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ABSTRACT 

The molecular imaging technique positron emission tomography (PET) allows 

for non-invasive examination of biochemical markers in the living brain. For over three 

decades PET studies have provided important insight into the relationship of 

monoaminergic neurotransmitter systems to brain functioning and psychiatric 

disorders. A more recent application of PET is the study of endogenous 

neurotransmitter release in vivo. Clinical relevance of such methods is found in studies 

demonstrating enhanced amphetamine-induced dopamine release in schizophrenia 

patients, whereas PET studies in non-human primates provide a translational model for 

evaluation of the pharmacological mechanisms before initiation of studies in man. 

The first aim of this thesis was to develop improved methods for measurement of 

endogenous dopamine levels. In study I the potent D2/D3 receptors agonist (R)-(-)-2-

methoxy-N-n-propyl-norapomorphine (MNPA) was radiolabeled with carbon-11 and 

found suitable for in vivo characterization of the high affinity state. In study II, 

amphetamine-induced displacement of [
11

C]MNPA binding by dopamine was ~1.8 fold 

higher at four different doses than for the antagonist [
11

C]raclopride and demonstrated 

that an agonist radioligand has improved sensitivity to endogenous neurotransmitter 

level. Study III aimed to further obtain in vivo support for the existence of two affinity 

states for the D2/D3 receptors. Receptor occupancy of the exogenous agonist 

apomorphine was determined with [
11

C]MNPA and [
11

C]raclopride. Binding of 

[
11

C]MNPA and [
11

C]raclopride was inhibited monophasic and approached full 

saturation. ID50 and Ki values of apomorphine were indistinguishable when measured 

with the agonist or antagonist radioligand. Study III did not support the existence of 

two affinity states and a possible explanation could be that all D2/D3 receptors are in the 

high affinity state in vivo. In study IV, the new D1/D5 receptors partial agonist 

radioligand (S)-[
11

C]N-methyl-NNC 01-0259 was found insensitive to dopamine levels, 

and receptor binding was inferior to previously developed antagonist radioligands. 

Moreover, a COMT formed radiometabolite was found to enter the brain but the 

formation could be prevented with the use of a COMT inhibitor. COMT inhibition 

provides a methodology enabling quantitative PET measurements with (S)-[
11

C]N-

methyl-NNC 01-0259. 

The second aim of this thesis was to evaluate the sensitivity of the new 5-HT1B 

receptor radioligand [
11

C]AZ10419369 to alterations in endogenous serotonin 

concentration. Previous serotonergic PET radioligands have ambiguously shown 

sensitivity to serotonin level. In study V the effective serotonin releaser fenfluramine 

decreased the binding of [
11

C]AZ10419369 in a dose-dependent manner. In study VI 

the effect of fenfluramine on [
11

C]AZ10419369 binding was confirmed using an 

equilibrium approach with a bolus infusion protocol. The further developed 

methodology is suitable for exploring the sensitivity limit to serotonin levels as 

measured using [
11

C]AZ10419369 and PET.  

In conclusion, the present thesis demonstrates that the D2/D3 receptors agonist 

radioligand [
11

C]MNPA is an improvement for measurement of dopamine release, 

when compared to previously used antagonist radioligands. Moreover, a novel 

methodology, using the 5-HT1B receptor antagonist [
11

C]AZ10419369 and PET, was 

developed for measurement of serotonin release in the living brain. These newly 

developed methodologies may help to further understand the treatment and 

pathophysiology of several major neurological and psychiatric disorders. 
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1 INTRODUCTION 

1.1 MAJOR APPLICATIONS OF PET 

Molecular imaging is a rapidly expanding field and covers techniques that allow 

for the visualization of biochemical processes in living organisms. Prominent 

modalities are magnetic resonance imaging (MRI), optical imaging and nuclear 

imaging, with combination of techniques currently under development
30,77

. Positron 

emission tomography (PET) is a nuclear imaging technique that allows for quantitative 

measurement of binding to specific proteins in tissue. The first PET studies of the 

human brain were performed in the early 1980s and focused on the study of 

neurotransmitter systems
341

. 

The dopamine and serotonin neurotransmitter systems have for several reasons 

attracted key interest in relation to the pathophysiology of several neurological and 

psychiatric disorders including, Parkinson’s disease, schizophrenia, attention deficit 

hyperactivity disorder (ADHD) and depression. PET studies have provided the first 

quantification of receptors in the living brain and thereby allowed for studies of 

receptor density in relation to pathophysiology
69,71,347

. A significant enhancement in the 

clinical utility of brain PET imaging is soon anticipated with recent development of 

biomarkers of pathophysiology. First examples are radioligands that bind β-amyloid 

aggregates, which are proteins thought to be heavily deposited in the brains of 

Alzheimer patients
160,233

. 

A second utility of PET imaging is to understand drug action and to facilitate drug 

development
73,121,178

. Pioneering studies have explored dopamine receptor occupancy 

of antipsychotic drugs and examined the relationship between receptor occupancy, 

clinical efficacy and side-effects
74,75,235,237

. Another type of approach undertaken makes 

use of the “microdosing concept” (typically < 5μg) in which a drug is radiolabeled to 

obtain a detailed description of its distribution in the body
18

. More recently, the 

microdosing approach is gaining increasing acceptance and interest from governmental 

approving agents and pharmaceutical industries. 

Another application which uses PET and neuroreceptor radioligands is to study the 

competition between radioligand and endogenous neurotransmitter. Pioneering studies 

have evaluated amphetamine-induced changes in synaptic dopamine level in the 

primate brain
57,74,139

, and the clinical relevance of such methodology has been 

demonstrated by increased dopamine release in patients with schizophrenia
22,172

.  

Successful studies of endogenous neurotransmitter release have thus far been almost 

exclusively reported for dopamine, which is possibly related to the lack of radioligands 

sensitive to other endogenous neurotransmitters. 

PET studies in non-human primates provide a translational model for evaluation of 

pharmacological mechanisms before initiation of studies in human subjects. Non-

human primates are phylogenetically the closest relatives with humans: non-human 

primates share a large percentage of their DNA with humans and consequently yield 

physiological and neuroanatomical similarities.  Similar complexities of adult human 

and monkey brains allow for translation from animal models to the human condition 

more readily than when using more phyologenetically distant animals
11,230

. 

 

1.2 PRINCIPLES OF PET 

After intravenous (i.v.) administration of a substance labelled with a positron-

emitting radionuclide (either radiotracer or radioligand), PET imaging allows for 

evaluation of regional distribution and quantification of radioactivity in the living body 

(in vivo). The radiolabeled substance contains a radionuclide, which at decay emits a 
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positron (β+). The positron passes through surrounding tissue (one to a few 

millimetres) until it annihilates with an electron, resulting in the emission of two 511 

keV γ-particles (photons), which travel approximately 180˚ apart (Figure 1). 

The two photons comprise high energy and have therefore high probability to 

escape from the body. When both photons hit two γ-ray detectors of the PET system 

within a predefined time window, a “coincidence” event occurs. The coincidence event 

can be used to locate the positron-electron annihilation, and this location closely 

approximates of where the positron was emitted. A typical PET measurement consists 

of a large collection of coincidence events occurring after i.v. administration of a 

radiolabeled substance to animal or human. Quantitative images are then obtained after 

reconstruction and appropriate correction for absorption, scatter and random 

coincidences
33,66

.  

 
Figure 1. (Left) Summary of physics underlying the PET methodology, figure adopted from33. (Right) HRRT PET 

system as used in routine practice at the Karolinska Institutet since 2008. 

 

PET systems must be designed with high sensitivity and high spatial resolution 

for obtaining acquisition data with high accuracy. Spatial resolution can be defined as a 

measure of the smallest image area identifiable as a separate unit. The resolution of a 

PET system is typically expressed in terms of full width at half maximum (FWHM). A 

Gaussian function is used to represent a perfect point source, and the resolution is 

defined as the distance between the maximum signal to where the signal intensity is 

half of the maximum
14

. Specific brain dedicated PET systems are available with the 

high resolution research tomograph (HRRT) being the most recently developed 

system
50

 (Figure 1). In this thesis two PET systems were used, the ECAT exact HR 47, 

which has a spatial resolution of 3.8 mm FWHM, and the HRRT, which has a 

resolution of 1.5 mm FWHM
334,343

.  

 

1.3 DEVELOPMENT OF PET RADIOLIGANDS FOR CNS 

One of the key advantages of PET is that several available short-lived 

radionuclides are isotopes of elements very typically seen in biological materials, 

elements such as nitrogen, oxygen and carbon. Incorporation of the radionuclides into 

molecules does not affect the biological activity of the molecule and thereby provides a 

unique opportunity to study biological processes in living subjects. Short-lived 

radionuclides are typically produced onsite by a particle accelerator (cyclotron): the 

radionuclide used in the present thesis was carbon-11 (t1/2 = 20.4 min) (Table 1). The 
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short half-life of carbon-11 limits the possibility of transportation off site, but has the 

advantage to allow for multiple PET studies in the same subject on the same day. 

 
Table 1. Main characteristics of frequently used radionuclides121. 

 
15

O 
11

C 
18

F 

Half-life (min)  2 20 110 

Mode of decay (% β+) 100% 100% 97% 

Maximal energy (MeV)  1.74 0.97 0.64 

Penetration distance (mm) 8 4 2 

 

The development of PET radioligands for imaging of new targets has often 

benefited from organic chemistry efforts in drug discovery. Whereas the properties of 

an optimal therapeutic drug and radioligand commonly differ, the drug programs 

provide large numbers of compounds, from structural different classes, of which some 

may eventually prove useful as drugs and others as radioligands. An example, relevant 

to this thesis, is the development of agonist radioligands selectively targeting D1/D5 or 

D2/D3 receptors. Dopamine agonists developed for the treatment of Parkinson’s disease 

preferably have agonistic properties for both D1 and D2 receptor to achieve optimal 

treatment effect. A radioligand is in contrary preferably selective to one receptor 

subtype, thereby allowing evaluation of binding to the specific receptor subtype.   

 

PET radioligands to be useful for the examination of targets in the central 

nervous system (CNS) must fulfil a range of criteria
122,253

. In short, radioligands should 

display high selectivity and receptor affinity (KD in nM range) to the binding target as 

well as sufficient lipophilicity to enable passage of the blood-brain-barrier (BBB). Too 

high lipophilicity may result in high non-specific binding in brain. Suitable radioligands 

for CNS are not substrates for efflux-transporters, such as P-glycoprotein (Pgp), as Pgp 

can drastically limit accumulation of radioligand in brain
149

. In addition, radioligands 

should have appropriate metabolism avoiding formation of CNS-penetrating 

radiometabolites. For proper quantification of target binding, a suitable 

pharmacokinetic profile is of great importance. Optimal receptor binding kinetic 

properties for 
11

C-labeled radioligands provide a peak in specific binding within 30-60 

minutes after radioligand injection to provide reliable measurements. Finally, 

amenability for labelling with 
11

C or 
18

F with sufficient high specific radioactivity 

should ensure straightforward radiosynthesis and the administration of minimal mass of 

radioligand to fulfil the demands of tracer conditions and safety requirements. 

 

1.4 QUANTITATIVE PET MEASUREMENTS 

1.4.1 Quantification of radioligand receptor binding 

In pharmacology, the binding reaction between substance (drug or radioligand) 

and receptor is conventionally described according to equation 1, in which equilibrium 

exists between available receptors (R), concentration of free substance (F) and 

concentration of receptor bound substance (B). 

 

   

   
  

    

   
        (1) 

At equilibrium conditions, the relationship between receptor binding and the 

concentration of substance can be described by the Michaelis-Menten equation, which 
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includes the receptor density (Bmax) and the equilibrium dissociation constant (KD) 

(equation 2). 

 

   
     

      
      (2) 

In applied studies this hyperbolic function can, for instance, be used to describe 

the relationship between receptor occupancy of drug, maximum receptor occupancy 

(Occmax), drug concentration (CD) and inhibition constant (Ki) (equation 3). 

                    
        

       
    (3) 

Neurochemical techniques using radioligands administered at minimal mass, 

such as PET, allow for redefinition of equation 2. During tracer conditions, often 

defined as less than 5% receptor occupancy, the concentration of free substance (F) is 

considered much smaller than the dissociation constant (KD) resulting in the expression: 

 
 

 
  

    

  
      (4) 

In 1984 Mintun and co-workers used established concepts for in vitro radioligand 

binding to introduce the term binding potential (BP) for quantification of radioligand 

receptor binding with PET
212

. The BP was defined as the ratio of Bmax to KD. At tracer 

dose conditions, the BP definition of Mintun equals the ratio of B/F at equilibrium. 

Recently, the nomenclature for in vivo imaging of radioligands with reversible binding 

was further established and the definition of BP was specified in relation to the 

reference concentration used to define an affinity constant
140

. Shortly, affinity can be 

expressed by comparison to three distinct reference concentrations, the free plasma 

concentration of radioligand (BPF), the total plasma concentration of radioligand (BPP) 

or the non-displaceable concentration of radioligand (BPND). The main outcome 

parameter in this thesis was BPND, which represents the product of receptor density 

(Bmax), apparent affinity (KD
-1

) and the free fraction of radioligand in the non-

displaceable tissue compartment (fND)
140

. 

