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ABSTRACT 
The brainstem is the most evolutionary conserved division of the brain. It develops 
from the hindbrain and midbrain regions of the neural tube and forms neural networks 
that regulate vital functions of the body. One of the most critical roles is to generate 
respiratory rhythm for the regulation of oxygen, carbon dioxide and pH levels. This is 
achieved by pacemaker neurons and neural networks in the medulla oblongata, 
controlled by different modulatory systems. The mechanisms whereby the respiratory 
rhythm is generated and regulated are not fully understood and have only recently 
started to be unveiled. 

This thesis describes the importance of two different gene products, KCC2 and 
Vangl2, for proper development of the brainstem. We show that, while these genes act 
in separate phases of development, they share the common feature of regulating the 
integrity of the neuronal cytoskeleton necessary for maturation of the brainstem. 

KCC2 is a neuronal K+/Cl- cotransporter that is responsible for the 
developmental shift in the postsynaptic response to GABA. A fundamental premise for 
this thesis is that we found KCC2 protein expression in the hindbrain region of mice 
already at embryonic day 9.5, although its ion transport activity does not become 
functional until late fetal age. We show that the depolarizing effect of GABA elicits 
increased activity of fetal respiration-related neurons. In addition, the developmental 
GABA shift is associated with plasma membrane targeting of KCC2 in respiration-
related regions of rats around birth. 

Overexpression of KCC2 in the mouse neural tube resulted in altered neuronal 
differentiation and neural crest migration. These effects were independent of the ion 
transport function of KCC2 and were shown to rely on a structural interaction with the 
cytoskeleton-associated protein 4.1N. Thus, transport-inactive KCC2 may regulate 
neuronal differentiation and migration during early development. We assessed the early 
importance of KCC2 further in mice knockout for this gene, which die at birth from 
respiratory failure. Brainstem organotypic cultures of these mice displayed a lower 
correlated network activity in the preBötzinger region. In addition, characterization of 
the respiration-related regions showed less glutamatergic synapses in the parafacial 
respiratory group of KCC2-deficient mice. This indicates that KCC2 is essential for the 
maturation of respiratory neural networks. 

Finally, we show that the planar cell polarity gene Vangl2 regulates neural tube 
closure in the hindbrain region by promoting the formation of adherens junctions. 
Vangl2 was found to structurally interact with Rac1. Moreover, disruption of adherens 
junctions by a partial blockade of Rac1 could be rescued by Vangl2. This suggests that 
Vangl2 plays a critical role in the recruitment of Rac1 to the adherens junctions. 

In conclusion, the results presented in this thesis increase our knowledge of 
brainstem development, from closure of the neural tube until the formation of 
functional neural networks. Our findings have potential implications for research and 
understanding of neural tube defects as well as breathing disorders, such as congenital 
central hypoventilation syndrome, that arise from aberrant formation of the neural 
networks constituting the central pattern generator for breathing. 
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1 BACKGROUND 
 

Having evolved hundreds of millions of years ago, the brainstem is the most ancient 

part of the brain. Emerging from the spinal cord as a thickening of the rostral end, it 

joins at the base of the brain and forms a gateway between higher order centers and the 

rest of the body. Although relatively small compared to the brain as a whole, the 

brainstem carries the machinery for the most fundamental functions of vertebrates. 

Resembling the entire brain of the present-day reptiles, it is sometimes also called the 

reptilian brain. It appeared already in non-air-breathing fish and developed into a more 

advanced stage during the evolution of terrestriality, when tetrapods were encountered 

with the challenge of eliminating CO2 in air.  Breathing is one of the many life-

maintaining functions controlled by the brainstem, which also include cardiovascular 

regulation, consciousness, alertness, reflexive actions and pain sensitivity.  

The brainstem develops from the anterior region of the neural tube, which forms 

all the brain structures. Prior to this regionalization, the neural tube develops similarly 

along the entire body axis. Before reviewing brainstem development it may therefore 

be useful to highlight some general features of the initial phases of neural tube 

development. 

 

 

1.1 OVERVIEW OF CENTRAL NERVOUS SYSTEM DEVELOPMENT 
 

1.1.1 Gastrulation and neurulation 
The formation of the central nervous system (CNS) is a process of incredible precision, 

which requires a highly coordinated progression of events. Prior to CNS formation, 

three main germ layers must be generated. The initial upper and lower cell layers, 

termed epiblast and hypoblast, are formed by segregation of the inner cell mass. This is 

followed by gastrulation, during which cells undergo several dramatic morphological 

transitions and movements whereby they change their positions relative to each other 

(Tam & Loebel, 2007). A raised groove forms in the dorsal surface of the epiblast, 

called the primitive streak. Epiblast cells move inward at the primitive streak and 

displace the hypoblast cells to generate the innermost germ layer, the endoderm. 

Thereafter, intercalating epiblast cells undergo an epithelial-to-mesenchymal transition 

and create the middle layer, the mesoderm. This layer gives rise to connective tissues, 
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muscles and the vascular system (Kinder et al., 1999). The  endoderm gives rise to the 

gut and associated visceral organs (Lewis & Tam, 2006), whereas the outermost layer, 

ectoderm, gives rise to the nervous system and skin (Tam, 1989). An important 

structure, called the notochord, is formed in the mesoderm. The notochord defines the 

midline of the body and induces the formation of the neural tube. 

During the first step, known as neural induction, the neural plate forms as a 

uniform sheet of neural progenitors at the dorsal midline of the ectoderm. The neural 

plate is reshaped by a process called convergent extension, during which the embryo is 

extended along the antero-posterior axis, while narrowed along the medio-lateral axis. 

This is followed by neurulation, the process in which the neural plate buckles at its 

midline to generate neural folds. The dorsal tips of the folds then fuse to form the 

neural tube. Neurulation takes place during embryonic day (E) 7 – 9 in mice and 3 – 4 

postovulatory weeks in humans. It is accompanied by regionalization of the neural tube 

rostro-caudally into the future brain and spinal cord, and dorso-ventrally into sensory 

and motor neuron precursors (Smith & Schoenwolf, 1997; Copp et al., 2003). 

 

1.1.2 Cell specialization and regionalization 
Neural stem cells are born in the ventricular zone of the neural tube and give rise to 

neurons, astrocytes and oligodendrocytes. Stem cells initially divide symmetrically, 

generating daughter cells with self-renewal properties, before they gradually acquire 

differentiation properties and divide asymmetrically, generating a specialized cell and a 

stem cell in each division. Specialized cells migrate to their final positions and create a 

properly patterned CNS (Morrison, 2002). Neural crest cells migrate from the dorsal 

region of the neural tube to various locations and develop into the peripheral nervous 

system as well as contributing to different tissues and organs such as the facial bones 

and the heart (Tucker, 2004). 

The rostral part of the neural tube initially forms three brain vesicles: the 

forebrain (prosencephalon), midbrain (mesencephalon), and hindbrain 

(rhombencephalon). These vesicles are then further regionalized (Fig. 1). The forebrain 

becomes regionalized anteriorly into the telencephalon and posteriorly into the 

diencephalon. The telencephalon develops into the cerebral hemispheres and the 

diencephalon gives rise to the thalamic and hypothalamic regions (Marin & 

Rubenstein, 2002). The hindbrain becomes subdivided into metencephalon which 

forms the pons and cerebellum, and myelencephalon which forms the medulla 

oblongata (Melton et al., 2004). The midbrain is not subdivided further. 
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1.1.3 Inductive signals 
Control of CNS formation and patterning involves the interplay of multiple signaling 

systems, which interact to mediate the transcriptional events that specify cell fate. The 

neural tube is patterned by various signaling systems both along the dorso-ventral and 

rostro-caudal axis (Joyner, 2002). As cells in different positions in the embryo are 

exposed to different signalling factors, the position that a cell occupies early in 

development is of critical importance in determining its fate. 

Some of the key factors in the signaling systems are the bone morphogenetic 

proteins (BMPs), retinoic acid (RA), fibroblast growth factors (FGFs), Hedgehogs and 

Wnts. In general terms, BMPs, FGFs and Wnts seem to be required for dorsal neuron 

specification, whereas Sonic Hedgehog promotes ventral cell fate. Graded Wnt 

signaling is also believed to function along the entire length of the neuraxis regulating 

antero-posterior neural fates (Lee & Jessell, 1999; Megason & McMahon, 2002; 

Gunhaga et al., 2003). Along the same axis, opposing gradients of RA and FGFs 

regulate the regionalization of the hindbrain and spinal cord, respectively (Melton et al., 

2004). 

 

 

 

Regionalization of the

brain vesicles.
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1.2 BRAINSTEM DEVELOPMENT 
 

The brainstem consists of three parts: midbrain, pons and medulla oblongata. As 

described above, these regions arise from two of the three brain vesicles, the 

mesencephalon and rhombencephalon.  

 

1.2.1 Midbrain 
The midbrain develops from the middle brain vesicle (mesencephalon), and is the brain 

structure that is the least differentiated from its developmental form. The midbrain is 

the rostralmost part of the brainstem. It comprises the tectum, involved in auditory and 

visual processing, and tegmentum, which develops visual-motor control and becomes a 

part of the basal ganglia through a dopaminergic neuron-rich structure called substantia 

nigra (Nakamura, 2001; von Bohlen und Halbach & Unsicker, 2009). The midbrain 

lumen develops into the cerebral aqueduct. 

 

1.2.2 Hindbrain 
The hindbrain becomes segmented into rhombomeres, which can be described as 

separate transient compartments that specify where the cranial nerves originate (Fig. 1). 

The neural crest from each rhombomere develops into ganglia of neuronal cells whose 

axons form a nerve. The first nerves appear from the even-numbered rhombomeres r2 

(trigeminal), r4 (facial and vestibulocochlear) and r6 (glossopharyngeal) (Lumsden & 

Keynes, 1989). The rhombomeric patterning also regulates spatial and temporal 

appearance of central pattern generators (Borday et al., 2006). The boundaries between 

the rhombomeres are correlated with the expression boundaries of highly evolutionary 

conserved transcription factors known as the homeotic (Hox) genes. Expression of the 

Hox genes precedes rhombomere formation and plays an important role in the 

establishment of rhombomere-specific neuronal patterns. Each rhombomere expresses a 

unique combination of transcription factors, which is thought to specify each region. 

Mutation studies have shown that a disrupted Hox gene expression can alter the 

location from where cranial motor nerves emerge or even cranial nerve formation 

(Melton et al., 2004; Gray, 2008). Duplications or deletions of specific Hox gene 

clusters may have caused evolutionary changes in species over time. 

Similar to the patterning along the anterior-posterior axis, the dorso-ventral axis 

of the developing hindbrain is specified by many evolutionary conserved genes. These 

are further divided into different rhombomeric segments. For example, Phox2b is 
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expressed in several neuronal groups along the dorso-ventral axis but only in the 

segments r4 – r7 (Gray, 2008). 

The hindbrain rhombomeres mature into the anterior pons (r1 – r3) and the 

posterior medulla oblongata (r4 – r8).  The pons comprises several cranial nerve nuclei 

such as the trigeminal (V), abducens (VI), facial (VII) and vestibulocochlear (VIII) 

nuclei. In addition, it carries nerve tracts that conduct sensory signals to the thalamus, 

and signals from the forebrain to the cerebellum and medulla (Angeles Fernandez-Gil 

et al., 2010). Within the pons is also the pontine respiratory group, also known as the 

pneumotaxic center, which is involved in the control of the respiratory rhythm and 

airway muscles (von Euler, 1977). 

The medulla oblongata connects directly to the spinal cord and contains the 

cranial nerve nuclei solitarius (VII, IX, X), ambiguus (IX, X, XI), vagus motor (X) and 

hypoglossus (XII). The reticular formation runs from here through the whole brainstem 

and is one of the most evolutionary conserved portions of the brain, with functions in 

somatic motor control, locomotion, cardiovascular control, pain regulation, 

consciousness and sleep. The central pattern generator for breathing resides in medulla 

and will be described in more detail below. Moreover, the medulla contains 

chemoreceptors and baroreceptors for regulating respiration and vasoconstriction, 

respectively, and various reflex centers for vomiting, coughing, sneezing and 

swallowing (Wang, 2009; Angeles Fernandez-Gil et al., 2010). 

 

1.2.3 Establishment of neural networks 
In 1873, the Italian neuroanatomist Camillo Golgi was the first to visualize the structure 

of single neurons. The observation was that each neuron consists of a cell body with a 

long process called the axon and a complex tree-like structure called the dendritic tree. 

We now know that the shape of dendritic trees is crucial for neuronal signal integration 

and firing patterns (Mainen & Sejnowski, 1996; Vetter et al., 2001). 

The neurons in the brainstem are organized in three layers, which are retained 

throughout development. The birth of neural cells takes place in the ventricular zone 

and as the cells divide, migrating cells form the second layer, the intermediate (or 

mantle) zone, which becomes progressively thicker as more cells are added to it. Here, 

the neural cells differentiate into neurons and glia. The neurons establish connections 

among themselves and send axons to the opposite side of the ventricular lumen, thereby 

creating the third layer, the marginal zone. This is the white matter of the brainstem, 

which is composed of the axons of multiple pathways, covered with myelin sheaths 
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formed by glial cells. The gray matter contains the neuronal cell bodies grouped 

together in clusters. As the brainstem matures it becomes divided into a dorsal portion 

that receives sensory input, and a ventral portion that control motor functions (Angeles 

Fernandez-Gil et al., 2010). 

