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For Mommy
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In my dreams, I seek the solace that only he can give –
A shelter from the storm

A mad man's heaven
A soul's reprieve

In my living nightmare, I see no light;
Neither the sliver of a crescent nor a star

Just the deep emptiness of an endless night

- The Author
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FOREWORD
I came across the now obsolete tool called Google timeline by pure serendipity 
while doing my literature research on breast cancer online. It plots the quantity of 
Google results related to breast cancer added to the cyberspace over time (Figure 
0-1), and the month of October stood out like a suburban skyscraper. It then 
dawned on me that this burst of frenzied byte traffic must be due to the Pink
Ribbon Campaign.

Figure 0-1 Volume of Google results related to breast cancer added to the cyberspace

Since the Breast Cancer Awareness Month was conceived in 1985, many women 
have for one reason or another - guilt-tripped, tempted, or otherwise - been 
amassing pink products for 30 days in a year. I paid premium for everything from 
my compact camera, printer, wetsuit, dive computer, to kitchen towel and toilet 
paper, which needless to say, came in different shades of pink, and blamed it all 
on my research project, which deals with the genetics of breast cancer. Surely, I 
must support the very cause I am working for?

Slowly people are starting to realize that much hype has been focused on looking 
for a cure, and too little attention being spent on preventing or early detection of 
the disease and understanding what causes cancer in the first place. In this thesis, I 
look into the book of life itself, scrutinizing at the DNA that defines us, for 
genetic differences that spell who is likely to get breast cancer, and who is not. 
The aim is to discover novel susceptibility markers and mechanisms, which are 
bits and pieces of clues essential to solving the puzzle of the disease. Knowing 
what makes the cancer bomb tick will ultimately be helpful in stratifying the 
population according to the likelihood of getting the disease, so that resources can 
be reallocated to screen individuals at high risk more often than those with below 
average risk of getting breast cancer. 

October or not, the fight against breast cancer goes on.
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ABSTRACT

The main purpose of this thesis was to identify genetic risk factors using both 
hypothesis-based and hypothesis-free approaches. 

In an attempt to identify common disease susceptibility alleles for breast cancer, 
we started off with a hypothesis-free approach, and performed a combined 
analysis of three genome-wide association studies (GWAS), involving 2,702 
women of European ancestry with invasive breast cancer and 5,726 controls. 

As GWAS has been said to underperform for studying complex diseases such as 
breast cancer, we investigated to see if the variance explained by common variants 
could be increased by studying specific disease subtypes. Breast cancer may be 
characterized on the basis of whether estrogen receptors (ER) are expressed in the 
tumour cells. The two breast cancer tumour subtypes (ER-positive and ER-
negative) are generally considered as biologically distinct diseases and have been 
associated with remarkably different gene expression profiles. ER status is 
important clinically, and is used both as a prognosticator and treatment predictor 
since it determines if a patient may benefit from anti-estrogen therapy. We thus 
performed an independent GWAS using a subset of ER-negative breast cancer 
cases and all of the controls from the initial genome-wide study, and, in addition,
also evaluated whether the two cancer subtypes are fundamentally different on a 
germline level.

Besides hypothesis-free GWAS, we also conducted hypothesis-based analyses 
based on candidate pathways to identify common variants associated with breast 
cancer. Several studies have examined the effect of genetic variants in genes 
involved in the estrogen metabolic pathway on mammographic density, but the 
number of loci studied and the sample sizes evaluated have been small and 
pathways have not been evaluated comprehensively. We evaluated a total of 239 
SNPs in 34 genes in the estrogen metabolic pathway in 1,731 Swedish women 
who participated in a breast cancer case-control study. 

Slightly venturing outside the genetic scope of this thesis, we looked at a breast 
cancer risk factor - body size - that is associated with very different 
postmenopausal breast cancer risks at different time points in a woman’s lifetime, 
namely, birth, childhood, and postmenopausal adult. 

The significance of these studies will be apparent when, using the new genetic and 
epidemiological knowledge found, we are able to classify women according to 
high or low risk of breast cancer on the basis of genetic disposition or other breast 
cancer risk factors, so that appropriate interventions and disease management 
decisions may be made, to ultimately reduce incidence and mortality of breast 
cancer.

Keywords: Breast Neoplasms, Genetic Epidemiology, Genetic Susceptibility, Genetic 
Predisposition to Disease/genetics*, Case-Control Studies, Genetic Association Studies, Candidate 
Gene Analysis, Gene Discovery, Single Nucleotide Polymorphism, Risk Factors,, Estrogen 
Receptors, Mammography, Body Size 



7

LIST OF PUBLICATIONS

I. A combined analysis of genome-wide association studies in breast cancer.
Li J, Humphreys K, Heikkinen T, Aittomäki K, Blomqvist C, Pharoah PD, 
Dunning AM, Ahmed S, Hooning MJ, Martens JW, van den Ouweland AM, 
Alfredsson L, Palotie A, Peltonen-Palotie L, Irwanto A, Low HQ, Teoh GH, 
Thalamuthu A, Easton DF, Nevanlinna H, Liu J, Czene K, Hall P.
Breast Cancer Res Treat. 2010 Sep 26. 

II. A genome-wide association scan on estrogen receptor -negative breast 
cancer.
Li J, Humphreys K, Darabi H, Rosin G, Hannelius U, Heikkinen T, 
Aittomaki K, Blomqvist C, Pharoah PD, Dunning AM, Ahmed S, Hooning 
MJ, Hollestelle A, Oldenburg RA, Alfredsson L, Palotie A, Peltonen-Palotie 
L, Irwanto A, Low HQ, Teoh GH, Thalamuthu A, Kere J, D'Amato M, 
Easton DF, Nevanlinna H, Liu J, Czene K, Hall P.
Breast Cancer Res. 2010 Nov 9;12(6):R93. 

III. Genetic variation in the estrogen metabolic pathway and mammographic 
density as an intermediate phenotype of breast cancer.
Li J, Eriksson L, Humphreys K, Czene K, Liu J, Tamimi R, Lindstrom S, 
Hunter DJ, Vachon C, Couch F, Christopher S, Lagiou P, Hall P.
Breast Cancer Res. 2010 Mar 9;12(2):R19. 

IV. Effects of childhood body size on breast cancer tumour characteristics.
Li J, Humphreys K, Eriksson L, Czene K, Liu J, Hall P.
Breast Cancer Res. 2010 Apr 15;12(2):R23. 



8

CONTENTS

Foreword.................................................................................................................. 5 
Abstract.................................................................................................................... 6 
List of publications .................................................................................................. 7 
List of abbreviations .............................................................................................. 11 
1 Introduction ..................................................................................................... 12 
2 Background...................................................................................................... 14 

2.1 Breast cancer statistics.............................................................................. 14 
2.2 Genetics of breast cancer.......................................................................... 15 

2.2.1 SNP-ing the genome.......................................................................... 15 
2.2.2 Breast cancer susceptibility loci identified through GWAS.............. 16 
2.2.3 Prediction is very difficult, especially if it's about the future............ 17 

2.3 Missing heritability................................................................................... 19 
2.4 Origins of ER-negative breast cancer....................................................... 22 
2.5 Mammographic screening ........................................................................ 23 

2.5.1 A specific kind of X-ray .................................................................... 23 
2.5.2 Limitations of mammography ........................................................... 23 
2.5.3 Mammographic density is a measure of risk ..................................... 24 
2.5.4 Genetics of mammographic density .................................................. 25 

2.6 Epigenetics................................................................................................ 26 
2.6.1 Reading deeper into the book of life ................................................. 26 
2.6.2 It is often heard that a butterfly flapping its wings in South America 

can affect the weather in Central Park............................................... 27 
2.7 I see “U” ................................................................................................... 27 

2.7.1 The “U” in growth patterns and the risk of breast cancer in women.28 
2.7.2 Why would that be so? ...................................................................... 28 
2.7.3 Branching into tumour characteristics............................................... 30 

Aims ...................................................................................................................... 31 
3 Materials and methods..................................................................................... 32 

3.1 Subjects..................................................................................................... 32 
3.1.1 Cancer Hormone Replacement Epidemiology in Sweden

(CAHRES)......................................................................................... 33 
3.1.2 Epidemiological Investigation of Rheumatoid Arthritis (EIRA) ...... 34 
3.1.3 Helsinki University Central Hospital (HUBC).................................. 35 
3.1.4 Studies in Epidemiology and Risks of Cancer Heredity (SEARCH) 35 
3.1.5 Rotterdam Breast Cancer Study (RBCS) .......................................... 35 
3.1.6 Cancer Genetic Markers of Susceptibility (CGEMS)/

Nurses’ Health Study (NHS) ............................................................. 36 
3.1.7 Mayo Clinic Breast Cancer Study (MBCS) ...................................... 36 

3.2 Data collection.......................................................................................... 37 
3.2.1 Key variables ..................................................................................... 37 

3.3 Statistical analyses.................................................................................... 39 
4 Results ............................................................................................................. 43 

4.1 Study I....................................................................................................... 43 
4.2 Study II ..................................................................................................... 44 
4.3 Study III.................................................................................................... 46 
4.4 Study IV.................................................................................................... 48 

5 Discussion........................................................................................................ 49 
5.1 Studies I and II.......................................................................................... 49 

5.1.1 Population stratification..................................................................... 49 



9

5.1.2 Imputation ......................................................................................... 50 
5.1.3 Pathway analysis ............................................................................... 50 

5.2 Study III ................................................................................................... 51 
5.3 Study IV ................................................................................................... 52 
5.4 Other methodological constraints ............................................................ 52 

5.4.1 Study design...................................................................................... 52 
5.4.2 Internal validity ................................................................................. 53 
5.4.3 Statistical power and multiple testing ............................................... 55 
5.4.4 Wrapping up...................................................................................... 56 
Cancer is not just one mutation..................................................................... 56 
Cancer is not just one phenotype. ................................................................. 56 

6 Conclusions..................................................................................................... 58 
7 Final remarks and future research ................................................................... 59 

Functional relevance and the (Holy) GRAIL................................................ 59 
Invest in servers, software or technical expertise.......................................... 59 
Towards greater numbers for greater good. .................................................. 59 

8 Afterword ........................................................................................................ 61 
8.1 If I were a professor… ............................................................................. 61 

9 Acknowledgements ......................................................................................... 64 
10 References ..................................................................................................... 65 



10

TABLE OF FIGURES

Figure 0-1 Volume of Google results related to breast cancer added to the 
cyberspace ............................................................................................................... 5 
Figure 1-1 Global breast cancer mortality in 2008................................................ 13 
Figure 1-2 Global breast cancer incidence worldwide in 2008 ............................. 13 
Figure 2-1 Most common cancers in women ........................................................ 14 
Figure 2-2 Number of new breast cancer cases, Nordic countries, 2007 .............. 15 
Figure 2-3 Proportion of cases of breast cancer explained by the proportion of the 
population at highest risk for breast cancer. .......................................................... 18 
Figure 3-1 Nine-level somatotype pictogram........................................................ 38 
Figure 3-2 Schematic diagram of analytical strategies for agnostic single marker 
association analysis and pathway analysis. ........................................................... 40 
Figure 4-1 Results from gene expression study..................................................... 46 
Figure 4-2 Summary of the different levels of analysis and corresponding results 
performed in Study III. .......................................................................................... 47 
Figure 4-3 Effects of breast cancer susceptibility SNPs on somatotypes at age 7, 
age 18, and one year prior to enrolment ................................................................ 48 
Figure 8-1 Summary of the author’s runs tracked on Nike+................................. 62 
Figure 8-2 Beat your best ...................................................................................... 62 
Figure 8-3 Screen shot of author’s Facebook profile ............................................ 63 
Figure 8-4 Different faces of the very temperamental mini avatar of the author’s 
Nike+ profile ......................................................................................................... 63 



11

LIST OF ABBREVIATIONS

ADHD Attention deficit hyperactive disorder
AML Admixture maximum likelihood
AUC Area under curve
CAHRES Cancer Hormone Replacement Epidemiology in Sweden
CGEMS Cancer Genetic Markers of Susceptibility
CNV Copy number variation
COGS Collaborative Oncological Gene-Enivronment Study
CT Cycle threshold
DNA Deoxyribonucleic acid
EIRA Epidemiological Investigation of Rheumatoid Arthritis
ER Estrogen receptor
FGC Finnish Genome Center
GWA/GWAS Genome-wide association study
HUBC Helsinki University Breast Cancer Study
KARMA Karolinska Mammography
kb Kilobase(s)
KEGG Kyoto Encyclopedia of Genes and Genomes
LD Linkage disequilibrium
MALDI-TOF Matrix-assisted laser desorption/ionization time of-flight
MBCS Mayo Clinic Breast Cancer Study
MODE Marker of DEnsity consortium
NHS Nurses’ Health Study
PCA Principal component analysis
POLR Proportional odds logistic regression
PR Progesterone receptor
RBCS Rotterdam Breast Cancer Study
RNA Ribonucleic acid
ROC Receiving operator characteristic
SCAN SNP and CNV Annotation Database
SEARCH Studies in Epidemiology and Risks of Cancer Heredity
SNAP SNP Annotation and Proxy Search
SNP Single nucleotide polymorphism
SRT SNP Ratio Test
WGA Whole genome association study



12

1 INTRODUCTION

Breast cancer is not just a lump - it's a killer disease. One in eight women will get 
breast cancer in their lifetime. Statistics from GLOBOCAN estimated that 
458,000 women died from breast cancer globally in 2008 (Figure 1-1) [1, 2],
which is equivalent to the loss of one life to the disease nearly every minute. 
Approximately 1,383,000 new cases of invasive breast cancer (23% of all cancers
among women) were diagnosed globally in 2008 (Figure 1-2).

In developed countries, breast cancer is the leading cause of cancer death in
women between the ages of 15 and 54, and the second cause of cancer death in 
women 55 to 74. The bulk of the women with breast cancer (77%) are over 50. In 
view of the large proportion of postmenopausal breast cancer cases, the focus of 
studies described in this thesis are on this group of women.

Breast cancer is hereditary in nature, with both genetic and non-genetic risk
factors (we inherit more than just genes from our parents; we also inherit lifestyle 
to a certain extent). It has been reported that 27% of breast cancer risk may be 
explained by heritable factors [3]. It is, however, suggested that genetics plays the 
larger role. In sets of twins with at least one twin with breast cancer, twin pairs 
have been found to be concordant for breast cancer in monozygotic pairs more 
than in dizygotic pairs.

Rare, high-penetrance and high-risk variants, such as BRCA1, BRCA2 and TP53,
and rare, intermediate risk variants, such as PTEN, CHEK2, PALB2 and BRIP1,
can only explain 27% of the excess familial risk1 of breast cancer [4]. Common 
variants identified through recent genome-wide association studies (GWAS) have  
currently shown to be responsible for a further 5%, leaving more than two-thirds 
of genetic risk unaccounted for [4]. Despite the increased understanding of genetic 
predisposition to breast cancer in recent years, the field remains fertile for the 
discovery of novel genes/loci to better understand the architecture of breast 
cancer.

With the completion of the Human Genome Project and rapid technological 
advances, we are in a good position to scour the genetic landscape for the elusive 
variants that, though common, has only small effects, or variants that only exert 
effects in the presence of other risk factors.  The aim of this work is to identify 
common variants that predispose to the risk of breast cancer, and increase the 
explained variance, using a variety of analyses and approaches. 

Breast Breast Breast2

The overarching goal is to one day be able to classify women according to high or 
low risk of breast cancer on the basis of genetic disposition or other breast cancer 
risk factors, so that appropriate interventions and disease management decisions 
may be made, to ultimately reduce incidence and mortality of breast cancer.

1 The increased risk of developing the disease in a relative of an affected individual.
2 Anagrams for the word breast - Beat Breast Beast
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Figure 1-1 Global breast cancer mortality in 2008
Coloured bar indicates age-standardized incidence rates per 100,000. Source: [1]

Figure 1-2 Global breast cancer incidence worldwide in 2008
Coloured bar indicates age-standardized incidence rates per 100,000. Source: [1]
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2 BACKGROUND

2.1 BREAST CANCER STATISTICS

Breast cancer is the most common cancer among women (Figure 2-1) [1]. More 
than one million women are diagnosed with breast cancer globally every year [2].
Between 8 and 12 percent of women in the western world will be diagnosed with 
the disease during their lifetime and the incidence is increasing [2, 5]. Breast 
cancer risk increases with age. The incidence of breast cancer increases with age 
and doubles every 10 years until the menopause when the rate of increase slows 
(Figure 2-2). Approximately 25% of breast cancer cases affect women under the 
age of 50, 50% occur in women between ages of 50 and 69, and the remaining 
develop in women 70 years and older.

Figure 2-1 Most common cancers in women
Source: [1]
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Figure 2-2 Number of new breast cancer cases, Nordic countries, 2007
Source: (4)

2.2 GENETICS OF BREAST CANCER

The main causative culprit behind sporadic cancers is the environment. The 
etiological make-up of a heterogeneous and complex disease such as breast cancer 
is diverse [6], and includes age, geographical location, lifestyle factors, 
environmental factors, and hormonal factors, among others [6, 7].

Genetics is also known to play a part. Although all cancers are familial3 to a 
certain degree, inherited genetic factors have been reported to only make a minor 
contribution to the susceptibility of most types of site-specific cancers [8].
However, the heritable component of breast cancer derived from twin studies is 
estimated to be relatively high (~27%) [3], and genetic effects have been 
calculated to explain almost 30% of the total variability of propensity to breast 
cancer [9], making the disease a good candidate for gene hunts.

2.2.1 SNP-ing the genome 

The DNA alphabet consists of four letters or nucleotides, A, T, G or C. Single 
nucleotide polymorphisms, or SNPs (pronounced "snips"), are single letter 
alterations in the deoxyribonucleic acid (DNA) sequence. For example a SNP 
might change the DNA sequence TAGCAT to GAGCAT. A variation at a single 
position is considered a SNP if it occurs in at least 1% of the population, and is 
thus sometimes referred to as a “common variant”.

SNPs make up the bulk of all human genetic variation (~90%), and are densely 
distributed across the 3-billion-base human genome, occurring every 100 to 300 
bases. Most SNPs (every two out of three) involve the replacement of cytosine (C) 
with thymine (T). The repercussions of having a variant SNP can vary, as SNPs 

3 Familial risk of a disease is a measure of its clustering in family members. Commonly, familial 
risk is defined between those who have a relative (e.g., parent or sibling) with cancer compared to 
those whose relatives are free from cancer, given as a familial relative risk or familial standardized 
incidence ratio (SIR) 
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can occur in both the exonic (gene coding) or intronic (non gene coding) regions 
of the genome. The vast majority of SNPs have no direct contribution to a change 
in disease status, but because a SNP may be linked to another functional SNP by 
means of shared underlying genetic architecture, they are often studied as markers 
that could help determine the likelihood that someone will develop a particular 
disease or trait.

SNPs are not only useful in identifying meaningful disease-related hotspots by 
being guilty by association. Another interesting concept that involves the ability 
of SNPs to determine disease outcome is host genetics. In a set of breeding studies 
performed on mice, it was found that the same cancer-causing stimulus in the 
male mice - the expression of the polyoma middle-T antigen transgene –
manifested different capacities to form tumours in their offspring, when mated to 
female mice of varying genetic backgrounds [10]. Collectively, the genetic 
background defined by SNPs may be important in modifying the effects of other 
genetic and non-genetic breast cancer risk factors via interactions.

Because SNPs are so plentiful, a large number of such variants are usually studied 
simultaneously. In genetic epidemiology, a genome-wide association study (GWA 
study, or GWAS), also known as whole genome association study (WGA study), 
is an examination of all or most of the genes (the genome) of different individuals 
to see how much the genes vary from individual to individual. Different variations, 
such as SNPs, are then associated with different traits, such as diseases. In humans, 
this technique has found associations of particular genes with diseases such as 
age-related macular degeneration [11], diabetes [12], and leprosy [13], among 
many others. Due to the rapid increase in the number of GWAS, online resources 
exist to curate and index the SNP-trait associations extracted from published 
literature [14].

2.2.2 Breast cancer susceptibility loci identified through GWAS
To date, there are ~27 instances of SNPs identified as “breast cancer susceptibility 
loci”. The list in Table 2-1 does not comprise of unique SNPs. The same SNPs, 
such as rs2981582 and rs3803662, may have been identified independently in 
different GWAS, and thus appearing multiple times. In addition, the associations 
might not be wholly independent. In population genetics, linkage disequilibrium 
(LD) is “the nonrandom association between two or more alleles such that certain 
combinations of alleles are more likely to occur together on a chromosome than 
other combinations of alleles” (The American Heritage® Medical Dictionary). 
For example, rs1219648 and rs2981582 located in the FGFR2 gene are in perfect 
LD (r2 = 1) 4, and are thus perfect surrogates for each other. 

4 r2 is a measure of linkage disequilibrium which ranges between 0 (when they are in perfect 
equilibrium) and 1 (when the two markers provide identical information). It is sometimes used to 
measure a loss in efficiency when marker A is replaced with marker B in an association study.
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Table 2-1 List of common breast cancer susceptibility SNPs and the corresponding genes 
they are associated with.

PMID SNP CHR BP Alleles GENE 
19330030 rs11249433 1 120982136 C/T INTERGENIC
17529974 rs13387042 2 217614077 A/G INTERGENIC
19330027 rs4973768 3 27391017 C/T SLC4A7
18438407 rs10941679 5 44742255 A/G INTERGENIC
18438407 rs4415084 5 44698272 C/T INTERGENIC
17529967 rs889312 5 56067641 A/C INTERGENIC
19219042 rs2046210 6 151990059 C/T INTERGENIC
20453838 rs3757318 6 151955806 A/G C6orf97
17529967 rs13281615 8 128424800 A/G INTERGENIC
20453838 rs1562430 8 128457034 A/G INTERGENIC
20453838 rs1011970 9 22052134 G/T INTERGENIC
20453838 rs10995190 10 63948688 A/G ZNF365
17529973 rs1219648 10 123336180 A/G FGFR2
20453838 rs2380205 10 5926740 C/T INTERGENIC
17529967 rs2981582 10 123342307 C/T FGFR2
19536173 rs2981582 10 123342307 C/T FGFR2
19536173 rs3135718 10 123343859 A/G FGFR2
20453838 rs704010 10 80511154 A/G INTERGENIC
19536173 rs7895676 10 123323987 C/T FGFR2
17529967 rs3817198 11 1865582 C/T LSP1 
20453838 rs614367 11 69037945 C/T INTERGENIC
20453838 rs909116 11 1898522 C/T TNNT3
19330030 rs999737 14 68104435 C/T RAD51L1
17529967 rs12443621 16 51105538 A/G TOX3
17529967 rs3803662 16 51143842 C/T LOC643714
17529974 rs3803662 16 51143842 C/T LOC643714
17529967 rs8051542 16 51091668 C/T TOX3

One of the genes associated with breast cancer, fibroblast growth factor receptor 2 
or FGFR2, is a good example of a GWAS-identified locus that has been 
implicated in the disease development of breast cancer [15, 16]. The association 
signals from the highly significant hits of the GWAS brought attention to a 
specific region on chromosome 10, which previously have not been linked to 
breast cancer. 

Through fine-scale genetic mapping5 of the region, it has been possible to narrow 
the causative locus to a haplotype of eight strongly linked SNPs spanning a region 
of 7.5 kilobases (kb) in the second intron of the FGFR2 gene, and more studies 
are underway to identify the true causative variant [17].

2.2.3 Prediction is very difficult, especially if it's about the future. 
- Niels Bohr

There have been attempts at understanding how useful the SNPs mentioned above 
could be for predicting breast cancer risk and aid in the target prevention of breast 
cancer [18].

5 Fine-mapping involves the identification of markers that are very tightly linked to a targeted 
gene.
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To gauge whether a predictive model is performing well, we can plot a receiver 
operating characteristic (ROC) curve. The area under the curve (AUC) measures 
discrimination, that is, the ability of the test to correctly classify those with and 
without the disease. An area of 1 represents a perfect prediction; an area of 0.5 is 
not informative at all, that is, the results of the prediction model are no better than 
randomly flipping a coin. 

Figure 2-3 is an example of a ROC curve and shows the difference in predictive 
power achieved by using seven of the currently known SNPs [18] (denoted by a 
thick red line). The black dashed line shows the theoretical scenario when all 
possible susceptibility alleles are included in the model. The pink null line 
illustrates a scenario where the SNPs have negligible value in explaining the 
proportion of breast cancer cases in a population.

Figure 2-3 Proportion of cases of breast cancer explained by the proportion of the population 
at highest risk for breast cancer. 
Source: [18]

Assume that there are 100 breast cancer cases in a population of 1000 women. If 
we were to genotype the entire population for the seven breast cancer 
susceptibility loci used in the example of Pharoah et al. [18], and rank them 
according to their genetic risk profiles, we would expect to identify a quarter of all 
breast cancer cases (25/100) amongst the 200 women with the highest risk as 
determined by the seven susceptibility loci (solid square). Similarly, among 500



19

women with the highest genetic risk scores, we would expect to find 60% of all 
the breast cancer cases (60/100 women, solid diamond). 

In an ideal world where we have full knowledge of all the variants that predispose 
a woman to breast cancer, and if we genotyped the entire population, we could 
expect to find more than half of all the breast cancer cases (60/100) among the 
women with the highest genetic risk profiles (20% of all women, unfilled square). 
That is a huge jump from the ~25% explained using only seven of the currently 
known SNPs. 

Similarly, with knowledge of all breast cancer variants, we would expect to find 
more than 80% of all breast cancer cases (80/100) among half of the women with 
the highest risk profiles (unfilled diamond). That is, if we knew the genetic risk 
profiles of the entire population, we can selectively apply prevention measures to 
only half the women (i.e. screen the women at high risk more frequently, or 
provide chemoprevention therapy), yet prevent more than 80% of all breast cancer 
cases. Besides being easier on national health budgets, fewer women would need 
to experience unnecessary hassle or undesirable side effects of chemoprevention, 
for example. 

Despite the efforts of several independent GWAS, little progress has been made 
from the solid line to the dotted line in Figure 2-3. In a recent large prospective 
study consisting of 10,306 women with breast cancer and 10,393 women without 
breast cancer, the effects of 14 breast cancer susceptibility loci identified through 
the various GWAS efforts have been estimated [19]. It was found that women 
who had the highest risk scores (highest quintile) were twice as likely as those 
who had the lowest risk scores (lowest quintile) to get breast cancer. 

Although the results were encouraging, the genetic risk score was not much better 
than family history in predicting breast cancer risk. Wacholder et al. [20] found 
that traditional breast cancer risk factors (i.e. age at menarche, age at first live 
birth, number of previous biopsies, and number of first-degree relatives with 
breast cancer, which are considered in the Gail Model [21]), showed an AUC of 
58.0%. The inclusion of the newly discovered genetic factors only modestly 
improved the performance of risk models for breast cancer, increasing the AUC to 
61.8%. If the improvement was only better by 3.8 percentage points, why should 
we even consider genotyping the entire population, when we can simply ask 
women to fill in answers to a few questions online and providing them with an 
instant feedback of their breast cancer risk? 

At present, it is unlikely that such polygenic risk scores would be used in 
population-based screening programs. However, as more SNPs are identified, the 
predictive value of these markers will clearly improve, and may prove to be useful
in understanding biological mechanisms behind breast cancer etiology.