 

1.4.2 Quantification of neurotransmitter release 

The application of PET to study neurotransmitter release was first proposed in 

1984
84

. Investigations conducted since have resulted in a large number of studies 

confirming that modification of neurotransmitter concentration can be measured using 

this technology
175

. During PET measurements, the radioligand competes with the 

neurotransmitter for binding to receptors. When including the free neurotransmitter 

concentration (FNT) and the neurotransmitter dissociation constant (KNT) in equation 4 

it can be rewritten as: 

 

                  
    

     
   
   

 
     (5) 

 

A change in free neurotransmitter concentration (∆FNT), induced by a 

pharmacological or physiological intervention, results in a change in BPND due to the 

altered competition between radioligand and neurotransmitter to the receptor. In the 

competition model, it is assumed that the Bmax, KD, FNT and KNT are not modified when 
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compared to the baseline measurement. The BPND in the challenge study can 

accordingly be described as: 

 

                   
    

     
        

   
 
      (6) 

Comparison of the BPND obtained during baseline and challenge conditions 

provides initial evaluation of the sensitivity of a radioligand to neurotransmitter 

release. By combining equation 5 and 6 the relative change in BPND (∆) observed in 

the challenge condition can be expressed as:  

   
                             

             
  

    

             
     (7) 

From equation 7 it becomes evident that a significant change in BPND (∆) can be 

expected when the change in neurotransmitter concentration (∆FNT) is much larger than 

the sum of the affinity of the neurotransmitter (KNT) and the baseline neurotransmitter 

concentration (FNT). In addition, it can be concluded that the observed ∆ is independent 

of radioligand characteristics and solely depends on the affinity of the neurotransmitter 

to the receptor. Development of radioligands suitable for study of neurotransmitter 

release should therefore preferably target receptors for which the neurotransmitter has 

high affinity
248

.  

It has previously been argued that “low-affinity” radioligands could be more 

suitable tools for measurement of neurotransmitter release
290

. As seen from equation 7, 

the affinity of the radioligand to the target receptor (KD) does however not influence the 

change in BPND (∆)
72

. A prerequisite of the validity of equation 7 is that receptor 

binding is obtained during equilibrium and at tracer dose conditions. Some PET 

experiments are, on the other hand, performed under rapid changes in neurotransmitter 

concentration and, under these conditions, it has been suggested that the KD, or more 

specifically the Koff, is an important parameter allowing for rapid adjustment to the 

changes in neurotransmitter concentration
64

. Also, the rate constant k2 has been 

suggested to be an important radioligand characteristic when the radioligand is to be 

used for measurement of neurotransmitter release during dynamic conditions
64,187,216

. 

No systematic study has thus far been conducted to support these theories with 

experimental results. 

 

1.5 G-PROTEIN COUPLED RECEPTORS 

1.5.1 Families of G-protein coupled receptors 

G-protein coupled receptors (GPCRs) are the largest family of membrane 

proteins and mediate the majority of cellular responses to hormones and 

neurotransmitters. All GPCRs contain seven membrane-spanning segments, which are 

separated by alternating intra- and extracellular loop regions. In vertebrates, GPCRs are 

commonly divided into five families: rhodopsin, secretin, glutamate, adhesion and 

Frizzled/Taste2
276

.  

 

1.5.2 G-protein  coupled receptor signalling 

It has been estimated that more than half of available drugs on the market target 

GPCRs
81

. Despite intensive academic and industrial research efforts, the structural 

basis of GPCR functioning is still not fully understood. Guanine nucleotide binding 

proteins (G-proteins) are heterotrimeric and exist out of three subunits, α, β and γ, with 
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the α-subunit containing a guanine nucleotide binding site. In the ternary models, 

agonist binding is thought to modulate the proportion of receptors that are in an active 

conformation to those that are inactive and not signalling. An agonist induced 

conformational change results in activation of the associated heterotrimeric G-protein, 

involving exchange of bound guanosine diphosphate (GDP) for guanosine triphosphate 

(GTP) by the α-subunit and thereby causing dissociation of the heterotrimeric complex. 

The dissociated α- and βγ-subunits separately promote cellular signalling by second 

messenger systems, such as adenylate cyclase (AC). Signal transduction is terminated 

when bound GTP is hydrolyzed to GDP, and the heterotrimeric complex is reunited and 

coupled back to the receptor
241,242,275

 (Figure 2). 

 

Figure 2. Schematic representation of GPCR activation and deactivation266. 

1.5.3 The high affinity binding state 

 Three decades ago, in vitro binding studies on tissue homogenate indicated that 

GPCRs exist in two affinity states for agonist binding. Saturation studies using an 

antagonist radioligand showed biphasic displacement after addition of increasing 

concentrations of an agonist. The high affinity state was thought of as coupled to the G-

protein, since the addition of guanine nucleotide altered the biphasic displacement 

curve into a monophasic curve with similar affinity as the low affinity state. 

Conversely, antagonist binding was shown as being insensitive to GTP addition and as 

binding with only one affinity
52,300,342

. Moreover, Scatchard analyses demonstrated 

different receptor densities (Bmax) when obtained with agonist and antagonist D2/D3 

receptors radioligands
17

. The proportion of receptors in the respective states may have 

implications for function and disease. For instance, the high affinity state of D2 

receptors has been suggested to represent the functional state of the receptor
92

, and it 

has been proposed that proportions may vary in such CNS-disorders as 

schizophrenia
294,296

.  
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1.5.4 GPCR models 

Several models have been used to describe the agonist activation of GPCRs 

(Figure 3). The ternary model was proposed in 1980 and described the interaction 

between agonist (A), receptor (R) and G-protein (G)
51

. In this model, agonists promote 

and stabilize the ternary complex (ARG). The model accounts for the heterogeneity of 

agonist binding and for the high affinity receptor state being sensitive to guanine 

nucleotides. 

In 1993, an extension of the ternary model was proposed. The extension was 

based on observations that GPCRs have basal activity in the absence of an agonist, and 

that mutant GPCRs can enhance the agonistic-independent activity
34,181,281

. In the 

extended ternary complex, an equilibrium is described between the inactive receptor 

state (R) and the active receptor state (R*). Agonistic efficacy was thought to be 

reflected in the ability to modify the equilibrium between R and R*, with R* having 

potential to bind the G-protein. The extended ternary complex can account for different 

classes of drug activity, including full agonists, partial agonists, neutral antagonists and 

inverse agonists. 

Over the last two decades it has become clear that not all GPCR properties can be 

explained by the extended ternary complex
155,156

. The existence of multiple 

conformational states has gained support and in this model the inactive receptor state R 

is, after agonist binding, proposed to gradually conform into the active R* state by 

intermediate states R’ and R’’
93

. Several functional and biophysical studies now 

support that most GPCRs sample multiple conformations
161

. The existence and 

functional relevance of multiple conformational states has been mainly demonstrated 

in vitro and awaits further in vivo support. 

 
Figure 3. Three models describing GPCR activation by agonist (A), receptor (R) and G-protein (G). (A) 

Classical ternary complex. (B) Extended ternary complex. (C) Multistate model
51,93,181

.  

 

1.5.5 Receptor internalization and β-arrestin 

After agonist-induced G-protein dissociation, the receptor can undergo 

desensitization by phosphorylation and β-arrestin binding to the receptor. This initial 

desensitization is followed by receptor internalization in which β-arrestin functions as a 

scaffolding protein. Receptor internalization is a process in which cells internalize cell 

surface located receptors into plasma membrane vesicles, a process considered to 

maintain cellular homeostasis. After internalization, the receptor may be recycled or 

degraded
78,79

. Recent work in cell lines suggests that β-arrestin not only regulates 

desensitization, but is a multifunctional adaptor protein also involved in the signalling 

cascade. Receptor ligands have been shown as unbalanced in stimulating the G-protein 

and β-arrestin signalling pathways, with some receptor systems activating only one 

pathway; this mechanism is referred to as “biased agonism”
192,261,338

. These new 

insights in GPCR signalling pathways should be taken into account when studying 

neurotransmitter release with PET. 
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1.6 THE DOPAMINE SYSTEM 

Arvid Carlson discovered  in 1958 that dopamine is of great importance for the 

functioning of the healthy brain
27

. Dopamine was characterized as a catecholamine with 

neurotransmitter function in the CNS. The dopamine system is one of the most widely 

studied neurotransmitter systems, and has been examined in an extensive number of 

studies with molecular imaging techniques
43

. Dopamine is thought to play an important 

role in physiological functions such as cognition, movement, reward, emotional 

expression, prolactin secretion and cardiovascular function. The dopamine system is 

degenerated in Parkinson’s disease and Huntington’s disease and dopamine dysfunction 

has been postulated to play a role in ADHD and schizophrenia. 

 

1.6.1 Dopaminergic neurotransmission 

Dopamine does not pass the BBB and is synthesised in brain from the essential 

amino acid tyrosine (TYR). TYR is converted by tyrosine hydroxylase (TH) into L-3,4-

dihydroxyphenylalanine (L-DOPA) and subsequent decarboxylation by the L-aromatic 

acid decarboxylase-enzyme (AADC) results in dopamine.  After synthesis dopamine is 

stored in terminal vesicles and upon neurological firing dopamine is released into the 

synaptic cleft. Activation by dopamine is primarily terminated by reuptake by the 

dopamine transporter (DAT). Degradation of dopamine occurs by three enzymes, 

monoamine oxidase (MAO), aldehydedehydrogenase (ALDH) and catechol-O-

methyltransferase (COMT)
215

. MAO and ALDH are mainly membrane bound enzymes 

and are predominately located on the outer layer of mitochondria in neurons and glial 

cells
20

. COMT is present in periphery and CNS and located in the cytoplasm of neurons 

and glial cells in brain
196

 (Figure 4).  

 

 

Figure 4. (Left) Schematic representation of a dopaminergic neuron with cell body (top) and the synaptic terminal 

region, including synaptically located dopamine receptors (bottom). (Right) Dopaminergic pathways in the human 

brain, modified from
133

. 
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1.6.2 Dopaminergic pathways 

The dopaminergic neurons in the midbrain (substantia nigra and ventral 

tegmental area) and the hypothalamus give origin to the four main dopaminergic 

pathways (Figure 4). The nigrostriatal pathway projects from the substantia nigra to the 

dorsal striatum, is important for the control of movement and is the system primarily 

involved in movement disorders such as Parkinson’s disease. The mesocortical and 

mesolimbic pathways originate from the ventral tegmental area and project, 

respectively, to the neocortex and to limbic structures, such as the nucleus accumbens, 

amygdala and hippocampus. Both these pathways have been suggested to have a role in 

memory, reward and desire, as well as addiction and emotion, and have been proposed 

to be affected in the pathophysiology of schizophrenia. The fourth pathway is the 

tuberinfundibular pathway between the hypothalamus and the pituitary gland. The 

tuberinfundibular pathway plays a role in hormonal regulation, maternal behaviour and 

sensory processes
330

. In recent years, the existence of a novel dopaminergic system 

targeting the thalamus has been described for macaques and humans using 

immunolabelling techniques
90,91,282

. 

 

1.6.3 Dopamine receptor subtypes 

The effects of dopamine are mediated through five receptor subtypes, divided 

into two families, the D1-like receptors (D1 and D5) and the D2-like receptors (D2, D3 

and D4), based on pharmacological and structural properties
152,309,330

. Two splice 

variants of the D2 receptor exist, D2-short and D2-long which differ by an insertion of 29 

amino acids
103

. The D2-short is mainly located presynaptically and proposed to function 

as autoreceptor, while the D2-long is mainly located postsynaptically
329

.   

Activation of the D1-like receptor class results in the stimulation of Gαs or Gαolf, 

which induces activation of AC. AC catalyzes the conversion of adenosine-5’-

triphosphate (ATP) to cyclic adenosine monophosphate (cAMP) and consequently 

activates the disinhibition of protein kinase A (PKA). PKA in turn causes 

phosphorylation of several downstream targets, including CREB and DARPP-32. Post-

mortem autoradiography studies have shown that the D1 receptor is the most abundant 

dopamine receptor in the human brain, with high densities in striatum and moderate 

density in substantia nigra and neocortex
113,114

. Currently, there are no pharmacological 

tools available that differentiate between the D1 and D5 receptor. Comparison of mRNA 

levels in monkey brain shows high levels for the D1 receptor in striatum with lower 

levels in cortex and amygdala, whereas the D5 receptor expression is high in 

cortex
35,184

. Studies using subtype-specific antibodies have mapped D5 receptors in 

several brain regions, including striatum, hippocampus and substantia nigra in rat and 

human brain
159

. 

Activation of the D2-like receptor class results in stimulation of Gαi or Gαo, and 

inhibition of cAMP production
49

. Consequently, downstream effects of cAMP, such as 

PKA and phosphorylation of DARPP-32, are thereby inhibited. While D1 and D2 

receptors have opposite effects at the molecular level, they often have a synergistic 

action when more complex outputs are considered. Post-mortem autoradiography 

studies have shown that the D2 receptor density is high in striatum
113,114

 with low levels 

in neocortex and thalamus
115,158

. The D3 receptor has been shown mainly located in the 

ventral striatum, including the nucleus accumbens, although most studies have been 

performed with D2/D3-receptors unselective radioligands making selective study of the 

less abundant D3 receptor cumbersome
116

. In rodents, the D4 receptor has been shown 

to be located in limbic and motor areas using autoradiography
53

. A recent PET study 

indicates, however, high D4 receptor binding in retina but low binding in the monkey 

brain
167

.  
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1.6.4 PET studies on dopamine release 

1.6.4.1 D2/D3 receptors antagonist radioligands 

PET radioligands developed for imaging of the D2/D3 receptors in brain have 

primarily been antagonist radioligands, such as [
11

C]raclopride
61,68

 and [
11

C]FLB 

457
76,118

. A large number of studies have shown that dopamine release induced by a 

pharmacological or cognitive/behavioural intervention can be studied using D2/D3 

receptors radioligands and PET or single photon emission computerized tomography 

(SPECT)
59,175

. Typically, amphetamine has been used to enhance and reserpine or 

alpha-methyl-para-tyrosine (AMPT) to decrease dopamine levels, thereby respectively 

decreasing or increasing D2/D3 receptors binding of radioligand in primates
175

. Two 

early observations in human subjects greatly stimulated the use of this methodology for 

further applications. First an enhanced amphetamine effect on [
123

I]IBZM and 

[
11

C]raclopride binding was observed in patients with schizophrenia
22,172

. Secondly, 

videogame playing was shown to cause a significant decrease in [
11

C]raclopride 

binding
59,163

. It has more recently been shown that dopamine release can be detected in 

extra-striatal regions in some studies using [
18

F]fallypride
40,218,219,269

 or [
11

C]FLB 

457
2,3,31,83,228

, but not when using [
11

C]fallypride
228

. 

