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ABSTRACT 

The overall objective of this thesis is to characterize the mechanisms involved in the 
generation of locomotor activity in the spinal cord. To this end, we initially used the 
lamprey spinal cord to determine the transmitter phenotype of commissural interneurons 
(CINs). In addition, we developed a novel preparation of the brainstem-spinal cord of the 
adult zebrafish and used it to determine the mechanisms of locomotor pattern generation. 
The results obtained show: 

(1) That the left–right alternation is maintained because commissural glycinergic 
interneurons outnumber the glutamatergic ones. It was also shown that CINs display a 
graded rostrocaudal distribution and are immunoreactive to both glycine and glutamate. 
The difference in the proportion of inhibitory and excitatory CINs represents an anatomical 
substrate that ensures the predominance of alternating activity during locomotion. 

(2) That adult zebrafish spinal cord can produce locomotor activity and be used to study the 
organization of the locomotor circuitry. In this study we developed both a semi-intact and 
an in vitro preparation of the juvenile/adult zebrafish spinal cord that are able to generate a 
rhythmic motor pattern with characteristics similar to swimming in intact animals. In the in 
vitro preparation, spinal cord neurons were accessible for patch-clamp recordings to study 
their pattern of activation during fictive locomotion.  

(3) That 5-HT is released within the locomotor circuitry and acts as an intrinsic modulator 
to set the baseline locomotor activity. 5-HT decreases the frequency of the locomotor 
rhythm by increasing the mid-cycle inhibition and delaying the onset of the following on-
phase excitation. Thus endogenous 5-HT sets the balance between excitation and inhibition 
and set the baseline locomotor frequency. 

(4) That a brief stimulation of descending inputs at a defined region located at the first 
segments of the spinal cord induces long-lasting coordinated swimming activity. The burst 
amplitude, frequency and duration of the episode can increase by changing the frequency 
and strength of the stimulus pulses. The descending inputs seems to act as a switch to turn 
on the activity of the spinal locomotor network in the caudal spinal cord that relies mostly 
on iontropic glutamate receptors. 

In summary, our results provide anatomical evidence underlying the dominance of 
reciprocal inhibition over excitation during locomotion. We also showed that our newly 
developed in vitro adult zebrafish spinal cord preparation can be used to study spinal 
circuitry underlying locomotion. 

 

Key words: lamprey, spinal cord, CPG, glycine, glutamate, GABA, zebrafish, NMDA, 
strychnine 
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1  INTRODUCTION 

1.1  Central pattern generator: a historical perspective 

Motor tasks are the key element of the behavioral repertoire of all animals (Grillner, 1975; 
Orlovsky et al., 1999). Although animals exhibit complex motor activity, some of the 
simplest forms of motor behavior require the integrated activity of a diverse set of neural 
networks. These behaviors include breathing, mastication, scratching and locomotion that 
are well studied in both ‘vertebrate’ and ‘invertebrate’ model systems (Roberts et al., 1981; 
Keifer and Stein, 1983; Ramirez and Richter, 1996; Roberts et al., 1998; Marder and 
Bucher, 2001; Grillner, 2003; Marder et al., 2005; Grillner, 2006; Kiehn, 2006; Lund and 
Kolta, 2006; McDearmid and Drapeau, 2006; Fetcho et al., 2008; Roberts et al., 2008). 

There have been long standing efforts to understand how the nervous system is 
organized and functions to perform various motor behaviors. At the beginning of the last 
century, Sherrington (Sherrington, 1906) published the monograph ‘The Integrative Action 
of Nervous System’ where he outlined the idea that complex motor behaviors, including 
locomotion, were generated by chained reflexes. Later on, Brown (Brown, 1911) 
selectively eliminated virtually all sensory inputs and was able to show that animals so 
treated could still produce alternation between a flexor and an extensor muscle around one 
joint. These experiments led to the first explicit proposal for a centrally generated rhythmic 
activity (Brown, 1914). In contrast to the chained reflex model proposed by Sherrington, 
Brown proposed that the circuits within the spinal cord could produce the motor patterns 
for walking in the complete absence of sensory feedback. His ‘half-center’ model is based 
on reciprocal inhibition between two flexor and extensor networks. Subsequently, Brown’s 
initial concept has been generalized to give the definition of a CPG; a network of neurons 
that is capable of generating an organized pattern of motor activity without any inputs from 
sensory afferents (Grillner and Zangger, 1979). For many years research was aimed at 
either supporting whether either chains of reflexes or central oscillators produced rhythmic 
movements. The central oscillators theory stood out when Wilson (Wilson, 1961) showed 
the most compelling evidence that the isolated CNS of the locust was capable of producing 
rhythmical motor pattern. Using deafferented cats, it was shown for the first time that the 
CPG responsible for hindlimb locomotion is localized in lumber spinal cord that maintains 
both rhythm and coordinated activity in multiple joints required for locomotion (Grillner 
and Zangger, 1979). They also demonstrated that despite the absence of sensory feedback 
neither locomotion nor coordination between different muscle groups is disrupted.  
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The concept of central pattern generation for locomotion for vertebrates has been further 
corroborated in spinal dogfish (Grillner et al., 1976) and in vitro lamprey spinal cord 
preparations (Cohen and Wallen, 1980; Poon, 1980), where it has been shown that 
locomotor activity can be generated in the absence of any higher or afferent inputs. Indeed, 
by isolating the lamprey spinal cord in vitro and applying pharmacological or electrical 
stimulation of the CPG it has been possible to generate rhythmical output in the ventral 
roots. The recorded motor pattern is known as fictive locomotion, which is the neural 
correlate of locomotion (Poon, 1980; Wallen and Williams, 1984). Today, many 
preparations have been shown to generate ‘fictive motor patterns’ that would normally 
drive muscle movements. Some of these include: the cat (Deliagina et al., 1981) the 
Xenopus tadpole (Roberts et al., 1981), the neonatal mouse and rat (Cazalets et al., 1995; 
Kiehn, 2006), the salamander (Ryczko et al.) and larval zebrafish (Masino and Fetcho, 
2005; McDearmid and Drapeau, 2006). 

In my thesis I will describe a new model system to study fictive locomotion, which is 
developed exclusively in our laboratory. 

1.2  The swimming CPG  

Studies in lamprey, Xenopus and zebrafish have provided key insights into the 
organization and synaptic connections that produce swimming movements (Dale and 
Kuenzi, 1997; Roberts et al., 1998; Grillner, 2003; McDearmid and Drapeau, 2006; Fetcho 
and McLean, 2010; Gabriel et al., 2010). While the swimming movement is much simpler 
and differs markedly from complex limb-dependent motor behavior seen in terrestrial 
vertebrates, the fundamental underlying organization and neuronal makeup of the 
locomotor system is remarkably conserved (Grillner, 2003; Kiehn, 2006). Because of this, 
better understanding of the functional organization of the swimming CPG will give us 
important clues about the network structure of the locomotor CPG in higher vertebrates. 