2.3 MISSING HERITABILITY

It seems a bit strange that more predictive power can’t be squeezed out of the nine 
independent GWAS performed. If genetics really play a large part in the 
heritability of breast cancer, then maybe we are not looking hard enough. Below, I 
summarize some of the possible explanations for this “missing heritability”.
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Rare variants. GWAS has its limitations. Rare associations are typically missed 
by current GWAS methods [22]. While common variants identified through 
recent GWAS to date can explain only ~5% of the familial risk of breast cancer, 
the known rare, high-penetrance breast cancer variants with large effects, such as 
BRCA1, BRCA2 and TP53, and rare, intermediate risk variants, such as PTEN,
CHEK2, PALB2 and BRIP1, account for ~27% [4]. A large bulk of the genetic 
landscape of breast cancer remains unmapped, and the reason behind this missing 
heritability has been much discussed, debated and deliberated [23-25]. Rare 
variants that are yet identified, which occur in between one to five percent of 
the population, with large effect sizes are among the many proposed candidates 
for explaining this missing heritability.

However, from the latest developments, we are seeing compelling evidence that 
rare variants do NOT explain disease variance over and above that of common 
variants. For example, Momozawa et al. [26] identified low frequency coding 
variants through resequencing of positional candidates conferring protection 
against inflammatory bowel disease in IL23R, but concluded that rare coding 
variants in positional candidates do not make a large contribution to inherited 
predisposition to Crohn's disease. Rare variants, if I may say so, appear to be a 
fashion trend; they come and go like a bad case of the flu.

Genetic mutations do not usually act alone, and conditions attributed to a 
single genetically dominant and almost fully penetrant variant, such as 
Huntington’s disease, are rare. Since breast cancer is a complex disease, it does 
not obey the single-gene dominant or single-gene recessive Mendelian law. 
Rather, genes tend to work in groups, a phenomenon known as gene-gene 
interaction or epistasis. A small change in a gene may modify the effects of other 
genes. By looking at only single marker effects, effects due to such interactions of 
genes are not accounted for. 

Genetic heterogeneity is the phenomenon that a single phenotype or genetic 
disorder may be caused by any one of a multiple number of alleles or non-allelic
(locus) mutations [27]. By performing a combined GWAS, or a meta-analysis of 
independent GWAS, and looking at the combined p-values of single markers, we 
may miss out association signals which are important within individual 
populations.

Interactions are not limited to between genes and genes only. On top 
of the need to consider the effect of genes in the presence of other genes, one 
needs to also factor in environmental influence (gene-environment interaction or 
G × E). A classic example is a human genetic condition known as phenylketonuria,
which is caused by mutations to a gene coding for a particular liver enzyme [28].
Left untreated, a defect in the metabolism of a specific protein building block 
known as phenylalanine causes severe mental retardation, epilepsy and behavioral 
problems. By changing the environmental exposure, or in this case, restricting 
phenylalanine in diets for newborns screened positive for this condition, most 
affected infants grow up leading normal lives.

Increase resolution. Another strategy for uncovering hidden heritability is to 
examine DNA in more detail. We are currently speed-reading the book of life at 
best, picking out only words we deem to be relevant to our understanding of the 
genome. For instance, to maximize the investment in genotyping and statistical 
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power, a subset of informative SNPs selected based on linkage disequilibrium 
(also known as “tag SNPs”) is often used in GWAS [29, 30]. Although it is 
possible for one to extract and comprehend the main storyline of a novel by 
reading only one in every ten words, certain savoury details may still be missed. 
Small informative footnotes that might also be easily missed include 
mitochondrial DNA. Unless denser microarrays or whole genome sequencing 
technologies are applied, we might never tease out information hidden away in the 
rest of the genome. 

Increase statistical power. Besides looking at more variants, we also need to 
look at more people. Statistical power to detect an effect is limited by the sample 
size, or the number of individuals included in the study. For example, height is a 
complex trait that is possibly determined by hundreds of loci with very modest 
effect sizes which are difficult to detect without sufficient statistical power. More 
than a hundred thousand DNA samples were analyzed in recent GWAS efforts by 
the GIANT Consortium to identify loci associated with body mass index [31] and 
height [32].

Structural variation. Although SNPs are the most predominant form of genetic 
variation, they are not the only form. Besides single-letter differences, two 
individuals may also be different on the structural level of DNA – deletions or 
duplications of DNA regions, inversions etc. Copy number variations, or CNVs, 
are similar to repetitions or deletions of blocks of text in the story. Jane’s genetic 
instructions could read “I am very pretty”, while Mary’s could be “I am very, very 
pretty”. The extra copy of “very” in the text would mean that Mary is probably 
prettier than Jane, because it is coded so. Another glitch which may occur is when 
an extra copy is present in the wrong place – “I am very prverytty” would confuse 
the system and no prettiness would be coded as a result. An example of CNV in 
humans is the starch-digesting enzyme amylase. Populations which consumed 
starchy diets (European Americans, the Japanese, and Hadza hunter-gathers) were 
found to have more copies of the gene than populations which kept to a low-starch 
diet (two rainforest hunter-gatherers, the Mbuti and Biaka and two pastoralist 
groups, the Datog and Yakut) [33].

Non-genetic changes. The actual impact of a gene on the end phenotype is 
also subjected to non-genetic changes, such as epigenetic and post-translational 
modifications of gene expression. Processes such as histone acetylation and 
deacetylation function as a switch between repressive and permissive chromatin to 
govern transcriptional activity [34]. Other epigenetic processes such as DNA 
methylation and histone modification are associated with gene-silencing-
associated events [35]. In addition, small non-coding ribonucleic acid (RNA),
called microRNA, can post-transcriptionally modulate the expression of more 
than a third of the coding messenger RNAs without changing the underlying 
genetic code.

Restrictive assumptions of heritability estimates. Heritability estimates 
are exactly what they are – estimates. In a commentary by Rose [36], several 
misconceptions over the definition of the term were discussed. The measure refers 
to the proportion of phenotypic variation attributable to all genetic causes in a 
population within a population in a specific environment; if the environment 
changes, the heritability measure changes. In addition, the measure cannot be used 
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to explain causes of differences between populations. Implicit in the heritability 
measure is the assumption that the contributions of genes and environment are 
additive, but it is also possible that interactions occur on a multiplicative scale. 
The successful application of heritability estimates outside the narrow range of 
circumstances for which it was originally derived is thus limited.

"Garbage in; garbage out." The quality of the data that is being scrutinized is 
of utmost importance. In order to pool samples together in gigantic consortia to 
achieve statistical power, a trade-off is often made with phenotypic precision. 
Although measurement error rate is low for genetic polymorphisms, the same 
cannot always be said for the outcomes of interest. As disease definitions are 
typically not clear cut, the definition of what constitutes a “case” in collaborative 
GWAS is at times arbitrary, especially for spectrum disorders, such as autism, 
attention deficit hyperactive disorder (ADHD) and schizophrenia [37]. Rigorous, 
adequately powered studies homing in on well-defined subtypes of heterogeneous 
diseases such as Parkinson’s disease [38] or breast cancer [39] may be required to 
identify genetic variants associated with the different subtypes, which could be 
etiologically distinct. 

This thesis explores the problem of ambiguous phenotypes obscuring GWAS 
results in more detail. Breast cancer may be characterized on the basis of whether 
estrogen receptors (ER) are expressed in the tumour cells (described in more 
detail in the following section). ER status is important clinically, and is used both 
as a prognostic indicator and treatment predictor since it determines if a patient 
may benefit from anti-estrogen therapy. Approximately one third of all breast 
cancers are ER-negative, and cancers of this ER subtype are highly age-dependent 
and generally have a more aggressive clinical course than hormone receptor-
positive disease.

2.4 ORIGINS OF ER-NEGATIVE BREAST CANCER

Estrogens act on target tissues by binding to parts of cells called estrogen 
receptors (ER) which normally reside in the cell’s nucleus, along with DNA 
molecules [40]. In the presence of estrogen, ER triggers gene activation to induce 
changes in cell behaviour. In some target tissues, estrogen plays an important role 
in causing cells to grow and divide, a process called cell proliferation. Although 
this ability to stimulate cell proliferation is one of estrogen’s normal roles, it can 
also increase a woman’s chance of developing a cancer in the target tissue where 
ER is expressed. Estrogen receptors are not always expressed in cancer cells 
arising in the breast; those breast cancers that do have ER are said to be “ER-
positive,” while those breast cancers that do not possess ER are “ER-negative.”

Overall, the evidence appears overwhelming that ER-negative breast cancers 
originate from ER-positive precursors [41]. Allred et al. [41] summarized 
evidence supporting the opinion that ER status can switch from one subtype to 
another, in either direction, from epidemiological, histological/pathological and 
molecular aspects. Firstly, increased exposure to estrogen has been associated 
with increased breast cancer risk for both ER-positive and ER-negative breast 
cancers. In addition, a decrease in estrogen exposure in BRCA1 mutation carriers 
is correlated with a decreased risk of breast cancer, also for both ER-positive and 
ER-negative breast cancers. Secondly, early stage breast cancers tend to be 
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predominantly ER-positive, with progressively more ER-negative tumours among 
women with late-stage cancers. ER-positive precursors have also been detected in 
ER-negative tumours in the same patient. Lastly, molecular mechanisms such as 
MAPK activation or hypermethylation of ER promoters have been shown to 
experimentally alter ER status in a reversible manner.

There has been considerable debate as to whether breast cancers of different ER 
subtypes really share a common root (i.e. ER-positive precursors). Allred et al. 
[41] presented arguments for this alternative view, which is now generally 
regarded as the mainstream view. For example, anti-estrogens, such as tamoxifen, 
which blocks ER in breast tissue, are only effective as chemoprevention therapy 
against ER-positive cancers. In a series of seminal articles, breast cancer was 
found to consistently show several distinct gene expression patterns, each of 
which was coined a “molecular portrait of cancer”, or breast cancer subtype [42-
44]. ER status was one of the key determining factors of this classification. 

2.5 MAMMOGRAPHIC SCREENING
2.5.1 A specific kind of X-ray

A mammogram is a special X-ray examination of the breast. The first sign of 
breast cancer usually shows up on a woman's mammogram before it can be felt or 
any other symptoms are present. Early detection of breast cancer through yearly 
mammography, together with monthly breast self-examination, offers the best 
chance for survival. Over 96% of women who find and treat breast cancer early 
(Stage 0/I, or when cancer is confined to the breast [45] have an excellent chance 
of complete recovery and of remaining cancer-free after five years. Otherwise, the 
five-year survival after diagnosis is 89% for all breast cancers [45]. As a result of 
the excellent chance of complete recovery, more than 1.7 million women who 
have had breast cancer are still alive in the United States. 

2.5.2 Limitations of mammography

Early cancer detection, however, comes with a price. Mammography is simply too 
good at finding irregularities in the breast. The bumper crop of breast cancer cases 
among women between 40-65 years of age, which coincides with the window for 
mammography screening (Figure 2-2). This increase in cases could be attributed 
to the detection of latent breast cancers. The question is then whether all cancers 
demand equal attention. Do small, early-detected, non-invasive in situ carcinomas 
signal big problems to a woman’s health?

The magnitude of overdiagnosis from randomized trials ranges from 10 to 52% 
[46-48]. Although the estimates differ substantially among studies, the evidence
for overdiagnosis of breast cancer with mammography screening is consistent and 
strong. It is a source of grave concern that many women are being told the 
devastating news that they have a cancer, or being treated with unnecessary 
therapy that is often fraught with serious side effects, when in fact there is 
considerable chance that a mammographic abnormality, when left untreated, may 
never advance into a deadly malignant tumour.
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There are also times when mammography does not deliver. Mammographic 
screening sensitivity is affected by the amount of dense tissue present in the breast 
[49]. Against a background of dense tissue, abnormalities such as tumours may be 
“masked”, making them harder to detect. Since a woman’s breasts decrease in 
density with age, mammography is an ideal technique for screening for 
abnormalities in breasts of older women. It has also been recommended that 
women in high risk groups with dense tissue patterns should go for more frequent 
screens and/or with more views per breast, or be prescribed chemoprevention [49]
to avoid missing suspicious radiographic lumps.

2.5.3 Mammographic density is a measure of risk

Limitations aside, in addition to its diagnostic virtues, the proportion of 
radiographically dense (white areas) to non-dense, predominantly fatty, tissue 
(dark areas), on a mammogram is an independent risk factor and one of the 
strongest indicators of breast cancer risk [50]. Several studies have shown that 
women with extensive dense tissue are at between four to six times higher risk of 
developing the disease than women of similar age with lower mammographic 
density [51, 52]. Examples of other risk factors found to be indisputably linked to 
certain diseases are smoking to lung cancer, and recurrent reflux to esophageal 
cancer. To put things in perspective, the odds ratio for lung cancer in current 
United States smokers relative to nonsmokers was 40.4 [95% confidence interval 
= 21.8-79.6] [53], and recurrent symptoms of reflux are associated with a 7.7-fold 
[95% confidence interval = 5.3-11.4] increase in risk of getting esophageal cancer 
[54]. On the other hand, having a first degree relative with a history of breast 
cancer only increases one’s risk of getting breast cancer by approximately two-
fold [55].

There are various measures of mammographic density. Wolfe was the first to 
introduce the first qualitative classification of breast tissue patterns in 1976 [56].
The four classification categories - N1, P1, P2 and DY – describe a breast that is 
almost entirely fat, a breast with scattered fibroglandular densities, a 
heterogeneously dense breast, and an extremely dense breast, respectively [57].
Tabár et al. [58] later proposed a modification to Wolfe’s classification by 
separating Wolfe’s N1 pattern into two subgroups. Wolfe also quantified on a 
continuous scale the percentage of radiologically dense areas on a mammogram 
with the use of a polar planimeter [59]. This method was later modified into the 
BI-RADS system and adopted for use in clinical radiology practice in the USA 
[49]. Several semi-automatic computer-assisted techniques are also available to 
assess mammographic density quantitatively [60, 61]. Computer-aided 
thresholding programs, such as Cumulus, are currently seen as the accepted 
standard for measurement of mammographic density.

Overall, there is substantial agreement across different assessment methods in 
determining high-risk (high density) versus low-risk (low density) mammographic 
patterns [49, 62]. Measurements by quantitative scales, such as Boyd and BI-
RADS, are highly reproducible, with almost perfect agreement. On the other hand, 
methods which rely on ratings of parenchymal tissue patterns by an observer, i.e., 
Tabar and Wolfe, perform well, but have only good agreement. 
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Besides mammography, other techniques used to capture abnormalities in the 
breast include ultrasound tomography [63] and magnetic resonance imaging [64].
It has been proposed that such alternative methods of imaging may complement 
the characterization of breast density by mammography to improve breast cancer 
risk prediction and disease prevention [65, 66]. However, due to the dual 
considerations of cost and ease of measurement [67], mammography is the most 
prevalent technique used for the characterization of breast density. 

2.5.4 Genetics of mammographic density
Twin studies have estimated the heritability of the mammographic density trait to 
be between 60-67% [68]. Evidence for a genetic influence also comes from other 
studies on family history, familial aggregation and segregation analyses. As 
underlying risk factors of complex diseases are likely to share genetic variants 
with the disease itself [69], unravelling the genetics of mammographic breast 
density may offer insights into the carcinogenesis of breast cancer. As a 
phenotypic manifestation such as mammographic density is more proximal to the 
endpoint (i.e. breast cancer) on the causal chain than genetic polymorphisms, the 
examination of this trait is likely to narrow down the possible genetic and 
environmental factors influencing the disease outcome. Hence, attempts to 
identify genetic determinants of mammographic density may be a more focused 
approach, both more powerful and more efficient, for studying the etiology of 
breast cancer.

Perhaps against expectations, attempts at finding a genetic link between known 
common susceptibility loci of breast cancer (from GWAS) and mammographic 
density have mostly been inconclusive [70-72]. However, a recent Australian 
study revealed a positive connection between the same breast cancer SNPs and 
mammographic density [73]. Although the scientific media immediately homed in 
to celebrate this “expected” finding [74-76], in view of the past endeavours, the 
results should be interpreted with caution. Nevertheless, a meta-analysis of five 
genome-wide association studies of percent mammographic density and reported 
an association with rs10995190 in ZNF365 (combined P=9.63×10-10) (manuscript 
accepted for publication in Nature Genetics). The authors claimed that this finding 
may partly explain the underlying biology of the recently discovered association 
between common variants in ZNF365 and breast cancer risk [77].

Besides breast cancer SNPs identified using GWAS, mammographic density has 
also been studied in relation to genetic variation in pathways associated with 
breast cancer, such as steroid hormone [78-80], insulin-like growth factor (IGF)
[81-83] and vitamin D pathways [84]. Genetic polymorphisms related to estrogen 
metabolism are of special interest, as a woman’s mammographic density profile 
correlates closely with hormonal exposure. A woman goes through menopause 
when her ovaries naturally stop producing estrogen and cease to function. 
Mammographic density has been shown to be inversely associated with age, with 
the largest declines observed between the years of menopause [85]. Certain 
regimens of hormone replacement therapy taken to counter menopausal symptoms 
have also been found to buffer the drop in mammographic density [86, 87].

Knowing one’s genetic predisposition to breast cancer enables a woman at a 
moderately increased or high risk to be active in secondary prevention of the 
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disease (start screening at a younger age, schedule screenings more often, 
counselling etc). Screening women with higher than average breast cancer risk 
more often than women with below average breast cancer risk would also be more 
cost-effective for public health sectors [88, 89].

2.6 EPIGENETICS
2.6.1 Reading deeper into the book of life

The English language can be quite peculiar sometimes. Why is “argue” not 
pronounced as “arg” when “vogue” is pronounced as “vog”? Even more puzzling 
is the broad range of meanings that some words can possess, depending on the 
situations they are used in, where they are used (geographically), or where they 
are positioned in a sentence. For example, you might get shortchanged at the 
pump if you thought a gallon of petrol in the United Kingdom (4.54609 L) is 
equivalent to a gallon of gas in the United States (3.78541 L). “Boot” can be used 
as a verb to mean starting up a computer, or it could mean something on your foot 
or a car.

For the same reason, the human genome (Human Genome Project, 2003) [90] is 
neither just an alphabet book that came with a hefty price tag of nearly $3 billion 
(USD), nor should it be taken only at face value. 

The term to describe changes in gene activities which do not involve alterations to 
the genetic code is “epigenetics” 6. Traditionally, genetic variation has always 
been pinned as a culprit behind everything from a difference in eye color or height 
to a marker for a dreaded disease. However, the fact that every cell in our body 
shares the exact same genetic code, yet a cell from the surface of the skin can look 
rather different from a cell swapped from our tongue, is a strong hint that 
something else shapes development besides changes of the A-T-G-C kind. The 
same mechanism that acts above the DNA level to affect gene expression (and 
hence the prefix epi-) also explain why identical twins, who are virtually genetic 
Xerox copies of each other, may not always be respond in the same way under the 
same conditions (e.g one may develop cancer, the other may not) [91].

If DNA does not spell out one’s destiny, we ought to look beyond the genetic 
code. Depending on the ambient environment, epigenetics at work means that 
good genes can be silenced and bad ones jump-started, and vice-versa, and the 
effects of such changes can linger around for different lengths of time. The effects 
could be transient, like how short-term memories are formed and erased in our 
brains [92], or it could be life-changing, like some peculiar non-genetic sex 
determination systems that act in accordance with various environmental cues. 
For instance, many fish species such as clownfish or wrasses switch sex over the 
course of their lifespan depending on the social structure within their fish clans 
[93]. The epigenetic mechanisms underlying development or modification of 
reproductive systems are due to 1) changes in protein or mRNA concentration and 
targeting; 2) modification of protein trafficking and/or retention, or 3) post-
translational modifications [94].

6 The study of heritable changes in gene function that do not involve changes in DNA sequence.
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2.6.2 It is often heard that a butterfly flapping its wings in South 
America can affect the weather in Central Park.

Very often, epigenetic marks are limited to a single generation of an organism 
[95]. Widespread epigenetic erasure occurs when gametes7 are formed during 
meiosis8. Memories get reset to a blank slate when a baby gets born, and newly 
hatched clown fishes start off as males (or females, depending on which species), 
until appropriate environmental cues present themselves again. However, 
experiments in non-primate models have produced striking results on non-genetic 
inheritance. Records show that such epigenetic effects can be maintained through 
13 to 40 generations in fruit flies [96] and bacteria [97], respectively, even though 
the offspring were not exposed to the external stimuli. In humans, it has been 
documented that a single winter of binge eating as a youngster could spell an 
earlier death for one’s grandchildren [98-100]. Perhaps the tall tales of how a 
giraffe got its long neck from a short one (within a generation or two) by Lamarck, 
often said to have been denounced by Darwin’s superior theory of evolution, 
deserve a reprieve. 

2.7 I SEE “U”
We are programmed to be “just nice” - behold the Swedish word lagom. Very 
often we hear the wise adage saying that “too much of something is not good for 
you”. Yet everyone knows that too little of something can be problematic too. In 
scientific lingo, this non-linear relationship may be classified as either a “J-” or a 
“U-shaped” association. Biological examples of such associations are abundant. It 
has been reported that being too skinny or too fat increases one’s chances of dying 
[101]. Moderate alcohol intake has also been suggested to be protective against 
heart diseases, highlighting the possible adverse effects of nutritional inadequacy 
and excess [102].

What is good for you now may not be good for you later. Effects of external 
stimuli are further obfuscated by an additional dimension – time. Most of us 
would have had encountered major crossroads in life where our actions would 
lead to serious consequences and cause lasting impact, be it choosing a college, or 
deciding on a career path. Biologically, we are vulnerable to critical “windows” of 
development as well, and some important stages of life include fetal, infant, 
childhood, adolescence and adult.

The damage caused by environmental insults is highest when developing 
organisms undergo rapid growth and differentiation [103]. The breast is especially 
vulnerable during periods of hormonal upheaval: fetal development, puberty, 
pregnancy, and postmenopause [104].  For example, data from Japanese atomic 
bomb survivors suggests that sensitivity to radiation is highest among children or 
adolescents who are nearing puberty [105, 106]. In addition, while pregnancy and 
childbirth decreases the risk of breast cancer in the long run, the first pregnancy 

7 A mature sexual reproductive cell, as a sperm or egg, that unites with another cell to form a new 
organism.
8 The special process of cell division in sexually reproducing organisms that results in the 
formation of gametes, consisting of two nuclear divisions in rapid succession that in turn result in 
the formation of four gametocytes, each containing half the number of chromosomes that is found 
in somatic cells.
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has been linked to a transient spike in risk [107]. This is hypothesized to be due to 
interplay of a detrimental effect caused by intense cell growth activity in the breast, 
and the eventual protective effect mediated by the terminal differentiation of stem 
cells [107].

2.7.1 The “U” in growth patterns and the risk of breast cancer in 
women

A non-linear relationship has also been observed between anthropometric measures of 
body size and breast cancer risk. There is evidence that factors influencing fetal, 
childhood, and adolescent growth are important independent risk factors for breast 
cancer in adulthood [108]. Table 2-2 shows a selection of studies investigating 
different anthropometric measures and risk of adult breast cancer. The effect of such 
measures on breast cancer risk over the course of a woman's life may be described as 
“J”- or “U”-shaped.

2.7.2 Why would that be so?
“There are many events in the womb of time which will be delivered” (Othello: I, 
iii). The life of a baby starts before it enters the world. A baby’s size is pegged to 
the risk of getting breast cancer many years into adulthood: A big baby is 
predisposed, while a small baby is less predisposed [108-110]. The findings of 
some studies suggest that the size of a baby reflects the extent of in utero hormone 
exposures, and a high dose of endogenous hormones, such as estrogen, so early in 
life may hardwire the little one’s system to be vulnerable to breast cancer in 
adulthood (96, 97). The actual mechanisms responsible for such predisposition 
remain to be elucidated. 

Others have speculated that a baby’s anthropometric features can mediate the 
number of rare somatic stem cells in a manner largely independent of estrogen 
[111]. Stem cells are immortal, and capable of persisting into adult life. Such long 
lifespans make breast stem cells to be prominent targets for carcinogenesis, and 
any genetic frailties harboured could impact breast cancer risk later on in 
adulthood. Nevertheless, it has been suggested that genetic background plays a 
part in modifying the positive association of birth weight with adult breast cancer 
[112].

“The offices of nature, bond of childhood” (King Lear: II, iv). Childhood body 
size has been consistently shown to affect future breast cancer chances. From the 
positive association of body size at birth with breast cancer, the relationship is 
inversed during childhood years and young adulthood, indicative of a protective 
effect [108, 113-116]. It has been reported that nutrition in early life and 
childhood has the potential to change chromatin structure, to modify gene 
expression and to modulate health in adult life [117]. Hilakivi-Clarke [118]
summarised in a review several perspectives on special windows of mammary 
development. Mammary tissue is postulated to undergo epigenetic extensive 
modelling or re-modelling during different stages in life such as fetal development, 
puberty or pregnancy. Such epigenetic modification can persist into adulthood if 
taken place in mammary stem cells, uncommitted mammary myoepithelial or 
luminal progenitor cells and inherited by subsequent daughter cells [119].
Whether such effects are reversible by later interventions remains to be discovered. 
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Table 2-2 Results from a selection of studies investigating different anthropometric measures 
and risk of adult breast cancer.

Age (years) Anthropometric 
measure (increase)

Effect on breast 
cancer risk

Remarks Ref

Infant Birth weight (kg) Meta-analysis 
of 18 
epidemiological 
studies

[109]

Infant Birth weight (kg) A cohort of 
117,415 Danish 
women

[108]

Infant Birth length (cm) and 
head circumference 
(cm)

A cohort of 
5,358 Swedish 
women

[110]

Infant Fetal growth rate, as 
measured by birth size 
adjusted for 
gestational age 
(units/week)

A cohort of 
5,358 Swedish 
women

[110]

<8 Change in body mass 
index (kg/m2)

A cohort of 
117,415 Danish 
women

[108]

8-14 Change in body mass 
index (kg/m2)

A cohort of 
117,415 Danish 
women

[108]

10 Body mass index 
(kg/m2)

65,140 women 
who 
participated in 
the Nurses' 
Health Study

[113]

14 Body mass index 
(kg/m2)

A cohort of 
117,415 Danish 
women

[108]

Young ages Body fatness (9-level 
pictogram [level 1: 
most lean; level 9: 
most overweight])

A prospective 
analysis among 
188,860 women 
(7,582 breast 
cancer cases)

[114]

7-15 Body mass index 
(kg/m2)

3,447 Finnish 
women

[115]

Young adult Body mass index 
(kg/m2)

10,106 
postmenopausal 
Japanese 
women

[116]

Post-menopause Body mass index 
(kg/m2)

10,106 
postmenopausal 
Japanese 
women

[116]

Mean 
recruitment age 
48 years

Body mass index 
(kg/m2)

424,519 
participants 
from the Asia-
Pacific Cohort 
Studies 
Collaboration

[120]
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“…frailty, thy name is woman!” (Hamlet: I, ii) The complex relationship between 
body mass and breast cancer risk reverts to a positive association again after a 
woman ceases to produce hormones naturally in her ovaries (i.e. undergo 
menopause). There is substantial evidence to support the link between obesity or 
body mass index or weight gain and breast malignancies in postmenopausal 
women [116, 120-123]. After menopause, adipose tissue becomes the principle 
contributor to the circulating pool of estrogen in the body [124]. Estrogen may be 
implicated in breast cancer risk because it encourages growth of cells in the breast 
[125].

The effect of adult anthropometric measures on breast cancer risk varies from 
woman to woman. For example, among women on hormone replacement therapy,
thinner women are more likely to get breast cancer than heavier women [126]. On 
the contrary, among never-users of hormone replacement therapy women with 
higher BMI was more likely than women with lower BMI to develop breast 
cancer.

2.7.3 Branching into tumour characteristics
But breast cancer is a heterogeneous phenotype – is looking at the overall risk of 
breast cancer when examining the effects of anthropometric measures enough?