 

1.6.4.2 D1/D5 receptors antagonist radioligands 

Previous studies using D1/D5 receptors antagonist radioligands, such as (R)-

[
11

C]SCH 23390 and (+)-[
11

C]NNC 112 did not show changes in BP after modification 

of dopamine levels
4,36

. These observation were not anticipated as electrical induced 

dopamine release did decrease [
3
H]SCH 23390 binding in vitro

95
. Several reasons have 

been proposed to explain this discrepancy.  

Firstly, dopamine affinity to the D1 receptor has been reported to be of the same 

order as for the D2 receptor (30 vs. 6 nM, Ki high)
295

, but more recent studies have shown 

lower D1 receptor affinity (897 vs. 64 nM, Ki high)
113

. The large variation between results 

obtained from different assays indicates the dependence to assay conditions. Secondly, 

the D1/D5 receptors have been found to be located predominantly extra-

synaptically
128,183

, which is possibly a mismatch when amphetamine increases 

dopamine mainly in the synapse. This possible mismatch does not, however, explain 

the lack of effect on radioligand binding after the long-lasting effect of reserpine. 

Thirdly, a rather small percentage of D1 receptors are in the high affinity state, in vitro 

measured as 20-40%
195,201,271

. An agonist radioligand selectively binding the high 

affinity state may therefore provide a more sensitive approach to further understand the 

reported lack of dopamine sensitivity of D1/D5 receptors antagonist radioligands. 

 

1.6.4.3 Ceiling effect 

The interpretation of the neurotransmitter release studies along the competition 

model was supported by the relationship between changes in dopamine release 

measured with microdialysis and observed changes in BP with PET
22,62,173,319,320

. 

Enhanced dopamine level, however, only modified BP values to a small extent, as well 

as a 44% increase in dopamine level, causing 1% change in BP. This modest 

displacement suggested a maximum effect smaller than that observed for 

antipsychotics, which could completely inhibit radioligand binding. This effect became 

referred to as “ceiling effect”. The ceiling effect was proposed to be related to the two 

affinity states of the D2/D3 receptors and the displaceable part of the antagonist 

radioligand binding was described as binding to the high affinity state. Agonist 

radioligands, specifically targeting the high affinity state were therefore expected to be 

more effectively competing with endogenous dopamine than antagonist radioligands, 
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thereby providing more sensitive tools for measurement of dopamine release (Figure 

5)
175

.  

 
Figure 5. The proposed pharmacological model for agonist and antagonist radioligand binding to D2/D3 receptors, 

modified from175. 

1.6.5 PET imaging with dopamine agonist radioligands 

PET imaging with agonist radioligands was expected to confirm the existence of 

the high affinity state in vivo. In addition, the agonist radioligands were suggested as 

superior tools for measurement of changes in endogenous dopamine level. 

 

1.6.5.1 Agonist radioligands for the D1/D5 receptors 

The development of PET radioligands targeting the D1/D5 receptors has thus far 

focused on the 1-phenyl-3-benzazepines scaffold
8,231

, as other potent D1/D5 receptors 

agonists, such as dihydrexidine
188

 and dinapsoline
94,302

, cannot be easily radiolabeled. 

DaSilva and co-workers compared (+)-[
11

C]SKF 75670 and (±)-[
11

C]SKF 82957
44

 and 

found (±)-[
11

C]SKF 82957 to be more suitable
45

. Several studies using [
11

C]SKF 82957 

have been reported, including dopamine challenge studies in rat and 

baboon
46,109,174,283,314

 as well as pioneering PET studies in humans
47

. However, in 2003, 

it was shown that a lipophilic radiometabolite accumulated in rat brain after i.v. 

injection of (+)-[
11

C]SKF 82957
48

. The formation of this lipophilic radiometabolite 

most likely confound the quantification of D1/D5 receptors binding in brain, and 

therefore drastically limited the further application of (+)-[
11

C]SKF 82957 in PET 

studies
48

.   

 

1.6.5.2 Agonist radioligands for the D2/D3 receptors 

The development of an agonist radioligand for D2/D3 receptors has been pursued 

for about two decades and includes the radiolabeling of compounds originating from 

numerous scaffolds, such as the ergolines, aporphines, 2-aminotetralins, 

benzoquinolines and naphthoxazines. In Appendix I a detailed review is provided on 

all D2/D3 receptors agonist PET radioligands reported in the literature. This section 

only shortly discusses the three D2/D3 receptors agonist radioligands that have been 

evaluated in human subjects, [
11

C]PHNO, [
11

C]NPA and [
11

C]MNPA (Figure 6).  
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Figure 6. The three most widely used D2/D3 receptors agonist PET radioligands. From left to right: [11C]PHNO, 

[11C]NPA and [11C]MNPA. 
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[
11

C]PHNO binding has been studied in rat
85

, cat
100

, non-human primate,
225

 and 

human subjects
101,105,344

. [
11

C]PHNO has high D3 receptor affinity and several studies 

have confirmed that the [
11

C]PHNO signal in brain mainly represents D3 

binding
107,260,289,325

. [
11

C]PHNO provides a very good binding signal in striatum 

(BPND ~3). One disadvantage of [
11

C]PHNO, however, is the radiolabeling by 
11

C-

propyionylation,
346

 which typically results in a mass administrated of >1 μg. This 

mass can be considered as a non-tracer dose and may sometimes induce adverse 

events, such as transient nausea (mass dose of >0.03 μg/kg)
213

. [
11

C]PHNO has 

already been used in clinical studies evaluating D3 receptor function in neurologic and 

psychiatric disorders
19,106

. An optimization of labelling strategy is ongoing and may 

further advance the use of [
11

C]PHNO
60,89

. 

Another potent class of D2/D3 receptors agonists is the aporphines scaffold. 

[
11

C]NPA
136

 was the first aporphine extensively studied in non-human 

primates
137,223,224

 and has now been evaluated in humans
177,227,229

. [
11

C]MNPA is the 

2-methoxy derivative of NPA and has been reported to have higher D2 receptor binding 

affinity (Ki, 0.17 vs. 0.80 nM)
87

. PET studies have, however, reported comparable 

striatal BPND values (0.8-1.0) for [
11

C]MNPA and [
11

C]NPA in monkey
297,315

 and 

human subjects
162,246

, as possibly partly explained by higher non-displaceable binding 

due to the higher lipophilicity of [
11

C]MNPA (3.69 vs. 3.37 cLogD). A clear advantage 

of [
11

C]MNPA is the radiolabeling with 
11

C-methylation, when compared to 
11

C-

propionylation. 
11

C-Methylation is more routinely used, more automated, more GMP-

compliant and achieved with higher specific radioactivity. The agonist radioligand of 

choice in this thesis has therefore been [
11

C]MNPA. 

 

1.6.5.3 PET imaging of the high affinity agonist binding site 

During the time period of this thesis work several approaches have been 

undertaken to demonstrate that the D2/D3 receptors exist in vivo in two affinity states. 

Scatchard analyses have been performed directly comparing the Bmax for agonist and 

antagonist radioligands. Two studies reported no major differences in Bmax using two-

point Scatchard plots in cat and baboon
100,224

. A different approach in rodents made use 

of dopaminergic supersensitivity models, in which altered fractions of receptors in the 

high affinity state were reported using in vitro binding techniques. Among four 

different models, no differences were observed between agonist and antagonist 

radioligand binding measured either ex vivo
203

 or in vivo
304

. A third approach taken was 

to use saturation studies to examine different doses of exogenous dopamine receptor 

agonists that displace antagonist and agonist radioligand binding. Receptor occupancy 

of exogenous agonists was found monophasic when measured with 

[
11

C]/[
3
H]raclopride with indistinguishable Ki values as obtained with agonist 

radioligands
164,202,250

. Despite this variety of studies attempting different approaches, 

the existence of the high and low affinity state in vivo has not been conclusively 

disputed or confirmed. 

 

1.6.5.4 Agonist radioligands as improved tools for study of dopamine release 

A second rationale for the development of agonist radioligands is to obtain tools 

that are more sensitive to changes in endogenous dopamine level than the already 

available D2/D3 receptors antagonist radioligands. PET studies using dopamine level 

altering drugs, such as amphetamine, have consistently reported a more pronounced 

effect on agonist radioligand binding than on antagonist radioligand binding
41,42,100,223

. 

Interestingly, the amphetamine studies showed a similar, amphetamine-dose-consistent 

ratio of improved sensitivity for agonist radioligands, when compared to antagonist 

radioligands. Based on the consistent ratio observed, it was suggested that a constant 
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fraction of receptors was in the high affinity state (60-80%)
223

. The findings stand in 

contrast to earlier mentioned studies directly investigating the existence of two affinity 

state in vivo.  

Importantly, a small number of studies have now shown that anaesthesia and 

stress modify agonist radioligand binding to D2/D3 receptors
204,240,322

. Direct 

comparison in humans is required to fully understand the confounding effects of 

anaesthesia. The first comparative study in man used [
11

C]NPA and [
11

C]raclopride, 

and indicates that the agonist radioligand [
11

C]NPA was more sensitive to 

amphetamine-induced changes in dopamine concentration
229

. Amphetamine has 

already been shown to displace [
11

C]PHNO binding in man
345

. Although a full 

comparative study with [
11

C]PHNO and [
11

C]raclopride in human subjects has thus far 

only been reported in abstract form, the preliminary results confirm improved 

sensitivity to dopamine concentration for the agonist [
11

C]PHNO
299

. Confirmation of 

the enhanced sensitivity of agonist radioligands to endogenous dopamine level in man 

will encourage the development and future application of agonist radioligands. 

 

1.6.5.5 PET studies supporting the internalization model 

Agonist induced internalization of the D1 and D2 receptor has been consistently 

demonstrated in vitro
16,58,318

. Three in vivo observations suggest a contribution of 

internalization and raise concern about the validity of the competition model for 

interpretation of dopamine challenges studies
99,175

. First, a temporal discrepancy has 

been observed between the amphetamine-induced dopamine pulse and the prolonged 

effect on agonist and antagonist radioligand binding
26,100,131,173,226

. Second, 

amphetamine does not decrease receptor binding of all D2/D3 receptors radioligands 

(e.g., butyrophenones)
125,244

. Third, amphetamine has been shown to decrease 

[
11

C]raclopride Bmax values in vivo in cat
98

 and ex vivo in rat
311

.  

To account for these observations, part of the change in radioligand binding may 

be related to receptor internalization
175

. The internalization model was initially 

proposed by Chugani and co-workers for paradoxical observations using 

[
3
H]spiperone

37
. The model proposes that internalization of receptors includes a 

relocalisation of receptors into an intracellular compartment resulting in reduced 

accessibility of radioligands which is reflected in a decrease in Bmax. Conversely, an 

elegant in vitro study recently conducted observed a decrease in receptor affinity for 

radioligands after receptor internalization
111

. Whereas the exact contributing factors 

remain unclear, the internalization model can help to explain the three previously 

mentioned inconsistencies of the competition model observed in PET studies. Recently, 

the contribution of internalization in dopamine challenge studies was confirmed using 

PET. Four hours after amphetamine administration, a decrease in D2/D3 receptors 

radioligand binding was still observed in wild-type mice, but not in arrestin-3 knockout 

mice, which are animals that lack the capacity to internalize D2/D3 receptors
303

. 

 

1.7 THE SEROTONIN SYSTEM 

Serotonin (5-hydroxytryptamine, 5-HT) was first identified in serum as a 

vasoconstrictive substance. In 1953, serotonin was found to be present in the 

mammalian brain
324

, and its function in brain has since then been widely studied and an 

extensive number of studies with molecular imaging techniques have been 

performed
335

. Serotonin is thought to play an important role in normal physiological 

processes such as appetite, pain perception, sleep and thermoregulation, and serotonin 

dysfunction has been implicated in addiction, anxiety, depression, migraine, obsessive 

compulsive disorders and schizophrenia. 
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1.7.1 Serotonergic neurotransmission 

Serotonin does not pass the BBB and is therefore synthesised in serotonergic 

neurons in brain. The biosynthesis starts from L-tryptophan (TP): the initial step is 

conversion to 5-hydroxy-L-tryptophan (5-HTP) by tryptophan hydroxylase (TPH). 5-

HTP is then consecutively converted by the enzyme AADC to 5-HT. Both L-

tryptophan and 5-HTP can pass the BBB, and are integral to our dietary intake. After 

synthesis, serotonin is stored in terminal vesicles, and upon neurological firing released 

into the synaptic cleft. Activation by serotonin is terminated by reuptake by the 

serotonin transporter (SERT), and degradation occurs by MAO and ALDH (Figure 7). 

 
Figure 7. (Left) Schematic representation of a serotonergic neuron with cell body in the raphe nuclei (top) and the 

synaptic terminal region, including synaptically located 5-HT receptors (bottom). (Right)  Serotonergic pathways in 

the human brain, modified from133. 

