from the VTA, but 
projects to cortical regions such as frontal and temporal cortices and the anterior 
cingulate. This pathway has been proposed to be involved primarily in learning and 
memory. The mesolimbic and mesocortical pathways are involved in reward and 
emotions, as well as in motivational aspects of motor activity (Alcaro, et al. 2007; 
Laviolette 2007; Wise and Bozarth 1987).  
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!
The tuberoinfundibular pathway has its projections from the periventricular and arcuate 
nucei of the hypothalamus in to the median eminence of the hypothalamus, where DA 
is released into the hypothalamic-hypophysial portal blood circulation and eventually 
reaches the pituitary, where it inhibits prolactin release.  
!
!
1.2.3 Dopamine receptors 

Dopamine mediates its actions through five distinct DA receptor subtypes, which are 
members of the seven-trans-membrane G-protein coupled receptors (Missale, et al. 
1998). These receptor subtypes have, based on their biochemical and pharmacological 
properties as well as on sequence homology, been classified into D1-like (D1 and D5) 
and D2-like (D2, D3 and D4) receptors (Jaber, et al. 1996; Kebabian and Calne 1979; 
Missale, et al. 1998; Stoof and Kebabian 1984; Vallone, et al. 2000). Receptors of the 
D1-like family stimulate adenylate cyclase, whereas the D2-like family receptors inhibit 
this effector. The D1-like receptors are coupled to a stimulatory G-protein, which 
causes an activation of adenylate cyclase, leading to an increase in the concentration of 
the intracellular second messenger cAMP (cyclic adenosine monophosphate). The D2-
like receptors are coupled to an inhibitory G-protein, which in contrast results in 
inhibiting adenylate cyclase, thus decreasing cAMP (Emilien, et al. 1999; Missale, et 
al. 1998). The major target of cAMP is PKA (protein kinase A). These intracellular 
events are starting points for several divergent electrophysiological and biochemical 
intracellular mechanisms. The D1 and D2 receptors have the most widespread and 
highest levels of expression of the DA receptors.  
 
!
1.2.3.1 D1-like receptors 
Of all DA receptors, DA D1 receptors, investigated in Study III, are the most widely 
distributed in the brain. The D1 receptor is expressed with high concentrations in the 
caudate nucleus, putamen, nucleus accumbens and olfactory tubercle. This receptor is 
also expressed in amygdala, globus pallidus, substantia nigra, ventral tegmental area, 
hippocampus, hypothalamus and thalamus (Jackson and Westlind-Danielsson 1994; 
Missale, et al. 1998). In the cerebral cortex, the D1 receptor is highly expressed in areas 
such as the prefrontal cortex, and has been implicated as a key player in several 
cognitive functions (Fremeau, et al. 1991; Hurd, et al. 2001).  
!
The DA D5 receptor, which is the other D1-like receptor subtype, is expressed in lower 
levels throughout the brain, and is primarily present in the cortex including frontal 
areas, hippocampus, hypothalamus and certain areas of thalamus but is also found in 
the caudate nucleus, putamen, nucleus accumbens, substantia nigra and olfactory 
tubercle (Choi, et al. 1995; Khan, et al. 2000). 
!
!
1.2.3.2 D2-like receptors 
The D2 receptor, examined in Study I and III, is mainly located postsynaptically. About 
5% is expressed presynaptically, acting as autoreceptors (Filloux, et al. 1987; Joyce and 
Marshall 1987). The highest densities of the D2 receptors are found in MSNs in the 
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striatum, the nucleus accumbens, and olfactory tubercle (Weiner, et al. 1991). With the 
exception of substantia nigra, much lower densities are found in extrastriatal regions 
such as thalamus and throughout cortical regions (Kessler, et al. 1993). The distribution 
of DA D2 receptors is thus rather similar to the D1 receptors. However, in cortical areas, 
this receptor type is expressed to a lower extent than the D1 receptor. Contrarily, in 
extrastriatal areas the D2 receptor is present in higher levels in hypothalamus, thalamus, 
midbrain areas and in the pituitary gland (Hurd, et al. 2001; Jackson and Westlind-
Danielsson 1994; Weiner, et al. 1991).  
!
Albeit at lower concentrations, the DA D3 receptor distribution is similar to the 
distribution of the D2 receptor in several brain regions, and is primarily found in limbic 
areas such as nucleus accumbens, the islands of Calleja, and the dentate gyrus of 
hippocampus (Bouthenet, et al. 1991; Suzuki, et al. 1998), and may mediate 
abnormalities of memory, speech, and focused attention in schizophrenia (Sokoloff, et 
al. 1990; Suzuki, et al. 1998).  
!
The DA D4 receptor is highly expressed in the frontal cerebral cortex, hippocampus, 
hypothalamus, amygdala and olfactory tubercle (Defagot, et al. 1997; Jackson and 
Westlind-Danielsson 1994; Lahti, et al. 1995; Primus, et al. 1997). This receptor 
subtype has a more limited distribution with little or no expression in subcortical areas 
such as the caudate nucleus, putamen, and nucleus accumbens. 
!
!
1.2.3.3 Function of dopamine D1 and D2 receptors 
Enhanced dopaminergic transmission in the brain results in a behaviorally aroused 
state, and is referred to as psychomotor activation. In experimental animals, enhanced 
dopaminergic transmission such as by psychostimulants is observed as an increase in 
locomotor activity and repetitive stereotype behavior (Beninger 1983; Randrup and 
Munkvad 1974). A decreased DA signaling causes a hypoactive psychomotor state 
including motor disturbances such as parkinsonism or catalepsy (Johnels 1982). The 
DA D2 receptor has been implicated as important for such symptoms. Dopamine D2 
receptor antagonists, e.g. neuroleptics, frequently cause extrapyramidal side effects 
whereas D2 receptor agonists are often used to improve motor function in Parkinson’s 
disease.  
!
Contrarily to the D2 receptor, the function of the DA D1 receptor is less understood. 
Similar to the D2 receptor, animal studies have shown that D1 receptor agonists induce 
stereotypies (Deveney and Waddington 1997; Molloy and Waddington 1984). 
However, the overall effects on locomotion of D1 receptor agonists are not clear, and 
both enhanced locomotion and inhibited locomotion has been reported (Desai, et al. 
2005; Meyer and Shults 1993; Salmi and Ahlenius 1996). One explanation could be 
that the effects on locomotion by a D1 receptor agonist are dependent on whether DA 
D2 receptors are stimulated simultaneously. In that case, locomotion is enhanced in 
synergy, and it has been postulated that a concomitant stimulation of DA D1 receptors 
is required to obtain maximum locomotor stimulation of a D2 receptor agonist (Dreher 
and Jackson 1989; Gershanik, et al. 1983; Salmi 1998). Similarly to DA D2 receptor 
blockade, antagonism of D1 receptors result in hypoactivity and in higher doses 
catalepsy (Jackson and Westlind-Danielsson 1994; Morelli and Di Chiara 1985). 
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!
1.2.4 PET imaging of dopamine receptors 

In vivo neuroreceptor PET imaging studies have contributed to a greater understanding 
of the DA system in health and disease. This method has also greatly contributed to 
drug development (Brooks 2005; Halldin, et al. 2001; Talbot and Laruelle 2002). A 
number of PET radioligands have been developed to measure DA D1 and D2 receptors 
(Farde, et al. 1987; Farde, et al. 1997; Halldin, et al. 1995; Halldin, et al. 1998; Halldin, 
et al. 2001; Karlsson, et al. 1993). PET imaging on D2 receptors have contributed to the 
understanding of antipsychotic treatment in schizophrenia as well as for indirect studies 
of dopamine release (Farde, et al. 1988; Tedroff, et al. 1996). For imaging of D2 
receptor distribution, antagonist radioligands such as [11C]raclopride has been widely 
used to measure striatal receptors; more recent development include antagonist 
radioligands with higher affinity, thus enabling measurements of extrastriatal receptor 
distribution (Farde, et al. 1986; Halldin, et al. 1995), as well as agonist radioligands 
(Seneca, et al. 2006). The D1 receptors have been less studied. However, several D1 
antagonist radioligands such as [11C]SCH23390 and [11C]NNC112 have been 
developed and validated for human use (Hirvonen, et al. 2001; Slifstein, et al. 2007).   
 
!
1.2.5 Dopamine and Huntington’s disease  

Neuropathological studies have revealed that striatal neurons expressing dopamine 
receptors are affected early in HD (Cross 1983; Reiner, et al. 1988; Reisine, et al. 1978; 
Spokes 1980), and alterations in dopamine signaling has been implicated to play a key 
role in the pathogenesis of HD (Johnson, et al. 2006). By inducing elevated Ca2+ 
signals in a synergistic effect with glutamate signaling pathways, dopamine may play 
an important role in striatal cell death in HD (Benchoua, et al. 2008; Tang, et al. 2007; 
van Oostrom, et al. 2009). Furthermore, it has been shown that low doses of DA can act 
in synergy with mutant huntingtin, resulting in activation of proapoptotic transcription 
factors. In vitro, DA has been shown to increase aggregate formation, which could be 
reversed by a selective D2 antagonist (Charvin 2005). In vivo, a hyperdopaminergic 
mouse model of HD, which exhibited increased stereotypic activity followed by a 
locomotor hyperactivity, revealed that aggregates occurred to a bigger extent and much 
earlier in striatal and extrastriatal brain regions (Cyr, et al. 2006). 
!
Dopamine released from midbrain DA neurons acts on postsynaptic DA receptors 
located on MSNs in the striatum to initiate a signaling cascade leading to altered 
transcription factor activity, gene expression and neuronal activity. The classical 
hallmark of HD is degeneration of MSNs in the striatum, and thus a marked loss of 
postsynaptic DA receptors has been demonstrated in HD (Cross 1983; Reiner, et al. 
1988; Spokes 1980). 
!
A postmortem autoradiography study showed DA D1 and D2 receptor loss early in the 
disease, where the D1 receptor reduction was seen in the globus pallidus interna (GPi) 
and substantia nigra pars reticulata and the decreased D2 receptor density was most 
pronounced in the globus pallidus externa (GPe) (Richfield, et al. 1991). In this study, 
striatal areas showed involvement of both D1 and D2 receptors but with greater D1 
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receptor reductions. Another postmortem study investigating one subject with 
premanifest HD, reported a preferential loss of striatal neurons projecting to the GPe 
(Albin, et al. 1992b). There are still controversies regarding whether there is a parallel 
loss of these receptor subtypes or whether one subtype is preferentially affected. In one 
PET study, D1 and D2 receptor binding in HD gene carriers were shown not to 
correlate, suggesting the occurrence of a variable dysfunction among individual HD 
gene carriers, a finding that may explain some of the heterogeneity in HD (Andrews, et 
al. 1999). However, other PET studies have shown a parallel loss of D1 and D2 
receptors in patients with HD (Ginovart, et al. 1997; Turjanski, et al. 1995; Weeks, et 
al. 1996). A hypothesis has been suggested that the D2 baring ‘indirect pathway’ is 
targeted preferentially as compared to the D1 receptor rich ‘direct’ pathway from 
striatum to GPi (Albin, et al. 1995; Hedreen and Folstein 1995). However, this theory 
has been widely questioned. One major concern is that it is not fully clarified whether 
DA receptor subtypes are strictly segregated with the striatal projection neurons on the 
direct and indirect pathways or if they are co-localized on individual striatal neurons 
(Albin, et al. 1992b; Bloch and Le Moine 1994; Gerfen 1992; Gerfen and Keefe 1994; 
Lester, et al. 1993; Reiner, et al. 1988; Surmeier DJ 1992; Surmeier, et al. 1993). 
Nevertheless, there is evidence suggesting that functional D1 and D2 class receptors are 
co-localized in nearly one-half of all MSNs (Surmeier, et al. 1996). Although it is not 
clear whether there occurs a parallel loss of these receptors in the disease and which 
receptor is primarily affected, it is however evident that both receptor subtypes are 
affected early in the disease, and can thus be interesting as biomarkers for HD 
progression.  
 