Here I will give a brief overview regarding the motor pattern and synaptic interactions 
of some of the vertebrate model systems that are being used to study the locomotor CPG. I 
will describe briefly first the lamprey whose central nervous system is regarded as a 
vertebrate prototype (Grillner, 2003) and as I go along I will draw comparisons of motor 
patterns between different vertebrates with special emphasis on two other swimming 
CPGs, namely the Xenopus tadpole and the zebrafish. The idea is to show how 
phylogenetically different models show remarkable similarity in terms of cellular and 
motor pattern and also to provide the foundation for future studies on the cellular 
architecture of the spinal locomotor network in adult zebrafish.  
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1.2.1  The lamprey 

Lampreys are jawless vertebrates known as cyclostomes that diverged from the main 
evolutionary vertebrate line around 450 million years before the appearance of ordinary 
fish. They have since then changed comparatively little during evolution. They share 
numerous anatomical features with higher vertebrates like basal ganglia, brainstem, spinal 
cord, sensory organs, and motor apparatus in many respects (Rovainen, 1979; 
Nieuwenhuys et al., 1998; Jones et al., 2009). The functional and cellular organization of 
the locomotor control mechanisms are also similar (Orlovsky et al., 1999). Lamprey 
provides good opportunities for studying neural networks controlling different motor 
functions. They have fewer nerve cells compared to higher vertebrates (Rovainen, 1979); 
and the spinal cord can be maintained in vitro for several days and generate the rhythmic 
pattern underlying locomotion (Cohen and Wallen, 1980; Wallen and Williams, 1984; 
Grillner and Wallen, 2002), In addition the fairly good transparency allows for 
identification of individual neurons for morphological (Ohta et al., 1991; Buchanan, 2001), 
electrophysiological (Buchanan, 1982, 2001; Cangiano and Grillner, 2003, 2005; Biro et 
al., 2008; Kyriakatos et al., 2009) and histochemical (Shupliakov et al., 1996; Pombal et 
al., 2003; Viloria et al., 2008) analysis.  

The lamprey swims by producing a mechanical wave that is transmitted along the body 
with a frequency range from 0.1 to 10 Hz (Brodin et al., 1985; Grillner, 2003). Locomotion 
can be initiated by stimulation of a diencephalic (DLR) and a mesopontine locomotor 
regions (MLR) (El Manira et al., 1997; Sirota et al., 2000; Dubuc et al., 2008; Menard and 
Grillner, 2008). These two areas project independently and monosynaptically to 
reticulospinal neurons which in turn activate the spinal CPG to produce locomotor activity 
(Grillner, 2003). 

1.2.2  Classes of neurons in the lamprey spinal cord 

The lamprey spinal cord possess uniquely identifiable (Buchanan, 2001) classes of spinal 
neurons defined on the basis of morphological and physiological characteristics such as 
axonal projection, placement and size of the soma, and synaptic properties. These are 
motoneurons (MNs), lateral interneurons (LINs), contralateral and caudally projecting 
interneurons (CCINs), excitatory interneurons (EINs), commissural interneurons (CINs), 
giant interneurons (GIs), sensory dorsal cells (DCs) and stretch or mechanosensitive edge 
cells (ECs). The number of MNs vary from species to species but on an average there is 
around 100/hemisegment (Rovainen and Dill, 1984). While MNs may form collateral 
connections within the spinal cord (Buchanan, 1999b), it is not clear if they have a 
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functional role in the CPG (Rovainen, 1983; Wallen and Lansner, 1984; Quinlan et al., 
2004). LINs are inhibitory (50-100 per animal) and located in the rostral part of the spinal 
cord (Rovainen, 1974; Selzer, 1979). They inhibit the ipsilateral CCINs with appropriate 
delay which would then release the contralateral side from inhibition (Buchanan, 2001). 
The CCINs have been estimated to be as few as 10 (Ohta et al., 1991) or between 10-45 
per hemisegment (Buchanan, 1982). They can be both excitatory and inhibitory. Their 
main axonal branch projects contralaterally and caudally from their rostrally positioned cell 
body. The membrane potentials of CCINs show strong modulation during swimming and 
these cells are thought to play a key role in motor coordination (Buchanan, 2001). 

EINs have been identified electrophysiologically using paired recordings of the 
presynaptic interneurons and postsynaptic motoneurons and interneurons (Buchanan and 
Grillner, 1987; Buchanan et al., 1989). Intracellular dye injection showed that the soma 
diameter of these cells is around 10 µm in their short axis. The axons of EINs may project 
up to 9 segments caudally (Dale, 1986), but most appear to be much shorter (Buchanan et 
al., 1989). They are probably quite numerous because, despite their small soma size, they 
are encountered more frequently with random microelectrode impalements in the grey area 
of the spinal cord. The membrane potentials of these interneurons are strongly modulated 
during swimming (Buchanan et al., 1989) and because of that they are thought to impart 
much of the phasic excitatory drive to motoneurons and interneurons during swimming. 
Their postsynaptic targets include motoneurons, LINs, CCINs and other EINs (Buchanan 
et al., 1989). The CINs project both rostrally and caudally in the contralateral side and 
display a substantial morphological diversity with regard to their soma size and extent of 
their axonal projection (Buchanan, 2001). They are both inhibitory and excitatory (Ohta et 
al., 1991; Buchanan, 2001). The excitatory glutamatergic CINs mediate the synchronus 
locomotor pattern which is unmasked after blocking of predominant glycinergic coupling 
between two sides of the spinal cord (Cohen and Harris-Warrick, 1984). The glycinergic 
CCINs and CINs are thought to be major providers of inhibition that ensures left-right 
alternation of the motor pattern (Cohen and Harris-Warrick, 1984; Ohta et al., 1991; 
Buchanan, 2001). The giant INs, edge cells and dorsal cells have sensory function (Grillner 
et al., 1982; Grillner et al., 1983; Rovainen, 1983; Grillner et al., 1984) and thus do not 
play a role during fictive locomotion (isolated preparation), but only in the freely behaving 
animal. 
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Figure 1: Schematic diagram of the lamprey locomotor network. Selection of locomotor activity takes place in the basal 
ganglia. Initiation of locomotion is done by disinhibition of the mesencephalic locomotor region (MLR) and the 
diencephalic locomotor region (DLR) which in turn excite reticulospinal neurons (RS) that provide descending excitation 
to the spinal CPG neurons and motoneurons. Excitatory stretch receptor neurons (SR-E excite ipsilateral neurons and inhibitory 
stretch receptor neurons (SR-I) inhibit the contralateral neurons after crossing the midline. In addition neuromodulators also make up an 
integral part of CPG. (adapted from Grillner et al., 2008) 

1.3  Swimming motor pattern 

The lamprey and other bony fishes including zebrafish as well as swimming salamanders 
and frog tadpoles share some common features in their basic motor pattern (Grillner, 1974; 
Cohen and Wallen, 1980; Fetcho and Svoboda, 1993; McDearmid and Drapeau, 2006; 
Ryczko et al., 2010). They show left-right alternation which produces lateral undulation of 
the body, The burst duration occupies nearly one half of the cycle period which means 
alternating activity with a 50% contralateral phase difference. They display a rostrocaudal 
wave of activity originating from head that propagates along the body; towards the tail 
during swimming. With faster swimming, the cycle time decreases proportionately with 
the burst duration in each segment, hence remaining roughly a constant fraction of the 
cycle period. There is an exception of this feature seen in larval zebrafish which might 
result from undersampling of the overall activity during swimming (Masino and Fetcho, 
2005). The rostrocaudal phase lag remains largely constant with relation to cycle period. In 
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lampreys the phase lag is 1% of the cycle period which results in a complete traveling 
wave over the approximately 100 body segments (Grillner and Matsushima, 1991).  

1.3.1  NMDA induced motor pattern  

The excitatory amino acid agonist N-methyl-D-aspartate (NMDA) produces rhythmic 
activity in the isolated spinal cord in a range of vertebrates such as lamprey (Cohen and 
Wallen, 1980; Wallen and Williams, 1984), cat (Douglas et al., 1993), rat (Kudo and 
Yamada, 1987; Cazalets et al., 1990; Raastad et al., 1997; Kiehn, 2006), mouse 
(Hernandez et al., 1991), Xenopus (Dale and Roberts, 1984) and zebrafish (McDearmid 
and Drapeau, 2006). This rhythmic activity is intrinsic to the spinal cord because it can be 
generated without the descending input from higher centers. The motor pattern induced by 
NMDA displays left-right alternation and a rostrocaudal delay similar to that seen in freely 
swimming fish (Cohen and Wallen, 1980; Dale and Roberts, 1984; McDearmid and 
Drapeau, 2006). 