One study by Bardia and colleagues [127] looked into the risk of developing 
postmenopausal breast cancer stratified by estrogen receptor (ER) and 
progesterone receptor (PR) subtypes and reported that an increase in weight at age 
12 years was associated with a decrease in adult breast cancer risk, with the most 
pronounced effects exhibited by ER-positive/PR-negative tumours. No significant 
heterogeneity, however, was observed between the tumour subtypes studied. 
Adult body mass index, on the other hand, was found to only elevate breast cancer 
risk for the estrogen receptor positive subtype [128].
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AIMS

The underlying aim of this thesis is to identify common genetic variants that are 
associated with risk of breast cancer, using both hypothesis-free (Studies I and II) 
and hypothesis-based (Study III) approaches. To achieve this end, we ventured 
beyond traditional genetic scans and explored the use of alternative phenotypes 
(i.e. intermediate phenotype or disease subtype) to see whether the variance 
explained can be increased. In the last study (Study IV), we look beyond genetics 
for hints as to why destiny does not always lie in our genes.

“My lord, I aim a mile beyond the moon” (Titus Andronicus: IV, iii)

The overarching significance that weaves through all four studies of this research 
is that, one day, we may:

Classify women according to high or low risk of breast cancer on the basis 
of genetic disposition and other breast cancer risk factors, so that
Appropriate interventions and disease management decisions may be made, 
to ultimately
Reduce incidence and mortality of breast cancer.
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3 MATERIALS AND METHODS

In an attempt to identify common disease susceptibility alleles for breast cancer, 
we started off with a hypothesis-free approach, and performed a combined 
analysis of three GWAS, involving 2,702 women of European ancestry with 
invasive breast cancer and 5,726 controls. Tests for association were performed 
for 285,984 SNPs. 

As GWAS has been said to underperform for studying complex diseases such as 
breast cancer, we investigated to see if the variance explained by common variants 
could be increased by studying specific disease subtypes. We performed an 
independent GWAS using a subset of ER-negative breast cancer cases (N = 617) 
and all of the controls from the initial genome-wide study.

For both GWAS, we went beyond standard single marker analyses of scan data to 
look at the importance of groups of SNPs in biologically meaningful pathways 
using permutation-based tests.

Because mammographic density may be influenced by estrogen, we examined a 
total of 239 SNPs in 34 estrogen metabolic genes, both on a single marker and 
global level, in 1,731 Swedish women for associations with mammographic 
density, which is a strong risk predictor of breast cancer risk.

In addition, even though breast cancers of different ER subtypes are well known 
to express distinct tumour behaviour and gene expression, it is not known whether 
they differ in germline genetic risk profiles. The extent of shared polygenic 
variation between ER-negative and ER-positive breast cancers was assessed by 
relating risk scores, derived using ER-positive breast cancer samples, to disease 
state in independent, ER-negative breast cancer cases.

The differential etiology of breast cancers of different ER subtypes was also 
studied in relation to anthropometric risk factors, such as childhood body size. 

3.1 SUBJECTS
This thesis made use of subject data from several sources (Table 3-1): breast cases 
and controls from the Cancer Hormone Replacement Epidemiology in Sweden 
(CAHRES) study, additional Swedish controls from the Epidemiological 
Investigation of Rheumatoid Arthritis (EIRA), unselected breast cancer patients 
and additional familial cases ascertained at the Helsinki University (HUBC), 
population controls from the Finnish Genome Center (FGC), and cases and
controls from the Cancer Genetic Markers of Susceptibility (CGEMS) initiative.

Validation for the genome-wide association scans were performed using the 
Rotterdam Breast Cancer Study (RBCS) and Studies in Epidemiology and Risks 
of Cancer Heredity (SEARCH) study, while results of the candidate gene study 
were validated using subjects from the Mayo Clinic Breast Cancer Study (MBCS) 
and the Nurses' Health Study (NHS).
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Table 3-1 Summary of data sources used in each study.  SNP: single nucleotide 
polymorphism; ER: estrogen receptor

Study Variable of interest Outcome of interest Discovery Validation
I SNPs Breast cancer CAHRES SEARCH

EIRA RBCS
HUBC
FGC
CGEMS

II SNPs ER-negative breast cancer CAHRES SEARCH
EIRA RBCS
HUBC
FGC

III SNPs Mammographic density CAHRES NHS
MBCS

IV Childhood body size Breast cancer CAHRES --

3.1.1 Cancer Hormone Replacement Epidemiology in Sweden 
(CAHRES)

The population-based study, CAHRES, which includes women aged 50-74 years, 
born in Sweden and resident there between October 1, 1993 and March 31, 1995, 
is used in all four studies. 

An attempt was made to contact all incident cases of invasive primary cancer in 
this population. Cases were identified through the six Swedish regional cancer 
registries and were asked to give their written consent to be approached with a 
mailed questionnaire through their physicians. A total of 3,979 eligible cases were 
detected of whom 3,345 (84%) participated in the study. Non-participation was 
due to physcians’ refusal (because of psychiatric disorder, anxiety or poor 
physical health), in 4% and patients’ refusal (either to be approached at all or to 
return to questionnaire or failure in contacting the patient, in 12%. The mean 
interval from diagnosis to data collection was 4.3 months (standard deviation 1.5 
months).

Control women, frequency matched to the expected age distribution of the cases, 
were randomly selected from a continuously updated Swedish register which 
provides national registration numbers, name, address and place of birth of each 
person residing in Sweden. Of 4,188 selected controls, 3,454 (82%) agreed to 
participate in the study.

Among controls who agreed to participate, 474 (14%) failed to return the mailed 
questionnaire but subsequently agreed to a telephone interview. No cases were 
interviewed this way, since 98% of those we had given their consent to receive a 
questionnaire also returned it. The telephone interview included the most 
important items in the mailed questionnaire, except family history of breast cancer, 
weight at age 18, somatotype, menstrual characteristics at age 30, menopausal 
symptoms and lactation. Controls participating only through the telephone 
interview did not differ essentially from other controls with regard to the most 
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important risk factors. Approximately 50% of the cases and controls were also 
contacted by telephone to obtain essential missing information in their mailed 
responses.

A total of 112 cases and 88 controls, with a previous diagnosis of cancer (other 
than non-melanoma skin cancer or cancer in situ of the cervix), were excluded. 
We also excluded pre-menopausal women (198 cases and 152 controls) as well as 
women with unknown menopausal status (217 cases and 100 controls). The final 
study population consisted of 2,818 cases and 3,111 controls.

For genetic studies involving DNA specimens in Study III, we sampled eligible 
women from the parent study described above. We randomly selected 1,500 
breast cancer cases among the eligible cases and 1,500 controls that were age-
frequency matched to the cases in 5-year intervals. The reason for not including 
all patients was purely monetary. In addition, all remaining cases (N=301) and 
controls (N=567) that had taken either medium potency estrogens alone, or 
estrogen plus progestin preparations for four years or more, were selected. From a 
total of 1,801 cases and 2,067 controls selected, biological samples from 1,534 
cases and 1,504 controls passed quality control for genotyping. This yields 
approximate population-based participation rates of 84% × 85% = 71% and 82% 
× 73% = 60% among cases and controls respectively. Of these women, 
mammograms were available for 891 breast cancer cases and 840 controls.

From the samples selected for genetic studies described above, a subset with 
sufficient DNA, and information on TNM, lymph nodes, size, grade and outcome, 
804 were selected for further genotyping on genome-wide chips (Table 3-2).

Table 3-2 Completeness of CAHRES data with respect to tumour characteristics

Variable # of samples with 
information on 
outcome

# of samples with information on 
variable on the left

DNA 1,208 1,276
     and TNM 1,175 1,175
     and lymph nodes 1,174 1,178
     and tumour size 1,174 1,204
     and grade 804 825

Out of 804 cases selected for GWAS, one sample could not be matched to 
phenotype data. Through pairwise clustering in whole genome association 
analysis software Plink [129], we identified two different pairs of monozygotic 
twins, one pair on each platform used for genotyping. All four individuals were 
removed from further analyses as they were most likely the product of a technical 
mishap. In addition, two pairs of full siblings were found, of which both pairs 
appeared on both chips. Of these two sibling pairs, the one with the higher call 
rate was kept for further analyses. A total of 797 cases were included in the 
GWAS of overall breast cancer risk in Study I. Of these cases, a subset of 153 
ER-negative breast cancer cases was selected for GWAS on this particular cancer 
subtype in Study II. 

3.1.2 Epidemiological Investigation of Rheumatoid Arthritis (EIRA)
A population-based case–control study on incident cases of rheumatoid arthritis, 
called EIRA (Epidemiological Investigation of Rheumatoid Arthritis), has been in 



35

progress in Sweden since 1996 [130]. The study base comprised the population, 
aged 18–70 years, living in parts of Sweden during May 1996 to December 2005 
[131]. Controls from this study population were used to supplement the Swedish 
study used in both the overall and ER-negative breast cancer breast cancer GWAS. 
For each rheumatoid arthritis patient, a control subject was randomly selected 
from the study base; control subjects were matched for age, sex, and residential 
area. Most subjects were born in Sweden, and 97% reported having white ancestry. 

Exclusions: Nine controls were found to be population outliers by principal 
component analysis and removed from further analyses.

3.1.3 Helsinki University Central Hospital (HUBC)
The Finnish breast cancer study population consists of two series of unselected 
breast cancer patients and additional familial cases ascertained at the Helsinki 
University Central Hospital. The first series of patients were collected in 1997-
1998 and 2000 and covers 79% of all consecutive, newly diagnosed cases during 
the collection period [28, 29]. The second series, containing newly diagnosed 
patients, was collected in 2001 – 2004 and covers 87% of all such patients treated 
at the hospital during the collection period [30]. The collection of additional 
familial cases has been described previously [31]. We genotyped a total of 782 
breast cancer cases from this study. Of these women, 212 were premenopausal, 
359 were postmenopausal, and 211 were missing menopausal status. Population 
control data was obtained from FGC on 3170 healthy population controls 
described in [15-18]. A total of 464 ER-negative breast cancer cases, inclusive of 
an additional 26 sporadic breast cancer patients and 15 BRCA1 and 5 BRCA2
mutation carriers with ER-negative breast cancer, were used in Study II.

Exclusions: A total of 18 individuals in the Finnish dataset were removed because 
they were full siblings or monozygotic twins of an individual in the study. In each 
case, the individual with the highest call rate was kept. In addition, three 
individuals were removed from the Finnish study population because they were 
extreme outliers on one or more significant principal component axes. One 
individual from the Finnish dataset was excluded due to missing affection status. 

3.1.4 Studies in Epidemiology and Risks of Cancer Heredity 
(SEARCH)

SEARCH is a population-based case-control study comprising 7,093 cases 
identified through the East Anglian Cancer Registry:  prevalent cases diagnosed 
age <55 from 1991-1996 and alive when the study started in 1996, and incident
cases diagnosed <70 diagnosed after 1996. Controls (N=8,096) were selected 
from the EPIC-Norfolk cohort study, a population-based cohort study of diet and 
health based in the same geographical region as SEARCH, together with 
additional SEARCH controls recruited through general practices in East Anglian 
region. 

3.1.5 Rotterdam Breast Cancer Study (RBCS)
RBCS is a hospital-based case-control study comprising 799 cases characterized 
as familial breast cancer patients selected from the Rotterdam Family Cancer 
Clinic at the Erasmus Medical Center, of which 141 are ER-negative. Controls 
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(N=801) were spouses or mutation-negative siblings of heterozygous Cystic 
Fibrosis mutation carriers selected from the Department of Clinical Genetics at 
the Erasmus Medical Center. Both cases and controls were recruited between 
1994 and 2006.

3.1.6 Cancer Genetic Markers of Susceptibility (CGEMS)/ Nurses’ 
Health Study (NHS)

Genotype data was also obtained for a total of 1,145 postmenopausal women of 
European ancestry with invasive breast cancer from the CGEMS initiative, along 
with 1,142 matched controls nested within the prospective Nurses’ Health Study 
cohort [16]. The CGEMS project is a National Cancer Institute initiative to 
conduct genome-wide association studies to identify genes involved in breast 
cancer and prostate cancer. The initial CGEMS breast cancer scan was designed 
and funded to study the main effect of SNP variants on breast cancer risk in 
postmenopausal women, and has been completed. The Nurses' Health Study was 
initiated in 1976, when 121,700 US registered nurses aged 30 to 55 returned an 
initial questionnaire [132]. During 1989 and 1990, blood samples were collected 
from 32,826 women [133]. A subset of 1,590 women - of which 806 were breast 
cancer cases and 784 were healthy controls - with mammographic density data 
available were used for the validation of significant SNPs in Study III. 

3.1.7 Mayo Clinic Breast Cancer Study (MBCS)
The second validation population for Study III consisted of a set of controls from 
an ongoing breast cancer case-control study at the Mayo Clinic. Briefly, the Mayo 
Clinic Breast Cancer Study is an Institutional Review Board-approved, clinic-
based, case-control study initiated in February 2001 at Mayo Clinic, Rochester, 
MN, USA. The study design has been presented previously [15, 134]. Clinic 
attendance formed the sampling frame for Mayo Clinic cases and controls. 
Consecutive cases were women aged 18 years or over with histologically 
confirmed primary invasive breast carcinoma and recruited within 6 months of the 
date of diagnosis. Cases lived in the six-state region that defines Mayo Clinic's 
primary service population (Minnesota, Iowa, Wisconsin, Illinois, North Dakota, 
and South Dakota). Controls without prior history of cancer (other than 
nonmelanoma skin cancer) were frequency matched on age (5-year age category), 
race and six-state region of residence to cases. Controls were recruited from the 
outpatient practice of the Divisions of General Internal Medicine and Primary 
Care Internal Medicine at Mayo Clinic, where they were seen for routine medical 
examinations.

The analysis in Study III was performed on genotyped Caucasian controls (99% 
of study participants) enrolled through September 2007, who had mammograms 
available, representing 995 total controls (76% of total possible controls), of 
which 783 were postmenopausal. 

For all populations, blood samples were obtained from individuals according to 
protocols and informed-consent procedures approved by institutional review 
boards.
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3.2 DATA COLLECTION
3.2.1 Key variables
Genotypes. Genotyping for all samples in Studies I-III was performed according 
to the manufacturers' instructions. Table 3-3 below summarizes the different 
platforms used for genotyping.

Table 3-3 Summary of the different platforms used for genotyping

Paper Population Platform
I/III CGEMS/NHS Illumina Infinium 2

HumanHap550
I/II CAHRES (cases) Illumina Infinium 2

HumanHap300, HumanHap240S
I/II CAHRES (controls) Illumina Infinium 2

HumanHap550
I/II EIRA Illumina Infinium 2

HumanHap300
I/II HUBC (cases) Illumina Infinium 2

HumanHap550
I/II Finnish Genome Centre Illumina Infinium 2

HumanHap370Duo
I/II SEARCH Taqman
I/II RBCS Taqman
III CAHRES Sequenom
III MBCS Taqman

Somatotypes. Anthropometric measurements at age seven years and one year prior 
to enrolment in Study IV were collected by means of a nine-level somatotype 
(Figure 3-1) featured in the study questionnaire. The somatotypes were 
subsequently grouped as lean (S1 to S2), medium (S3 to S4) and large (S5 to S9) 
prior to analysis.

Breast cancer patients were identified at diagnosis through the six Swedish 
regional cancer registries, to which the reporting of all malignant tumors is 
mandatory. The “personnummer” or personal number is a unique national identity 
number unique to all Swedish residents. The date of birth and the sex of an 
individual may be easily derived from the personnummer, and it is the key in most 
government databases. It is possible for researchers, provided that the appropriate 
permissions are granted, to approach the authority in charge of the Total 
Population Register (currently known as the Tax Authority) and ask for the 
national registration numbers and addresses of people that fulfill certain criteria 
specified by the researcher. 
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Figure 3-1 Nine-level somatotype pictogram

Information regarding the retrieval of tumour characteristics from the medical 
records of all participants from surgical and oncological units throughout Sweden 
has been presented in detail elsewhere [135, 136]. The tumour characteristics in 
the present study included tumour size (categorical, groups in cm), grade 
(categorical, classified according to the Nottingham histological grade or Bloom-
Richardson scale), as well as ER and PR status (binary, absent/present).

Breast tumours were routinely measured for ER and PR content in Sweden at the 
time of the study, but the assessment was often not performed on small tumours 

by one laboratory within each region. All seven laboratories in Sweden analyzing 
ER and PR content used an enzyme immuno-assay (Abbott Laboratories) on 
cytosol samples. The method used for assessing ER content was ER specific 
[137]. Three laboratories reported amount of receptor per g DNA, three 
laboratories reported amount of receptor per mg protein, and one laboratory 
reported both. Quantitative receptor content was available for 67% of the tumours 
for both ER and PR. In 4% and 3% of the tumours, for ER and PR, respectively, 
instead of quantitative data, information on tumour status was classified as being 
strongly positive, positive, weakly positive, or negative instead. Receptor positive 

protein. For the laboratory reporting both analyses, the proportion of receptor 
positive tumours was most similar to the proportion among the other laboratories 
when measured as amount of receptor per g DNA. Hence, we used these values. 
Tumours with qualitative information were defined as receptor negative if they 
were classified as negative, otherwise they were classified as positive.

The process of collecting mammographic density data in this study has been 
described previously [138]. Film mammograms of the medio-lateral oblique view 
were digitized using an Array 2905HD Laser Film Digitizer (Array Corporation, 
Tokyo, Japan), which covers a range of 0 to 4.7 optical density. For controls, the 
breast side was randomized. For cases, the side contralateral to the tumor was 
used. The density resolution was set at 12-bit spatial resolution. The Cumulus 
software used for the computer-assisted measurement was developed at the 
University of Toronto [139]. For each image, a trained observer (Louise Eriksson) 
set the appropriate gray-scale threshold levels defining the edge of the breast and 
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distinguishing dense from nondense tissue. The software calculated the total 
number of pixels within the entire region of interest and within the region 
identified as dense. These values were used to calculate the percentage of the 
breast area that is dense. A random 10% of the images were included as replicates 
to assess the intra-observer reliability, which was high with a Spearman rank 
correlation coefficient of 0.95.

3.3 Statistical analyses
The analytical strategy for the two genome-wide studies (Studies I and II) is 
summarized in Figure 3-2. To assess the enrichment of significant associations in 
a pathway context, two different pathway analysis tools were used: SNP Ratio 
Test (SRT) [140] and admixture maximum likelihood (AML) [141] test. The 
“scoring” approach by Purcell et al. [142] was used to assess the extent of 
common polygenic variation between ER-positive and ER-negative breast cancers 
in Study II. The Plink [129] option “--adjust” was used to generate a file of 
adjusted significance values that correct for all tests performed and other metrics 
in Studies I and II. To reduce the impact of population stratification on the 
genome-wide studies, principal component analysis (PCA) [143] was performed. 

Regression models were used in all studies to predict the outcome from one or 
more independent variables. For a dichotomous outcome such as breast cancer 
case/control status, logistic regression models were fitted. For a continuous 
outcome such as percent mammographic density, linear regression models were 
fitted. For ordinal outcomes with more than two values such as body size, grade or 
tumour size categories, proportional odds logistic regression (POLR) models were 
fitted. A summary of methods and corresponding software for analysis pertaining 
to all four studies is presented in Table 3-4.

Information was gathered from several public databases (Table 3-5). Genotype 
data on the Cancer Genetic Markers of Susceptibility (CGEMS) [16] data set was 
obtained with permission from the Database of Genotypes and Phenotypes 
(dbGaP). Candidate SNPs were annotated using the SNP and CNV Annotation 
Database (SCAN) [144]. A web-based tool called POLYSEARCH [145] was used
to mine information in published literature on relationships between novel 
candidate genes and disease. Pathway definitions were obtained from Kyoto 
Encyclopedia of Genes and Genomes (KEGG) [146], and a list of SNPs 
regulating gene expression was downloaded from mRNA by SNP Browser [57].
Pairwise LD between SNPs were obtained from SNP Annotation and Proxy 
Search (SNAP) [147].

Data visualization was enabled using the following freeware: HaploView [148],
LocusZoom [149], Edraw Mindmap [150], and R [151]. Details on what the 
different programs were used for are listed in Table 3-6. A list of other tools used 
in this thesis is available in Table 3-7.
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Figure 3-2 Schematic diagram of analytical strategies for agnostic single marker association 
analysis and pathway analysis.
The study designs for Studies I and II differ in i) the study populations used and ii) specifics of 
pathway analysis. Study I consists of genotype data from three independent breast cancer case-
control populations – Swedish, Finnish and American (CGEMS); Study II consists only of ER-
negative breast cancer cancers and controls from the Swedish and Finnish populations. Study II 
has an additional pathway analysis performed using pathway definitions from SNPs associated 
with gene expression. 
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Table 3-5 List of online databases

Database Link Remark Paper(s)
Cancer Genetic 
Markers of 
Susceptibility 
(CGEMS) [16]

cgems.cancer.gov CGEMS 
genotypes 

I

SNP and CNV 
Annotation 
Database 
(SCAN) [144]

scan.bsd.uchicago.edu/newinterface/about.html A large-scale 
database of 
genetics and 
genomics data 
for annotating 
candidate SNPs

I

POLYSEARCH 
[145]

wishart.biology.ualberta.ca/polysearch/ Database for 
biomedical text 
mining

I

Kyoto 
Encyclopedia of 
Genes and 
Genomes 
(KEGG) [146]

www.genome.jp/kegg Pathway 
definitions

I, II

mRNA by SNP 
Browser [57]

www.sph.umich.edu/csg/liang/asthma Database of 
genetic variants 
regulating gene 
expression

II

SNP 
Annotation and 
Proxy Search 
(SNAP) [147]

http://www.broadinstitute.org/mpg/snap/ Information on 
pairwise LD

Kappa

Table 3-6 List of graphic making tools

Software Purpose Paper(s)
HaploView [148] Manhattan plot I, II
LocusZoom [149] Regional visualization of genome-wide association scan 

results
II

Edraw Mindmap [150] Flowchart II
R [151] Quantile-quantile plot I-III

Table 3-7 List of other tools

Software Purpose Paper(s)
Quanto [154] Power calculation II
Qlikview (v8.5) [47] Map SNPs, which are significantly associated with 

gene expression on a genome-wide level (LOD>6),  to 
genes

II
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4 RESULTS
In this section, I present results from individual articles supplemented by data 
which is neither shown in the main article nor the supplementary materials of the 
four published manuscript.

4.1 STUDY I
In Study I [155], we confirmed associations with loci reported by previous GWAS on 
1p11.2, 2q35, 3p, 5p12, 8q24, 10q23.13, 14q24.1 and 16q (Table 4-1), and we 
presented evidence that suggested novel SNPs for overall breast cancer risk, but the 
associations from our combined GWAS were not validated in the independent 
SEARCH and RBCS studies (Table 3 in Article 1). We also assessed evidence for 
association with SNPs in genes in specific pathways using permutation-based tests, 
but found only suggestive evidence. Androgen and estrogen metabolism, a pathway 
previously found to be associated with the development of postmenopausal breast 
cancer, was marginally significant with overall breast cancer risk (P = 0.084). 

Table 4-1 Pair-wise linkage disequilibrium is pre-calculated based on phased genotype data 
from the International HapMap Project (Release 22). 
LD data is calculated using a pairwise LD tool called SNP Annotation and Proxy Search (SNAP), 
created by the Broad Institute. The panel consisting of Utah residents with ancestry from northern 
and western Europe was used. r2 is a measure of LD which ranges between 0 (when they are in 
perfect equilibrium) and 1 (when the two markers provide identical information). Study SNP 
denotes the SNP in Study I that was used for comparison with a corresponding established breast 
cancer SNP. P denotes the combined P value per allele of three studies.

PMID SNP CHR BP GENE Study SNP R2 P
19330030 rs11249433 1 120982136 INTERGENIC rs11249433 1.000 1.13E-05
17529974 rs13387042 2 217614077 INTERGENIC rs13387042 1.000 9.23E-06
19330027 rs4973768 3 27391017 SLC4A7 rs4973768 1.000 1.41E-04
18438407 rs10941679 5 44742255 INTERGENIC rs7716600 0.784 7.06E-07
18438407 rs4415084 5 44698272 INTERGENIC rs4415084 1.000 1.74E-04
17529967 rs889312 5 56067641 INTERGENIC
19219042 rs2046210 6 151990059 INTERGENIC
20453838 rs3757318 6 151955806 C6orf97
17529967 rs13281615 8 128424800 INTERGENIC rs672888 0.967 5.29E-05
20453838 rs1562430 8 128457034 INTERGENIC rs672888 0.426 5.29E-05
20453838 rs1011970 9 22052134 INTERGENIC
20453838 rs10995190 10 63948688 ZNF365
17529973 rs1219648 10 123336180 FGFR2
20453838 rs2380205 10 5926740 INTERGENIC
17529967 rs2981582 10 123342307 FGFR2 rs1219648 1.000 1.93E-13
19536173 rs2981582 10 123342307 FGFR2 rs1219648 1.000 1.93E-13
19536173 rs3135718 10 123343859 FGFR2
20453838 rs704010 10 80511154 INTERGENIC
19536173 rs7895676 10 123323987 FGFR2 Query SNP not in Release 22
17529967 rs3817198 11 1865582 LSP1
20453838 rs614367 11 69037945 INTERGENIC
20453838 rs909116 11 1898522 TNNT3
19330030 rs999737 14 68104435 RAD51L1 rs999737 1.000 8.30E-03
17529967 rs12443621 16 51105538 TOX3 rs3803662 0.332 4.06E-07
17529967 rs3803662 16 51143842 LOC643714 rs3803662 1.000 4.06E-07
17529974 rs3803662 16 51143842 LOC643714 rs3803662 1.000 4.06E-07

17529967 rs8051542 16 51091668 TOX3 No LD data is available for rs8051542 in 
Release 22 (CEU)
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In an independent pathway analysis of breast cancer GWAS, Menashe et al. [156]
examined a total of 421 pathways retrieved from three databases, of which 155 
belong to KEGG [146]. The smallest p-value associated with a KEGG pathway 
obtained was for basal cell carcinoma (P = 0.00463), in which 53 genes were 
considered. Table 4-2 shows juxtaposed results of the most associated pathways 
(P < 0.1) in Study I and the corresponding results from Menashe et al.. The 
smallest p-value obtained for the latter data set was 0.084 corresponding to 
the alpha-linolenic acid metabolism pathway.

Table 4-2 A comparison of the overlapping results of 182 KEGG pathways examined in 
Study I and 155 KEGG pathways examined by Menashe et al. (141). 

* The other glycan degradation pathway has got two sub-pathways, of which Menashe et al. 
analyzed independently: N-glycan and glycosphingolipid biosynthesis – ganglioseries respectively.

Li et al. Menashe et al.

Name
# SNPs

P < 0.05
# SNPs

in pathway P # genes P

Other glycan degradation 11 62 0.004 44 0.533*
16 0.531*

Pentose and glucuronate interconversions 9 62 0.035 25 0.400
alpha-Linolenic acid metabolism 11 71 0.010 15 0.084
Drug metabolism - other enzymes 25 227 0.036 49 0.913
Inositol phosphate metabolism 44 584 0.054 47 0.174
Androgen and estrogen metabolism 19 199 0.084 52 0.991
Hematopoietic cell lineage 36 404 0.010 79 0.213
Primary immunodeficiency 10 111 0.082 34 0.367
Regulation of actin cytoskeleton 129 1870 0.012 -- --
Circadian rhythm 13 89 0.014 13 0.605
Thyroid cancer 20 217 0.057 29 0.587

4.2 STUDY II
The general analytical strategy of Study II was similar to that of Study I –
genome-wide association analysis on a single marker and pathway level – but on a 
different phenotype. Association with ER-negative breast cancer was not 
validated for any of the five most strongly associated SNPs followed up in 
independent studies (1,011 ER-negative breast cancer cases, 7,604 controls) 
(Table S2 in Additional File 3 of Article 2). However, in this study, we presented 
additional pathway analysis results based on a selection of pathways defined by an 
exclusive set of SNPs reported to be associated with gene expression (Table 3 in 
Article 2). An excess of small p-values for SNPs with known regulatory functions 
in cancer-related pathways was also found (global P = 0.052, Figure 9 in Article 
2). In addition, we found no evidence to suggest that ER-negative breast cancer 
shares a polygenic basis with ER-positive breast cancer (Figure 10 in Article 2).