 

1.7.2 Serotonergic pathways 

Serotonergic innervations in brain arise from cell bodies concentrated in the 

raphe nuclei. Two distinct subdivisions of raphe nuclei are recognized: the rostral 

nuclei (located in midbrain and rostral pons) and the caudal nuclei (located primarily in 

the medulla oblongata). Most brain serotonergic innervations originate from the rostral 

raphe nuclei, which includes the dorsal raphe nucleus and the median raphe nucleus. 

From the rostral raphe nuclei, axons ascend to the cerebral cortex, the limbic regions 

and to the basal ganglia. Serotonergic nuclei in the caudal raphe nuclei give rise to 

descending axons, some of which terminate in the medulla, while others descend to the 

spinal cord (Figure 7)
11,317

. 

 

1.7.3 Serotonin receptor subtypes 

The serotonin system is one of the oldest phyologenetic neurotransmitter/ 

hormone systems, and includes a diverse group of receptors. Thus far, fourteen 

mammalian receptor subtypes have been characterized based on distinct structural and 

pharmacological properties. The receptor subtypes are assigned to seven families, 5-

HT1-7 and all serotonin receptors are G-protein coupled, except for the 5-HT3 
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receptor
15,132

. The receptors can be further categorized into four groups according to 

their main second messenger system: the 5-HT1 receptors coupled to Gαi/Gαo proteins 

(5-HT1A, 5-HT1B, 5-HT1D, 5-HT1E, 5-HT1F), the 5-HT2 receptors coupled to Gαq 

proteins (5-HT2A, 5-HT2B, 5-HT2C), the 5-HT4, 5-HT6, and 5-HT7 receptors coupled 

to Gαs proteins, and the 5-HT5 receptors (5-HT5A and 5-HT5B) for which the coupling 

is still uncertain
264

.  

 

1.7.4 PET studies on serotonin release 

Whereas PET imaging of dopamine release has been successful, this approach 

has not been successfully extended to the serotonin system
248

. PET has long been 

recognized as a promising methodology for measuring serotonin release, thereby 

providing further understanding of the pathophysiology and treatment of such common 

CNS-diseases as mood, anxiety, sleep and food disorders. Several suitable radioligands 

have been developed for PET imaging of the serotonin system, specifically for the 5-

HT1A, 5-HT1B, 5-HT2A and 5-HT4 receptor and SERT. To date, most of these 

radioligands have been tested for sensitivity to serotonin level, but with limited success. 

 

1.7.4.1 5-HT1A receptor radioligands 

An extensive number of radioligands have been developed for the 5-HT1A 

receptor, with the antagonist [carbonyl-
11

C]WAY-100635 being the most commonly 

used
165,245,252

. Several studies have attempted to evaluate the effect of pharmacological-

induced changes in serotonin release on [
11

C]WAY-100635 binding, but have shown 

inconsistent effects in rodents
129,135,193,270

 and no effect in man
259

. The development of 

new radioligands having potential for enhanced sensitivity to serotonin has resulted in 

[
18

F]FPWAY, [
18

F]FCWAY and [
18

F]MPPF, of which [
18

F]MPPF is perhaps the most 

promising with regards to serotonin sensitivity
102,142,298

.  

Although initial studies with [
18

F]MPPF indicated serotonin susceptibility in rat 

and cat
12,13,265,268,327,351-353

, the effect has not been consistently confirmed in non-human 

primates
328

 or humans
56,256,301,326

. The contradictory findings are suggested to partly 

originate from differences in regional response to serotonin release. 5-HT1A 

autoreceptors in the raphe nuclei were shown to undergo internalization, while 

postsynaptic receptors in the hippocampus and cortex do not internalize
12,268

. A report 

on fluoxetine effect on serotonin level being restricted to raphe nuclei in man is in line 

with these regional differences in the serotonin response
301

. The raphe nuclei is, 

however, a small region, and determination of BP has proven challenging and has thus 

far not resulted in optimal reproducibility
147,189

. 

 

1.7.4.2 5-HT2A and 5-HT4 receptor radioligands 

Radioligands selectively targeting 5-HT2A or 5-HT4 receptors have also been 

tested for sensitivity to modified serotonin release: radioligands targeting 5-HT2A 

receptors, for example, include the non-selective radioligands [
18

F]setoperone, 

[
3
H]NMSP and the selective radioligands [

18
F]altanserin and [

11
C]MDL-100907. 

However, PET studies have shown no evident susceptibility of these radioligands to 

modified serotonin level in rat
130,270

 and human
169,199,207,254,306,349

. Currently, only 

[
11

C]SB207145 is available for imaging of 5-HT4 receptors using PET
197

, but 

citalopram did not modify [
11

C]SB207145 binding in control subjects
198

. It can 

therefore be concluded that none of the serotonin receptor targeting radioligands has 

unambiguously been shown to be sensitive to serotonin level. 
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1.7.4.3 SERT radioligands 

Another approach for measurement of serotonin release is the use of radioligands 

targeting SERT. This approach is more challenging as most serotonin challenge studies 

utilize drugs acting on SERT. However, several attempts have been reported using a 

non-selective MAO inhibitor, 5-HTP, or TP depletion. After elevation of serotonin 

level, consistent decreases in [
11

C]DASB binding has been shown in rat
190,191

, cat
97

 and 

non-human primate
191,348

. Milak and colleagues, however, reported that tryptophan 

depletion decreased BP values, possibly related to serotonin induced SERT 

internalization
208

. In two studies in control subjects no effect of TP depletion on 

[
11

C]DASB binding has been shown
257,313

. In summary, although elevation of serotonin 

levels did effect [
11

C]DASB binding in animals, this approach has not been found 

suitable for humans.  

 

1.7.4.4 State of the art for PET imaging of serotonin release 

It can be concluded that after two decades of serotonergic radioligand 

development, no radioligand has been found suitable for study of modified serotonin 

release in clinical studies in man. Potential reasons for this lack of success were 

recently reviewed
248

. Considering the basal serotonin concentration and receptor 

affinity, imaging of serotonin release may be feasible, but more cumbersome than for 

dopamine. Comparison of the fraction of receptors in high affinity state has indicted 

lower fractions for the 5-HT1A (20-40%) and 5-HT2A receptor (40-60%) when 

compared to D2 dopamine receptors (70%), possibly explaining the observed low 

sensitivity to serotonin for radioligands targeting these receptors. Moreover, the 

internalized receptor pool may vary between receptors, thereby limiting endogenous 

serotonin competition with the radioligand binding. This may be a particular problem 

for the 5-HT2A receptor (80-90% internalized).  

 

1.7.4.5 PET imaging of 5-HT1B receptors 

Radioligands targeting the 5-HT7 or 5-HT1B receptor have been suggested as 

more promising because endogenous serotonin has relative high affinity to these 

receptor subtypes. Initially, it was claimed that the 5-HT1B receptor only existed in 

rodents
249

 but was later demonstrated to be the homologous species of the human 5-

HT1Dβ receptor
6,123,132

. Several physiological functions have been shown to be mediated 

through 5-HT1B receptors, and animal studies have shown a role in aggression
243,262,287

, 

feeding
157,179

, learning
7
 and locomotion

262
. The 5-HT1B receptors are also implicated in 

the pathophysiology and potential treatment of several neuropsychiatric disorders, 

including anxiety disorders
185

, depression
279

, migraine
337

, anorexia
157

 and substance 

abuse
39,273,274

. 

The 5-HT1B receptor acts as autoreceptor
65,104,200,307

 and heteroreceptor
80

 when 

located at serotonergic or non-serotonergic neurons, respectively. On serotonergic 

neurons the 5-HT1B receptor is not located on cell bodies, like the 5-HT1A 

autoreceptors, but on terminals
21,267,285,286

. Endogenous serotonin has relative high 5-

HT1B receptor affinity (~1 nM)
211

 and a large proportion of receptors has been shown to 

be G-protein coupled and thus in the high affinity state
10,25,108,211,239

. Radioligands 

targeting the 5-HT1B receptor may thus have potential for measurement of serotonin 

release. However, until recently, the role of 5-HT1B receptors could not be studied in 

the living human brain because no suitable PET radioligand was available. 

During the time of this thesis work, two novel radioligands suitable for study of 

the 5-HT1B receptor were reported, [
11

C]AZ10419369
251

 and [
11

C]P943
86

. 

[
11

C]AZ10419369 is a selective antagonist radioligand for the 5-HT1B receptor subtype 
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(KD is 0.8 nM) as confirmed by autoradiography and PET studies in monkey and 

human
194,251,333

. [
11

C]AZ10419369 binding is high in 5-HT1B receptor rich regions, 

including the globus pallidus, the substantia nigra and occipital cortex. The receptor 

binding of [
11

C]AZ10419369 has been shown to be reversible, making this radioligand 

suitable for quantitative PET measurements of 5-HT1B receptors and drug occupancy in 

vivo
251,333

. 

[
11

C]P943 is a selective antagonist radioligand for the 5-HT1B receptor and the 

brain distribution of [
11

C]P943 has been shown to be very similar to [
11

C]AZ10419369 

in primates
86,221

. Though, no direct comparison of [
11

C]P943 and [
11

C]AZ10419369 has 

thus far been reported, the reported BPND values of [
11

C]AZ10419369 are 

approximately 30-40% higher
333

. Initial clinical studies using [
11

C]P943 indicate the 

clinical relevance of 5-HT1B receptor imaging in alcohol-dependence
134

 and 

depression
220

. The 5-HT1B receptor radioligand of choice in this thesis is 

[
11

C]AZ10419369. 



18 

 

2 AIMS 

The overall aim of the present thesis was to evaluate drug-induced changes in 

dopamine and serotonin release in the non-human primate brain using PET.  

 

The specific aims of the program were as follows: 

 

1. To develop improved methods for measurement of endogenous dopamine 

level, with the following sub-aims: 

a. To radiolabel and to perform an in vivo PET evaluation of the new 

D2/D3 receptors agonist radioligand [
11

C]MNPA. 

b. To compare the sensitivity of [
11

C]MNPA and [
11

C]raclopride to 

stimulant-induced dopamine release.  

c. To apply [
11

C]MNPA to further obtain in vivo support for the 

existence of two affinity states for the D2/D3 receptors. 

d. To evaluate the sensitivity of the newly developed D1/D5 receptors 

partial agonist (S)-[
11

C]N-methyl-NNC 01-0259 to alterations in 

endogenous dopamine concentration. 

 

2. To evaluate the sensitivity of the new 5-HT1B-receptor radioligand 

[
11

C]AZ10419369 to alterations in endogenous serotonin concentration. 
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3 MATERIALS AND METHODS 

The present chapter provides a description of the general methods used during 

this thesis work. For complete details of the experimental work, the reader is referred to 

the full papers and manuscripts as indicated elsewhere in this book. 

 

3.1 RADIOCHEMISTRY 

All irradiations were performed on a GEMS PETtrace cyclotron (GE, Uppsala, 

Sweden) equipped with a [
11

C]methane ([
11

C]CH4) target filled with nitrogen gas 

containing 10% hydrogen. [
11

C]Methyl iodide ([
11

C]CH3I) was prepared according to 

previously reported methods
9,170,284

. In short, [
11

C]CH4 was collected in a Porapak Q 

trap cooled with liquid nitrogen and subsequently released into a recirculation system. 

The [
11

C]CH4 was mixed with vapours from iodine crystals at 60˚C and then reacted at 

720˚. After the reaction, [
11

C]CH3I was collected in a Porapak Q trap at room 

temperature and the unreacted [
11

C]CH4 was recirculated for three minutes. 

[
11

C]Methyl triflate ([
11

C]CH3OTf) was prepared by sweeping [
11

C]CH3I vapour 

through a heated glass column containing silver-triflate-impregnated graphitized 

carbon, as previously described
222

. 

The produced [
11

C]CH3I ([
11

C]MNPA and (S)-[
11

C]N-methyl-NNC 01-0259) or 

[
11

C]CH3OTf ([
11

C]raclopride and [
11

C]AZ10419369) was trapped into a reaction 

vessel containing the corresponding mixture of precursor, solvent and base. After 

possible heating, the reaction mixture was diluted with mobile phase and injected into 

the semi-preparative HPLC system for purification. The fraction from the semi-

preparative HPLC that contained the product was evaporated to dryness under reduced 

pressure and the residue dissolved into 8 mL sterile physiological phosphate buffer 

solution (pH = 7.4). The solution was finally filtered through a Millipore Millex®GV 

filter unit (0.22 μm). 

 

3.2 IN VITRO RECEPTOR ASSAYS 

All in vitro receptor affinity and efficacy assays were performed at H. Lundbeck 

A/S, Valby, Denmark, except for the 5-HT2A receptor assay (Cerep, Paris, France). 

Data obtained in the assays at H. Lundbeck A/S were measured in a minimum of two 

full concentration-response curves using 10 concentrations of drugs (covering 4 

decades). The results are provided as Ki values (nM) derived from computer fitted IC50 

values converted to Ki values using the Cheng-Prusoff equation (Ki = IC50/(1+(L/KD))). 

 

3.3 PET MEASUREMENTS IN NON-HUMAN PRIMATES 

3.3.1 PET experimental procedures 

Cynomolgus monkeys (Macaca fascicularis) are housed in the Astrid Fagraeus 

Laboratory of the Swedish Institute for Infectious Disease Control (SMI), Solna, 

Sweden. All studies were approved by the Animal Ethics Committee of the Swedish 

Animal Welfare Agency (Dnrs: 245/04, 147/05, 16/06, 260/07, 145/08 and 399/08) and 

were performed according to “Guidelines for planning, conducting and documenting 

experimental research” (Dnr 4820/06-600) of the Karolinska Institutet as well as the 

“Guide for the Care and Use of Laboratory Animals”
38

. 