The swimming frequency can vary between preparations from intact animal to spinal 
preparation. In zebrafish larva, the swimming frequency is similar to that seen in intact 
animal, that is about 20 Hz (Masino and Fetcho, 2005; McDearmid and Drapeau, 2006), 
but in lamprey the frequency in isolated preparation is lower, around 0.5-1.4 Hz compared 
to frequencies of 1.5-7.6 Hz in freely swimming animals (Wallen and Williams, 1984).  

The activity pattern of all motoneurons during fictive locomotion is characterized by 
periodic membrane potential oscillations. The peak depolarization occurs in phase with 
ipsilateral ventral root discharge or burst while the hyperpolarizing trough phase is 
synchronous with contralateral burst. This shows that there is an on-cycle excitatory drive 
that alternates with an active mid-cycle inhibition (Fig 2). This may be described as a push-
pull arrangement, which takes place at the premotor interneuronal level in all CPG neurons 
modulating the motoneuron potential (Roberts et al., 1981; Russell and Wallen, 1983; 
Endo and Kiehn, 2008; Gabriel et al., 2009).  

1.3.2  On-cycle excitation 

In lamprey phasic excitation is clearly provided by the population of glutamatergic 
premotor EINs (Buchanan and Grillner, 1987). They diverge onto many MNs and also all 
sets of interneurons including other EINs (Buchanan, 2001). During fictive locomotion 
these EINs mutually excite each other to mediate the excitatory drive (Buchanan et al., 
1989; Cangiano and Grillner, 2005). This excitation is the summation of many converging 
excitatory postsynaptic potentials (EPSPs) onto MNs. 
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In hatching Xenopus tadpoles the descending interneurons (dINs) mediate the excitatory 
drive. These neurons are the members of a population of excitatory neurons with 
ipsilaterally descending axons extending from mid-brain to the spinal cord (Soffe et al., 
2009). The dINs directly excite other members of the swimming network via their 
descending axons. During fictive swimming they are rhythmically active and reliably fire 
contributing to their strong mutual excitation via electrical and chemical connections 
resulting in recurrent excitation (Li et al., 2009). Like in other vertebrates the excitatory 
drive depends on both fast α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid 
(AMPA) and slow NMDA receptors (Li et al., 2004).  

In larval zebrafish the excitatory multipolar commissural descending (MCoDs) are 
active during slow swimming and another group of excitatory interneurons which is 
ipsilateral, the circumferential descending interneurons (CiDs) are active during fast 
swimming (Kimura et al., 2006; McLean et al., 2008). One interesting thing came out from 
these studies is that different classes of neurons are activated depending on the functional 
dynamics of the fish.  

In mammals V2a interneurons expressing the transcription factor Chx10 make putative 
connections with MNs and CINs (Al-Mosawie et al., 2007; Crone et al., 2008). They are 
functional homologs to CiDs in zebrafish that express transcriptional factor Alx (Kimura et 
al., 2006). By selectively ablating the V2a interneurons genetically in mice, it has been 
shown that they are not essential for rhythm generation, but help in stabilizing the rhythm 
and activate commissural pathways to maintain left-right alternation (Crone et al., 2008). 
Recent evidence shows that these interneurons has a speed dependency as they are 
recruited preferentially at progressively higher speeds (Crone et al., 2009). This is 
consistent with the role of CiDs in the zebrafish that also show similar frequency 
dependent recruitment (McLean et al., 2008).  

1.3.3  Phasic mid-cycle inhibition 

The mid-cycle reciprocal inhibition ensures the left-right alternation of activity in the 
vertebrate spinal cord during locomotion. This is done by inhibitory CINs via which each 
of the hemisegmental oscillators are activated with a phase difference (Grillner, 2006). 

In the lamprey spinal locomotor network, the phasic inhibition is mediated by CCINs 
(Buchanan and Cohen, 1982) and inhibitory CINs (Ohta et al., 1991). Intracellular studies 
of CCINs showed phase-locked activity with respect to the onset of the ipsilateral ventral 
root burst (Buchanan and Cohen, 1982). The CINs play an active role in mediating mid-
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cycle inhibition during a locomotor cycle (Biro et al., 2008). This mid-cycle inhibition is 
mediated by chloride conductances (Russell and Wallen, 1983). 

During locomotion, reciprocal inhibition sets the pattern and frequency of the locomotor 
rhythm since progressive sectioning in the midline of lamprey spinal cord during 
locomotion enhances the frequency of the locomotor rhythm (Cangiano and Grillner, 
2003). Similarly, low concentration of strychnine increased the locomotor frequency, while 
at higher concentrations the frequency decreased with concomitant bursting on the both 
sides of the cord (Grillner and Wallen, 1980). These results show that glycinergic 
transmission is not only necessary for left-right alternation but also for the generation of 
rhythm. 

 
Figure 2: Alternating excitatory and inhibitory currents underlying the phasic oscillations during locomotion. A. 
Waveform average of intracellular recordings from a spinal neuron during NMDA-induced fictive locomotion in current-
clamp and voltage-clamp. The peak of the integrated ipsilateral EMG recording is taken as a reference. B. Histogram 
showing the distribution of the average number of unitary EPSCs (black) and IPSCs (gray) received by the neuron during 
different phases of the locomotor cycle. The values correspond to the average number of PSCs per bin. The peak of the 
integrated ipsilateral EMG recording is used as a reference and the membrane potential oscillation is shown for 
comparison. (Adapted and modified from paper III) 

 

In the zebrafish locomotor network in the absence of functional glycine receptors, 
bandoneon (beo) mutants display simultaneous activation of axial muscles on both sides of 
the trunk (Hirata et al., 2005). Also targeted knockdown of embryonic glycine receptor α2-
subunit disrupted rhythm generating networks and reduced the frequency of spontaneous 
glycinergic and glutamatergic events in larval zebrafish (McDearmid et al., 2006). In 
zebrafish two anatomically distinct inhibitory interneurons have been identified and their 
role during swimming has been evaluated (Liao and Fetcho, 2008). One of them is the 
commissural bifurcating longitudinal (CoBLs) which has shorter axon length. They are 
more numerous compared to other cell types and thought to be the good candidate forming 



 

 

9 

the core interneuron class mediating left-right alternation (Liao and Fetcho, 2008). One of 
the interesting aspects of the zebrafish locomotor network is the recruitment of different 
neurons at different locomotor speeds. This gives an additional facet to the role of 
inhibition within the locomotor network, which is its specificity in silencing different 
premotor interneurons, depending on the locomotor frequency (McLean et al., 2008). The 
role of inhibition was also tested during NMDA induced locomotion in the larval zebrafish. 
When strychnine was applied in this preparation, it severely disrupted the left-right 
alternation through mid-cycle inhibition (McDearmid and Drapeau, 2006).  

In Xenopus tadpoles, like in other vertebrates, glycine is endogenously released during 
locomotion and set the amplitude of mid-cycle inhibition in motoneurons and CPG 
interneurons (Soffe et al., 1984; Roberts et al., 1985). Brief application of strychnine 
depressed the mid-cycle inhibition and increased the locomotor frequency (Soffe, 1987). A 
local microperfusion of strychnine, which essentially does not affect the overall operation 
of swimming circuitry also has been shown to reduce the mid-cycle inhibition in different 
amphibian species including the Xenopus (Perrins and Soffe, 1996). Intracellular 
recordings in Xenopus tadpole showed that cINs were active during swimming and 
produced glycinergic mid-cycle inhibition of antagonistic neurons on the opposite side of 
the spinal cord (Dale, 1985). These interneurons have long ascending and descending 
axonal projections which implies that they also control the phase of swimming and play a 
part in coordinating the longitudinal spread of motor activity during swimming (Yoshida et 
al., 1998; Soffe et al., 2001). In addition to producing alternation, the cINs are also 
proposed to be important for rhythm generation, due to their ability to trigger post-
inhibitory rebound depolarizations in dINs (Roberts et al., 2008).  

