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ABSTRACT

The ability of a cell to respond in a specific Wy certain signals represents key
biological phenomena governing development of roelwlar organism. Cellular
signaling regulates all aspects of cell biology hswas proliferation, migration,
differentiation, and death. Detailed understanddfignechanisms by which various
signals are interpreted into certain cellular resges is crucial in order to efficiently
manipulate these processes. Guiding a stem celépea&ific cues to a cell type of
interest, such as dopaminergic (DA) neurons, iseeessary prerequisite for cell
replacement therapy (CRT) of diseases, such asnBarks disease (PD), where DA
neurons are progressively lost. This thesis examinelecular mechanisms of action
of Wnts, a group of factors providing such cuegl #eir functional role in midbrain
development and DA neuron differentiation.

In our first study we manipulated Wpitatenin signaling pathway in mouse
embryonic stem cells (MESCs) to analyze its immactmESC differentiation into
DA neurons. We show that pathway impairment at lip@nd (Wntl) or receptor
(LRP6) level enhances neuronal and DA differerdgratiof mESCs. Similarly,
application of Dkk1l (Wnfl-catenin pathway inhibitor) also increased the dyief
MESC-derived DA neurons. Combined, our data dematesthat Wntl and LRP6
are dispensable for mESC DA differentiation, theESC differentiation into DA
neurons is facilitated by attenuated VBatatenin signaling, and that inhibitors of
Wnt/B-catenin pathway can be used to increase efficiesfcyDA differentiation
protocols.

Earlier reports from our lab demonstrated enhanotré DA differentiation by
Wnt5a, an activator of Wrft/catenin-independent pathways in DA cells. Thus, we
focused on mechanisms of Whtlatenin-independent signaling and its functional
aspects in our following studies, as these wereehatidated before this thesis. We
show by analyses of Wnt5a -/- mice embryos the mapoce of Wnt5a for proper
midbrain morphogenesis. Moreover, absence of Wieth#o increase in proliferation
of DA progenitors, accumulation of Nurrl+ precussand attenuated differentiation
of these precursors into TH+ DA neurons.

To characterize Wnt5a-mediated effect on DA difféisgion we analyzed possible
activation of putative downstream pathway compamievte demonstrate that Wnt5a
effects on DA differentiation are mediated via dn@llPase Racl, which is a



downstream effector of Wnt5a/Dvl signaling in DAlseSubsequently, we examined
molecular aspects of the Wnt5a/Dvl/Rac signalingloser detail. We demonstrate
thatp-arrestin is a crucial component of Wnt5a/Dvl/Remaling route and we show
its critical role in regulation of CE movements itgr Xenopus gastrulation.
Moreover, we found that specification of Wnt-meddhsignaling at the level of Dvl
is further controlled by phosphorylation of Dvl lmasein kinases CK1 and CK2.
Therefore, CK1 and CK2 act as switches betweemdidbranches of Writtcatenin-
independent signaling. Next, to get further insighto Wnt5a/Dvl-mediated
activation of Racl we analyzed the Dvl-Racl inteoacand performed a proteomic
screen for Dvl-binding regulators of Racl activitye show that Dvl and Racl form
a complex, and the N-terminal part of Dvl mediatiets interaction. Further, we
demonstrate that Tiam1, a novel Dvl-binding partioeind in our study, is required
both for Racl activation in the Wnt5a/Dvl/Rac sigmg branch and for DA neuron
differentiation. Collectively, we identifief-arrestin, CK1, CK2, and Tiam1 as novel

regulators of Wnt5a-induced signaling.

In sum, data in the presented thesis describescoiatemechanisms and functional
consequences of Wnt-driven signaling pathways amgbmts the modulation of Wnt

signaling as a possible tool to improve PD themapie
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1 INTRUDUCTION

1.1 CONTEXT: PARKINSON'S DISEASE AND REGENERATIVE
MEDICINE

Parkinson’s disease (PD) is the second most comneamodegenerative disease;
current demographic trends predict a doubling ie tumber of cases by 2050
(Schapira, 2009). PD is diagnosed by the onsetadbmmanifestations such as tremor,
rigidity, hypokinesia, and gait and balance impa&nt Recent evidence suggests that
PD may have a pre-motor phase, associated witlesigpn and/or sleep abnormalities
as most common signs (Langston, 2006). As the skspeogresses, other non-motor
symptoms may appear, including various cognitivedainments and dementia.

At a pathological level, PD is characterized byragpessive loss of substantia nigra
(SN) dopaminergic (DA) neurons innervating the astnin. Loss of these striatal
connections is causative of the motor symptomshef disease. However, as the
appearance of further symptoms suggests, otheoma&upopulations in the peripheral
and central nervous system are also affecteden fditases of the PD.

The cause of PD is largely unknown, with 95% ofc¢hsees being sporadic. In addition
to the mitochondrial dysfunctions, which were pregub as contributing factor leading
to death of DA neurons (Schapira et al., 1989)rethe evidence of free-radical-
mediated damage to proteins and lipids in the SiNef©et al., 1996), impairment of
ubiquitin-proteasome system (Olanow and McNauglii062, and inflammatory
changes contributing to the pathology of PD. Resardies also proposed involvement
of prion-like mechanisms in progression and/or agirey of the disease (Angot et al.,
2010). Together, all this evidence suggests thatsRBther a syndrome with different
underlining causative factors leading to commonpeid, death of DA neurons
(Langston, 2006; Obeso et al., 2010). Furthermbrealso not known to which extent
the degeneration of SN DA neurons precedes theé ohB® symptoms. It is estimated
that about 70-80% dopamine depletion is necessarythie classical PD signs to
manifest (Schapira, 2009).

Currently, treatment of PD patients is entirely pyomatic, mainly utilizing
application of L-DOPA (precursor of dopamine) tglemish the dopamine levels.
Alternatively, surgical treatment of PD is basedtba use of deep brain electrical

stimulation. While these treatments provide symgttcrrelief, they do not affect the



course of the disease as such. Therefore, strategi@ng at either preventing the
progressive cell loss or restoring the pool of do@ producing cells are of a great
interest in context of regenerative medicine (Asg2910).

Cell replacement therapy (CRT) represents one efrtlost attractive avenues for
restoration of striatal levels of dopamine with dimee only treatment (Arenas, 2010;
Correia et al.,, 2005; Hedlund and Perlmann, 200&isRP and Arenas, 2007).
Transplantation of fetal midbrain tissue has beemahstrated as viable therapeutic
alternative for the treatment of PD (Lindvall et,al989; Piccini et al., 1999).
Nonetheless, apart from the obvious ethical issuesiong aborted human fetuses (6-8
per one patient), this therapeutic approach istdehiby the poor survival and
integration of transplanted progenitors and/or oesy and the causing diskinesia.
These complications have been mainly attributedpd®or standardization of the
transplanted material and the presence of undeseidypes (Hagell et al., 2002;
Olanow et al., 2003).

Stem cells, either embryonic stem cells (ESC) duaed pluripotent stem cells (iPSC)
obtained by reprogramming of more differentiatetl types (Takahashi et al., 2007)
are an attractive alternative source of cells fog purpose of CRT. Compared to
primary fetal cells, less starting material would tequired, as these cells can be
expanded in culture and directed to differentiati® ithe cell type of interest (DA
neurons).

In order for ESC-derived DA neurons to induce acfiomal recovery following the
stem cell-based CRT, it is necessary to obtairickerfit number of correctly specified
DA neurons using highly efficient protocols for Differentiation. Moreover, these
neurons have to survive and create functional adiores with host cells upon
transplantation. Efforts from many researchers Hauws been devoted to study the
development, differentiation, and survival of migiior DA neurons. Understanding the
mechanisms controlling those processes is critaraéstablishing such protocols and
thereby a necessary prerequisite for successfulemgntation of the CRT in the
future. In this regard, mouse models and mousegpyircells have been widely used in
order to elucidate the role of both intrinsic arxtriasic factors in DA neuron
development and differentiation. For this purpaseuse ESCs (mMESCSs) represent a
valuable tool since they allow to study the develept and differentiation of DA
neurons, as well as to screen for novel regulagord/or optimal differentiation
protocols that will ultimately be applied in hESIBSCs (Niwa, 2010).



Among the factors important for the developmentatbrain DA neurons, but still not
fully understood in terms of their mechanisms dfca are Wnts. Work in this thesis
focuses on characterization of molecular mechanemaisfunctional consequences of

signaling events mediated by Wnts that are releicamtidbrain DA neurons.

1.2 EMBRYONIC STEM CELLS

Successful derivation of mMESC lines from the inoelt mass (ICM) of mouse pre-
implantation blastocyst was reported already 30syago (Evans and Kaufman, 1981,
Martin, 1981). ESCs are undifferentiated cells btégpaof self-renewing (copying
themselves). Since their discovery, mESCs have ipeemdiately recognized as tools
to address mechanisms underlying the proces drdiffiation (giving rise to more
specialized progeny). Analysis of chimeric mousémsms produced by the injection
of ICM cells and mESCs into blastocysts, has shiahICM cellssrmESCs are able to
give rise to cell progeny of any of the three gdayers: ectoderm, endoderm, and
mesoderm but do not contribute to the trophectodiemeage (Niwa, 2007; Solter,
2006). mESCs are therefore pluripotent. Only taépbcells give rise to all cell types
including trophectoderm. Moreover, ESCs can gige to germ cells in chimaeras and
these germ cells should in turn be able to give tts normal, fertile adults (Solter,
2006). This, for obvious ethical reasons, has b@emonstrated only for mESCs
(Bradley et al., 1984; Nagy et al., 1993), andfoohESCs. Importantly, the ability of
MESCs to give germ line transmission enabled temesgjs and, in combination with
another powerful approach - gene targeting by hogmls recombination - turned
MESCs into tools to study gene function, a techgylwhich was recognized by a
Nobel Prize in 2007.

Apart from ESCs, tissue-specific stem cells haveose restricted potential and give
rise to a more limited progeny. Such cells are tften referred to as multi/oligo/bi-
potent and have been described during embryogeardigpostnatalyn vivo and/or
expandedn vitro (Falk and Frisen, 2005; Li and Xie, 2005; Slad)&, Wagers et al.,
2002).

1.2.1 Regulation of pluripotency

Self-renewal, the ability of both ESCs and tisspeesfic stem cells to go through

numerous cycles of cell division while maintainitngir undifferentiated status, the so



called “stemness” (Boiani and Scholer, 2005; Ni@0)7; Solter, 2006), is a property
that has attracted well-deserved attention of nrasgarchers. Stemness of mMESCs is
maintained during self-renewal by the inhibition differentiation promoting signals
and by promotion of proliferation (Lanner and Rogsa010; Niwa, 2007; Silva et al.,
2008; Wray et al., 2010; Ying et al., 2008). Leukembhibitory factor (LIF) has been
identified as a critical factor for the long-termifsrenewal of mMESCs via activation of
JAK/STAT3 signaling (Nichols et al., 2001; Smithadt, 1988; Williams et al., 1988).
Moreover, BMP4 (bone morphogenetic protein 4) hesnlbshown to contribute to the
LIF signaling cascade, enhancing the self-renewiaim&SCs by activating the
SMADA4/Id pathway (Ying et al., 2003a). However, BiARmediated signaling is not
sufficient to maintain mMESCs undifferentiated ine tlabsence of LIF. Further,
compound 6-bromo-indirubin-39-oxime (BIO), an intob of GSK3 (glycogen
synthase kinase 3) has been reported to sustaiurtidferentiated state of both
MESCs and hESCs (Sato et al., 2004). GSK3 is negeggulator of Wnf-catenin
pathway (see chapters 1.4.2 and 1.4.3) and isiletved in many other processes,
including the regulation of cell metabolism (Dolled Woodgett, 2003). Therefore, it
is not clear which of the functions of GSK3, if arnwere responsible for observed
effects, as the use of other GSK3 inhibitors fatlegrevent mESCs differentiation in
the absence of LIF (Wray et al., 2010; Ying et 2008). However, the Wifit/catenin
pathway has been shown to promote the stemnesE®€s1in a manner similar to that
of BMP4, by synergizing with/depending on LIF-dmvsignaling (Anton et al., 2007;
Lee et al., 2009; Miyabayashi et al., 2007; Ogaina.£2006).

Activation of the above mentioned signaling pathsvagsults in the transcriptional
induction or repression of genes that are resplenddr implementing stem-cell
pluripotency. The core circuitry of pluripotencysasiated transcription factors consists
of Oct3/4 (Nichols et al., 1998; Niwa et al., 20@&holer et al., 1989), Sox2 (Yuan et
al., 1995), and Nanog (Chambers et al., 2003; Métal., 2003). Published evidence
suggests that none of those transcription factamts as “the master gene of
pluripotency”. It is their coordinated action andtoml regulation that is responsible for
maintaining of the undifferentiated state of mES@®iani and Scholer, 2005).
Moreover, it is becoming obvious that many othenage apart from those already
mentioned (STAT3, Nanog, Oct3/4, and Sox2), areneoted to the circuitry of
pluripotency-regulating genes and are thereforeomapt for the maintenance of the
undifferentiated state of MESCs (Cole et al., 2@®8 and Smith, 2010; Niwa et al.,
2009).



1.3 EMBRYOGENESIS: FROM ZYGOTE TO MIDBRAIN AND DA
NEURONS

1.3.1 Early embryogenesis and gastrulation

Vertebrate embryogenesis represents a remarkattegs where proliferation, cell fate
specification, and cell migration are exquisitelghestrated in order to give rise to a
highly organized embryo from a single cell zygdthis process involves an ordered
series of lineage specifications and cell movemthasfirst result in the development
of a morula, then a blastocyst, and, later, inftheation of the embryo itself, with
determined anterior-posterior, dorsal-ventral, aredlial-lateral axes. At the blastocyst
stage, the cells of the ICM segregate into two rayeepiblast and hypoblast (also
called primitive endoderm). The former gives riseatl embryonic tissues, the latter,
together with trophoblast cells, gives rise to astnbryonic tissues (Rossant and Tam,
2009; Zernicka-Goetz, 2002). During induction ofe tlygerm layers (ectoderm,
mesoderm, and endoderm), the rather unstructurety emnbryo (blastula) is
transformed by gastrulation movements into a nayited embryo (gastrula). Several
types of morphogenetic movements are involved intebeate gastrulation:
internalization, epiboly, convergence and extensid@astrulation starts by
internalization of cells of future mesoderm and agtetm beneath the prospective
ectoderm via opening in the blastula, blastopaer(gd primitive streak in mammals),
thus allowing a new layers of cells to form. Epibolovements lead to spreading and
thinning, while simultaneous convergence and exten&E) movements narrow the
newly formed germ layers medio-laterally, therefotause elongation of the
embryo/tissue along the rostral-caudal axis (Saticezel, 2005)( Figure 1). Crucial
regulators of the CE movements are the Woétenin-independent pathways (Roszko
et al., 2009; Veeman et al., 2003a) (see chapte)l.

caudal

e

rostral '

- S

) .
lateral medial lateral

Figure 1. CE movements illustrated on an example of formiagral tube. CE movements within the
neural tube result in narrower and longer neutaze tu



1.3.1.1 Patterning the embryo by morphogens

Induction and specification of the germ layers todpice specific tissues and organs
take place before and during gastrulation, as thesogermal and endodermal
precursors migrate through the blastopore/primitsteeak to their destinations.
Specification of cell fate is accomplished by slgrp molecules (morphogens)
forming gradients along anterior-posterior, dossattral, and/or medial-lateral axes.
Gradients of morphogens are interpreted by actimatif transcription of specific sets
of genes, which then determine the spatial and éemhpposition of cell(s) within the
embryo or organ/tissue and the acquisition of $ecell fate. These inductive
processes are controlled by signaling centers ii@ges) producing such morfogens
(e.g. Shh, TGRB, FGF, RA, and Wnt) during development of the erol{ye Robertis
et al., 2000).

ESCs also offer a system to study these procéss#so in cell culture. When grown

in suspension, in the absence of LIF, MESCs aeetaldpontaneously differentiate and
form spheroid aggregates. As those mimicked posintgtion embryonic tissues, they
were termed embryoid bodies (Doetschman et al5)198ore importantly, embryoid
bodies have been shown to recapitulate key evdéngsstrulation, such as primitive
streak formation, establishment of gradients of phogens, and formation of cell
lineages of all three germ layers (Desbailletd.eP800; ten Berge et al., 2008).