In contrast to the relatively well-characterized integrity of postsynaptic dopamine 
receptors in HD, little has been investigated with regard to the presynaptic system. 
There are several studies suggesting a dysfunction of the presynaptic nigrostriatal 
dopamine system in HD. However, divergent results have been reported regarding 
neurochemical measurements in patients with HD. Dopamine and its two major 
metabolites, homovanillic and 3,4-dihydroxyphenylacetic acids, have been reported as 
reduced (Cunha, et al. 1981; Kish, et al. 1987), elevated (Spokes 1980), or unaltered 
(Bird and Iversen 1974) in the striatum or cerebrospinal fluid in these patients. 
Furthermore, while the dopamine neuron population in the substantia nigra appears 
preserved (Waters, et al. 1988), a loss of dopamine terminals has been reported 
(Ferrante, et al. 1987). This finding is supported by two PET studies demonstrating 
reductions in both DAT and vesicular transporter protein (Bohnen, et al. 2000; 
Ginovart, et al. 1997). However, the magnitude of such reductions in nerve terminal 
measurements in HD is not fully elucidated. It is possible that the results to some extent 
are affected by volume loss and decreased blood flow in the striatum. The integrity of 
the mesocortical and mesolimbic pathways has not been specifically investigated in 
HD. 
!
!
1.2.6 Cognitive function, dopamine and HD 

Several neuroimaging studies have shown a significant correlation between structural 
or functional striatal integrity and cognitive functions in symptomatic HD patients, such 
as executive function, memory and psychomotor speed (Bamford, et al. 1995; Berent, 
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et al. 1988). Another study has shown that assessments for executive functions such as 
the Wisconsin card sorting test in HD is associated with increased blood flow in the 
prefrontal cortex, concluding that a functionally intact frontal cortex needs to “work 
harder” to compensate for the striatal dysfunction (Goldberg, et al. 1990). However, yet 
other studies have shown that cortical dysfunction is better correlated to cognitive 
impairment than striatal atrophy (Harris, et al. 1996; Sax, et al. 1996). It is thus likely 
that both striatal and cortical dysfunction and degeneration contribute to the cognitive 
impairment in HD. 
!
A critical level of DA and DA D1 receptor stimulation is necessary for a proper 
performance in prefrontal cortex-related cognitive tasks like working memory and 
attentional functions (Granon, et al. 2000; Williams and Goldman-Rakic 1995). Studies 
have demonstrated a relationship between DA D2 receptor density in the striatum and 
cognitive performance (Volkow, et al. 1998), in particular in processes involving 
switching behavior, working memory and planning (Arnsten, et al. 1995; Mehta, et al. 
1999); cognitive processes which are particularly affected in HD. Furthermore, striatal 
D2 receptor reduction has been associated with impairments in executive functions such 
as planning, memory, sequence process and response inhibition in premanifest HD 
individuals (Lawrence, et al. 1998). In addition, there are increasing data indicating that 
D2 receptors in extrastriatal regions, such as amygdala, hippocampus, anterior 
cingulate, ventrolateral frontal cortex, and thalamus are involved in cognitive processes 
(Aalto, et al. 2005; Christian, et al. 2006).  
 
 
 
1.2.7 Synaptic plasticity 

 
1.2.7.1 Glutamate receptors 
The amino acid L-glutamate is the major excitatory transmitter in the brain. This 
neurotransmitter is involved in many different brain functions, such as neuronal cell 
survival and death, proliferation and development of neuronal and glial cells, and 
plastic changes in efficacy of synaptic transmission (Nakanishi 1992). However, 
glutamate neurotoxicity can result in neurodegeneration and neuronal cell death in 
disorders such as Alzheimer’s and Huntington’s disease. There are two different 
glutamate receptor families: ionotropic receptors which are ion channels and 
metabotropic receptors which are G-protein coupled receptors linked to second 
messenger pathways (Conn and Pin 1997; Schoepp, et al. 1999). Ionotropic glutamate 
receptors are glutamate-gated ion channels that when activated increase cellular 
excitability. The NMDA receptor is one subgroup of ligand-gated channel receptors, 
which is highly permeable to Ca2+, Na+, and K+, and the resultant increase of 
intracellular Ca2+ is thought to be responsible for evoking both neuronal plasticity and 
neurotoxicity (Nakanishi 1994).  
 
 
1.2.7.2 Dopamine and glutamate interaction 
Long-term potentiation (LTP) and long-term depression (LTD) are well-characterized 
mechanisms underlying learning and memory (Malenka, et al. 2004; Martin, et al. 
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2000). Dopamine is involved in synaptic plasticity by modulating LTP and LTD  
(Malenka, et al. 2004; Martin, et al. 2000; Otani, et al. 2003; Picconi, et al. 2003). 
Furthermore, by the same mechanisms, dopaminergic neurotransmission in primary 
motor cortex plays a crucial role for motor skill learning and the related synaptic 
plasticity (Molina-Luna, et al. 2009).  
 
The interaction between the dopamine receptors is not fully understood. There is 
evidence that D1 and D2 receptors act in functional synergy (La Hoste, et al. 1993). 
However, it is also demonstrated that the activation of each subtype may in some 
conditions result in antagonistic effects (Nestler 1994). Interestingly, the D1/D2 receptor 
synergy dissolves in perturbed experimental conditions such as in dopamine depletion 
or receptor blockade (Gerfen, et al. 1990; La Hoste, et al. 1996). Thus, the effects of 
dopamine are very heterogeneous and there seem to be a number of variables and 
conditions that contribute to its actions. Dopamine might thus suit better defined as a 
neuromodulator, since it per se is neither inhibitory nor excitatory, but rather has the 
ability to alter the action of other neurotransmitters (Cepeda, et al. 1998). 
 
 
 

 
FIGURE 4  
Localization of dopamine and glutamate receptors in the striatum. The postsynaptic MSN receives 
presynaptic input from nigrostriatal dopamine neurons as well as from corticostriatal and thalamostriatal 
neurons.  
 
 
 
There is evidence that glutamate receptors such as the NMDA receptor and the AMPA 
receptor are co-localized on the majority of MSNs in the striatum (Albin, et al. 1992a; 
Ariano, et al. 1997; Standaert, et al. 1994; Tallaksen-Greene, et al. 1992).  In the cortex, 
in vivo animal studies investigating the prefrontal cortex have shown that dopamine 
stimulates PKA through D1 receptors to facilitate LTP (Gurden, et al. 2000). On the 
other hand, LTP in the prefrontal cortex requires functional NMDA receptors (Hirsch 
and Crepel 1991; Jay, et al. 1995) indicating that D1 and NMDA receptors may 
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cooperate in LTP-inducing mechanisms (Otani, et al. 2003). Data from 
electrophysiological studies have revealed that the enhancement of NMDA receptor 
responses is mediated by the activation of D1 receptors and blocked by D1 antagonists, 
whereas this did not apply to D2 receptor activation or D2 antagonists, which decreased 
or did not affect NMDA activation (Cepeda, et al. 1993; Cepeda and Levine 1998). 
Thus, the direction of receptor subtype activation can determine the modulatory effects 
of dopamine (Cepeda, et al. 1998), filtering afferent striatal input (Cepeda, et al. 1993; 
Cepeda, et al. 1992). Dopamine and D1 receptor mediated enhancement of NMDA 
responses have been described in different parts of the brain, including the cerebral 
cortex and subcortical regions such as the striatum (Cepeda, et al. 1993; Cepeda and 
Levine 1998; Cepeda, et al. 1992; Chen, et al. 2004; Chergui and G. Lacey 1999; Wang 
and O'Donnell 2001).  
 
 

 
 
FIGURE 5  
Dopamine D1 receptors interact physically with the NMDA receptor. This interaction is important for the 
induction of LTP and synaptic plasticity. 
 
 
 
Synaptic responses studied in cortical pyramidal neurons show that enhancement of 
NMDA receptor mediated responses follows an inverted U-shaped dose-response curve 
(Seamans and Yang 2004). This is in agreement with the idea that optimal D1 receptor 
activity is required for cognitive performance such as in working memory (Lidow, et al. 
1998). Thus, neither too little nor too much of D1 receptor activation is favorable for 
optimal cortical function. Similarly, the prevailing excitotoxic hypothesis of HD is 
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based on the assumption that hyperglutamatergia at the corticostriatal terminals 
associated with altered sensitivity of NMDA receptors may trigger apoptosis and cell 
death in vulnerable neurons (DiFiglia 1990). Experimental results suggest that 
activation of extrasynaptic NMDA receptors may cause cell death and apoptosis, 
whereas synaptic activation may trigger anti-apoptotic effects in hippocampal neurons 
(Hardingham 2002).   
 
The activation of D1-like receptors is also required for the induction of LTP in the 
striatum. Antagonism of D1 receptors block NMDA-dependent LTP, whereas this 
effect is reversed by the activation of D1 receptors (Calabresi, et al. 2000; Kerr and 
Wickens 2001). Similarly, D1 antagonists have deleterious effects on working memory 
(Sawaguchi and Goldman-Rakic 1994). Similar to other neuropsychiatric diseases such 
as schizophrenia, patients with HD often suffer from both positive and negative 
symptoms, i.e. lack of voluntary movements and chorea, as well as productive 
neuropsychiatric symptoms alongside with apathy. Thus, there is a need for a treatment 
that can both enhance and counteract different activities in different brain regions 
depending on their initial levels. An appropriate treatment should be able to reverse 
both positive symptoms such as chorea, psychosis, irritability and aggression, as well as 
negative symptoms such as impairment of voluntary movements and apathy, and 
without impairing cognitive functions. As such, there is a need for a treatment that 
would increase both D1 and NMDA receptor function (Cepeda and Levine 2006), 
without overstimulation of the dopaminergic or glutamatergic system, maintaining a 
functional balance between the D1 and D2 receptors (Scott and Aperia 2009). 
 