Overall, mid-cycle inhibition mediated by glycine in locomotor networks helps in the 
appropriate recruitment of neurons in the different phases of the locomotor cycle. Control 
of mid-cycle inhibition is thought to plays key role in setting the locomotor frequency. 
When mid-cycle inhbition is reduced, such as in the case of strychnine, the locomotor 
frequency is enhanced (Hellgren et al., 1992; Dale, 1995).  

1.3.4  Modulation of spinal locomotor pattern 

All neuronal networks are modulated by intrinsic and extrinsic modulatory systems. These 
systems can sculpt the output of a hard-wired network, in which activity is generated by 
fast acting excitatory and inhibitory synaptic transmission that acts on ligand-gated ion 
channels. Modulation can adapt network activity to changing internal or external 
environments, or influence long-term changes that contribute to developmental or learning 
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induced changes (Harris-Warrick and Marder, 1991; Grillner et al., 1995; Katz, 1995; 
Parker, 2000). Neuromodulators play important instructive roles in determining the 
moment-to-moment output of a CPG by altering the synaptic strengths and intrinsic 
cellular properties of the circuit neurons (Katz and Harris-Warrick, 1990; El Manira et 
al., 2002). By targeting the excitatory drive and mid-cycle inhibitions, the CPG network 
can impart profound effects in the motor output (El Manira et al., 2002; Grillner, 2003; 
El Manira et al., 2008; Sillar et al., 2008). The modultatory system acts through 
activation of G-protein coupled receptors (GPCRs). 

Serotonin (5-HT) is a powerful modulator of the locomotor network in all vertebrates 
studied so far (Sillar et al., 1998; Schmidt and Jordan, 2000; McLean and Sillar, 2004). In 
the lamprey, 5-HT slows down the locomotor frequency, increases burst intensity and 
duration and regularizes the locomotor rhythm (Harris-Warrick and Cohen, 1985; Wallen 
et al., 1989; Zhang and Grillner, 2000). Spinal 5-HT is supplied by descending fibers, 
dorsal root ganglia and cells below the central canal throughout the length of the spinal 
cord, forming a plexus, into which INs and MNs extend their dendrites (Christenson et al., 
1989; Zhang et al., 1996). 5-HT is endogenously released during locomotion (Zhang and 
Grillner, 2000) and decreases the slow postspike afterhyperpolarization (sAHP) in 
motoneurons, crossed caudal (CCINs), and lateral interneurons (Wallen et al., 1989). The 
sAHP is mainly due to apamin-sensitive calcium-activated potassium channels of the SK 
type (El Manira et al., 1994).  

In Xenopus tadpole, application of 5-HT increases locomotor burst duration, depresses 
mid-cycle inhibition, and modulates NMDA receptors during fictive locomotion induced 
by skin stimulation (Sillar et al., 1992; Sillar et al., 1998). In the newborn mammalian 
spinal cord, 5-HT is important for generation of the stable locomotor rhythm induced 
pharmacologically (Cazalets et al., 1992; Kiehn and Kjaerulff, 1996; Liu and Jordan, 2005; 
Liu et al., 2009).  

In both adult and larval zebrafish spinal cord, 5-HT innervations comes from 
descending raphe projections and intraspinal neurons (Van Raamsdonk et al., 1996; Kaslin 
and Panula, 2001; McLean and Fetcho, 2004). At the zebrafish larval stage, endogenous 5-
HT primarily acts to modulate the duration of the quiescent period between the consecutive 
active swim periods without changing the frequency of spontaneous swimming (Brustein 
and Drapeau, 2005).  

With my introduction above, I tried to show how different model systems with different 
levels of complexity display remarkable similarity in their core pattern generation network. 
The lamprey’s CNS, apart from similarities with other vertebrates, is simpler than other 
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vertebrates. Each spinal segment has around 1000 neurons per segment with a rough total 
of around 100,000 in the entire cord (Rovainen, 1979). If we compare this to another 
animal, we can see that in rat with roughly similar body size to lamprey has almost 
300,000 neurons per spinal segment and around 8 million neurons within the spinal cord 
(Bjugn and Gundersen, 1993). The explanation for this difference lies in the much more 
complex behavioral pattern of the rat involving the use of multi-joined limbs. The 
comparative simplicity of the lamprey body, transparency, swimming pattern, and of the 
underlying nervous system make it a much less difficult model to study and understand 
compared to other complex animals. Another added advantage of the lamprey is that the 
motor pattern underlying locomotion can be maintained in vitro for several days (Grillner 
and Wallen, 2002). In my first project I took the advantage of both the transparency and 
few cells of the lamprey spinal cord to label the CINs and anatomically corroborate the 
evidence of dominance of reciprocal inhibition over excitation. 

The zebrafish nervous system has a basic motor pattern generating network similar to 
lamprey (Masino and Fetcho, 2005; McDearmid and Drapeau, 2006) and Xenopus tadpole 
(Roberts et al., 1998; Roberts, 2000). The spinal cord of larval and juvenile zebrafish is 
also transparent which allows for optical approaches to the study of structure and function 
of the intact animal. Apart from these similarities, zebrafish has the added strength of 
genetic accessibility that allows for the production of both mutant animals and transgenic 
fish. Although the zebrafish is comparatively new in motor control studies, rapid progress 
has been made in identifying cells and circuits in zebrafish. Some key factors contributed 
to this. The use of calcium imaging in vivo allowed for the rapid identification of neurons 
in a particular behavioral context (Fetcho and O'Malley, 1995; Brustein et al., 2003). Patch 
clamping allows for studies of cellular properties and synaptic connectivity (McDearmid et 
al., 1997; McDearmid and Drapeau, 2006; McLean et al., 2007; McLean and Fetcho, 2009; 
Gabriel et al., 2010).  

The newly developed juvenile and adult zebrafish preparation that was developed 
during the course of my thesis project can add a new level of insight into the investigation 
of the spinal locomotor network because it also offers the same combination of 
transparency and genetic tools like larva but at a more mature stage. This will help to 
bridge the gap between immature and mature systems which has thus far been lacking in 
other preparations. 
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2  QUESTIONS ADDRESSED IN THIS THESIS 

The overall organization and neuronal makeup of the locomotor system shows remarkable 
similarities and conservation in different vertebrates. The aim of my thesis work has been 
to examine the organization of the locomotor network in accessible model systems. 

The specific questions addressed are:  

• Can the dominance of reciprocal inhibition over excitation in controlling left-right 
alternation during locomotion be explained anatomically? (Paper I) 

• Can locomotor pattern be studied in the adult zebrafish preparation in vitro? (Paper II) 
• What is the role of serotonin (5-HT) in modulating the adult zebrafish spinal cord 

locomotor network? (Paper III) 
• How are spinal locomotor circuits turned on by descending excitatory inputs and how 

does the produced motor pattern in vitro compare to swimming in intact zebrafish? 
(Paper IV) 
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3  METHODS 

Two different preparations were used in my thesis. For the anatomical study in paper I, 
adult river lamprey (Lampetra fluviatilis) were used. For the study of the spinal motor 
pattern in paper II, III & IV different stages of zebrafish were used: juvenile (early juvenile 
stage: age 30-44 days; late juvenile stage: age 45-89 days) and adult zebrafish: age ≥90 
days. 