The function of the CNS critically depends on the establishment of synaptic 

connections. Synapses are formed when axons contact dendrites or soma of their target 

neurons. Some synapses are stabilized and others are eliminated, i.e. “those that fire 

together wire together” (Goodman & Shatz, 1993). Physiological communications at a 

synapse occur mainly through the release of neurotransmitters from the presynaptic 

neuron, which bind to receptors at the postsynaptic cell (Cohen-Cory, 2002). 

Expression of neurotransmitters and receptors is essential for synapse formation 

and neuronal wiring. The expression depends on the specific developmental time 

window and environment. Glutamate is the principal excitatory transmitter acting on 

several receptors, both ionotropic and metabotropic. The ionotropic NMDA receptors 

dominate in the immature brain and are involved in long-term potentiation and synaptic 

plasticity and refinement. During maturation, NMDA receptors are substituted by 

AMPA and kainate receptors, which acquire the role of fast neuronal transmission. -

aminobutyric acid (GABA) and glycine are inhibitory transmitters in the adult CNS, 

but act as excitatory transmitters in immature neurons (see section 1.3). The interplay 

between the ionotropic NMDA, AMPA and GABAA receptors during development is 

important for neuronal communication, as NMDA receptors are ‘silent’ at resting 

membrane potential due to voltage-dependent Mg2+ block. GABAA-mediated 

depolarization removes the blockage of NMDA receptors and thus has a crucial role 

early in development, which is taken over by AMPA receptors later on (Ben-Ari et al., 

1997; Herlenius & Lagercrantz, 2004; Wang & Kriegstein, 2008). 

 

1.2.4 Central pattern generators 
A central pattern generator (CPG) can be described as a group of neurons exhibiting 

pacemaker properties that produces a rhythmic pattern of signals. This rhythmic 

activity generates cycles of movements with repetitive increasing and decreasing 

periods. CPGs control a variety of motor behaviours such as breathing, locomotion, 

scratching, chewing and swallowing (Hooper, 2000; Grillner, 2006). The CPG for 

certain behaviours is usually not confined to only one group of neurons, but rather to 

several groups that may be distanced from each other. For instance, the CPG for 

locomotion relies on neuronal cell groups both in the spinal cord and hindbrain 
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(Hagglund et al., 2010). The neurons within a CPG may not have rhythmogenic 

abilities individually but generate rhythmic activity only when coupled to each other. 

Thus, their individual activities are synchronized into a specific pattern of bursts, which 

depends on a highly coordinated interplay between the neurons. This activity pattern, in 

turn, generates a rhythmic motor output that defines the CPG behaviour. 

CPGs appear to be much more conserved than the peripheral structures they 

control. Amphibians inflate their lungs through a positive-pressure buccal force pump 

while mammals, birds and reptiles use a negative-pressure lung aspiration. The nature 

of this difference lies in the innervation of muscles responsible for breathing. In 

mammals, both cranial and spinal nerves are involved in respiratory muscle control 

whereas in amphibians, cranial nerves are the only source for the respiratory drive. 

Despite this difference in mechanical features, the CPG for breathing in the brainstem 

has been shown to be preserved (Hedrick et al., 2001). Moreover, as animals mature 

their rhythmic patterns may change. For example, tadpoles swim while frogs hop, and 

humans crawl before walking. Similarly, the normal breathing rhythm acquires 

additional patterns such as sighs and gasps. Thus, CPGs exhibit fundamental properties 

that are innately established and become multifunctional as new synaptic connections 

are formed (Hooper, 2000; Lieske et al., 2000). The different behavioural outputs 

depend on neuromodulatory inputs and sensory feedbacks (Katz & Harris-Warrick, 

1999). 

 

1.2.5 Emergence of the respiratory rhythm 
 

Every time a certain portion is destroyed, be it of the brain or of the spinal 

cord, a function is compelled to cease suddenly, and before the time known 

beforehand when it would stop naturally, it is certain that this function depends 

upon the area destroyed. It is in this way that I have recognized that the prime 

motive power of respiration has its seat in that part of the medulla oblongata 

that gives rise to the nerves of the eighth pair; and it is by this method that up to 

a certain point it will be possible to discover the use of certain parts of the 

brain. 

- Julien Jean César Le Gallois (1770 - 1814) 

 

The origin of breathing was the first description of a specific region in the brain 

exhibiting a certain function (Le Gallois, 1812). During the last decades, various studies 
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have further shown that distinct neuronal populations in the brainstem are responsible 

for the generation and modulation of the respiratory rhythm (for review see Smith et 

al., 2009). These include the pontine respiratory group (PRG), the dorsal respiratory 

group (DRG) and the ventral respiratory group (VRG). The respiratory pattern is 

transmitted to bulbospinal pre-motor neurons, which relay the breathing output to 

cranial and spinal motor neurons controlling respiratory muscles. 

The PRG is located in the pons and consists of the parabrachial and the 

Köllicker-Fuse nuclei. This region is thought to mediate the phase-switch from 

inspiration to expiration via afferent activity from pulmonary stretch receptors. 

Inspiration is kept inhibited from this region during the whole phase of expiration, and 

thus, the PRG is a critical control point for a functional breathing system. It is however 

not involved in the generation of the respiratory rhythm (von Euler, 1977). 

The DRG lies in the dorsal medulla and comprises the nucleus tractus solitarii, 

which is also involved in taste sensation and cardiovascular, gastrointestinal and cough 

reflexes (Andresen & Mendelowitz, 1996; Canning, 2007). This nucleus receives 

afferent input from pulmonary stretch receptors as well as peripheral baro- and 

chemoreceptors. Thus, it integrates information from the cardiovascular and respiratory 

system to modulate the breathing output (Bonham et al., 2006; Guyenet et al., 2010). 

Similar to the PRG, the DRG is not involved in rhythm generation. 

The VRG is located in the ventrolateral region of medulla oblongata and 

consists of several neuronal cell groups, including the Bötzinger complex (BötC), 

preBötzinger complex (PBC), parafacial respiratory group (pFRG) and retrotrapezoid 

nucleus (RTN). This region has received much attention during the last decades and is 

considered the primary center for respiratory rhythm generation. Our understanding of 

the VRG originates from experiments on isolated brainstem-spinal cord preparations of 

neonatal rodents (Suzue, 1984). We now know that the PBC and the pFRG, located 

ventral to the nucleus ambiguus (NA) and facial nucleus, respectively, are the main 

regions constituting the CPG for breathing (Fig. 2) (Feldman & Del Negro, 2006). 

Inception of the respiratory rhythm takes place in the third trimester and more 

specifically at E15 in mouse (Thoby-Brisson et al., 2005) and E17 in rat (Greer et al., 

1992). Neurons with intrinsic bursting pacemaker properties that depend on a persistent 

Na+ current have been identified as the source (Smith et al., 1991). The respiratory 

rhythm was first reported to emerge from the PBC (Smith et al., 1991; Rekling & 

Feldman, 1998), but more recent studies have highlighted the role of pFRG in 

rhythmogenesis (Onimaru & Homma, 2003; Dubreuil et al., 2008; Thoby-Brisson et 
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al., 2009). The main site for rhythm generation and the function of the two neuronal 

groups for controlling the inspiratory or expiratory drive has not yet been agreed on 

(Feldman & Janczewski, 2006; Onimaru & Homma, 2006). Indeed, the network system 

controlling the different phases and subphases of the respiratory cycle is complex and 

the most widely recognized model proposes at least six different types of respiratory 

neurons (Hilaire & Pasaro, 2003). Neurons within the pFRG have been shown to 

rhythmically discharge both before and after inspiration, suggesting that this region 

controls more than one phase of the respiratory cycle (Onimaru & Homma, 2003; 

Onimaru et al., 2006). However, other investigators propose that the pFRG generates 

expiratory activity whereas the PBC is the main inspiratory rhythm generator (Feldman 

& Del Negro, 2006; Janczewski & Feldman, 2006). Nevertheless, there is growing 

evidence that the PBC and pFRG do not act independently but rather interact to form a 

coupled oscillatory system during development. This theory is based on the finding that 

the pFRG oscillator emerges before the PBC (at E14.5 in mice), then couples with, and 

thereby increases the frequency of motor bursts from, the PBC (Thoby-Brisson et al., 

2009). Notably, this coupling relies on the formation of electrical contacts between the 

neurons through gap junctions. Rhythmogenesis is blocked by the gap junction 

antagonist carbenoxolone, indicating a critical role of electrical synapses prior to the 

maturation of chemical synapses (Thoby-Brisson et al., 2009; Jaderstad et al., 2010). 

 

 

 

The ventral respiratory group.
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Immunohistochemical markers that identify PBC neurons are the substance P 

receptor, also known as the neurokinin-1 receptor (NK1R), and somatostatin (SST) 

(Stornetta et al., 2003).  PBC neurons are born in the ventricular zone at E9.5 – E11.5 

(Gray et al., 2010) and reach the PBC area at E14 – E15 in mice (Thoby-Brisson et al., 

2005) or E16 – E17 in rats (Pagliardini et al., 2003). NK1R is also expressed in 

surrounding areas, including the pFRG (Onimaru et al., 2009). While GABA, glycine, 

acetylcholine and glutamate activity is thought to promote the neural network 

formation and the emergence of the respiratory rhythm (Ren & Greer, 2003), other 

neuromodulators have also been shown to play a crucial role in the regulation of the 

breathing pattern (Rekling & Feldman, 1998; Herlenius et al., 2002). The importance 

of the PBC and pFRG neurons for the respiratory rhythm has been demonstrated in 

several studies. Targeted disruption of NK1R-expressing neurons in the PBC (Gray et 

al., 2001) and pFRG (Nattie & Li, 2002) leads to ataxic respiration in rats. Moreover, 

bilateral destruction of SST-expressing neurons in the PBC produces persistent apnea 

in rats (Tan et al., 2008). The pFRG neurons also express the transcription factor 

Phox2b, which is mutated in congenital central hypoventilation syndrome in humans. 

In addition, mice mutant for Phox2b display an irregular breathing pattern and die at 

birth (Dubreuil et al., 2008; Dubreuil et al., 2009). Other transcription factor mutations 

that affect rhombomeric patterning and interneuron specification have also been shown 

to cause respiratory failure, indicating a complex genetic system for the formation of 

the CPG for breathing (Blanchi et al., 2003; Rhee et al., 2004; Pagliardini et al., 2008; 

Rose et al., 2009; Bouvier et al., 2010; Gray et al., 2010). Furthermore, there appears to 

be a high potential for plasticity within the respiration-related regions. Notably, the 

number of pFRG neurons has been found to increase in response to incremental PBC 

destruction in goats, thereby rescuing the respiratory rhythmogenesis (Neumueller et 

al., 2010). This may reflect a compensatory mechanism in which neurogenesis or 

migration is involved (Bordey, 2010). 

In addition to its rhythm-generating properties, the VRG also contains neurons 

that modulate the rhythm in response to afferent and chemoreceptive information. The 

RTN is located ventral to the facial nucleus and is anatomically indistinguishable from 

the pFRG region. The neurons within the RTN are involved in chemoreception, such as 

responses to hypercapnia, and regulates breathing following changes in CO2 and pH 

(Nattie & Li, 2002). Moreover, astrocytes in the RTN region are also important for 

chemoreception and regulation of breathing through pH-dependent release of ATP 

(Gourine et al., 2010). While RTN neurons have not been found to generate pre-
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inspiratory activity, and the pFRG has not been identified in adult mammals, a recent 

study suggests that the nearby region BötC adopts a pre-inspiratory role during hypoxic 

conditions in adults (Fortuna et al., 2008). The BötC is found rostral to the PBC and is 

also involved in modulation of the respiratory rhythm through inhibition of inspiratory 

and expiratory neurons during the late phase of expiration (Tian et al., 1999).  

In summary, generation of the respiratory rhythm is a highly complex system 

and involves several regions in the brainstem, including the pacemaker sites PBC and 

pFRG, the activity of which is balanced by integration of chemical and mechanical 

information from the whole body. 

 

 

1.3 NEURONAL CHLORIDE HOMEOSTASIS DURING DEVELOPMENT 
 

1.3.1 GABA signalling and neuronal maturation 
GABA binds to two types of receptors, GABAA and GABAB. GABAA is a ligand-gated 

ion channel permeable to Cl- and HCO3
-, whereas GABAB is a metabotropic receptor 

coupled to K+ and Ca2+ channels via G proteins (Kaila, 1994). In the adult brain, 

GABA is the principal inhibitory neurotransmitter, regulating many functions such as 

muscle control, memory and anxiety. In immature neurons, however, the postsynaptic 

GABAergic response is depolarizing. This is due to a high intracellular chloride 

concentration ([Cl-]i), which in turn is caused by the age-dependent expression of 

cation-chloride cotransporters (see below). The early importance of GABA is evident 

as establishment of GABAergic synapses precedes the appearance of glutamatergic 

synapses (Ben-Ari et al., 1997). The depolarizing action of GABA has been proposed 

to be crucial for the differentiation and maturation of neurons within the CNS. 

Activation of voltage-dependent Ca2+ channels, induced by GABAA-mediated 

depolarization, increases the intracellular Ca2+ concentration and activates a wide range 

of intracellular cascades involved in neuronal migration, growth and differentiation. 

Furthermore, GABAA-mediated depolarization and Ca2+ influx act as crucial triggers 

for plasticity of synaptic connections and for the establishment and patterning of neural 

networks (Yuste & Katz, 1991; Owens & Kriegstein, 2002; Bolteus & Bordey, 2004; 

Cancedda et al., 2007; Farrant & Kaila, 2007). 