On all experimental days, anaesthesia was initiated by intramuscular (i.m.) 

injection of ketamine hydrochloride (~10 mg/kg, Ketaminol®, Intervet AB). Following 

transportation to the PET facility, the anaesthesia was maintained in the research setting 

by either a mixture of ketamine and xylazine or by sevoflurane. For study I-IV, 

anaesthesia was maintained for the duration of the experiment with i.m. injections of a 



20 

 

mixture of ketamine hydrochloride (3.75 mg/kg/h, Ketalar®, Pfizer) and xylazine 

hydrochloride (1.5 mg/kg/h, Rompun® Vet., Bayer). In study V and VI, the anaesthesia 

was maintained for the duration of the experiment by a mixture of sevoflurane (1.5-8%, 

Abbott Scandinavia AB), oxygen (~30%) and medical air after endotracheal intubation.  

During all experimental days, the head was immobilized with a fixation 

device
151

. Body temperature was maintained by Bair Hugger Model 505 (Arizant 

Healthcare Inc., Eden Prairie, MN, USA) and continuously monitored by an oral or 

rectal thermometer. Cardiac and respiratory rates were initially monitored manually at 

least every 20 minutes during the duration of the experiment (study I-IV). For study V 

and VI, the ECG, heart rate, respiratory rate and blood gasses were continuously 

monitored throughout the experiment and blood pressure was monitored at least every 

15 minutes.  

 

3.3.2 PET acquisition in HR and HRRT 

In study I-V, each PET measurement used a sterile physiological phosphate 

buffer solution (pH = 7.4) containing radioligand that was injected as a bolus (4 mL) 

into a surreal vein during 5 seconds with simultaneous start of the PET acquisition. As 

described in study VI, a bolus plus constant infusion approach was applied and 

included in addition to the bolus injection an infusion of radioligand with a speed of 

~10 mL/hour at different Kbol values. 

In study I-IV, radioactivity in brain was measured continuously with the Siemens 

ECAT EXACT HR system (Siemens, Knoxville, TN, USA). All acquisitions were 

acquired in 3D-mode
343

. A three-ring detector block architecture gives a 15-cm wide 

field of view. The transversal resolution in the reconstructed image is about 3.8 mm 

FWHM and an axial resolution of 3.125 mm. The attenuation correction of the data was 

obtained with three rotating 
68

Ge rod sources. Raw PET data were then reconstructed 

using standard filtered back projection consisting of the following reconstruction 

parameters: 2-mm Hanning filter, scatter correction, a zoom factor of 2.17, and a 128 3 

128 matrix size
343

. Emission data were collected continuously for 93 min, according to 

a pre-programmed series of 20 frames starting immediately after i.v. injection of 

radioligand. 

In study V and VI, PET measurements were conducted using the High 

Resolution Research Tomograph (HRRT) (Siemens Molecular Imaging, Knoxville, 

TN, USA). List-mode data were reconstructed using the ordinary Poisson-3D-ordered 

subset expectation maximization (OP-3D-OSEM) algorithm, with 10 iterations and 16 

subsets including modelling of the point spread function (PSF). The corresponding in-

plane resolution with OP-3D-OSEM PSF was 1.5 mm FWHM in the centre of the field 

of view (FOV) and 2.4 mm at 10-cm off-centre directions
334

. Attenuation correction 

data was acquired before every PET measurement, with a six minutes transmission 

measurement using a single 
137

Cs source. List mode data were acquired continuously 

for 125 or 155 minutes starting at the injection of [
11

C]AZ10419369 and PET images 

were then reconstructed with a series of frames. 

 

3.3.3 Determination of radiometabolites in plasma  

The evaluation of metabolism of radioligands measured in plasma was performed 

with slight modification of HPLC methods which were previously described
119

. In 

short, venous blood samples (1-2 mL) were obtained from the monkey at several time 

points after injection of radioligand. After centrifugation at 2000 g for 2 min, plasma 

was obtained (0.5 mL) and mixed with acetonitrile (0.7 mL). The mixture was 

centrifuged at 2000 g for 2 minutes and the supernatant (1 mL) was injected to a HPLC 

system. The radioactivity in blood and plasma were measured in a sodium iodide (NaI) 



 

21 

 

well counter. The unchanged radioligand fraction was calculated by the integration of 

the corresponding radioactivity peak and its area was expressed as a percentage of the 

sum of the areas of all radioactive peaks. 

 

3.3.4 Regions of interest 

In study I-III, a preliminary set of anatomical regions of interest (ROIs) for 

striatum and cerebellum was manually defined on summation images, representing 

mean radioactivity measured between 9 and 93 min during baseline conditions. 

Preliminary parametric images of BPND
140

 and relative blood flow (R1) were generated 

from the original reconstructed PET data by use of the two-parameter multilinear 

reference tissue model (MRTM2)
138

. The final set of ROIs was manually delineated on 

the fused preliminary R1 and BPND images, according to an atlas of a cryosected 

cynomolgus monkey head in situ
151

. The final set of ROIs was verified by visual 

inspection of the delineation on the summation images and applied to all PET studies 

performed on the same day. ROI volumes of all regions were kept similar in size 

between experimental days. 

 

In study IV-VI, magnetic resonance images were available of the individual 

monkeys. Brain magnetic resonance imaging was performed in a 1.5-T GE Signa 

system (General Electric, Milwaukee, WI, USA). A T1 weighted image was obtained 

for co-registration with PET and delineation of anatomic brain regions. The T1 

sequence was a 3D spoiled gradient recalled (SPGR) protocol with the following 

settings: repetition time (TR) 21 ms, flip angle 35˚; FOV 12.8; matrix 256x256x128; 

128x1.0 mm slices; 2 NEX. The sequence was optimized for trade-off between a 

minimum of scanning time and a maximum of spatial resolution and contrast between 

gray and white matter.  

 
Figure 8. ROIs delineated on an individual monkey MRI orientated in the horizontal projection. Presented ROIs: 

dorsal lateral prefrontal cortex (red), caudate nucleus (green), putamen (blue), thalamus (yellow) and occipital cortex 

(pink). 

 

Before delineation of ROIs, the orientation of the brain was spatially normalized 

by having the high-resolution T1-weighted magnetic resonance images reoriented 

according to the line defined by the anterior and posterior commissures being parallel 

to the horizontal plane and the interhemispheric plane being parallel to the sagittal 

plane. The standardized T1-weighted MR images were then resliced and used as an 

individual anatomical template for each monkey. ROIs were defined manually on the 

reoriented MR images (Figure 8). Mean PET images representing mean radioactivity 

between 0-57 minutes of the baseline PET measurement were co-registered to the 

magnetic resonance images using PMOD (PMOD technologies Ltd, Zurich, 

Switzerland). The generated transformation matrices were then applied to the dynamic 

emission data sets of all PET measurements obtained on the same day.  
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3.3.5 Quantitative PET data analysis 

All quantitative analyses were based on the assumption that all radioactivity in 

brain represents unchanged radioligand
212

. Time activity curves were obtained by 

calculation of regional radioactivity for each frame, corrected for decay and plotted 

versus time. For quantification of receptor binding, a mathematical model is often 

required. Typically, this model describes the relationship between input to brain and the 

brain response to the input. The input can be directly measured using arterial blood 

sampling or indirectly estimated using a reference region approach. A well accepted 

mathematical model is the compartmental model (Figure 9). The compartmental model 

assumes homogenous pools of radioligand concentration, which are assumed to 

exchange radioligand according to a prescribed set of equations. The values of the 

parameters of the model can then be estimated by fitting of the data. Several 

approaches can be used for fitting of the data, including kinetic, equilibrium and 

graphical analysis. In this thesis work, no arterial blood data was obtained from the 

monkeys. The kinetic models used for quantification of PET data are therefore 

reference tissue models. 

 

 
Figure 9. Multicompartment model. C refers to concentration of radioligand in the defined compartment. CP = 

plasma, CFT = free in tissue, CNS = non-specifically bound, CS = specifically bound, CND = non-displaceable. K1-k6 

refer to kinetic rate constants.  

 

3.3.5.1 The simplified reference tissue model 

In study IV the BPND values were estimated with the Simplified Reference Tissue 

Model (SRTM), using the cerebellum as reference region. The SRTM model contains 

only three parameters (R1, k2 and BPND) in which R1 is introduced to control for 

difference in K1 and K1’. The kinetic model is based on two main assumptions. First, 

the volume of distribution of the non-displaceable bound radioligand is the same in 

both target and reference region (CND = C’ND). Second, the free concentration (CFT) and 

non-specific concentration (CNS) equilibrate quickly and can therefore be fitted 

satisfactorily to a single tissue compartment model. The final expression includes the 

BPND and is solved in a convolution manner using least square fitting of the data
168

.  

 

3.3.5.2 The multilinear reference tissue model  

In study II and III, BPND values were estimated with MRTM2. This approach is a 

variation of the graphical method of Logan
186

 which derives the ratio of radioligand 

distribution volumes
138

. The method makes use of linear least squares estimation 
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algorithms, which is a less computer consuming approach than using non-linear square 

fitting (such as SRTM) and MRTM is therefore well suited for parametric imaging. 

Preliminary application of MRTM was used to estimate the cerebellum clearance rate 

(k’2). The k’2 value was then fixed for all voxels (MRTM2) and BPND and R1 maps 

were generated
138

. Final BPND values were obtained by ROI analysis of the BPND maps. 

 

3.3.5.3 The transient and late equilibrium approach 

In study I and V, the transient and late equilibrium approach were applied, 

respectively. The occurrence of the transient equilibrium is defined as when the 

derivative of the specific binding equals zero and at this specific time point the ratio 

CS/CND equals BPND
72

. To improve reliability of quantification, a time interval method 

has been used in which the time interval includes a short period before and after the 

occurrence of the transient equilibrium
236

. Moving the time interval to the late part of 

the time activity curves
24,272,339

 has been referred to as the late time method
141

. 

 

3.3.5.4 The continuous infusion equilibrium approach 

In study VI a continuous infusion approach was applied. When using this method 

the BPND is defined by the ratio of CS and CND during the time interval of 

equilibrium
28,176

. In study VI CCER(t) was used as estimate for CND(t).  Calculations 

were performed for a time period at which CCER(t) and CS(t) were constant. 

 

3.4 EXPERIMENTAL DRUGS 

3.4.1 D-Amphetamine  

 

NH
2

 
 

Dextroamphetamine (D-amphetamine) and substituted amphetamines, such as 

methamphetamine (METH) and methylenedioxyamphetamine (MDMA, ecstasy), are 

widely abused psychostimulant drugs. Amphetamines are substrates for the transporters 

of the monoamines dopamine, norepinephrine and serotonin. Administration of 

amphetamines promotes the release of monoamines by several pathways, mainly along 

two primary mechanisms: reversal of monoamine transporter function and modification 

of monoamine redistribution between synaptic vesicles and cytosol
310

.  

 

Microdialysis studies in rodents have shown that D-amphetamine mainly 

increases dopamine levels
148

. D-amphetamine is still widely prescribed for ADHD
127

 

and narcolepsy
232

 and has negligible affinity to the D2 receptor
139

 and could therefore 

be safely used as a test drug in PET studies evaluating dopamine release with D2/D3 

receptors radioligands in non-human primates
22,29,36,57,96,125,139,173

 and human 

subjects
22,73,171,172

. Microdialysis studies in non-human primates
22,214,288

 have shown a 

dose-dependent relation between amphetamine and increase in dopamine levels, 

~500% at 0.27 mg/kg, ~1300% at 0.6 mg/kg, ~1600% at 1.0 mg/kg and ~1800% at 1.5 

mg/kg
173

. In study II, D-amphetamine was administered intravenously approximately 

20 minutes prior to radioligand injection at four doses (0.1, 0.2, 0.5 and 1.0 mg/kg). D-

amphetamine was obtained from Apoteket, Sweden. 
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3.4.2 (±)-Fenfluramine 

 

N
H

F

F

F

 
 

(±)-Fenfluramine is generally considered a substrate for the SERT and may 

increase extracellular serotonin levels by SERT inhibition and by promotion of a 

process of carrier-mediated exchange
88,278

. Microdialysis studies in unanaesthetized 

monkeys have shown that an i.v. dose of 5 and 10 mg/kg (±)-fenfluramine increases 

serotonin levels by 20- and 35–fold, respectively
328

. Fenfluramine has previously been 

on the market for treatment of obesity but has been withdrawn due to increased risks of 

valvular heart disease, possibly related to 5-HT2B receptor affinity
277

. PET studies 

evaluating the sensitivity to serotonin levels of 5-HT1A receptor radioligands have 

previously made use of fenfluramine in rodents and non-human primates
135,193,351

. (±)-

Fenfluramine has been reported to have lower affinity to the 5-HT1B receptor than to 

the 5-HT1A receptor (16.3 vs. 3.7 μM, IC50)
205

. In study V and VI (±)-fenfluramine was 

i.v. administered to the monkeys at doses of 1.0 and 5.0 mg/kg. (±)-Fenfluramine was 

provided by H. Lundbeck A/S. 

 

 

3.4.3 (R)-Apomorphine 

N

OH

OH

  
 

(R)-Apomorphine is an exogenous dopamine agonist and has in vitro high 

affinity for the D4 receptor, moderate affinities for D2, D3, and D5 and similar or 

lower affinity for the D1 receptor 
210

. It has been shown that (R)-apomorphine is a full 

agonist for both splice variants D2-short and D2-long
112,206

, and competition studies have 

demonstrated two binding sites with 34–58 times selectivity to the high affinity state. 