3.1  Lamprey 

3.1.1  Retrograde tracing 

To retrogradely label CINs in the lamprey spinal cord, a vertical cut was made with the tip 
of a thin bored needle from near to the midline upto the lateral aspect of the ipsilateral 
spinal cord in the middle of a 20 segment long spinal cord. Small crystals of Neurobiotin 
were applied at the injection site after cutting. The tracer was then allowed to travel a 
considerable distance. After the tracer transport, the tissue was processed for whole-mount 
and immunohistochemistry. 

3.1.2  Whole mount histochemistry 

Tracer transported tissue was fixed in formalin and picric acid in phosphate buffer (Gunn 
et al.) and subsequently washed in PB. The spinal cord was then counter stained with 
streptavidin-Alexa 488 overnight to detect the Neurobiotin. The tissue was then dehydrated 
with ascending ethanol series and cleared and embedded in methyl salicylate. 

3.1.3  Immunohistochemistry 

To detect glycine, glutamate and GABA-immunoreactivity (ir) in the CINs, tissue was 
fixed in different concetrations of formalin, picric acid and glutaraldehyde depending on 
the antibody used. After fixation, tissue was cryoprotected with sucrose and 14 µm thick 
horizontal sections were cut with a cryostat. For co-localization of retrograde tracer with 
antibody, the sections were incubated with appropriate primary and secondary antibodies. 
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3.1.4  Confocal analysis 

For whole-mount and horizontal tissue sections a Zeiss laser scanning confocal imaging 
system (LSM 510 Meta) with appropriate laser line was used. To maintain accuracy cells 
were counted online and after the experiment when data were imported to Adobe 
Photoshop. Cell counts were corrected using Abercrombie’s factor (Abercrombie, 1946). 

3.2  Zebrafish 

3.2.1  Preparation 

All dissection steps were performed in slush frozen saline. For the semi-intact preparation, 
animals were glued dorsal side up to the recording chamber. The skull was opened and 
brain was cut caudal to tectum. The muscles were cut dorsally and laterally over 50-75% of 
the body length. The vertebra overlying the spinal cord were pulled out to expose the 
spinal cord. The skin was peeled from the muscle and the tail was freed from glue to allow 
visual observation of motor behavior. 

For in vitro preparation, the steps were as before but here all of the entire vertebra 
overlying the spinal cord were removed. The ventral roots were cut close to the spinal cord. 
For microelectrode penetration during patch-clamp recordings, small gashes were made in 
meninges overlying the spinal cord with a sharp tungsten pin. The entire spinal cord 
including the hindbrain was then lifted out of the vertebral column with a fine hook. The 
preparation was placed lateral side up for intracellular recording or ventral side up for 
extracellular recording. In paper 3, the preparation was done as described before with slight 
modifications. Here the entire spinal cord including the hindbrain and a small part of 
caudal musculature was cut together with the vertebral column and transferred to recording 
chamber.  

3.2.2  Split-bath experiments 

For split bath experiments, low melting agar (0.1%) was used. Care was taken to prevent 
solution leaking from rostral to caudal pool and vice-versa. 

3.2.3  Electrophysiology 

Extracellular suction electrodes were pulled by a microelectrode puller and fire-polished 
for ventral root and EMG (electromyogram) recordings. Signals were amplified with a 
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differential AC amplifier (AM systems) and filtered with appropriate filter settings. 
Neurobiotin was added for subsequent morphological analysis. Cells were visualized with 
differential interference contrast (IR-DIC) optics and a CCD camera with a frame grabber 
(Hamamatsu). Whole cell voltage was amplified with a MultiClamp 700B intracellular 
amplifier (Axon Instruments) and low-pass filtered. Unitary EPSCs and IPSCs were 
detected with MiniAnalysis software (Synaptosoft). 

3.2.4  Neurobiotin stainings 

The spinal cord was fixed with appropriate fixatives and washed in Triton-X in PBS (X-
PBS). The cord was then incubated in streptavidin-Cy3, washed and dehydrated in graded 
ethanol and cleared in methyl salicylate. After clearing, tissue was mounted lateral side up 
and visualized on a confocal microscope. 

3.2.5  Backfills of motoneurons 

Small crystals of different dextrans were picked on the tip of sharp tungsten pins and 
moved over the muscle on a cold anaesthesized fish to severe the motor axons. After the 
dye uptake, the animals were dissected as described earlier for the patch recordings.  

3.2.6  Data acquisition and analysis 

Data were digitized with a Digidata A/D converter (Molecular Devices) and acquired on a 
personal computer using pClamp software. Data analysis was performed in Spike2.  
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4  RESULTS AND DISCUSSION 

4.1 Anatomical basis for the dominance of left-right alternation during locomotion 
(Paper I) 

In lamprey several classes of morphologically identifiable neurons with crossing axons 
have been described, such as crossed caudally projecting interneurons (CCINs), 
commissural interneurons (CINs), giant interneurons and edge cells (Rovainen, 1967; 
Buchanan, 1982; Grillner et al., 1984; Ohta et al., 1991; Fagerstedt and Wallen, 1992, 
1993; Buchanan, 1999a, 2001). Of those the edge cells are intra-spinal stretch receptors 
(Grillner et al., 1984) and giant interneurons are sensory relay neurons (Rovainen, 1974). 
They are not active during fictive locomotion (Buchanan, 2001). In this paper, I looked at 
transmitter phenotypes of CINs. I will first give a brief description of my results and later 
on I will explain the reason for choosing these interneurons for my study and give an 
explanation of my findings. 

 

Fig 3: Neurons with contralateral axonal projections in the lamprey spinal cord. A. Projection of contralaterally projecting neurons (CINs) 
in the whole mount spinal cord. Neurobiotin is injected on one side of the spinal cord (injection site) to label neurons projecting to the 
contralateral side both rostrally and caudally. Black oblique lines indicate segmental boundaries. Dashed line indicates the midline; R, 
rostral; C, caudal direction. B. Projection from segment seven caudal to the injection site showing very few caudally projecting CINs of 
large size (double arrowhead) and a few medium sized CINs (open arrow). C. Projection from segment 2 of caudally projecting CINs 
showing small (arrowhead) and medium (open arrow) CINs. D. Volume stacks from segment 1 showing small (arrowhead) and medium 
(open arrow) CINs and large edge cells (filled arrows). E. Projection of rostrally projecting cells in segment 1 showing small (arrowhead) 
and medium (open arrow) CINs and large edge cells (filled arrow). (Adapted and modified from paper I) 

 

Commissural rostrally and caudally projecting CINs were retrogradely labeled with 
neurobiotin in the spinal cord in vitro (Fig 3). Most of these neurons are located in the 
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intermediate region of spinal gray matter but some are located in the middle. The tracer 
faithfully labeled all of the neurons with crossing axons over five segments but very few 
projected over six segments and beyond (Fig 3). We therefore restricted our study to CINs 
over six segments rostral and caudal to the site of injection of the dye. The number of CINs 
gradually decreased from the site of injection. The neurons with rostrally projecting axons 
are always in greater number than the caudally projecting ones.  

To examine the transmitter phenotypes of CINs, we performed experiments with 
retrograde labeling combined with immunohistochemistry. The immunohistochemistry 
directed against three different transmitters of the lamprey spinal cord revealed that the 
distribution pattern of CINs with glycinergic phenotype is predominant with half of the 
CINs being glycinergic. Approximately one-third of the CINs show immunoreactivity to 
glutamate, while none of them are GABAergic. 