 
 
1.3 IMAGING  

 
1.3.1 Magnetic resonance imaging 

Magnetic resonance imaging (MRI) is an imaging modality often used in brain 
imaging. The human body is to a vast degree composed of water molecules consisting 
of hydrogen nuclei or protons, which is used by MRI. Placing an individual inside the 
magnetic field of the MRI scanner, the magnetic moments of some of these protons 
change, resulting in an alignment with the direction of the field. A radio frequency 
transmitter in the MRI is briefly turned on, producing an electromagnetic field. The 
resonance frequency is made by the photons of this field that have just the right energy 
to flip the spin of the aligned protons in the body. More aligned spins are affected, as 
the intensity and duration of application of the field increase. When the field is turned 
off, the protons decay to the original spin-down state and the difference in energy 
between the two states is released as a photon. What the scanner detects is the 
electromagnetic signal created by these photons. The frequency the protons resonate at 
depends on the strength of the magnetic field. The protons in different tissues return to 
their equilibrium state at different rates, thus constructing an image. 
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1.3.2 Positron emission tomography 

Positron emission tomography (PET) is an in vivo imaging technique, which uses 
radioactive isotopes that decay by positron emission, to map molecular interactions of 
biological processes producing a three-dimensional image of functional processes in the 
body. PET has been widely used to study brain function, pathophysiology and 
therapeutic interventions. The PET technique is based on the utilization of radiotracers 
labeled with positron-emitting radionuclides (e.g. 18F or 11C), allowing for the study of 
different biological variables such as anatomical distribution, metabolism of the tracer, 
and drug-related receptor occupancy. The radionuclides are incorporated either into 
compounds normally used by the body such as glucose and water, or into molecules 
that bind to receptors or other sites of drug action. Such labeled compounds are known 
as radiotracers.  
 
 
 
Isotope Half-

life 
(min) 

Tracer 
compound 

Physiological 
process 

Typical application 

11C 20.3 Raclopride D2 receptor antagonist Movement disorders 
11C 20.3 SCH23390 D1 receptor antagonist Cognition 
13N 9.97 Ammonia Blood perfusion Myocardial perfusion 
15O 2.03 Water Blood perfusion Brain activation studies 
18F 109.8 FDG Glucose metabolism Oncology, neurology 

 
TABLE 1  
Examples of commonly used isotopes in PET imaging. 
 
 
 
The tracer molecule is injected intravenously and distributed throughout the body 
through the blood stream, binding to the target molecule in the brain after passing the 
blood brain barrier. As the radioactive molecule decays, the emitted positron (!+) 
particle annihilates with one electron (!"). The distance that the positron travels before 
annihilation consists of about 1 mm, depending on the tissue and the !+ energy of the 
isotope. The annihilation results in two photons (" particles) with an energy of 511keV 
respectively. The photons travel at approximately 180°±1° and the coincidences are 
then detected by the PET system.  
 
The scanners contain several rings of positron-sensitive scintillation detectors, with up 
to 25.000 individual scintillators. The rings of scintillation detectors register thousands 
of coincidence events emitted from the subject per second (Cherry 2001; Phelps and 
Mazziotta 1985). The technique depends on simultaneous or coincident detection of the 
pair of photons; photons which do not arrive in pairs (i.e. within a timing window of 
few nanoseconds) are ignored. The data gathered from the coincidence events are used 
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to determine the source of positron annihilation at a given time. These are then 
converted into a tomographic image via reconstruction algorithms. 
 
The divergence degree of the photons depends on the momentum of the annihilating 
positron and electron at the time they meet. This, together with the !+ range, is the 
factor that set the lower limit to the spatial resolution of PET systems (Eriksson, et al. 
1990). Accuracy in PET image data is mainly determined by the sensitivity and spatial 
resolution of the PET system. The spatial resolution is defined as the degree to which 
the representation of an object is blurred in the image, commonly expressed in terms of 
its full width at half maximum (FWHM). The point spread function (PSF) describes the 
response of an imaging system to a perfect point source where the imaging system 
introduces a non-perfect and blurred version of this original point or object. FWHM is 
defined in the Gaussian representation of the perfect point source, as the distance where 
the intensity in the image is half of the maximal value. By consequence of the PSF, 
quantitative PET measurements of objects smaller than two to three times the FWHM 
will result in an underestimation of the signal. Also, activity from surrounding tissue 
will influence the signal measured in a volume element (spill-over effect). These 
phenomena are summarized as partial volume effects (PVE) and have to be taken into 
consideration when measuring radioactivity in small regions (Hoffman, et al. 1979; 
Kessler, et al. 1984). 
 
 
 

 
FIGURE 6 
Schematic overview of PET data acquisition and image reconstruction.  
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1.3.3 PET imaging in HD 

 
1.3.3.1 Dopamine receptor imaging in HD 
PET imaging has been used to measure and elucidate various functional changes in HD 
such as aspects of dopaminergic transmission and cerebral metabolic changes 
(Antonini, et al. 1996; Ciarmiello, et al. 2006). The integrity of striatal dopamine D2 
receptors has been extensively studied in patients with HD. PET studies using the D2 
antagonist [11C]raclopride shows a progressive loss of D2 receptors in the striatum in 
patients with HD as well as in premanifest subjects (Andrews, et al. 1999; Antonini, et 
al. 1996; Brandt, et al. 1990; Farde, et al. 1987; Feigin, et al. 2007; Ginovart, et al. 
1997; Lawrence, et al. 1998; Leenders, et al. 1986; Turjanski, et al. 1995; van Oostrom, 
et al. 2009; Weeks, et al. 1996). Decreasing striatal D2 receptor expression might be 
one of the earliest physiological manifestations in HD, potentially related to progressive 
cell death and neuronal dysfunction due to altered neuronal metabolism and 
intradendritic huntingtin aggregates as well as transcriptional dysregulation induced by 
the CAG repeat expansion (Augood, et al. 1997; Beal 2000; Cha, et al. 1999; 
Gutekunst, et al. 1999; Panov, et al. 2002).  
 
There is a normal age-related loss of D2 receptors, both in the striatum (Ichise, et al. 
1998) and in extrastriatal regions (Kaasinen, et al. 2000). However, the striatal 
[11C]raclopride binding decline is only 0.6% per year in normal subjects (Antonini, et 
al. 1993). This natural decline accounts only for about 10% of the decline seen in 
premanifest mutation carriers (Antonini, et al. 1996). Clinically manifest HD patients 
have an annual loss of striatal dopamine D2 receptor availability of in the magnitude of 
5-10% (Andrews, et al. 1999; Antonini, et al. 1996; Feigin, et al. 2007). Extrapolation 
of available data indicates that a loss of D2 could occur already 25 years before manifest 
disease (Feigin, et al. 2007). 
 
There seems to be a certain threshold level for receptor density or neuronal density 
under which clinical manifestations are observed. In fact, an individual might have an 
intact neurological examination despite a 50% receptor loss of normal mean value, 
illustrating that the affected subject may remain clinically unaffected even at severe 
degrees of dopamine receptor binding loss (Antonini, et al. 1996). This further 
strengthens the notion of the presence of effective compensatory mechanisms in the 
premanifest phase of HD.  
 
While a multitude of studies describing the integrity of D2 receptors in the striatum 
have been reported, the distribution and integrity of such receptors extrinsic to the 
striatum in HD patients is less well known. Dopamine D2 receptor density ranges 
between 0,2 – 40 nM in different human brain regions, with an intrastriatal/extrastriatal 
ratio of approximately 1:100 (Kessler, et al. 1993). Albeit at low density, dopamine D2 
receptors are thus also present in the cerebral cortex and subcortical regions. An early 
study performed on postmortem tissue from three HD patients treated with 
antipsychotic medication showed a marked reduction in [3H]-spiroperidol binding in 
the striatum and frontal cortex (Reisine, et al. 1977). Another study including six 
patients with HD showed a longitudinal decline in [11C]raclopride binding in several 
extrastriatal regions, but were however not able to quantify this stated loss (Pavese, et 
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al. 2003). A recent study from the same laboratory found clusters of cortical 
[11C]raclopride binding potential reductions in 62% of patients with HD (Pavese 2010). 
However, due to its low affinity for D2 receptors, the appropriateness of using 
[11C]raclopride for measuring dopamine D2 receptor binding in extrastriatal regions is 
questionable. To quantify such low density receptor populations the high affinity 
radioligand [11C]FLB457 has been developed (Delforge, et al. 2001; Farde, et al. 1997; 
Halldin, et al. 1995; Olsson and Farde 2001; Olsson, et al. 1999; Suhara, et al. 1999). 
Because of its slow kinetics, this high affinity radiotracer has been considered less 
suitable for high-density regions such as the striatum, since a receptor density above 7 
nM causes the time of equilibrium to fall beyond the time of data acquisition (Olsson 
and Farde 2001).   
 
As for the extrastriatal D2 receptor integrity, surprisingly few PET studies have been 
performed to investigate the integrity of the D1 receptor in HD. Postmortem studies 
have indicated an early and marked loss of cerebral D1 receptors in patients with HD 
(Cross 1983; Filloux, et al. 1990; Joyce, et al. 1988; Reisine, et al. 1977; Richfield, et 
al. 1991). A PET imaging study showed a reduced D1 receptor number by 75 percent 
(compared to a striatal volume reduction of 50 percent) in patients with mild to 
moderate stage disease compared to controls (Sedvall, et al. 1994). Another PET study 
showed a reduction of D1 receptor densities in the striatum and in the cerebral cortex 
(Ginovart, et al. 1997).  As the D1 receptor is closely related to synaptic plasticity and 
cognitive functions, further investigations on this topic are clearly needed in HD. 
 
 
1.3.3.2 PET and cerebral glucose metabolism in HD 
Measurements of cerebral blood flow and glucose metabolism are valuable in assessing 
neuronal function and are often associated with clinical changes in neurodegenerative 
disorders. Study of brain metabolism can thus capture aspects of functional 
abnormalities other than those reflected by impaired neuroreceptor integrity. An early 
and well-established finding is the hypometabolism in the striatum in manifest as well 
as in premanifest HD (Antonini, et al. 1996; Berent, et al. 1988; Hayden, et al. 1986; 
Kuwert, et al. 1990; Kuwert, et al. 1993; Mazziotta, et al. 1987; van Oostrom, et al. 
2009; Young, et al. 1986). Longitudinal studies also demonstrate about three percent 
annual reduction in striatal glucose metabolism in premanifest subjects compared to 
normal ageing (Antonini, et al. 1996; Grafton, et al. 1992). Striatal metabolic decline 
can evolve in absence of atrophy, indicating that metabolic and structural cerebral 
changes may develop independently (Grafton, et al. 1992; Mazziotta, et al. 1987). In 
addition to such findings in the striatum, thalamic and cortical abnormalities in 
metabolism and perfusion have also been demonstrated both in patients and 
premanifest subjects (Grafton, et al. 1992; Martin, et al. 1992; Sax, et al. 1996).   
  