This selectivity is similar to that reported for dopamine in vitro (65–79)
52,300

. (R)-

Apomorphine is currently indicated for symptomatic treatment of recurring episodes 

of hypomotility (“off” episodes) in patients with advanced Parkinson’s disease
55

.  

Importantly, by contrast to dopamine, (R)-apomorphine readily passes the BBB. (R)-

Apomorphine was, therefore suitable as a test drug for in vivo studies and was 

administered in study III at i.v. doses of 0.01, 0.05, 0.15, 0.5, 1.0 and 3.0 mg/kg. (R)-

Apomorphine was obtained from Apoteket, Sweden. 
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3.4.4 Tolcapone and entacapone 

 

N

O

OH
N

OH

NO
2

OH

OH

NO
2

O

 
 

Tolcapone and entacapone are COMT inhibitors
146

 and are currently used in 

conjunction with dopamine agents in the treatment of Parkinson’s disease
180

. COMT 

inhibitors are used to decrease metabolism of L-DOPA and thereby to improve the 

efficacy of L-DOPA treatment
144,145,280

. Tolcapone and entacapone inhibit equally rat 

liver COMT but tolcapone has better brain penetration than entacapone
82

. The effect of 

COMT inhibitors in vivo has been widely studied using 6-[
18

F]fluoro-L-

DOPA
110,124,182,258

 and these PET studies have here been used for dose-selection for 

study IV. Tolcapone was i.v. administered at 1, 5, 10 and 30 mg/kg and entacapone at 1 

and 10 mg/kg. Tolcapone and entacapone were provided by H. Lundbeck A/S. 

 

 

3.5 STATISTICAL ANALYSIS 

In study II, IV and VI, analyses of variance (ANOVA) or repeated measures 

analyses of variance (RM ANOVA) were performed to test for group differences in 

BPND values. In study VI, subsequent paired t-tests were performed to test individual 

regions for fenfluramine effect. The minimum level of significance was designated as P 

< 0.05. 
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4 RESULTS AND COMMENTS 

4.1 STUDY I: D2/D3 AGONIST PET RADIOLIGAND DEVELOPMENT 

In this study, an agonist radioligand was prepared to evaluate the high affinity 

state of the D2/D3 receptors in the living brain using PET. (R)-(-)-2-methoxy-N-n-

propyl-norapomorphine (MNPA) is a potent D2/D3 receptors agonist (Ki = 0.17 nM) 

with high selectivity over the D1 receptor (Ki = 1.8 μM, 10500 fold)
87

. [
11

C]MNPA was 

prepared by direct methylation using [
11

C]CH3I and (R)-(-)-2-hydroxy-N-n-propyl-

norapomorphine as precursor. Derivatization of [
11

C]MNPA and comparison to 

reference standards on HPLC confirmed a selective labelling of the 2-hydroxy-position. 

An improved radiosynthesis was more recently developed in which [
11

C]MNPA is 

produced in a two-step synthesis starting from (R)-(-)-2-hydroxy-10,11-acetonide-N-

n-propyl-noraporphine
308

. 

PET measurements after i.v. injection of [
11

C]MNPA in cynomolgus monkey 

showed high uptake in D2/D3 receptors rich regions, such as putamen and caudate 

nucleus, and striatum to cerebellum ratios reached a maximum value of 2.2 (Figure 10 

and 11). 

 
Figure 10. Colour-coded PET images showing the distribution of radioactivity in the monkey brain after i.v. injection 

of about 57 MBq [11C]MNPA (summation image of 9-93 min). 
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Figure 11. (A) Time course for regional radioactivity (nCi/cc) in the brain of a cynomolgus monkey after i.v. 

injection of [11C]MNPA and corresponding binding ratios (B). (C) Time course for specific binding (nCi/cc) in the 

brain of a cynomolgus monkey after i.v. injection of [11C]MNPA in baseline and pretreatment conditions. In the 

pretreatment measurement, raclopride (1 mg/kg) was administered i.v. ten minutes before injection of [11C]MNPA. 

 

Administration of raclopride reduced the specific binding in striatum (Figure 

11C) and striatum to cerebellum ratios decreased to 1.3 confirming specific binding of 

[
11

C]MNPA to D2/D3 receptors. The fraction of total radioactivity in monkey plasma 

representing unchanged [
11

C]MNPA was 20% at 45 minutes after injection of 

radioligand and no radiometabolites were observed more lipophilic than [
11

C]MNPA, 

as measured with gradient HPLC. This initial characterization demonstrated that 

[
11

C]MNPA has potential as an agonist radioligand for examination of D2/D3 receptors 

in human subjects. 
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4.2 STUDY II: DOPAMINE RELEASE MEASURED WITH [11C]MNPA 

Experimental studies using pharmacological challenges and PET allow for an in 

vivo assessment of synaptic neurotransmitter levels in a non-invasive manner. 

Amphetamine is a strong dopamine releaser and has been consistently shown to 

decrease D2/D3 receptors binding of some antagonist radioligands in animals and 

humans. The purpose of this study was to compare the effect of amphetamine-enhanced 

dopamine level on D2/D3 receptors binding of the agonist radioligand [
11

C]MNPA and 

the antagonist radioligand [
11

C]raclopride. Four cynomolgus monkeys were examined 

with both radioligands before and after i.v. administration of a single dose of 

amphetamine. Finally, the results obtained were used in an attempt to estimate the 

proportion of D2/D3 receptors in the high and low affinity state.  

 

During baseline conditions, i.v. injection of [
11

C]MNPA and [
11

C]raclopride 

resulted in high accumulation of radioactivity in striatum while concentrations of 

radioactivity in cerebellum were lower. Comparison of striatal BPND values showed 

significantly higher values for [
11

C]raclopride (5.76 ± 0.95, n = 8) when compared to 

[
11

C]MNPA (1.31 ± 0.21, n = 8) (RM ANOVA, P = 0.00). Comparison of the BPND 

values between the four monkeys showed no significant inter-subject differences for 

[
11

C]MNPA and [
11

C]raclopride (ANOVA, P > 0.10). Administration of amphetamine 

caused a dose dependent reduction in [
11

C]MNPA striatal BPND values of 4% at 0.1 

mg/kg, 23% at 0.2 mg/kg, 25% at 0.5 mg/kg, and 46% at 1.0 mg/kg. Reductions in 

[
11

C]raclopride striatal BPND values were less than for [
11

C]MNPA, 2% at 0.1 mg/kg, 

16% at 0.2 mg/kg, 15% at 0.5 mg/kg, and 23% at 1.0 mg/kg. The amphetamine effect 

was found significantly greater for [
11

C]MNPA than compared to [
11

C]raclopride 

(ANOVA, P = 0.024) (Figure 12).  

 

 

Figure 12. BPND maps of [11C]raclopride and [11C]MNPA estimated by MRTM2 at baseline and post-amphetamine 

conditions. 

 

The observed improvement in sensitivity to endogenous dopamine level for 

[
11

C]MNPA was consistent at all evaluated amphetamine doses, illustrated by the ratio 

of change in striatal BPND of [
11

C]MNPA and [
11

C]raclopride being 1.85 at 0.1 mg/kg, 

1.51 at 0.2 mg/kg, 1.70 at 0.5 mg/kg, and 2.03 at 1.0 mg/kg, with an average of 1.77.  

Previously, Narendran et al. have proposed that this ratio of changes in BPND of both 

tracers could be used to calculate the fraction of receptors in the high affinity state 

according to equation 8
223

. 
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      (8) 

 

Assuming that 10% of the D2/D3 receptors are occupied by endogenous 

dopamine, it was calculated for the current study that 61% of the D2/D3 receptors were 

configured in the high affinity state. Furthermore, by assuming that escalating doses of 

amphetamine would not further decrease radioligand binding, it was calculated that 

only 23% of the total pool of D2/D3 receptors was in the high affinity state and 

susceptible to dopamine, so called “synaptic” located receptor sites. 

 

4.3 STUDY III: APOMORPHINE DECREASES D2/D3 RADIOLIGAND 

BINDING 

Binding studies in vitro have indicated that the D2 receptor may exist in two 

affinity states for agonists
52,300

. In vitro studies have further shown that agonists induce 

measurable D2 receptor occupancy at clinically relevant concentrations, but only when 

measured at the high affinity state
293,295

. Recently developed PET-radioligands, such as 

[
11

C]MNPA, have now made it possible to directly study agonist binding in vivo. The 

aim of this study was to obtain further in vivo support for the existence of two affinity 

states for the D2/D3 receptors, by comparison of the inhibition by apomorphine of 

agonist and antagonist radioligand binding in vivo. A total of 36 PET measurements 

were performed with [
11

C]raclopride or [
11

C]MNPA in two cynomolgus monkeys. On 

each study day, a baseline measurement was followed by two consecutive pretreatment 

studies with rising doses of apomorphine (0.01, 0.05, 0.15, 0.5, 1.0, and 3.0 mg/kg). 

BPND values were calculated for the striatum with cerebellum as reference region.  

 

 
Figure 13. BPND maps of [11C]raclopride and [11C]MNPA estimated by MRTM2 at baseline and post-

apomorphine conditions. 
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Figure 14: (A) Inhibition of striatal BPND of [11C]raclopride and [11C]MNPA by pretreatment with apomorphine 

in two monkeys (A and B). The lines represent an unconstrained four-parameter logistic fit. (B) D2/D3 receptors 

occupancy of apomorphine as a function of plasma concentration 30 min after radioligand injection (ng/mL). The 

lines represent a one-site binding fit constrained to Bmax of 100%. 
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The binding of the antagonist [
11

C]raclopride as well as the agonist [
11

C]MNPA 

was inhibited to a high degree and approached full saturation (Figure 13 and 14). 

Multifarious analysis methods indicated that the inhibition by apomorphine was 

monophasic, and the Hill slope coefficients were close to unity. Brain homogenate 

binding studies in vitro have previously demonstrated that apomorphine binds with 30 

to 60-fold selectivity to the high affinity state over the low affinity state
52,300

.  

In this study, we obtained non-distinguishable ID50 and Ki values of apomorphine 

for the D2/D3 receptors when measured with the antagonist or the agonist radioligand 

(0.26 and 0.50 mg/kg and 29 and 31 ng/mL, respectively). This PET study provides no 

support for the existence of two affinity states of the D2/D3 receptors. A possible 

explanation is that almost all D2/D3 receptors are in the high affinity state in vivo. The 

results of this study are not directly in line with the outcome of study III. The 

differences observed could possibly be related to dissimilarity in cellular concentration 

of agonist or by differences in agonist-induced receptor internalization.  

 

4.4 STUDY IV: D1/D5 AGONIST PET RADIOLIGAND DEVELOPMENT 

A radioligand with D1 receptor agonistic properties may provide new 

understanding of the reasons for lack of sensitivity to dopamine shown for D1/D5 

receptors antagonist radioligands, such as (R)-[
11

C]SCH 23390
54,70,117,263

 and (+)-

[
11

C]NNC 112
120

. The utility of the previous reported partial D1/D5 receptors agonist 

radioligand (+)-[
11

C]SKF 82957
44,45

 has been limited due to a brain-penetrant 

radiometabolite, being formed by COMT
48

. In this study, we radiosynthesised and 

performed an extensive in vitro and in vivo evaluation of the new D1/D5 receptors 

partial agonist radioligand (S)-[
11

C]N-methyl-NNC 01-0259 ((S)-[
11

C]1) (Figure 15). 

(S)-1 has high affinity to the D1 receptor (Ki = 4.9 nM), which is in a similar 

range as for the antagonists (R)-SCH 23390 and (+)-NNC 112 (Ki = 2.1 and 1.5 nM, 

respectively). A functional D1 receptor assay confirmed high potency of (S)-1, but 

indicated only partial agonistic activity (EC50 = 1.9 nM, 35% of dopamine).  

 

 
Figure 15. Two compounds synthesised in the current study, the partial D1/D5 receptors agonist [11C]N-methyl-NNC 

01-0259 ((S)-[11C]1) and the 7-methoxy analogue of (S)-[11C]N-methyl-NNC 01-0259, (S)-[11C]2. 

 

The regional distribution of radioactivity after injection of (S)-[
11

C]2 was in 

accordance with the known distribution of the D1/D5 receptors, with high concentration 

of radioactivity in striatum, moderate in neocortex and lowest in cerebellum. The peak 

in specific binding in the striatum was observed at ~30 minutes and specific binding 

ratios reached a maximum value of about 2.0 approximately sixty minutes after 

radioligand injection (Figure 16). 
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Figure 16. (A) Regional brain radioactivity (%SUV) after i.v. administration of (S)-[11C]1 in cynomolgus monkey. 

(B) Specific binding in striatum and neocortex. (C) Specific binding ratios in striatum and neocortex. All values 

represent the mean and standard deviation (presented to above) of nine measurements. 

 

Administration of the dopamine releaser D-amphetamine did not have a 

significant effect on receptor binding of (S)-[
11

C]1. The specificity and selectivity of 

(S)-[
11

C]1 receptor binding was tested with pretreatment studies using the D1/D5 

receptors antagonist (R)-SCH 23390 and the selective 5-HT2A receptor antagonist 

MDL-100907.  (R)-SCH 23390 decreased BPND in the striatum with 97% to 0.06, while 

the BPND value in neocortex only decreased with 77% to 0.12. The mean decrease in 

BPND value after MDL-100907 was 19% in striatum and 30% in neocortex.  