Why look at the projection pattern of CINs instead of the CCINs? In the more recent 
schematic model of lamprey locomotor network (Fig 1) the crossing inhibitory 
interneurons are indicated as INs (inhibitory interneurons) which include both the larger 
CCINs and the smaller CINs that have relatively short axonal projections (Grillner, 2003). 
The CCINs were original proposed as the inhibitory crossing interneurons that were 
mediating left-right alternation (Buchanan, 1982; Buchanan and Grillner, 1987). There are 
a number of features suggesting that they are unlikely to be the candidate for mediating 
segmental reciprocal inhibition (see Rovainen, 1983). They have long axons that are not 
consistent with the segmental role, but could suggest a role in intersegmental coordination 
(Buchanan, 1999a). Their patterns of phasic potential changes are less uniform than 
motoneurons. The repetitive intracellular stimulation of CCINs has little or no effect on the 
timing of fictive swimming (Rovainen, 1983; Grillner et al., 1986). In addition there is no 
experimental evidence from paired recordings that they inhibit the EINs in the opposite 
hemisegment (Buchanan, 1999b; Parker and Grillner, 1999). 

In contrast, retrograde labeling of the CINs showed that they have short axonal 
projections (Ohta et al., 1991; Fagerstedt and Wallen, 1992, 1993). Electrophysiological 
analysis suggested that these cells might contribute in segmental reciprocal inhibition 
(Buchanan, 1999a). Although morphological evidence showed that these neurons 
constitute 50% of the neurons, direct electrophysiological evidence for the segmental role 
of these CINs is still only preliminary (Ohta et al., 1991; Biro et al., 2008). The reason for 
this is the small size of these CINs. The diameter of most of the neurons is around 12 µm 
in their short axis (Buchanan, 2001).  
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In this context the anatomical data could prove valuable, because it can complement 
electrophysiological data by adding or filling up the missing links.  

Why look at projection pattern up to 5 segments? As I mentioned before the most 
logical answer to this question is that these CINs have been suggested to contribute to 
segmental reciprocal inhibition, which fits with the model of the locomotor network (Fig 
1). Besides this it has been shown elcectrophysiologically that coupling signals act over 
approximately 5 segments (Buchanan, 1999a). In addition previous morphological 
evidence also points to the fact that CINs do not project beyond 5 segments (Ohta et al., 
1991). In our experiments, we further corroborated the previous morphological and 
electrophysiological data and showed that there are very few CINs projecting beyond 5 
segments. By showing the dominance of glycine-ir over glutamate-ir CINs, we 
anatomically substantiate the previous electrophysiological evidence of the predominant 
role of reciprocal inhibition over excitation that helps in maintaining alternation between 
two sides during locomotion (Grillner and Wallen, 1980; Cohen and Harris-Warrick, 1984; 
Buchanan, 2001; Cangiano and Grillner, 2005).  

How does the quantitative data on glutamatergic CINs fit with the locomotor network 
scheme? It was shown that individual hemisegment unit burst generators are coupled to 
each other by a prominent commissural reciprocal inhibition and a weaker commissural 
excitation (Cohen and Harris-Warrick, 1984; Hagevik and McClellan, 1994). Bath 
application of strychnine during fictive locomotion converts alternating rhythmic bursting 
activity to synchronous ventral root activity both in lamprey and in other vertebrates 
(Cohen and Harris-Warrick, 1984; Roberts et al., 1985; Hagevik and McClellan, 1994; 
Cowley and Schmidt, 1995; McDearmid and Drapeau, 2006; Gabriel et al., 2008). This 
finding elucidates the role of reciprocal inhibition while at the same time unmasking a 
commissural excitatory influence. It has been shown previously in lamprey that crossed 
excitatory connections exists between the CINs and MNs, that produce larger EPSPs in the 
MNs (Parker and Grillner, 2000). Our findings imply that the smaller glutamatergic CIN 
population might be responsible for this weaker excitatory coupling between two sides.  

In the rat in addition to glycine, there is evidence that left-right alternation also 
dependent on GABAergic transmission (Cowley and Schmidt, 1995; Bracci et al., 1996; 
Kremer and Lev-Tov, 1997). In these studies GABAA antagonist disrupted the left-right 
alternation. As strychnine can block GABAA a contribution of these receptors to the 
alternation activity in these studies could not be excluded. In lamprey during fictive 
swimming pharmacological blockade of GABAA by bicuculline or gabazine increased 
the locomotor frequency without affecting the left-right alternation (Tegner et al., 1993; 
Schmitt et al., 2004). Our anatomical data also indirectly shows that reciprocal inhibition 
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does not involve direct GABA transmission. There are only occasional commissural 
GABA-ir fibers observed in developing and adult lampreys (Melendez-Ferro et al., 2003; 
Villar-Cervino et al., 2008). However the origin and distribution of the neurons giving 
rise to these fibers are not yet clear. 

In the embryonic or larval zebrafish, commissural interneurons bearing glycinergic or 
glutamatergic transmitter phenotype have been characterized (Higashijima et al., 2004). 
Interestingly none of the commissural interneuons was found to be positive for GABA 
even at this early age. The Xenopus tadpole at stage 37/38 also showed no evidence of 
presence of GABAergic CINs (Roberts et al., 1988). Different pictures also exist, for 
example, the neonatal rodents aged 5-8 days and neonatal mouse aged P0-P1 where a 
proportion of CINs is GABA-ir (Weber et al., 2007; Restrepo et al., 2009) along with 
glycinergic and glutamatergic CINs. The possible explanation for this is that it is possible 
in rat and mouse the transmission composition may change, while this is not the case in 
adult lamprey (Villar-Cervino et al., 2008; Restrepo et al., 2009). 

Another important observation from our study is that although we managed to 
characterize 79% of CINs with our method, we failed to identify the remaining 21% of 
the CINs. Some of these could still correspond to glycinergic or glutamatergic CINs 
which we could not label immunohistochemically or some of them might display 
immunoreactivity for calbindin and calretinin (Megias et al., 2003). 

Overall this anatomical study shows that dominant reciprocal inhibition is probably 
glycinergic while the cross mutual excitation is glutamatergic. 

4.2  Adult zebrafish spinal cord in vitro: A neuronal correlate of swimming in vivo 
(Paper II) 

In this study, we developed an in vitro preparation of the isolated spinal cord from 
juvenile/adult zebrafish. The aim was to gain access to a preparation that can exhibit the 
same rhythmic pattern that bears all the hallmarks of swimming in the intact freely 
swimming animal. 

First, we used semi-intact preparation and showed that the average frequency of 
swimming elicited by NMDA was 5 Hz (100 µM), whereas in isolated spinal cord it was 6 
Hz (50 µM). These are within the frequency range measured in freely swimming adult 
zebrafish (Muller et al., 2000). In our experiments locomotor burst frequency also varied 
with age, it was higher in early juvenile compared with late juvenile and adult zebrafish. In 
zebrafish larva the frequency is about 30 Hz when locomotion is induced spontaneously or 
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by light (Buss and Drapeau, 2001; Masino and Fetcho, 2005). When NMDA is applied to 
spinalized zebrafish larva, the frequency was 18 Hz (McDearmid and Drapeau, 2006). 
Larval zebrafish required a higher concentration of NMDA than that used to elicit 
locomotion in the adult in vitro preparation. A kinematic study in freely swimming larval 
zebrafish also revealed that the frequency decreases with increasing age (Muller and van 
Leeuwen, 2004). This suggests that with development the locomotor network changes 
resulting in a decrease in motor output as the animal matures. Another interesting 
suggestion is there is a slow increase of red (slow) muscle fibers at later stages of 
development (van Raamsdonk et al., 1982; Buss and Drapeau, 2000; Gabriel et al., 2010). 