1.3.1.2 Neural induction

The ectodermal region of the embryo gives riseeioroectoderm and epidermis. It is
well accepted that inhibition of BMP pathway isugqd for acquisition of neural fate
(neural induction) in frog, while BMP activity prates formation of epidermis
(Hemmati-Brivanlou and Melton, 1997; Stern, 200B)rther, activation of Writf
catenin pathway is required at very early stagesdfirsalisation of theXenopus
embryo and formation of the Spemann organizer (Mudiaand Moon, 1989; Niehrs,
2001; Sokol et al., 1991; Tao et al., 2005). Thensnn organizer is critical for the
initiation of gastrulation, formation of body axasd consequently for the formation of
neural tissue (Baker et al., 1999; De Robertid.e2800; Stern, 2006). The Spemann
organizer produces inhibitors of BMP and Wnt sigmplpathways (e.g. Noggin,

Chordin, and Dkk ), which are required for speaifion of head neuroectoderm (del



Barco Barrantes et al., 2003; Niehrs, 2001). Tleegfit seems that the WpHcatenin
signaling pathway has to be later inhibited for #ffcient neural induction (Heeg-
Truesdell and LaBonne, 2006). Further evidence esstgghat a similar model applies
also to neural induction in mammals (Gaulden anteR008; Levine and Brivanlou,
2007). Moreover, results obtained from mESC difiéegion experiments have further
supported the negative role of BMP and Wnt in neurduction/specification in
culture. In this case, efficiency of acquisitionr&ural fate is enhanced by serum-free
conditions (serum used in culture media containdPBMbw cell density (dilution of
soluble signaling factors produced by cells), apglieaation of BMP and/or Wnt
inhibitors (Aubert et al., 2002; Haegele et al.Q20Chambers et al., 2009; Smukler et
al., 2006; ten Berge et al., 2008; Tropepe eR@D1; Verani et al., 2007).

1.3.1.3 Neurulation

As gastrulation proceeds, the neuroectoderm formesuaal plate, which subsequently
starts to develop folds at the junctions with then-neural ectoderm (prospective
epidermis). These folds elevate, come into condact subsequently fuse, thereby
giving rise to the neural tube. It is not surprsithat this rather complex process is
underpinned by changes in cell polarity and by rhogenetic CE movements.
Importantly, both the cell polarity and the CE mmesnts are under control of W/
catenin-independent pathways (Copp et al., 20031tdbaiquiol et al., 2006).

Following neurulation, the forming CNS is specifieg gradients of morphogens along
its rostral-caudal as well as dorsal-ventral akigs allows differentiation of the neural
tube into forebrain, midbrain, hindbrain, and spic@d, together with acquisition of
many specialized neuronal fates based on both tisguctive and positional
information provided (Edlund and Jessell, 1999sdkkst al., 1989).

1.3.2 Midbrain and DA neuron development
1.3.2.1 Patterning of midbrain by Shh and FGF8
Organization of the midbrain, specification of peagors and their subsequent
differentiation into specialized neuronal subtypssch as ventral midbrain (VM)

dopaminergic (DA) neurons, are under orchestrabéidraof extrinsic signaling clues

and intrinsic fate determinants. Two main orgamjzeenters, the isthmic organizer at



the midbrain-hindbrain boundary, and the floor @lat the midline of the neural tube,
instruct together the fate of neural progenitorshatintersection of their “spheres of
influence”(Hynes and Rosenthal, 1999). The flo@telprovides signals that specify
midbrain progenitors along dorsal-ventral axis @nd also the place where VM DA
neurons are born (Bonilla et al., 2008; Kittappalet2007; Ono et al., 2007). It has
been experimentally demonstrated that the flooteptssue is capable of inducing
ectopic DA neurons in dorsal midbrain (Hynes et H95b), and that secreted Sonic
hedgehog (Shh) mediates this inductive activity ety et al., 1995a; Wang et al.,
1995). Mice lacking Shh fail to develop any VM DAurons, which underscores the
important role of Shh signaling in dorsal-ventralttprning of the neural tube and
regulation of progenitor proliferation (Agarwalaadt, 2001; Ishibashi and McMahon,
2002).

Formation of the isthmic organizer at the boundaetween midbrain and hindbrain is
controlled by expression of two transcriptional tées, orthodenticle homologue 2
(Otx2) in the presumptive forebrain and midbraimg gastrulation brain homeobox 2
(Gbx2) in the region giving rise to hindbrain argnsl cord (Acampora et al., 1997,
Simeone, 2000; Wassarman et al.,, 1997). Nonethelksther studies have
demonstrated that proper establishment of the istonganizer is defined not just by
these two transcription factors but also by a cempjenetic interaction between
morphogens (Wntl, FGF8) and additional transcmatidactors Engrailed and Pax
(Bally-Cuif et al., 1995; Danielian and McMahon,989 Joyner, 1996; Prakash et al.,
2006; Prakash and Wurst, 2006; Reifers et al., 19A8st and Bally-Cuif, 2001).
Similar to the floor plate, transplantation of tissfrom the midbrain-hindbrain
boundary can induce ectopic formation of both thdbmain as such and VM DA
neurons (Martinez et al., 1991; Wurst and BallyfCAD01; Ye et al., 1998). This
activity has been attributed to the secretion oF&Gwhich can mimic the effect of
transplanted isthmic organizer (Martinez et al99)9 Importantly, both Shh and FGF8
are necessary for specification of the VM and dgwelent of DA neurons.
Interestingly, neither of the two factors is suéfiat in absence of the other (Ye et al.,
1998). Thus, integration of both anterior-posteaind dorsal-ventral signals is required
(Figure 2).
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Figure 2: Development of midbrain and DA neurons. On the Bifferentiation of neural tube into
forebrain (F), midbrain (M), and hindbrain (H) asgpkcification of VM by secreted factors produced by
floor plate (FP) and isthmic organizer at the médinhindbrain boundary (MHB). Coronal section of
neural tube in the midbrain region (to the rigfif)e area within the dashed rectangle is magnifietie
middle. Differentiation of progenitors and precussas controlled by sets of transcription factors.
Terminally differentiated DA neurons express TH &#AIT. Not all DA markers are depicted.

1.3.2.2 Wntsin VM development and DA differentiation

Wntl, a ligand from the Wnt protein family (see jofeat 1.4.1) is expressed at the
prospective midbrain-hindbrain boundary alreadi&tand also later in the developing
VM (McMahon et al., 1992; Parr et al., 1993) (segufe 2). Wntl deficiency in mice

leads to a deletion of most of the midbrain andeatgreduction in the number of DA
neurons (McMahon and Bradley, 1990; Prakash e@06; Thomas and Capecchi,
1990), which has been attributed to loss of exmassf Engrailed, its target gene
(Danielian and McMahon, 1996). Interestingly, Wiglrequired for the induction of

ectopic DA neurons by Shh and FGF8, as Shh and F&led to do that in Wntl -/-

background (Prakash et al., 2006). Moreover, it®pEc expression leads to both
increase in proliferation and induction of ectopi& neurons (Panhuysen et al., 2004,

Prakash et al., 2006). It is thus becoming clear Wintl and Wng-catenin pathway,



respectively, regulates different aspects of VMagyment and DA differentiation

(Bally-Cuif et al., 1995; Castelo-Branco et al.030Joksimovic et al., 2009; Tang et
al., 2009) (Figure 3). The use of partially pudfié/ntl conditioned media (CM) has
increased number of VM DA neurons obtained in mouseary culture (Castelo-

Branco et al., 2003). Furthermore, analyses of ntutéce either with a point mutation
in the Wntl gene or lacking LRP6, a receptor imgdrfor the Wnfi-catenin pathway

(see chapters 1.4.3 and 1.4.6.2), have suggest@avalnement of this pathway in

maintenance of the isthmic organizer (Bally-Cuifagt 1995; Pinson et al., 2000).
Conversely, expression of Wntl under the Engrailpdimoter resulted in a caudal
expansion of the VM DA domain and an increase | mlamber of DA neurons,

(Prakash et al., 2006). Moreover, recent work lmapgsed an involvement of Wntl in
the regulation of neurogenic potential of the VMboil plate through a genetic
interaction with Shh pathway (Joksimovic et al.02pD

} |
Wnt/B-catenin pathway ?

l A 4
specification of the VM DA differentiation
progenitor proliferation
neurogenesis

]
DA progenitor DA neuron

Figure 3: Brief summary of the roles of Wntl and Wnt5a in deeelopment of DA neurons.

Other Wnt ligands are expressed in the developikyat the time when DA neurons
are born (Castelo-Branco et al., 2003; Rawal e2806). Some of those are possibly
functionally redundant to Wntl, based on their iBbito activate Wn{-catenin
pathway (lkeya et al., 1997; Rawal et al., 20063sa0et al., 2010), while others may
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have distinct signaling properties. In regard @ kitter, Wnt5a, which fails to activate
Whnt/B-catenin signaling in DA cells (Bryja et al., 200&chulte et al., 2005), promotes
differentiation of precursors into DA neurons inrigas culture systems, including
primary VM precursors, VM-derived neurospheres, BSCs (Castelo-Branco et al.,
2003; Hayashi et al., 2008; Parish et al., 2008cBez-Pernaute et al., 2008; Schulte et
al., 2005) (Figure 3).

1.3.2.3 Intrinsic factors regulate DA neuron devel opment and differentiation

Genetic pathways of cell intrinsic factors are tatpd, both temporally and spatially,
by secreted morphogens. Moreover, complex genggcactions including regulatory
loops, activation and/or repression of transcriptias well as crosstalk at different
levels between these genetic pathways takes maaestre correct fate specification of
progenitors and precursors, and their proper diffiéation into mature VM DA
neurons (Abeliovich and Hammond, 2007; Ang, 2006enas, 2008; Smidt and
Burbach, 2007; Wallen and Perlmann, 2003).

Several transcription factors have been demondttatée important for proliferation
and/or subsequent specification of progenitor/msarudifferentiation towards the DA
lineage: Sox2 (Graham et al., 2003), Ngn2 (Andergital., 2006a; Kele et al., 2006;
Thompson et al., 2006), Mashl (Kele et al., 20@8k et al., 2006), Msx1 (Andersson
et al., 2006b), Foxa2 (Ferri et al., 2007; Kittapggtaal., 2007; Lin et al., 2009), and
Lmxla/lb (Andersson et al., 2006b; Guo et al., 2@7o et al., 2008; Chung et al.,
2009; Lin et al., 2009; Smidt et al., 2000) (Fig@)e Further, nuclear receptor Nurrl
has been demonstrated to be essential for botatelopment and differentiation of
postmitotic DA precursors into mature VM DA neuroAs a consequence, markers of
terminally differentiated DA neurons such as thezyeme critical for dopamine
synthesis, tyrosine hydroxylase (TH), or the dopentransporter (DAT) fail to be
expressed in Nurrl -/- mice (Le et al., 1999; Sdaeg@ardenas et al., 1998; Zetterstrom
et al., 1997). Nurrl directly regulates expressibmany DA genes by binding to their
promoter regions, in cooperation with other nuclesmeptors (Sacchetti et al., 2002;
Sacchetti et al., 2001; Sakurada et al., 1999)oamdher transcription factors, such as
Pitx3 (Jacobs et al., 2009).
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1.3.2.4 Maturation and function of DA neurons

Newly born DA neurons have to send axonal projestimto their target areas and
maintain them in order to function appropriately adulthood. The majority of
differentiated DA neurons born in the VM subseglyecbntribute to formation of the
SN and the ventral tegmental area (VTA). As alreaxdintioned, DA neurons arising
from the SN project to the striatum, to regulatdancontrol, and their degeneration is
associated with the motor symptoms of PD. Sevenaiatrophic factors such as BDNF
and GDNF are involved in controlling the survivdl lmoth DA neurons and their
projections (Hyman et al., 1991; Krieglstein, 2004pore et al., 1996; Sauer et al.,
1995). Interestingly, homeobox transcription fad@ix3 has been identified as a pro-
survival factor critical for the SN DA neurons, mdt for DA neurons located in the
VTA (Hwang et al., 2003; Nunes et al., 2003; Sreiddl., 2004).

Many recent reports have proposed that some ajghes employed in specification of
DA progenitors and/or their differentiation duriegibryogenesis are also functionally
relevant for fully matured DA neurons during theulétdbod, and thus their impaired
function may represent another piece in the punzléerms of the mechanisms
contributing to pathogenesis of PD (Fuchs et @09 Kadkhodaei et al., 2009;
Kittappa et al., 2007; Le et al., 2009).

1.3.25 How to get DA neurons from ESCs

Strategies to differentiate mMESCs or hESCs into ri»rons aim at mimicking the
conditions found during VM DA neuron developmeantivo. Differentiation protocols
usually combine efficient acquisition of neuroe&wodal fate with appropriate
specification of neural progenitors by morphogeimdiowed by differentiation of
progenitors and/or precursors induced by mitogethdsawal (Arenas, 2010; Kim et
al., 2007; Perrier and Studer, 2003). The formeofien achieved by attenuation of
BMP and/or Wnt pathways (Aubert et al., 2002; H¥egé al., 2003; Chambers et al.,
2009; Smukler et al., 2006; ten Berge et al., 2008pepe et al., 2001; Verani et al.,
2007). Moreover, efficiency of neural differentatican be monitored by verification
of expression of several neural markers (e.g. 2oéstin, and Tuj). Specification of
progenitors is done by the administration of mog#ms, which are involved in
patterning of the VMin vivo (e.g. Shh, FGF8), and/or the overexpression df cel

intrinsic factors regulating DA neuron developméng. Lmxla/b, Foxa2, Nurrl, and

12



Pitx3). Expression of those intrinsic regulators/ DA fate also suggests whether or
not the obtained neurons are properly specifiedthEry expression of the genes
involved in dopamine synthesis or transport (e.¢d, TDAT) reflects terminal
differentiation into VM DA neurons.

Interestingly, co-culture systems of mMESC with easi feeder cells, e.g. stromal cells
(Barberi et al., 2003; Kawasaki et al., 2000) omimegeal cells (Hayashi et al., 2008)
have proven to be quite efficient. In fact, facteexreted by the feeder cells are, to
some extent, sufficient for both neural and DA elfintiation of mMESCs. However,
factors produced by these feeder cell lines andiahed the pro-neural and pro-DA
differentiation effects are not entirely characed. This obviously represents a
drawback of this system for certain applicationisergfore, significant effort has been
invested into developing feeder-free differentiatpyotocols with comparable or better
DA neuron yield. These protocols take advantagtefuse of growth factors and/or
morphogenes, small molecules, or transgene expressither in mESCs grown in
monolayer or as embryoid bodies (Andersson e2@D6b; Han et al., 2009; Kim et al.,
2007; Kim et al., 2002; Lee et al., 2000; Ying ket 2003b). DA neurons obtained in
these cultures showed propertiesboha fide VM DA neurons (expression of DA
neuron markers and electrochemical properties). ebh@r, mESC have been
successfully used to screen for novel regulatoi3ftievelopment and differentiation,

and to elucidate mechanisms of their action in nagessible system of a cell culture.

1.4 WNT SIGNALING: MECHANISMS AND CONSEQUENCES

Wnt signaling governs numerous aspects of embresienand adult tissue
homeostasis throughout the animal kingdom (frormgps, through worms, flies, and
frogs, to human) by controlling cell proliferatiopplarity and migration, cell fate
specification, and differentiation via several detveam pathways (Angers and Moon,
2009; Ciani and Salinas, 2005; Clevers, 2006; tasatand Arenas, 2009; Lai et al.,
2009; MacDonald et al., 2009; Montcouquiol et 2006; Strutt, 2003; van Amerongen
and Nusse, 2009; Veeman et al., 2003a).
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1.4.1 Wnt ligands

Wnt stands for wingless-related MMTV integratiotesiThe wingless mutation was
first described irDrosophila (Sharma, 1973Sharma and Chopra, 1976), and after that
the intl oncogene was identified in mammals (Nwegsa., 1984; Nusse and Varmus,
1982). It became apparent later that they bothaettdor homologs of the same gene
(Rijsewijk et al., 1987). Thus, the term “Wnt” waieated to designate a novel family
of signaling molecules (Nusse et al., 1991).