An interesting HD specific spatial covariance pattern of metabolism has been described 
discriminating premanifest HD gene carriers from healthy subjects (Feigin, et al. 2001; 
Ma and Eidelberg 2007; Trost, et al. 2002). This HD related pattern (HDRP) is 
characterized by relative bilateral increases in glucose metabolism in the thalamus, 
cerebellum, visual and primary motor cortices and relative decreases in striatum and 
anterior cingulate. The HDRP expression increases significantly in premanifest 
subjects, but starts to decline as approaching phenoconversion; however, still being 
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elevated compared to controls. It has been argued that this non-linear trajectory of 
HDRP might be a compensatory process active prior to phenoconversion. Further 
analysis of key nodes of HDRP reveals that the striatal metabolism declines 
progressively and remains low at all times as compared to controls, even after atrophy 
correction. Contrarily, the elevated thalamic metabolism at baseline is normalized 
falling to subnormal levels at phenoconversion. This increase was particularly seen in 
the left MD thalamus. In line with these results, a study in premanifest individuals 
could demonstrate an increase in this structure during performance of a motor learning 
task (Feigin, et al. 2006). Taken together, it is likely that the increase in thalamic 
activity may compensate for loss of corticostriatal activity in the early premanifest 
period. As neurodegeneration progresses, this compensatory mechanism diminishes 
and symptoms begin to appear. Loss of thalamic compensatory mechanism might thus 
be what finally leads to phenoconversion. 
 
 
 
1.4 TREATMENT OF HD 

 
1.4.1 Current pharmacological management  

During the last decade, results from several clinical trials aiming to find a treatment for 
HD have been reported. However, no such treatments have been shown to provide 
clinically significant benefit, or to slow down disease progression and disability in 
patients with HD. Recent reviews, analyzing available therapeutic interventions for the 
symptomatic treatment of HD, failed to result in any treatment recommendations of 
clinical relevance (Bonelli and Hofmann 2004; Bonelli and Wenning 2006; Mestre, et 
al. 2009). Nevertheless, in current clinical practice, numerous medications approved for 
other indications are used to treat patients with HD.  
 
 
1.4.1.1 Treatment of motor symptoms in HD 
Antidopaminergic therapy is frequently used in patients with HD to treat chorea and 
behavioral disturbances (van Duijn, et al. 2010). Although chorea could be regarded as 
a hallmark symptom in HD, it is probably the least disabling symptom of the disease. 
Nevertheless, patients with HD are frequently treated with typical and atypical 
neuroleptics, and dopamine-depleting agents to reduce chorea (Tyler, et al. 1996). 
There is insufficient evidence for the efficacy of neuroleptics in HD and such 
treatments are frequently associated with adverse reactions. As an example, moderate 
doses of haloperidol (<10 mg/day) was associated with a slight reduction of chorea, but 
at an expense of worsening gait and swallowing, and the acceleration of cognitive and 
functional decline (Barr, et al. 1988; Louis, et al. 1999; Moskowitz and Marder 2001; 
Schott, et al. 1989). Tetrabenazine is a monoamine-depleting agent causing dopamine 
and serotonin depletion by blocking vesicular transporters, and is currently the only 
drug approved for the treatment of chorea in HD. Tetrabenazine has been used for 
decades in Europe where its efficacy in HD was established in a number of limited 
clinical trials (Asher and Aminoff 1981; Swash, et al. 1972). A more recent pivotal 
double blind placebo controlled trial underlying the approval of tetrabenazine in North 
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America showed that the compound was efficacious in reducing chorea in patients with 
HD (TETRA-HD and The Huntington Study Group 2006). However, tetrabenazine 
also proved to worsen a number of exploratory outcome measures, such as the 
functional assessment, the Hamilton depression scale, the Epworth sleepiness scale, and 
the Stroop word reading test, once more confirming previous experience that the drug 
has disabling side effects in patients with HD.  
 
A number of drugs with glutamate antagonist properties have also been studied. 
Clinical trial results for the NMDA antagonist amantadine have been contradictory. 
The effects of the drug has either been reported to reduce the median maximal chorea 
and median rest chorea (Verhagen Metman, et al. 2002) or to be inefficacious in 
reducing chorea (O’Suilleabhain and Dewey 2003). In one of the largest clinical trials 
ever conducted in HD, riluzole treatment was not efficacious for HD (Landwehrmeyer, 
et al. 2007). Moreover, in a double blind clinical trial in more than 300 HD patients 
over more than two years, the glutamate antagonist remacemide was shown to be 
ineffective for the treatment of HD (Huntington Study Group 2001).  
 
In addition to antidopaminergic and antiglutamatergic drugs, other compounds have 
been investigated for the treatment of HD. All attempts to decrease chorea by 
influencing the GABAergic neurotransmission have failed (Foster, et al. 1983; Goetz, 
et al. 1990; Manyam, et al. 1987; Perry, et al. 1980; Perry, et al. 1982; Schoulson, et al. 
1978; Scigliano, et al. 1984; Symington, et al. 1978). Likewise, trials with other 
compounds such as cannabidiol, donepezil, fluoxetine, minocycline, piracetam, and 
trans-dyhidrolisuride have been investigated, and all showing negative results for 
efficacy outcome measures (Como, et al. 1997; Consroe, et al. 1991; Cubo, et al. 2006; 
Mateo and Gimenez-Roldan 1996; MINO and The Huntington Study Group 2004; 
Stocchi, et al. 1989). Negative results have also been obtained from clinical trials with 
ethyl-eicosapentaenoic acid, L-acetyl carnitine and creatine (Goetz, et al. 1990; Hersch, 
et al. 2006; The Huntington Study group 2007). 
 
A recent Cochrane review on the symptomatic treatment of HD concludes that no 
intervention has proven to provide efficient symptomatic improvement in HD (Mestre, 
et al. 2009). Although tetrabenazine is regarded as the anti-choreic medication with best 
available clinical evidence, only one trial has been of sufficient quality to be included in 
this systematic review. In addition, tetrabenazine was shown to worsen other clinical 
aspects of the patient important for their functional capacities and quality of life. No 
statement could thus be made regarding the effectiveness of available medication in 
other areas of symptomatic control of motor functions due to the lack of evidence 
extractable from clinical trials.  
 
 
1.4.1.2 Treatment of psychiatric symptoms in HD 
Non-motor symptoms in HD have not been adequately addressed in interventional 
studies. In fact, none of the selected trials in the recently published Cochrane review 
was primarily conducted to study therapeutic effects on the control of psychiatric 
symptoms or cognitive decline; symptoms which have a significant effect on the 
quality of life of HD patients and their families (Mestre, et al. 2009).  
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To date, there have been no controlled trials in HD addressing depression or anxiety as 
primary objectives, and as such no evidence based treatment recommendations can be 
given. For other psychiatric symptoms, results have also been inconsistent. Intervention 
trials to treat psychotic symptoms in HD have yielded negative results (Folstein, et al. 
1983; Jensen, et al. 1993; Mendez 1994; Oliver 1970; Watt and Seller 1993).  
 
Common behavioral symptoms in HD include irritability, aggression and impulsivity. 
Although neuroleptics such as haloperidol and olanzapine have been indicated to be 
useful in patients with irritability and aggressive outburst (Leonard, et al. 1975; 
Paleacu, et al. 2002; Squitieri, et al. 2001), none of these trials provide sufficient 
evidence for such treatment claims. Hypersexuality is an often-neglected symptom in 
patients with HD. There are however a few case reports on patients with HD treated 
with for example leuprolide, a gonadotropin-releasing hormone agonist, and 
medroxyprogesterone acetate to reduce exhibitionism and hypersexuality (Blass, et al. 
2001; Rich and Ovsiew 1994). Apathy as well as obsessive-compulsive behavioral 
disorder are very common features in patients with HD. Although the prevalence of 
such symptoms have been reported as high as 50-60% of patients, no pharmacotherapy 
has yet been studied for the treatment of these symptoms in HD (Anderson, et al. 2001; 
Pflanz, et al. 1991).  
 
 
1.4.1.3 Treatment of dementia in HD 
Dementia is a cardinal clinical feature in HD. Although it usually develops in the late 
stage of the disease, slight neuropsychological deficits are commonly found already in 
the premanifest stage (Tabrizi, et al. 2011). Patients with HD develop a type of 
dementia, which is mainly characterized by a dysexecutive syndrome including 
slowness of thoughts, impaired flexibility to gain newly acquired knowledge, impaired 
abstraction ability, apathy and altered personality (Zakzanis 1998). There have been 
few clinical trials addressing dementia in HD. None of these trials have provided 
evidence for efficacy. One compound showed to improve the mini-mental state 
examination, but failed to show any effect on dysexecutive syndrome in HD (Kieburtz, 
et al. 2010).  
 
 
 
1.4.2 Towards a novel treatment of HD 

It is well established that pharmacological treatments that modify dopaminergic 
function have impact on the clinical expression of HD. Levodopa treatment provokes 
chorea in HD; in fact, before genetic testing was available, levodopa challenge tests 
were used for diagnostic purposes in premanifest HD (Klawans, et al. 1980). Moreover, 
parkinsonian symptoms such as bradykinesia and hypokinesia in HD seem to be linked 
to dopaminergic impairment; such symptoms deteriorate by the use of neuroleptic 
medication (van Vugt, et al. 1997). Thus, it seems that symptoms of HD are modified 
by dopaminergic modulation. The challenge is to find an optimum, balancing the 
delicate state between hypo and hyper function. 
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Dopaminergic stabilizers belong to a novel class of compounds called dopidines. One 
such compound, pridopidine (ACR16), is in development for the treatment of HD.  The 
hallmark characteristics of compounds belonging to this class are their stabilizing 
properties on psychomotor functions in vivo. Dopaminergic stabilizers such as 
pridopidine exert their primary effects by binding to dopamine D2 receptors. Despite 
being D2 receptor antagonists, there are several important differences in the 
pharmacology of these compounds compared to the traditional D2 receptor antagonists 
(i.e. the neuroleptics). Dopaminergic stabilizers antagonize the actions of dopamine but, 
unlike lipophilic antagonists such as neuroleptics, lack the ability to stabilize the 
inactive state of the D2 receptor and also show fast dissociation kinetics like the more 
hydrophilic agonists do. Unlike the agonists, pridopidine has no detectable intrinsic 
activity, and unlike the antagonists, the compound displays much lower affinity for D2 
receptors, binding preferentially to the activated high affinity state of the D2 receptor 
(dopamine-bound D2 receptor) (Seeman, et al. 2009). In vitro, similar to agonists, 
pridopidine dissociates rapidly from D2 receptors. The D2 receptor antagonism of 
pridopidine is surmountable by dopamine and has a rapid recovery of D2 receptor 
mediated responses after washout (Dyhring, et al. 2010; Natesan, et al. 2006). Also, 
unlike other dopamine antagonists, pridopidine does not induce extrapyramidal side 
effects, hypokinesia or catalepsy (Pettersson, et al. 2010). In vivo, the stabilizing 
properties of pridopidine are demonstrated by the compound’s ability to attenuate 
amphetamine-induced hyperactivity (to a normal level) and to stimulate psychomotor 
activity in states of hypoactivity (Ponten, et al. 2010). There are also several additional 
pharmacological features, making the effects and mechanism of action intriguing. 
While pridopidine exerts clear effects on rat brain monoaminergic systems as 
manifested by e.g. dose dependent increases in extracellular levels of dopamine and 
noradrenaline, as well as increased tissue levels of dopamine metabolites in the frontal 
cortex, basal ganglia and limbic areas, the compound also induces a dose-dependent 
increase in mRNA levels of activity regulated cytoskeletal (Arc) protein in the brain. 
Arc is an early immediate gene regulated in response to synaptic NMDA receptor 
activation (Martin 2001) and is associated with LTP and cognitive functions. The 
glutamate modulating properties of pridopidine is also demonstrated by the ability to 
restore psychomotor activity in hypoglutamatergic conditions, such as after MK-801 
administration. Thus, the pharmacological activity of pridopidine extends beyond the 
dopaminergic system.   
 