Encouraged by the signal peak observed in the Manhattan plot of association 
results with ER-negative breast cancer risk on chromosome 9 (Figure 3 in Article 
2), and the strong associations with SNPs rs7039994 and rs12000794 within the 
region (p-values of 3.95 × 10-06 and 5.40 × 10-06, respectively), our collaborators 
at the Department of Biosciences and Nutrition carried out preliminary fine-
mapping and functional studies on the INVS gene in parallel with the validation in 
the SEARCH/RBCS samples (data not shown in Article 2). In a test data set 
consisting of 174 ER-negative cases and 325 controls (108 ER-negative cases and 
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158 controls overlapping with the samples used for GWAS), 23 SNPs, which 
include missense coding SNPs, promoter SNPs and tagging SNPs within the 
within the region of the INVS gene, but not found on the SNP array, were 
genotyped at the Mutation Analysis Facility (MAF) at Karolinska Institutet, 
Huddinge, Sweden (www.maf.ki.se) using matrix-assisted laser desorption/
ionization time of-flight (MALDI-TOF) mass spectrometry (Sequenom, San 
Diego, CA, USA). A total of 15 SNPs that were successfully genotyped, and 
which were not monomorphic in the European population were tested for 
association with breast cancer risk. 

Table 4-3 shows the association results for ER-negative breast cancer risk in the 
partially overlapping data set - rs7039994 and rs12000794 were not found to be 
significantly associated at the 5% level (P = 0.1446 and P = 0.2496, respectively). 
Three SNPs were found to be marginally associated: rs2209081, rs2806684 and 
rs17812397.

Table 4-3 Association results of breast cancer risk performed on 15 additional SNPs within 
the INVS gene region, using 174 ER-negative cases and 325 controls

There is an overlap of 108 ER-negative cases and 158 controls with the CAHRES GWAS data set. 
*SNPs rs7039994 and rs12000794 are also found on the GWAS panel. 

MAF
SNP Allele Cases Controls P
rs6479002 G 0.445 0.399 0.1665
rs62577237 T 0.018 0.016 0.7855
rs7024375 T 0.839 0.835 0.8868
rs2209081 A 0.793 0.733 0.0374
rs4273907 C 0.921 0.899 0.2680
rs12003061 A 0.185 0.155 0.2377
rs2806684 T 0.618 0.552 0.0481
rs41312220 A 1.000 0.994 0.1451
rs2787390 G 0.891 0.888 0.9049
rs17812397 C 0.166 0.119 0.0436
rs875522 A 0.276 0.235 0.1636
rs2787371 C 0.408 0.398 0.7705
*rs7039994 T 0.252 0.198 0.1446
rs7029342 T 0.225 0.195 0.2831
rs10123866 G 0.734 0.698 0.2479
rs7048601 G 0.500 0.490 0.7714
*rs12000794 A 0.272 0.227 0.2496
.
We next looked at INVS expression by genotype in tumour tissue (data not shown 
in Article 2). Total RNA was extracted from 61 breast cancer tumors, of which 14 
were ER-negative, using RNeasy fibrous mini kit (Qiagen, Hilden, Germany), 
with small modifications from the manufacturer’s instructions. The cDNA was 
synthesized using SuperScript™ III Reverse Transcriptase reagents (Invitrogen, 
Carlsbad, CA, USA), according to manufacturers' instructions. TaqMan assays 
specific for INVS (Hs00205297_m1) were used for the qRT-PCR (Applied 
Biosystems, Foster City, CA, USA), and performed in triplicates with the 7500 
Fast Real-Time PCR system using standard protocols (Applied Biosystems, Foster 
City, CA) with a final sample volume of 10 . Cycle threshold (CT) values were 
analyzed and obtained using 7500 SDS software (Applied Biosystems). A 
TaqMan assay for the endogenous housekeeping gene GAPDH (Hs99999905_m1) 
(Applied Biosystems) was used for normalization and relative quantification.
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4.4 STUDY IV
In Study IV we studied the risks of ER subtype breast cancers with respect to 
childhood body size [158]. We found that a larger somatotype exerts a larger 
protective effect in ER-negative than ER-positive breast cancers. The significant 
protective effect was observed within all subgroups defined by estrogen receptor 
(ER) and progesterone receptor (PR) status, with a stronger effect for ER-negative 
(0.40, 95% CI = 0.21-0.75, P trend = 0.002), than for ER-positive (0.80, 95% CI = 
0.62-1.05, P trend = 0.062), tumours (P heterogeneity = 0.046). Somatotype at age 
7 was not associated with tumour size, histology, grade or the presence or absence 
of metastatic nodes.

Given the strong association with breast cancer risk, we also examined the role of 
genetic variation in body size development during childhood, adolescence, and 
adulthood. 

Figure 4-3 Effects of breast cancer susceptibility SNPs on somatotypes at age 7, age 18, and 
one year prior to enrolment
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5 DISCUSSION

5.1 STUDIES I AND II

In our combined GWAS of overall breast cancer risk, we confirmed associations 
with loci reported by previous GWAS on 1p11.2, 2q35, 3p, 5p12, 8q24, 10q23.13, 
14q24.1 and 16q, but did not validate any new associations (Figure 4-1). We also 
assessed evidence for association with SNPs in genes in specific pathways using 
permutation-based tests, but found only suggestive evidence. Androgen and 
estrogen metabolism, a pathway previously found to be associated with the 
development of postmenopausal breast cancer, was marginally significant for an
association with breast cancer. In a candidate gene study performed on a largely 
independent set of SNPs within the estrogen metabolism pathway involving the 
CAHRES subjects (1,596 breast cancer cases and 1,730 controls) [159], we found 
corroborating evidence of association with breast cancer risk (global P = 0.034). 
Further testing revealed the association to be focused on polymorphisms within 
the androgen-to-estrogen conversion sub-pathway (global P = 0.008). Further 
tumour subtype analysis demonstrated that the association of the sub-pathway 
with breast cancer risk was confined to estrogen receptor positive tumours (global 
P = 0.0003). These results suggest that further analysis of SNPs in these pathways 
may identify associations that would be difficult to detect through agnostic single 
SNP analyses.

We also performed an independent GWAS using a subset of ER-negative breast 
cancer cases (N = 617) and all of the controls from the initial GWAS. We found 
an excess of SNPs which were linked to gene expression, and significantly 
associated to breast cancer, within cancer-pathways defined by KEGG. In addition,
we also demonstrated that ER-negative cancers only share a fraction of their 
polygenic component with ER-positive breast cancers.

5.1.1 Population stratification
Population stratification is a potential source of bias in GWAS [160]. Uncorrected 
population structure in an association study may lead to spurious associations and 
compromise power to detect real associations [161]. A correction for population 
stratification may be performed by identifying and assigning each subject to a 
subpopulation (Finnish, Swedish, CGEMS, for example), or by finding underlying 
principal components (PCs) [143]. Population stratification was addressed in the 
logistic regression model by including a variable denoting the country of origin 
and relevant PCs for each population for the combined analyses in Studies I and II. 
The pros of principal component analysis (PCA) are that it is computationally fast, 
provides information about population substructure, and enhances the power of 
association analysis. On the other hand, one of the cons is that direct application 
of PCA may not work when related samples or ambiguous relationships are 
present, thus care was taken to remove all relations and outliers in our GWAS 
data sets prior to the application of PCA.
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5.1.2 Imputation
In a GWAS, there are often SNPs which are not genotyped due to reasons such as 
genotyping errors. Missing SNP data is not uncommon in association studies, 
sometimes with rates as high as 5-10% [162]. Unfortunately, re-genotyping is 
usually not possible due to financial constraints. Redundancy of information due 
to linkage disequilibrium and cost of genotyping are other justifications for not 
genotyping all available SNPs in the genome. 

In genetics, we can deal with the missing data points by substituting missing data 
values by a method called imputation, which is usually performed by analyzing all 
existing values to determine the most likely value for the missing data points. 
Imputation of missing SNPs is made possible with the International HAPMAP 
Project [163] and other data deposits of genome-wide LD structure in different 
populations. Internal imputation refers to the imputation of SNPs which are 
missing in a subset of individuals in genotyped SNPs using LD information in 
observed data. External imputation refers to the imputation of a large number of 
untyped SNPs using external LD information from HAPMAP, for example. As 
long as the error is not too large, imputation may increase statistical power in a 
GWAS, because it gives more marker information (see sub-section on Increase 
resolution on p18). However, if genotype information for cases and controls are 
obtained from different chips, as was the case for our GWAS data sets, false-
positive associations may arise from the imputation of untyped SNPs in both cases 
and controls from a haplotype panel due to a difference in imputation quality 
[164]. In addition, imputation rarely increases power beyond that of actually 
genotyped SNPs [165], and imputation is often tricky for uncommon variants 
[166]. The decision was made not to perform imputation on our data sets upon 
weighing the limited potential gains [167] and practical aspects of an imputation-
driven meta-analysis of GWAS [168].

5.1.3 Pathway analysis

For a polygenic disease such as breast cancer, it is possible that genetic 
contributions operate through numerous SNPs in multiple genes in functional 
pathways. Several studies have taken a pathway analysis approach to elucidate 
these mechanisms using data from high resolution SNP arrays [156, 169].
However, the nascent interest in pathway analysis on GWAS data means that a 
standard workflow of strict guidelines or best practices does not yet exist, and new 
approaches arise every day [170, 171].

Matching SNPs to genes. There is not yet a consensus in the way each gene 
within a pathway is represented by SNPs. For example, Menashe et al. [156]
reported a genome-wide pathway analysis study on breast cancer risk where a
total of 421 pathways containing 3,962 genes retrieved from three databases were 
examined. Among the results for the common pathways defined by KEGG, only 
one pathway was found to rank highly in both studies: alpha-Linolenic acid 
metabolism (P in Study I = 0.01, P in Menashe et al. [156] = 0.084) (Table 4-2). 
The lack of corroborating evidence could be due to the fact that while all SNPs 
within each gene were considered in Study I, only the most strongly associated 
SNP was used to represent each gene in Menashe et al..



51

We demonstrated the same ambiguity of using SNPs to represent genes in Study 
II. Other than considering SNPs located within transcript of genes as a set for 
pathway analysis, we also looked at only SNPs that had a direct association with 
expression levels for genes within each pathway. While the pathway analysis 
results for the latter were mostly borderline and suggestive, we found an excess of 
SNPs which were linked to gene expression, and significantly associated to breast 
cancer, within cancer-pathways defined by KEGG.

Matching genes to pathways. An additional limitation of the pathway-based 
approach for GWAS analysis is that the definition of a pathway is not always 
clear. Proprietary and public databases such as MetaCore [172], KEGG [146],
BioCarta [173], or the NCI Pathway Interaction Database [174] are collections of 
manually drawn maps representing the most recent knowledge on the molecular 
interaction and reaction networks, and could be subject to human error. As 
definitions are often not cross-checked among databases, there is an extensive 
amount of overlap and redundancy, making it difficult to use in a genome-wide 
setting.

Pathway analysis comes with a caveat: that it is heavily based on numerous 
assumptions for every step and the results may turn out quite different depending 
on how the analysis is run. But the beauty of a pathway analysis is that the same 
SNPs need not come up across replication sets – it would suffice so long the same 
pathway tops the list. For example, there is little overlap between the 239 SNPs in 
the estrogen metabolic pathway in Study III and the 199 SNPs in the androgen 
and estrogen metabolism pathway defined by KEGG in Study I. However, the 
related pathways were both found to be associated with breast cancer risk. 

A debate on whether pathway analysis is a viable analytical approach opens up a 
giant can of worms. Despite the many outstanding issues regarding pathway 
analysis in GWAS (e.g. defining pathways and genes using SNPs correctly), its 
application holds great promise for making headway in understanding breast 
cancer etiology beyond the level of single markers. 

5.2 STUDY III
In Study III, we evaluated a total of 239 SNPs in 34 genes in the estrogen 
metabolic pathway in 1,731 Swedish women who participated in a breast cancer 
case-control study. Of the 1,731 women in this study, 891 were cases and 840 
were controls. Despite a large sample size and the most complete coverage of the 
estrogen metabolic pathway, the results led us to conclude that there is no 
appreciable evidence that genetic variants in genes involved in the estrogen 
metabolic pathway are associated with mammographic density in postmenopausal 
women. 

Other linkage and candidate gene association studies have also been largely 
unsuccessful in identifying loci related to mammographic density [69]. The failure 
to find more genes is, in retrospect, unsurprising since the total number of 
candidate genes evaluated is only a small proportion of the total number of genes 
in the human genome. As it has been demonstrated that population variation in 
percent mammographic density at a given age has high heritability [22], a 
genome-wide study may offer clues on which variants are responsible for 
determining mammographic density. To this end, using a subset of the CAHRES 
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data with both GWAS and mammographic density information, we joined four 
groups with similar data sets to form the Marker of DEnsity (MODE) consortium. 
A meta-analysis of the five GWAS, consisting of a total of 4,887 women, was 
conducted for percent mammographic density adjusted for age and BMI, and we 
found a novel association between rs10995190 in ZNF365 and percent 
mammographic density (manuscript accepted for publication in Nature Genetics). 
The same SNP was recently identified in a GWAS as a breast cancer 
susceptibility locus [77], suggesting that one or more variants in ZNF365 could 
affect breast cancer risk by influencing the proportion of dense tissue in the breast. 
5.3 STUDY IV

In an epidemiologic study (Study IV) examining the relationship between 
childhood body size and breast cancer risk, we found that greater body size at age 
7 is associated with a decreased risk of postmenopausal breast cancer, and that the 
associated protective effect is stronger for the ER-negative breast cancer subtype 
than for the ER-positive subtype. We speculate that body size at age 7 could have 
permanent repercussions on the epigenetic level that persists to adult life to 
influence the risk of postmenopausal breast cancer. When considering a genetic 
aspect to this study, none of the anthropometric measures considered 
(somatotypes at age 7, 18 and one year prior to enrolment) were found to be 
associated with the eleven breast cancer susceptibility SNPs identified by Easton 
et al. [15] in the first GWAS of breast cancer risk.

Given the strength of the associations, and the ease of retrieval of information on 
childhood somatotypes retrospectively from pictures early in life, childhood body 
size is potentially useful for building breast cancer risk or prognosis prediction 
models. It appears counterintuitive that a large body size during childhood can 
reduce breast cancer risk or alter one's prognosis, because a large birth weight and 
a high adult BMI have been shown to otherwise elevate breast cancer risk. There 
remain unanswered questions on mechanisms driving this protective effect. 
Because body size and related hormonal exposures are modifiable risk factors, 
women might substantially decrease their risk of breast cancer, in particular the 
more aggressive ER-negative disease, by monitoring their nutrition and 
exogenous hormone intake at different points in life.

5.4 OTHER METHODOLOGICAL CONSTRAINTS
5.4.1 Study design
Statistics is neither computational conjuration nor mighty magic. Poor design can 
never be corrected by subtle analysis techniques. Below is a discussion on what 
was commendable about the studies, and a humble admission of our inadequacies 
in study design (with a heavy focus on the CAHRES study on which most of the 
analyses in this thesis was performed).

First of all, CAHRES is not a cohort study. Cohort studies are considered the gold 
standard of epidemiological studies. The advantages of a prospective cohort study 
is that i) the subjects are well-defined and selected randomly, and ii) since it 
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follows every individual through time before the development of a certain disease 
or outcome, and collects data at regular intervals, recall bias is reduced. However, 
cohort studies are like heavy long-term fund investments: though rewarding, are 
expensive to set up and can take a long time to mature. 

CAHRES is an example of the opposite of a cohort study – a case-control study. 
Contrary to a prospective cohort study, where exposure data is available but not 
outcome data, we already have data on the disease outcome – diagnosis of breast 
cancer and information on mammographic density. The information on exposure 
is collected retrospectively, through questionnaires or medical records. But 
memory could be vague, and imagination, strong. Hence, retrospective case-
control studies are subjected to bias, which are discussed in further detail in the 
next section.

Life is dynamic, not static. Dietary and lifestyle habits can change, and so can 
physical measures. The only way to answer research questions pertaining to 
change is by collecting longitudinal data. While every effort has been taken to 
collect data from different time points in life, when Study III was performed, data 
on mammographic density was only available for the last screening prior to breast 
cancer diagnosis for cases, and the last available mammogram for controls.

5.4.2 Internal validity
Bias and prejudice are attitudes to be kept in hand, not attitudes to be avoided.

- Charles Curtis

Selection bias

Control selection bias. The beauty of the CAHRES dataset is that it is made up of 
cases and controls selected randomly from the general population. This is possible 
because of the well-curated cancer registries and unique personal numbers that 
every Swedish resident is given. This greatly reduces selection bias, which is 
defined as a statistical bias in which there is an error in choosing the individuals 
or groups to take part in a scientific study. 

Self-selection bias. Some people don’t give a hoot about politics. “If the election 
doesn’t affect me, why vote?” It’s the same mentality with case-control studies. 
Women diagnosed with breast cancer or women with relatives with breast cancer 
may be more motivated to participate in a study where many women may 
potentially benefit from the study results. On the other hand, healthy control 
women may be less aware of the disease, or feel less obliged to take time to fill 
out questionnaires or have their blood drawn (82% of invited women agreed to 
participate in study, of which 14% failed to return the mailed questionnaire). 
Behind the refusal to participate in the study could be differences in 
socioeconomic status (some women might be very much occupied by work, with 
little time left over to complete questionnaires etc.)

Apart from the possible blasé attitude of healthy women controls, eligible breast
cancer cases could reject the invitation to participate in the study as well. Among 
all invited women with a diagnosis of breast cancer, 82% agreed to take part in 
this study. To reiterate what has been described in the Methods section, “non-
participation was due to physcians’ refusal (because of psychiatric disorder,  
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anxiety or poor physical health in the patients), in 4% and patients’ refusal (either 
to be approached at all or to return to questionnaire or failure in contacting the 
patient, in 12%”. This non-participation can contribute to selection bias, as we are 
missing out women who had a more severe form of the disease. Hence, it would 
be unwise to generalize results from Studies I-IV to women with a more 
aggressive form of breast cancer.

Observation bias

Recall bias. While we can almost always remember if one of our loved ones ever 
had breast cancer, or readily measure our weight and height if we ever forget such 
information, it can sometimes be hard to recall what one had for dinner the night 
before, or how many cigarettes one smoked several decades ago. Included in the 
questionnaire that was sent out to all CAHRES participants were questions on the 
dietary and lifestyle habits ranging from childhood to one year prior to enrolment, 
and recalling such details could be tricky.

Recall bias could be differential, or non-differential. Differential recall bias occurs 
when either the cases or controls are more or less likely to remember and report 
prior exposures. Since the focus of this thesis is mainly on genetic variants, which 
are encoded in our DNA and determined by genotyping, neither cases nor controls 
could have contributed to differential recall bias. 

Recalling the body size of a study subject when she was seven is a different 
matter. There could be a tendency for women to classify themselves a notch 
slimmer, but if all women tend to do that, the bias is non-differential. If breast 
cancer cases had prior knowledge that a certain somatotype predisposed one to 
breast cancer, they might differentially recall themselves to be closer to the “risky” 
somatotype. However, since somatotype is not commonly known as a breast 
cancer risk factor, the extent of such differential recall bias is likely minimal. 
Besides, the nine-level pictogram used in Study IV has been reported to be highly 
correlated with actual childhood measurements of height and weight in school. 

Misclassification 

Measurement of estrogen receptor content. Heterogeneity may arise from 
misclassification bias, especially since the ER and PR content of breast tumours 
were measured in seven different laboratories. This non-centralized testing of 
estrogen receptor expression could potentially lead to erroneous ER or PR 
classification for some patients, particularly for those with nuclear receptor 
expression levels close to or around the threshold. Different laboratories also used 
different methods for assessing nuclear receptor content. Exposure 
misclassification bias may result in an underestimation of the true associations.

Reading of mammograms. Misclassification of mammographic density may also 
arise from inter- and intra-individual variability. Given a mammogram, an 
untrained reader may produce different readings at two or more different 
occasions, since demarcation of breast or dense or non-dense areas are subjective. 
For each image in our study, a single trained observer (Louise Eriksson) set the 
appropriate gray-scale threshold levels defining the edge of the breast and 
distinguishing dense from nondense tissue. A set of mammograms were also used 
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for “calibration” before each read, thus reducing the misclassification error in our 
study.

Systematic genotyping error. In the genome-wide studies, cases and controls from 
different populations were genotyped on different chips, and at different times, 
which could potentially introduce systematic errors when the data is combined 
and studied together. Errors in genotype determination can lead to bias in the 
estimation of genotype effects and reduces statistical power to detect true 
associations, thus increasing the required sample size. To minimize systematic 
genotyping error associated with each chip, we performed quality control on each 
genotyped set separately, scrutinized quantile-quantile plots of each population for 
systematic deviation from the diagonal y=x, applied correction for population 
stratification, and combined results via meta-analysis.

5.4.3 Statistical power and multiple testing
Epidemiological data was available for close to 3,000 cases and 3,000 controls in 
the CAHRES study. However, due to a constraint in resources, genotyping was 
only performed for half the total number of cases and controls in the candidate 
gene study (~1,500 cases, ~1,500 controls, Study III), and this number was further 
halved (~800 cases, ~800 controls) for the genome-wide studies (Studies I and II). 
For a hypothesis-generating stage I genome-wide association analysis, 800 non-
familial cases do not boost a lot of statistical power, especially when hundreds of 
thousands of markers are being analyzed. To counter the lack of statistical power, 
we combined genotype data from other studies.

As for multiple testing, imagine the following fictitious scenario: A student took 
two successive tests on the same subject, one within an hour of the other. He 
barely passed the first one, yet scored a high distinction on the second attempt. 
The student was suspected of cheating and the grades were withheld by the 
examination committee. Feeling indignant, the student appealed to the head of the 
department, who has a background in statistics. The discussion was as such: 

- Examination committee member
“The chances of a student improving by such a great margin is 1 out 
of 100,000.”

- Head of department
“Was there any other reason why you doubted the student’s 
performance?”

- Examination committee member
“No.”

- Head of department
“Did the invigilator find the student’s actions to be suspicious, or 
catch the student cheating during the exam?”

- Examination committee member
“No.”
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- Head of department
“How many students took the retest together with the student?”

- Examination committee member
“100,000.”

- Head of department
“Then, credit the student with the high distinction.”

In the genome-wide association studies described in this thesis, close to 300,000 
SNPs were analyzed, of which upwards of 30,000 SNPs (10%) were found to be 
significantly associated at the 5% level. But because we looked at so many 
markers, 5% of the significantly associated SNPs could be so due to chance alone. 
Using the conventional threshold of 5% for chance events, we still do see an 
enrichment of significantly associated signals (10% - 5% = 5%). This excess of 
small p-values is good news, since it is indicative that we have some markers that 
are very likely to be truly associated with breast cancer within the 30,000.

For a result to stand out from the many markers tested in a genome-wide 
association study and worthy of costly further genotyping and validation in 
independent samples, it has to survive multiple testing. Using a conservative 
Bonferroni correction, for a marker to be considered significantly associated 
among 299,999 others that were found to be significant, it has to have a p-value 
that is smaller than 0.05/300,000, assuming an alpha of 0.05. 

In a typical stage 2 or validation stage of genome-wide association studies, the 
most significantly associated hits (1,000 – 30,000 markers) are genotyped in an 
independent sample. This selection includes SNPs that do not survive testing, 
since true positives might be associated with a p-value anywhere ranging from 
0.05 to 0.05/30,000. One of the main limitations of this study is that validation 
was only performed for the most significantly associated SNPs (less than ten for 
each of the GWAS). It is highly likely that our top hits were false positives; 
neither of the validation attempts was successful. 

5.4.4 Wrapping up
In essence, what we have learnt is that:

Cancer is not just one mutation. 
The principle of cooperativity runs deep in oncology. While we failed to add on to 
the list of breast cancer SNPs of fame, we hope to relay the message that genetic 
culprits of breast cancer may, in addition to single SNPs, be groups of SNPs 
forming a larger network. 

Cancer is not just one phenotype.
In fact, no two cancers are alike. Cancers could be similar, in terms of subtypes 
like grade, ER or PR status, for example, but all cancer cells have a large number 
of abnormalities and it would be extremely rare for any two cancers to share the 
same mutation lineage, in the same tissue. Common genetic variants that are 
associated with the disease, when considered collectively, could help build an 
individual genetic portrait for personalized treatment.
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The list of common breast cancer susceptibility loci currently known has been 
estimated to explain only 5% of the excess risk of breast cancer. Given the null 
findings of two GWAS mentioned in this abstract, and the likelihood that genetic 
effect sizes of any unfound variants are small, greater sample sizes and further 
studies are required to increase the variance explained for the disease. One could 
also attempt to increase the variance explained for the disease by looking for 
associations with strong predictors of breast cancer risk, such as mammographic 
density. Alternatively, as the data suggests, ER-negative breast cancer is a distinct 
breast cancer subtype that merits independent analyses, and could help to explain 
the missing heritability of breast cancer.
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6 CONCLUSIONS

Pathway analysis of GWAS may help to prioritize the biological pathways
most likely to be involved in the disease etiology. Further analysis of 
SNPs in pathways found to be associated with breast cancer risk in Study I 
may identify associations that would be difficult to detect through agnostic 
single SNP analyses. More effort focused in these aspects of oncology can 
potentially open up promising avenues for the understanding of breast 
cancer and its prevention.

ER-negative breast cancer is a distinct breast cancer subtype that merits 
independent analyses. Given the clinical importance of this phenotype and 
the likelihood that genetic effect sizes are small, greater sample sizes and 
further studies are required to understand the etiology of ER-negative 
breast cancers.

The way that SNPs are grouped and defined as pathways is important to 
the meaningful implementation of gene set enrichment analyses to SNP 
data.

Overall, there is no conclusive evidence that genetic variants in genes 
involved in the estrogen metabolic pathway are associated with 
mammographic density in postmenopausal women.

Given the limited understanding of the biology of mammographic density, 
the field should open up to hypothesis-free or discovery driven research.
The trend in studying complex phenotypes is shifting more and more 
towards hypothesis-generating GWAS, where valuable new theories and 
understanding of the biology of a complex phenotype such as 
mammographic density may be originated.

Greater body size at age 7 is associated with a decreased risk of 
postmenopausal breast cancer, and the associated protective effect is 
stronger for the ER-negative breast cancer subtype than for the ER-
positive subtype.

The bulk of knowledge on breast cancer risk is very often built upon static 
markers (e.g. a particular read of mammogram or measurement of BMI). 
Life course epidemiology or longitudinal studies have the potential to 
complement and improve existing data.
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7 FINAL REMARKS AND FUTURE RESEARCH
The end of one journey is the beginning of another. While I hope to have 
contributed to the fight against breast cancer in my own way, the question remains: 
Where do we go from here? 