Whnt ligands represent a family of 19 different gememammals. Originally they were
subdivided into two groups: “canonical/Wntl classWnts (e.g. Wntl, Wnt3a,
Wnt8a/b) and “non-canonical/Wnt5a class” (e.g. Wiwht5a, Wntl1l) based on the
ability of Wnts from the “canonical” class to indumorphological transformation of
C57MG cells (Wong et al., 1994) and a secondary lzodks inXenopus embryos (Du
et al., 1995; McMahon and Moon, 1989; Sokol et H91; Torres et al., 1996) by
activation of the Wnp-catenin signaling pathway (Guger and Gumbiner,5199
McCrea et al., 1993). On the other hand, Wnts ftieen“non-canonical” class, such as
Wntba, triggered “non-canonical” signaling indepemity of p-catenin, thereby
regulating CE movements during gastrulation (Mobal ¢ 1993). Further studies have
demonstrated that different Wnt ligands have pegfees for triggering distinct type of
downstream signaling. As mentioned already, Wnt&a heen shown to activate
Whnt/B-catenin-independent signaling in DA cells (Bryjaaé, 2007c; Schulte et al.,
2005), which is in agreement with its potentiateégulate CE movements and failure to
induce the axis duplication iKenopus embryos. However, as also discussed in the
following chapters, the capability of Wnt ligand &stivate particular downstream
signaling pathway seems to be very context depéntfethis regard, various reports
have shown activation of the “canonical” Whtatenin signaling pathway by Wnts
from “non-canonical”’ class (He et al., 1997; Chalet2008; Cha et al., 2009; Mikels
and Nusse, 2006; Tao et al., 2005) and vice vétabds et al., 2003; Spinsanti et al.,
2008) in specific context.

Wnts are secreted proteins, their efficient semmetrequires membrane protein
Whntless/Evi/Sprinter (Banziger et al., 2006; Bdreyer et al., 2006; Goodman et al.,
2006). Furthermore, Wnt ligands carry several pms$lational modifications
(glycosylation, palmitoylation, palmitoleoylatiomhich make them rather hydrophobic
and possibly membrane associated. These modificatoe important for secretion
and/or signaling capabilities of Wnts (Ching et, &008; Kurayoshi et al., 2007;
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Takada et al., 2006; Willert et al., 2003) and aotdor their very poor solubility.
Consequently, only a few Wnts have been purified demonstrated to retain their
ability to trigger signaling events (Mikels and 8as2006; Schulte et al., 2005; Sousa
et al., 2010; Willert et al., 2003). Due to thistfamost studies regarding Wnt signaling
utilize either Wnt3a or Wnt5a, the first two Wrddinds purified.

Whnts are highly hydrophobic and poorly soluble, ffe¢y are supposed to act as
morphogens (Charron and Tessier-Lavigne, 2005;kSI&893). Therefore, several
experimental models explaining long distance trartspf Wnt proteins have been
proposed (Bartscherer and Boutros, 2008; Lorenoamnck Korswagen, 2009; Port and
Basler, 2010). In light of recent evidence, it ssethat formation of multimers,
interaction with proteoglycans and/or lipoproterrers facilitates their long-range
transport and the formation of morphogenetic gradigvithin a tissue (Bartscherer and
Boutros, 2008; Neumann et al., 2009; Panakova,&G05; Yan and Lin, 2009).

1.4.2 Specificity in Wnt signaling

Wnt ligands activate several downstream signaliathways. The character of the
signaling (activation of a specific pathway) sed¢mbe determined by: 1. specificity of
Whnt ligands’ interactions with various receptorsenrtain cellular contexts (defined by
presence of specific set of receptor and by théiceallular distribution). 2. cytosolic
pathway components specifically interacting withrtipalar receptors and/or
downstream pathway effectors. Wnts are known tovatet three main pathways:
Whnt/B-catenin pathway, Wnt/PCP pathway, and Writ/@mthway. As the latter two
do not signal vigB-catenin, they are together referred as Woéatenin-independent
pathways.

In the next sections, key steps of each individMalt-driven signaling branch will be

presented, and then selected pathway componehtsevdescribed in greater detail.

1.4.3 Wnt/B-catenin signaling pathway

In the absence of Wnt ligand, a destruction comgdrrmed, consisting of glycogen
synthase kinase 3 (GSK3), casein kinas€(K1a), Axin and adenomatous polyposis
coli (APC). CKlo and GSK3 phosphorylafgcatenin (CKh at Ser45 and GSKS3 at
Ser33/37/Thr41), thus priming it for ubiquitinatibg B-TrCP E3 ligase and subsequent
degradation by proteasome (Clevers, 2006; MacDaatedtl, 2009). Interaction of Wnt
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ligands with Frizzled receptors and the receptoPh#8 activates cytosolic protein
Dishevelled (Dsh inDrosophila, Dvl in mammals, Dvl used as abbreviation for
Dishevelled(s) in this thesis), which is recruitedhe Frizzled receptor and facilitates
Axin and GSK3 co-recruitment. GSK3 together withsaia kinase 4 (CK1ly)
phosphorylate LRP5/6, thus promoting Axin bindirgg tRP5/6. Recruitment and
subsequent inhibition of GSK3 together with reengéiht of Axin leads to the
disassembly of the destruction complex (Davidsomlgt2005; Tamai et al., 2004,
Zeng et al., 2007; Zeng et al., 2005). Therefpreatenin level starts to increase dhnd
catenin is subsequently translocated into the osclecreasing evidence also indicate
that Wnt-induced endocytosis of the receptor corgdeacts upstream @kcatenin
stabilization (Cruciat et al., 2010; Yamamoto et2006; Yamamoto et al., 2008).
Upon entering the nucleu$;catenin interacts with transcription factors TCEH;
either by replacing co-repressors bound to TCF/BEpromoter regions or by directly
binding to TCF/LEF. Together with the TCF/LH¥-catenin regulates the expression of
target genes of the Wfttatenin pathway (Behrens et al., 1996; Mosimanal.et
2009) (Figure 4).

More than 100 direct target genes of \BrtAtenin pathway have been identified,
many of those acting as critical regulators of cgttle progression/proliferation, cell
fate specification, and differentiation (Nusse, 201

Interestingly, the existence of a mechanism whildwa the cell cycle to tune the level
of Wnt/B-catenin signaling at the level of LRP5/6 phosplairgn has been recently
proposed (Davidson et al., 2009). This not onlgrgithens the view of Wifitcatenin
signaling pathway as regulator of proliferationt blso suggests that activation of the
pathway may have different outcomes in differeagiss of the cell cycle.

This recent finding underscores the complexity afti/catenin pathway regulation.
Several high throughput screens have been receetliprmed to identify critical
components of the pathway. Based on these studsegins that many regulators of
Whnt/B-catenin signaling act in cell specific context.liime with this, the number of
“core components”, which have been identified byltiple screens as essential for
Whnt/B-catenin signal transduction, is rather small (Fameal., 2009; Major et al.,
2007; Major et al., 2008; Miller et al., 2009; Taeg al., 2008). Moreover, many
pathways regulators are functionally redundant anfill their regulatory role at
multiple levels within the pathway.
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Figure 4: Wnt/B-catenin signaling pathway. In the absence of \iganhid,-catenin is phosphorylated by
kinases of the destruction complex, @GKand GSK3, and subsequently degraded in the pooteas
Upon ligand binding to Frizzled and LRP5/6, DisHiagkis recruited and interacts with Frizzled. This
allows phosphorylation of LRP5/6 as well as inhditof GSK3 and disassemble of the destruction
complex.p-catenin is no longer degraded and enters the usigiaere together with TCF/LEF regulates
gene expression.

1.4.4 PCP and Wnt/PCP pathways

PCP (Planar cell polarity) refers to the generatibnniform orientation of individual
cells within a plane of a single layered sheetedlisc In Drosophila, PCP signaling is
implicated in regulation of the orientation of lsaon the wing and ommatidia in the
eye (Seifert and Mlodzik, 2007). In vertebrates t\ARGP signaling has been implicated
in the regulation of CE movements, neural tubew®sand orientation of stereocilia in
the inner ear (Montcouquiol et al., 2006). Impaitignvhile the vertebrate Wnt/PCP
pathway is regulated by Wnt ligands (Habas et28Q3; Heisenberg et al., 2000),
genetic evidence suggests that Bresophila PCP pathway acts in a Wnt-independent
manner (James et al., 2008). Interestingly, dowastrpathway components are highly
conserved betweeDrosophila and vertebrates, including Frizzled, DishevelledlYD
Flamingo (Celsrl in vertebrates), Strabismus (Vamgl vertebrates), Diego
(Diversin/Inversin), and Prickle. These represartgo called “core PCP components”
(Seifert and Mlodzik, 2007).
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1.4.4.1 PCP signaling

Evidence mainly from Drosophila suggests that the PCP is determined by
asymmetrical localization of the core PCP companevithin a cell. Strabismus and
Prickle forms a complex at proximal side of thd,ocshile Frizzled and Dvl forms a
complex in the distal portion of the cell (Axelro@001). Specific subcellular
localization of these complexes seems to be pramdte the activities of the
Strabismus and Prickle complex, which antagonizeititeraction between Frizzled
and Dvl, preventing the formation of Frizzled-Dwnaplexes at the proximal side
(Bastock et al., 2003; Strutt, 2001). Further, Diegts as a positive regulator of the
Frizzled-Dvl complex at the distal side, where rnéyents the inhibitory action of the
Strabismus-Prickle complex (Jenny et al., 2005).rddwer, this asymmetry in
distribution of these protein complexes is furthered by interactions with Flamingo
(Seifert and Mlodzik, 2007; Shimada et al., 2005uiUet al., 1999), as well as by
Frizzled-Strabismus interactions between neighlocells (Wu and Mlodzik, 2008).
As already mentioned, this model is strongly supgabby epistatic experiments from
Drosophila, and by some functional evidence from vertebr@tésntcouquiol et al.,
2003; Park and Moon, 2002; Wallingford et al., 200@onetheless, the molecular
basis underlying this process is largely unknown.

RhoA, Racl, and Cdc42, small GTPases from the Raafly, have been shown to
act as effector proteins downstream of Frizzled/Bat/or Wnt mainly to regulate
rearrangement of the cytoskeleton (Fanto et ab02®abas et al., 2003; Munoz-
Descalzo et al., 2007; Nishita et al., 2010; Satal.e2010; Schambony and Wedlich,
2007; Schlessinger et al., 2009; Schlessinger. eR@D7; Strutt et al., 1997; Witze et
al., 2008). Both Racl and RhoA have been demoedttatbe able to compensate for
PCP phenotype caused by loss of DvDirosophila (Fanto et al., 2000; Strutt et al.,
1997). Interestingly, further experiments have stwbthat roles of RhoA and Racl are
not fully functionally redundant, as loss of onenmat be completely rescued by
overexpression of the other (Tahinci and Symes3R00hey seem to act in two
parallel pathways, because depletion of Racl hasffieet on Wnt or Dvl-mediated
RhoA activation (Habas et al., 2003). Furthermsetiepulation of cells by various Wnt
ligands has been demonstrated to trigger activaifosither RhoA, or Racl or their
combination, depending on the specific cellulartern(Endo et al., 2005; Habas et al.,
2003; Sato et al., 2010). Moreover, additional $i@dlPases (Rap, RhoB) have been
proposed as downstream effectors of Wnt signalirggi( et al., 2007; Witze et al.,
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2008). Therefore, taking into account all of theowal it seems that activation of
various GTPases by Whnts is utilized via separatariterconnected signaling routes,

branching at the level of Dvl or the receptor(s).

1.4.4.1.1 Wnt/Dvl/RhoA signaling

As already mentioned, RhoA has been identifiedcesponent of the Wrtfcatenin-
independent pathway downstream of Dvl. Moreoveerexpression of Dvl has been
demonstrated to be sufficient to induce RhoA atitwa(Habas et al., 2001). In
vertebrates, upon binding of Wnt ligand to Frizztedeptor, the signal is transduced
via Dvl to activate RhoA (Habas et al., 2001; Sshileger et al., 2009). Whether any
additional receptor is employed in activation o$ ghathway is not known (Figure 5).
The Formin homology adaptor protein Daaml has lbamtified as critical regulator
of this pathway at the level of Dvl. Daam1 medidtes interaction between Dvl and
RhoA, which is necessary for the activation of Rhnduced by Wnt or Dvl (Habas et
al., 2001). Binding of Dvl to Daaml induces a confational change in Daaml,
enabling its interaction with and subsequent atitmaof RhoA. Moreover, Daaml is
able, to some extent, to rescue the CE movemeetidefaused by Dvl loss of function
(LOF) during Xenopus embryogenesis (Liu et al., 2008a). Further, ROCK been
proposed to mediate the effects of RhoA downstrebWint/Dvl (Kishida et al., 2004;
Marlow et al., 2002). However, at this point itnist clear whether ROCK is the only
effector of Wnt/DvI/RhoA signaling route, becaudeoR has been reported to activate
numerous additional downstream effectors (Aspenstd®99; Bishop and Hall, 2000;
Chardin, 2003).

1.4.4.1.2 Wnt/Dvl/Rac signaling

Similar to RhoA, Racl also acts downstream of Dhilcl is sufficient to induce its

activation (Habas et al., 2003). However, mecharbgrwvhich Wnt signals via Dvl to

activate Racl has not been characterized.

Ror receptors have been recently described tocjpmte together with Frizzled

receptors in Wnt-mediated Racl activation in maedks (Nishita et al., 2010; Sato et
al.,, 2010). However, Ror cannot be considered @S #Dvl/Rac-specific receptor, as
in Xenopus it is employed in transduction of Wnt5a-mediatet42 activation (see the

following section about Wnt/Cdc42 signaling). Moveg it is not clear whether or not

19



is Ror involved in Dvl/Racl activation also in tlwentext of PCP signaling in
Drosophila (Green et al., 2008; Hendrickx and Leyns, 2008usT its role needs to be
considered in the context of ligand, receptors, @hér pathway components available
in a particular system.

Dvl overexpression or Wnt stimulation have beenwshto trigger JNK activation in
various systems, this effect has been abrogateddmyninant negative version of Racl,
thus positioning JNK downstream of Wnt/Dvl/Rac (Bos et al., 1998; Habas et al.,
2003; Nishita et al., 2010; Rosso et al., 2005yfé 5). However, not only Racl, but
also RhoA as well as Cdc42 have been proposedytdate JNK in the context of the
Wnt/PCP pathway (Kim and Han, 2005; Schambony aedI\h, 2007).

Wnt/Dvl/RhoA Wnt/Dvl/Rac

. Frizzled

cytoskeleton
cytoskeleton @ vt

¢ target genes

Figure 5: Wnt/DvI/RhoA and Wnt/Dvl/Rac signaling. On the lef/nt binds to Frizzled and via the
Dvl/Daam1 complex induces activation of RhoA whigygulate cytoskeleton via its effectors (not
depicted). Dashed arrow indicates a possible ditiivaf JNK (see main text). On right: Wnt binds to
Frizzled and Ror1/2. Subsequently, the signal floareceptor complex is transduced via Dvl to atgiv
Racl (and possibly other Rac proteins, not depictdcl induces changes in cytoskeleton via set of
effectors (not depicted) and/or via activation NKJ JNK can also phosphorylate transcription factor
cJUN, which enters the cell nucleus and togethér tséinscription factor cFos forms the AP1 complex,
which regulates gene expression.

It is generally accepted that activation of JNKresgnts a means by which Waat/
catenin-independent signaling may regulate (via retkgam effector of JNK-
transcription factor cJUN) gene transcription (lBaet al., 2000; Habas et al., 2003).
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Nonetheless, the evidence for direct target gegelaton via this signaling branch is
rather sparse (Schambony and Wedlich, 2007; Yanwetoal., 2009; Yamamoto et
al.,, 2010), if compared to numerous genes regulajethe WntB-catenin pathway
(Nusse, 2011). As JNK is also well characterizedlitectly regulate cytoskeleton
rearrangements (Bishop and Hall, 2000; Huang ef@04; Xia and Karin, 2004), the

exact contribution of nuclear JNK signaling to Wet/PCP pathway remains unclear.