The cross-correlation and autocorrelation studies from both semi-intact and in vitro 
preparations of the zebrafish displayed left-right alternation and rostrocaudal delay of 
motor bursts. The phase delay related to 60% for a full wave of activity along the body at 
any given point of time. In larval zebrafish it was shown that a full wave of activity is 
generated along the body during fictive swimming (Masino and Fetcho, 2005). This is in 
contrast to what has been shown in our preparation and compared to adult goldfish (Fetcho 
and Svoboda, 1993). In goldfish they concluded that the mature fish has less flexibility 
than larval zebrafish. In our case we hypothesized that during maturation the spinal 
network adapts with the constraints imposed by the stiffening of the body. 

 
Fig 4: In vitro intracellular recording of a primary MN (pMN) during fictive locomotion. A. Top: Lateral view of the zebrafish spinal cord 
with the extracellular electrode to the left and the intracellular electrode to the right, bottom: magnified images from top. Labels L9–L11 
align with the stumps of the left ventral roots in segments 9–11. B. Recording of a pMN showing membrane potential oscillation in-phase 
with the ipsilateral ventral root in 30 µM NMDA. (Adapted and modified from paper II) 

 

When we recorded the activity of primary motoneurons (pMN), we saw a membrane 
potential oscillation that is in phase with ipsilateral ventral root activity (Fig 4). The 
amplitude and frequency increased with increased NMDA concentrations. Unlike pMNs in 
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larva where they readily fire action potentials during fictive locomotion (McDearmid and 
Drapeau, 2006), we only observed subthreshold synaptic inputs. This is not surprising 
because they are only recruited during high frequency swimming or escape (Liu and 
Westerfield, 1988; Gabriel et al., 2010). 

In the in vitro preparation, when reciprocal glycinergic inhibition with strychnine was 
blocked, synchronous motor bursts on both sides and along the rostrocaudal axis was 
observed, indicating inhibitory synaptic transmission is mediating the alternation and 
delayed propagation. This has already been described in other preparations (see 
introduction). It is important to mention that when reciprocal connection is weakened by 
low doses of strychnine in lamprey, the left-right alternation is preserved with a 
concomitant increase in the frequency (Grillner and Wallen, 1980; McPherson et al., 
1994). However, when glycinergic inhibition is completely blocked with high doses of 
strychnine, the synchronous motor activity develops (Cohen and Harris-Warrick, 1984; 
Cowley and Schmidt, 1995) with a dramatic decrease in the frequency (Cohen and Harris-
Warrick, 1984; McPherson et al., 1994). In our semi-intact experiments during the wash-in 
of strychnine (probably representing a situation when the concentration of strychnine 
inside the cord is still low) there was a transitional period when continuous motor activity 
was patterned into discrete episodes. Within these episodes we saw an almost 5 fold 
increase of burst frequency. This is also observed in fictive locomotion of zebrafish larva 
(Masino and Fetcho, 2005; McDearmid and Drapeau, 2006). Thus two rhythms with 
different cycle periods and sometimes different phase relationships can be observed at the 
same time The presence of this two discrete rhythm was also shown in lamprey hemicord 
preparation (Cangiano and Grillner, 2003). This shows that strychnine is acting on 
alternation and cycle period through two different mechanisms. In our experiment, 
strychnine at 0.5 µM decreased the frequency in both semi-intact and in vitro preparation. 
In the zebrafish larva, left-right alternation is lost without changing the frequency which 
may be due to difference in network architecture(McDearmid and Drapeau, 2006).  

Overall our studies in this paper strongly suggest that the locomotor pattern induced by 
NMDA in the spinal cord of juvenile/adult zebrafish is a neuronal correlate of fictive 
locomotion in the freely swimming animal that can provide a foundation for future cellular 
studies on the network architecture in an adult system that can complement studies in 
zebrafish larva and other species. 
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4.3  Examining the role of 5-HT on the modulation of fictive swimming frequency of 
the adult zebrafish brainstem/spinal cord preparation (Paper III) 

Serotonin (5-HT) has pronounced modulatory effects on spinal locomotor networks. 5-HT 
serves as a pivotal modulator of the motor networks, stabilizing the locomotor rhythm and 
promoting a decrease in burst frequency. In the spinal cord of larval zebrafish 5-HT only 
decreases the rest or glide period between two consecutive beat or swim periods without 
changing the frequency of spontaneous swimming (Brustein and Drapeau, 2005). This is in 
contrast to what has been shown to other model systems and prompted us to examine 
whether the absence of its effect is only present in larval stages or if it persists in the 
adulthood. For this we used the in vitro brainstem/spinal cord preparation. 

We showed that during NMDA induced fictive locomotion, 5-HT decreased the 
frequency in a concentration dependent manner. The decrease in frequency is not 
associated with changes in burst proportion. The difference of action of 5-HT in adult and 
larval zebrafish is probably due to the fact 5-HT modulates the locomotor network 
differently in larval zebrafish where swimming frequency is much higher than the adult 
zebrafish. 

Having proved that 5-HT modulates the locomotor activity we next tested whether this 
modulation is endogenous. For this we used citalopram, a reuptake inhibitor of 5-HT, 
which increases the concentration of 5-HT in the synaptic cleft (Fuller and Wong, 1990). 
Citalopram mimicked the effect of exogenous application of 5-HT, indicating that there is 
an endogenous release of 5-HT during locomotion in juvenile and adult zebrafish spinal 
cord in vitro. The released of 5-HT may arise from innervation from intraspinal neurons as 
well as supraspinal raphe projections which persists from larva till adulthood (Kaslin and 
Panula, 2001; McLean and Fetcho, 2004). 

In other major vertebrate preparations, 5-HT acts differently to modulate the locomotor 
network. In Xenopus tadpoles, 5-HT increases the intensity and duration of motor bursts 
mainly by depressing the synaptically driven mid-cycle inhibition (McDearmid et al., 
1997; McLean et al., 2000) without having major effects on frequency (Sillar et al., 1992). 
In the lamprey spinal cord, 5-HT decreases the locomotor frequency and increases burst 
intensity and burst duration through a depression of the slow afterhyperpolarization 
(sAHP) (Wallen et al., 1989) and modulation of synaptic transmission (Biro et al., 2006). 
These reports prompted us to look at the synaptic targets of 5-HT during modulation of 
swimming in our preparation. We showed that 5-HT depressed mid-cycle inhibition. It also 
affected the excitatory drive because when strychnine was used to block the glycinergic 
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synaptic trasmission, an application of 5-HT decreased the frequency (Fig 5). The decrease 
of frequency also associated with a slowing down of the onset of excitatory drive received  

 

Fig 5: A, B. 5-HT increases the amplitude of mid-cycle inhibition during locomotion. A. Intracellular recording of a spinal neuron 
showing IPSPs during hyperpolarized phase of the oscillations. In 5-HT the locomotor frequency decreases and the IPSPs increase in 
amplitude and number. B. Rhythmic IPSCs recorded in the same spinal neuron voltage-clamped at a holding potential of 0 mV also 
increases in amplitude and number in 5-HT. C. 5-HT delays the onset of the excitatory synaptic drive. When glycinergic inhibition is 
blocked by strychnine, NMDA induces slow membrane potential oscillations in spinal neurons that occur in phase with the ipsilateral 
ventral root burst. Application of 5-HT decreases the burst frequency and slows down the depolarizing phase of the excitatory drive 
(Adapted and modified from paper III) 
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by motoneurons. This indicates that 5-HT acts on both inhibitory and excitatory synaptic 
transmission. Computer simulations also proved that an increase in mid-cycle inhibition 
can effectively decrease the locomotor frequency by delaying activation of the contralateral 
side (Hellgren et al., 1992). In larval zebrafish, the decrease in rest period by 5-HT was 
proposed to be mediated by an effect on the chloride homeostasis and as a result decrease 
in glycinergic synaptic transmission. 