Functional relevance and the (Holy) GRAIL
Newly identified SNPs from hypothesis-generating GWAS require supporting 
validation and functional studies to make them shine.  It is common practice to 
forward stellar hits with p-values less than 10-8 for validation in independent 
populations, but in doing so, we may miss out undiscovered gems of true 
association in the fuzzy region of small p-values that have not quite reach the 
level of genome-wide significance.

Apart from p-value rankings alone, functional relevance may come in as a 
potential mechanism to prioritize the hundreds of SNPs that are expected to 
achieve modest p-values of between 10 5 and 10 3 in a GWAS for follow-up. For 
example, a web-based text-mining tool developed by the Broad Institute, Gene 
Relationships Across Implicated Loci (GRAIL) [175], is able to suggest a degree 
of functional connectivity to each SNP or region. SNPs rated with high functional 
connectivity were shown to have a better success rate at being validated in 
independent data than SNPs rated with little or no functional connectivity. 

Invest in servers, software or technical expertise.

It is important to acknowledge the strategic role technologies can play in helping 
research communities overcome the challenges in unraveling the many mysteries 
of disease etiology that still remain. Technology moves fast. When GWAS data 
first came out a few years ago, ~100,000 markers seemed like quite a lot to handle
(compared to genotyping by gel electrophoresis!). Data files could no longer be 
opened via the familiar Microsoft Excel, and files had to be sent to collaborators 
on DVDs. As the prices of genotyping fell with bigger and better technology, SNP 
chips that can produce more than a million genotypes for a fraction of the cost 
became commonplace. Data sets that used to be able to fit on one DVD have 
grown so big that it now takes a few DVDs for storage. One can only imagine 
shipping hard disks of data generated by next-generation sequencing to 
collaborators in the near future. While it is attractive to invest in 
genotyping/sequencing technologies, it is also prudent to set up infrastructure to 
house and process the upcoming data explosion. Otherwise, we might end up with 
a lot of data and no one to analyze it.

Towards greater numbers for greater good.

It’s not just one woman’s fight. Nor is it that of any one student, one university, or 
one cancer research centre. As a large sample size is required to detect genetic or 
epidemiological risk factors that are only modestly associated with breast cancer 
risk, researchers all over the world are coming together to form gigantic, multi-
centre collaborations in an effort to understand breast cancer. The next step would
be to tap into the resources of breast cancer super-collaborations, be it the 
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validation of our own hypothesis-generating GWAS, or the initiation of new 
projects.

For example, Collaborative Oncological Gene-Enivronment Study (COGS) [176]
is a unification of established data sets of breast-, ovarian- and prostate cancers 
worldwide. Funded by the European Commission and 7th Framework 
Programme, the central focus of the project is to define individual risk of the three 
different cancers. Under the COGS initiative, we will have access to the largest 
breast cancer GWAS in the world, consisting of an estimated 120,000 individuals. 
Data collection for a special “cancer chip” called iCOGS which consists of 
~200,000 SNPs contributed by breast cancer researchers all over the world is in 
place. Approximately 70,000 of the iCOGS SNPs are targeting the different areas 
of breast cancer inheritance. The results of this massive collaboration are expected 
to be ready by the end of spring, 2011, and holds great potential in unraveling the 
remaining mysteries of breast cancer. 

The Karolinska Mammography (KARMA) study aims at generating a sufficiently 
large cohort of women to enable prediction of breast cancer risk. The cohort, 
consisting of only Swedish women at this stage, may also be used for randomized 
intervention studies where the effects of individualized screening, 
chemoprophylaxis or surgery would be assessed. A pilot project has just been 
initiated in the fall of 2010, with an estimated recruitment of 100,000 women by 
the year end of 2012, complete with information on repeated measurements of 
mammographic density, questionnaire data on risk factors, and blood samples 
drawn over several time points.

A similar effort is the ATHENA Breast Health Network [177], a revolutionary 
project which will initially involve 150,000 women in and around California. 
Participants will be screened for breast cancer and followed for decades through 
the five University of California medical centers. ATHENA is a University of 
California system-wide project supported by a $5.3 million University of 
California grant and a $4.8 million grant from the Safeway Foundation.

The ground-breaking projects above, and many more to come, are expected to 
generate a rich collection of data and knowledge that will shape breast cancer care 
in the way the renowned Framingham heart study changed the care of patients 
with heart disease.
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8 AFTERWORD

8.1 IF I WERE A PROFESSOR… 

As a student, it has been my incredible fortune and a whole load of luck that I get 
to attend many international conferences and meetings. While I hid in the 
shadows and listened to established giants of the field talk about cohort studies 
with obligatory interest, I couldn’t help but feel detached - and disconnected.

The electronic mail is a boon to research. It costs almost nothing to communicate 
among scientists and scientists, and among scientists and data participants. It’s
fast, convenient and effective, and it shortens the time to collect data considerably.

Sure, there may be inherent bias in sample selection if we only approach the 
internet-savvy. But since we’ve already crossed the line, why should we stop at an 
email or online questionnaire?

I mentioned feeling disconnected. That’s because I wasn’t constantly checking 
emails, AND living my life on Facebook, AND laying out my everyday habits on 
clever iPhone apps that track my daily exercise, hormonal cycles, and what-nots. 
Send me an email inviting me to fill out a questionnaire to assess my breast cancer 
risk and ultimately do good for (wo)mankind? That could wait a day or two. But 
give me an app that’s interactive and informative, and I might just get hooked!

The possibilities of introducing apps to data collection are endless. Difficult 
nutritional studies might actually be one step closer to being accurate and 
unbiased - if subjects could enter what they’re having for meals just before they 
consume the food. Data may be stored and synced to a remote database and then 
processed directly. In return, the subjects gets processed data in the form of 
calorie counts, and rough pie charts on nutritional breakdown, analytical results 
on when they tend to “sin” when it comes to food binges, what they take too much 
or too little of. You can even throw in a neat reminder feature when meal times 
have passed and no entry has been recorded!

As a proof of concept, let’s highlight the example of the wildly successful (in my 
own opinion) Nike+ app that, on top of archiving and analyzing all the miles 
you’ve accrued through running (Figure 8-1 and Figure 8-2), screams out your 
exercise routine on Facebook and Twitter (Figure 8-3). It even sneaks into your 
real life, as opposed to cyber life, through mini avatars (Figure 8-4) that prances 
out of screen-savers and guilt-trips you into breaking that sweat. The runner isn’t 
the only one having all the fun and reaping all the personalized data - the Nike+ 
servers are a treasure cove of data waiting to be visualized, you just need someone 
to harvest it.
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Figure 8-1 Summary of the author’s runs tracked on Nike+
According to their website, “Add some personality, save every little detail and try to beat it next 
time.”

Figure 8-2 Beat your best
According to their website, "Set a goal, track your progress and find the motivation to become an 
even better runner.”
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Figure 8-3 Screen shot of author’s Facebook profile
Half the fun is to boast about what you have achieved

Figure 8-4 Different faces of the very temperamental mini avatar of the author’s Nike+ 
profile
For some, it gives all the motivation needed to put on those running shoes.

Disclaimer: I am not doing an advertorial for Nike.

There are whimsical-sounding scientific pursuits that might just work in this 
exciting new age. Not belonging to Facebook, or carry a smart phone, is akin to 
not holding a driver’s license of a government issued id. To not have an account is 
to say you don’t have a personal phone number (gasp). If not already now, I won’t 
bet against it happening in the future.

-Skickat från min iPhone
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Abstract In an attempt to identify common disease

susceptibility alleles for breast cancer, we performed a

combined analysis of three genome-wide association studies

(GWAS), involving 2,702 women of European ancestry

with invasive breast cancer and 5,726 controls. Tests for

association were performed for 285,984 SNPs. Evidence for

association with SNPs in genes in specific pathways was

assessed using a permutation-based approach. We con-

firmed associations with loci reported by previous GWAS

on 1p11.2, 2q35, 3p, 5p12, 8q24, 10q23.13, 14q24.1 and

16q. Six SNPs with the strongest signals of association with

breast cancer, and which have not been reported previously,

were typed in two further studies; however, none of the

associations could be confirmed. Suggestive evidence for an

excess of associations was found for genes involved in the

regulation of actin cytoskeleton, glycan degradation, alpha-

linolenic acid metabolism, circadian rhythm, hematopoietic

cell lineage and drug metabolism. Androgen and oestrogen

metabolism, a pathway previously found to be associated

with the development of postmenopausal breast cancer, was

marginally significant (P = 0.051 [unadjusted]). TheseElectronic supplementary material The online version of this
article (doi:10.1007/s10549-010-1172-9) contains supplementary
material, which is available to authorized users.
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results suggest that further analysis of SNPs in these path-

ways may identify associations that would be difficult to

detect through agnostic single SNP analyses. More effort

focused in these aspects of oncology can potentially open

up promising avenues for the understanding of breast cancer

and its prevention.

Keywords Breast neoplasms � Genetic association

studies � Genetic epidemiology � Genetic susceptibility �
Genetic predisposition to disease/genetics �
Case–control studies

Abbreviations

CGEMS Cancer Genetic Markers of Susceptibility

CI Confidence interval

EIRA Epidemiological Investigation of Rheumatoid

Arthritis

FPRP False positive report probability

GWAS Genome-wide association study

OR Odds ratio

RBCS Rotterdam Breast Cancer Study

SEARCH Study of Epidemiology and Risk factors in

Cancer Heredity

SNP Single nucleotide polymorphism

kGC Genomic inflation factor k

Introduction

Genome-wide association studies (GWAS) interrogating

up to half a million markers have indentified low-pene-

trance, common genetic variants in 12 genomic regions

that predispose for breast cancer [1–7]. The majority of

these studies have been conducted with impressive col-

laborative efforts on pooled genotype data of more than

30,000 individuals in the validation stage. Despite these

efforts, the identified loci can only explain about 5% of the

excess familial risk of breast cancer [8], suggesting that

many common and rare variants of similar or smaller effect

on the disease remains to be identified. Under the

assumption that the strongest association signals have

already been found, and given the stringent significance

thresholds required for GWAS, each new GWAS has

limited power to identify new loci. Thus, extremely large

GWAS, or combined analysis of GWAS, will be required

to identify further loci by this approach.

An alternative approach to identify new loci is to subject

GWAS to pathway-based analysis [9]. If a specific pathway

is relevant to disease susceptibility, one might expect

association signals to be overrepresented among single

nucleotide polymorphisms (SNPs) in genes in the pathway.

Assessment of the overall significance of SNPs in a given

pathway circumvents some of the multiple testing prob-

lems, and offers the potential to identify loci that would be

too weak to find through single SNP analysis. In addition, it

may provide additional insights into the mechanisms

underlying disease susceptibility [10].

In this study, we conducted a GWAS on 2,702 women

of European ancestry with invasive breast cancer and 5,726

controls. We also examined the significance of pre-defined,

biologically meaningful pathways on breast cancer risk

using these data.

Methods summary

Full methods accompany this manuscript in Supplementary

File 1.

Study populations

Table 1 summarises the origins, and numbers, of cases and

controls used in this study. Subjects were drawn from three

independent populations from Sweden, Finland and the

National Cancer Institute Cancer Genetic Markers of Sus-

ceptibility (CGEMS) [3] initiative.

The Swedish sample set included 803 breast cancer

cases and 764 controls which were drawn from a parent

population-based cascontrol study of postmenopausal

breast cancer which has been described elsewhere [11, 12].

An additional 659 cancer-free Swedish controls aged

between 18 and 70 years were obtained from the Epide-

miological Investigation of Rheumatoid Arthritis (EIRA)

study [13], primarily to improve statistical power.

The Finnish breast cancer study population consists of

two series of unselected breast cancer patients and addi-

tional familial cases ascertained at the Helsinki University

Central Hospital. We genotyped a total of 782 breast

cancer cases from this study. Of these women, 212 were

premenopausal, 359 were postmenopausal and 211 were

missing menopausal status. Population control data was

obtained from the Finnish Genome center on 3,170 healthy

population controls described in [14–17].

Genotype data was also obtained for a total of 1,145

postmenopausal women of European ancestry with inva-

sive breast cancer from the CGEMS initiative, along with

A. Palotie � L. Peltonen-Palotie
Wellcome Trust Sanger Institute, Hinxton,

Cambridge CB10 1SA, UK

A. Palotie � L. Peltonen-Palotie
Program in Medical and Population Genetics,
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of Technology, Cambridge, MA 02142, USA
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1,142 matched controls nested within the prospective

Nurses’ Health Study cohort [3].

For all populations, blood samples were obtained from

individuals according to protocols and informed-consent

procedures approved by institutional review boards.

Genotyping and quality control filters

Genotyping for all samples was performed according to the

Illumina Infinium 2 assay manual (Illumina, San Diego), as

described previously [18]. The genotyping platforms used

for this study are listed in Table 1. Apart from the 3,170

Finnish controls which were genotyped on the Human-

Hap370Duo assay as described previously [14, 16], geno-

typing for all other Finnish and Swedish samples was

performed at the Genome Institute of Singapore. All

Swedish cases were genotyped on the HumanHap300

platform and supplemented by the HumanHap240S plat-

form. Swedish controls were genotyped on the Human-

Hap550 platform. The EIRA scan included genotypes of

317,503 SNPs from the HumanHap300 arrays. Details on

the genotyping of CGEMS subjects using the Human-

Hap550 platform have been reported elsewhere [3].

Each dataset was filtered to remove individuals with

[10% missing genotypes, and SNPs with [10% missing

data, or minor allele frequency (MAF) \0.03, or not in

Hardy–Weinberg equilibrium (HWE) (P\ 0.05/number of

SNPs after quality control) and individual samples with

evidence of possible DNA contamination, common

ancestry or cryptic family relationships. Quality control

was carried out using the software Plink [19]. To account

for population outliers and correct for differential ancestry

between cases and controls that may exist in the dataset

after familial outlier removal, a principal component (PC)

analysis was conducted using the EIGENSTRAT software

[20]. A total of 2,702 cases and 5,726 controls passed the

quality control for samples. The 285,984 SNPs that passed

quality control filters in all sample sets were merged into a

single file for analysis. The merged dataset was subjected

to the same quality control checks as carried out for the

individual datasets. As an additional quality control check,

genotype cluster plots of the top SNPs (lowest P values)

from the discovery stage were inspected manually using

Illumina Beadstudio software to confirm the genotype

calling.

Statistical analysis

Logistic regression models with genotype coded 0, 1, 2 and

treated as a continuous covariate (one at a time), were fitted

for each SNP that passed quality control. An additive

genetic effect on the logit scale was assumed to charac-

terise the associations. Other genetic models, namely,

dominant and recessive models, were also explored.

Eigenvalues of PCs were included as covariates. Separate

analyses were performed for the Swedish, Finnish and

CGEMS datasets, together with a combined analysis. In the

combined analysis, the final model included as covariates

the SNP genotype, an indicator variable specifying country

(Sweden, Finland and USA), and interaction effects of

eigenvalues of PCs 9 country specified in such a way that

country-specific PCs were implemented for the relevant

subjects. Quantile–quantile plots were used to check for

systematic genotyping error or bias due to unaccounted

underlying population substructure. Manhattan plots were

generated to summarise the -log transformed P values of

all SNPs examined. Association results corrected for

genomic control and multiple testing are available as

online-only supplementary material. Pair-wise linkage

disequilibrium (LD) was evaluated for the top SNPs that

were observed to be located in the same chromosomal

region using Plink [19]. Tests of homogeneity of odds

ratios across strata (Cochrane’s Q statistic and I2 heterge-

neity index) were conducted. The six most strongly asso-

ciated SNPs in the combined analysis which had effects in

the same direction for all three studies (Swedish, Finnish

and CGEMS), and for which associations have not been

described previously, were forwarded for validation in

independent studies. All SNP chromosomal positions were

based on NCBI Build 36.

Table 1 Summary of samples

and genotyping platforms used

in the discovery stage

Study Type No. of samples

(after quality control)

Genotyping platform

Swedish Cases 803 (797) HumanHap300 supplemented

by HumanHap240S

Controls 764 (764) HumanHap550

Additional controls from EIRA study 659 (650) HumanHap300

Finnish Cases 782 (760) HumanHap550

Controls 3170 (3170) HumanHap370Duo

CGEMS Cases 1145 (1145) HumanHap550

Controls 1142 (1142) HumanHap550
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Pathway analysis of the GWAS dataset was conducted

using the SNP ratio test (SRT) [21]. The same logistic

regression models which were applied to the real dataset

were applied to 1000 datasets in which phenotypes were

permuted, in order to obtain P value estimates. SRT was

used to investigate the associations with breast cancer for

212 pathways and their genes (*4,700) taken from the

Kyoto Encyclopedia of Genes and Genomes (KEGG)

database (05/12/08) [22]. SNP to gene mappings were

obtained by parsing the dbSNP table b129_SNPConti-

gLocusId_36_3.bcp. This includes SNPs \2 kb 50 and

\0.5 kb 30 of a gene. We applied the false discovery rate

(FDR) Q value multiple testing correction [23, 24] to all

empirical P value outputs from SRT to account for the

large number of pathway definitions tested against the data.

The default smoother method in the QVALUE software

was applied.

PLINK (v1.06) [19], SNP Ratio Test [21], R (v2.8.0)

[25], QVALUE [23], HaploView [26], PolySearch [27] and

SCAN [28] were used for data management, quality con-

trol, statistical analyses, graphics, text-mining and SNP

annotation purposes.

Validation

Six SNPs with the strongest signals of association with

breast cancer computed under the assumption of an addi-

tive model, and which have not been reported previously,

were typed in two further studies: the Study of Epidemi-

ology and Risk factors in Cancer Heredity (SEARCH) and

Rotterdam Breast Cancer Study (RBCS), both previously

described in Lesueur et al. [29]. Controls were selected

from the EPIC-Norfolk cohort study, a population-based

cohort study of diet and health based in the same

geographical region as SEARCH, together with additional

SEARCH controls recruited through general practices in

East Anglian region. Genotyping in SEARCH and RBCS

was performed by 50 exonuclease assay (Taqman) using the

ABI Prism 7900HT sequence detection system according

to the manufacturer’s instructions. Primers and probes were

supplied directly by Applied Biosystems as Assays-By-

Design. Assays included at least two negative controls and

2–5% duplicates per plate.

Results

Quantile–quantile plots generated from the analyses of

individual datasets showed no systematic inflation in the test

statistics, indicating no evidence of confounding due to use

of non-matched population controls or differential geno-

typing in cases and controls (Supplementary Figures 2–4,

Supplementary File 2). Principal component analysis scatter

plots, coloured according to sample source for individual

datasets, suggested that the samples were homogeneous

within each population (Supplementary File 3). Results

obtained using the additive model are presented and dis-

cussed below. Corresponding results for the dominant and

recessivemodels are available as online-only supplementary

material (Supplementary File 2).

Genomic inflation factors k (kGC) for the Swedish,

Finnish, CGEMS and the combined datasets after adjusting

for were estimated to be 1.013, 1.024, 1.005 and 1.014,

respectively. However, there was an excess of significant

associations overall at the 10-6 level, compared with the

proportion expected by chance, indicating the presence of

susceptibility variants (Fig. 1). These SNPs occurred in

three regions known to be associated with breast cancer

Fig. 1 Genome-wide association results comparing 2,702 cases and 5,726 controls: a Manhattan and b quantile–quantile plots of -log10

tranformed P values of 285,984 SNPS genotyped
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through previous GWAS: 10q26 (FGFR2), 16q12 (TOX3)

and 5p12 (MRPS30). P values of single SNP trend tests

using the combined GWAS (Swedish, Finnish and CGEMS

data) are summarised in a Manhattan plot (Fig. 1). The

quantile–quantile plots after exclusion of known suscepti-

bility loci showed no evidence of an excess of associated

SNPs over that expected by chance (Fig. 2), consistent with

the hypothesis that the known loci include the strongest

loci detectable by this platform.

We found strong associations for eight of the known

breast cancer susceptibility loci (Table 2; Supplementary

File 4). SNPs in 10q26 (FGFR2) [1, 3], 16q12 (TOX3,

formerly known as TNRC9) [1], 5p12 (MRPS30) [6], 2q35

[5], 1p11.2 [4], 8q24 [30], 3p (SLC4A7|NEK10) [2] and

14q24.1 (RAD51L1) [4] were found to be strongly asso-

ciated. The strongest association was for SNP rs1219648

(P trend = 1.93E-13, ORcombined per allele [95% CI] =

1.32 [1.22–1.42], located within the FGFR2 gene. Origi-

nally identified as a susceptibility locus by Easton et al. [1]

and by Hunter et al. [3], rs1219648 was also found to be

strongly associated within the Swedish (P trend = 1.79E-

05, ORcombined per allele = 1.32 [1.17–1.51]) and Finnish

datasets (P trend = 2.00E-04, ORcombined per allele = 1.30

[1.13–1.49)). The SNP markers located at 1p11.2

(rs11249433), 5p12 (rs7716600, rs4866929 and rs4415084)

and RAD51L1 (rs999737) were found to be strongly

associated with breast cancer risk in the CGEMS popula-

tion. The effects of these SNPs were weaker in the Swedish

and Finnish populations, although the direction of the

effects was consistent. On the other hand, SNPs rs3803662

(TOX3) and rs4973768 (SLC4A7|NEK10) were found to

be more significantly associated,with larger effect sizes,

within the Swedish and Finnish populations than in the

CGEMS population, even though the sample sizes of each

were smaller than that of CGEMS. SNP markers located on

2q35 and 8q24 exhibited were found to be significant at the

5% level in the Swedish and CGEMS populations, and

achieved P values of 9.23E-06 (OR per allele [95% CI] =

0.85 [0.79–0.91]) and 5.29E-05 (OR per allele = 1.17

[1.08–1.25]), respectively, in the combined analysis. Other

regions previously found to be associated with breast

cancer, namely, MAP3K1 [1], LSP1 [1], RAD51L1 [4],

COX11 [2] and ESR1 [7], did not have appropriate SNPs

typed in this study and were thus not examined.

After exclusion of the known loci, six SNPs with the

strongest evidence for association, as judged by their one

degree of freedom P values for trend, were selected for

replication in the SEARCH and RBCS studies (Supple-

mentary File 2). One of the six SNPs, rs4074770 could not be

designed, and was not replaced. In the replication stage,

none of the SNPs were significant at the 5% level (Table 3).

The most significant association was for rs7637164

(P trend = 0.129, ORcombined per allele = 1.05 [0.99–

1.11]); however, this association was in the opposite direc-

tion to that observed in the first stage. We conclude that

all associations observed in the discovery stage were likely

to be false positive associations.

As an alternative approach to detect disease associated

SNPs, we performed analyses in which SNPs were classi-

fied by the gene footprint into which they lay and genes

were classified by pathway. Table 4 summarises pathways

for which there was evidence of an overrepresentation of

significant SNPs. Full description of association results for

SNPs within the significantly associated pathways are pre-

sented in Supplementary File 5. Empirical P values for all

212 KEGG pathways are available in Supplementary File 6

as online-only material. Under the broad class of cellular

processes, regulation of cytoskeleton (hsa04810, P =

Fig. 2 Genome-wide association results comparing 2,702 cases and 5,726 controls: a Manhattan and b quantile–quantile plots of -log10

tranformed P values after removal of previously reported loci
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0.011), circadian rhythm (hsa04710, P = 0.020) and

hematopoietic cell lineage (hsa04640, P = 0.021) were

found to be associated with breast cancer at the significance

level of 5%. Pathways related to metabolism of alpha-lin-

olenic acid (hsa00592, P = 0.018), glycans (hsa00511,

P = 0.012), xenobiotics (hsa00983, P = 0.022) and steroid

hormones (hsa00150, P = 0.051) were also found to be

significantly associated. Q values for pathways found to be

significant ranged from 0.78 to 0.98 for pathways featured

in Table 4.

Discussion

Our combined analysis of three GWAS confirmed evi-

dence for the majority of the known susceptibility alleles

(Fig. 1; Table 2; Supplementary File 4). The additive

model which has been deemed adequate and recommended

for initial GWAS screening [31], is presented in the main

article of this paper. That some SNPs were found to be

more strongly associated in the CGEMS population, and

the effects of others were more prominent in the Swedish

and Finnish populations, suggests the fact that each GWAS

has limited power to detect variants with small effect sizes

(OR per allele between 1.1 and 1.3) [32]. However, the

variation in effect sizes by dataset could also be due to

variations in sample size, or characteristics specific to each

study population. For example, the fact that 210 pre-

menopausal women and 194 of unknown menopausal

status were included in the Finnish dataset may help to

explain the slight differences in effect sizes observed when

comparing the results of this dataset to the Swedish and

CGEMS datasets, which included only postmenopausal

women. Adjustments for such variables were not made as

phenotypic information is not available for all sample

populations. The strongest associations found in this

combined analysis were all in known loci, notably FGFR2,

TOX3 and MRPS30. After removal of loci previously

reported to be associated with breast cancer and other

variants in LD with these loci, the quantile–quantile plot of

285,973 SNPs interrogated in this study exhibited no

departure from the null (Fig. 2), and suggest strongly that

loci of similar effect size are unlikely to be found by

GWAS. We attempted to validate six SNPs from novel

regions with the strongest evidence of association in a

larger replication study, but none of these associations

could be replicated.

It has been hypothesised that modest associations might

be detectable by analyzing pre-defined, biologically

meaningful pathways. Given the limited power of our

GWAS to detect single SNP associations, we conducted a

permutation-based pathway analysis. While there are sev-

eral alternatives available for the annotation of pathways,T
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of which the most commonly used are Gene Ontology and

KEGG Orthology, the latter was chosen to define the

pathways examined in this study because of its well-

defined levels and terms that correspond to known path-

ways [33]. Several pathways exhibited an excess of

significant associations, over the proportion predicted by

chance. However, even though there is still no standard

method to deal with the problem of multiple testing in

pathway analysis where the dependence structure is

unknown, the corresponding local false discovery rates

(Q values) were statistically unimpressive (0.78–0.98) for

pathways featured in Table 4. It is thus important to

emphasise any excess associations may have arisen by

chance, and will require validation in additional case–

control series.

Gene expression studies have found pathways related to

oestrogen signalling [34], circadian rhythm [35] and alpha-

linolenic acid metabolism [36] to be associated with breast

cancer, corroborating the results of our genome-wide

pathway analysis. In addition, Gohlke et al. [37] found key

regulatory pathways related to linolenic acid metabolism,

drug metabolism, androgen and oestrogen metabolism,

hematopoietic cell lineage and regulation of actin cyto-

skeleton to be associated with breast cancer. While many

studies have looked at the effects of differential expression

of genes in candidate pathways for breast cancer, less

attention has been given to the global effect of SNPs within

such pathways. An example of the latter endeavour is the

significant association found between the combined effects

of SNPs in the oestrogen metabolic pathway and breast

cancer risk [38].

In this genome-wide search for pathways associated

with breast cancer risk, the most strongly associated

pathway relates to the regulation of actin cytoskeleton

(P = 0.011). This result is understandably driven by the

well-known breast cancer associated gene FGFR2. While

the significance of this association would not survive

multiple testing, a close scrutiny of the statistically sig-

nificant SNPs within the pathway can potentially uncover

novel biology behind the disease. For example, SNP

rs2912759 (OR per allele [95% CI] = 0.87 [0.80–0.94],

P = 0.000582) located within the intron of the FGFR2

gene was documented to be associated with the gene

expression of SOX4 in a European population. Human

SOX4 has been shown to be expressed in the normal breast

and breast cancer cells, and changes in SOX4 gene

expression has been suggested to play a role in commit-

ment to the differentiated phenotype in the normal and

malignant mammary gland [39]. While at the pathway

associations are suggestive rather than confirmed at this

stage, it might be worthwhile to examine them in further

detail.