It could be argued that the psychomotor stabilizing properties of the dopaminergic 
stabilizers may partly be explained by their preference for the active state of the DA D2 
receptor (Seeman, et al. 2009). Since presynaptic DA receptors (autoreceptors) have a 
shorter isoform than the postsynaptic DA receptors and DA has a higher affinity to the 
short isoform, it is likely that DA autoreceptors are preferentially targeted by 
pridopidine. Thus, at times when DA transmission is low pridopidine binds to active 
state presynaptic receptors, reducing presynaptic inhibition and thus removing the 
negative feedback on DA release, thereby increasing dopaminergic tone. In states when 
DA transmission is excessive, pridopidine would bind predominantly to the activated 
postsynaptic receptors, thus antagonizing the effect of DA neurotransmission 
(NeuroSearch 2009; Pontén, et al. 2009).  
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Pridopidine has undergone several clinical trials in HD. An initial 4-week phase II 
study conducted in Scandinavia demonstrated that pridopidine 45 mg was safe and well 
tolerated in patients with HD (Lundin, et al. 2010). In this fairly short duration trial, 
assessments for cognitive, motor and psychiatric symptoms indicated that pridopidine 
improved voluntary motor functions while chorea was not affected by treatment. Based 
on data from this trial a more extensive trial program was initiated. For these trials a 
modified motor score (mMS) was used as the primary endpoint. The mMS is a subscale 
of the broader UHDRS total motor score consisting of items relating to voluntary motor 
function. The MermaiHD study (Multinational EuRopean Multicentre ACR16 study In 
Huntington’s Disease) was a multicentre, multinational, randomized, double blind, 
parallel group, efficacy study comparing pridopidine 45 mg once daily or twice daily 
versus placebo, in a total of 437 patients studied for 6 months. In this study the primary 
endpoint was voluntary motor function, assessed by the mMS. Secondary and other 
endpoints included effects on global improvement, cognitive functions, behavior and 
symptoms of depression and anxiety as well as the safety and tolerability of the drug 
treatment over this extended period of time. In the MermaiHD study, pridopidine 45 
mg twice daily improved voluntary and involuntary motor function, although the 
primary study endpoint, the mMS, did not meet the pre-specified level of p<0.025. For 
the primary endpoint, the mMS, the p-value was 0.042. Although the mMS effect did 
not meet the criteria for statistical significance, the effects of pridopidine on the broader 
motor measure, the total motor score (TMS), was highly significant with a p-value of 
0.004 (Squitieri, et al. 2010). The TMS sub-items, dystonia and eye movements were 
significantly improved compared to placebo, while the scores for chorea were 
unchanged. Patients who received pridopidine in the highest dose group showed little 
progression of motor symptoms over these 6 months, while within the placebo group 
there was a strong correlation between the CAG repeat length and the rate of motor 
symptom progression, indicating a potential disease modifying effect of pridopidine. 
Concomitant treatment with neuroleptics, constituting approximately 40% of patients 
included in the study, did not change positive treatment effects of pridopidine or the 
side effects. 
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FIGURE 7 
TMS assessments in the MermaiHD study. A significant improvement in TMS (about 3 points) compared 
to placebo was seen after treatment with pridopidine 45 mg twice daily at 6 months. 
 
 
 
A similar study, the HART-Study (Huntington’s disease ACR16 Randomized Trial), 
was a randomized, double-blinded, placebo-controlled, phase IIb study, where 28 
clinical centers across the USA and Canada included 227 patients. Patients received 
pridopidine 10 mg, 22.5 mg or 45 mg twice daily or placebo, for 12 weeks. This study 
demonstrated a statistically significant dose-response relationship both for the primary 
endpoint mMS and for the broader secondary endpoint TMS. The magnitude of 
improvement for both mMS and TMS for the highest dose was similar to that seen in 
the MermaiHD study (NeuroSearch 2010).  
 
It can thus be concluded that pridopidine is the first compound to have a significant 
effect on voluntary motor symptoms and dystonia in patients with HD. Further studies 
are needed in order to investigate whether the compound also has disease modifying 
properties in HD.  
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2 AIMS 

 
The general objective of the present thesis was to investigate aspects of HD with 
relevance for developing a therapy. This was achieved by a number of experimental 
studies examining cerebral dopaminergic and metabolic functions in patients with HD 
and healthy individuals, and by reviewing and summarizing putative imaging 
biomarkers for studying the progression of HD. In particular, we aimed to investigate: 
 
I The extrastriatal dopamine D2 receptor integrity in patients with HD. 
 
II The regional cerebral glucose metabolism following pridopidine (ACR16)
 treatment in patients with HD. 
 
III The effects of ordopidine (ACR325) on [11C]raclopride and [11C]SCH23390 
 binding in human brain. 
 
In addition to these experimental studies, an overview of putative imaging biomarkers 
in HD was performed, providing guidance for the use of such biomarkers in 
therapeutic interventions aiming for disease modification. 
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3 MATERIALS AND METHODS: 

 
3.1 STUDY CONDUCT AND APPROVALS 

All experimental studies of this thesis were performed in accordance with the 
Declaration of Helsinki and with the approval of the Ethics and Radiation Safety 
Committees of the Karolinska University Hospital in Stockholm. In addition, the 
studies were in consistency with Good Clinical Practice, and Study II and Study III 
were conducted after obtained approved permission from the Swedish Medical 
Products Agency. Written informed consent was obtained from all subjects previous to 
the conduction of the investigations. PET studies were conducted according to written 
standard operational procedures at the Karolinska PET Centre. 
 
 
 
3.2 CLINICAL ASSESSMENTS 

 
3.2.1 Unified Huntington’s Disease Rating Scale (UHDRS) 

All patients included in the studies of this thesis were assessed with the UHDRS 
including motor, cognitive, behavioral and functional components. The motor 
assessments included oculomotor score (ocular pursuit, saccade initiation and velocity), 
the modified motor score (dysarthria and tongue protrusion, finger taps, 
pronate/supinate hands, Luria, rigidity, bradykinesia, dystonia), chorea, gait and 
retropulsion test. The cognitive assessment included the verbal fluency test, the symbol 
digit modalities test, and the Stroop interference test. The behavior assessment included 
scores for depressed mood, guilt, anxiety, suicidal thoughts, aggression, irritability, 
obsessional thinking, compulsive behavior and delusions, hallucinations and apathy. 
The functional assessment included scores for total functional capacity and 
independence (Huntington Study Group 1996). UHDRS training and rater certification 
was obtained before performing clinical assessments. 
 

3.2.2 MRI experimental procedure 

Subjects in the experimental studies of this thesis underwent MRI using a 1.5 Tesla 
Signa MRI system (General Electric, Milwaukee, WI, USA). Two examinations were 
carried out in one session, with duration of about 15 minutes, consisting of a T2-
weighted scan for clinical evaluation of pathology, and a T1-weighted scan for co-
registration with PET and delineation of anatomical brain regions or regions of interest 
(ROI).  
 
The T2-weighted sequence was a fast spin echo with the following parameters: 
repetition time 6000 ms, echo time 90 ms, 47 slices, slice thickness/gap 3 mm/0.125 
mm, matrix 256#256, field of view 260#195, and imaging time 2 minutes. The T1-
weighted sequence was a three-dimensional spoiled gradient recalled protocol with the 
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following settings: repetition time 21 ms, echo time 6 ms, flip angle 35°, 156 slices, 
thickness/gap 1 mm/0 mm, matrix 256#256, field of view 260#195, and imaging time 
10 minutes 49 seconds.  
 
 
3.2.3 PET experimental procedure  

PET examinations of Study I were performed using a high resolution research 
tomograph (HRRT, Siemens Molecular Imaging). This PET system has: an axial field 
of view of 25.2 cm, corresponding to 207 planes in the reconstructed images, a slice 
thickness of 1.218 mm and thus a pixel size of 1.218#1.218#1.218 mm3. The resolution 
has been improved by implementation of point spread function modeling. Using 
resolution modeling (OP-3D-OSEM-PSF), the in-plane resolution is 1.5 mm FWHM in 
the centre of the field of view and 2.4 mm at 10 cm off-centre directions (Varrone 
2009). 
 
Participants in Study I underwent one PET investigation with the radioligand 
[11C]FLB457. The radioligand was prepared from [11C]methyl triflate as previously 
described and according to standardized procedure at the PET Centre at the Karolinska 
University Hospital (Langer, et al. 1999). On average, 406 MBq, prepared in a 10 mL 
saline solution, was injected as a bolus for three seconds via a venous cannula 
positioned in the left arm, followed by a flush of 10 mL of saline solution. The specific 
radioactivity of the injected radioligand was on average 12414 Ci/mmol, corresponding 
to a mean injected mass of 0.49 µg (range: 0.16–1.28 µg). There were no differences in 
the injected mass between healthy individuals and patients with HD. Images were 
reconstructed for 19 time frames, equating to the total measurement duration of 87 
minutes following injection of the radiotracer.  
 
In Study II and III, PET investigations were performed with an ECAT Exact HR 47 
system (CTI/ Siemens, Knoxville, TN, USA) run in three-dimensional mode with dual-
energy windows scatter correction (Wienhard, et al. 1994). The transaxial resolution of 
the reconstructed images is 3.8 mm FWHM at the centre of the field of view, 4.5 mm 
FWHM tangentially, and 7.4 mm radially at 20 cm from the centre. The axial resolution 
is 4 mm FWHM at the centre and 6.8 mm at 20 cm from the centre. After correction for 
attenuation, random and scattered events, images were reconstructed using a Hann filter 
(2 mm FWHM). The reconstructed volume was displayed as 47 horizontal sections 
with a centre-to-centre distance of 3.125 mm and a pixel size of 2#2#2 mm3.  
 