1.4.4.1.3 Wnt/Cdc42 signaling

Functional studies frordrosophila proposed a Dvl-independent role for Cdc42 in the
regulation of PCP (Boutros et al., 1998). This ifigdhas been confirmed Xenopus,

as dominant negative Cdc42 (LOF) fails to rescdecef of Dvl gain of function
(GOF) on CE movements (Choi and Han, 2002). Intiewgy, Cdc42 activation in
Xenopus has been recently shown to be under the controWaf5a and Ror2,
respectively, thus regulating the CE movementsegtavation of INK (Schambony and
Wedlich, 2007) (Figure 6).

1.4.5 Wnt/Ca*'signaling pathway

Calcium (C&") has been identified as a second messenger of f\datEnin-
independent signaling based on experiments wherdanjaction of mRNA of Dwvl,
Wnt5a, or Wntl11 has elevated levels of intracall@&” in zebrafish (Sheldahl et al.,
2003; Slusarski et al., 1997b; Westfall et al., 20Moreover, stimulation with Wnt
ligand (Wnt5a) has been reported to trigger Wrft/Gignaling in mammalian cells
(Dejmek et al., 2006; Ma and Wang, 2006).

As shown in Figure 6, the Wnt signal is transduagdFrizzled receptors, possibly with
cooperation of other receptor Ryk (Kohn and ModQ=2 Kuhl et al., 2000; Li et al.,
2009; Li et al., 2010; Slusarski et al., 1997as8iski and Pelegri, 2007). The signal is
subsequently transduced via phospholipase C (Ph@/)paphosphodiesterase (PDE)
(Ahumada et al., 2002; James et al., 2008; Ma aadgM2006; Slusarski et al., 1997a).
Interestingly, despite the fact that Dvl has bebows to be sufficient to activate
Wnt/C&* signaling (Sheldahl et al., 2003), it seems talispensable for some aspect
of this signaling, as elevation of intracellular?Cean be triggered by Wnt ligand in

cells depleted of Dvl proteins (Ma and Wang, 2007).
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Downstream of Ca elevation, kinases PKC and CamKIl, and transcripfiactor
NFAT have been identified as mediators of Wnt/Gagnaling, having a broad range
of effects (Cook et al., 1996; Kuhl et al., 200@n8yoshi et al., 2002; Sheldahl et al.,
1999).

Wnt/Cdc42 Wnt/Ca?*

. Frizzled Frizzled

Rorl/ / \
/ \@ cGMP —> Ca?*< DAG +IP3

l R
cytoskeleton @ ‘

Q target genes ! target genes

Figure 6: Wnt/Cdc42 and Wnt/Gasignaling. On the left: Wnt binds to Ror2 and fiaigsalso to Rorl.

The involvement of Frizzled has not been demorestrat this pathway. Cdc42 is activated in a PI3K-
dependent manner and can regulate either cytoskelet gene expression via activation of the
JNK/cJUN cascade (AP1 — complex of cJUN and cFoe)the right: Wnt interacts with Frizzled and
possibly also with the receptor Ryk. Dvl seemsaadispensable for some aspects of this pathway (see
main text). Further, PDE (via production of cGMR)dér PLC (via production of DAG and IP3)
regulate C& channels (not depicted) and thereby levels obdattular C4". Increased levels of &a
lead to activation of kinases PCK and CamKIll, ahttanscription factor NFAT.

1.4.6 Wnt receptors

14.6.1 Frizzleds

The name “Frizzled” came from a studymosophila, where the “Frizzled” mutant
showed irregularly arranged and tightly curled $i@nd bristles on the thorax, wings,

and feet (Bridges and Brehme, 1944). Later, Fri¥izlas well as other Frizzled genes

were characterized. Subsequently, Frizzled2 wastifael as a Wnt receptor, while
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Frizzled1l was shown to act Drosophila in a Wnt-independent manner (Bhanot et al.,
1996; Seifert and Mlodzik, 2007; Vinson and AdIE387; Vinson et al., 1989; Wang et
al., 1996). In mammals, 10 Frizzled receptors Haaen described. All Frizzleds have
an extracellular N-terminal CRD domain involved imgand binding, a 7-
transmembrane domain, and an intracellular C-teaindomain containing highly
conserved PDZ binding KTxxxW motif critical for sigl transduction (Schulte, 2010;
Schulte and Bryja, 2007; Wang et al., 2006a; Ward)Malbon, 2004). Interestingly,
while the CRD domain is required for ligand bindingnd possibly for
dimerization/oligomerization of the receptors,sitdispensable for signal transduction
as such (Carron et al., 2003; Dann et al., 200&nh al., 2004; Povelones and Nusse,
2005). Moreover, although the extracellular panteistively well conserved between
different Frizzleds, the intracellular part diffeether substantially (Schulte and Bryja,
2007; Wang et al., 2006a). This opens a possibitityprotein-protein interactions
specific for the particular Frizzled receptor. Due the presence of the 7-
transmembrane domain and the ability of Frizzled$otm homo- or heterodimers,
these receptors are considered as a class of @ipravupled receptors (GPCRS).
Despite the fact that evidence demonstrating tlielwvement of G-proteins in most if
not all Wnt-driven signaling pathways is ratheosty (Ahumada et al., 2002; Katanaev
et al., 2005; Liu et al., 2001; Liu et al., 2003usarski et al., 1997a), the question
whether the action of G-proteins indeed takes pdditke level of Frizzled receptor has
not been fully answered (Egger-Adam and Katana@®32Schulte, 2010).

In terms of function, Frizzled receptors show dartdegree of redundancy, which is
expected provided the similarities in their struetand patterns of expression (Fischer
et al., 2007; van Amerongen and Berns, 2006). @rother hand, individual Frizzled
receptors have been shown to be sufficient to aetidistinct downstream signaling
pathways (Ahumada et al., 2002; Gazit et al., 1988men et al., 2002; Wang and
Malbon, 2004). However, as these studies were ootie presence of other receptors,
the requirement of individual Frizzled receptors dospecific downstream signaling is
still not well understood. Moreover, due to theunatof Wnt ligands already mentioned
(poorly soluble and difficult to purify), the spécity and binding affinities between
individual Wnt-receptor pairs (Hsieh et al., 199 and Nusse, 2002) remain some of

the least characterized areas in the field.
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146.2 LRPs

Low density lipoprotein receptor-related proteih&kiPs) are a subfamily of single
transmembrane receptors from the low density lipiggm (LDL) receptor family,
proteins with diverse functions in endocytosis,| ceétabolism, and embryogenesis
(May et al., 2007)Drosophila LRP Arrow and its vertebrate homologues LRP5/6hav
been demonstrated to be critical pathway componegsired for Wnfi-catenin
signaling (He et al., 2004; Kelly et al., 2004; Tarat al., 2000; Wehrli et al., 2000).
Drosophila Arrow mutant phenocopies the LOF phenotype of Wintant (Wingless)
(Wehrli et al., 2000), and injection of LRP6 mRN# sufficient to induce secondary
body axis inXenopus embryo (Tamai et al., 2000). LRP5 and LRP6 arenliig
functionally redundant, as mice lacking both LRIR8 &RP6 (Kelly et al., 2004) show
much more severe phenotype (failure to finish géstion) compared to the phenotype
of mice lacking only one of these receptors. FurthdRP6 seems to be more
functionally important for embryogenesis than LRREce lacking LRP6 are perinatal
lethal, compared to LRP5-deficient mice, which griowadulthood and are fertile, but
show signs of osteoporosis (Kato et al., 2002;d?ireg al., 2000).

LRP5/6 receptor has been shown to function in tteximity of Frizzled receptor
(Schweizer and Varmus, 2003; Tolwinski et al., 2008 form clusters/signalosomes
(Bilic et al., 2007; Cong et al., 2004b), and teyneomplexes with Frizzled and Wnt
(Bourhis et al., 201,05emenov et al., 2001). EGF-like domains Armtopeller motifs,
located at the extracellular part of LRP5/6, arpantant for the binding of Wnt ligand
(Kato et al., 2002; Liu et al., 2009; Tamai et aD00). Interestingly, LRP6 mutant
lacking its extracellular domain can activate \Bsgatenin signaling in a ligand-
independent manner (Brennan et al., 2004; Liu.e2@03). Therefore, the extracellular
part the receptor is dispensable for the actualasittansduction in the Wifiticatenin
pathway. Intracellular part of LRP5/6 contains 5PBP motifs flanked by Ser/Thr
clusters, which are phosphorylated by GSK3 andCKéspectively (Davidson et al.,
2005; Tamai et al., 2004; Zeng et al., 2007; Zeingl.e 2005). Interestingly, several
other kinases have been recently proposed to ipattcin LRP5/6 phosphorylation
(Cervenka et al.,, 2010; Davidson et al., 2009; Ckeenal.,, 2009). Importantly,
phosphorylated PPPSP motifs are both necessargufident for the activation of
Wnt/B-catenin pathway (Tamai et al., 2004). Moreoveeyteeem to directly inhibit
GSKa3 activity (Wu et al., 2009).
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LRP5/6 is required for Wrfifcatenin pathway activation (Angers and Moon, 2008;

et al., 2004; Macdonald et al.,, 2007; MacDonaldakt 2009). However, recent
evidence has also suggested functional implicdboh.RP5/6 in the regulation of CE
movements via modulation of Wpitatenin-independent pathway(s) (Bryja et al.,
2009; Tahinci et al., 2007).

Similar to what was described for Wnt-Frizzled k] the specificity of LRP5/6
towards any particular Wnt ligand is largely unkmovnterestingly, recent mapping
studies have identified unique binding sites fdfedent Wnts in the extracellular part
of LRP5/6, suggesting the possibility of simultanebinding of different ligands to the
LRP5/6 receptor (Bourhis et al., 2010; Ettenberg).e2010).

1.4.6.3 Ror receptors

A role of receptor tyrosine kinase-like orphan moe (Ror) proteins, members of the
receptor tyrosine kinases (RTKs) family, in Wntrgiting has only recently emerged
(Green et al., 2008; Minami et al., 2010). Despte homologs are well conserved
among different species, it is mostly human Rord Rar2, which have been relatively
well characterized. This is mainly due to their licgtion in diseases such as
brachydactyly, Robinow syndrome, and chronic lyngytic leukemia) (Afzal et al.,
2000; Fukuda et al., 2008; Oldridge et al., 20 Bokhoven et al., 2000). In mice,
Rorl and Ror2 are already expressed during gastrulas well as later during
embryonal development in a rather overlapping pattesuggesting functional
redundancy (Al-Shawi et al., 2001; Matsuda et2&lQ1; Oishi et al., 2003; Oishi et al.,
1999). Ror2-deficient as well as Rorl/2-deficiemtariargely phenocopy mice lacking
Wnt5a in terms of outgrowth defects of multipleustures during embryogenesis
(Nomi et al., 2001; QOishi et al., 2003; Yamagudhale 1999). Furthermore, Ror2 GOF
leads to CE movement defectsXenopus embryos (Hikasa et al., 2002; Oishi et al.,
2003) in a similar manner as Wnt5a GOF does (Mdaal.£1993). As was already
pointed out, the Wnt5a/Ror2-mediated control of @& ements irXenopus seems to
be underlined by direct signaling into the nucleaisg subsequent upregulation of
expression of protocadherin PAPC (Schambony andlitfed2007). Nonetheless,
whether or not this distinct signaling branch opesalso in other systems is not clear.
The extracellular region of vertebrate Rorl/2 cmstaan Ig-like domain, a CRD
domain (similar to CRD domain of Frizzled receptoend a Kringle domain. The

CRD domain of vertebrate Ror1/2 has been showrint o Wnt5a as well as several
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other Wnt ligands (Billiard et al., 2005; Fukudaakt 2008; Mikels and Nusse, 2006;
Oishi et al., 2003). Although the CRD domain seéonige sufficient to bind Wnt5a as
well as Frizzled 2&5 (Oishi et al., 2003), deletiohthe Ig-like domain also has a
negative impact on the ligand-receptor interactidikels et al., 2009).

The cytoplasmic region of the Rorl/2 contains coregk tyrosine kinase domain,
which has been shown to mediate receptor homodiatem and autophosphorylation
upon ligand binding to the extracellular part (kiual., 2008b; Mikels et al., 2009). On
the other hand, phosphorylations of Ser/Thr resichifeRor2 by several other kinases
has also been reported (Grumolato et al., 2010;j Kiaal., 2004; Yamamoto et al.,
2007). In this regard, it is possible that the pihasylation status of different residues
of the intracellular part of Rorl/2 plays a keyerah Rorl/2-mediated signal
transduction by regulating association with vari@ataptor proteins, in a manner
similar to that seen with other RTKs.

Precise mechanisms controlling signaling downstred#nmRorl/2 to one or more
signaling routes are currently not well charactatizSo far, many different signaling
events have been attributed to Ror1/2 in diffecefiular systems and context (Billiard
et al, 2005; Enomoto et al., 2009; Fukuda et &Q82 Liu et al., 2007; Mikels and
Nusse, 2006; Witte et al., 2010). For instance 2R@s been either shown to promote
or inhibit Wntf-catenin signaling pathway in response to differdfiit ligands in
different cell types (Billiard et al, 2005; Li et.,a2008; Mikels and Nusse, 2006).
Nonetheless, despite the incompletely defined &spdcsignaling, the role of Rorl/2

as Wnt receptor is very well established, espgciatl Wnt5a.

1.4.6.4 Rykreceptor

Ryk (Related to tyrosine kinase) is another RTKolmgd in Wnt-mediated signal
transduction. In terms of structure, Ryk is a traesibrane protein with an
extracellular WIF (Wnt inhibitory factor) domaimgplicated in ligand binding), and an
intracellular domain bearing the kinase domain (faty conserved, therefore
considered kinase-inactive) and the PDZ-binding alom(Fradkin et al., 2010;
Hendrickx and Leyns, 2008). The intracellular paft Ryk is required for Ryk-
mediated signal transduction, possibly due toalks in recruitment of adaptor proteins
and/or PDZ domain scaffolding proteins (Bonkowsksgle 1999; Lu et al., 2004).

Its function as a receptor for Wnts has been detraied both inDrosophila (with
Wnt5) (Yoshikawa et al., 2003) and in mice (Wntld awWnt3a) (Lu et al., 2004).
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Moreover, Ryk forms ternary complexes with Wntl &mizzled-CRD, and enhances
Wnt-mediated activation of the Wpitatenin pathway (Lu et al., 2004). Further
studies have also identified both biochemical amtttional interactions between Ryk
and Wnt5a during the axon guidance, possibly vid/pMratenin-independent signaling
(Wnt/C&* pathway) (Keeble et al., 2006; Li et al., 2009gtial., 2010). The view of
Ryk as a receptor capable of also signaling via/fMrdtenin-independent pathways
has been further strengthen by recent findingstiigerg Ryk as critical regulator of
CE movements in botKenopus (Kim et al., 2008) and zebrafish (Lin et al., 2p10
Similarly to the other receptors already discussgethanisms underlying its signaling

specificity in different cellular contexts are camtly unknown.

1.4.7 Soluble modulators of Wnt signaling

Whnts or their receptors interact both functionadigd biochemically with several
secreted factors distinct from Wnts, which modul&tet signaling in either positive or
negative manner.