Several genes in the drug metabolism and androgen

and oestrogen metabolism pathways have already been

associated with breast cancer risk, for instance, CYP

19A1, AKR1C4, SULT2A1, SULT2B1, UGT1A6-10 and

UGT2B4, among others [38]. Other potential candidate

genes include the b-mannosidase (MANBA) and lactase

(LCT) genes, intronic SNPs of which were ranked highly in

the glycan degradation pathway, phospholipase A2 (PLA2s)

genes in the alpha-linolenic acid metabolism pathway,

neuronal PAS domain-containing protein 2 (NPAS2) and

period circadian protein homolog 1 (PER1) in the circadian

rhythm pathway (Supplementary File 5). While most of the

above-mentioned genes and/or their surrounding genes have

been suggested to be implicated in cancers on the expression

level [40–44], SNPs within these genes have not been

examined in relation to breast cancer, and thus merit further

examination.

Conclusion

Our study confirmed several established breast cancer

susceptibility loci, but found no new candidates. Never-

theless, we identified pathways related to regulation of

actin cytoskeleton, glycan degradation, circadian rhythm,

hematopoietic cell lineage, and metabolism of alpha-lino-

leic acid, drug, and androgen and oestrogen to have sug-

gestive associations with breast cancer risk, which merit

further research. The potential of GWAS may be further

utilised by complementing traditional single-marker data

with biological knowledge of pre-defined pathways.
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Abstract

Introduction: Breast cancer is a heterogeneous disease and may be characterized on the basis of whether
estrogen receptors (ER) are expressed in the tumour cells. ER status of breast cancer is important clinically, and is
used both as a prognostic indicator and treatment predictor. In this study, we focused on identifying genetic
markers associated with ER-negative breast cancer risk.

Methods: We conducted a genome-wide association analysis of 285,984 single nucleotide polymorphisms (SNPs)
genotyped in 617 ER-negative breast cancer cases and 4,583 controls. We also conducted a genome-wide pathway
analysis on the discovery dataset using permutation-based tests on pre-defined pathways. The extent of shared
polygenic variation between ER-negative and ER-positive breast cancers was assessed by relating risk scores,
derived using ER-positive breast cancer samples, to disease state in independent, ER-negative breast cancer cases.

Results: Association with ER-negative breast cancer was not validated for any of the five most strongly associated
SNPs followed up in independent studies (1,011 ER-negative breast cancer cases, 7,604 controls). However, an
excess of small P-values for SNPs with known regulatory functions in cancer-related pathways was found (global P
= 0.052). We found no evidence to suggest that ER-negative breast cancer shares a polygenic basis to disease with
ER-positive breast cancer.

Conclusions: ER-negative breast cancer is a distinct breast cancer subtype that merits independent analyses. Given
the clinical importance of this phenotype and the likelihood that genetic effect sizes are small, greater sample sizes
and further studies are required to understand the etiology of ER-negative breast cancers.

Introduction
Breast cancer is a heterogeneous disease and can be
characterized on the basis of estrogen receptor (ER)
expression in the tumour cells. The two breast cancer
subtypes (ER-positive and ER-negative) are generally
considered as biologically distinct diseases and have
been associated with remarkably different gene expres-
sion profiles [1,2]. ER status is important clinically, and
is used both as a prognostic indicator and treatment

predictor since it determines if a patient may benefit
from anti-estrogen therapy. Approximately one-third of
all breast cancers are ER-negative, and cancers of this
ER subtype are highly age-dependent and generally have
a more aggressive clinical course than hormone recep-
tor-positive disease.
Estimates show that close to a third of the total risk of

breast cancer may be attributed to heritable factors [3].
Several large-scale genome-wide single nucleotide poly-
morphism (SNP) association studies (GWAS) have iden-
tified multiple susceptibility loci for breast cancer [4-11],
but it is estimated that the currently known common
risk variants identified by this approach explains only
5.8% of the proportion of familial risk of breast cancer.
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Aside from traditional agnostic SNP studies, pathway-
based approaches have also emerged in the recent
GWAS literature [12-20]. These novel methods have
been developed to mine modest association signals from
genome-wide SNP data using prior knowledge on biolo-
gically pathways and networks, and have the potential to
complement traditional agnostic SNP approaches to
provide fertile grounds for follow-up studies of both a
genetic and molecular nature. Subtypes of breast cancer,
to our knowledge, have not been studied using a path-
way-based approach.
Although many of the SNPs identified for breast can-

cer through GWAS scans have been found to be more
strongly associated with ER-positive disease than ER-
negative disease [21,22], there is no quantitative assess-
ment on whether breast cancers of the two different ER
subtypes share a polygenic component. In this study, we
performed a genome-wide association scan on 617 ER-
negative cases and 4,583 controls, the first of its kind,
and examined 285,984 SNPs for common variants and
biological pathways associated with this unique subtype
of breast cancer. We also searched for evidence that ER-
negative breast cancer is distinct from ER-positive breast
cancer by assessing the amount of shared polygenic var-
iation between the two breast cancer subtypes.

Materials and methods
Full methods accompany this paper in Additional file 1.

Study populations used in the discovery stage
Table 1 summarizes the demographics of cases and con-
trols used in this study. The discovery stage consists of
cases and controls from Finland and Sweden. The vali-
dation stage consists of breast cancer cases from two
further studies: the Study of Epidemiology and Risk fac-
tors in Cancer Heredity (SEARCH) and Rotterdam

Breast Cancer Study (RBCS) (1,011 ER-negative cases,
7,604 controls), both previously described in Lesueur
et al. [23]. Informed consent was obtained from all sub-
jects. For all populations, blood samples were obtained
from individuals according to protocols and informed-
consent procedures approved by institutional review
boards.
Briefly, the Swedish sample set included subjects who

were drawn from a parent population-based case control
study of postmenopausal breast cancer which has been
described elsewhere [24,25]. Case subjects were women
born in Sweden who were 50 to 74 years of age at diag-
nosis and diagnosed with breast cancer between October
1993 and March 1995. A total of 803 individuals diag-
nosed with invasive breast cancer and with available
blood samples were selected for GWAS genotyping in
an independent GWAS looking at overall breast cancer
risk [26]. Of these women, 153 individuals were diag-
nosed with the ER-negative disease and were included
in the present study. In addition, a total of 1,414 Swed-
ish controls were included from the parent study and an
additional Epidemiological Investigation of Rheumatoid
Arthritis (EIRA) study [27].
The Finnish breast cancer study population consists of

two series of unselected breast cancer patients and addi-
tional familial cases ascertained at the Helsinki Univer-
sity Central Hospital. The first series of patients was
collected in 1997 to 1998 and 2000 and covers 79% of
all consecutive, newly diagnosed cases during the collec-
tion periods [28,29]. The second series, containing
newly diagnosed patients, was collected in 2001 to 2004
and covers 87% of all such patients treated at the hospi-
tal during the collection period [30]. The collection of
additional familial cases has been described previously
[31]. We genotyped a total of 782 breast cancer cases in
an independent GWAS for overall breast cancer risk

Table 1 Summary of samples and genotyping platforms used in the discovery and validation stages

Stage Study Type No. of samples after quality
control

Genotyping platform

Discovery Swedish ER-negative cases 153 HumanHap300 supplemented by
HumanHap240S

Controls 764 HumanHap550

Additional controls from EIRA
study

650 HumanHap300

Finnish ER-negative cases 226 HumanHap550

ER-negative cases 238 Quad610 (v1)

Controls 3169 HumanHap370Duo

Validation SEARCH and
RBCS

ER-negative cases 1011 Taqman

Controls 7604 Taqman

ER, estrogen receptor; RBCS, Rotterdam Breast Cancer Study; SEARCH, Study of Epidemiology and Risk factors in Cancer Heredity.
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[26], of which 226 ER-negative cases were used in the
present study. An additional 238 Finnish ER-negative
cases were also genotyped for this study, using a differ-
ent platform. Of these 464 women with ER-negative
breast cancer, 207 were sporadic and 257 were familial
breast cancer cases. Population control data were
obtained from the Finnish Genome Centre on 3,169
healthy population controls described in [32-35].
SEARCH is a population-based case-control study

comprising 7,093 cases identified through the East
Anglian Cancer Registry: prevalent cases diagnosed age
<55 from 1991 to 1996 and alive when the study started
in 1996, and incident cases diagnosed <70 diagnosed
after 1996. Controls (N = 8,096) were selected from the
EPIC-Norfolk cohort study, a population-based cohort
study of diet and health based in the same geographical
region as SEARCH, together with additional SEARCH
controls recruited through general practices in East
Anglian region.
RBCS is a hospital-based case-control study compris-

ing 799 cases characterized as familial breast cancer
patients selected from the Rotterdam Family Cancer
Clinic at the Erasmus Medical Center, of which 141 are
ER-negative. Controls (N = 801) were spouses or muta-
tion-negative siblings of heterozygous Cystic Fibrosis
mutation carriers selected from the Department of Clin-
ical Genetics at the Erasmus Medical Center. Both cases
and controls were recruited between 1994 and 2006.

Genotyping and quality control filters
Genotyping for all samples was performed according to
the Illumina Infinium 2 assay manual (Illumina, San
Diego, CA, USA), as described previously [36]. The
genotyping platforms used for this study are listed in
Table 1. Apart from the 3,170 Finnish controls which
were genotyped on the HumanHap370Duo assay as
described previously [32,34], genotyping for all other
Finnish and Swedish samples was performed at the
Genome Institute of Singapore.
Each dataset was filtered to remove individuals with

>10% missing genotypes, and SNPs with >10% missing
data, or minor allele frequency (MAF) <0.03, or not in
Hardy-Weinberg equilibrium (HWE) (P < 0.05/number
of SNPs after quality control) and individual samples
with evidence of possible DNA contamination, common
ancestry or cryptic family relationships. Quality control
was carried out using the software Plink [37]. To
account for population outliers and correct for differen-
tial ancestry between cases and controls that may exist
in the dataset after familial outlier removal, a principal
component (PC) analysis was conducted using the
EIGENSTRAT software (Broad Institute, Boston, MA,
USA) [38].

A total of 617 ER-negative cases and 4,583 controls
passed the quality control for samples. The 285,984
SNPs that passed quality control filters in all sample
sets were merged into a single file for analysis.
The five most strongly associated SNPs in the com-

bined analysis, which had effects in the same direction
for both studies in the discovery stage (Swedish and Fin-
nish) were forwarded for validation in SEARCH and
RBCS. Genotyping in SEARCH and RBCS was per-
formed by 5’exonuclease assay (Taqman) using the ABI
Prism 7900HT sequence detection system (Applied Bio-
systems, Foster City, CA, USA) according to the manu-
facturer’s instructions.
All SNP chromosomal positions were based on NCBI

Build 36.

Statistical analysis
Figure 1 gives a broad overview of the analytical strategy
for the single marker association analysis and pathway
analysis.
Single marker association analysis
Logistic regression models with genotype coded 0, 1, 2
and treated as a continuous covariate (one at a time),
were fitted for each SNP that passed quality control. An
additive genetic effect on the logit scale was assumed to
characterize the associations. Separate analyses were
performed for the Swedish and Finnish datasets as well
as a combined analysis.
In the combined analysis, the final model included as

covariates the SNP genotype, an indicator variable speci-
fying country (Sweden and Finland), and interaction
effects of Eigen values of PCs × country specified in
such a way that country-specific PCs were implemented
for the relevant subjects. Quantile-quantile plots were
used to check for systematic genotyping error or bias
due to unaccounted underlying population substructure.
Manhattan plots were generated to summarize the -log
transformed P-values of all SNPs examined.
Pathway analysis using discovery set (Swedish and Finnish
samples)
Pathway analysis of the discovery GWAS dataset was
conducted using the SNP ratio test (SRT) SRT was used
to investigate the associations with breast cancer for 212
pathways and their genes (approximately 4,700) taken
from the Kyoto Encyclopedia of Genes and Genomes
(KEGG) database (05/12/08) [39].
To evaluate the association between regulatory SNPs-

defined pathways and ER-negative breast cancer, we
used the downloadable database from mRNA by SNP
Browser [40] to map SNPs, which are significantly asso-
ciated with gene expression on a genome-wide level
(LOD >6), to genes. In total, 7,698 SNPs were mapped
to 3,740 probes with a LOD score >6. These 3,740
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probes could be mapped to 2,070 genes, and out of
these, 554 genes, regulated by 1,720 SNPs, were anno-
tated as belonging to one or several of the 182 KEGG
pathways.
Among five regulatory SNP-defined pathways found to

be significantly associated with ER-negative breast can-
cer, four belonged to the pathway class “cancer”. To
evaluate if the abundance of small P-values from regula-
tory SNPs involved in cancer-related pathways was sta-
tistically significant as a whole, we also assessed the
departure of the distribution of the trend test statistics
from the null distribution, assuming that none of the
SNPs was associated with ER-negative breast cancer as

an outcome. For this purpose, we performed the
“admixture maximum likelihood” test described by
Tyrer et al. [41] to obtain a global P-value for 165
unique SNPs from 15 cancer-related pathways (hsa052*)
curated in the KEGG database.
Analysis of shared polygenic variation between ER-negative
and ER-positive breast cancer subtypes
We assessed the polygenic component of breast cancer
risk using a procedure for creating sample scores which
has been described elsewhere [42]. Briefly, ER-positive
breast cancer cases and healthy controls from either the
Finnish or Swedish study were used as a “training set”
to derive a list of SNPs used for scoring in two “target

Figure 1 Schematic diagram of analytical strategies for agnostic single marker association analysis and pathway analysis.
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sets”, consisting of either ER-positive breast cancer cases
and healthy controls or ER-negative breast cancer cases
and healthy controls in the other population. Figure 2
gives a broad overview of the analytical strategy for
assessing common polygenic variation.
The polygenic score for each individual was calculated

by summing the number of score alleles weighed by the
log of their odds ratio from the training sample, across
all SNPs included in the score. SNPs were included in
the score if they achieved a P-value less than a particular
threshold in the training sample. The “—score” function
in Plink [37] was used to calculate scores. To capture
association signals with very small effects in the calcula-
tion of the polygenic component of the disease, we used
non-stringent significance thresholds (P < 0.01, P < 0.05,
P < 0.10, P < 0.20, P < 0.30, P < 0.40 and P < 0.50).
Scores were calculated for the seven P-value thresholds.
The extent of shared polygenic variation between ER-

positive breast cancers in the training sample and ER-
positive and ER-negative breast cancers in the corre-
sponding target samples was assessed by fitting logistic
regression models to disease state, as a function of score,
in the target samples. Regression models, adjusted for the
number of non-missing genotypes, were fitted to assess
the differences in the extent of shared polygenic variation

(scores) between the ER-positive and ER-negative target
samples in case-only analyses.
PLINK (v1.06) [37], SNP Ratio Test [19], R (v2.8.0)

[43], Quanto [44], AML [41], Qlikview (v8.5) [45], Hap-
loView [46] and LocusZoom [47] were used for data
management, quality control, statistical analyses, and
graphics. All reported tests are two-sided.

Results
In this study, we tested the association of 285,984 loci
with ER-negative breast cancer in two independent
populations consisting of a total of 617 cases and 4,583
controls. It appears that the overall population substruc-
ture was adequately accounted for, since a systematic
deviation from the expected distribution was not
observed in the quantile-quantile plot (Supplementary
Figures 2, 3 and 4 in Additional file 2). Quantile-quan-
tile plots generated from the analyses of individual data-
sets showed that there was no within-study systematic
error arising from the use of non-matched population
controls or genotyping at different facilities (Supplemen-
tary Figures 2 and 3 in Additional file 2). Genotype clus-
ter plots were examined for SNPs with P < 10-5. Manual
reclustering was performed for six SNPs with poor gen-
otype cluster plots. SNPs rs4660646 and rs2462692 were

Figure 2 Summary of scoring procedure for assessment of common polygenic variation.
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omitted from further analysis as they could not be
reclustered. SNPs rs4549482, rs1984492, rs1389545 and
rs3748648 were not found to be strongly associated with
ER-negative breast cancer after reclustering (Table S1 in
Additional file 3).
Figure 3 shows a Manhattan plot summarizing the

-log-transformed P-values of 285,984 SNPs analyzed in
this study. In a combined analysis of individuals of
Swedish and Finnish backgrounds, the strongest asso-
ciation with ER-negative breast cancer below the
threshold for genome-wide significance was for a locus
marked by rs361147 on chromosome 4 (P trend = 3.13
× 10-13; OR per allele = 0.60) (Table S2 in Additional file
3). This was the only SNP to achieve statistical signifi-
cance at the genome-wide level (a = 5 × 10-8). Overall,
no significant signal peak was identified in this study
(Figures 4, 5, 6, 7, 8).
Nevertheless, we selected five SNPs to be validated in

a combined dataset of two independent studies (Table
S2 in Additional file 3). SNPs rs7039994 and
rs12000794, located 106310 base pairs away from each
other on chromosome 9, were found to be in high LD
(r2 = 0.797; D’ = 0.952). The former was kept and vali-
dated in the SEARCH dataset as its associated P-value
was smaller and it was in closer proximity to coding
regions (downstream of INVS|TEX10). SNP rs3777218

was selected over rs11882068 due to a better regional
signal peak. Other SNPs selected for validation included
rs361147 as mentioned above, rs6993922, rs4726078
(within transcript of PRKAG2), and rs3777218 (within
transcript of RHOBTB3). Of the five SNPs forwarded for
validation, rs4726078 could not be designed and was
replaced by rs10952315 (r2 = 0.977 in Centre d’Etude
du Polymorphisme Humain (CEPH) from Utah (CEU)
HapMap samples). None of the SNPs was significantly
associated at the 5% level in the second stage. The smal-
lest P-value obtained was for the surrogate rs10952315
(OR 1.02; 95% CI: 0.93 to 1.13).
To analyze our GWAS data in a pathway context we

conducted a permutation-based analysis using the
KEGG database. Pathways defined by SNPs located
within transcript of genes that were found to be signifi-
cantly associated with ER-negative breast cancer after
1,000 phenotype permutations at a threshold of Pa = 0.05

< 0.05 (uncorrected) were: pentose and glucuronate
interconversions (hsa00040) (P = 0.022), starch and
sucrose metabolism (hsa00500) (P = 0.042), and gap
junction (hsa04540) (P = 0.037) (Table 2).
In addition, we limited the analysis to pathway defini-

tions involving only known regulatory SNPs [48]. The
GWAS SNPs were first mapped to genes, and then sub-
sequently to KEGG pathways based on publicly available

Figure 3 Genome-wide P-values (-log10P) of the logistic regression analysis plotted against chromosomal position.
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Figure 5 Plot of regional association signals for rs7039994 forwarded for validation.

Figure 4 Plot of regional association signals for rs361147 forwarded for validation.
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Figure 6 Plot of regional association signals for rs6993922 forwarded for validation.

Figure 7 Plot of regional association signals for rs4726078 forwarded for validation.
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gene regulatory data from lymphoblastoid cells [48].
Only genes with regulatory functions significant on a
genome-wide significant level were selected, resulting in
1,720 SNPs regulating members of 182 KEGG pathways
being used in our analysis. Pathways that were found to
be significant by SRT after 1,000 phenotype permuta-
tions at a threshold of Pa = 0.05 < 0.05 were: long-term
potentiation (hsa04720), glioma (hsa05214), non-small
cell lung cancer (hsa05223), pancreatic cancer
(hsa05212), and prostate cancer (hsa5215) (Table 3).
The focal adhesion pathway (hsa04510) was found to be
marginally significant (Pa = 0.05 = 0.052). Two pathways
each tagged by only a single SNP, glyoxylate and dicar-
boxylate metabolism (hsa00630) and glycosphingolipid
biosynthesis - ganglio series (hsa00604), were removed
from the evaluation of the final results.
Regulatory SNPs involved in pathways associated with

cancer (hsa052*) appeared to be overrepresented by
small P-values (Figure 9). To evaluate if the combined
effect of these signals was statistically significant as a
whole, we next carried out a global test of significance
for all unique SNPs in the cancer pathways. The AML
analysis performed using an algorithm developed by
Tyrer et al. [41], yielded P-values (a = 0.05) of 0.0028
(crude) and 0.052 (adjusted for population stratification).

Figure 10 shows the results of analyses aimed at asses-
sing the shared polygenic component between ER-posi-
tive and ER-negative breast cancer. Estimates of
variance explained in datasets indicate how important
the polygenic component of ER-positive disease is in
explaining the overall occurrence of ER-positive and ER-
negative diseases. The proportion of variance explained
for all categories of P-value cut-offs, with the exception
of P < 0.05 in the Swedish ER-positive target sample,
was higher in the ER-positive target datasets than the
ER-negative target datasets.
We test for association between polygenic score and

disease status (ER-positive vs controls/ER-negative vs
controls) in the target data, when seven groups of SNPs
with different P-values thresholds in the training sets
were considered (Figure 10a, b). Due possibly to limited
statistical power (Table S3 in Additional file 3), even at
the least stringent P-value threshold (P < 0.50), the ER-
positive and ER-negative breast cancer target case-con-
trol datasets failed to provide statistically significant evi-
dence of a polygenic component for ER-positive cancer,
or evidence of a polygenic component shared between
the two cancers, when training was based on the ER-
positive training case-control datasets (Figure 10a, b).
Nevertheless, when we relaxed the P-value cut-off in the

Figure 8 Plot of regional association signals for rs3777218 forwarded for validation.
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training dataset to 0.5, the Swedish ER-positive breast
cancer target dataset showed borderline significance for
a shared polygenic component with ER-positive breast
cancer, based on the Finnish ER-positive training dataset
(Figure 10a, P = 0.066).
In a separate case-only analysis, we performed a sig-

nificance test for difference in scores between ER-posi-
tive and ER-negative breast cancer cases in the target
data. Significant results show that ER-positive and ER-
negative breast cancers are not identical diseases
(genetically at polygenic level) (Figures 10c, d). The dif-
ference in scores between ER-positive and ER-negative
samples was found to be statistically significant for all
categories of P-value cut-offs in the Finnish target case-

only samples, with the exception of the most associated
SNPs (Figure 10d).

Discussion
Little is known about the genetic predisposition to
estrogen receptor-negative breast cancer. This subtype is
characterized by lower age of onset, a more aggressive
disease and low or no response to selective estrogen
receptor modulators or aromatase inhibitors. We have
examined our GWAS data on two different levels: single
marker and pathway. We also provided evidence that
breast cancer is a heterogeneous disease with a poly-
genic nature, with significant differences between the
polygenic component between ER-positive and ER-

Table 2 Top ranking pathways of genome-wide pathway analysis results using SNP ratio test (P < 0.1)

KEGG ID Pathway name
Class

No. of SNPs
P < 0.05

No. of SNPs in pathway Number of
significantly

associated SNPs with
P

E-05 E-04 E-03 E-02 P

00040 Pentose and glucuronate interconversions
Metabolism; Carbohydrate Metabolism

11 63 0 1 2 8 0.022

04540 Gap junction
Cellular Processes; Cell Communication

95 1,366 1 0 16 78 0.037

00500 Starch and sucrose metabolism
Metabolism; Carbohydrate Metabolism

22 237 0 2 4 16 0.042

00604 Glycosphingolipid biosynthesis
ganglio series
Metabolism; Glycan Biosynthesis and Metabolism

20 216 0 0 4 16 0.051

00230 Purine metabolism
Metabolism; Nucleotide Metabolism

106 1,618 1 2 16 87 0.054

04130 SNARE interactions in vesicular transport
Genetic Information Processing; Folding, Sorting and Degradation

19 206 0 4 1 14 0.060

03022 Basal transcription factors
Genetic Information Processing; Transcription

11 105 0 0 4 7 0.062

04910 Insulin signaling pathway
Cellular Processes; Endocrine System

61 889 2 6 9 44 0.071

04350 TGF-beta signaling pathway
Environmental Information Processing; Signal Transduction

43 586 0 1 9 33 0.077

04330 Notch signaling pathway
Environmental Information Processing; Signal Transduction

25 321 0 0 4 21 0.087

04614 Renin-angiotensin system
Cellular Processes; Endocrine System

8 78 0 0 1 7 0.092

KEGG ID, Kyoto Encyclopedia of Genes and Genomes pathway identifier (hsa*); P, P-value of permutation test; SNP, single nucleotide polymorphism
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negative breast cancers. This emphasizes the importance
of looking at ER-negative breast cancer separately as a
unique breast cancer phenotype.
Overall, no significant signal peak was identified in

this study (Figures 4, 5, 6, 7, 8). Only one SNP
(rs361147) was found to achieve genome-wide signifi-
cance after correction for multiple testing in the single
marker analysis. However, the other loci exhibiting
strong associations were interesting for reasons of biolo-
gical significance, and were considered to merit further
research. The associated region on 9q31.1 tagged by
rs7039994 contains two known genes, TEX10 (testis
expressed sequence 10) and INVS (inversin). No func-
tion has been ascribed to TEX10. INVS is reported to
function as a molecular switch between different Wnt
signalling pathways [49] and is also pivotal in the estab-
lishment of the left-right axis. The RHOBTB3 gene, har-
bouring SNP rs3777218, was identified as a putative
breast cancer anti-estrogen resistance gene [50].