Despite its excitatory role in the immature CNS, GABA can also exert 

suppression of glutamatergic signaling by “shunting inhibition”. This occurs when the 

conductance is increased (i.e. resistance decreased) due to opening of ion channels. 
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According to Ohm’s law, more current is required to change the voltage when the 

resistance is lower. In other words, a glutamate signal that would normally depolarize 

the postsynaptic membrane is inhibited due to GABA-mediated opening of Cl- 

channels. This has been shown in several brain regions, including the hippocampus 

early in development (Lamsa et al., 2000; Banke & McBain, 2006), and is thought to 

be important for postsynaptic stabilization when hyperpolarization does not occur. 

 

1.3.2 Cation-chloride cotransporters 
Regulation of the cellular [Cl-]i is important for controlling cell volume and pH. The 

[Cl-]i also determines the neuronal response to GABA and glycine (Misgeld et al., 

1986). Members of the cation-chloride cotransporter (CCC) family regulate ion 

homeostasis through inward or outward directed flux of ions, which depends on 

electrochemical gradients set by active transporters. The gradient of K+ is used by the 

K+/Cl- cotransporters (KCC) to extrude Cl- out of the cell, whereas the Na+ gradient is 

used by Na+/K+/Cl- cotransporters (NKCC) to accumulate Cl- within the cell. So far, 

four K+/Cl- cotransporters (KCC1-4) and two Na+/K+/Cl- cotransporters (NKCC1-2) 

have been discovered. NKCC1 and KCC1 are generally expressed in all tissues, and 

NKCC2 is restricted to the kidney. KCC2 is expressed in central neurons only, whereas 

KCC3 and KCC4 are found both in CNS and other tissues (Delpire & Mount, 2002; 

Payne et al., 2003). Expression of the CCCs has a highly regulated spatio-temporal 

pattern. In the embryonic CNS, KCC2 and KCC3 are found in more mature regions, 

while KCC4 and NKCC1 are expressed in undifferentiated regions (Li et al., 2002). 

In immature neurons, high level expression of the chloride loader NKCC1 and 

low level expression of the chloride extruder KCC2 results in elevated [Cl-]i. This 

produces the depolarizing response to GABA in neuronal cells. Progressive loss of 

NKCC1 and increased membrane expression of KCC2 are the two major factors 

determining the [Cl-]i reduction in maturing neurons and the subsequent shift of the 

GABAergic response to hyperpolarizing (Fig. 3) (Plotkin et al., 1997; Rivera et al., 

1999; for review, see Blaesse et al., 2009). 

 

1.3.3 KCC2 
KCC2 is a neuron-specific isoform of the KCC-family. It is a glycosylated protein with 

12 predicted transmembrane domains and has a size of ~145 kDa (Payne et al., 1996). 

In the mature CNS, KCC2 is widely expressed in the cortex, hippocampus, retina, 

cerebellum, brainstem and spinal cord (Payne et al., 1996; Lu et al., 1999; Vu et al., 
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2000; Coull et al., 2003). During development, however, KCC2 displays lower 

expression levels, which increase spatio-temporally in relation to the ontogenetic 

developmental patterns: spinal cord – brainstem – hippocampus – cortex (Rivera et al., 

1999; Stein et al., 2004; Delpy et al., 2008). By alternative splicing, two isoforms 

termed KCC2a and KCC2b are generated from the mammalian KCC2 (Slc12a5) gene. 

These isoforms constitute around 50% each of the total KCC2 levels during embryonic 

development. KCC2b is the isoform that is strongly upregulated postnatally (Uvarov et 

al., 2007). As most studies so far have used antibodies that detect both KCC2a and 

KCC2b, the term “KCC2” here refers to both isoforms. 

The electrochemical gradient for Cl- sets the reversal potential for GABA 

responses (EGABA). As described above, immature neurons contain high [Cl-]i. 

Therefore, EGABA is higher than the resting membrane potential and results in 

depolarization when GABAA receptors are activated. When KCC2 becomes transport-

active, it lowers [Cl-]i via Cl- extrusion and shifts EGABA to more negative levels than 

the resting membrane potential (Fig. 3). This generates the hyperpolarizing response to 

GABA in mature neurons (Rivera et al., 1999). A similar function has been ascribed to 

KCC2 homologues in C. elegans and Drosophila, indicating an early evolutionary 

origin of this gene (Hekmat-Scafe et al., 2006; Tanis et al., 2009). The functional 

activation of KCC2 cotransport relies on several factors, such as afferent input, 

phosphorylation, membrane trafficking, intracellular localization and formation of 

oligomers (Sernagor et al., 2003; Shibata et al., 2004; Blaesse et al., 2006; Kanold & 

Shatz, 2006; Lee et al., 2007; Hartmann et al., 2009). 

The developmental GABA shift.
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It has been shown in various studies that KCC2 is critical for lowering [Cl-]i in 

the CNS. For instance, cortical neurons lacking KCC2 fail to regulate [Cl-]i (Zhu et al., 

2005). KCC2-/- mice, which are devoid of both isoforms, have severe defects in motor 

control and die at birth due to respiratory failure. These mice lack of inhibitory 

responses to GABA in motor neurons (Hubner et al., 2001). Moreover, KCC2-deficient 

mice with only 5-10% of postnatal KCC2 expression display frequent generalized 

seizures and die within two weeks after birth (Woo et al., 2002). It was recently found 

that these mice have a specific deletion of the KCC2b isoform (Uvarov et al., 2007). In 

addition, hypomorphic mice retaining 15-20% of normal KCC2 protein levels are 

viable but display increased anxiety-like behaviour and impaired learning in several 

tests and are more susceptible to seizures (Tornberg et al., 2005). This indicates an 

important role for KCC2 in controlling CNS excitability. 

Two different studies in 2005 showed that overexpression of KCC2 in 

immature neurons shifts EGABA prematurely. Additional effects reported were decreased 

GABA-elicited calcium responses (Lee et al., 2005) and increased density of GABAA 

receptors and synapses (Chudotvorova et al., 2005). In another study, KCC2 was 

electroporated in utero in rat ventricular progenitors at E17, which resulted in impaired 

morphological maturation of cortical neurons, seen as a reduced dendritic length and 

branch number (Cancedda et al., 2007). Furthermore, overexpressing KCC2 from the 

onset of development in zebrafish impairs neuronal development in the brain and spinal 

cord. The embryos display a perturbed neuronal differentiation and axonal growth, and 

fewer motoneurons and interneurons (Reynolds et al., 2008).  These studies highlight 

the importance of a spatio-temporally regulated KCC2 expression for neuronal 

development. It is possible that a premature EGABA shift abolishes the neurotrophic 

function of depolarizing GABA. 

Another situation illustrating the neurotrophic role of GABA is in the adult 

CNS where KCC2 is downregulated under pathophysiological conditions (e.g. 

epilepsy, injury). This seems to reflect a recapitulation of early developmental 

mechanisms, which may be necessary for the re-establishment of connectivity in 

damaged brain tissue (Rivera et al., 2004). 

Interestingly, studies have shown that KCC2 is expressed early in development 

when GABA is still depolarizing. KCC2 mRNA is present at E10.5 in mice and 

precedes the decline of EGABA in the hippocampus and spinal cord (Stein et al., 2004). 

Moreover, KCC2 displays functional Cl- transport already at E13.5 in the mouse spinal 

cord although the GABAergic response does not shift until late fetal age (Delpy et al., 
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2008). KCC2 is present at the depolarizing period also in the brainstem lateral superior 

olive, and becomes integrated into the plasma membrane only with increasing postnatal 

age (Balakrishnan et al., 2003). These studies did not address the potential role of 

KCC2 before the developmental EGABA shift, which is one of the aims of this thesis. 

The formation of dendritic spines is closely paralleled by upregulation of KCC2 

in cortical regions. KCC2 is accumulated in the vicinity of excitatory synapses in 

dendritic spines (Gulyas et al., 2001), suggesting a role in spine development. This was 

further investigated by Li and coworkers (Li et al., 2007). Interestingly, KCC2 was 

shown to play a crucial role in the formation of mature dendritic spines. In the absence 

of KCC2, neurons developed long dendritic protrusions paralleled by a reduction in 

active synapses. Ectopic expression of both full-length KCC2 and a truncated form of 

KCC2, lacking the sequence for functional cotransport in the N-terminal, restored the 

normal spine morphology in KCC2-/- neurons, indicating that the morphogenic effects 

were not mediated through ion transport. Intriguingly, ectopic expression of only the C-

terminal of KCC2 in wild type neurons yielded a phenotype similar to KCC2-/- neurons, 

and in addition, interacted with the cytoskeleton-associated protein 4.1N. Thus, a novel 

structural role for KCC2 has been shown during dendritic maturation, which may be 

crucial for synchronizing excitatory and inhibitory transmission in cortical networks. 

 

 

1.4 THE NEURONAL CYTOSKELETON 
 
During morphogenesis, neurons become polarized and extend neurites and dendrites, 

which relies on coordinated dynamics and organization of the cytoskeleton. The 

cytoskeleton of neurons comprises three distinct structural complexes: microtubules, 

neurofilaments and microfilaments. 

 

1.4.1 Microtubules 
Neuronal microtubules are structurally similar to those found in other eukaryotic cells. 

They consist of heterodimers of - and -tubulin aligned to protofilaments that form a 

hollow tube. The tubulins are further divided into various isotypes with different post-

translational modifications and microtubule-stabilizing proteins. Tubulin isotypes differ 

mainly in the carboxy terminus, which is the region where most post-translational 

modifications and interactions with stabilizing proteins occur. Neuron-specific isotypes 

are the class III and IVa -tubulins. The composition of microtubules depends on the 
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neuronal environment and varies between the soma, dendrites and axons. Microtubules 

regulate neurite extension and establishment, and maintain the integrity of intracellular 

compartments. They also play a role in mitosis, differentiation and intracellular 

transport (Luduena, 1993; Heidemann, 1996; Poulain & Sobel, 2010). 

The stabilizing proteins include several categories of molecules with different 

locations and functions. The microtubule-associated proteins (MAPs) can be divided 

into three families: MAP1, MAP2 and tau. MAPs regulate neurite and axonal 

outgrowth through microtubule stabilization and organization, and provide functional 

interactions with other cytoskeletal components. Moreover, temporal changes in MAP 

expression during CNS development indicate a highly coordinated function for 

neuronal maturation. Another stabilizing protein is Doublecortin (Dcx), which is 

mutated in X-linked lissencephaly, a severe malformation of the cerebral cortex. Dcx 

has an essential role in neuronal migration, as well as in neurite and dendrite elongation 

and branching (Poulain & Sobel, 2010). 

 

1.4.2 Neurofilaments 
Neurofilaments are the neuronal type of intermediate filaments. They consist of a core 

rod domain with multiple -helical domains that form coiled coils. The CNS contains a 

diverse set of neurofilaments with distinctive cellular distributions and developmental 

expression patterns. They provide mechanical strength and a stable cytoskeletal 

structure for maintenance of neuronal morphology. In addition, they are the most 

abundant structural components in axons and play an important role in the 

establishment and maintenance of axonal diameter (Cleveland et al., 1991). Other 

intermediate filaments found in the developing CNS include vimentin, glial fibrillary 

acidic protein, peripherin and nestin, which are expressed in neuronal and glial 

precursors. As nestin is found in multipotent cells and downregulated during 

subsequent maturation, it can be used as a marker for immature neural cells 

(Yamaguchi et al., 2000). 

 

1.4.3 Microfilaments 
Actin is the core subunit of microfilaments and is organized in strings of monomers (G-

actin), which are further intertwined into fibrils (F-actin). Actin microfilaments is found 

throughout neurons but enriched at the plasma membrane, growth cones and dendritic 

spines. The membrane actin plays important roles in cell adhesion, establishment of cell 

morphology, and maintenance of membrane protein distribution. Microfilaments are 
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also the basis of filopodia and lamellipodia that control growth cone motility and 

guidance, as well as cell migration (Luo, 2002). 

Many cytoskeleton-associated proteins are found in neurons. For instance, 

spectrin and ankyrin have roles in cross-linking the microfilaments to each other and to 

the plasma membrane (Cunha & Mohler, 2009). Moreover, N-cadherin and catenins are 

critical for intercellular connections, mechanical strength and spatial segregation. 

Cadherins interact with other cadherins on adjacent cells, and are anchored into the cell 

by a complex of -, - and p120-catenin. The catenins, in turn, bind to the actin 

cytoskeleton, thereby creating a mechanical unit called adherens junctions that connect 

cells together (Harris & Tepass, 2010). 

 

1.4.4 Regulation of the cytoskeleton 
Coordinated control of the cytoskeleton and cell adhesion is essential for morphological 

changes during embryonic development. A wide variety of factors have been shown to 

interact directly or indirectly with the cytoskeleton and thereby influence the behaviour 

of the cell. One category of regulatory factors is ion transport proteins, which were 

described in section 1.3. Ion transporters anchor the actin cytoskeleton to the plasma 

membrane by binding to ankyrin and members in the 4.1 family. While this interaction 

is important for the localization, clustering and functional activity of the ion 

transporters, it can also play a structural role in cytoskeletal organization within the cell 

(Denker & Barber, 2002). A transport-independent structural role of KCC2 was 

described above and will be further detailed in this thesis. In addition, NKCC1 has 

recently been shown to induce a secondary body axis, also in the absence of transport-

activity, when overexpressed in Xenopus embryos (Walters et al., 2009). Moreover, 

gap junctions, which are traditionally known for their roles in intercellular coupling and 

transport of ions, metabolites and other molecules between cells, have in recent studies 

been suggested to act as adhesive contacts that mediate neuronal migration. This novel 

function was shown to depend on an interaction with the actin cytoskeleton (Elias et al., 

2007). 