First class of the Wnt modulators is formed by 8wt Frizzled-related proteins
(SFRPs). As the name suggest, SFRPs are similarizeled receptors in that they
contain the CRD domain. However, they lack thesma@mbrane and intracellular parts
(Kawano and Kypta, 2003). It is therefore not sgipg that SFRPs are able to
interfere with Wnt$-catenin signaling. They have been shown to block-Wluced
axis duplication inXenopus embryos and Wnt-induced accumulation of nuclgar
catenin in mammalian cells (Finch et al., 1997;rsegt al., 1997; Uren et al., 2000).
Nonetheless, the view on the function of SFRPs dasdved from being simple
extracellular scavengers of Wnt ligands to mulifional modulators of Wnt
signaling. It has been proposed that SFRPs havedip effects. It seems that low
concentrations have promoting and high concentratiichibiting effects on the Wit/
catenin signaling pathway (Uren et al., 2000). lkent ability of SFRPs to interfere
with Wnt-driven signaling seems to vary, dependinghe particular Wnt ligand, from
highly potent block to no effect (Wang et al., 1p9¥loreover, SFRPs have been
demonstrated to directly bind to the CRD of Fridzleeceptors, and to trigger

downstream signaling events (Rodriguez et al., 2005

Another group of Wnt signaling modulators are Digjads (Dkk1-4 in vertebrates, no
Dkk in Drosophila). Dkks contain two CRD domains separated by aelimegion
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(Kawano and Kypta, 2003). Dkk1 is the best chareeté member of the Dkk protein

family. During early embryogenesis Kenopus, Dkk1 is produced by the Spemann
organizer and mediates some of the organizer’sigctiecessary for the formation of

the body axis and head structures by inhibiting \Whet/3-catenin signaling pathway

(Glinka et al., 1998; Niehrs, 2001). This role ok is conserved in mammals as
Dkk1-deficient mice fail to develop anterior newtmelerm (lack of forebrain and

major part of midbrain) (Mukhopadhyay et al., 20@kk1 has been demonstrated to
block Wnt-induced axis duplication Kenopus and Wntf-catenin pathway activation

in mammalian cells (Fedi et al., 1999; Glinka et H998).

Dkk1 binds to the extracellular part of LRP5/6 amrévents the formation of Wnt-

Frizzled-LRP5/6 trimeric complexes (Bourhis et aD10; Mao et al., 2001; Semenov
et al., 2001; Semenov et al., 2008). Moreover, D4 been proposed to interfere with
Wnt/B-catenin signaling by also promoting endocytosi€RP5/6, thus regulating the

level of LRP5/6 receptor available for Wnt signgliat the membrane (Mao et al.,
2002; Yamamoto et al., 2008). Interestingly, as b8Fas been recently implicated in
the regulation of CE movements, similar role in ndation of the Wnt/PCP pathway

has also been attributed to Dkk1l (Caneparo ef@07). Nonetheless, the inhibitory

role of Dkk1 in the Wnf-catenin pathway has not been challenged.

1.4.8 Dishevelled

“Dishevelled” mutation was first described DProsophila, causing failure to orient
hairs on the wings and legs (Fahmy and Fahmy, 1@58)nection to the Wnt pathway
was demonstrated much later, when Dvl (DshDimosophila ) was identified as a
critical component of both Wit/catenin and Wni-catenin-independent pathways in
various animal models (Klingensmith et al., 1994astiow et al., 1995; Li et al., 1999;
Noordermeer et al., 1994; Sheldahl et al., 200&oBet al., 1995). Three homologs
have been identified in mice, functional analyséssiagle Dvl- and double Dvl-
deficient mice (lacking two Dvis) has revealed béihctional redundancy between
Dvls, and differences in ability to compensate ltwk of other Dvls. In this regard,
Dvll seems to be the least functionally importaot house development. In fact,
Dvl1-deficient mice are viable and mice lackingtb@vl2 and DvI3 show the most
severe phenotype compared to other double-defioenise strains (Etheridge et al.,
2008; Gao and Chen, 2010; Wang et al., 2006b).
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Three main highly conserved domains have been dieaized in the Dishevelled
proteins: an N-terminal DIX (Dishevelled, Axin) dam of 80 amino acids, a central
PDZ (Postsynaptic density 95, Discs Large, Zonakualens-1) domain of about 90
amino acids, and a C-terminal DEP (Dvl, Egl-10,cRétrin) domain (Gao and Chen,
2010; Wallingford and Habas, 2005) (Figure 7).

N-DDlXD PDZ I_DEPi -c

Figure 7: Scheme of the conserved motifs of Dvl

Mechanistically, there is substantial evidence tbal and its distinct domains
contribute to the branching of Wnt signaling ineparate pathways (Axelrod et al.,
1998; Capelluto et al., 2002; Pan et al., 2004;|ldai¢ et al.,, 2003). As already
mentioned, Dvl is involved in the inhibition of thaestruction complex, likely via
recruitment of GSK3 and Axin to the plasma membrdnethis regard, membrane
recruitment of Dvl has been attributed to the ation of Wnt signaling (Axelrod et al.,
1998; Cliffe et al., 2003; Cong et al., 2004b; Patkal., 2005; Zeng et al., 2007).
Further, Dvl interacts with the PDZ binding motd$ Frizzled and Ryk via its PDZ
domain (Lu et al., 2004; Punchihewa et al., 2009ng@/et al., 2003), and with Ror via
its C-terminal part (Witte et al., 2010). Dvl undees dynamic polymerization, a
feature which requires the DIX domain (Schwarz-Rodhet al., 2007a; Schwarz-
Romond et al., 2007b). This ability to polymerigecritical for activation of the Wrft/
catenin pathway, as it is required for clusterind phoshorylation of LRP5/6 (Bilic et
al., 2007; Metcalfe et al., 2010). Interestinglwl [polymerization seems to also be
relevant for the Wnt/Dvl/Rac signaling, as has besmently demonstrated (Nishita et
al., 2010).

Further, Dvl is a scaffolding protein, providingagbrm for many protein-protein
interactions. More than 50 different proteins hdneen identified as Dvl-binding
partners in different cellular systems (Gao andrCRB610). As it is unlikely that these
interactions occur simultaneously, simply due ®&ristlimitations, it is clear that the
presence or absence of specific interactors (dueotopetition for docking sites)

represents a way to further specify the transdsagthl (Habas et al., 2001; Kishida et
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al., 1999). Moreover, recruitment of Dvl into diéat subcellular compartments has
also been attributed to differential activatiordadtinct downstream signaling pathways
(Capelluto et al., 2002; Park et al., 2005).

Yet another level of complexity at the level of Dwisecured by its phosphorylation by
several kinases, including CB/%, CK2, PAR1, PKC, and MAK (Cong et al., 2004a;
Hino et al., 2003; Chen et al., 2003; Kibardinlet2006; Ossipova et al., 2005; Willert
et al.,, 1997). It has been proposed that phospdtargl of Dvl by different “Dvl
kinases” is required mainly for Wfttatenin pathway activation and thus represents a
switch between the Wifilcatenin-dependent and -independent signaling athw
(Cong et al., 2004a; Dominguez et al., 2004; Hihalg 2003; Peters et al., 1999).
However, recent data have suggested that this rmoaglbe a bit simplified, because
phosphorylation of Dvl seems also to be involvedregulation of Wn{-catenin-
independent signaling (Bryja et al., 2007c; Kldirle 2006).

Several Wnt ligands (demonstrated for Wingless,3&nand Wnt5a) have been shown
to trigger phosphorylation of Dvl at multiple sit¢Gonzalez-Sancho et al., 2004;
Schulte et al., 2005; Yanagawa et al., 1995). IHads to a phosphorylation-dependent
shift in the mobility of Dvl in polyacrylamide gelreferred to as PS-Dvl
(phosphorylated and shifted Dvl). Apearence of R&4B considered as one of the
hallmarks of Wnt signaling activation (Gonzales-8an et al., 2004; Schulte and
Bryja, 2007). However, a causative link betweenR&-and its employment in
activation/inhibition of downstream signaling hat heen made.

1.4.9 Casein kinases

1491 CK1

CK1 represents a group within the superfamily oinggthreonine kinases. The CK1
family is highly evolutionary conserved (homolog®e in yeasts), and its members are
expressed ubiquitously. In mammals, 7 isoforms Haeen identified in the CK1
family (a, B, y1-3, 8, €), which mostly differ in length of their N-termihand C-
terminal noncatalytic regions (Knippschild et aD05). They act as monomers and are
considered to be constutively active kinases. ilwrdgard, their subcellular localization
and autoinhibitory phosphorylation of their C-temos play important roles in the
regulation of kinase-substrate interactions (Knghgd et al., 2005; Price, 2006).

30



Interestingly, Wnt has been described to inducehadgphorylation and subsequent
activation of CK1d/e (Swiatek et al., 2004).

Members of the CK1 family fulfill many roles in theegulation of Wnt signaling,
acting both as positive and negative regulatorsridpom their role in phosphorylation
of Dvl, different CK1 isoforms have been shown tbogphorylate many other
components of Wnt pathway, such as Ror2 (Kani.eP@0D4), LRP5/6 (Swiatek et al.,
2006), p-catenin (Liu et al., 2002; Sakanaka, 2002), AP@ @t al., 2004) and TCF
(Lee et al., 2001). Moreover, overexpression of €GKTCK15 or CKle has been
described to mimic Wnt-induced formation of a se@y body axis inXenopus
embryos (Cheong and Virshup, 2010; Peters et339;1Sakanaka et al., 1999).
However, list of substrates of CK1 extends beydmdWnt pathway. Members of the
CK1 protein family are also implicated in the remgidn of Shh signaling, circadian
rhythms, DNA repair, and apoptosis (Cheong andhvips 2010; Knippschild et al.,
2005; Price, 2006). CK1 may thus provide a linkwastn Wnt signaling and other

pathways.

1492 CK2

CK2 is a serine/threonine protein kinase as waeit, dvolutionary unrelated to CK1
family. CK2 is also conserved through evolution amulquitously expressed, but
compared to CK1 isnostly present as a tetramer of two catalyii@gdao’) and two

regulatory subunitspj (Litchfield, 2003). Interestingly, CKR subunits have been
proposed to also function independently of the CHK&oenzyme (Olsten and
Litchfield, 2004). Similarly to the CK1, CK2 is far “promiscuous” kinase with over
100 substrates identified (Litchfield, 2003), irdig Dvl (Song et al., 2003; Willert et
al., 1997) -catenin (Song et al., 2003), and LEF1 (Wang ameéga2006). Prior Paper
lll, CK2 has been exclusively considered as a pesitegulator of Wnfi-catenin

pathway (Dominguez et al., 2004) and its possibtetion in other Wnt pathways had

not been known.

1.4.10 B-arrestin

There are four members of tifiearrestin family in mammals, all of which are very
closely related (70% sequence homology). Intergistinwhile pB-arrestins 1/2 are

ubiquitously expressed, the remaining two membegsspecifically expressed in the
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visual system where they participate in the deieason of rhodopsin (Lefkowitz and
Shenoy, 2005).

B-arrestins were originally described as adaptoteprs involved in desensitization,
internalization, and degradation of GPCRs (Lefkewand Shenoy, 2005). Further
studies pinpointed their role as multifunctionabféalding proteins, employed in
various signaling pathways including the Wnt pathikovacs et al., 2009; Lefkowitz
et al., 2006; Schulte et al., 2010).

First, B-arrestinl has been shown to positively regulageatiect of Dvl on Wnf-
catenin pathway activation (Chen et al., 2001).tifarmore,p-arrestinl/2 has been
demonstrated to bind Dvl and Axin, and therefoygesents an important component
of the Wntp-catenin pathway, possibly acting at the levelfafatenin destruction
complex (Bryja et al., 2007b; Rosano et al., 2009).

Moreover, a role fof-arrestins in the Wrifcatenin-independent pathways has been
proposed, because of the involvementpedrrestin2 in Wnt5a and PKC mediated
endocytosis of Frizzled4 (Chen et al., 2003). kdéngly, p-arrestin2 did not mediate
Frizzled internalization via directly binding to, i&s it is the case for the classical
GPCRs, but rather through interaction with Dvl amdadaptor protein AP-2 (Chen et
al., 2003; Yu et al., 2007).

1.4.11 Downstream effectors: Rho family of small GT  Pases

1.4.11.1 Regulation and function

The Rho GTPase family represents a highly consegvedp of proteins regulating
numerous cellular processes from yeasts to mamiaisnty-two mammalian genes
encoding Rho GTPases have been described, witRab&, RhoA, and Cdc42 being
the most well studied members. They were identifeed regulators of the actin
cytoskeleton and as such they regulate cell mgratadhesion, morphogenesis, and
axon guidance (Etienne-Manneville and Hall, 2002yvék et al., 2005; Ng et al.,
2002). In addition to this, Rho GTPases are inwblvethe regulation of microtubular
dynamics, cell polarity, gene expression, cell eygesicle trafficking/endocytosis, and
reactive oxygen species metabolism (Bosco et @092Govek et al., 2005; Jaffe and
Hall, 2005; Schlessinger et al., 2009). The vemyaldrspectrum of cellular functions
controlled by Rho GTPases is further underscoredhbyfact that about 1% of all
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known genes encode for proteins which either régua are regulated by interaction
with Rho GTPases (Jaffe and Hall, 2005).

Such a broad spectrum of functions obviously resguinvolvement of rather complex
regulatory mechanisms which control both spatipe¢dic subcellular compartment)
and temporal activation of Rho GTPases. Naturalb,only Wnt signaling, but also
signaling by other morphogens and growth factorsslved in the control of Rho
GTPases activity (e.g. TGF, FGF, PDGF, and NGF)af(@h, 2003; Zhang, 2009).
Interestingly, while the number of regulators ighithe mechanism enabling precise
control of the activation/inactivation of Rho GTPEass relatively simple and well

conserved (Figure 8).

Stimulus

response

Figure 8: Regulation of the activity of small GTPases. Uptimslation, GEF interacts with small
GTPase from Rho family and induces GDP to GTP ex@haGTP-bound Rho changes its conformation,
leaves the complex with GEF and activates its &ffdoy protein-protein interaction. See main teott f
details on functional aspects. Binding of GAP iasees the activity of Rho to hydrolyze GTP to GDE an
leads to the inactivation of the small GTPase. Gbixd Rho protein can be sequestered from its
subcellular compartment by interactions with GDI.

Similar to GTPases from other families, Rho GTPasetsas molecular switches
cycling between two conformational states: an ac®f P-bound state and an inactive
GDP-bound state. In the active GTP-bound state Rhe GTPases fulfill their
regulatory functions through a conformation-specifiteraction with their effector
proteins. Together, over 50 different effectorsehbgen identified for RhoA, Racl, and
Cdc42 in different cellular contexts (Aspenstror@99; Bishop and Hall, 2000; Jaffe

and Hall, 2005). The transition from the inactigeattive state is controlled by guanine
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nucleotide exchange factors (GEFs), which catatiigeexchange of GDP for GTP.
This is followed by a conformational change of Rieo GTPase (Cherfils and Chardin,
1999). There are over 70 GEFs in mammals. Thensitriactivity of Rho GTPases to
hydrolyze GTP is low, and is enhanced by interactiith GTPase-activating proteins
(GAPs), which leads to the inactivation of the G3é&&tienne-Manneville and Hall,
2002). More than 80 GAPs have been described. éfurthuanine nucleotide
dissociation inhibitors (GDIs) bind to the GDP-bdu&TPase and sequester it from its
native subcellular compartment, thus preventing ptsssible “re-activation” by
interaction with GEFs (Etienne-Manneville and Ha002).

Clearly, such multiplicity in molecules that congerto regulate Rho GTPases enables
multiple levels of specificity control. Both GEFsica GAPs often show specificity
towards certain members of Rho GTPase family (Sdhemd Hall, 2002). Further,
many of these regulators are specifically expressearticular cell type(s). Moreover,
recent evidence has suggested that protein-pratsenactions between GEFs and
scaffolding proteins are employed in targeting GEk#o specific cell
compartments/microdomains (Garcia-Mata and Burtidg607; Marinissen and
Gutkind, 2005). It has been also demonstratedthiese interactions with scaffolding
proteins can affect the route of the signal frore tlactivated” GTPase towards
particular effector, simply by linking them togethat the surface of the scaffolding
protein (Jaffe et al., 2005).

1.4.11.2 Rac small GTPases

Three Rac genes have been identified in vertebf&asl, Rac2, and Rac3). They
share high sequence homology (90%), and divergigeitast 15 amino acids at the C-
terminus. This C-terminal region is important fpesifying the subcellular localization
of Rac proteins and interaction with their effestGAndo et al., 1992; Kinsella et al.,
1991).