Subjects in Study II underwent FDG PET scanning procedures at baseline and 
following two weeks of pridopidine treatment according to the standard operational 
procedures for [18F]FDG PET scans at the PET Center at the Karolinska University 
Hospital. The scans were performed with the subject’s eyes open in a dimly lit room 
and with minimal auditory stimulation. About 200 MBq [18F]FDG was injected as a 
bolus during three seconds through a venous cannula inserted in an antecubital vein, 
and subsequently flushed with 10 ml saline solution. PET emission scans constituting 
2#10 minute time frames were started at about 35 minutes following the administration 
of radioactivity.  
 



 47 

In Study III, the radiotracers were produced according to standard operational 
procedures at the PET Centre at the Karolinska University Hospital (SOP number, 
[11C]raclopride: QA PET-7015-2, [11C]SCH23390: 2003-06-10). The radioligands were 
given intravenously as a rapid bolus and the cannula was flushed with 10 ml saline. 
Radioactivity in brain was measured during 51 minutes following radiotracer injection. 
For each PET investigation about 300 MBq of radioactivity was injected. Ordopidine 
(ACR325) was measured in plasma using validated liquid chromatographic methods at 
a GLP certified laboratory (Quintiles AB, Uppsala, Sweden).  
 
 
3.2.3.1 Image processing 
After acquisition and reconstruction, the T1 MRI and PET images were transferred to 
Statistical Parametric Mapping 5 (SPM5) software for spatial normalization and co-
registration (Wellcome Trust Centre for Neuroimaging). For each subject, the MRI 
images were spatially normalized to position the anterior-posterior commissural line in 
the horizontal plane, and the inter-hemispheric plane orthogonal to the anterior-
posterior commissural plane. The reoriented T1 images were then resliced to 1 mm 
voxels in a matrix of 220#220#170.  
 
 
3.2.3.2 Regions of interest 
The delineation of all regions of interest (ROI) was made manually on the spatially 
normalized MRI images in three orthogonal projections using the Human Brain Atlas 
software (Roland and Zilles 1994). All ROIs were delineated for each hemisphere and 
for the entire anatomical definition. For the striatum (caudate nucleus and putamen), 
hippocampus, and temporal, parietal and occipital cortices, the ROIs were delineated on 
sagittal projections, while for the frontal regions (dorsolateral and dorsomedial 
prefrontal cortices, orbitofrontal cortex) and amygdala, the ROIs were delineated on 
coronal sections. For the anterior cingulate, insula and subregions of thalamus, the 
ROIs were delineated on horizontal projections. The thalamic subregions 
(centromedial, centrolateral, anteromedial, anterolateral, posterior) were delineated 
using a procedure described previously (Gilbert, et al. 2001). Finally, the cerebellum 
was delineated below the appearance of the petrosal bone in the horizontal projections. 
For cortical regions the initial delineation was schematic, also including surrounding 
cerebrospinal fluid and white matter. To define grey matter boundaries accurately, the 
MRI images were co-registered with the PET images and segmented into grey and 
white matter and cerebrospinal fluid. The initial crude cortical ROIs were then 
segmented using the grey matter mask in order to include with precision only pixels 
belonging to grey matter. All ROIs were superimposed on the PET images using 
predefined co-registration parameters. Radioactivity concentrations (nCi/mL) in each 
ROI were calculated for each sequential frame, corrected for radioactivity decay, and 
plotted versus time. 
 

 
3.2.3.3 Partial volume effect correction 
In Study I, a partial volume effect (PVE) correction method was used (Meltzer, et al. 
1990). In this method, the segmented grey matter and white matter masks are summed 
to obtain a brain tissue mask. The tissue mask is then convolved with the resolution of 
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the PET system, resulting in a correction map for the PET images. The original PET 
image is divided by the correction map, resulting in a PVE corrected PET image in 
which the count density represents activity per volume of brain tissue. The MRI 
segmentation procedure was performed with SPM5 and the PVE correction algorithm 
was implemented in Matlab 7.5. 
 
 
 
3.3 QUANTITATIVE ANALYSES  

 
3.3.1 Binding potential 

Binding potential (BP) is referring to the density of "available" receptors. BP is thus a 
combined measure that depends on receptor density and affinity. Throughout the thesis, 
BP refers to BPND, which represents the ratio at equilibrium of specifically bound 
radioligand to that of non-displaceable radioligand in tissue (Innis, et al. 2007). 
 

 
 
FIGURE 8 
Three-compartment model. C refers to radioligand concentration in: CP = plasma; Cf = free; Cb=specifically 
bound. The arrows indicate the rate constants between the different compartments. 
 
To quantify radioligand binding in the investigations of this thesis, the BP was 
calculated for each ROI. At tracer doses, BP is proportional to the ratio Bmax/KD, where 
Bmax is the total concentration of specific receptor binding sites and KD is the 
dissociation constant of the radioligand at equilibrium (Mintun, et al. 1984). The BP 
was calculated using the simplified reference tissue model (SRTM) (Lammertsma and 
Hume 1996). Cerebellum was used as reference tissue, serving as an indirect 
approximation of free and non-specifically bound radioligand concentration, due to its 
minute density of dopamine receptors (Hall, et al. 1996). All BPs were calculated using 
Matlab 7.4, where SRTM was implemented in a program designed by the author 
(M.E.), which has previously been validated (Rominger, et al. 2009). 
 
 
3.3.1.1 Simplified reference tissue model (SRTM) 
Different reference region models have been described and further developed for the 
quantification of the BP (Blomqvist, et al. 1989; Cunningham, et al. 1991; Gunn, et al. 
1997; Lammertsma and Hume 1996). These models rely on the existence of a tissue 
region with a negligible concentration of specific (saturable) binding sites. The 
simplified reference tissue model (SRTM) is a method, which allows calculations of 
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both binding potential and the delivery of the ligand relative to the reference region. 
However, this formulation involves several major assumptions; A reference region 
exists and can be defined; Labeled metabolites of the parent tracer do not cross the 
blood brain barrier; The degree of nonspecific binding and the ratio of the rate 
constants describing the exchange of tracer between plasma and the free/nonspecific 
compartment are the same in both tissue and reference regions; The exchange between 
free and specifically bound compartments is sufficiently fast for their composite 
behavior to be approximated by a single compartment.  
 
The principle advantages of SRTM are robustness and computational speed, which is 
due to the small number of parameters in the model; the original model containing four 
parameters was modified to contain only three parameters (Lammertsma and Hume 
1996). Nevertheless, during the iterative processes fitting the SRTM model to the 
experimental data, insecurity remains regarding local and global minima. It is therefore 
important to control the obtained results and to optimize the parameters of the model 
manually, which was perfomed in the studies of this thesis. In addition, the advantages 
of the SRTM are that there is no need for arterial cannulation and sampling or 
measurements of labeled metabolites.  
 
The time course of radioligand uptake in tissue of interest is expressed in terms of its 
uptake in the reference tissue, where it is assumed that the level of nonspecific binding 
is the same in both tissues. The compartment model illustrates the exchange of 
radioligand between plasma and reference tissue (1), and between plasma and free (2) 
and bound (3) compartment of the region of interest.  
 
(1) dCr(t)/dt = K$1 Cp(t) - k$2 Cr(t) 
  
(2) dCf(t)/dt = K1Cp(t) - k2 Cf(t) - k3 Cf(t) - k4 Cb(t) 
 
(3) dCb(t)/dt = k3Cf(t) – k4 Cb(t) 
 
Assuming that: 
 
Ct = Cf + Cb  
R1 = K1 / K$1  
 
Yielding:  
 
(4) K$1 / k$2 = K1  / k2 
 ! k$2 = k2 / R1 
 
By replacing k4 by k3 / BP: 
 
(BP = k3 / k4) 
 
Yielding an operational equation through a standard nonlinear regression analysis, 
fitting the concentrations, Ct and Cr as a function of time: 
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CP(t) = R1Cr(t) + [k2 – R1k2/(1 + BP)]Cr(t) * exp [-k2t/(1 + BP)] 
 
The expression thus includes the BP and is solved in a convolution manner and fitted to 
the data in a least squares sense. The SRTM was applied in Study I and III of this 
thesis. In addition, the graphical method Logan was used for validation of the BPs 
obtained with SRTM in the studies of this thesis, confirming these results (Logan, et al. 
1996). 
 
 
3.3.2 Quantification of the regional cerebral glucose metabolism 

The metabolic uptake of glucose by the brain is a two-stage process. The first step 
involves a carrier-mediated transport across the blood brain barrier. Glucose is then 
transported into the brain by a saturable facilitated mechanism (Culter and Sipe 1971; 
Fishman 1973). Fluoro-deoxy-glucose (FDG) is a glucose analog that competes with 
glucose for facilitated transport sites with hexokinase for phosphorylation to FDG-6-
PO4 (FDG-6-P). The underlying rationale for using this glucose analog is that while it is 
transported across the blood brain barrier and phosphorylated at rates proportional to 
those of normal glucose, it is not metabolized further, and since the resulting 
intracellular FDG-6-P is not transported through the cell membrane at any substantial 
rate, nor is the activity of the hydrolyzing enzyme (glucose-6-phosphatase) high enough 
to convert significant amounts of FDG-6-P back to FDG, the glucose analog is 
effectively trapped within the tissue (Hers 1957; Hers and De Duve 1950; Prasannan 
and Subrahmanyan 1968; Raggi, et al. 1960; Yudilevich and DeRose 1971; Phelps, et 
al. 1979; Sokoloff, et al. 1977). 
 
The regional cerebral metabolic rate of glucose (rCMRGlc) calculations in Study II are 
based on an adaptation and simplifications of a method originally developed for the in 
vitro measurement of glucose metabolism using tracer amounts of carbon 14-labeled 
deoxyglucose (Sokoloff, et al. 1977), which includes three rate constants, k1, k2, k3. 
This compartment model was later modified to provide regional measurements of 
glucose metabolism in vivo using [18F]FDG and PET (Phelps, et al. 1979). In this 
model, the initial method is modified to include the hydrolysis reaction mediated by a 
fourth rate constant (k4). However, these rate constants are not universal constants, but 
constants for a particular steady-state condition of rCMRGlc, measured in normal brain 
tissue. A model including rate constants would hence increase the sources of error in 
the calculation of rCMRGlc in pathological brain tissue, such as in HD.  
 
Initially, the distribution of FDG is highly dependent on cerebral blood flow for the 
unidirectional transport of FDG into cerebral tissue. However, because of the trapping 
of FDG-6-P, steady state appears after 40 to 50 minutes, and these factors are usually 
then no longer significant. Thus, at this point the uptake of radioactivity reflects 
rCMRGlc since the tissue concentration is dominated by the intracellular FDG-6-P. 
Hence, the initial model excluding the hydrolyzation process can be used, assuming 
that at times after 45 minutes, the measured tissue isotope concentration arises solely 
from FDG-6-P. However, the need to obtain an accurate measure of the k values, 
regionally and for each individual study, imposes great practical and technical 
demands. Hence, an alternative approach has been sought, replacing the problem of 
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"rate constant" measurement with the visualization in terms of a tissue "uptake" 
measurement (Rhodes, et al. 1983).  
 