The cytoskeleton is also regulated by extracellular signals that are interpreted by 

cell surface receptors and downstream signalling pathways. Among the most important 

paracrine factors during early development are the Wnt proteins, which regulate many 

aspects of neural cell development, including proliferation, differentiation, survival, 

polarity and migration (Miller, 2002). Wnts act via different signaling pathways, all of 

which can influence the microtubule and actin cytoskeleton (Brembeck et al., 2006; 
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Ciani & Salinas, 2007). One of the key players, -catenin, is continuously degraded in 

the cytoplasm but is stabilized by Wnt signaling. This allows it to act as a transcription 

factor or take part in the formation of adherens junctions (Nelson & Nusse, 2004). 

Other signaling proteins that regulate neuronal morphogenesis are the planar cell 

polarity molecules (described below) and the Rho GTPases, which include Cdc42, 

Rac1 and RhoA. These GTPases act as intracellular molecular switches that exist in an 

active GTP-bound form and an inactive GDP-bound form. The GTP-bound form binds 

to downstream effectors that participate in the regulation of actin polymerization and 

organization, which is essential for cell adhesion and migration (Braga et al., 1997; 

Nobes & Hall, 1999), as well as neurite growth, guidance and branching (Luo, 2002). A 

cooperative action of different GTPases has been demonstrated in several studies. For 

example, selective inhibition of Rac1 or RhoA perturbs adherens junctions, and 

expression of a constitutively active form of Rac1 is not sufficient to stabilize the 

junctional complex when endogenous RhoA is blocked (Braga et al., 1997). 

 

1.4.5 Planar cell polarity and Vangl2 
The planar cell polarity (PCP) proteins participate in Wnt signaling and control 

polarized cell movements during gastrulation and neurulation via cytoskeletal 

organization. PCP is cell polarity within the plane of epithelium, along an axis 

perpendicular to the apical-basal axis of the cell. Examples of PCP include the 

coordinated organization of scales in fish, feathers in birds and hairs in mammals. PCP 

genes play a key role in convergent extension, the process in which mesodermal cells 

intercalate and thus elongate the body axis. Alterations in the expression of PCP genes 

cause defective convergent extension movements and impaired neurulation, resulting in 

a shortened body axis and neural tube defects, as shown in many PCP mutants (Curtin 

et al., 2003; Murdoch et al., 2003; Ueno & Greene, 2003; Wang et al., 2006; Torban et 

al., 2008). 

The naturally occurring mouse mutant Looptail displays a severe neural tube 

defect known as craniorachischisis that is characterized by a completely open neural 

tube from the midbrain-hindbrain boundary to the most caudal region. The Looptail 

mouse has a missense mutation in a gene called Van Gogh-like 2 (Vangl2), also known 

in the litterature as Strabismus (the Drosophila homolog) and Looptail associated 

protein (Ltap). Vangl2 is a membrane protein with four transmembrane domains and a 

large intracellular PDZ-binding domain (Kibar et al., 2001). Vangl2 mutations in 

Drosophila disrupt the polarity of hairs on wing cells and orientation of eye ommatidia 



 

   

19  

(Taylor et al., 1998; Wolff & Rubin, 1998). In the mammalian inner ear, Vangl2 has 

been demonstrated to regulate the polarity of hair cell stereociliary bundles in 

interaction with the PCP proteins Scrb1, Fz3 and Celsr1 (Montcouquiol et al., 2003; 

Montcouquiol et al., 2006). Vangl2 has a crucial role in convergent extension and 

neural tube closure in several organisms, including mouse, zebrafish and xenopus 

(Kibar et al., 2001; Goto & Keller, 2002; Jessen et al., 2002). The mechanism whereby 

these processes are regulated is still unclear, but several studies have suggested that 

Vangl2 recruits other PCP proteins to the plasma membrane to form an active signaling 

complex, which stimulates Rho GTPases and influences the cytoskeleton (Torban et 

al., 2004). 

Mutations in Vangl2 have recently been found also in human cases of neural 

tube defects, both in cranial and spinal variants of the disease (Kibar et al., 2010; Lei et 

al., 2010). While a related protein, Vangl1, sharing 68% sequence identity and a similar 

overall structure, has been found to be mutated in patients with both familial and 

sporadic types of spinal neural tube defects (Kibar et al., 2007), Vangl2 mutations have 

so far been found only in sporadic cases with no reported family history (Kibar et al., 

2010). 
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2 AIMS 
 

The main objective of this thesis was to identify specific roles of the cytoskeleton-

interacting proteins KCC2 and Vangl2 in different aspects of brainstem development. 

 

Specific aims of the studies: 

 

 To investigate the developmental expression and membrane targeting of KCC2 

and its correlation with the EGABA shift in respiration-related neurons. 

 

 To elucidate the role of the early expressed, transport-inactive, KCC2 protein in 

the developing central nervous system. 

 
 To characterize the importance of KCC2 for functional and structural 

maturation of the central pattern generator for breathing. 

 
 To determine mechanisms whereby Vangl2 regulates neural tube closure in the 

hindbrain region. 
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3 METHODOLOGY 
 

In this section, aspects of methodology will be discussed and detailed information 

about specific methods used can be found in the papers as listed below. 

 

 In vitro brainstem-spinal cord preparations  Papers I, III 

 Brainstem organotypic cultures   Paper III 

 Generation of DNA expression constructs  Papers II, IV 

 Generation of transgenic and mutant embryos  Papers II – IV 

 Phenotyping and genotyping   Papers II – IV 

 Immunohistochemistry   Papers I – IV 

 In situ hybridization   Paper IV 

 Cell culturing and transfections   Papers II, IV 

 Immunocytochemistry   Papers II, IV 

 Aggregation and wound assays   Papers II, IV 

 Immunoprecipitation and GTPase activity assay Papers II, IV 

 Western blot    Papers II, IV 

 Fluorescence and confocal microscopy  Papers I – IV 

 Time-lapse imaging using calcium dyes  Paper III 

 

 

3.1 IN VIVO MODELS 
 

3.1.1 Transgenic mouse embryos 
Generation of transgenic mice by pronuclear injection is an expensive and time-

consuming process, but still widely used as a complement to knockout models. The 

advantage of overexpressing a gene is that the use of spatio-temporally regulated 

enhancers can easily produce a tissue- and time-specific expression. The resulting 

phenotype can then be ascribed to a specific function of the protein, and functional or 

structural interactions with other proteins, in a given time frame and cell type. A 

disadvantage is that the integration of the transgene into the genome is random and 

could generate an insertional mutation that interferes with the function of an existing 

gene.  
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For this thesis, transgenic mouse embryos overexpressing KCC2 or Vangl2 

were generated by Karolinska Center for Transgene Technologies (KCTT), using DNA 

constructs made by us. Briefly, female B6D2F1 mice (F1 of strains C57Bl/6 x DBA2) 

were superovulated, mated to fertile B6D2F1 males, and then sacrificed the next day. 

Fertilized oocytes were recovered from excised oviducts and the DNA construct was 

microinjected into the male pronucleus. Injected zygotes were then reimplanted into the 

oviduct of foster females of the NMRI strain, which had been made pseudopregnant by 

mating with vasectomized males. Transgenic embryos then started to develop and 

could be collected at desired time points. 

The DNA constructs contained cDNA of the gene of interest (three different 

variants of KCC2 in Study II, and Vangl2 in Study IV), a thymidine kinase promoter, 

and a tissue-specific enhancer upstream of the sequence. We chose a 1852 bp sequence 

in the second intron of the human nestin gene as enhancer. This enhancer sequence has 

previously been shown to direct the expression exclusively to neural progenitor cells 

from around E7.5 when neurulation takes place (Lothian & Lendahl, 1997). Thus, a 

neural-specific overexpression beginning in the ventricular zone could be studied at 

different time points of CNS development. Transgenic embryos were identified by PCR 

using a sense primer complementary to the nestin sequence and an antisense primer 

complementary to the KCC2 or Vangl2 sequence. 

 

3.1.2 Mutant mouse embryos 
Deletion of a gene can be obtained in different ways. While KCC2 knockouts have 

been generated by a gene targeting technique, Looptail mice have a natural mutation in 

the Vangl2 gene. However, the homozygous genotype of both of these mice completely 

lacks functional expression of the relevant gene and is lethal perinatally. 

The KCC2-/- mouse was first described in 2001 (Hubner et al., 2001). They do 

not move or breathe spontaneously and die within minutes after birth. In addition to the 

motor deficits they also display lung atelectasis and omphaloceles. There are no 

reported KCC2 mutations in any human syndromes, suggesting that a mutation may 

result in early mortality, similar to what has been observed in mice. However, KCC2 

has been found to be downregulated in neuronal trauma, neuropathic pain and epilepsy, 

although this may be a consequence rather than an inducing factor (see Blaesse et al., 

2009). This is where one of the limitations of the knockout technique applies, as a gene 

mutation can often be lethal early in development and later functions of the gene are 

therefore not possible to study. While this can be overcome by the use of conditional 
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knockouts, it has not yet been employed for KCC2. However, specific deletion of the 

KCC2b isoform causes early seizures in mice (Woo et al., 2002; Uvarov et al., 2007), 

and mice retaining 15 – 20% of the KCC2 expression show impaired learning, and 

increased anxiety-like behaviour and seizure susceptibility (Tornberg et al., 2005). As 

this thesis focuses on the role of KCC2 during embryonic development, the neonatal 

lethality is an object of elucidation rather than a concern. We only used KCC2-/- and 

wild type genotypes in our study since heterozygous (KCC2+/-) mice do not differ from 

wild type mice (Hubner et al., 2001). KCC2+/- mice (C57Bl/6N) were maintained and 

bred to generate the desired homozygous genotypes, which were collected at the latest 

possible time point (E17.5 – E18.5) to study neural network formation in the brainstem 

respiratory centers. 

 The Looptail mouse was described already in 1949 but it was not until 2001 it 

was found to have a mutation in the Vangl2 gene (Kibar et al., 2001). This mouse 

provides a model for the most severe neural tube defect known as craniorachischisis 

(described in section 1.4.5), which comprises 10 – 20 % of human cases, but also for 

other forms of neural tube defects that are related to Vangl2 mutations (Kibar et al., 

2010). Looptail heterozygotes may display the more common defect spina bifida, 

although at a lower frequency. In craniorachischisis, the onset of neural tube closure in 

the hindbrain-cervical boundary fails and hence the brainstem and spinal cord regions 

do not form. This thesis focuses on an early stage of the defective closure and thus 

employs Looptail embryos at E9.5. 

All animals in these studies were treated according to European Communities 

Council guidelines (directive 86/609/EEC) and the experiments were approved by the 

local Animal Ethics Committees of Karolinska Institutet and the University of Helsinki. 

 

 

3.2 IN VITRO MODELS 
 

3.2.1 Brainstem-spinal cord preparations 
For electrophysiological recordings, the brainstem-spinal cord preparation is a widely 

recognized model due to its easily accessible nerve roots and preserved physiological 

functions such as the respiratory rhythm (Suzue, 1984). This in vitro set up enables 

modifications of the perfused physiological solution to study the effect of different 

drugs, neurotransmitters, neuromodulators, and pH, O2 and CO2 variations. The 
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respiratory output involves activity of different nerves, including cranial (VII and XII), 

phrenic, and ventral cervical nerves. 

We employed brainstem-spinal cord preparations from perinatal rats to study 

the nature of GABA in respiratory rhythm generation in Study I. Motor nerve activity 

was recorded from cervical (C4) ventral roots, and intracellular whole cell and 

gramicidin-perforated patch recordings were made from ventrolateral medulla. The 

substances and drugs used were GABA and its agonist Muscimol and antagonist 

Bicuculline, and the Na+ channel blocker Tetrodotoxin. 

 

3.2.2 Brainstem organotypic cultures 
The use of organotypic cultures is a well established technique to study functional 

networks and motor neuron activity in vitro. Indeed, brainstem slices at the level of 

medulla oblongata are widely used for analysis of the respiratory rhythm by calcium 

imaging and/or electrophysiology (Smith et al., 1991; Feldman & Del Negro, 2006; 

Ruangkittisakul et al., 2006; Hartelt et al., 2008; Thoby-Brisson et al., 2009). However, 

the in vitro rhythm may differ from the in vivo rhythm due to the lack of afferent input 

(Richter & Spyer, 2001) and the common use of high [K+] levels to maintain rhythmic 

activity (Ren & Greer, 2006).  Nevertheless, medullary slices containing the PBC have 

been shown to generate long-lasting rhythm with a high sensitivity to neuromodulators 

also at physiological [K+] (3 mM) (Ruangkittisakul et al., 2006). 

We employed medullary slice cultures of wild type and KCC2-/- E17.5 – E18.5 

embryos in Study III. Transversal slices were cut 300 μm thick and placed onto semi-

permeable membranes with culture medium underneath, according to the Stoppini 

interface method (Stoppini et al., 1991). This method preserves the cytoarchitectural 

organization of the slice for extended time periods and allows for live imaging studies 

as well as electrophysiological recordings from individual neurons or nerve roots. 

Slices containing the PBC were selected as described by Ruangkittisakul et al., 2006. 

Anatomical landmarks that were used as reference constituted the shape of the whole 

slice and of the pyramids and 4th ventricle, the presence of the hypoglossal nuclei as 

darker regions dorso-medially, and if visible, also the hypoglossal nerve root. For 

further verification, tetramethylrhodamine-conjugated substance P (TMR-SP) was used 

to label NK1R-positive cells (see below). 
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3.2.3 Neural and epithelial cell lines 
Different cell lines were employed for this thesis depending on the specific purpose of 

the study. The mouse neural stem cell line C17.2 was used to assess cytoskeletal 

interactions and migration of neural cells, whereas the epithelial cell lines HEK293 and 

MDCK were used to study adherens junctions and cell adhesion. 