In mice, Racl is expressed rather ubiquitously.2R@c expressed mainly in the
hematopoietic system and Rac3 in the developinop lfo&e Curtis, 2008). Thanks to
their structural similarity, they seem to be hightglundant in terms of their function
(Corbetta et al., 2005; Corbetta et al., 2009).
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1.4.11.2.Miaml-a Racl GEF

Tiam1 (T-cell ymphoma invasion and metastasis Dnie of the many GEFs described
as regulating Racl activity. Tiaml was originallientified as a gene inducing the
invasive phenotype of otherwise non-malignant Tgimoma cells (Habets et al.,
1994), and its overexpression caused membranéngutihd cytoskeletal changes in a
Racl-dependent manner (Michiels et al., 1995)edénss that Tiaml acts as a Rac
specific GEFRn vivo (cells and animal models), although it is capatdesome extent,
of also inducing GDP-to-GTP exchange for other Bidases in truim vitro situation
(purified recombinant proteins in a tube) (Michietsal., 1995; Minard et al., 2004).

In terms of structure, its N-terminal part carredipid modification important for
association with the plasma membrane. Further, Tiemmtains several distinct protein
domains. Its DH domain is crucial for interactioithARacl and mediates actual GDP-
GTP exchange (Worthylake et al., 2000). TherevaoeRH domains that are located at
the N-terminus and in the C-terminus, next to thé ddmain, thus flanking the PDZ
domain located in the central part of Tiam1 (Figye

N PH PDZ DH .l C

myr PDZ-binding

Figure 9: The scheme of the conserved motifs of Tiaml. Aaidor myristoylation is located at the
N-terminus, while the C-terminus contains a puafDZ binding motif. Not all structural motifs are

depicted

The activity of Tiaml is modulated at several lsv&hosphoinositol lipids have been
proposed to bind to the PH domain and thereby exghability of Tiaml to activate
Racl (Mertens et al., 2003). Moreover?Bagulated kinases PKC and CamKII have
been shown to phosphorylate Tiaml, thus affecttagmembrane versus cytosolic
localization (Buchanan et al., 2000). Finally, Tiairas been described to interact with
several scaffolding proteins, and this interacts@ems to have a great impact on
specification of signaling downstream of Racl (Blmdum et al., 2003; Marinissen
and Gutkind, 2005).

However, the possible involvement of Tiaml in WA signaling has not been

addressed prior Paper 1V in this thesis.
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1.4.12 Wnt pathways crosstalk

The number of signaling routes described as Wnedrigoes beyond the number of
pathways described here (Macdonald et al., 200Me8ev et al., 2007; Schulte, 2010).
As the “toolkit” (pathway components) utilized byany of the Wnt signaling cascades
is often shared, it is becoming obvious that irdlnal branches of Wnt signaling are
highly interconnected, thus forming a network wrthny nodes/options for crosstalk.
Although unavailability of purified Wnt ligands hasampered rigorous
pharmacological analyses of ligand-receptor bindthgre is good reason to believe
that different Wnt ligands bind to different recast with different affinities. The
ability of WntB-catenin-independent pathway(s) to interfere whin activation of the
Wnt/B-catenin pathway is well documented (Bryja et 2007c; James et al., 2008;
Mikels et al., 2009; Mikels and Nusse, 2006; Toetal., 1996; Westfall et al., 2003).
In this regard, competition between different Wigathds for binding to the receptor
may to some extent account for this. Interestingbgent reports have demonstrated
that Wnt5a-mediated inhibition of Wfttatenin pathway activation by Wnt3a is
underpinned by competition for LRP6 (Bryja et &009) or Frizzled2 (Sato et al.,
2010).

Another important node in the network is Dvl thamists numerous binding partners,
utilization of its distinct domains by distinct dogstream pathways, and further
modulability by several kinases. It is thereforeyvpossible that competition between
different modules of Wnt-driven signaling also ascat the level of Dvl. Moreover,
Dvl also represents a platform for crosstalk witheo signaling pathways (e.g. Notch,
Hippo, and mTOR) (Axelrod et al., 1996; Mak et 2005; Varelas et al., 2010).

Apart from the competitions already mentioned, Wt/B-catenin pathway is
antagonized by Wrfifcatenin-independent signaling downstream of recspand/or
Dvl. In this regard, Wnt5a has been demonstratguidmote-catenin degradation via
Siah2 E3 ubiquitin ligase (Topol et al., 2003). wrer, Wnt/C& signaling has been
shown to inhibit Wnfi-catenin pathway either by targeting interactioriwieen
TCF/LEF andB-catenin (Ishitani et al., 2003; Ishitani et aB99) or by promotingg-
catenin degradation in a PKC-dependent manner (@&@vak, 2006).

The Wnt/C&" pathway also seems to very closely interact witht/®RCP signaling in a
reciprocal manner (James et al., 2008; Kohn and nMi@®905). Wnt5a-mediated
activation of Cdc42 has been demonstrated to samedtusly suppress activation of the
Wnt/C&* pathway at the level of NFAT (Dejmek et al., 2000n the other hand,
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Cdc42 has also been suggested to act downstrealVndC&* pathway, as its
dominant negative form rescues the phenotype cdnsederexpression of PKC (Choi
and Han, 2002). Interestingly, the picture is gettmore complicated, as many small
GTPases can be modulated by'Gand moreover, they can affect levels of intradailu
C&" by binding to C& channels and/or transporters (Aspenstrom, 200#9. close
interconnection between Wnt/PCP and Wnt/Csignaling is further supported by
interactions on a functional level, as both reguld€E movements during
embryogenesis (Slusarski and Pelegri, 2007; Vearhah, 2003a).
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2 AIMS

This thesis examined molecular mechanisms of Wghasi transduction and the
functional relevance of Wnt-mediated signalingtfee development of the VM and the
differentiation of VM DA neurons. Specifically, théllowing questions were

addressed:

e What is the role of the Wit/catenin signaling pathway in the
differentiation of MESCs into VM DA neurons?

* Does Wntba play a role in DA neuron developmeantvo?

* What are the mechanisms and consequences of Wgttirsg during DA
differentiation?

* Which possible novel regulators of Wttatenin-independent pathways
are employed in Wnt5a-mediated signaling and howhey contribute to
specification and/or transduction of the signal?
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3 RESULTS AND DISCUSSION

3.1 PAPERI

3.1.1 Absence of Wntl or LRP6 increases neuronal di  fferentiation and

number of DA neurons in mESC cultures

Prior this study, results from our lab showed theatially purified Wntl CM increased
the number of TH+ DA neurons obtained in mouse anntulture (Castelo-Branco et
al., 2003), and that Wntl overexpression in mousggnitor neurosphere cultures
increased the number of Nurrl+ DA precursors (Ragisal., 2008). Due to strong
evidence for the involvement of Wntl and the \f4aiatenin pathway in DA progenitor
pool expansion and specification, we decided torgxa the role of the Wrfifcatenin
signaling pathway in DA differentiation of mMESC bgnetically targeting the pathway
at the ligand (Wntl) and receptor (LRP6) level.

First, we developed a highly efficient protocol fderivation of mESC lines from
C57/BL6 genetic background, which was considereattger non-permissive strain for
MESC line derivation (Bryja et al., 2006a; Bryjaakt 2006b; Nagy and Vintersten,
2006). Using this protocol we derived mESCs lackivigtl (Wntl1-/-) or LRP6 (LRP6
-I-) as well as their corresponding wild type cauparts.

Next, we differentiated these mESCs using a protticat combines the use of
recombinant growth factors and PA6 stromal cek loo-culture (Barberi et al., 2003;
Kawasaki et al., 2000). Unexpectedly, we obtainemdenTH+ neurons (TH - a rate
limiting enzyme in synthesis of dopamine) as wslTaj+ neurons (Tuj - a neuronal
specific form of tubulin expressed in immature &) in cultures of Wntl -/- mESC
compared to Wntl +/+. This finding was truly susprg, given the great reduction in
number of DA neurons in Wntl -/- mice (DanieliarddvicMahon, 1996; McMahon
and Bradley, 1990; Prakash et al., 2006; ThomasGagkcchi, 1990). To exclude
possibility that the obtained results were a singstéact of one specific cell line, we
confirmed the enhanced generation of TH+ neurotis another pair of Wntl -/- and
Wntl +/+ mESC lines (unpublished observation). fkent comparable increases in
number of TH+ colonies, TH+ cells (unpublished abaton), and TH protein
expression level were observed in differentiated®6R/- mMESCs compared to their

respective controls. Moreover, if the mESCs weftemdintiated for shorter period of
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time (5-7 days instead of 14 days), increases apgition of TH+ and Tuj+ colonies
were detected both in Wntl-deficient as well aheLRP6-deficient cells.

Further, we did not observe any morphological déffees between TH+ DA neurons
obtained from mESCs lacking Wntl or LRP6 and comMaSCs. Expression analyses
of MRNA revealed that these cultures expresseddl/RlA neuron markers including
Nurrl, Pitx3, Map2, DAT, Lmxla, and Foxa2 both imW/ -/- and LRP6 -/- cells as
well as in their respective controls, indicatingttthey contained VM DA neurons. It
would be of interest to elucidate how these neurdehave in terms of
electrophysiological properties and whether they eapable of forming functional
networks upon transplantation in a Parkinsoniansesuaodel.

Our findings were in contradiction to phenotypesadided in mice lacking Wntl
(Danielian and McMahon, 1996; McMahon and BradlE§90; Prakash et al., 2006;
Thomas and Capecchi, 1990) or LRP6 (Castelo-Brahab., 2010), but in agreement
with reports linking impairment of Wit{catenin pathway to expansion of
neuroectodernin vivo (Glinka et al., 1998; Kelly et al., 2004; Mukhopgéy et al.,
2001; Yoshikawa et al., 1997) and to enhanced mB&@onal differentiation in
culture (Aubert et al., 2002; Engberg et al., 20d8ggele et al., 2003; Verani et al.,
2007). Nonetheless, as such enhanced formationeofoactoderm had not been
demonstrated in Wntl or LRP6 deficient mice, respely, we went for a more

detailed validation of our findings.

3.1.2 Increased generation of DA neurons is not due to factors

produced by feeder cells

Experiments with mESCs lacking LRP6, a criticalegor of the Wnfi-catenin
pathway, suggested that the enhanced generatidid-efTuj+ neurons we observed
was based on a cell autonomous mechanism. Howtkeedifferentiation protocol we
used was based on co-culture with PA6 cell linedpcing uncharacterized set of
factors. This raised a possibility that a deficiero the secreted ligand, Wntl, was
simply “rescued” by Wnt ligand(s) supplied by tha@ To test this possibility, we
differentiated the cells using a feeder-free protofYing et al., 2003b). Quite
remarkably, we obtained similar results showingasaled yield of DA neurons in the
Wntl-deficient mESC cultures, which was further egmbiated by addition of
Shh/FGF8/bFGF. These results indicated that tlerdiices observed between the +/+

and -/- mESCs resided in the cell autonomous ghilit ESCs to differentiate into
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TH+/Tuj+ neurons, independently of any recombirgaoivth factor added or produced

by the feeder cells.

3.1.3 Attenuation of Wnt/ B-catenin pathway increases the yield of

MESC-derived DA neurons

As both Wntl and LRP6 are components of the Bveatenin pathway, we tested
whether or not this pathway is affected in Wntlasid LRP6 -/- mESCs. We found an
attenuated response to Wnt3a ligand stimulatiahencase of LRP6 -/- mESCs, and a
decreased expression of Whatlatenin pathway target genes, Axin2 and Brachyiary,
the case of mESC lacking Wntl. Moreover, we wete sbmimic the genetic ablation
of Wntl or LRP6 to some extent by administratinckDkluring mESCs differentiation.
Further, adding Wnt3a into the culture media dufeegler-free differentiation of Wntl
-/- mESCs led to a decrease in Tuj, TH, and Nur®NA levels (unpublished
observation), thus “rescuing” the phenotype. Togetthese experiments suggest that
observed phenotypes are indeed caused by deficiendy/ntf3-catenin signaling
pathway during the mESC DA differentiation. Moregvexperiments with Dkk1
further demonstrate that an increased yield of BArans can also be achieved by the

attenuation of Wnf-catenin signaling by soluble inhibitors.

3.1.4 How can decreased Wnt/ B-catenin signaling contribute to

neuronal and DA differentiation?

The enhanced generation of Tuj+/TH+ DA neurons imtd\/- and LRP6 -/- mESCs,
respectively, is in agreement with the negatives rof Wntp-catenin signaling on
differentiation into neuroectodermal lineages botESC cultures (Aubert et al., 2002;
Engberg et al., 2010; Haegele et al., 2003; Veztal., 2007) anth vivo (Glinka et al.,
1998; Kelly et al., 2004; Mukhopadhyay et al.,, 200oshikawa et al., 1997).
However, these results from Wntl -/- and LRP6 #S€@s differentiation experiments
did not fully reflect DA neuron development in Wntland LRP6 -/- micen vivo.

The evidence obtained from mutant mi@ealyses suggests that the \Brdatenin
pathway is implicated in patterning the VM (Ballyx€et al., 1995; Pinson et al., 2000;
Prakash et al., 2006) and in DA neurogenesis (Jaksc et al., 2009; Tang et al.,

2009). However, there is a difference in the extétatterning and neurogenic defects
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between Wntl-deficient and LRP6-deficient mice. &bsence of Wntl causes much
more pronounced phenotypes in the VM than the a@lesehLRP6. Interestingly, there
seem to be no other Wnt ligands capable to compefmathe Wntl loss. Therefore,
one can assume that the lack of Wnt1, during atiperiod of midbrain development,
also causes more severe impairment of Wnt signalhg the other hand, the VM
phenotypes in LRP6 -/- mice suggest that decredget3-catenin signaling causes
only minor patterning defects and/or a developmed#ay in DA differentiation
(Castelo-Branco et al.,, 2010; Pinson et al., 200®)fact, selective attenuation of
Wnt/B-catenin pathway in VM floor plate leads to decesas the number of DA
neuron being generated, but those that are bortincento differentiate and express
markers of mature DA neurons such as DAT (Tand.e2@09). Therefore, it seems
that decreased Wttatenin signaling, to certain extent, still allothe generation and
maturation of VM DA neurons.

In light of this data and our results we concluldat tevel of Wnf-catenin signaling
present during differentiation of Wntl or LRP6-defnt mESCs is not a limiting factor
for the efficient generation of DA neurons. Thisilcbbe related to the fact that mESC
cultures differentiate asynchronously, meaning tleaten at later stages of
differentiation the cultures still contain some ififedentiated MESCs and proliferating
neural progenitors. Further, cultures of differat@d mMESCs tend to be heterogeneous,
containing additional types of differentiated cdléside the DA neurons. Thus, cells in
such cultures might be exposed to factors/conditishich their corresponding vivo
counterparts do not experience during developmafet believe that this asynchrony
and heterogeneity may have an impact on the levéNwt/B-catenin signaling in
differentiating mESC cultures.

Further, Wntp-catenin signaling is linked to cell cycle progressin various tissues
(He et al., 1998; Panhuysen et al., 2004; TetsuMafdormick, 1999). Therefore, the
accelerated appearance of Tuj+ and TH+ neuronsbsereed in our cultures could
have been a the consequence of a cell cycle dédading to premature cell cycle exit
and differentiation. We did not observe any changegroliferation of Wntl -/-
MESCs, possibly due to low expression level of Wintlundifferentiated mESC.
However, mESCs lacking LRP6 showed slower prolifena rate (unpublished
observation). Moreover, the attenuation of the B/o#tenin pathway could have led to
augmented Wnittcatenin-independent signaling (Bryja et al., 2008hinci et al.,
2007) and thereby to enhancement on DA differeatigiBryja et al., 2007c; Castelo-
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Branco et al., 2005; Parish et al., 2008). Whickhete mechanisms accounted for the

observed phenotypes is currently unclear.