During the PET measurements in monkeys radiometabolism of (S)-[
11

C]1 was 

measured in plasma and demonstrated the formation of a radiometabolite, which was 

more lipophilic than (S)-[
11

C]1. The lipophilic radiometabolite was identified by HPLC 

as (S)-7-methoxy-[
11

C]N-methyl-NNC 01-0259 ((S)-[
11

C]2) (Figure 15). An in vitro 

binding assay demonstrated that (S)-2 has affinity for D1 receptors (Ki = 52 nM). A 

PET study after injection of (S)-[
11

C]2 in monkey confirmed that (S)-[
11

C]2 passes the 

BBB and concentrates in D1/D5 receptors rich brain regions (BPND in striatum is 0.33). 

The second part of this project therefore aimed for avoidance of the formation of the 

confounding lipophilic radiometabolite (S)-[
11

C]2 by the use of COMT inhibitors 

tolcapone and entacapone. COMT inhibition indeed reduced the formation of (S)-[
11

C]2 

measured in plasma and tolcapone administration significantly increased the regional 

BPND values, measured after injection of (S)-[
11

C]1 in monkey (unpaired t-test, p < 

0.05) (Figure 17). These results are consistent with a recent study showing that 

systemic COMT inhibition enabled (+)-[
11

C]SKF 82957 receptor studies in rodents
247

. 

 

 
Figure 17. Striatal BPND values measured after i.v. injection of (S)-[11C]N-methyl-NNC 01-0259 in monkeys pre-

treated with COMT inhibitor entacapone or tolcapone. *Indicates significant difference compared to BPND of baseline 

(p < 0.05, unpaired t-test). 

 

From this study, two main conclusions can be made. Firstly, (S)-[
11

C]1 receptor 

binding is insensitive to altered dopamine level and (S)-[
11

C]1 is an inferior radioligand 

for imaging of D1/D5 receptors when compared to previous reported antagonist 

radioligands.  Secondly, quantification is complicated by the in vivo formation of (S)-
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[
11

C]2 but quantitative measurements with PET and (S)-[
11

C]1 are feasible when 

performed in combination with a COMT inhibitor. As a catechol group is most often 

critical for D1 receptor agonism, the COMT inhibition approach may indeed be needed 

as a more general approach when using a D1/D5 receptors agonist radioligand and, 

importantly, the approach seems suitable for extension to humans. 

 

4.5 STUDY V: [11C]AZ10419369 IS SENSITIVE TO SEROTONIN RELEASE 

The need for PET-radioligands that are sensitive to changes in endogenous 

serotonin levels in brain is recognized in experimental and clinical psychiatric research. 

Of available serotonergic radioligands, the 5-HT1A receptor antagonist [
18

F]MPPF has 

been the most promising with regard to changes in endogenous serotonin levels in the 

rat and cat brain
12,351,352

, but the findings have not been consistently confirmed in 

monkey and human subjects
56,256,301,326,328

. Examination of serotonin levels in vivo by 

PET has therefore possibly been precluded by the lack of suitable radioligands. 

[
11

C]AZ10419369 is a novel PET radioligand highly selective for the 5-HT1B receptor 

and recently developed by our group in collaboration with AstraZeneca
194,251,333

. Of the 

fourteen 5-HT-receptor subtypes, the 5-HT1B receptor is of particular interest for 

radioligand development since this primarily presynaptic autoreceptor regulates the 

release of serotonin
65,104,200

 and thus should be sensitive to serotonin levels. 

In this PET study the sensitivity of [
11

C]AZ10419369 to altered endogenous 

serotonin levels was examined in cynomolgus monkeys. Serotonin levels were 

enhanced with the test compound fenfluramine which has been shown to increase basic 

serotonin levels by 20-fold (5 mg/kg) in monkey
328

. The effect of fenfluramine on 

[
11

C]AZ10419369 receptor binding was studied in three monkeys using a displacement 

paradigm. Fenfluramine (1 and 5 mg/kg) was administered in the displacement study 

during the period of 15 and 20 minutes after radioligand injection.  

 

 
 
Figure 18. PET images of mean radioactivity 45–123 min after i.v. injection of [11C]AZ10419369 in a cynomolgus 

monkey at baseline (top left) and after displacement with 5 mg/kg (±)-fenfluramine (top right). In the bottom 

corresponding MR images overlaid with PET images. 

 

After administration of fenfluramine there was an evident decrease in 

[
11

C]AZ10419369 binding. There was no evident effect of fenfluramine on the 

radioactivity concentration in the reference region cerebellum, whereas there was a 

rapid decrease in specific [
11

C]AZ10419369 binding in all other regions examined. The 

mean specific binding ratio (SBR) was calculated by use of the area under the curve for 

time interval 45-123 min (Figure 18 and 19). 
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Figure 19. (A) Mean radioactivity in the occipital cortex (closed symbols) and cerebellum (open symbols) at baseline 

and displacement with fenfluramine (1.0 and 5.0 mg/kg). (B) Specific [11C]AZ10419369 binding in the occipital 

cortex. (C) Specific binding ratios in the occipital cortex. Fenfluramine was administered between 15 and 20 min 

after radioligand injection and the time interval is illustrated by two vertical lines. 

 

The fenfluramine effect appeared dose-dependent because the decrease was more 

pronounced after a dose of 5 mg/kg than after 1 mg/kg. Fenfluramine-induced serotonin 

release decreased the SBR in a dose-dependent fashion with a regional average of 27% 

after 1 mg/kg and 50% after 5 mg/kg (Figure 20). 
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Figure 20. (A) Regional mean specific binding ratios (SBR) during baseline and after displacement with 

fenfluramine (1 and 5 mg/kg). (B) Relative change in SBR after fenfluramine. Bars represent mean ± SD. 

 

This preliminary study supports that [
11

C]AZ10419369 is sensitive to 

endogenous serotonin levels in vivo and may serve as a tool to examine the 

pathophysiology and treatment of major psychiatric disorders. 

 

4.6 STUDY VI: CONFIRMATION OF SEROTONIN SENSITIVITY OF 

[11C]AZ10419369  

The displacement paradigm is attractive for quantification of neurotransmitter 

release because it allows for direct observation of changes in neuronal activity during 

pharmacological or physiological stimulation, which are reflected in modified 

radioligand binding. A methodology considered suitable for quantification of 

neurotransmitter release, when using a displacement paradigm, is the equilibrium 

approach, which utilizes the administration of radioactivity by a bolus and constant 

infusion (BI-protocol)
28

.  The aim of the present study was to develop an updated 

methodology for measurement of drug-induced serotonin release using 

[
11

C]AZ10419369 and PET in non-human primates and to apply this setup to confirm 
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our previous findings of fenfluramine-induced decreases in [
11

C]AZ10419369 receptor 

binding. 

A total of 24 PET measurements were conducted, including six preparative PET 

measurements to assess suitable Kbol values. During baseline conditions the CS/CND 

ratios became stable after approximately 50 minutes in the occipital cortex as well as in 

all other brain regions. Kbol values of 180-240 minutes allowed for rapid achievement 

of steady state and BPND was calculated between 50-80 minutes (equilibrium before 

fenfluramine) and between 117-153 minutes (equilibrium after fenfluramine) (Figure 

21).
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Figure 21. Time activity courses of radioactivity in cerebellum (left) and occipital cortex (middle) after i.v. 

administration of [11C]AZ10419369 using a BI-protocol in monkey during baseline and displacement conditions with 

fenfluramine (1.0 and 5.0 mg/kg, FEN). (Right) Corresponding time activity courses for the CS/CND values for the 

occipital cortex are shown on the right. All values represent the mean and standard deviation (presented to above) of 

three or six measurements. In the displacement studies fenfluramine was administered during the time period 

indicated by the vertical lines (80-85 min). 
 

During baseline measurements (n=3x2) [
11

C]AZ10419369 BPND values were 

stable over time and did not significantly differ during time frames 51’-81’ vs. 117’-

153’ (RM ANOVA, P = 0.2842). [
11

C]AZ10419369 BPND values (n=3x2) of baseline 

and displacement measurements obtained during 51’-81’ showed no significant 

difference (RM ANOVA, P = 0.9929), thus demonstrating good test-retest variability 

(Figure 22). 
 

Fenfluramine (1.0 mg/kg)

GP OC MB Thal Put CN DLPFC HC
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
Bsln (EM 51'-81'; n=3)

Bsln (EM 117'-153'; n=3)

FEN (EM 51'-81'; n=3)

FEN (EM 117'-153'; n=3)

*

Region of Interest

B
P

N
D

Fenfluramine (5.0 mg/kg)

GP OC MB Thal Put CN DLPFC HC
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

*

Bsln (EM 51'-81'; n=3)

Bsln (EM 117'-153'; n=3)

FEN (EM 51'-81'; n=3)

FEN (EM 117'-153'; n=3)

Region of Interest

B
P

N
D

 
 

Figure 22. BPND values obtained after i.v. administration of [11C]AZ10419369 using a BI-protocol in monkey during 

baseline and displacement conditions with fenfluramine (1.0 mg/kg (left) and 5.0 mg/kg (right), FEN). All values 

represent the mean and standard deviation of three subjects. In the displacement studies fenfluramine was 

administered during the time period of 80-85 min after the start of BI-protocol. The effect of fenfluramine is therefore 

only represented in the BPND values corresponding to FEN (EM 117’-153’) values. *Indicates significant difference 

compared to BPND of method FEN (EM 51’-81’) (p < 0.05, two-tailed paired t-test). 
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Fenfluramine caused a dose-dependent decrease in [
11

C]AZ10419369 binding in 

all evaluated regions except for in the cerebellum. In the displacement paradigm 

fenfluramine significantly reduced [
11

C]AZ10419369 BPND (FEN EM 117’-153’) when 

compared to control BPND (FEN EM 51’-81’), with no significant ROI effect, at both 

1.0 mg/kg and 5.0 mg/kg, respectively (RM ANOVA, P < 0.0001). Among the 

different regions, the effect of fenfluramine was significant in the occipital cortex 

(paired t-test, p < 0.05) when [
11

C]AZ10419369 BPND (FEN EM 117’-153’) were 

compared to control BPND (FEN EM 51’-81’) for both fenfluramine doses.  

To further improve counting statistics, pretreatment studies with fenfluramine 

were performed, which enabled the use of the majority of the PET measurement for 

quantification of BPND values. In the pretreatment paradigm, fenfluramine (5.0 mg/kg) 

significantly reduced [
11

C]AZ10419369 BPND (FEN EM 51’-123’) when compared to 

baseline BPND (Bsln EM 51’-123’) with a significant ROI effect (RM ANOVA, P < 

0.0001). A significant effect of 5.0 mg/kg fenfluramine on [
11

C]AZ10419369 BPND 

(FEN EM 51’-123’) was found in the globus pallidus, occipital cortex, midbrain, 

thalamus and hippocampus (paired t-test, p < 0.05) when compared to baseline BPND 

(Bsln EM 51’-123’) (Figure 23). 
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Figure 23. (Left) Time activity courses of CS/CND values for the occipital cortex after i.v. administration of 

[11C]AZ10419369 using a BI-protocol in monkey during baseline and pretreatment conditions with fenfluramine (5.0 

mg/kg, FEN). All values represent the mean and standard deviation (presented to both sides) of three subject. (Right) 

Effect of fenfluramine on BPND values obtained for eight different brain regions of three subjects. *Indicates 

significant difference compared to baseline measurements (p < 0.05, two-tailed paired t-test). 

 

This study confirms that the new 5-HT1B-receptor radioligand [
11

C]AZ10419369 

is sensitive to fenfluramine-induced changes in endogenous serotonin levels in vivo. 

The effect of fenfluramine on [
11

C]AZ10419369 BPND was dose-dependent in the 

displacement paradigm, but more reliably estimated with the pretreatment paradigm. 

After pretreatment administration of fenfluramine (5.0 mg/kg), the mean BPND of the 

occipital cortex decreased by 39%, from 1.43±0.04 to 0.87±0.08.  

The further developed methodology is suitable for exploring the sensitivity limit 

to serotonin release as measured using [
11

C]AZ10419369 and PET. The developed 

methodology can accordingly be applied to further examine the effect of drugs on brain 

endogenous serotonin level, and to study serotonin-related brain functions and 

psychiatric disorders in man.  
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5 METHODOLOGICAL CONSIDERATIONS 

5.1 RESOLUTION OF THE PET SYSTEM 

When considering the small volume of the cynomolgus monkey brain (~65 cc), 

partial volume and spillover effects must be taken into account, in particular in small 

brain regions. 

In this thesis, baseline and drug-challenge PET studies were performed on the 

same day. Due to the use of a head fixation device the monkey head was maintained in 

the same position during the day. This approach makes it possible to use the same ROIs 

for sequentially performed PET measurements. Importantly, potential differences in 

partial volume and spill over effects were therefore minimized between PET 

measurements and should therefore not influence the calculated effects significantly.  

Over the course of the thesis work, two PET systems were used. The ECAT EXACT 

HR has a in plane resolution of 3.8 mm FWHM
343

 and the HRRT system has an in 

plane resolution of 2.3 mm FWHM
334

. The resolution of the HRRT has been further 

enhanced to 1.5 mm FWHM by software advancements which include the point spread 

function (PSF) of the PET system
334

. The use of a combination of the HRRT and PSF 

reconstruction provides imaging with improved quantification and reduced partial 

volume effects
312,334

. Future studies will benefit from this improvement in 

methodology.  

 

5.2 REFERENCE TISSUE MODELS 

PET measurements in cynomolgus monkeys were performed without arterial 

cannulation. The quantification of radioligand receptor binding has therefore been 

limited to the use of reference tissue models. Studies performed with [
11

C]MNPA, 

[
11

C]raclopride, (S)-[
11

C]N-methyl NNC 01-0259 and [
11

C]AZ10419369 have all used 

cerebellum as a reference region. This approach is based on two main assumptions: that 

cerebellum contains negligible specific binding and that the non-displaceable 

component is comparable in cerebellum and other brain regions.  