The C17.2 clone is derived from the mouse cerebellum at postnatal day (P) 4. 

This cell line is maintained multipotent and undifferentiated by v-myc immortalization, 

and is capable of generating both neurons and glia (Snyder et al., 1992). The cells have 

been used in various studies to replace lost cells in the CNS of injured or mutant mice, 

and integrate well in the host tissue via gap junctional couplings (Jaderstad et al., 

2010). Moreover, C17.2 cells have been shown to exhibit a remarkable migrating 

capacity in vivo when implanted to the mouse midbrain (Ourednik et al., 2002). 

HEK (human embryonic kidney) 293 and MDCK (Madin-Darby canine 

kidney) are derived from the kidney of a human embryo and adult cocker spaniel, 

respectively. They are commonly used as a general model for epithelial cells, 

characterized by their tight organization into sheets, and thus enable studies of adherens 

junctions and cell adhesion. There are some controversies around the origin of HEK293 

cells, and they have been reported to express neurofilaments and other neuronal 

proteins (Shaw et al., 2002). While this would make HEK293 cells even more suitable 

for this thesis, the structure of adherens junctions is essentially similar in all epithelial 

cells, and cell characterization is therefore of less importance here. 

Cells were transfected either with DNA constructs to overexpress proteins or 

with RNA interference (RNAi) to inhibit protein expression. The DNA constructs were 

created using a pcDNA vector with cDNA of the gene of interest (different variants of 

KCC2 in Study II, and Vangl2 in Study IV). Constructs containing constitutive active 

and dominant negative Rac1 and RhoA were also used in Study IV. RNAi is a short 

double-stranded RNA sequence, corresponding to a sequence in the gene of interest, 

which is broken down to smaller fragments by the enzyme Dicer. These fragments are 

separated to single strands that bind to and induce cleavage of the target mRNA. For 

Study IV, we used RNAi against Vangl2 and Rac1. 
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3.3 CELL COMMUNICATION 
 

3.3.1 Calcium imaging 
Time-lapse imaging with calcium indicators is a widely used technique to study the 

activity of living cells (Uhlen & Fritz, 2010). This technique employs indicators based 

on the Ca2+ chelators EGTA or BAPTA with fluorescent properties that are activated 

upon Ca2+ binding. We used the calcium indicator Fluo-4, which is excited at 488 nm 

and gives a bright fluorescence emission (Gee et al., 2000). To facilitate entrance into 

the cells in a preserved neutral form, it is initially coupled to a lipophilic acetoxymethyl 

ester group that is cleaved off by intracellular esterases to give free fluorescent Fluo-4. 

We used calcium imaging to assess the cellular activity and correlation within 

the PBC of wild type and KCC2-/- medullary slice cultures. Before Fluo-4 loading, we 

incubated the slices in medium containing TMR-SP to verify the localization of NK1R-

positive neurons. TMR-SP is internalized after binding to NK1R and even increases the 

frequency of respiratory bursts measured from the hypoglossal nerve in medullary 

slices (Pagliardini et al., 2005). As TMR-SP is excited at 565 nm it is suitable for co-

labelling with Fluo-4. During image acquisition, the slices were constantly perfused 

with a standard physiological solution, which contained 3 mM [K+] similarly to 

Ruangkittisakul et al., 2006. In some experiments, responses to 100 μM glutamate or 

10 nM prostaglandin E2 (PGE2) were measured. Calcium oscillations were recorded 

using a fluorescent microscope (Zeiss) for 20 – 30 minutes with a 2 second interval. In 

the initial experiments, phototoxicity was often observed already after 10 minutes, and 

was found to be due to a high exposure time (1 second). By decreasing the exposure 

time to 200 ms, the image sharpness was slightly decreased although the cells were still 

clearly visible, but phototoxicity could hence be avoided for the duration of the 

experiment. 

 

3.3.2 Correlation analysis 
Despite the use of calcium imaging to determine PBC cellular activity and response to 

modulators (Hartelt et al., 2008; Bouvier et al., 2010), how cells coordinate their 

activity in this region to produce a behaviour has not previously been shown. Network 

structures within the PBC have only been estimated according to the distance between 

the neurons (Hartelt et al., 2008), and not in relation to how their oscillating activities 

are related and act in concert to elicit functional output. We have employed a script for 

MATLAB (from Erik Nilsson and Per Uhlén, see Uhlen, 2004) that uses the extracted 
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mean intensity values and x- and y-coordinates from time-lapse imaging series to 

calculate correlation coefficients for each cell pair within the studied region. This 

coefficient (Pearson’s correlation) is determined by a linear similarity between two 

signals based on the time lag from one burst to the other. We plotted the coefficients in 

graphs showing 1) the degree of correlation as a function of distance between the cells, 

and 2) the degree of correlation in relation to the x- and y-coordinates of the cells in the 

image series. This is shown to be a valuable method for determining network-like 

structures based on the synchronization of oscillating activity (Uhlén et al., unpublished 

data). 

 

 

3.4 CELL AND TISSUE LABELLING 
 
3.4.1 Immunohistochemistry 
Immunohistochemical stainings on fixed whole embryo or brainstem cryosections were 

performed in all studies of this thesis. For Studies I and III, which involved examination 

of the medullary respiratory regions, embryos or brainstem preparations were sectioned 

sagittally to obtain a view over the whole medulla with pFRG and PBC in the same 

sections. For Studies II and IV, we sectioned embryos transversally for several reasons. 

First, these studies included smaller embryos at early stages and thus, transversal 

sectioning provided more sections for the experiments. Second, transversal sectioning 

gives a better view when investigating potential neurulation deficits, and third, 

facilitates visualization and quantification of neural cells distributed medio-laterally. 

A large number of antibodies were employed for these studies, all of which are 

described in the four papers. They include neuronal differentiation, specification, 

migration and maturation markers ( -tubulin III, Dcx, PSA-NCAM, MAP2, NK1R, 

SST, Phox2b), neural crest markers (AP-2 , SOX-10), proliferation and apoptosis 

markers (phospho-histone-3, Caspase-3), cytoskeleton-associated proteins (4.1N, -

catenin, p120-catenin, N-cadherin, Rac1, RhoA), ion transporters and gap junctions 

(KCC2, connexin-43), planar cell polarity proteins (Vangl2, Scrb1) and a synaptic 

marker (VGlut2). After the antibodies had bound to their targets they were visualized 

with fluorescent secondary antibodies. The actin cytoskeleton was visualized with 

FITC- or TRITC-conjugated Phalloidin, a death cap mushroom toxin that binds to F-

actin and prevents its depolymerization. All stainings were performed according to 

standard immunohistochemical protocols, except the NK1R/KCC2 labelling in Study I, 
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in which some modifications were done due to the same species origin of these 

antibodies. Here, the sequential labelling steps included 1) NK1R antibody at a dilution 

high enough (1:30,000) to avoid detection by the secondary antibody for KCC2, 2) 

amplification of the NK1R signal by a biotin/avidin complex conjugated with 

horseradish peroxidase, 3) detection of NK1R by a fluorescent substrate (FITC-TSA), 

4) KCC2 antibody at normal dilution (1:500), and 5) detection of KCC2 by a 

fluorescent secondary Cy3-antibody at normal dilution. While this modified protocol 

did not produce optimal NK1R stainings, it was still a valuable alternative as the NK1R 

and KCC2 antibodies available from other species turned out to be considerably poor. 

To prevent cross-reactions, the antibodies were titrated to determine the optimal 

dilutions and control experiments were done with the respective primary antibody 

omitted. Analysis was performed by fluorescent (Zeiss) and confocal (Leica) 

microscopy. Quantifications were done either by counting positive cells manually or by 

measuring the staining intensity in ImageJ. 

 

3.4.2 Immunocytochemistry 
Immunocytochemical stainings were performed on fixed cell cultures to determine the 

integrity of the cytoskeleton in Studies II and IV. For this we used FITC- or TRITC-

conjugated Phalloidin and antibodies for 4.1N, KCC2, Vangl2, Rac1, RhoA, -catenin 

and N-cadherin. In some experiments, Vangl2 and constitutive active or dominant 

negative Rac1 and RhoA were detected by antibodies to their respective HA- and Myc-

tags. Control cells were visualized by transfection of an EGFP or DsRed expression 

plasmid, and RNAi by co-transfection of a fluorescent oligo. Analysis was done by 

fluorescent (Zeiss) and confocal (Leica or Zeiss) microscopy. 

 

3.4.3 In situ hybridization 
To assess gene expression at the mRNA level, in situ hybridization provides a detailed 

map of the expression pattern in sections of an organ or whole embryo. Here, an 

antisense RNA probe is hybridized with the mRNA encoded by a particular gene. This 

probe is labelled by incorporation of nucleotides that are either radioactive or 

conjugated with a dye, and thus, enables visualization of only those cells that have 

mRNA from the gene of interest. 

We used in situ hybridization to compare Vangl2 expression between wild type 

and transgenic embryos in Study IV. The disadvantage with this method is that it is 

more complicated and time-consuming than protein labelling, and very sensitive to 
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contamination by ribonucleases that degrade RNA. However, it is a valuable option 

when an antibody against the protein is not available, which was the case at the time of 

our Vangl2 study. We generated an antisense probe from the Vangl2 coding sequence 

by PCR with digoxigenin-conjugated UTP as one of the nucleotides. Digoxigenin is a 

compound made by plants and not found in animal cells, which makes it easy to 

distinguish probe-bound cells from other cells. After the probe had bound to the tissue 

sections, a digoxigenin antibody conjugated with alkaline phosphatase was applied. 

This enzyme converted the substrate NBT/BCIP into a purple precipitating product that 

was visible in a light microscope, and hence, enabled detection of Vangl2 expressing 

cells. 

 

 

3.5 CELL ADHESION AND MIGRATION 
 

3.5.1 Aggregation assay 
To assess cell adhesion in Study IV, we grew the cells in aggregates, dispersed them 

mechanically, and analyzed the number and size of remaining aggregates. For this, we 

used MDCK cells due to their ability to form tight connections. We also tried this 

method with HEK293 cells, but these cells did not bind as tightly to each other as 

MDCK cells did, and were to a larger extent dispersed into single cells by mechanical 

disruption. Transfected MDCK cells were grown in hanging drops, then pipetted up 

and down 10 times and analyzed in a light microscope (Nikon). For reliable results, it 

was of critical importance that all drops contained an equal number of cells, and 

therefore, careful counting of cells and proper resuspension to get the same cell dilution 

was done. Moreover, pipetting was applied with identical force in all drops.  

To analyze the results, a square grid was applied over each image and the 

number of squares containing aggregates (> 4 cells) were counted and divided by the 

number of squares with no aggregates. While this method is rather semi-quantitative, it 

still provides a valuable estimate of the relative effect of different over- or under-

expressed proteins on the adherens junctions. 

 

3.5.2 Wound assay 
Wound assay (also known as “wound healing” or “in vitro scratch” assay) is an 

economical, easy and fast method to assess cell migration in vitro. This method is based 

on the properties of cells to migrate and replace an area of lost cells. For this, C17.2 
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cells are highly suitable due to their migration capacity (Ourednik et al., 2002), and 

were employed successfully in Studies II and IV. We also tried this method with 

MDCK and HEK293 cells but observed that scratching a confluent cell layer often 

removed larger sheets and did not leave a straight scratch. 

Briefly, subconfluent cells were transfected and allowed to reach 100% 

confluency. They were then treated with Mitomycin C, which is a DNA cross-linker 

that inhibits DNA synthesis and cell division. A scratch was made through the cell 

layer using a pipett tip and the medium was changed to serum-reduced medium. The 

migration of cells through the scratch could then be observed in a light phase-contrast 

microscope (Nikon). We photographed the cells immediately (T = 0) and after 18 

hours, which was found to be a suitable time point to see differences in the proportion 

of migrating cells. As cell proliferation was inhibited both by Mitomycin C and the 

minimal serum concentration, the cells covering the area were most likely migrating. 

This could also be observed by the distance between the cells and their somewhat 

elongated shape. To be sure that the identical area was photographed at the different 

time points, a line was drawn underneath the culture dish and images were captured just 

above or below the line. The results were quantified both by a calculation of the 

recolonized area percentage based on processed binary images in ImageJ, and manually 

by counting the proportion of cells in the scratch. 

 

 

3.6 PROTEIN ACTIVITY AND INTERACTION 
 

3.6.1 Immunoprecipitation 
Protein-protein interactions can be determined by the immunoprecipitation method, 

whereby a cell lysate is incubated together with an antibody for the protein of interest 

and then pulled down by Sepharose beads with high affinity for the antibody. We 

employed this method to study interactions of different variants of KCC2 with 4.1N in 

Study II, and different variants of Vangl2 with Rac1 in Study IV. Control experiments 

were done both by transfection of a control plasmid and by precipitating with an 

unspecific IgG antibody. The bead-antibody-protein complexes were purified and run 

on sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE), and 

interacting proteins were visualized by immunoblotting. As the degree of interaction 

was quantified based on the band size, Western blot had to be performed also against 

the precipitated protein for normalization. This method does not determine whether the 
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interacting partner binds directly or indirectly to the protein of interest. However, for 

the specific aims of this thesis, it was sufficient to assess if the proteins were part of the 

same interacting complex. 