In Study II, the simplistic model was used, where all the k values are excluded. The rate 
of cerebral glucose metabolism (CMRGlc) was calculated using the measured tissue 
concentration of tracer (Ci*(T)) at a time T, multiplied by the plasma glucose 
concentration (Cp), divided by lumped constant (LC) (Huang, et al. 1980) and the 
integral of the input function (Cp*(t)) from time 0 to T (Rhodes, et al. 1983).  
 
 
 

 
 
 
 
 
 
 
 

 
The Cp*(t) values were obtained from a population based input function (Takikawa, et 
al. 1993), using a single venous blood sample obtained at 45 minutes post injection. To 
obtain an equidistant time scale, the input function was interpolated, maintaining values 
with an interval of 15 seconds from time 0 to T. All calculations were performed using 
custom-made Matlab programs written by the author M.E., which have been validated 
in a recent HD study (Squitieri, et al. 2011).  
 
Implicitly, this method assumes that a) the tissue concentration of FDG activity is 
composed solely of FDG-6-P, b) that the proportion of FDG-6-P hydrolyzed back to 
FDG during the course of the study is small, and c) that the plasma concentration of 
FDG [Cp*(t)] equilibrates instantaneously with the extravascular tissue precursor pool. 
The initial model was developed including the rate constants to “fine tune” this 
simplistic equation, because of the presence of nonphosphorylated tissue FDG, and the 
fact that it is the extravascular concentration of FDG and not the plasma concentration 
that determines the availability of the substrate for phosphorylation (Sokoloff, et al. 
1977). This model (including the rate constants) has been well established for use in 
normal physiological states (Huang, et al. 1981; Huang, et al. 1980; Kuhl, et al. 1982; 
Mazziotta, et al. 1987; Phelps, et al. 1979; Phelps, et al. 1982). 
 
Provided a), b), and c), the calculation of CMRGlc becomes less dependent on the use 
of accurate k values when steady state is reached, which is the reason why CMRGlc is 
measured after 45 minutes post injection. In addition, regarding that the k values are 
based on studies from normal subjects, including these values would not be reasonable. 
The lumped constant (LC), however, remains as an uncertain parameter in the 
calculation of CMRGlc, since the LC value (0.42) used in these equations is quoted for 
normal brains, and since LC changes for different cerebral tissues in various 
physiological and pathological states. However, owing to that our study investigated 
the same individuals before and after treatment, thus being their own references, these 

                          T 

CMRGlc = Ci*(T)Cp / [LC #Cp*(t)dt] 

                         0 
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parameters become less important. Hence, any error of this kind will be a systematic 
error, which will be self-corrected, calculating the change in CMRGlc in the 
investigated patients. 
 
 
 
3.4 STATISTICAL ANALYSIS 

 
3.4.1 Univariate statistical analysis 

In Study I, the mean differences between patients with HD and controls were assessed 
by Student’s t-test. No correction was made for multiple comparisons. Correlations 
analyses in all experimental studies of the thesis were carried out using Pearson’s 
correlation coefficient (r).  
 
 
3.4.2 Multivariate statistical analysis 

The multivariate statistical methods Principal Component Analysis (PCA) (Eriksson, et 
al. 2006a; Pearson 1901) and Partial Least Squares (PLS) (Clark and Cramer III 1993; 
Eriksson, et al. 2006b) where used in Study I and II of this thesis. In Study I, PCA and 
PLS models were generated describing covariance patterns of receptor binding data in 
patients and controls. In Study II, rCMRGlc data in patients before and after treatment 
and their relationship to clinical assessments were described by means of PCA.  
 
PCA is most commonly interpreted with mainly two closely related plots, the score-plot 
and the loading-plot. The score plot shows the projection of subjects onto the principal 
components. Subjects located close to each other are similar with respect to the 
measured data, while subjects located on the opposite side of origo have opposite 
characteristics and if they are located in a perpendicular direction to each other (origo is 
the reference) have independent characteristics. Thus, a score plot is used to find 
clusters or patterns in the distribution of the subjects in the model. Loadings are derived 
as the eigen-vectors of the correlation matrix sorted by the eigen-values. Loadings 
reveal the inherent correlation structure present in the data. Variables located close to 
each other have a positive correlation and variables located on the opposite direction of 
origo (approximately fitting a straight line) have a negative correlation. If lines from 
two different variables that cross each other in origo have an approximate 
perpendicular angle they are uncorrelated and linearly independent. The scores and 
loading plots are tightly connected and can be approximately interpreted by overlaying 
the graphs. 
 
PCA is a method that preserves as much (linear) information as possible in the data 
while projecting the observations onto a lower dimensionality (usually 2-3 principal 
components), reducing noise and making it possible to both investigate clusters among 
the studied subjects as well as variable patterns and correlations. The first principal 
component (PC) will always contain the largest amount of variation (i.e. information) 
among the PCs and all subsequently derived PCs will describe less of the total variation 
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in data. All derived PCs are orthogonal to each other (i.e. only containing variance not 
taken into account of by previously derived PCs), which also implies that they are 
linearly independent. PCA is also sensitive for strong outliers, which should be 
removed in the analysis process. However, a removed subject can always be predicted 
into the final model, thus being visualized while not having an influence on the model.  
 
Partial Least Squares analysis (PLS) is a multivariate method similar to PCA. However, 
in a PLS two sets of data (dependent and independent variables) are related. Instead of 
maximizing all the variation in the first PCs, a PLS maximizes the variation that relates 
Y (dependent) with X (independent) variables. Thus the PCs will not maximize the 
variation in X but will maximize the correlation to Y. Often the Y variable is set to 
discriminate between groups of subjects.  
 
The statistical significance of PCA models was assessed using the cross-validation 
procedure (Jackson 1991; Wold 1978). That is, subjects were divided in seven 
approximately equally sized groups (i.e. all subjects belongs to exactly one cross-
validation group) and calculations were performed by leave one group out. Outliers can 
be detected by using a 95% confidence region according to Hotelling's T2 (Hotelling 
1931) and thus be removed from the model. However, this was not the case for any of 
the investigated studies. All multivariate statistical analyses were carried out using the 
software SIMCA-P+, version 12 (Umetrics AB, Umeå, Sweden). 
 
 
3.4.3 Statistical Parametric Mapping (SPM) 

Statistical Parametric Mapping (SPM) is a useful tool in the standardization of 
measurement and data analysis in functional neuroimaging. Generally, its concept is 
similar to the ROI technique with the difference that the regions of interest are voxels in 
a standardized stereotaxic room. This software not only spatially normalizes PET 
images to the standardized stereotaxic atlas (Talairach and Tournoux 1988), but can in 
addition perform statistical analyses on study groups on a voxel-by-voxel basis 
(Friston, et al. 1991; Friston, et al. 1995), which allows for reliable and objective image 
handling that could improve inter-study variability due to the analytical process itself. 
The use of SPM for automated voxel-based quantification usually includes the 
comparison of individual PET data with a group of normal controls and utilizes a 
standard morphological template (‘‘standard brain’’) for the visualization of results. 
However, alterations of brain structure such as focal atrophy in the course of 
neurodegenerative diseases such as HD, can lead to misinterpretation of functional 
effects caused by their lesions. Thus, the ‘‘standard brain’’ template is of limited 
applicability in many cases of pathological change. The individual morphological 
information gained by MRI images is of some helps to reach a better understanding of 
the correlation between function and individual morphology (Otte and Halsband 2006). 
 
Statistical Parametric Mapping thus enables all the parametric images to be transformed 
into the standard stereotaxic space of Talairach and Tournoux (Talairach and Tournoux 
1988) and, consequently, allows comparisons to be made across scan datasets in 
analogous voxel regions of the brain volume and, combining datasets from different 
subjects, also allows between-group and within-group analyses. This method was used 
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in Study II investigating the effects of pridopidine in patients with HD. To localize 
changes in rCMRGlc at a voxel level, spatial processing and statistical analysis of the 
PET data was conducted using SPM (SPM8, Institute of Neurology, University 
College, London) implemented in Matlab (Mathworks Inc, USA). Images were 
transformed from MNI anatomical space into standard anatomical space (Talairach and 
Tournoux 1988), using a previously described method (Lancaster, et al. 2007), allowing 
the comparison to be made across scan datasets in analogous voxel regions of the brain 
volume, as well as combining datasets from different subjects, and thus between-group 
and within-group analyses. The spatially normalized images were smoothened using an 
8 mm FWHM isotropic Gaussian kernel to increase the signal to noise ratio. To reduce 
intersubject variability, rCMRGlc values were ratio-normalized to white matter. 
Normalization was thus done by dividing each voxel with white matter signal. 
 
In Study II, a between-group comparison was made between baseline and post 
treatment investigations. The resulting images were analyzed using paired t-test. Two 
different masks were used to evaluate cortical and subcortical structures. The mask for 
the delineation of cortical structures was based on a cutoff value applied to the mean 
image of all scans. Due to low metabolism in subcortical structures, a mask was created 
through images from Study I using the radioligand [11C]FLB457 on six of the patients 
included in Study II. Using this dopamine D2 receptor specific high affinity ligand, a 
mask delineating thalamus and striatum was created. Applying these masks, the images 
were analyzed using a paired t-test. Uncorrected significance threshold was set at 
p<0.001 for voxel analysis. For the analysis of the cerebral cortex, a threshold of 300 
continuous voxels was set. For subcortical structure clusters, the threshold was set to 50 
continuous voxels. Clusters with a p-value corrected for multiple comparisons of 
p%0.05 on both peak voxel level and cluster level were considered significant. 
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4 RESULTS AND DISCUSSION 

 
4.1 STUDY I – EXTRASTRIATAL DOPAMINE D2 RECEPTORS ARE WELL 

PRESERVED IN HD 

HD is primarily affecting the MSNs in the striatum. The integrity of striatal dopamine 
D2 receptors has been extensively studied in HD. However, little is known about the 
integrity of these receptors outside the striatum. To investigate extrastriatal D2 receptor 
densities, patients with HD and age-matched healthy individuals underwent PET 
imaging by a high resolution PET camera system, HRRT, using the high affinity D2 
receptor radiotracer [11C]FLB457. This study shows that D2 receptor densities extrinsic 
to the striatum are well preserved in patients with early to mid-stage HD. Given the 
importance of dopamine and D2 receptor function for normal motor and behavioral 
activity, and given that the dopaminergic stabilizers bind to the D2 receptor to exert 
their function, the finding of relative preservation of extrastriatal D2 receptor densities 
may have implications for potential therapeutic interventions in HD. 
 