Overall in this paper we showed how endogenously released 5-HT affects the activity of 
the locomotor network in the adult zebrafish and characterized the underlying synaptic 
mechanisms.  

4.4  Initiation of locomotion by stimulating the excitatory descending drive: A new 
model in adult zebrafish (Paper IV) 

Here we examined at how a brief stimulation at a specific region in the in vitro brainstem-
spinal cord preparation can induce long lasting swimming activity. We identified the 
optimal region to induce sustained swimming and examined how the pattern and frequency 
of the swimming activity compares with that of the freely swimming animal. In addition 
we also investigated the interaction of two distinct behavioral patterns of the zebrafish, 
namely swimming and escape, in this in vitro preparation.  

Our results show that a brief stimulation with appropriate frequency and intensity 
induces swimming that outlasts the stimulation with alternation between left and right side 
(Fig 6). The burst amplitude and frequency as well as duration of the episode increased by 
increasing the frequency and strength of the stimulus pulses. The swimming activity 
induced by electrical stimulation displays a whole range of frequencies (1-12 Hz) unlike 
the locomotor rhythm induced by NMDA which becomes locked to one frequency (Fig 6). 
The fictive swimming induced by electrical stimulation of descending inputs bears 
similarities with that of freely swimming animals, so this is more physiological than the 
pharmacological approach.  
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Fig 6: A. Experimental setup of the stimulation induced fictive swimming. B. Stimulation of descending inputs induced a long episode of 
swimming burst in the motor nerve associated with membrane potential oscillation in the secondary motoneuron (sMN). C. Action 
potentials occurs during the plateau depolarization of the sMN and has constant amplitude. D, E. At the onset of NMDA application 
membrane potential oscillations and firing of the sMN resembles those seen during stimulation-induced swimming. F, G. When the 
swimming activity reaches a steady-state frequency, the membrane potential of the sMN becomes slightly depolarized and the shape of 
the membrane oscillations changed in comparison to those occurring at the onset of NMDA application. The action potentials already 
occurring during the rising phase of the oscillation and their amplitude is shunted by the depolarization of the membrane potential. 
(Adapted and modified from manuscript) 
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It has been shown that hindbrain excitatory neurons are responsible for sustained 
swimming in Xenopus tadpole and larval zebrafish (Chong and Drapeau, 2007; Soffe et al., 
2009). In our preparation we showed that this is not the case because blocking chemical 
synaptic transmission and in the brainstem and rostral spinal cord did not prevent the 
induction of swimming by stimulation.  

The results presented in this study provide a characterization of how spinal locomotor 
circuits are turned on by descending excitatory inputs and some initial insights into the 
interactions between swimming and escape circuits.  
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5  CONCLUDING REMARKS 

Many important insights into the organization and function of spinal locomotor networks 
have emerged from accessible animals. Recently, it has become increasingly important to 
combine different techniques and have access to genetically amenable preparations. This 
thesis aimed at defining the anatomical organization of interneurons controlling left-right 
coordination during locomotion and developing novel experimental model systems for 
studying the locomotor networks. 

Reciprocal inhibition is a key component of the pattern generation because it ensures 
the characteristic left-right alternation during locomotion. Although it has been known that 
CINs are composed of both inhibitory and excitatory interneurons, the reason for the 
dominance of inhibition has been unclear. By examining the projection pattern and 
transmitter phenotype of CINs, we have shown that glycinergic interneurons outnumber 
the glutamatergic ones. Thus these data provide support for the dominance of reciprocal 
inhibition over excitation. It is also possible that there is in addition a difference between 
the dynamics of inhibitory and excitatory synaptic transmission that ensure the 
predominance of inhibition. In this regard the accessibility of the adult zebrafish in vitro 
preparation would be valuable for examining the dynamics of synaptic transmission from 
identified locomotor network interneurons. 

The lamprey as a model system has provided many insights into the operation of the 
locomotor network. However, its inaccessibility to genetic and molecular tools has led us 
to develop an additional model system. Our goal is to understand the function of the 
locomotor network beyond interference of developmental changes. We therefore 
developed an in vitro preparation of the adult zebrafish. We show that a completely 
isolated brainstem-spinal cord can generate swimming activity with frequencies similar to 
those seen in freely moving animals. We have identified a region that when stimulated 
transiently produces long-lasting swimming episodes. This preparation is also accessible 
for patch-clamp recordings from interneurons and motoneurons. In a recent study, we 
showed that motoneurons can be divided into four groups that are recruited at a given 
frequency threshold (Gabriel et al., 2010). This preparation allows for the analysis of the 
locomotor network from larvae to juvenile and adult zebrafish to see what mechanisms are 
conserved and those that are changing to adapt to the developmental demands.  

One of the features of the adult zebrafish is the ability to recover locomotor function 
after spinal cord injury. Many of the studies have focused on determining the capacity of 
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the injured axons to regenerate. However, it could be that intrinsic plasticity takes place 
within the spinal locomotor network that contributes to the recovery of motor activity. The 
in vitro preparation of the adult zebrafish will help in determining the changes that occur in 
the properties of identified neurons after injury and how they change with time. 

In conclusion, the work of this thesis has provided insights into the organization of the 
interneurons responsible for left-right alternation during locomotion. The newly developed 
preparation of the zebrafish has started yielding results about the mechanisms of 
recruitment of neurons at different speeds of locomotion and therefore has a strong 
potential to help gaining more knowledge about the spinal networks controlling 
locomotion. 
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6  SOME FUTURE PROJECTS 

Recently our labratory has used a photoablation technique to ablate the excitatory V2a 
interneurons  which is zebrafish homolog of Chx10 in mammalian spinal cord (Kimura et 
al., 2006). After the ablation, the excitability of the network is decreased in the larval 
zebrafish (Eklöf-Ljunggren et al., 2010). It would be interesting to see what happens if 
these animals were allowed to grow into juvenile stages. Will they still show a perturbed 
behavior and if so what is the mechanism behind this? It will be also possible to look at the 
morphology of the other non ablated V2a interneurons at the juvenile stage to see how they 
change their dendritic arborization to compensate the behavioral perturbation if they are 
present at later stage 

It was also shown by Liao and Fetcho (Liao and Fetcho, 2008) that commissural 
bifurcating longitudinal ascending (CoBL) interneurons in the larval zebrafish are 
glycinergic and are rhythmically active during swimming. They are the more numerous of 
all the cell classes being encountered electrophysiolgoically and are thought to be the core 
interneuron class mediating left-right alternation during swimming. It would be interesting 
to see if photoablating these cells affects the left-right alternation. It would be also 
interesting to see if there is any perturbed behavior if they will persist until juvenile stage. 

Another interesting project would be looking at the interneuronal targets of 5-HT. Two 
previous observations suggested co-locallization of 5-HT in two different interneurons in 
the spinal cord. One has a unipolar process that projected ventrolaterally and dorsally into 
the motor column. The axonal process appears to be descending (McLean and Fetcho, 
2004). They are different from VeMe interneurons which are identified by another group 
as the 5-HT neurons (Brustein and Drapeau, 2005). Since 5-HT modulates the locomotor 
pattern differently in adult spinal cord, it would be interesting to see which interneuron 
class contains the 5-HT in adult spinal cord. It would be also interesting to what happens if 
we drive the network to generate higher swimming frequency with our stimulation 
paradigm in the brainstem/spinal cord preparation and look at modulation of 5-HT at high 
swimming speeds.  
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