 

3.6.2 Rac and Rho activation assays 
This method was employed in Study IV to determine the activity, i.e. the GTP- or GDP-

bound state, of Rho and Rac in cells with Vangl2 overexpression. Here, a modified 

version of the immunoprecipitation technique uses recombinant proteins, with high 

affinity for the GTP-bound Rho or Rac and coupled to Sepharose beads, to pull down 

the active molecule. The recombinant proteins include Glutathione-S-transferase 

(GST)-RHOtekin and GST-p21-activated kinase with affinity for Rho and Rac, 

respectively. The bead-protein complexes were run on SDS-PAGE and visualized by 

blotting with Rho and Rac antibodies. Although the method is straightforward, the 

activity state of the GTPases is highly temperature sensitive and GTP is quickly 

hydrolyzed to GDP if the temperature is not kept cold enough. As only the GTP-bound 

form is pulled down by the beads, the temperature is critical until the washed bead-

protein complexes are resuspended in loading buffer. The gel band corresponding to the 

active form of the GTPase was measured and compared between control and Vangl2 

transfected cells. 

 

 

3.7 STATISTICAL METHODS 
 

In all four studies, statistical differences between groups were determined using 

Student’s t-test for equal variances or a variant known as Welch’s unpaired t-test for 

unequal variances. Differences were considered to be statistical significant at P < 0.05 

*, P < 0.01 **, and P < 0.001 *** (two-sided). Data are presented as mean ± SD. 

Pearson’s correlation coefficients were calculated to determine the linear relationship 

between oscillating cells in Study III (see section 3.3.2). For the transgenic and mutant 

embryos, only littermates at a specific age were compared between groups. 
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4 RESULTS AND DISCUSSION 
 

4.1 DEVELOPMENTAL INCREASE IN KCC2 EXPRESSION 
 

Expression of the KCC2 protein during development was investigated in mouse 

embryos between E9.5 – E18.5 (Studies II and III) and in the brainstem of perinatal rats 

between E16 – P3 (Study I). The KCC2 protein was detected in the hindbrain and 

spinal cord regions already at E9.5 in mice and was co-expressed with -tubulin III. 

Not all cells expressing -tubulin III were positive for KCC2, indicating that KCC2 

expression does not precede differentiation. The proportion of -tubulin III positive 

cells expressing KCC2 increased with age and was also spread rostrally to the 

diencephalon at E13.5 and the basal telencephalic plate and olfactory bulb at E15.5. 

Expression could however not be detected in the neocortex even at E18.5. These results 

are in accordance with previous studies of KCC2 mRNA expression (Li et al., 2002; 

Stein et al., 2004). The novelty in our findings was an earlier time point for the 

inception of KCC2 expression. Moreover, presence of mRNA transcripts does not 

always reflect presence of the corresponding protein as gene expression can be 

controlled by many means also at the level of translation (Groisman et al., 2000). Thus, 

our results demonstrate that KCC2 is expressed also at the protein level in neuronal 

progenitors of the early mouse hindbrain and spinal cord. 

 

4.1.1 KCC2 expression in brainstem and respiratory regions 
The developmental expression pattern of KCC2, beginning in the spinal cord and 

hindbrain, indicates that the expression follows neuronal maturation. Interestingly, we 

found the KCC2 protein also in a subset of neural crest cells emerging from the 

hindbrain at E9.5. While the significance of this feature is unclear, it might reflect an 

involvement in cell migration (see section 4.2.1). At E13.5, we observed that the 

KCC2-positive neural crest had formed ganglia for the trigeminal and facial nerves. 

Presence of KCC2 in ganglia has been reported before (Lu et al., 1999), although it is 

somewhat controversial due to the static depolarizing action of GABA in these neurons 

(Sung et al., 2000). However, a mosaic pattern of [Cl-]i has recently been shown in the 

dorsal root ganglia and was suggested to result from a differential expression of KCC2 

and NKCC1 (Gilbert et al., 2007). 
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At E11.5, the KCC2 protein was detected throughout the marginal zone of the 

neural tube in the hindbrain region. Thus, the newly born respiration-related neurons at 

this stage (Gray et al., 2010) are presumably KCC2-positive. By E15.5, when the 

respiratory rhythm emerges in mice (Thoby-Brisson et al., 2005), we found a high 

KCC2 expression in the ventrolateral medulla, including the PBC and pFRG regions 

(Fig. 4). KCC2 was co-expressed with SST and Phox2b in the PBC and pFRG, 

respectively. Similarly, we observed KCC2 protein expression in the rat ventrolateral 

medulla from E16. As rats generally mature somewhat more slowly than mice, E17 is 

the approximate time of respiratory rhythm inception in rats (Pagliardini et al., 2003). 

By co-labelling with NK1R, we showed KCC2 expression in the respiration-related 

regions. 

An interesting finding was that the KCC2 protein appeared in the cytoplasm of 

respiration-related neurons and nearby regions at E16 and E18 in rats. The intracellular 

distribution of KCC2 was still somewhat diffuse at E20 but small clusters of labelled 

protein were detected at the plasma membrane, while a remarkably lower amount of 

protein could be seen in the cytoplasm. At P0, KCC2 outlined the membrane of NK1R-

positive cells in the PBC and pFRG. Only scarce cytoplasmic staining could be 

observed. The membrane staining of KCC2 was maintained at P3. 

KCC2 protein expression at E15.5.
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Quantification of the KCC2 staining intensity in the studied regions showed an 

increase at the plasma membrane and decrease in the cytoplasm from E18 to P3. It is 

however important to note that the term ‘plasma membrane’ here should be regarded 

with caution as proteins can stay close to the membrane without incorporating. While 

NK1R is a membrane receptor, it is internalized when bound to substance P 

(Pagliardini et al., 2005) and therefore not fully reliable as a membrane marker. To 

more closely define the plasma membrane, we performed co-staining of KCC2 or 

NK1R with the previously characterized plasma membrane protein CD90 (Kemshead 

et al., 1982). Triple-staining was unfortunately not successful in this application. 

However, both NK1R staining at all ages and KCC2 staining at postnatal ages co-

localized with CD90, and although still semi-quantitative, NK1R was hence shown to 

be valid as plasma membrane marker in this study. 

 

4.1.2 KCC2 expression precedes GABA inhibition 
We recorded respiratory neuron activity in the rat ventrolateral medulla from E16 to P2 

using extracellular recordings from C4 ventral roots, as well as ‘conventional whole-

cell’ and ‘gramicidin-perforated’ patch clamp, in Study I. The response to bath 

application of GABA was predominantly depolarizing in E16 – E20 neurons. A small 

fraction of neurons were inhibited at late fetal age (E18 – E21). In preparations from 

postnatal rats (P0 – P2), inhibition was the dominant response. The effect of GABA 

was blocked with the GABAA receptor antagonist bicuculline. Based on these data, it is 

apparent that the response of respiration-related neurons to GABA is in transition 

around birth. This is in agreement with previous studies showing the hyperpolarizing 

shift at E19 in rat (Ren & Greer, 2006) and E18.5 in mice (Ikeda et al., 2004), although 

it has also been reported that the shift occurs at P3 in the mouse PBC (Ritter & Zhang, 

2000). 

The differential response from neurons of the same age could be due to that 

EGABA may differ in various parts of the cell (Khirug et al., 2008; Romo-Parra et al., 

2008), probably as a result of ongoing changes in expression of chloride transporters 

during development. Moreover, GABAA-channels are also permeable to bicarbonate 

ions (Kaila et al., 1993; Kulik et al., 2000). We therefore measured the effect of 

removal of bicarbonate ions using HEPES-buffered, bicarbonate-free extracellular 

solution. Indeed, this resulted in a decrease in GABA-induced depolarization by 30% at 

late fetal age, suggesting that bicarbonate contributed to the observed effects of GABA. 

Nevertheless, the response to GABA was still depolarizing. 
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A recent study proposed that the excitatory to inhibitory switch in action of 

GABA in the hippocampus is not associated with a shift in the polarity of GABA 

responses to hyperpolarizing, but rather with shunting inhibition (Tyzio et al., 2008). 

Shunting inhibition has also been observed in respiratory neurons (Tonkovic-Capin et 

al., 2001), as well as in optic neurons (Ariel & Kogo, 2005), neocortical neurons 

(Ulrich, 2003), olfactory neurons (Smith & Jahr, 2002), and spinal cord neurons (Tapia 

et al., 2001). Thus, the GABA-mediated inhibition of the rhythm postnatally may not 

be the result of hyperpolarization, but of an increased conductance and hence shunting 

of the glutamate-mediated currents. 

Taken together, these data show that the KCC2 protein is present before the 

hyperpolarizing shift in EGABA in the respiration-related regions, and relocates to the 

plasma membrane when the shift takes place. Interestingly, the pFRG had significantly 

higher membrane staining compared to the PBC at E20, but not postnatally. Though 

this does not provide evidence of an earlier hyperpolarizing shift in the pFRG, it may 

point to a functional difference between these regions. Indeed, the pFRG becomes 

rhythmically active before the PBC and increases the rhythmic activity of the PBC by 

coupling to it (Thoby-Brisson et al., 2009). The mechanism controlling the plasma 

membrane targeting of the KCC2 protein is not fully understood, but studies have 

implicated phosphorylation as an important factor (Lee et al., 2007; Lee et al., 2010). 

 

 

4.2 A TRANSPORT-INDEPENDENT ROLE OF KCC2 IN DEVELOPMENT 
 

As described above, we found KCC2 protein expression in the brainstem before the 

developmental EGABA shift in respiration-related neurons. The potential role of this 

early expressed protein has not previously been shown. Moreover, apart from the 

perturbed motor control, KCC2-/- mice had no reported developmental defects in the 

CNS. However, one of the limitations with knockout studies is developmental and 

physiological compensation, which may take over the function of the deleted gene. 

Indeed, other KCCs are also expressed in the CNS (Li et al., 2002). 

Using a nestin-driven KCC2 expression, we generated transgenic mouse 

embryos overexpressing KCC2 in the neural tube in Study II. By this technique we 

attempted to address two questions: 1) What effect will a possible prematurely shifted 

EGABA have on neural development? 2) Is there a second role of KCC2 prior to the 

EGABA shift? 
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4.2.1 KCC2 influences neuronal differentiation and migration 
We collected transgenic embryos between E9.5 – E15.5. KCC2 overexpression 

severely impaired neural tube development and was lethal to the embryo at E13.5 – 

E15.5. No transgenic embryos were found at later stages, further supporting the lethal 

effect. Moreover, we generated additional transgenic litters overexpressing KCC2 

variants that have previously been shown to lack the co-transport function (Li et al., 

2007; Reynolds et al., 2008). These variants included an N-terminal deleted ( NTD) 

and a single amino acid substituted (C568A) KCC2 sequence. Importantly, all KCC2-

NTD, but not KCC2-C568A, transgenic embryos displayed phenotypes similar to 

those overexpressing the full length (KCC2-FL) variant. This indicated that 1) the 

effect of the transgene was not dependent on KCC2’s transport function, and 2) the 

KCC2- NTD and KCC2-C568A variants differed in their mode of action. 

The phenotypes of the KCC2-FL and KCC2- NTD embryos were 

characterized by a smaller size, underdeveloped brain vesicles, defective body 

curvature and facial abnormalities (Fig. 5). Although not all embryos had every feature, 

they still showed closely similar phenotypes, indicating that the effects were due to the 

transgene and not to insertional mutations. The KCC2-C568A embryos displayed 

mostly normal phenotypes but two out of six embryos at E9.5 had milder abnormalities 

in brain size and body flexure, suggesting a dose-dependent effect. At E13.5 and P0, no 

developmental defects could be detected, and thus, KCC2-C568A mice were the only 

transgenic variant that survived until birth. 

We found a significantly lower proportion of cells expressing the early neuronal 

markers -tubulin III, Dcx, and PSA-NCAM in the neural tube of KCC2-FL and 

KCC2- NTD, but not KCC2-C568A, embryos (Table 1). As the neural cells mature 

earlier in the hindbrain and spinal cord, the differences were most evident in these 

regions. No changes were observed in proliferation or apoptosis, assessed with 

phospho-histone-3 and Caspase-3 antibodies, respectively. This indicates that the effect 

on neuronal differentiation was not secondary to an induced cell death or interference 

with the cell cycle, and corroborates previous reports on zebrafish (Reynolds et al., 

2008). The reduction in neuronal progenitors could however be due to slowed radial 

migration. KCC2 has been reported to have no effect on radial migration of pyramidal 

neurons (Cancedda et al., 2007) but inhibits interneuron migration in the cortex 

(Bortone & Polleux, 2009). Interestingly, PSA-NCAM labelling showed a greater 

proportion of migrating cells in the ventricular/intermediate zones relative to the 
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marginal zone in the neural tube of KCC2-FL and KCC2- NTD, but not KCC2-

C568A, embryos. Thus, radial migration of neuronal progenitors may have been 

affected in the first two groups of transgenic embryos. The previous studies in the 

zebrafish embryo and murine cortex, mentioned above, all concluded that the effects on 

neuronal development was dependent on the transport-function of KCC2. However, we 

found similar effects of KCC2-FL and KCC2- NTD embryos, indicating a transport-

independent role of KCC2. 

The phenotypes of the E13.5 transgenic embryos, particularly the cleft palate 

and lack of blood circulation (Fig. 5), suggested an impaired neural crest migration. 