                 
FIGURE 9 
Parametric PET images showing [11C]FLB457 binding  in a patient with HD and a healthy control.  
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4.2 STUDY II – PRIDOPIDINE ALTERS CEREBRAL METABOLIC 

ACTIVITY IN HD 

The dopaminergic stabilizer, pridopidine (ACR16), is currently under development for 
the treatment of HD. Pridopidine belongs to a novel class of compounds modulating 
psychomotor activity by affecting dopaminergic and glutamatergic activity. Although 
the compound has undergone several clinical trials, the mechanisms underlying its 
actions in HD remain elusive. While it is known from preclinical experiments that the 
compound state dependently affects psychomotor function, the global effects on 
cerebral function caused by the compound in patients with HD has not been previously 
investigated. In this study, it was found that pridopidine treatment resulted in increased 
cerebral metabolic activity in regions previously described as important for the 
compensatory mechanism in HD. In addition, pridopidine treatment markedly 
strengthened the correlation between motor and cognitive symptoms and the cerebral 
metabolic activity.  
 
 

 

FIGURE 10 
Statistical Parametric Mapping showing metabolic changes in the brain in response to pridopidine 
treatment in patients with HD. A) Changes in precuneus and left middle frontal gyrus. B) Changes in left 
superior temporal gyrus. C) Changes in left mediodorsal nucleus of thalamus. Left mediodorsal nucleus of 
thalamus and precuneus are previously described as regions important for mediating compensatory 
mechanisms in HD 



 57 

           
   
FIGURE 11 
Significant two-component model obtained using Principal Component Analysis demonstrating that the 
correlations between clinical motor and cognitive scores are strengthened after two weeks of pridopidine 
treatment in patients with HD. 

Esmaeilzadeh et al. Cerebral metabolism following pridopidine treatment in HD 
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4.3 STUDY III – DOPAMINERGIC STABILIZERS, A BALANCING 
INTERACTION BETWEEN NEUROTRANSMITTER SYSTEMS? 

Ordopidine (ACR325) belongs to a novel class of modulators of dopaminergic 
functions with similar pharmacology as pridopidine. The primary mechanism of action 
of ordopidine is its binding to the dopamine D2 receptor. Although ordopidine does not 
interact with any other neuroreceptors, preclinical studies demonstrate that the 
compound induces synaptic glutamatergic activation in the cortex and the basal ganglia. 
To further study the effects of ordopidine on dopamine D1 and D2 receptor availability 
in vivo, healthy subjects were investigated with PET using [11C]raclopride (n=6) and 
[11C]SCH23390 (n=18) at baseline and following single oral doses of ordopidine. A 
single dose of 75 mg ordopidine produced a mild reduction in striatal D2 receptor 
availability; a finding in accordance with the preclinical pharmacology of the 
compound. However, ordopidine administration also induced marked and rapid 
changes in striatal and cortical dopamine D1 receptor availability, increases or 
decreases in [11C]SCH23390 binding potential that were well beyond the normal test-
retest variability of this radiotracer. The marked changes in dopamine D1 receptor 
availability could be a result of an indirect effect on this receptor post treatment. Given 
the well-described interactions of dopamine D1 receptor with NMDA function, this 
finding may provide an explanation for the glutamate enhancing properties of the 
dopaminergic stabilizers. 
 
 

 

 
 
FIGURE 12 
Parametric PET images superimposed on MRI scans showing D1 receptor binding in a subject at baseline 
(upper) and two hours after (lower) a single dose of 25 mg ordopidine. 
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4.4 APPENDIX – TOWARDS A NOVEL TREATMENT FOR HD; IMAGING 
BIOMARKERS SUITABLE FOR POTENTIAL DISEASE MODIFYING 
THERAPIES IN HD 

HD is unique among neurodegenerative disorders, since it can be genetically confirmed 
before the symptoms become clinically apparent. As such, it opens possibilities to study 
disease processes before clinical symptoms become manifest and also to tailor a 
therapy aimed at preventing or delaying phenoconversion. Data from previous studies 
suggest that the cerebral abnormalities and pathophysiological changes in HD start 
years before clinical symptoms become obvious. Hence, there is a need to identify 
biomarkers that can accurately monitor aspects of the progression of relevant pathology 
in various stages of HD, as well as to study the pharmacodynamic responses to 
therapeutic intervention.  
 
By systematically reviewing previous imaging publications in HD, it was concluded 
that a number of screening tools might be more useful for following the progression of 
the disease during different stages.  
 

 
FIGURE 13 
Schematic overview of putative imaging biomarkers during different stages of HD. 
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In the review it is concluded that during the early premanifest stage of HD the HDRP 
network expression, glucose metabolism in the striatum, and striatal D2 receptor 
binding seem to be relatively sensitive tools. Conversely, closer to phenoconversion 
thalamic and/or caudate glucose metabolism are more suitable, whereas whole striatal 
measures and HDRP seem to be less sensitive to disease progression in this stage. The 
observation that striatal dopamine D2 receptor integrity decreases steadily throughout 
the premanifest period makes it suitable as a biomarker during this phase. Although 
MRI techniques have provided several ways of following the progression of the 
disease, such techniques need to be combined with PET early on in the premanifest 
stage.  
 
There is a need for highly sensitive multimodal imaging techniques, which provide 
objective and standardized tools for the pathophysiological process, with sensitive 
readout in response to therapeutic interventions. To achieve these aims, there is a need 
for step up efforts and research in premanifest HD gene carriers in early ages. 
Collaborative projects involving research groups using various imaging modalities 
including PET are required in order to tailor a multimodal imaging biomarker suitable 
for potential disease modifying therapy for individuals with HD.  
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5 METHODOLOGICAL CONSIDERATIONS  

 
A general consideration of the studies investigating the binding potentials is that BP 
represents the product of receptor density and apparent affinity (Mintun, et al. 1984) 
and it is thus not possible to differentiate between these two parameters. Another 
consideration with regard to the investigations of the D2 receptor BP (Study I and III) is 
the interference of endogenous DA and thus the accuracy of these measurements. 
Although receptor density has shown to account for most of the interindividual 
variability in BP for both radioligands (Farde, et al. 1995; Olsson, et al. 2004), 
[11C]raclopride and [11C]FLB457 are both radioligands sensitive to endogenous DA 
(Aalto, et al. 2005; Hagelberg, et al. 2004; Laruelle 2000; Montgomery, et al. 2007). 
Hence, it cannot be excluded that the present findings can be attributed also to 
differences in endogenous DA levels. Contrarily, the DA D1 receptor does not seem to 
be much affected by endogenous DA levels (Abi-Dargham, et al. 1999; Chou, et al. 
1999). 
 
The findings of Study I, where no statistical significant differences were found in 
extrastriatal dopamine D2 receptor integrity in patients with HD compared to controls, 
might be affected by the limited amount of subjects investigated, thus being an issue of 
statistical power. While BPs were numerically slightly lower in patients with HD, the 
differences did not reach statistical significance. Considering the standard deviation of 
the measurement and the magnitude of the possible difference in patients with HD 
versus controls, a sample size of about 30 subjects would have been needed to reach 
statistical significance. In addition, in this study, we decided to include also striatal 
regions in the analysis. Due to high receptor density in these regions in healthy 
individuals, no pseudo-equilibrium is reached during acquisition time. Due to the lower 
receptor densities in the striatum in patients with HD, it can be assumed that the SRTM 
model is more correct in estimating BPs relative to healthy controls during the same 
acquisition time. Although there have been methodological concerns in using 
[11C]FLB457 to measure striatal D2 density in healthy subjects, the appropriateness of 
the measurements in patients with HD was demonstrated by the correlation to clinical 
measures such as chorea in the patients and were also shown to be in reasonable 
agreement with previous studies on striatal D2 densities using [11C]raclopride. 
 
It might be of concern that patients with HD have widespread atrophy, making the 
clustering in the SPM (Study II) less reliable. To reduce this interference, we chose not 
to use the MRI template of the software, but rather a template made out of the 
individual MRIs of the investigated patients. More importantly, using the same subjects 
before and after treatment and being merely interested in the relative changes between 
these two conditions, the methodological consideration related to atrophy correction is 
managed. The same argument could be used for the normalization process, using the 
white matter values to reduce intersubject variability in this study. The strength of this 
study has thus been that the patients are their own controls, making considerations of 
this kind negligible.   
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6 CONCLUSIVE REMARKS AND FUTURE 
PERSPECTIVES 

 
Huntington’s disease is a devastating genetic disorder, causing considerable suffering 
to patients and their relatives. Until today, no effective therapeutic possibilities have 
been available. Nevertheless, patients with HD are frequently treated with medications 
approved for other indications, some which may even exacerbate pathology and worsen 
disease progression. Thus, there is a critical need for better evidence-based treatment 
for HD. 
 
Dopaminergic stabilizers like pridopidine have a potential to open the way for a novel 
treatment of this devastating disorder. In this thesis three major findings supporting the 
role of such compounds are presented; Firstly, the target to which the compound binds 
to exert its pharmacological effects are well preserved in extrastriatal regions in patients 
with HD; Secondly, the cerebral metabolic activity is modified post treatment, in 
particular in regions important for the compensatory mechanisms occurring before 
phenoconversion in the premanifest stage of the disease; Thirdly, the particular 
interaction of such compounds with their primary target, the dopamine D2 receptor, 
allows for a more flexible balancing between the D1 and D2 receptor activity, thus 
without resulting in the detrimental side effects seen with other D2 antagonizing 
compounds. The dopaminergic stabilizers seem to induce an indirect effect on the D1 
receptor in humans in vivo, which is in line with observations from preclinical 
pharmacological studies. Considering the interactions between NMDA and D1 
receptors, it is possible that this indirect interaction with the D1 receptor might explain 
the glutamate strengthening properties of such compounds as well as their propensity to 
restore psychomotor activity in the hypoglutamatergic state. Hence, an essential 
mechanism of the dopaminergic stabilizers might possibly be a restoration of the 
balancing act between the dopaminergic and glutamatergic systems. Interestingly, the 
indirect effects on D1 receptors seem not unidirectional, but might rather be condition 
dependent. A similar phenomenon is found in studies investigating the correlation 
between D1 receptor availability and cognitive performance, where improvements in 
performance are associated with bidirectional changes in receptor availability. These 
effects might indicate that optimal brain functioning requires a flexible system allowing 
for brain plasticity (possibly through an interaction between D1 and NMDA receptors), 
rather than being optimized by a unidirectional effect on the dopaminergic system.  
 
Imaging techniques such as PET have the potential to identify biomarkers and targets 
for potential therapies for diseases such as HD. In addition, as demonstrated in Study II 
of this thesis, using multivariate statistical analysis, PET imaging can provide a means 
of evaluating new compounds in a very cost-effective way to distinguish the clinical 
relevance of the compound before entering resource consuming clinical trials. 
Dopamine receptors as well as brain metabolic activity have shown to be disturbed in 
HD years prior to disease manifestation. Using PET imaging, these biomarkers can be 
monitored for disease progression, being a guide for when to introduce potential future 
disease modifying interventions, hopefully making it possible to prevent or delay 
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phenoconversion. Although HD is a relatively rare disease, it may serve as a model for 
other neurodegenerative diseases, making it interesting to further investigate the effects 
of dopaminergic stabilizers not only in the premanifest stage of the disease but also in 
other neuropsychiatric and neurodegenerative diseases. 
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