In sum, this study demonstrated that neither WotlLRP6 areper se required for the
generation of DA neuron with characteristics of \IDM\ neurons in mESC cultures.
Moreover, diminished Wrfifcatenin signaling turned out to be beneficialtfar yield

of DA neurons derived from mESCs. All of these esent novel findings which have
the potential to facilitate the development of CRT light of this study and current
literature, it is clear that Wift/catenin pathway regulates multiple aspects of mESC
differentiation towards mature DA neurons. Dissegtout the precise temporal and
spatial regulatory mechanisms and their orchestrattion in heterogeneous meESC
cultures seems thus rather challenging. In thiaregdifferent cell sorting strategies,
isolation of more specified neural progeny andioe tuise of strategies allowing
conditional genetic ablation of Wnt pathway compusewill undoubtedly prove
useful. As mentioned earlier, it is uncertain & ffoint whether DA neurons generated
under conditions of attenuated Whtatenin signaling were fully functional or not.
They showed characteristics of VM DA neurons; hosvewhether or not all these
neurons were indeed indistinguishable froonma fine VM DA neurons is at this point
not entirely clear. Therefore, this issue shoulcdatddressed in the future, as interfering
with Wnt/3-catenin signaling represents a promising tool reslucing the risk of
excessive proliferation/tumor formation upon grajtof ESC-derived VM DA neurons
in CRT for PD.

3.2 PRELUDE TO PAPER I, lll, AND IV

The interest of our lab in the mechanisms and cuesees of Wnt5a action on DA
differentiation goes back to year 2003, when Gan€alstelo Branco et al. showed a
positive effect of Wnt5a conditioned media (CM) generation of TH+ neurons from
Nurrl+ precursors in mouse primary neuron cult@absequent follow-up report
identified Wnt5a as a DA differentiation-promotirfgctor secreted by VM glia
(Castelo-Branco et al., 2005). Further insight® itlte role of Wnt5a brought its
purification (Schulte et al., 2005), which allowesl to further analyze mechanisms of
Whntba signaling. Our lab showed that purified Wnth@ not activate Wnfi-catenin
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pathway in DA cells, but promoted DA differentiatjgpossibly via CKd/e-mediated
phosphorylation of Dvl (Bryja et al., 2007c).

Importantly, neither the role of Wnt5a in VM devetoent nor the mechanisms
underlying its functions in DA differentiation habeen fully addressed before Papers
[-1V.

3.3 PAPERII

3.3.1 Analyses of Wnt5a -/- mice

To address functional relevance of Wnt5a for theetbgpment of DA neurons, we
analyzed Wnt5a -/- mice (Yamaguchi et al., 1999)forphogenetic, proliferation,
and/or differentiation defects in the VM. The numb&TH+ neurons in the Wnt5a -/-
mice seemed unchanged, except of transient ince¢dsb4.5. Further, we checked for
possible changes in proliferation and detectedchareased proliferation at E11.5 in the
VM (increase in number of BrdU+ and Ki67+ cells)oiover, Wnt5a -/- mice showed
an increased number of Nurrl+ DA precursors at &=1Phis implied that loss of
Whntb5a led to an accumulation of Nurrl+ precursoidtaat their further differentiation
into TH+ DA neuron was to some extent impaired.eb] we detected decreased
proportion of TH+/Nurrl+ cells in the VM of Wnt5& mice at E12.5. Nonetheless,
Wntba per se was clearly not as crucial for DA differentiatiom vivo as originally
hypothesized based on experiments with Wnt5a Cptimary neuronal culture.
Interestingly though, while the total number of TiHeurons was barely altered, the
actual distribution of TH+ neurons in the midbraias affected in Wnt5a -/- mice. The
domain occupied by TH+ DA neurons expanded mederdfly and shortened rostro-
caudaly, thus mimicking defects in CE movementsinguneural tube formation.
Moreover, additional neuronal populations in the \Wiére similarly affected. We
conclude from these experiments that Wnt5a cortethto proper VM morphogenesis
via regulation of CE movements. This conclusionnisagreement with the view of
Wntba as a regulator of the Wnt/PCP pathway, sWd5a has been shown to
genetically interact with core PCP components Vamgl Prickle during gastrulation
and to regulate CE movements during formation efradetube (Montcouquiol et al.,
2006; Qian et al., 2007; Veeman et al., 2003b).
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3.3.2 Wntba activates small GTPase Racl, activity o  f which is required

for Wnt5a-induced DA differentiation in primary cul ture

As already mentioned, previous studies in our l@pgnted Wnt5a as a regulator of
Wnt/B-catenin-independent signaling in SN4741 DA cdligyja et al., 2007c; Schulte
et al., 2005). In light of these findings and oatadfrom the analysis of Wnt5a -/- mice
we checked the ability of Wnt5a to activate effestof Wnt/PCP and other Wnt-driven
[-catenin-independent signaling pathways in the 3i42lls. Interestingly, we found
that treatment with recombinant mouse Wnt5a a@d/amall GTPases Racl and Rapl
(unpublished observation). Moreover, using the kmalecule NCS23766, which acts
as a competitive inhibitor of Racl activation (Gaal., 2004), we abolished the effect
of Wnt5a on DA neuron differentiation in E11.5 pamg neuron culture. This data
suggests that Racl also acts downstream of Wntgainmary cells and that Racl
activation is a necessary component of the Wnt5diatexl pro-differentiation effects

on VM DA precursors.

3.3.3 Possible mechanisms of Wnt5a signaling in the developing VM

An earlier report from our lab suggested that aoloktl \Wnt ligands could be present in
the developing VM, since mRNA transcripts of 13¥afiént Wnts have been detected
by Q-PCR (Rawal et al., 2006). It is therefore pmedo speculate whether other Wnt
ligands with comparable signaling capabilities aedeptor affinities might have
compensated for the lack of Wnt5a in the midbrairsame extent. In this regard, a
strategy targeting pathway receptors may be mowmnigsing in elucidating the
functional role of Wnfi-catenin-independent signaling in DA neuron diffeaion
and midbrain morphogenesis. Nonetheless, ther@ &rezzled receptors expressed in
the VM at E9.5 (detected by ISH) (Fischer et @02, and as many as 10 Frizzleds
detected in the VM by Q-PCR (Rawal et al., 2006 .afkeady mentioned, no study has
systematically addressed binding affinities of Vnt® various Frizzled receptors.
Frizzled2, 4, 5, 7, and 8 have been proposed a&pta@s of Wnt5a, as they mediate
some aspects of Wntba-triggered signaling eventidoarto-immunoprecipitate with
Wnt5a (He et al., 1997; Chen et al., 2003; Ishi¢dral., 2003; Mikels and Nusse, 2006;
Nishita et al., 2010; Safholm et al., 2006; Satalgt2010; Wallingford et al., 2001).
However, due to functional redundancy between iffe Frizzleds, the importance of

individual Frizzled receptors for Wnt5a-mediatednsiling is likely very context
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dependent. Moreover, a recent study, aiming aiddting binding affinities of Wnt3a,
Whnt5a, and Wnt7a to Frizzled5 and Frizzled10, ¢atte detect an interaction between
Wnt5a and Frizzled5-CRD (Carmon and Loose, 20168pite of the fact that Wnt5a
has been shown to functionally interact with Fezi8 in other studies (He et al., 1997,
Ishitani et al., 2003; Safholm et al., 2006).

On the other hand, Rorl/2 has been described tb\hint5a and mediate its effect,
including activation of Rac1l, in various mammaleat types (Fukuda et al., 2008; Liu
et al., 2008b; Mikels and Nusse, 2006; Nishitalet2806; Oishi et al., 2003; Sato et
al., 2010). Therefore, current effort of our lamaiat analyzing the possible implication
of Rorl/2 in DA differentiationin vivo (JC Villaescusa, in preparation). Another
receptor proposed to mediate some aspects of Wimtbliated signaling is Ryk.
However, morphogenetic defects described in Rylcieit mice seem to be much less
pronounced than in case of Wnt5a -/- mice (Halfetdal., 2000; Lu et al., 2004;
Yamaguchi et al., 1999).

Currently, questions remaining to answer are whetthe impaired differentiation of
Nurrl+ precursor into Nurrl+/TH+ neuron is in somvay a consequence of the
morphogenetic defect in the midbrain, and to whderg Racl is involved in DA
differentiation and/or midbrain morphogenesisivo. In regards of the former, recent
work from the W. Wurst lab has described gross magpnetic defects (including
collapse of the brain ventricles) in the midbraih rice lacking Frizzled3/6.
Interestingly, the patterning of the midbrain and Differentiation were largely
unaffected by the lack of both receptors (Stueletex., 2010). This suggests that the
severity of the defect in CE movements is not lityemanslated into a similar level of
DA differentiation impairment, and, in light of odata, implies that Wnt5a signaling
may separatedly contribute to both midbrain morginegis and DA differentiatiom

Vivo.

Wnt5a stimulation of SN4741 cells and/or mouse ewtic fibroblast (MEFS)
activated additional signaling components, suctCH46/e and Rapl. CKdle was
already functionally related to DA differentiati¢Bryja et al., 2007c) (see Paper lll for
additional information). Whether the Wnt5a-mediatactivation of Rapl has any
functional implication for DA neuron differentiahas currently being elucidated.

As our experiments have suggested, Wnt5a can ttivare than one signaling route
in ourin vitro cellular systems, which in terms of expressioneggptors and cytosolic

components are relatively uniform. Therefore, @me reasonable to expect that Wnt5a
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activates multiple signaling routes also duringedepment of the midbrain, since the
expression of many pathway components changesgduivh development (Rawal et
al., 2006). Thus, although we do not have any éxyital proof for our claim, in the
light of ourin vitro data, and published vivo evidence from other systems, we think

that Wnt5a activates multiple signaling routesena@loping VMin vivo.

3.3.4 Is Racl Wntba effector in vivo?

Racl has a profound role in the regulation of dygteton rearrangements, cell
polarization, cell migration, and neuronal matunatiMoreover, the functional role of
Dvl/Rac signaling in the regulation of PCP and/dE @iovements has been well
demonstrated (Fanto et al., 2000; Habas et al3;ZD@hinci and Symes, 2003; Paper
[l). However, it is currently not clear to whattert Racl LOF is responsible for
phenotypes observed in Wnt5a -/- mice. Direct enpamtal evidence addressing
functional relevance of Racl for the developmen¥if is missing, as Racl -/- mice
fail to finish gastrulation and die before E9.5eréfby hampering possible analyses of
midbrain development (Sugihara et al., 1998). Thutire strategies should aim at
conditional ablation of Rac function in the deveétmpVM to address the functional
requirement of Rac for midbrain morphogenesis an@A neuron differentiation.
However, Rac3, another member of the Rac protemiyanighly redundant to Racl, is
expressed together with Racl in almost all areaghef developing brain and
compensates for loss of Racl (de Curtis, 2008;rdwalbi et al., 2010). Alternatively,
tissue explants culture combined with live imadiechniques using biosensors of Racl
activation may represent a potent strategy to uercnevel aspects of both spatial and
temporal regulation of Racl activity in the VM.

3.4 PAPERIII

At the time when this study began, results from lalr demonstrated that Wnt5a
activated the Wnt/Dvl/Rac signaling route of the tw&€P pathway and inhibited
Whnt/B-catenin signaling in DA cells. Furthermore, vagaiudies have suggested that
Whnt-signaling pathways are mutually interconnectedform a signaling network.
However, despite the fact that many reports hadackerized new Wnt-driven
signaling cascades and identified novel pathwaypmmants, the relations between

different Wntp-catenin-independent signaling pathways and indadidpathway
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components with the network had not been fully ustded. In this regard, we realized
that some of our questions regarding mechanism&/@ba action were difficult to
address by relying on DA cells only. We thus soughihvestigate the mechanisms and
consequences of Wnt5a signaling in a broader coatether systems.

Prior to the beginning of this study, a link conmag -arrestin to Wnt/PCP signaling
had been demonstrated by showing the requiremeftdarestin2 in Wnt5a and PKA
induced Frizzled4 internalization (Chen et al., 20MHowever, the importance @t

arrestin for Wnt/PCP signaling as such had not beenessed.

3.4.1 B-arrestin is a novel component of the Wnt/Dvl/Rac s  ignaling

route

We tested the functional requirement fearrestin in Wnt5a-induced Racl activation
and phoshorylation of Dvl in MEFs lackifigarrestin1/2. While phoshorylation and the
mobility shift of Dvl (PS-Dvl) after Wnt5a treatmieshowed slower kinetics compared
to control, activation of Racl was completely alated in cells lacking-arrestin1/2.
This observation fitted well with previous studiggentifying p-arrestin as a Dvl-
binding partner (Bryja et al.,, 2007b; Chen et 2D03) and positione@-arrestin
upstream/at the level of Dvl in the Wnt/Dvl/Racrsating branch (note th@tarrestin is
required for the activation of Racl by Wnt5a butloypDvl). To get further insight into
the functional aspects @Farrestin in the context of the Wnt/PCP pathway taek

advantage of thEenopus embryo Keller explants assay (Figure 10).

=
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Xenopus embryo dissected explant elongating explant

Figure 10: Keller explants of pre-gastrulatiodenopus embryos represent useful tools to study CE
movements in a situation very closéanaivo. Upon dissection (indicated by dashed line) at$sguent
cultivation, the prospective mesoderm tissue framdissected explant narrows and elongates (Keller,
1991).
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We confirmed the requirement Bfarrestin for CE movements, as knockdowrpof
arrestin expression impaired elongation of explaktsreover, we showed that this
phenotype could be rescued by constitutive actaelRind RhoA, thus confirming the
status off-arrestin as a regulator of both Wnt/Dvl/Rac andtAMvl/RhoA signaling
routes during CE movements. The findings were me@ment with a report published
during the preparation of our study, which ideatfiB-arrestin2 as an upstream
regulator of RhoA duringenopus gastrulation (Kim and Han, 2007).

Next we aimed at identifying the Wnt ligand actungstream of-arrestin in elongating
Xenopus embryo explants. Our results had clearly demotestrahat g-arrestin is
required for CE movements/Wnt/PCP signalingXenopus. However, Wnt5a, the
lingand which we used in our experiments with mairanacells, was not required for
elongation of explants (Schambony and Wedlich, 2@0nterseher et al., 2004). In
light of this data we hypothesized that signalihjmt5a inXenopus Keller explants is
B-arrestin independent. Indeed, we did not find amglence of genetic interactions
between Wnt5a andg-arrestin in this system. On the other hand, owscue
experiments demonstrated genetic interactions leet\pearrestin and another Wnt
ligand, Wntl11, which supported the view of Wntl1ltlzes main regulator of Wnt/PCP
pathway during CE in gastrulatirgenopus embryo (Habas et al., 2003; Habas et al.,
2001).

Finally, it is worth noting that the mechanisms aating for different downstream
signaling of Wnt5a in mammalian cells (Wnt5a/DviéRaignaling route) and in
Xenopus explants (Wnt5a/PI13K/Cdc42) have not been chatiaete Since both
signaling routes seem to utilize Ror2, it is thepyment of different Frizzled
receptors and/or cytosolic adaptor proteins whicy rccount for the divergence of
signaling downstream of Wnt5a/Ror2.

3.4.2 Multiple roles of B-arrestin-which of them matters for the

Wnt/Dvl/Rac signaling?

Interestingly, recent evidence has proposedffatestin-dependent clathrin-mediated
endocytosis of Frizzled plays an important rolethe regulation of the Wnt/PCP
pathway during CE movements (Chen et al.,, 2003; ktmal., 2008). However,

evidence from the GPCR field also pinpoirfisarrestin as a scaffolding protein
important for activation of downstream signalingterestingly, such a role has also

recently been proposed f@arrestin in the context of Witcatenin-independent
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signaling (Kim and Han, 2007). In this regard sitinteresting to speculate whether is
the requirement of-arrestin for efficient Wnt/Dvl/Rac signaling ungemed by its
involvement in receptor endocytosis or its roleseaffolding protein. We attempted to
address this issue by using hyperosmotic sucro&eg- atepletion to block endocytosis
and thereby assess its impact on Wnt/Dvl/Rac siggaSurprisingly, we found that
block of clathrin-mediated endocytosis by the mejaiss mentioned led to efficient
depletion of Dvl at protein level (Bryja et al., @@&). Despite this is an interesting
finding, these experiments are rather inconclusdgarding the precise mechanistical
role of B-arrestin in Wnt/Dvl/Rac signaling.