However, none of these single markers most strongly
associated with ER-negative breast cancer could be
replicated in a larger, independent sample made up of
two independent studies (Table 1)
To maximize the information obtained from the

GWAS scan, we conducted a permutation-based path-
way analysis using the KEGG database to capture the
joint actions of multiple SNPs with modest effects. In
the analysis using default SRT pathway definition files
comprising within-transcript SNPs, metabolic pathways
involving pentose and glucuronate interconversions
(hsa00040) (P = 0.022) as well as starch and sucrose
metabolism (hsa00500) (P = 0.042) were found to be
nominally significantly related to the risk of developing
ER-negative breast cancer (Table 2). Estrogen-induced
breast cancer cell proliferation is often accompanied by
an increase in intracellular metabolic activity, resulting
in a higher growth rate. The pentose phosphate path-
way, which works in tight conjunction with the pentose

Table 3 Top ranking pathways of genome-wide pathway analysis using regulatory SNPs

P-value distribution of SNPs

Pathway name (KEGG ID)
Class

SRT P P < 0.01 0.01 ≤ P < 0.05 0.05 ≤ P < 0.1 N P of most significant SNP in pathway

Glioma (hsa05214)
Cancers

0.0394 1 5 4 26 0.0028

Long-term potentiation (hsa04720)
Nervous System

0.0394 0 3 2 16 0.0314

Non-small cell lung cancer (hsa05223)
Cancers

0.0394 1 5 3 24 0.0028

Pancreatic cancer (hsa05212)
Cancers

0.0413 2 5 3 33 0.0028

Prostate cancer (hsa05215)
Cancers

0.0488 3 3 6 32 0.0003

Focal adhesion (hsa04510)
Cell Communication

0.0525 1 7 9 71 0.0028

Chemokine signaling pathway (hsa04062)
Immune System

0.0582 1 8 7 72 0.0080

Pathways in cancer (hsa05200)
Cancers

0.0582 2 12 15 151 0.0028

Melanogenesis (hsa04916)
Endocrine System

0.0657 2 2 2 26 0.0003

B cell receptor signaling pathway (hsa04662)
Immune System

0.0713 0 5 3 29 0.0314

GnRH signaling pathway (hsa04912)
Endocrine System

0.0732 0 6 6 46 0.0115

Fc epsilon RI signaling pathway (hsa04664)
Immune System

0.0769 0 6 6 33 0.0314

VEGF signaling pathway (hsa04370)
Signal Transduction

0.0769 0 3 0 17 0.0115

ErbB signaling pathway (hsa04012)
Signal Transduction

0.0788 0 5 5 25 0.0314

Acute myeloid leukemia (hsa05221)
Cancers

0.0957 1 3 3 25 0.0028

Gap junction (hsa04540)
Cell Communication

0.0976 0 5 3 42 0.0314

KEGG ID, Kyoto Encyclopedia of Genes and Genomes pathway identifier; P, P-value of association test in the genome-wide study; SNP, single nucleotide
polymorphism; SRT P, P-value of permutation test for pathway tested
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and glucuronate interconversions and starch and
sucrose metabolism pathways, has recently been sug-
gested to be essential for estrogen-dependent cell prolif-
eration [51]. Several pathways that were found to be
marginally significant (P < 0.1) have been suggested to
have potential roles in ER-negative breast cancer,
namely, the TGF-beta signalling pathway [52], the
renin-angiotensin system [53], and the Notch signalling
pathway [54]. In addition, the insulin signalling pathway
has been the focus of targeted therapy for breast cancer
[55], and the purine metabolism pathway is also closely
related to the pentose phosphate pathway described
earlier.
Nevertheless, there is neither a precise biological defi-

nition of a pathway, nor a “standard” method to map
SNPs to genes, and then genes to pathways. Pathway
analyses of GWAS of common diseases have mostly
based SNP-to-gene mappings on the chromosomal posi-
tion of the SNP, whether it occurs within transcript of a
certain gene [19,56]. However, it may be more meaning-
ful to map SNPs that are associated with the expression

of a gene to the gene. To elucidate pathways with more
biological relevance, we further conducted pathway ana-
lysis based on a subset of SNPs with known regulatory
functions. Recent studies have observed that whereas
stronger effects overlap between different tissues, weak
effects on gene regulation are tissue-specific [57,58].
Since we utilized data on gene regulation from lympho-
blasts, we decided to restrict our dataset to only genes
regulated on a genome-wide significant level (LOD >6).
This minimized the bias of tissue-specific gene regula-
tion, but at the same time, limited us to only a fraction
of all possible SNPs genotyped within our GWAS, thus
reducing the power of the analysis.
In spite of the limitations, four of the five significantly

associated pathways (P < 0.05) in our analysis were
found to be annotated as cancer pathways in KEGG
(glioma (hsa05214), non-small cell lung cancer
(hsa05223), pancreatic cancer (hsa05212), and prostate
cancer (hsa05215) (Table 3)), hence confirming the
validity of the choice of this subset of regulatory SNPs
in pathway definition. In addition, a global test of the

Figure 9 Distribution of P-values of regulatory SNPs within KEGG cancer pathways (pathway identifiers beginning with hsa052*).
*Global P-values of cancer-related regulatory SNPs with P < 0.05 in the genome-wide association analysis using the admixture maximum
likelihood test (5,000 permutations) are 0.0028 (unadjusted), and 0.052 (with adjustments made to correct for population stratification).
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SNPs defining the cancer pathways found the aggregate
effect to be approaching statistical significance (Pa = 0.05

= 0.052). Due to the large number of markers evaluated
in a genome-wide scan, signals with small effects and
modestly significant P-values are likely to be dismissed
after the correction of multiple testing. The implementa-
tion of a pathway analysis thus serves as a complemen-
tation between a hypothesis-driven (prior knowledge of
biological pathways) and a hypothesis-free (genome-
wide scan) approach to highlight certain markers, such
as those found in the cancer pathways, worthy of further
study that would not have been examined otherwise.
The lack of a concordance between the results of path-
way analyses using two different SNP-to-gene mapping
approaches emphasizes the need to put in more

consideration in choosing appropriate pathway defini-
tions. An excess of small P-values found for SNPs asso-
ciated with gene expression involved in cancer-related
pathways suggests that the SNP-gene mapping via asso-
ciation with gene expression approach is superior to the
SNP-gene mapping by location within a transcript
approach, and should be explored in greater detail.
Limitations of this study include an overall lack of sta-

tistical power, especially for the single marker analysis,
and the existence of further heterogeneity among ER-
negative tumours. Although genome-wide pathway-
based analysis is an interesting approach, a main limita-
tion is that the associations observed in this study are
only nominally significant, and would not be significant
after correction for multiple testing. However, as many

Figure 10 Proportion of shared polygenic component between breast cancer estrogen receptor subtypes. Proportion of shared
polygenic component between ER-positive and ER-negative target samples, with respect to their corresponding ER-positive training samples. Pt
denotes P-value cut-off in training sample. a) Test for association between polygenic score and disease status (ER-positive/ER-negative) in the
Swedish data, when all SNPs with P < 0.5 in the Finnish training set were considered. b) Test for association between polygenic score and
disease status (ER-positive/ER-negative) in the Finnish data, when all SNPs with P < 0.5 in the Swedish training set were considered. c)
Significance test for difference in scores (Finnish ER-positive breast cancers derived) between Swedish ER-negative and ER-positive breast cancers,
adjusted for number of non-missing genotypes. Significance codes: ‘- ‘ 0.1 <P < 1 (that is, not significant). d) Significance test for difference in
scores (Swedish ER-positive breast cancers derived) between Finnish ER-negative and ER-positive breast cancers, adjusted for number of non-
missing genotypes. Significance codes: ‘*’ 0.01 <P < 0.05.
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pathways have SNPs in common with other pathways,
the stringent significance thresholds of traditional multi-
ple testing correction methods are potentially over-con-
servative. There is also indirect evidence that
corroborates our pathway findings. Gene expression stu-
dies have found pathways related to the renin-angioten-
sin system and focal adhesion to be significantly
associated with prognosis of breast cancer [59]. Others
have also reported pathways highlighted in our study,
which are involved in pentose and glucuronate intercon-
versions, gap junction, TGF-beta signalling, rennin-
angiotensin system, B cell receptor signalling, Fc epsilon
RI signalling, VEGF signalling, ErbB signalling, and focal
adhesion, to be significantly associated with the breast
cancer phenotype [59,60]. Although replication of the
pathway results in independent studies would be needed
to confirm the associations, the substantial additional
sample collection and genotyping required are beyond
the scope of this publication.
Although breast cancer has been classified into ER-

positive and ER-negative breast cancers, and these two
breast cancer subtypes have been documented to show
different gene expression patterns, GWAS scans on
breast cancer have always been performed on either
overall breast cancer (ER-positive, ER-negative and
unknown) or ER-positive breast cancer specific risks. In
this study, we found evidence to suggest that ER-nega-
tive breast cancers only share a fraction of the polygenic
component of the disease with ER-positive breast can-
cers, implying that ER-negative breast cancer should be
examined as a distinct breast cancer phenotype.
Although the difference between the polygenic compo-
nents of ER-positive and ER-negative breast cancers was
found only to be significant in the Finnish training sam-
ples, we observed similar differences for all seven P-
value thresholds in the Swedish training samples. How-
ever, due to the smaller number of Swedish ER-negative
cases (N = 153, approximately 33% of Finnish ER-nega-
tive cases), we had less power to detect significant het-
erogeneity between the two subtypes in the Swedish
target samples.

Conclusions
Given the clinical importance of the ER-negative pheno-
type and the likelihood that the relative genetic effect
sizes are small, greater sample sizes and further studies
are required to further the knowledge on ER-negative
breast cancers. Identification of factors for a predisposi-
tion to ER-negative tumours opens the way for under-
standing the underlying etiology of the disease, and may
ultimately result in improvements in prevention, early
detection and specific treatment for this tumour sub-
type. We used a novel approach to pathway analysis,
showing that established cancer pathways could be

regulated by common variants associated to ER-negative
breast cancer. We also provided molecular genetic evi-
dence which suggests that ER-negative breast cancer is a
distinct breast cancer subtype that merits independent
analyses. In view of the biological relevance of the path-
ways identified, a genome-wide pathway approach
deserves merit, and has good potential in pointing out
directions for future research for ER-negative breast
cancers.
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Abstract

Introduction: Several studies have examined the effect of genetic variants in genes involved in the estrogen
metabolic pathway on mammographic density, but the number of loci studied and the sample sizes evaluated
have been small and pathways have not been evaluated comprehensively. In this study, we evaluate the
association between mammographic density and genetic variants of the estrogen metabolic pathway.

Methods: A total of 239 SNPs in 34 estrogen metabolic genes were studied in 1,731 Swedish women who
participated in a breast cancer case-control study, of which 891 were cases and 840 were controls. Film
mammograms of the medio-lateral oblique view were digitalized and the software Cumulus was used for
computer-assisted semi-automated thresholding of mammographic density. Generalized linear models controlling
for possible confounders were used to evaluate the effects of SNPs on mammographic density. Results found to
be nominally significant were examined in two independent populations. The admixture maximum likelihood-
based global test was performed to evaluate the cumulative effect from multiple SNPs within the whole metabolic
pathway and three subpathways for androgen synthesis, androgen-to-estrogen conversion and estrogen removal.

Results: Genetic variants of genes involved in estrogen metabolism exhibited no appreciable effect on
mammographic density. None of the nominally significant findings were validated. In addition, global analyses on
the overall estrogen metabolic pathway and its subpathways did not yield statistically significant results.

Conclusions: Overall, there is no conclusive evidence that genetic variants in genes involved in the estrogen
metabolic pathway are associated with mammographic density in postmenopausal women.

Introduction
Mammographic breast density is one of the strongest
risk factors for breast cancer. Several studies have
shown that women with extensive dense tissue are at
two to six times higher risk of developing the disease
than women of similar age with lower mammographic
density [1,2]. A strong genetic basis has been suggested
for mammographic density [3]. Twin studies have esti-
mated the heritability of this trait to be between 60 and
67% [4]. Evidence for a genetic influence also comes
from other studies on family history, familial aggregation
and segregation analyses [5,6].

Mammographic density is strongly correlated with
hormone exposure profiles of women [7]. Several hor-
monal risk factors for breast cancer have been found to
influence mammographic density in a similar fashion to
their respective associations with risk for the disease [8].
For example, a strong inverse relationship has been
observed between parity on mammographic density [9].
In addition, hormone replacement therapy (HRT) users
and women who have a late first-born child or late
menopause have higher breast densities on average [9].
In view of evidence suggesting an association between
mammographic density and hormone-related factors,
and the fact that estrogen is a strong risk factor for
postmenopausal breast cancer, efforts have been made
to identify underlying genetic determinants of
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mammographic density within pathways related to ster-
oid hormone biosynthesis and metabolism [10-13]. Such
endeavors assume mammographic density to be an
intermediate phenotype for breast cancer. Several genes
involved in hormone-related pathways - such as
HSD3B1 [5,14], COMT [11,14] and ESR1 [15] - have
been suggested to be associated with mammographic
breast density. Findings are inconsistent, however, and
only few candidate genes have been studied at a time.
We recently reported the results of a study evaluating a

total of 239 SNPs in 34 estrogen metabolic genes in
1,596 breast cancer cases and 1,730 population controls
from Sweden, of which the outcome variable was breast
cancer (Low et al., manuscript submitted). No significant
SNP association was evident after correction for multiple
testing, but pathway-based global tests revealed signifi-
cant association evidence for the overall estrogen
metabolic pathway (P = 0.034) and, in particular, the
androgen-to-estrogen conversion subpathway (P =
0.007). In the present study, we comprehensively examine
genetic variation in the estrogen metabolic pathway with
mammographic density. The number of SNPs and genes
studied provides the most extensive coverage to date
with respect to studying mammographic breast density.

Materials and methods
Study subjects
The subjects included in the current study are drawn
from a population-based case-control study of post-
menopausal breast cancer in women born in Sweden
aged 50 to 74 years at the time of enrollment, which
was between 1 October 1993 and 31 March 1995. Con-
trols were randomly selected from the Swedish Total
Population Register and were frequency matched to the
expected age distribution of the cases. Details on data
collection and subjects have been described previously
[16]. The final study group with both mammographic
density and genotype data included 891 breast cancer
cases and 840 controls. Although all women were post-
menopausal at the time of recruitment to the parent
study, a subset of the women (43/1,731) was premeno-
pausal in reference to the date of mammogram.
Approval of the study was given by the ethical review

board at the Karolinska Institutet (Stockholm, Sweden)
and six other ethical review boards in the respective
regions in which the subjects were based, and informed
consent was obtained from each participant.
Validation of SNPs with significant associations was

performed using mammographic density data from two
other studies.

Mammographic density data
The process of collecting mammographic density data in
this study has been described previously [17]. Film

mammograms of the medio-lateral oblique view were
digitized using an Array 2905HD Laser Film Digitizer
(Array Corporation, Tokyo, Japan), which covers a range
of 0 to 4.7 optical density. For controls, the breast side
was randomized. For cases, the side contralateral to the
tumor was used. The density resolution was set at 12-
bit spatial resolution. The Cumulus software used for
the computer-assisted measurement was developed at
the University of Toronto [18]. For each image, a
trained observer (LE) set the appropriate gray-scale
threshold levels defining the edge of the breast and dis-
tinguishing dense from nondense tissue. The software
calculated the total number of pixels within the entire
region of interest and within the region identified as
dense. These values were used to calculate the percen-
tage of the breast area that is dense. A random 10% of
the images were included as replicates to assess the
intra-observer reliability, which was high with a Spear-
man rank correlation coefficient of 0.95.

Gene and SNP selection
The process of gene and SNP selection has been
described in detail by Low et al. (manuscript submitted).
A total of 1,007 SNPs were selected from 35 genes and
their 30 kb flanking sequences that code the enzymes
involved in estradiol or estrone metabolism and are
expressed in the breast. These SNPs were genotyped in
92 Swedish control samples to assess linkage disequili-
brium patterns, to select tagging SNPs (tagSNPs) and to
evaluate their coverage.
Haplotypes were reconstructed using the partition-

ligation-expectation-maximization algorithm [19] imple-
mented in the tagSNPs program [20]. A subset of
tagSNPs were selected based on the R2 coefficient,
which quantifies how well the tagSNP haplotypes pre-
dict the genotype or the number of copies of haplotypes
an individual carries. The performance of tagSNPs in
capturing unobserved SNPs within the genes was evalu-
ated using a SNP-dropping analysis. In brief, each of the
genotyped SNPs was dropped in turn and then tagSNPs
were selected from the remaining SNPs so that their
haplotypes predicted the remaining SNPs with an R2

value of 0.85. In total, 312 tagSNPs from the 35 genes
were selected for genotyping.
Figure 1 delineates the processes and genes involved

in the androgen synthesis, androgen-to-estrogen conver-
sion and estrogen removal subpathways. The lists of
SNPs corresponding to each subpathway are summar-
ized in Tables S1 to S3 in Additional file 1.

DNA extraction and genotyping
DNA was extracted from 4 ml whole blood using
the QIAamp DNA Blood Maxi Kit (Qiagen, Hilden,
Germany) according to the manufacturer’s instructions
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and nonmalignant cells in paraffin-embedded tissue
using a standard phenol/chloroform/isoamyl alcohol
protocol. Genotyping was performed using the primer
extension-based assay from Sequenom (San Diego, CA,
USA) according to the manufacturers’ instructions.
DNA samples were randomly assigned to the plates car-
rying positive and negative controls, and all genotyping
results were generated and checked by laboratory staff
unaware of the case-control status. SNPs with a call rate
<85%, minor allele frequency <1% or out of Hardy-
Weinberg equilibrium (P < 0.05/312) were excluded
from further analysis. The genotype concordance was
>99%, suggesting high genotyping accuracy. Overall, 239
tagSNPs from the 34 genes were successfully genotyped
and used in statistical analysis.

Statistical analysis
Linear regression models were fitted, treating percentage
density as an outcome. Models were adjusted for age,
body mass index, menopausal status and HRT. Age was

coded as 0, 1 and 2 for women <50 years, between 50
and 60 years, and >60 years of age, respectively. The
body mass index was treated as a continuous variable.
Menopausal status was determined from the time differ-
ence between the date of menopause and the date on
which the mammogram was taken. HRT was considered
a categorical variable made up of three groups: never
users, past users and current users. The mammographic
density measurements were transformed by the power
of 0.3, yielding an approximately normal distribution.
The genotypes were coded 0, 1 and 2 and treated as
continuous variables.
A likelihood ratio test was performed for each SNP.

Normal quantile-quantile plots were used to examine
the distributions of the -log10-transformed P values. To
assess whether the SNPs associated with breast cancer
risk are the same SNPs as those associated with mam-
mographic density, we used the Spearman’s rank corre-
lation test, evaluating the relationship between odds
ratios corresponding to SNP effects on breast cancer

Figure 1 Subdivision of the estrogen metabolic pathway. The 34 metabolic genes analyzed in the present study are involved in different
steps of the estrogen metabolism. The genes are divided into the three groups involved in androgen synthesis, estrogen synthesis and estrogen
removal for subpathway-based association analysis.
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risk and the regression coefficients of SNP effects on
percentage density. The admixture maximum likelihood-
based global test [21] was performed to evaluate the
cumulative effect on mammographic density from multi-
ple SNPs within the whole metabolic pathway and three
subpathways for androgen synthesis, androgen-to-estro-
gen conversion and estrogen removal. Affection status
for the admixture maximum likelihood analysis was
defined by taking the lowest quantile of all percentage
density measurements as controls and the highest quan-
tile as cases. P values of the admixture maximum likeli-
hood test were obtained via 5,000 permutations.
Software R (v2.8.0) [22] and admixture maximum likeli-
hood [21] were used for data management, quality con-
trol and statistical analyses.

Validation of significantly associated SNPs
SNP associations with mammographic density were vali-
dated in 1,590 women genotyped with the Illumina
HumanHap500 as part of the Cancer Genetic Markers
of Susceptibility Project (CGEMS) [23]. The CGEMS
project is a National Cancer Institute initiative to con-
duct genome-wide association studies to identify genes
involved in breast cancer and prostate cancer. The initial
CGEMS breast cancer scan was designed and funded to
study the main effect of SNP variants on breast cancer
risk in postmenopausal women, and has been completed
[24]. Briefly, the first stage of the project involved a
whole genome scan of 1,145 invasive postmenopausal
breast cancer cases and 1,142 matched controls from
the Nurses’ Health Study nested case-control study [24].
The Nurses’ Health Study was initiated in 1976, when
121,700 US registered nurses aged 30 to 55 returned an
initial questionnaire [25]. During 1989 and 1990, blood
samples were collected from 32,826 women [26]. For
1,590 of these women - of which 806 were breast cancer
cases and 784 were healthy controls - we also had mam-
mographic density measurements.
We collected mammograms as close as possible to the

date of blood collection (1989 to 1990). To assess mam-
mographic density, the craniocaudal (CC) views of both
breasts were digitized at 261 μm/pixel with a Lumysis
85 laser film scanner, which covers a range of 0 to 4.0
optical density. The software for computer-assisted
thresholding was developed at the University of Toronto
[18]. We used the average percentage density of both
breasts for this analysis. This collection has been
described in detail in a previous publication [27]. SNPs
not available on the Illumina HumanHap550 panel were
imputed using MACH [28] based on HapMap Phase II
(release 21a). For the analysis of imputed data, the Pro-
bABEL package from the ABEL set of programs was
used [29]. Percentage density was transformed by the
power of 0.3 to be consistent with the parent study.

This study was approved by the Committee on the Use
of Human Subjects in Research at Brigham and
Women’s Hospital.
The second validation population consisted of a set of

controls from an ongoing breast cancer case-control
study at the Mayo Clinic. Briefly, the Mayo Clinic Breast
Cancer Study is an Institutional Review Board-approved,
clinic-based, case-control study initiated in February
2001 at Mayo Clinic, Rochester, MN, USA. The study
design has been presented previously [30,31]. Clinic
attendance formed the sampling frame for Mayo Clinic
cases and controls. Consecutive cases were women aged
18 years or over with histologically confirmed primary
invasive breast carcinoma and recruited within 6 months
of the date of diagnosis. Cases lived in the six-state
region that defines Mayo Clinic’s primary service popu-
lation (Minnesota, Iowa, Wisconsin, Illinois, North
Dakota, and South Dakota). Controls without prior his-
tory of cancer (other than nonmelanoma skin cancer)
were frequency matched on age (5-year age category),
race and six-state region of residence to cases. Controls
were recruited from the outpatient practice of the Divi-
sions of General Internal Medicine and Primary Care
Internal Medicine at Mayo Clinic, where they were seen
for routine medical examinations.
The present analysis genotyped Caucasian controls

(99% of study participants) enrolled through September
2007, who had mammograms available, representing 995
total controls (76% of total possible controls), of which
783 were postmenopausal. Screening mammograms
were ascertained close to the enrollment date and the
left CC view was digitized on an Array 2905HD Laser
Film Digitizer, which covers a range of 0 to 4.7 optical
density. Percentage mammographic density was esti-
mated by an expert reader [32] on the left CC view,
using the same Cumulus software described above [33].
Genotyping was carried out using TaqMan (Applied
Biosystems, Foster City, CA) according to the manufac-
turer’s instructions, using 10 to 20 ng DNA. Primers
and probes were Assay-by Design (Applied Biosystems).
Following PCR amplification, end reactions are read on
the ABI Prism 7900 ht using Sequence Detection Soft-
ware (Applied Biosystems). SNP associations were exam-
ined only in the 783 postmenopausal controls, to be
comparable with the two other populations. The percen-
tage density was transformed by the power of 0.3 to be
consistent with the parent study.

Results
Our dataset consisted of 1,731 postmenopausal women,
of which 981 were breast cancer cases and 840 were
controls (Table 1). Cases and controls differed signifi-
cantly in age at first birth (P = 0.0126), parity (P <
0.0001), family history of breast cancer (P = 0.0002) and
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percentage density (P = 0.0017). Cases were found to
have higher percentage density (mean ± standard devia-
tion: 16.7 ± 14.3) than controls (14.6 ± 14.0). No signifi-
cant difference was found for age, height, weight, body
mass index, age at menarche, age at menopause or HRT
usage.
Table S4 in Additional file 2 shows a list of 34 genes

involved in the estrogen metabolic pathway and the cor-
responding number of SNPs examined for each gene.
References are given for genes that have been examined
in other studies for an association with mammographic
density. Of the 239 SNPs analyzed, 11 SNPs were found
to be significant at the 5% level (Table 2) - of which the
smallest P value was 0.0019. Among six tagSNPs
selected for the gene CYP11A1, five were found to be
significant in the same direction. The associations in the
single SNP analysis were moderate and would not sur-
vive correction for multiple SNP testing. In addition, the
single-SNP P values showed no clear deviation from the
null distribution, representing no association between
SNPs and percentage density (Figure 2; see also Tables

S1 to S3 in Additional file 1). None of the SNPs found
to be nominally significant in our dataset were found to
be significant in the CGEMS validation set (see Table S5
in Additional file 3). A second, independent validation
carried out on the most significantly associated SNP
(rs11638442) located within the CYP11A1 gene in 783
postmenopausal women with mammograms in the
Mayo Clinic Breast Cancer Study yielded a P value of
0.88 (regression coefficient = -0.000507, 95% confidence
interval = -0.07251 to 0.06237).
Since the estrogen metabolic SNPs examined have pre-
viously been associated with breast cancer risk, we
estimated the correlation between regression coeffi-
cients of SNP effects on mammographic density and
the odds ratios of SNP effects on breast cancer risk, in
order to assess whether the SNPs act through mam-
mographic density as an intermediate phenotype for
breast cancer. No significant relationship was found
between SNP effects on breast cancer risk and percen-
tage density (Spearman’s correlation rho = 0.0411, P =
0.5268). Pathway-based multi-SNP association analyses

Table 1 Selected characteristics of subjects

Breast cancer cases (n = 891) Breast cancer controls (n = 840)

Mean SD Mean SD P value

Age (years) 63.0 6.3 63.0 6.3 0.9045

Height (cm) 164.1 5.7 163.6 5.5 0.0766

Weight (kg) 68.9 110 68.8 11.6 0.8153

Body mass index 25.6 3.9 25.6 4.1 0.8420

Age at menarche (years) 13.6 1.4 13.6 1.5 0.6090

Age at first birth (years) 25.4 50 24.8 4.7 0.0126

Parity 1.9 1.2 2.2 1.3 0.0000

Age at menopause (years) 50.3 3.6 50.1 3.9 0.1223

HRT (% ever use) 0.53 0.50 0.2523

Family history (%) 0.15 0.09 0.0002

Percent density 16.7 14.3 14.6 14.0 0.0017

Means and standard deviations (SD) are given for continuous measures, proportions for other variables. P values based on the Welch ttest for independent
samples. HRT, hormone replacement therapy.

Table 2 Significant SNPs in the estrogen metabolic pathway, corresponding regression coefficients and P values

SNP Gene Minor allele MAF n Coefficient SE P value

rs11638442 CYP11A1 C 0.35 1,677 0.0557 0.0212 0.0088

rs16968478 CYP11A1 G 0.17 1,703 0.0575 0.0263 0.0293

rs2279357 CYP11A1 A 0.20 1,699 0.0511 0.0229 0.0260

rs2959003 CYP11A1 A 0.28 1,669 0.0582 0.0224 0.0094

rs2959008 CYP11A1 A 0.30 1,703 0.0475 0.0221 0.0315

rs2066485 HSD17B3 G 0.14 1,703 0.0668 0.0293 0.0230

rs7039978 HSD17B3 A 0.50 1,694 –0.0632 0.0203 0.0019

rs1469908 NQO1 C 0.37 1,695 –0.0472 0.0206 0.0223

rs17268974 STS A 0.22 1,605 0.0503 0.0238 0.0349

rs2270112 STS C 0.34 1,686 –0.0485 0.0208 0.0197

rs707762 STS A 0.40 1,687 0.0435 0.0205 0.0340

P values from a one-degree-of-freedom likelihood ratio test. MAF, minor allele frequency; SE, standard error.
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revealed no significant association between percentage
density and genetic variations in the overall estrogen
metabolic pathway, or any of the related subpathways
(Table 3).

Discussion
Our study suggests there is no appreciable effect
between genetic variants involved in estrogen metabo-
lism and mammographic density. Neither the overall
estrogen metabolic pathway nor the androgen synthesis,
androgen-to-estrogen conversion and estrogen removal
subpathways were found to be significantly associated
with mammographic density. Single SNP markers with
significant associations with mammographic density
were not validated in two independent datasets.
In view of estrogen exposure being a major risk factor

of postmenopausal breast cancer, and mammographic
density being associated with several hormone-related
factors such as body mass index (increased local estro-
gen conversion due to increased fatty tissue), HRT, and

menopausal status, the estrogen metabolic pathway has
been a candidate pathway for the search of genetic var-
iants related to mammographic density. Most of the var-
iants in the candidate breast cancer genes evaluated in
previous studies, however, have been concluded to be
only weak predictors of mammographic density [10].
Association findings have been both supported and con-
tradicted [3]. As Boyd and colleagues have discussed
[34], it is likely that hormone-related factors are respon-
sible for only a small proportion of the wide variation in
mammographic density. In addition, genetic variants
involved in the estrogen metabolic pathway are generally
investigated based on the premise that mammographic
density is an intermediate and heritable risk factor of
breast cancer [4]. There is, however, accumulating evi-
dence that mammographic density may predispose to
breast cancer risk through components largely indepen-
dent of estrogen metabolism [35-37].
In our study, no correlation was found between the

estimates of SNP effects on breast cancer risk and mam-
mographic density, suggesting that the same SNPs asso-
ciated with breast cancer risk are not directly correlated
with mammographic density. Tamimi and colleagues
reported that mammographic density and circulating sex
steroid levels were independently associated with breast
cancer risk in postmenopausal women [35]. In addition,
Kerlikowske and colleagues found no correlation
between mammographic density and bone mineral den-
sity [36], both of which have been suggested to be
cumulative markers of elevated estrogen exposure. Dite
and colleagues performed a similar study investigating
the overlap between genetic determinants of mammo-
graphic density and bone mineral density, and reported
a null finding [37]. Another finding in Kerlikowske and
colleagues’ study was that although mammographic den-
sity remained strongly associated with elevated breast
cancer risk after adjustment for hormone-related factors,
the effects of bone mineral density did not [36], suggest-
ing that estrogen metabolism plays only a small role in
the effects of mammographic density on breast cancer
risk.
Many studies examining the effects of exogenous

estrogen exposure are in agreement with the view that
estrogen has limited effects on mammographic density.
Very often, the combined estrogen plus progestin regi-
men was found to affect mammographic density more
than the estrogen-only regimen [38-41], suggesting
that progestins and not estrogens are responsible for
increased mammographic density. Interestingly, mam-
mographic density is also known to have no prognostic
bearing on the estrogen receptor status of breast can-
cer tumors [42-44], thus corroborating an estrogen/
estrogen receptor independent link. Another study
conducted by Vachon and colleagues found no

Figure 2 No association between SNPs and percentage density.
-log10 quantile-quantile P value plots from single-SNP trend tests of
239 SNPs in the estrogen metabolism pathway.