Indeed, facial abnormalities combined with a potential circulatory defect have a well-

known association with neural crest migration failure (Clouthier et al., 1998). We used 

the neural crest markers AP-2  and SOX-10, which are expressed at different 

migratory stages. AP-2  is expressed in the cranial migratory neural crest and in post-

migratory crest in the pharyngeal arches, whereas SOX-10 is mainly expressed in the 

neural crest emerging from the hindbrain (Ishii et al., 2005). We found a reduced 

proportion of transversal embryo sections expressing AP-2  and SOX-10 in E9.5 

KCC2-FL and KCC2- NTD, but not KCC2-C568A, embryos (Table 1). In addition, 

the lower proportion of neural crest was accompanied with smaller groups of scattered 

neural crest cells. Thus, neural crest migration was perturbed in KCC2-FL and KCC2-

NTD embryos. The reduced migration was corroborated in an in vitro wound assay, 

indicating that age or environment is of less importance for the migratory effects. 

 

 
 KCC2-FL / WT KCC2- NTD / WT KCC2-C568A / WT 

-tubulin III 77% ** 66% * 92% n.s. 

Dcx 42% * 31% * 83% n.s. 

PSA-NCAM 66% * 62% * 107% n.s. 

AP-2  / SOX-10 63% * 70% * 95% n.s. 

 

Table 1 | Proportion of neuronal and neural crest markers in transgenic relative 

to wild type embryos. ** P < 0.01, * P < 0.05, n.s.: not significant.
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Neural crest migration at later stages was not possible to determine due to the 

necrotic tissue of E13.5 transgenic embryos. It is therefore not clear what had caused 

the death of these embryos. The speculation in Paper II that the neural crest 

contribution to the bone marrow could be altered is most likely invalid, as 

hematopoietic stem cells are initially formed in a mesodermal structure known as the 

aorta-gonad-mesonephros (AGM) and do not inhabitate the bone marrow until after 

birth (Medvinsky & Dzierzak, 1996). Nevertheless, disruption of the cardiac neural 

crest results in abnormal aortic arch arteries and cardiac outflow septum (Brown & 

Baldwin, 2006), suggesting that the AGM region could also be affected in severe cases. 

While there is a risk of promoter leakage if the transgene integrates in the vicinity of 

other enhancer elements (Lothian & Lendahl, 1997), our results are presumably not due 

to ectopic expression in non-neural cells as all transgenic KCC2-FL and KCC2- NTD 

embryos had similar phenotypes, and therefore, random insertion close to a particular 

enhancer in all cases is unlikely. 

 

4.2.2 Interaction of KCC2 with the neuronal cytoskeleton 
As KCC2- NTD had effects similar to KCC2-FL, we assessed whether an interaction 

with the cytoskeleton, as previously reported (Li et al., 2007), could be part of the 

mechanism for a potential transport-independent role in neuronal differentiation and 

migration. We labelled embryo sections and C17.2 cells transfected with the KCC2-FL, 

KCC2- NTD and KCC2-C568A expression plasmids with Phalloidin and a 4.1N 

antibody. In wild type embryos, actin and 4.1N were enriched at the adherens junctions 

of the neural tube. In addition, cells in the neural tube had a circumferential expression 

Phenotypes of E13.5 transgenic embryos.
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of these proteins. C17.2 control cultures displayed stress fibres of actin, which is a 

normal feature of cells grown in a dish, and 4.1N was found mainly close to the plasma 

membrane. Interestingly, embryos and C17.2 cells overexpressing KCC2-FL and 

KCC2- NTD had higher cytoplasmic levels of actin and 4.1N. In the cell cultures, 

actin was partially seen as smaller aggregates, indicating a defective assembly of 

microfilament subunits. Western blot did not show any overall increase in actin protein 

levels in C17.2 cells. Unfortunately, due to the low number of transgenic embryos we 

had none left for Western blot. However, we do not propose an upregulation of actin 

but suggest a cytoplasmic redistribution, resulting from an overexpressed KCC2 with 

low levels of membrane targeting signals at early stages. It is possible that KCC2 links 

to 4.1N and actin already in the cytoplasm to regulate cell behaviours in neuronal 

development. 

In contrast to the other two variants, KCC2-C568A had no obvious effects on 

the actin cytoskeleton or 4.1N distribution. This implied that the C568A mutation 

rendered KCC2 less able to interact with the microfilaments. By immunoprecipitating 

the three variants of KCC2, we showed that the interaction with 4.1N was significantly 

reduced for KCC2-C568A compared to KCC2-FL and KCC2- NTD. This result 

provided further support for our finding that the effects of KCC2-FL and KCC2- NTD 

on neural development were due to a structural interaction with the actin cytoskeleton. 

Hence, as previous studies have employed KCC2-C568A as control (Cancedda et al., 

2007; Reynolds et al., 2008), the role of KCC2 in neuronal maturation shown in 

zebrafish and rats may also be transport-independent. It is however important to note 

that KCC2-FL, in contrast to KCC2- NTD, induced migratory arrest of cortical 

interneurons in mouse explants (Bortone & Polleux, 2009), indicating a dual effect of 

KCC2 on migration. 

The mechanism leading to the interference with neuronal differentiation and 

migration is unclear. However, by staining for the gap junction subunit Connexin-43, 

which has been shown to be expressed in contact points between radial fibres and 

migrating cortical neurons (Elias et al., 2007), we observed that a large fraction of 

neural cells in KCC2-FL and KCC2- NTD embryos had lost their polarized Connexin-

43 expression in extension processes normally seen in wild type and KCC2-C568A 

embryos. Interestingly, Connexin-43 has been shown to mediate adhesive contacts in 

interaction with the actin cytoskeleton (Elias et al., 2007). While this does not fully 

explain the mechanism of action, KCC2 overexpression may alter cytoskeleton-

mediated cell polarization and hence associated neural cell behaviours. 
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4.3 KCC2 IS ESSENTIAL FOR RESPIRATORY RHYTHM GENERATION 
 

As described above, KCC2 can influence neuronal differentiation and migration when 

overexpressed in vivo. Moreover, KCC2 is endogenously expressed in the marginal 

zone of the hindbrain at early stages (E9.5 – E11.5). Notably, SST and NK1R positive 

PBC neurons are derived from Dbx1-expressing progenitors that arise in the hindbrain 

at the same time point (Gray et al., 2010). This indicates that the respiration-related 

neuronal progenitors may express KCC2 before the formation of the CPG for 

breathing. As no previous studies have shown any characterization of the neural 

networks for rhythmogenesis in mice lacking KCC2, we employed KCC2-/- mouse 

embryos at E17.5 – E18.5 to examine the structure and function of the respiration-

related regions in Study III. 

 

4.3.1 KCC2-/- mice lack synchronized network activity 
We cultured rhythmically active medullary slices at the PBC level on semi-permeable 

membranes according to the Stoppini interface method (Stoppini et al., 1991). Wild 

type and KCC2-/- slices were cultured for 5 – 19 days in vitro (DIV) and then used for 

calcium imaging to study cell communication within the PBC. During imaging, slices 

were perfused with a standard physiological solution containing 3 mM [K+]. This 

showed to be sufficient for spontaneous rhythmic activity in accordance with 

Ruangkittisakul et al., 2006. It must be considered, however, that we used TMR-SP to 

localize the PBC region, and this substance can stimulate the respiratory rhythm 

(Pagliardini et al., 2005). Nevertheless, the use of physiological [K+] ensured that the 

function of KCC2 in wild type slices was not altered. Notably, high [K+], which has 

been commonly used in other studies, would reasonably lead to GABA-mediated efflux 

rather than influx of Cl-, and hence, an absence of hyperpolarizing GABA responses 

even in the presence KCC2. 

Wild type and KCC2-/- slices displayed oscillating activity for the duration of 

the experiments (< 1 hour per slice). They both responded to the substances glutamate 

and PGE2 with an increased and decreased activity, respectively. However, the PBC of 

KCC2-/- slices had weaker and less regular bursts compared to wild type slices. We then 

calculated correlation coefficients for each pair of cells in the PBC region using a script 

for MATLAB. Interestingly, the correlation analysis demonstrated a decreased number 

of correlated cells in the PBC of KCC2-/- slices. Moreover, the correlation coefficients 

had lower values in KCC2-/- compared to wild type slices. This was observed for all 
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stages in vitro examined. The PBC of wild type slices displayed small clusters of highly 

correlated cells, which are thought to interact to produce a network-like structure of 

distinct cell groups within the PBC (Hartelt et al., 2008). Furthermore, while the PBC 

of wild type cultures appeared to attain higher correlations with longer distances when 

the slices were cultured longer (> 15 DIV), the KCC2-/- PBC did not show any signs of 

network structure formation. 

These results indicate that KCC2 expression is necessary for the formation of 

functional neural networks in the PBC. Interestingly, it has previously been reported 

that BDNF overexpression upregulates KCC2 and produces an increased spontaneous 

activity with higher correlations in the hippocampus (Aguado et al., 2003). Although 

this effect was not shown to be attributable to KCC2, it is possible that KCC2 plays a 

role in synaptogenesis in neural networks. Our results show that the PBC is still active 

in KCC2-/- slices, suggesting that the PBC progenitors can integrate to the correct 

region without KCC2 expression. However, the low activity correlation points to a 

perturbed regulation of the rhythm, hence leading to an impaired respiratory motor 

output from this region. 

 

4.3.2 Maturation of respiration-related neurons requires KCC2 
To further assess the structural maturation of respiration-related neural networks, we 

studied fixed cryosections of wild type and KCC2-/- embryos. The PBC was analyzed 

by NK1R and SST labelling, and the pFRG by NK1R and Phox2b labelling. We found 

that the anatomical integrity of the PBC appeared normal in KCC2-/- embryos. This was 

in line with our finding that the pacemaker activity of PBC neurons was not absent. 

Hence, PBC neurons do not depend on KCC2 expression for migration to their final 

destination. However, the altered activity correlation in the PBC indicated a defective 

rhythm modulation. Indeed, respiratory failure has previously been shown without any 

significant changes in the anatomical structure or pacemaker function of the PBC 

(Wallen-Mackenzie et al., 2006; Pagliardini et al., 2008; Rose et al., 2009). 

Interestingly, we found that the pFRG region had a lower NK1R expression but 

retained Phox2b expression in KCC2-/- embryos. This suggested that the segmental 

patterning of the hindbrain was not altered and that pFRG progenitors had also reached 

their destination, but indicated a perturbed maturation of these neurons. 
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We labelled sections with antibodies for MAP2 and vesicular glutamate 

transporter 2 (VGlut2) to analyze neuronal, dendritic and synaptic maturation. While 

wild type embryos displayed a gradual increase of MAP2 at the ventral side of medulla, 

KCC2-/- embryos had remarkably lower MAP2 expression throughout the medulla. 

Moreover, the pFRG, but not the PBC, of KCC2-/- embryos had a significantly lower 

expression of VGlut2 (Fig. 6). This indicates that the absence of KCC2 alters MAP2 

expression in hindbrain neurons, and glutamatergic synapses distinctively in the pFRG. 

In this context, it is important to note that mice lacking MAP2 are viable and fertile 

although they have shorter and thinner dendrites (Harada et al., 2002). Thus, the lower 

MAP2 expression is most likely not a cause of the impaired rhythmogenesis by itself. 

However, similar to KCC2-/- mice, VGlut2 null mutant mice die at birth from 

respiratory failure (Wallen-Mackenzie et al., 2006). Notably, mice lacking VGlut2 have 

a preserved PBC region with pacemaker properties, indicating an impaired 

rhythmogenesis through the lack of afferent modulations. This is of considerable 

Loss of glutamatergic synapses in the pFRG of KCC2 / embryos.
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interest for our findings, as we have shown that KCC2-/- mice display a reduced VGlut2 

expression by almost 50% in the pFRG (Fig. 6). Moreover, recent studies have 

demonstrated a critical role of the pFRG for respiratory rhythmogenesis that is 

necessary for survival (Dubreuil et al., 2008; Thoby-Brisson et al., 2009). Thus, our 

results suggest that KCC2 deficiency impairs synaptogenesis in pFRG neurons, which 

leads to an altered synchronization of the respiratory rhythm. 

 

 

Potential early functions of transport inactive KCC2.
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The KCC2-/- mice have previously been shown to lack inhibitory responses to 

GABA in respiratory motor neurons (Hubner et al., 2001). However, the respiratory 

rhythm initiates already at E15.5 in mice (Thoby-Brisson et al., 2005), when GABA is 

still depolarizing. Hence, rhythmogenesis is not dependent on the hyperpolarizing shift. 

This is further supported by other studies reporting that mice mutant for the KCC2b 

isoform breathe spontaneously (Woo et al., 2002; Uvarov et al., 2007). It is likely that 

KCC2a is the essential isoform for the maturation of respiration-related neural circuits. 

Indeed, KCC2a is downregulated after birth (Uvarov et al., 2007), suggesting a prenatal 

role for this isoform in neuronal development. 

Taken together, this study shows that KCC2 expression is critical for the 

maturation of glutamatergic synapses needed for respiratory rhythm generation. This 

role is presumably transport-independent and indicates a cytoskeleton-regulating 

function in synaptogenesis. Thus, we suggest a novel structural role of KCC2 in the 

development of excitatory synapses, in addition to its role in dendritic spine formation. 

Based on the results from this thesis we propose a model for the transport-independent 

role of KCC2 in neural migration, differentiation and synaptogenesis (Fig. 7). 