3.4.3 Roles of CK1 and CK2 in Wnt-driven signaling  pathways

Our finding thaf3-arrestin was critical for Wnt5a-induced Racl atton in MEFs but
not essential as such for the appearance of P$aiddd an interesting question. Is the
formation of PS-DvI dispensable for Wnt/Dvl/Racreding activation? To address this
possibility we looked at whether manipulation oé thhosphorylation status of Dvl
somehow affected Racl activity. CK1 and CK2 seemoetle good candidates for
testing our hypothesis, both were shown as Wntitligre kinases able to
phosphorylate Dvl and capable of interacting withrrestin (Swiatek et al., 2004;
Willert et al.,, 1997; Xiao et al., 2007). Interesfiy, when we performed the
experiment in MEFs, using CK1 and CK2 inhibitorsg wound that a block of Dvl
phosphorylation was accompanied by strong actiwatdd Racl. This was also
observed in lysates frondenopus explants, proposing that PS-Dvl acts as a negative
regulator of Wnt/Dvl/Rac signaling. However, as C&well as the members of CK1
family are rather “promiscuous” kinases in terms mimber of targets they
phosphorylate, and the inhibitors we used coulcelagte effects, we went for further
confirmation experiments. First, overexpression GKle decreased the level of
activated Racl induced by Dvl overexpression in BIB¥ext, inhibition CK1 rescued
the LOF defect inXenopus explants, thus mimicking the effect of constitatiactive
Racl. Importantly, both the rescue effect on elbogaof explants and the positive
effect on Racl activation were dependent on theepie of Dvl. These experiments
therefore confirmed the status of CK1 as a negatgrilator of the Wnt/Dvl/Rac
signaling route acting at the level of Dvl.
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We showed that Wnt/Dvl/Rac signaling is also ineohin Wnt5a-mediated effect on
DA neuron differentiation (Paper Il). Therefore,eowould assume that inhibition of
CK1, which leads to activation of Racl, would haue effect opposite to Racl
inhibition on DA differentiation. However, earliarork from our lab has suggested that
the Wnt5a-mediated DA neuron differentiation iodiocked by CK1 inhibitor (Bryja
et al., 2007c). Therefore, as was already empldisizés very possible that Wnt5a
triggers multiple signaling cascades during DA afitiation, and it is either their
orchestrated or sequential action which is actuadlgded for the DA differentiation-
promoting effect of Wnt5a. In this regard, theraislear parallel to experiments with
Xenopus embryo explants, where both LOF and GOF also gige to similar
phenotypes. While in the frog this is attributedldes of cell polarity, it is unclear
whether similar mechanisms underlie the effect€l¢l and Racl inhibition and how
they translate to the block of DA differentiation.

Compared to CK1, CK2 showed a slightly differenhdaor during our validation
experiments. Biochemical experiments with depleabbvl protein suggested that the
effect of CK2 inhibitor on Racl activation did n@&quired Dvlper se. Assuming a
relative specificity of the CK2 inhibitor used ihi¢ study, this finding argued for
employment of CK2 in both D\farrestin-dependent and independent events, wich i
not that surprising in light of the numerous celtuprocesses controlled by CK2. A
series of experiments in frog suggested that CK2daas a negative regulator [&f
arrestin dependent signaling (CK2 failed to reste3-arrestin LOF phenotype), but
at the same time might have had a positive fungtiasther signaling routes, regulated
by Wntl1l during explants elongation, but not reggif-arrestin. Interestinglyp-
arrestin2 knockdown does not affect Wn&/Gsignaling via PKC ifKenopus (Kim and
Han, 2007) and some aspects of Wnt/Gaignaling seem to be independentpef
arrestin binding partner Dvl (Ma and Wang, 2007qarébver, CK2 has been shown to
phosphorylate C&binding protein Calmodulin and thereby affectsnsiing events
induced by C# transients (Arrigoni et al., 2004). Thus, the \@af/ pathway is a
plausible candidate for a Wntll-drivgharrestin-independent pathway regulating
gastrulation movements and utilizing CK2 activitgafriock and Krieg, 2007;
Panakova et al., 2010). However, direct experinhentmlence of CK2 employment
downstream of Wnt/Ca signaling has not been demonstrated and shouddidressed
by future experiments. Moreover, due to increagmglence of interactions between

Wnt/PCP signaling routes and WntfCaignaling, it would be interesting to try to
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dissect out nodes of interaction within this netwadn this regard, application of small
GTPase and Gibiosensors combined with live cell imaging techesjumay prove

useful.

In summary, our study demonstrated a functioft-afrestin as a novel regulator of
Wnt/Dvl/Rac signaling and pointed out CK1 and CK2reegative regulators of this
signaling route and switches between different adess of Wnt-induce@-catenin-

independent signaling, more specifically betweert/i/Rac and Wnt/PS-Dvl.

3.5 PAPERIV

3.5.1 Search for Racl activators

In this study we aimed to elucidate the mechani$iVot5a-mediated activation of
Racl in DA cells, since our data linked the prdedéntiation effect of Wnt5a with the
activation of Racl (Paper Il). Specifically, oufoef mainly aimed at the identification
of GEF(s) responsible for Racl activation in thategrt of the Wnt/Dvl/Rac signaling
route. Interestingly, while the role of GEFs in tiivation of Rho GTPases had been
studied for decades, and Rho GTPases were idenéfedownstream components of
Whnt signaling more than 10 years ago, there wag sgarse evidence regarding the
useof particular GEF in Wnt-driven signaling cascadethe beginning of this study.
Our initial strategy was to immunoprecipitate Raaftid to subsequently identify its
binding partners by mass spectrometry. Unfortugatilis approach in its original
design did not lead to the identification of anyaidate GEF of Racl. In this regard,
interactions between GEFs and small GTPases sebmttansient (Worthylake et al.,
2000). This transient character of the interactiomsld account for the failure of our
first strategy, by preventing us to obtain suffitieemounts of GEF-Racl protein
complexes for identification by mass spectromeffjerefore we searched for
alternative bait for our proteomic experiment. Beemed as a good candidate, thanks

to its function as scaffolding protein and regulatbRacl activation.

First, we decided to characterize the Dvl-Raclratigon, which had been proposed in
earlier studies (Habas et al., 2003; Rosso €2@D5). Indeed, we detected recruitment
of endogenous Racl into DvI2/3 polymers, which apge in a form of cytosolic

puncta upon DvI2/3 overexpression. Moreover, weficoed by FRET analyses that
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Racl and Dvl were located in close proximity witlirese protein assemblies. We
mapped the region of Dvl mediating the formatiorth@ DvI-Racl complex to its N-
terminal part. As the ability of Dvl to form polymehad been attributed to its N-
terminal DIX domain, and this polymerization alyilihas been proposed as a
prerequisite for efficient Dvl-Racl interaction @Nita et al., 2010), we tested if the
Dvl-Racl interaction was somehow affected by thrabiiity of Dvl to polymerize.
Interestingly, we found that Dvl-point mutants, Hexg the polymerization ability,
interacted with Racl in a manner very similar te wild type form of Dvl. Thus, we
concluded that the DIX-mediated polymerization ofl vas not requiregber se for
Dvl-Racl interaction. Future experiments should reslsl whether the Dvl-Racl

interaction is direct or possibly mediated by arothinding partner.

3.5.2 Tiaml, a Racl GEF, is expressed in developing VM and interacts
with Dvl

The results we obtained upon characterization@il-Racl interaction prompted us
to carry on the proteomic experiment using Dvl af, bwhich subsequently led to
identification of Tiam1 as a candidate Dvl-intenagtprotein. As the initial observation
of Dvl-Tiaml interaction came from a non-neuronall dine, we analyzed the
expression of Tiam1 in the SN4741 DA cell line amdhe midbrain, and found that
Tiaml is expressed in the developing VM as earhatag10.5, at the onset of DA
neurogenesis.

Next, to confirm the Dvl-Tiaml interaction, we ogepressed Tiaml and Dvl, and
detected their colocalization in puncta and theateraction by mutual co-
immunoprecipitation. Moreover, we found that thediminal region of Dvl, which
was critically required for Dvl-Racl co-immunopigtation, was not required for the
Dvl-Tiam1 interaction. Thus, we concluded that Raeds not mediating the Dvl-
Tiam1 interaction. However, which parts of Dvl anidm1 are involved in their mutual
interaction needs to be addressed in future expetsnin this regard, the PDZ domain
of Dvl looks like a plausible candidate, as Tiarotpin contains a PDZ-binding motif
at its C-terminus (Garcia-Mata and Burridge, 20@rgliminary results suggest that the

DvI-PDZ domain is indeed involved in the interantiwith Tiam1.
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3.5.3 Functional aspects of Tiam1 in the Wnt/Dvl/Ra ¢ signaling and DA

differentiation

Tiam1l is well known as a GEF for Racl (Collard let 996; Mertens et al., 2003;
Michiels et al., 1995; Sasaki et al., 2010). Siogedata suggested that Tiam1 forms a
complex with Dvl, we decided to test if Tiaml wawadlved in the transduction of
signal between Dvl and Racl. Interestingly, werditldetect almost any Dvl-mediated
activation of Racl after knockdown of Tiaml exp@ssby SiRNA, while Dvl
overexpression induced Racl activation in controindttion. Moreover, our
preliminary results suggest that the ability of B&to trigger Racl activation is also
impaired by Tiam1 siRNA. Thus, based on these @xgeits we conclude that Tiam1

is required for Racl activation in the contextr@ Wnt/Dvl/Rac signaling.

Agonist-induced membrane recruitment of both Tiaandl Dvl has been previously
documented (Buchanan et al., 2000; Cliffe et 8003 Park et al., 2005). In our
experiment, the membrane associated pool of Tiachhat colocalize with Dvl. This
data suggested that the recruitment of Tiaml tonteenbrane is not sufficient to
induce translocation of Dvl to the membrane indbsence of exogenous Wnt ligand.
Furthermore, it is interesting to speculate howbvé Tiam1l complex described here
is affected by acute Wnt ligand stimulation, pres¢absence of another Dvl-
interacting protein(s), and/or the status of Dviogbhorylation. In fact, data not
included in this manuscript suggests that overesgive of CKt negatively regulates
Dvl-Tiam1 interaction. This is in agreement withetihole of CKE as a negative
regulator of the Wnt/Dvl/Rac signaling route (Pafigrand suggests that changes in
protein-protein interactions between Dvl and Tiamdy mediate activation of Racl
via Tiam1. Further studies should address thisipiigsin detail.

We described expression of Tiaml in the developmigrain and demonstrated the
requirement of Tiaml for efficient Wnt/Dvl/Rac sajimg. As the Wnt/Dvl/Rac
signaling route is involved in DA neuron differeatton (Paper Il), our obvious next
step in this study was to test the role of TiamDMdifferentiation. Due to difficulties
with transfection of primary cells, we used expahd®A progenitor neurosphere
culture and their subsequent differentiation asoalehto address this hypothesis. Our
experiments showed a decrease in mRNA levels ohdélueonal marker Tuj, and DA

neuron marker TH, as well as a decrease in the eumbTH+ DA neurons after
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Tiam1 siRNA. This suggested a role for Tiaml in thigerentiation of postmitotic

precursors into TH+ DA neurons, as expression sewkkarly DA markers Nurrl and
Pitx3 remained unchanged. The knockdown of Tiansb &d to a decrease in Tuyj
MRNA. This finding suggests that Tiam1l may alsalag other aspects of neuronal
development in non-DA neurons. Together, our expenmis demonstrate a functional
role of Tiaml in the generation of DA neurons, théir interpretation in the context of
Wnt/Dvl/Rac signaling is less straightforward, gineo exogenous Wnt ligand was
applied during neurosphere differentiation. Thamfto fully link Tiam1 deficiency to

attenuated Wnt/Dvl/Rac  signaling, an experiment lwamg Wnt5a

treatment/overexpression with Tiam1l si/sh RNA stiobé performed in the near

future.

On a functional level, Tiaml-mediated Racl actorathas been mostly studied for its
role in cancer (Habets et al., 1994; Malliri et 2D02; Mertens et al., 2003; Strumane
et al., 2009). Moreover, Tiaml was identified a®di target gene of Wifitcatenin
signaling pathway in colon cancer cells (Mallirigét, 2006). However, Tiaml is also
expressed in the developing mouse brain, and reslivded to the regulation of axon
and neurite outgrowth, and neuronal migration (Ekfeal., 1997; Kawauchi et al.,
2003; Leeuwen et al., 1997; Tanaka et al., 2004yeller, our experiments also show
expression of Tiam1l in the developing midbrain. ldoer, whether Tiam1 expression
in the midbrain is also controlled by Wzatenin signaling is not clear. Analyses of
Whnt/B-catenin pathway activation in the developing miltorof the Top-gal reporter
mice revealed a peak of activity at E10.5 (CasBrkmco et al., 2003). Therefore, in
light of this finding it seems plausible that theadual increase in Tiaml mRNA
expression we observed between E10.5 and E15.5waiasained independently of the
Wnt/B-catenin pathway. Further, as no gross developrelgiects in the CNS,
resembling Wnt/PCP pathway defects, have been tegban Tiaml-deficient mice
(Malliri et al., 2002), it is possible that otheadd GEFs compensate for lack of Tiam1
in the developing brain. However, a detailed aredysf VM development in Tiam1 -/-

mice has not been reported.

Attenuation of Racl activity is linked to impairegtoskeleton remodeling and loss of
cell polarity, which in the context of neuronal fdientiation can be reflected by
impaired neurogenic cell division and/or neuritoggsa (Govek et al., 2005; Heasman
and Ridley, 2008; Mertens et al., 2006; Minobel e2809; Zhang and Macara, 2006).
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Whnt5a/Dvl-mediated signaling events are also ingpdid in the regulation of polarity
in differentiating neurons (Endo and Rubin, 200i7gtal., 2010; Schlessinger et al.,
2009; Zhang et al., 2007). Thus, the cell polantgy underlie the requirement of
Whnt5a/Dvl/Rac signaling for efficient DA differeation. A recent report has described
a novel function of Wnt5a in the regulation of distribution of chemokine receptors
at the cell membrane, thus enabling efficient cediponse to a chemokine gradient
(Witze et al., 2008). Interestingly, the role ofeatokines as factors regulating DA
differentiation has recently emerged (Edman et28l08). Whether or not the Wnt5a
signaling indeed regulates responsiveness of DI& tiethemokine gradient remains to
be experimentally tested. Moreover, the regulatioh gene expression via
Tiam/Rac/AP1 represents another possible mecharisrnolling DA differentiation.
Interestingly, AP1 binding sites have been idegdifin the promoters of several DA
genes (Nagamoto-Combs et al., 1997; Seo et alg) 1B®wever, to which extent AP1-
mediated transcriptional regulation is implicatedWnt5a signaling is not entirely
clear, because very few target genes of AP1 haea bhown to be regulated in a
Wnt5a-dependent manner. Moreover, we attempteddreas the possible contribution
of Wnt5a signaling to direct changes in gene exwesin mESCs using lllumina
technology, and found hardly any genes differdgti@xpressed after 2h or 6h
stimulation with Wnt5a (unpublished observationhefiefore, the contribution of
Wnt5a/Racl-mediated regulation of transcriptionDt& differentiation remains an
interesting, but at the moment a rather theorepoaisibility. We currently have no
evidence supporting that.

Thus, at this point is not clear which function Thm1/Rac makes these proteins

important for DA differentiation. Further studiedlde needed to elucidate this matter.
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4 CONCLUSIONS

Based on the work compiled in this thesis, theofeihg conclusions have been made:

* Attenuation of the Wnfi-catenin pathway increases the yield of midbrain DA
neurons obtained upon DA differentiation of MESCs

» Wnt5a controls both proper morphogenesis of thebraid and differentiation
of precusors into DA neurons

* Small GTPase Racl is a mediator of Wnt5a-inducechBuéxon differentiation

* B-arrestin is a necessary component of the Wnt/w/gtgnaling route

* CK1 and CK2 regulate distinct routes of Wntatenin-independent signaling
at the level of Dvl

» Tiaml is responsible for Wnt5a/Dvl-induced Raclivation and is involved in

DA differentiation

l

Whnt/B-catenin

‘
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~J

D
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Figure 11: Model of Wntl/LRP6 and Wnt5a functions in DA difetiation based on published
evidence and findings presented in this thesis.
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