The cerebellum has been shown to contain a negligible density of D1/D5 and 

D2/D3 receptors in post-mortem autoradiography
114-116

. The use of the cerebellum as a 

reference region for [
11

C]raclopride has previously been extensively discussed
63,72

. The 

binding of [
11

C]MNPA in cerebellum was evaluated in study I and III. The absence of 

specific binding in the cerebellum was confirmed by the lack of change in [
11

C]MNPA 

binding in cerebellum after injection of raclopride (study I) and apomorphine (study 

III). Recent PET studies in non-human primates
297

 and humans
246

 further confirmed 

with kinetic modelling that [
11

C]MNPA has no specific binding in the cerebellum and 

that cerebellum can therefore be used as a suitable reference region.  

Previous studies using the D1/D5 receptors antagonist (R)-[
11

C]SCH 23390 have 

shown that the cerebellum functions as a suitable reference region
32,70

.   The lack of 

specific binding in cerebellum after injection of (S)-[
11

C]N-methyl-NNC 01-0259 was 

confirmed in study IV, in which injection of (R)-SCH 23390 did not decrease 

radioligand binding in cerebellum. In addition, administration of the inactive 

enantiomer (R)-[
11

C]N-methyl NNC 01-0259 resulted in radioactivity levels in striatum 

and neocortex similar to observed as in the cerebellum after injection of (S)-[
11

C]N-

methyl-NNC 01-0259. 

[
11

C]AZ10419369 has recently been developed
251

 and the complete validation of 

quantitative methods is currently emerging. Autoradiography studies have previously 

indicated a negligible 5-HT1B receptor density in cerebellum
331,332

. The use of the 

cerebellum as a reference region has been confirmed in studies demonstrating that 5-
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HT1B receptor antagonists do not effect binding in cerebellum, when measured with 

PET in monkey
251

 and with autoradiography in guinea pig
194

. Full kinetic modelling in 

humans has demonstrated that [
11

C]AZ10419369 binding in cerebellum can be 

described by a one tissue compartment model
333

, further confirming no specific binding 

in cerebellum. In study V and VI, fenfluramine did not cause changes in 

[
11

C]AZ10419369 binding in cerebellum thereby further confirming the use of 

cerebellum as a reference region. 
 

5.3 SAMPLE SIZE AND TEST-RETEST REPRODUCIBILITY 

A limitation of PET studies is that they typically do not include a large sample 

size. In this thesis, studies were performed in two or three monkeys per investigated 

condition. 

A small sample size can be accepted when reproducibility between PET 

measurements is high. Typically, an experimental day included a baseline measurement 

followed by one or two drug-challenge measurements. To obtain good reproducibility, 

a head fixation device was used and the monkey head was thereby located in the same 

position during sequential PET measurements during the day. For PET data analysis the 

same ROIs could also be applied for both measurements. In a small test-retest study, 

four cynomolgus monkeys were examined two times after administration of 

[
11

C]MNPA two hours apart. The individual test-retest difference in striatal BPND 

values ranged from -6.4 to +4.2%, with a mean difference of -1.1 ± 4.6% (unpublished 

results). The high reproducibility is in line with previous reported reproducibility of 3-

7% for measurements with (+)-[
11

C]NNC 112 in monkey
36

 and with [
11

C]raclopride
234

 

and (R)-[
11

C]SCH 23390 in man
32

. This observation in a small number of animals 

supports that the measurement of [
11

C]MNPA binding is reliable. 

During the time period of this thesis, MR images of the individual monkeys were 

obtained. Individual MR image-based ROI templates were generated and used for data 

analysis in study IV-VI. Co-registration of the baseline PET measurements to the MR 

images allowed for determination of the transformation matrix for all PET 

measurements performed on the same day. This method allows for the use of the same 

ROIs for PET measurements performed on separate days. The reproducibility of 

[
11

C]AZ10419369 binding during baseline conditions was examined for six 

experimental days in one monkey using a BI-protocol. The individual occipital cortex 

BPND value differences to the mean value ranged from -3.1% to +4.6%, with a mean 

difference of 0.0 ± 3.2% (unpublished results). These results indicate that measurement 

of [
11

C]AZ10419369 binding is reliably estimated between experimental days. 

 

5.4 EFFECTS OF ANEASTHESIA 

Study I-IV used radioligands targeting dopamine receptors and were performed 

using i.m. injections of a mixture of ketamine and xylazine. Ketamine is an antagonist 

for the N-methyl-D-aspartate (NMDA) receptor and has been reported to bind to the D2-

long receptor (Ki = 55 nM) in vitro
292

. Ketamine has been reported to exhibit partial or 

full agonistic properties
150

, although this has not been confirmed by others
143,238

. In 

addition to direct effects on the receptor, ketamine has been found to increase 

extracellular dopamine concentrations in the prefrontal cortex in conscious rat, but this 

increase was blunted or not observed in the striatum of conscious rat and 

monkey
5,320,336

. 

Further support of the lack of ketamine effect on D2/D3 receptors antagonist 

radioligand binding can be found in PET and SPECT studies. Although initial studies 

indicated a small reduction in [
11

C]raclopride binding after ketamine 

administration
23,305,320,340

 more recent studies have shown no effect on [
123

I]IBZM or 
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[
11

C]raclopride binding
1,126,153,154

. Taken together there are several but inconsistent 

observations suggesting that ketamine may influence antagonist radioligand binding to 

the D2/D3 receptors. 

Ketamine/xylazine anaesthesia has, however, more recently been shown to 

increase D2/D3 receptors binding of the agonist radioligand [
11

C]MNPA  in monkeys
240

. 

In addition, the enhanced sensitivity of [
11

C]MNPA binding to dopamine release was 

not observed in unanaesthetized monkeys. In a following study, the authors 

demonstrated that D2/D3 receptors radioligand binding in unanaesthetized animals is 

related to stress,  but differs in direction when measured with an agonist or antagonist 

radioligand
323

. Taken together it can be concluded that the effect of ketamine and stress 

on agonist radioligands is complex and warrants further investigation. 

The use of another anaesthetic could have been considered for the dopamine 

studies but, at clinical concentrations, several anaesthetics (e.g., isoflurane, halothane, 

ketamine and ethanol) have already been shown to inhibit the high affinity states of 

the D2 receptor, as well as other GPCRs in vitro and ex vivo
291

. Moreover, isoflurane 

was shown to facilitate the actions of various dopamine related pharmacological 

stimulants, such as amphetamine, cocaine, and nicotine in vivo
202,204,319,321

. Further 

studies in man are warranted to fully address the possible differential effects of 

anaesthesia on agonist and antagonist radioligand binding. 

Study V and VI evaluated serotonin release in sevoflurane anesthetized monkeys. 

Microdialysis studies have demonstrated that serotonin level is lower during sleep than 

during awake conditions
255

. Comparison of serotonin level during slow-wave sleep and 

isoflurane anaesthesia showed a similar reduction in serotonin level, to 21-44% of 

awake condition, when measured with microdialysis in rats
217

. Serotonin levels are 

therefore likely decreased in anaesthetized animals, independent of the type of 

anaesthesia. Importantly, in study VI no significant differences were observed 

between [
11

C]AZ10419369 BPND values at baseline and during displacement 

measurements obtained during 51-81 minutes, indicating no differences in anaesthesia 

effects during the experimental day. 

 

5.5 ETHICAL CONSIDERATIONS 

The use of non-human primates in medical research is under constant debate. 

These unique experiments should be conducted with the highest possible quality and 

have therefore inherently been subject of improvements during the time of this work. 

The monkeys were always continuously monitored during and between PET 

measurements. Introduction of tracheal intubation and gas anaesthesia techniques has 

further enhanced animal safety and welfare and allows for detailed adjustments in 

anaesthesia. Temperature, ECG, heart rate, respiratory rate and blood gasses are now 

being continuously monitored during experimental days and provide valuable 

information. Out of 150 monkey PET measurements in the current work, no 

complications were related to experimental procedures. 
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6 SUMMARY OF FINDINGS 

The present thesis focused on drug-induced changes in endogenous 

neurotransmitter release measured with PET in the living non-human primate brain.  

 

The successful development of the agonist radioligand [
11

C]MNPA allowed for 

in vivo evaluation of the high affinity state of D2/D3 receptors with PET. [
11

C]MNPA 

was found more sensitive than the antagonist radioligand [
11

C]raclopride to 

amphetamine-induced changes in dopamine level. The improved sensitivity was ~1.8 

fold and consistent across four doses. It was estimated that about 60% of the total pool 

of D2/D3 receptors was in the high affinity state. 

The existence of two affinity states for D2/D3 receptors in vivo was further 

studied using the exogenous agonist apomorphine. D2/D3 receptors occupancy was 

found indistinguishable when measured with [
11

C]MNPA and [
11

C]raclopride. This 

study provided therefore no support for the existence of two affinity states for D2/D3 

receptors and it was speculated that all receptors are in the high affinity state at in vivo 

conditions. The differences observed between the amphetamine and apomorphine study 

could possibly be related to dissimilarity in cellular concentration of agonist or by 

differences in agonist-induced receptor internalization. 

To further understand the study of dopamine release with PET, the D1/D5 

receptors partial agonist (S)-[
11

C]N-methyl-NNC 01-0259 was developed. Evaluation in 

monkey indicated that the radioligand is insensitive to dopamine level and inferior to 

previous reported antagonist radioligands in respect to binding signal. COMT inhibition 

was developed as a method to allow for proper quantification of receptor binding. 

Studies on serotonin release made use of the newly developed 5-HT1B receptor 

antagonist radioligand [
11

C]AZ10419369. It was demonstrated that the effective 

serotonin releasing agent fenfluramine caused a dose-dependent reduction in 

[
11

C]AZ10419369 receptor binding. The effect of fenfluramine on [
11

C]AZ10419369 

receptor binding was further confirmed in a study with an equilibrium approach using a 

bolus infusion protocol. If confirmed in human subjects, the developed methodology 

can be used to study the treatment and pathophysiology of major psychiatric disorders. 
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7 FUTURE PERSPECTIVE AND CHALLENGES 

PET assessment of neurotransmitter release 

The study of neurotransmitter release with PET is rapidly gaining interest and 

benefits from recent improvements in PET methodology and available radioligands. 

Although the studies have been mainly limited to dopamine, an extension to other 

neurotransmitter systems is expected in the near future. Understanding of the 

molecular underpinning of neurotransmitter-induced changes in radioligand binding 

has proven challenging, and including biological and chemical aspects. The 

combination of microPET imaging with molecular-modified animals provides new 

pathways to evaluate underlying mechanisms. Finally, for the methodology to 

provide clinical utility, improvements in sensitivity are required to allow for 

investigation of dynamic neurotransmitter concentrations at more physiological 

relevant levels. 

Based on this thesis some specific challenges can be discussed:  

 

Two affinity states in vivo 

The existence of two affinity states for the D2/D3 receptors has not been 

demonstrated in vivo consistently and additional studies are required. Recent 

development of radioligands targeting the 5-HT1A, 5-HT2A and opioid κ-receptors make 

it possible to extent comparison of agonist and antagonist radioligand binding to other 

neurotransmitter systems
67,166,209,316,350

. 

 

D2/D3 agonist radioligands as improved tools for measurement of dopamine release 

PET studies in anaesthetized animals have consistently reported a more 

pronounced effect of dopamine concentration on D2/D3 agonist radioligand binding 

than on D2/D3 antagonist radioligand binding. Future studies are required to understand 

the mechanisms of enhanced dopamine level sensitivity of agonist radioligands. 

Finally, studies in human subjects are needed to confirm that agonist radioligands have 

increased sensitivity to dopamine levels and to elucidate the potential contribution of 

stress. 

 

Improvements for agonist radioligands targeting D2/D3 receptors 

Existing D2/D3 receptors agonist PET radioligands are not optimal yet. For 

further improvement, several aspects can be considered including: receptor selectivity, 

receptor affinity, receptor kinetics, non-specific binding, specific radioactivity and ease 

of radiolabelling. 

 

Development of a full D1 receptor agonist radioligand  

As a catechol group is most often critical for D1 receptor agonism, the 

developed COMT inhibition approach provides a more general method for full 

quantitative measurement with D1/D5 receptors agonist radioligands. A full D1 

agonist radioligand is not yet available and is required to further understand the lack 

of sensitivity of antagonist and partial agonist radioligands to changes in endogenous 

dopamine level. The so far radiolabeled D1/D5 receptors agonist and antagonist PET 

radioligands almost all originate from the 1-phenyl-3-benzazepines scaffold. A 

radiolabeled agonist originating from another scaffold may be of interest to rule out 

possible scaffold-related insensitivity to dopamine level.  
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Measurement of serotonin release using [
11

C]AZ10419369 and PET 

The results of study V and VI demonstrate that [
11

C]AZ10419369 binding is 

sensitive to major changes in endogenous serotonin level. Challenges causing smaller 

changes in serotonin concentration are required to explore the sensitivity of the 

methodology. Finally, the findings need to be confirmed in control human subjects to 

explore the possibilities of prospective clinical studies. 

 

Improvements for radioligands targeting 5HT1B receptors 

The development of a 5-HT1B receptor agonist radioligand would be of interest, 

as it may have enhanced sensitivity to serotonin concentration. In addition, 

radioligands with higher affinity could allow for study of serotonin concentration in 

5-HT1B receptor low regions, such as the hippocampus. 
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