 

 

4.4 THE ROLE OF VANGL2 IN HINDBRAIN FORMATION 
 

As described above, KCC2 is a cytoskeleton-interacting protein that plays a role in the 

maturation of neurons in the brainstem. However, the cytoskeleton is regulated by 

many means also before the neural tube is even formed. Indeed, convergent extension 

and following closure of the neural tube requires substantial mechanical strength that is 

achieved by neural progenitor cells in the neural plate. Neurulation is initiated at the 

hindbrain – cervical boundary (closure 1) before the tube “zips up” caudally and other 

closures in the cranial region take place. Failure of closure 1 results in 

craniorachischisis, characterized by impaired formation of the hindbrain and spinal 

cord. It has previously been shown that a mouse model for this neural tube defect 

(Looptail) carries a mutation in Vangl2 (Kibar et al., 2001). In Study IV, we have 

further investigated the role of Vangl2 in the regulation of neural tube closure by 

employing Looptail and Vangl2 overexpressing embryos. 
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4.4.1 Vangl2 is crucial for the formation of adherens junctions 
Similar to KCC2 transgenic embryos, we used the nestin enhancer to overexpress 

Vangl2 exclusively in the neural tube. Transgenic embryos were studied at E8.5 – E9.5, 

when neurulation occurs. We found that transgenic embryos were smaller than their 

wild type littermates and had an impaired cranial neurulation. Hence, the increased 

Vangl2 expression impaired both convergent extension and neurulation in the cephalic 

region. This is in line with previous results showing that Wnt7a overexpression 

increases Vangl2 expression in the neural tube and impairs cranial neurulation 

(Shariatmadari et al., 2005; Horn et al., 2007). Our findings also indicate that Vangl2 

takes part in the intracellular pathway of Wnt7a signaling. 

Bending of the neural plate involves the formation of hinge regions; one medial 

hinge point (MHP) causing the neural folds to elevate, and two dorso-lateral hinge 

points (DLHPs) that converges the neural folds inwards (Smith & Schoenwolf, 1997). 

We found that both Looptail and Vangl2 transgenic embryos had elevated folds, and 

hence had a preserved MHP. However, the neural folds were splayed wide apart instead 

of bending inwards. Thus, the function of the DLHPs had failed in these embryos. 

Elongation of cells in the DLHP is dependent on microtubules, and constriction 

is achieved by microfilaments and associated proteins that accumulate and form 

adherens junctions at the apical end of these cells (Nyholm et al., 2009). Adherens 

junctions have been shown to exert a critical function in cranial neurulation and its 

disruption impairs the rigidity and mechanical strength of the neural tube (Ybot-

Gonzalez & Copp, 1999; Shariatmadari et al., 2005). We therefore analyzed the neural 

tube adherens junctions in the Looptail and Vangl2 transgenic embryos. Indeed, both 

Vangl2 gain- and loss-of-function altered the expression of the adherens junction 

components actin, N-cadherin, -catenin, and p120-catenin in the neural tube. These 

proteins were partly absent at the apical side and particularly in the DLHP regions. In 

addition, Rac1 expression was redistributed from the adherens junctions to cell somas 

scattered in the whole neural tube, indicating that Vangl2 regulates Rac1 localization. 

Our findings demonstrate that Vangl2 is essential for the formation of adherens 

junctions required for neural tube closure. Both gain- and loss-of-function produced 

similar phenotypes, which has also been observed in xenopus and zebrafish (Darken et 

al., 2002; Park & Moon, 2002), and can be explained by the theory that PCP signals 

must be fine-tuned to an appropriate level that is critical for proper cell behaviour 

during gastrulation and neurulation. However, Looptail embryos have impaired 

neurulation from the hindbrain and caudally, whereas Vangl2 overexpressing embryos 
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displayed this defect from the hindbrain and rostrally. Thus, they differed in completion 

of closures, which may be due to that cranial neurulation is more sensitive to 

cytoskeletal disruption (Ybot-Gonzalez & Copp, 1999). The integrity of adherens 

junctions in the cranial part of Looptail embryos was intact, suggesting that Vangl2 is 

mainly required for closure 1 in the hindbrain region. Nevertheless, both gain-and loss-

of-function result in shorter body length, indicating perturbed convergent extension 

movements. Notably, Vangl2 has recently been shown to regulate convergent extension 

via antero-posterior cell polarization (Ciruna et al., 2006). 

 

4.4.2 The regulation of adherens junctions is Rac1-dependent 
To obtain a more mechanistic view of Vangl2’s effect on adherens junctions we studied 

the epithelial cell lines HEK293 and MDCK. We showed that these cell lines expressed 

Vangl2 mRNA and had the Vangl2 protein co-localized with the adherens junctions. 

As expected, Vangl2 overexpression and knockdown disrupted the adherens junction 

components actin, cadherin and -catenin. In addition, the cells often grew in smaller 

clusters and were more loosely attached to each other. Moreover, as Vangl2 has been 

shown to contain a PDZ-binding domain that binds other PCP molecules (Kallay et al., 

2006), we assessed whether the expression of a Vangl2 construct lacking this sequence 

(Vangl2- 4) would have similar effects. Interestingly, Vangl2- 4 expressing cells had 

normal adherens junctions, indicating that the PDZ-binding domain is essential for the 

regulatory effect of Vangl2 on the cytoskeleton. 

Our in vivo data suggested that Rac1 may have a role in the same pathway as 

Vangl2. We found that Vangl2 co-localized with Rac1 at the adherens junctions in the 

cell cultures. In addition, both overexpression and knockdown of Vangl2 resulted in 

altered cellular distribution of Rac1. Moreover, co-immunoprecipitation showed that 

Vangl2 is part of the same binding complex as Rac1 via the PDZ-binding domain. 

Notably, we also found that Vangl2 binds to RhoA but does not alter its cellular 

distribution in vitro or in vivo. The active state of Rac1 and RhoA was not changed by 

Vangl2 overexpression, suggesting that Vangl2 can bind to these GTPases without 

affecting their activity. 

To analyze whether Rac1 and/or RhoA mediate the effect of Vangl2 on the 

actin cytoskeleton, we employed DNA constructs coding for constitutive active (Rac1-

V12, RhoA-V14) and dominant negative (Rac1-N17, RhoA-N19) GTPases. These 

variants have been shown to regulate actin organization in epithelial cells (Jou & 

Nelson, 1998). Indeed, transfection of either of these plasmids alone altered the 
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distribution of the actin cytoskeleton in our experiments. Intriguingly, co-transfecting 

Rac1-N17 with Vangl2 rescued the disruption of the actin localization. Similar results 

were obtained when Rac1-N17 was substituted with Rac1 RNAi. Moreover, co-

transfecting Rac1-V12 with Vangl2 potentiated the effects on the cytoskeleton. 

However, no interplay could be seen when co-transfecting Vangl2 with RhoA-V14 or 

RhoA-N19. This indicates that Vangl2 mediates its role in interaction with Rac1, but 

not with RhoA. Our results also suggest that Vangl2 overexpression and Rac1 

knockdown balanced each other. This was supported by the finding that Vangl2- 4 did 

not rescue the effect of Rac1-N17. 

For a more functional analysis of the adherens junctions, we assessed cell 

adhesion by aggregation and wound assays. The former method showed that Vangl2 

overexpression significantly reduced cell aggregation (59% of control, P < 0.05). 

Similar reduction was observed with Vangl2 RNAi but not with Vangl2- 4. Co-

transfection of Vangl2 with Rac1-N17 restored the normal ability to aggregate, while 

co-transfection with Rac1-V12 potentiated the reduction in cell aggregates. Again, no 

interplay was observed between Vangl2 and the RhoA variants. Furthermore, the 

wound assays demonstrated that Vangl2 transfection significantly increased the number 

of cells migrating into the open area (140% of control, P < 0.05). Co-transfection with 

Rac1-N17 blocked the effects of Vangl2 overexpression, in line with our previous 

findings. These results are consistent with the view that loss of cell adhesion can often 

promote migration (Fischer & Quinlan, 1998). 

Taken together, our results show that an increased or decreased expression of 

Vangl2 alters the actin cytoskeleton and adherens junctions. We demonstrate that an 

interaction of Rac1 with the PDZ-binding domain of Vangl2 is essential for the 

regulation of adherens junction integrity. This corroborates previous reports that Rac1 

is involved in regulating the stability of adherens junctions (Jou & Nelson, 1998; 

Quinlan, 1999; Flaiz et al., 2008). The interplay between Vangl2 and Rac1 was evident 

from protein rescue experiments. Notably, Rac1-N17 is believed to compete with 

endogenous Rac1 for the membrane target sites (Feig & Cooper, 1988), and RNAi does 

not produce a complete knockdown of the Rac1 expression (Kim et al., 2007). 

Therefore, the balancing effects of Vangl2 overexpression and Rac1 blockade can be 

explained by a model in which Vangl2 recruits endogenous Rac1 to the adherens 

junctions, as illustrated in Fig. 8. Thus, Vangl2 appears to be critical for the recruitment 

of Rac1 to functional sites and subsequent formation of adherens junctions necessary 

for neural tube closure in the hindbrain region. 
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Model of interaction between Vangl2 and Rac1.
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5 CONCLUSIONS 
 

This thesis describes the roles of KCC2 and Vangl2 in different aspects of brainstem 

development, from closure of the neural tube until the formation of functional neural 

networks. 

 

 The KCC2 protein is expressed in the mouse hindbrain already at E9.5 – E11.5, 

which correlates with the birth of respiration-related neurons. 

 

 KCC2 expression precedes the developmental EGABA shift in respiration-related 

regions, and membrane targeting of KCC2 is associated with an inhibitory 

response to GABA. 

 
 Overexpression of KCC2 in the neural tube results in decreased neuronal 

differentiation and perturbed neural crest migration, which is lethal for embryos 

before E15.5. 

 
 The effects on neural development are dependent on a structural interaction of 

KCC2 with the actin cytoskeleton via 4.1N. 

 
 KCC2 expression is essential for the formation of brainstem neural networks 

that generate respiratory rhythm, possibly via its transport-independent role. 

 
 Disruption of KCC2 leads to altered development of glutamatergic synapses in 

the parafacial respiratory group. 

 
 Vangl2 expression is crucial for the formation of adherens junctions that 

mediate neural tube closure in the hindbrain region. 

 
 The formation and regulation of adherens junctions depend on a structural 

interaction between Vangl2 and Rac1. 
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6 RELEVANCE AND FUTURE PERSPECTIVES 
 

Uncovering the role of vital genes for embryonic development is important for our 

understanding of the complex genetic system that controls the emergence of different 

physiological functions. KCC2 and Vangl2 are both essential for neural development, 

which in animal models is manifested by a defective formation of the brainstem. 

The results presented in this thesis are the first showing that KCC2 has a crucial 

function in vivo prior to the hyperpolarizing shift in GABA responses. Our findings 

indicate that KCC2 regulates the maturation of neurons and the formation of functional 

neural networks through a structural interaction with actin microfilaments. This 

corroborates recent reports that ion transporters and other membrane proteins with 

well-known functions in cellular homeostasis can also provide structural support for 

different neural cell behaviours (Elias et al., 2007; Walters et al., 2009). 

In addition, our results provides an increased knowledge of how breathing 

arises, and thereby, how life is maintained. Importantly, the thesis contributes to the 

ongoing debate on the involvement of different brainstem regions in respiratory rhythm 

generation, and highlights the significance of the pFRG. It also shows that KCC2 

expression is critical for the formation of neuronal connections within this vital region. 

Loss of Phox2b-expressing glutamatergic neurons in the pFRG causes congenital 

central hypoventilation syndrome, also known as Ondine’s curse. This syndrome is 

manifested by episodes of apnea during sleep, and affects about 1 in 200,000 live born 

children. Interestingly, a subset of these patients develops neural crest-derived tumours 

(Berry-Kravis et al., 2006) and display distinctive facial features (Todd et al., 2006), 

suggesting that an altered migratory behaviour, possibly by a dysregulation of the 

neural cytoskeleton, may be involved. 

Further studies are needed to elucidate the full mechanism of KCC2 in the 

transport-independent regulation of the actin cytoskeleton. In particular, it will be 

important to reveal the role of KCC2 in synaptogenesis, and if this is a characteristic of 

only the pFRG or of additional neural networks in the CNS. Notably, KCC2-/- mice also 

lack spontaneous movements (Hubner et al., 2001), indicating a perturbed CPG for 

locomotion in addition to the impaired breathing. Thus, KCC2 may be one of the key 

molecules for neural network development. 

A disruption in Vangl2 expression leads to impaired neurulation, and hence, 

this thesis contributes to the research on neural tube defects. In fact, neural tube defects, 
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including spina bifida, craniorachischisis and anencephaly, are the most common birth 

defects with an incidence that ranges between 1 and 8 per 1000 births depending on the 

geographical location. Importantly, Vangl2 mutations have recently been found in 

human cases with cranial and spinal neural tube defects (Kibar et al., 2010; Lei et al., 

2010). Anencephaly may be due to a disruption of both the Vangl1 and Vangl2 genes, 

as has been observed in mice that are double heterozygous for Vangl1 and Vangl2 

(Torban et al., 2008). However, numerous genes are known to cause neural tube defects 

in animal models, and hence, other patterns of genetic interactions are possible. 

Moreover, we have identified an interplay between Vangl2 and Rac1 that is 

critical for the formation of adherens junctions in the hindbrain region of the neural 

tube. This increases our understanding of how PCP proteins act in mammals. Further 

studies are necessary to determine the exact mechanism of this interaction and if other 

PCP proteins play a role. Furthermore, the effect of Vangl2 on cell adhesion and 

migration does not only implicate its roles in convergent extension and neural tube 

closure, but may also be involved in tumour progression. 

Taken together, our findings show that KCC2 and Vangl2 are essential genes 

for the formation and maturation of the brainstem. We have revealed functions of these 

gene products that structurally regulate the neuronal cytoskeleton, and thus, the stage 

may now be set for future investigations to further identify important roles of these 

genes in neuronal development. 
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