Table 3 Global genetic association tests between SNPs in
the estrogen metabolic pathways and mammographic
breast density

Pathway Number of
SNPs

P
heterogeneity

P
trenda

Whole pathway 239 0.840 0.507

Androgen synthesis 11 0.761 0.763

Androgen to estrogen
conversion

120 0.587 0.715

Estrogen removal 134 0.834 0.872
aP values based on 5,000 permutations.
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influence of aromatase inhibitors (drugs that stop the
production of estrogen in postmenopausal women) on
mammographic density [45], further supporting this
line of rationale.
Strengths of the present study include the large sam-

ple size and extensive coverage of SNPs in the estrogen
metabolic pathway. In a review by Kelemen and collea-
gues, the authors summarized that previous genetic
association studies exploring the relationship between
the estrogen metabolic pathway and mammographic
density had sample sizes ranging from between 232 and
1,260 women [3]. The number of loci involved in the
estrogen metabolic pathway investigated in these studies
was also limited to eight or less [3], while we examined
239 tagSNPs from 34 genes involved in the estrogen
metabolic pathway. A second strength of the present
study is the use of two independent populations for the
validation of the associations found.
A limitation of the present work is that it includes

different mammogram views across the different stu-
dies. The main study on Swedish women utilized the
medio-lateral oblique view, while mammograms of the
CGEMS and of the Mayo Clinic were taken using the
CC view. Several studies, however, have shown correla-
tion of densities from the medio-lateral oblique and
CC views [46,47], and have shown that the different
views yield similar associations with breast cancer [32].
In addition, the main focus of this study was on
genetic determinants of mammographic density in
postmenopausal women. Although no strong associa-
tion was observed between SNPs in the estrogen meta-
bolic pathway examined and mammographic density in
postmenopausal women, whether the same lack of
association between common genetic variation in the
estrogen metabolism pathway and mammographic den-
sity is present in premenopausal women remains to be
clarified.

Conclusions
As mammographic density is generally considered an
intermediate phenotype for breast cancer, the identifica-
tion of genes that influence mammographic density
would play an important role in risk prediction of breast
cancer prior to the start of mammography screenings
and shed light on the mechanisms behind breast cancer
carcinogenesis. Overall, there is no conclusive evidence
that genetic variants in genes involved in the estrogen
metabolic pathway are associated with mammographic
density in postmenopausal women. This knowledge will
be helpful for directing the focus of future studies to
alternative pathways that may be responsible for a larger
bulk of the genetic component of mammographic
density.

Additional file 1: Tables S1 to S3. Table S1 presents a list of SNPs in
the androgen synthesis subpathway and their corresponding regression
coefficients and likelihood ratio test P values. Table S2 presents a list of
SNPs in the androgen to estrogen conversion subpathway and their
corresponding regression coefficients and likelihood ratio test P values.
Table S3 presents a list of SNPs in the estrogen removal subpathway and
their corresponding regression coefficients and likelihood ratio test P
values.
Click here for file
[ http://www.biomedcentral.com/content/supplementary/bcr2488-S1.
DOC ]

Additional file 2: Table S4. Table S4 presents genes containing
polymorphisms within the estrogen metabolic pathway evaluated in
relation to mammographic density.
Click here for file
[ http://www.biomedcentral.com/content/supplementary/bcr2488-S2.
DOC ]

Additional file 3: Table S5. Table S5 presents validation results of
significantly associated SNPs in the Nurses’ Health Study (NHS) and the
Mayo Clinic Breast Cancer Study (MBCS).
Click here for file
[ http://www.biomedcentral.com/content/supplementary/bcr2488-S3.
DOC ]
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Table S1. List of SNPs in the androgen synthesis sub-pathway and their corresponding 
regression coefficients and likelihood ratio test pvalues. 

Chr Position SNP Gene N Coefficient SE P 
10 104581383 rs17115100 CYP17A1 1665 0.0120 0.0325 0.7130
10 104584497 rs1004467 CYP17A1 1696 -0.0148 0.0327 0.6503
10 104585709 rs3781286 CYP17A1 1684 -0.0222 0.0206 0.2805
10 104587470 rs2486758 CYP17A1 1675 0.0111 0.0253 0.6601
10 104595318 rs7089422 CYP17A1 1692 0.0196 0.0262 0.4553
15 72403630 rs2959008 CYP11A1 1703 0.0475 0.0221 0.0315
15 72415944 rs2959003 CYP11A1 1669 0.0582 0.0224 0.0094
15 72417676 rs2279357 CYP11A1 1699 0.0511 0.0229 0.0260
15 72421952 rs11638442 CYP11A1 1677 0.0557 0.0212 0.0088
15 72449864 rs16968478 CYP11A1 1703 0.0575 0.0263 0.0293
15 72451904 rs8039957 CYP11A1 1705 0.0356 0.0303 0.2401

Chr: chromosome; SNP: single nucleotide polymorphism rsid; N: number of subjects; SE: standard 
error; P: P-value for 1 d.f. trend test
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Table S2. List of SNPs in the androgen to estrogen conversion sub-pathway and their 
corresponding regression coefficients and likelihood ratio test pvalues. 

Chr Position SNP Gene N Coefficient SE P 
1 119752771 rs6428822 HSD3B1 1585 0.0275 0.0209 0.1891
1 119757996 rs4659175 HSD3B1 1676 0.0154 0.0217 0.4775
1 119783549 rs1341013 HSD3B1 1692 0.0331 0.0206 0.1077
1 119800735 rs6672903 HSD3B1 1656 -0.0163 0.0205 0.4248
1 119810999 rs2298029 HSD3B1 1698 0.0262 0.0219 0.2320
1 119826497 rs911245 HSD3B1 1646 0.0244 0.0218 0.2627
1 119861023 rs10923844 HSD3B1 1658 0.0180 0.0224 0.4221
1 207918699 rs11576775 HSD11B1 1644 0.0269 0.0259 0.2980
1 207925076 rs846908 HSD11B1 1694 -0.0003 0.0608 0.9955
1 207933739 rs10082248 HSD11B1 1699 -0.0040 0.0462 0.9303
1 207937539 rs4844880 HSD11B1 1689 -0.0160 0.0254 0.5288
1 207948638 rs2282738 HSD11B1 1687 -0.0107 0.0233 0.6442
1 207951994 rs968033 HSD11B1 1698 -0.0049 0.0541 0.9283
1 207954341 rs846906 HSD11B1 1692 0.0053 0.0278 0.8487
1 207989777 rs6702301 HSD11B1 1687 -0.0116 0.0230 0.6155
1 207996076 rs2272866 HSD11B1 1694 0.0521 0.0815 0.5227
2 31596366 rs2208158 SRD5A2 1696 0.0239 0.0220 0.2770
2 31602532 rs3731586 SRD5A2 1667 0.0498 0.0358 0.1635
2 31617062 rs12470143 SRD5A2 1627 -0.0231 0.0206 0.2614
2 31620635 rs4952197 SRD5A2 1642 0.0322 0.0223 0.1483
2 31635784 rs2268796 SRD5A2 1636 0.0365 0.0208 0.0794
2 31640141 rs2300697 SRD5A2 1653 0.0090 0.0207 0.6627
2 31651315 rs6749019 SRD5A2 1616 0.0079 0.0207 0.7047
2 234175427 rs2741019 UGT1A1.9 1699 0.0169 0.0224 0.4521
2 234201376 rs1377460 UGT1A1.9 1709 -0.0370 0.0254 0.1459
2 234251553 rs7587916 UGT1A1.9 1670 -0.0142 0.0207 0.4919
2 234282371 rs4663327 UGT1A1.9 1691 -0.0161 0.0333 0.6295
2 234295182 rs7597496 UGT1A1.9 1573 -0.0043 0.0205 0.8321
2 234330521 rs10929302 UGT1A1.9 1621 0.0053 0.0226 0.8128
2 234337378 rs6742078 UGT1A1.9 1695 0.0047 0.0215 0.8262
2 234346283 rs1042640 UGT1A1.9 1709 -0.0186 0.0254 0.4634
2 234348089 rs11563250 UGT1A1.9 1695 0.0079 0.0289 0.7831
2 234348502 rs6719561 UGT1A1.9 1681 0.0042 0.0215 0.8461
2 234367644 rs10169532 UGT1A1.9 1593 -0.0147 0.0205 0.4737
2 234371560 hCV256966 UGT1A1.9 1677 0.0151 0.0228 0.5096
4 69904593 rs11932983 UGT2B11 1677 0.0203 0.0287 0.4805
4 69910216 rs2331627 UGT2B11 1666 -0.0242 0.0262 0.3558
4 69966297 rs10030066 UGT2B11 1639 0.0150 0.0243 0.5363
4 69975780 rs7677996 UGT2B11 1602 -0.0417 0.0216 0.0537
4 70024587 rs4371687 UGT2B11 1686 -0.0110 0.0196 0.5749
4 70041206 rs6837285 UGT2B11 1674 0.0144 0.0196 0.4620
4 70075861 rs6600903 UGT2B11 1678 -0.0329 0.0203 0.1053
4 70370761 rs2736520 UGT2B4 1660 -0.0170 0.0287 0.5542
4 70370923 rs903445 UGT2B4 1663 0.0085 0.0202 0.6746
4 70375511 rs1494798 UGT2B4 1660 0.0173 0.0212 0.4151
4 70379230 rs1080755 UGT2B4 1601 -0.0264 0.0239 0.2711
4 70389067 rs2013573 UGT2B4 1696 -0.0285 0.0247 0.2483
4 70394283 rs7441743 UGT2B4 1528 0.0034 0.0211 0.8718
4 70397951 rs6600771 UGT2B4 1609 0.0456 0.0284 0.1092
5 6690380 rs531241 SRD5A1 1701 0.0202 0.0202 0.3174
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5 6708247 rs568509 SRD5A1 1614 0.0047 0.0302 0.8770
5 6718364 rs4702381 SRD5A1 1689 0.0061 0.0239 0.7973
5 6723649 rs16877779 SRD5A1 1674 -0.0493 0.0338 0.1454
5 6734187 rs768437 SRD5A1 1694 -0.0161 0.0244 0.5107
8 143947798 rs4464947 CYP11B1 1696 0.0070 0.0353 0.8426
8 143952659 rs5297 CYP11B1 1701 -0.0074 0.0353 0.8347
8 143989866 rs3802230 CYP11B2 1698 0.0163 0.0198 0.4102
8 143990317 rs3097 CYP11B2 1686 0.0064 0.0218 0.7699
8 143992745 rs4543 CYP11B2 1713 0.0058 0.0355 0.8706
8 143996602 rs1799998 CYP11B2 1658 -0.0150 0.0196 0.4450

10 5224291 rs1334466 AKR1C4 1691 -0.0080 0.0212 0.7060
10 5228196 rs4880716 AKR1C4 1684 0.0253 0.0224 0.2577
10 5233017 rs7085249 AKR1C4 1680 0.0203 0.0225 0.3653
10 5234441 rs2151896 AKR1C4 1690 0.0115 0.0199 0.5642
10 5237376 rs3750572 AKR1C4 1703 0.0224 0.0252 0.3752
10 5239111 rs4881412 AKR1C4 1698 0.0137 0.0362 0.7040
10 5240453 rs1931679 AKR1C4 1697 0.0384 0.0311 0.2160
10 5244821 rs1831977 AKR1C4 1623 0.0143 0.0264 0.5888
10 5246185 rs12762017 AKR1C4 1616 -0.0184 0.0293 0.5313
10 5246497 rs17134588 AKR1C4 1646 0.0205 0.0260 0.4305
10 5248069 rs10458795 AKR1C4 1702 0.0181 0.0524 0.7303
15 49279146 rs9972359 CYP19A1 1684 0.0119 0.0203 0.5561
15 49283122 rs934632 CYP19A1 1690 0.0137 0.0253 0.5869
15 49286837 rs7167936 CYP19A1 1693 0.0173 0.0204 0.3957
15 49290136 rs4646 CYP19A1 1694 0.0034 0.0223 0.8775
15 49301213 rs959564 CYP19A1 1694 -0.0327 0.0393 0.4059
15 49304392 rs12595627 CYP19A1 1657 0.0153 0.0217 0.4797
15 49324419 hCV8234885 CYP19A1 1628 0.0165 0.0208 0.4275
15 49344549 rs12050767 CYP19A1 1643 -0.0228 0.0205 0.2667
15 49379835 rs17523880 CYP19A1 1697 -0.0247 0.0307 0.4217
15 49382264 hCV3060064 CYP19A1 1680 0.0230 0.0205 0.2611
15 49383831 rs8031463 CYP19A1 1702 0.0249 0.0466 0.5927
15 49393870 rs3751592 CYP19A1 1670 0.0058 0.0218 0.7912
15 49397006 rs2470150 CYP19A1 1710 -0.0271 0.0403 0.5006
15 49401198 rs1902585 CYP19A1 1707 -0.0044 0.0205 0.8317
16 65992902 rs11642680 HSD11B2 1712 -0.0538 0.0635 0.3968
16 65994359 rs2059237 HSD11B2 1702 0.0255 0.0529 0.6297
16 66007332 rs7206718 HSD11B2 1680 0.0237 0.0202 0.2409
16 66011135 rs8047159 HSD11B2 1701 0.0367 0.0323 0.2562
16 66029427 rs4360931 HSD11B2 1700 0.0269 0.0383 0.4831
16 66049072 rs749242 HSD11B2 1697 0.0279 0.0383 0.4660
19 53037973 rs7248427 SULT2A1 1675 0.0073 0.0205 0.7207
19 53040066 rs17239147 SULT2A1 1686 -0.0033 0.0289 0.9084
19 53048964 rs4483956 SULT2A1 1688 0.0282 0.0207 0.1720
19 53063945 rs188440 SULT2A1 1706 0.0047 0.0228 0.8359
19 53067510 rs296364 SULT2A1 1678 -0.0034 0.0196 0.8627
19 53074328 rs11083905 SULT2A1 1706 -0.0181 0.0336 0.5897
19 53083388 rs7508610 SULT2A1 1642 0.0005 0.0210 0.9797
19 53090448 rs2972612 SULT2A1 1648 0.0002 0.0227 0.9942
19 53745118 rs279451 SULT2B1 1659 -0.0005 0.0287 0.9875
19 53747608 rs279447 SULT2B1 1715 0.0142 0.0482 0.7680
19 53753536 rs3848542 SULT2B1 1694 -0.0318 0.0227 0.1613
19 53756771 rs12611137 SULT2B1 1700 0.0005 0.0259 0.9858
19 53762686 rs2665605 SULT2B1 1703 -0.0128 0.0300 0.6703
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19 53766894 rs2665577 SULT2B1 1701 0.0057 0.0212 0.7865
19 53775305 rs6509396 SULT2B1 1700 -0.0125 0.0210 0.5525
19 53784242 rs10426628 SULT2B1 1679 0.0335 0.0234 0.1522
19 53791303 rs2665587 SULT2B1 1706 0.0085 0.0282 0.7629
19 53791767 rs3815691 SULT2B1 1706 0.0382 0.0298 0.2003
19 53794211 rs1132054 SULT2B1 1679 0.0071 0.0203 0.7282
19 53812246 rs369880 SULT2B1 1691 -0.0108 0.0261 0.6799
23 7125093 rs707762 STS 1687 0.0435 0.0205 0.0340
23 7180925 rs2270112 STS 1686 -0.0485 0.0208 0.0197
23 7184199 rs12861247 STS 1701 0.0081 0.0328 0.8050
23 7194615 rs5934850 STS 1617 0.0373 0.0209 0.0744
23 7224805 rs5934914 STS 1587 -0.0008 0.0231 0.9722
23 7246970 rs17268974 STS 1605 0.0503 0.0238 0.0349
23 7253304 rs4403552 STS 1694 0.0072 0.0245 0.7683
23 7264481 rs17268988 STS 1687 -0.0270 0.0228 0.2362
23 7280996 rs1131289 STS 1691 0.0079 0.0220 0.7195

Chr: chromosome; SNP: single nucleotide polymorphism rsid; N: number of subjects; SE: standard 
error; P: P-value for 1 d.f. trend test
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Table S3. List of SNPs in estrogen removal sub-pathway and their corresponding regression 
coefficients and likelihood ratio test pvalues. 

Chr Position SNP Gene N Coefficient SE P 
1 159531389 hCV2765051 HSD17B7 1662 -0.0150 0.0302 0.6188
1 161014649 rs1780007 HSD17B7 1700 -0.0230 0.0252 0.3602
1 161043150 rs1039874 HSD17B7 1686 -0.0205 0.0485 0.6719
1 161061083 rs1704767 HSD17B7 1676 0.0097 0.0203 0.6338
1 161061423 rs1006390 HSD17B7 1670 -0.0115 0.0237 0.6273
2 38136239 rs163076 CYP1B1 1672 -0.0295 0.0212 0.1634
2 38145208 rs2256327 CYP1B1 1659 0.0250 0.0250 0.3166
2 38146266 rs163086 CYP1B1 1677 0.0125 0.0248 0.6150
2 38151707 rs1056836 CYP1B1 1682 0.0047 0.0200 0.8154
2 38156298 rs2551188 CYP1B1 1693 -0.0046 0.0218 0.8337
2 234175427 rs2741019 UGT1A1.9 1699 0.0169 0.0224 0.4521
2 234201376 rs1377460 UGT1A1.9 1709 -0.0370 0.0254 0.1459
2 234251553 rs7587916 UGT1A1.9 1670 -0.0142 0.0207 0.4919
2 234282371 rs4663327 UGT1A1.9 1691 -0.0161 0.0333 0.6295
2 234295182 rs7597496 UGT1A1.9 1573 -0.0043 0.0205 0.8321
2 234330521 rs10929302 UGT1A1.9 1621 0.0053 0.0226 0.8128
2 234337378 rs6742078 UGT1A1.9 1695 0.0047 0.0215 0.8262
2 234346283 rs1042640 UGT1A1.9 1709 -0.0186 0.0254 0.4634
2 234348089 rs11563250 UGT1A1.9 1695 0.0079 0.0289 0.7831
2 234348502 rs6719561 UGT1A1.9 1681 0.0042 0.0215 0.8461
2 234367644 rs10169532 UGT1A1.9 1593 -0.0147 0.0205 0.4737
2 234371560 hCV256966 UGT1A1.9 1677 0.0151 0.0228 0.5096
4 69904593 rs11932983 UGT2B11 1677 0.0203 0.0287 0.4805
4 69910216 rs2331627 UGT2B11 1666 -0.0242 0.0262 0.3558
4 69966297 rs10030066 UGT2B11 1639 0.0150 0.0243 0.5363
4 69975780 rs7677996 UGT2B11 1602 -0.0417 0.0216 0.0537
4 70024587 rs4371687 UGT2B11 1686 -0.0110 0.0196 0.5749
4 70041206 rs6837285 UGT2B11 1674 0.0144 0.0196 0.4620
4 70075861 rs6600903 UGT2B11 1678 -0.0329 0.0203 0.1053
4 70370761 rs2736520 UGT2B4 1660 -0.0170 0.0287 0.5542
4 70370923 rs903445 UGT2B4 1663 0.0085 0.0202 0.6746
4 70375511 rs1494798 UGT2B4 1660 0.0173 0.0212 0.4151
4 70379230 rs1080755 UGT2B4 1601 -0.0264 0.0239 0.2711
4 70389067 rs2013573 UGT2B4 1696 -0.0285 0.0247 0.2483
4 70394283 rs7441743 UGT2B4 1528 0.0034 0.0211 0.8718
4 70397951 rs6600771 UGT2B4 1609 0.0456 0.0284 0.1092
4 70736595 rs1529039 STE..SULT1E1. 1685 -0.0463 0.0297 0.1197
4 70740955 rs1220725 STE..SULT1E1. 1522 0.0032 0.0321 0.9212
4 70743796 rs3775779 STE..SULT1E1. 1659 0.0274 0.0216 0.2055
4 70752594 rs4149534 STE..SULT1E1. 1690 -0.0096 0.0227 0.6732
4 70753566 rs1220716 STE..SULT1E1. 1691 -0.0843 0.0483 0.0812
4 70760988 rs4149525 STE..SULT1E1. 1672 0.0165 0.0278 0.5513
4 70774109 rs1154741 STE..SULT1E1. 1700 -0.0059 0.0214 0.7830
5 118797197 rs154632 HSD17B4 1668 0.0107 0.0220 0.6273
5 118799322 rs13154090 HSD17B4 1703 -0.0328 0.0489 0.5023
5 118816919 rs10478424 HSD17B4 1690 -0.0072 0.0232 0.7550
5 118820620 rs11749784 HSD17B4 1694 -0.0236 0.0239 0.3247
5 118830120 rs1283826 HSD17B4 1697 -0.0409 0.0382 0.2836
5 118835035 rs439954 HSD17B4 1602 0.0468 0.0303 0.1224
5 118860864 rs3756513 HSD17B4 1688 -0.0055 0.0315 0.8607
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5 118904980 rs17388769 HSD17B4 1695 -0.0169 0.0303 0.5782
6 33266876 rs2269346 HSD17B8 1669 0.0160 0.0471 0.7343
6 33270060 rs2072915 HSD17B8 1676 -0.0132 0.0222 0.5530
6 33277873 rs1547387 HSD17B8 1708 0.0062 0.0343 0.8567
6 33280910 rs110662 HSD17B8 1608 -0.0046 0.0219 0.8321
6 160018212 rs4342445 SOD2 1691 0.0393 0.0238 0.0985
6 160020106 rs2842980 SOD2 1685 -0.0171 0.0251 0.4968
6 160023074 rs5746136 SOD2 1676 0.0185 0.0220 0.3996
6 160027081 rs1800665 SOD2 1684 -0.0548 0.0956 0.5664
6 160030444 rs2758334 SOD2 1645 -0.0032 0.0200 0.8712
7 99013350 hCV11246907 CYP3A4_5 1705 0.0061 0.0586 0.9174
7 99083016 rs4646457 CYP3A4_5 1680 0.0184 0.0386 0.6339
7 99104254 rs4646450 CYP3A4_5 1670 0.0143 0.0285 0.6170
7 99142648 rs2687078 CYP3A4_5 1691 0.0077 0.0349 0.8254
7 99170019 rs2687133 CYP3A4_5 1706 -0.0009 0.0379 0.9816
7 99186264 rs6945984 CYP3A4_5 1622 -0.0127 0.0321 0.6923
8 18110372 rs11203942 NAT1 1673 -0.0115 0.0210 0.5860
8 18113444 rs3850751 NAT1 1711 -0.0152 0.0202 0.4508
8 18118222 rs6586714 NAT1 1689 0.0508 0.0321 0.1135
8 18120186 rs4921880 NAT1 1692 0.0012 0.0238 0.9592
8 18120277 rs11777998 NAT1 1694 -0.0150 0.0355 0.6715
8 18121590 rs7003890 NAT1 1691 -0.0100 0.0202 0.6218
8 18122267 rs8190837 NAT1 1700 -0.0269 0.0330 0.4159
8 18287058 rs4921906 NAT2 1685 0.0268 0.0202 0.1860
8 18295202 rs9987109 NAT2 1703 0.0232 0.0204 0.2550
8 18298747 rs2410556 NAT2 1594 -0.0012 0.0319 0.9693
8 18306826 rs4646257 NAT2 1688 -0.0243 0.0257 0.3443
8 18307392 rs1495748 NAT2 1680 -0.0077 0.0216 0.7220
8 18309403 rs1495738 NAT2 1673 0.0355 0.0207 0.0860
8 18316718 rs4921914 NAT2 1693 -0.0011 0.0246 0.9630
9 98026168 rs442686 HSD17B3 1662 -0.0421 0.0216 0.0513
9 98027222 rs4306016 HSD17B3 1623 0.0067 0.0202 0.7389
9 98043085 rs2066485 HSD17B3 1703 0.0668 0.0293 0.0230
9 98058102 rs8190534 HSD17B3 1685 0.0359 0.0247 0.1460
9 98061403 rs7039978 HSD17B3 1694 -0.0632 0.0203 0.0019
9 98069778 rs8190530 HSD17B3 1708 0.0105 0.0203 0.6062
9 98091939 rs7022250 HSD17B3 1696 -0.0351 0.0208 0.0915
9 98104670 rs8190479 HSD17B3 1619 -0.0058 0.0396 0.8845

11 67100533 rs656652 GSTP1 1705 -0.0108 0.0201 0.5921
15 72790561 rs6495121 CYP1A1.2 1680 0.0390 0.0304 0.2008
15 72800040 rs1799814 CYP1A1.2 1698 -0.0215 0.0563 0.7026
15 72806502 rs2470893 CYP1A1.2 1702 0.0161 0.0213 0.4493
15 72814933 rs2472297 CYP1A1.2 1665 0.0120 0.0223 0.5910
15 72839115 rs1350194 CYP1A1.2 1711 -0.0556 0.0625 0.3737
16 28507783 rs17639997 SULT1A1.2 1714 -0.0244 0.0386 0.5280
16 28517197 rs12445705 SULT1A1.2 1562 -0.0116 0.0455 0.7994
16 28521466 rs11074907 SULT1A1.2 1609 0.0273 0.0204 0.1814
16 28523209 rs11074904 SULT1A1.2 1697 -0.0230 0.0318 0.4701
16 28524629 rs6839 SULT1A1.2 1569 0.0168 0.0205 0.4147
16 28539522 rs2411453 SULT1A1.2 1618 0.0345 0.0210 0.1004
16 68287295 rs12595869 NQO1 1698 -0.0493 0.0269 0.0672
16 68287927 rs1437134 NQO1 1637 0.0184 0.0201 0.3614
16 68288056 rs3826154 NQO1 1653 -0.0056 0.0288 0.8449
16 68299549 rs12933210 NQO1 1669 -0.0314 0.0206 0.1279
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16 68321913 rs1469908 NQO1 1695 -0.0472 0.0206 0.0223
16 68329211 hCV26055094 NQO1 1677 0.0310 0.0200 0.1220
16 68333878 rs1075935 NQO1 1658 -0.0377 0.0527 0.4754
16 80622339 rs4291899 HSD17B2 1707 -0.0508 0.0349 0.1457
16 80632818 rs11648233 HSD17B2 1694 0.0043 0.0209 0.8361
16 80654301 rs11642323 HSD17B2 1700 0.0131 0.0211 0.5359
16 80670972 rs2042429 HSD17B2 1624 0.0083 0.0207 0.6889
16 80672242 rs2966244 HSD17B2 1710 0.0853 0.0711 0.2308
16 80683051 rs1017243 HSD17B2 1686 -0.0063 0.0208 0.7635
16 80690493 rs996752 HSD17B2 1620 -0.0153 0.0212 0.4700
16 80693012 rs10514525 HSD17B2 1680 0.0168 0.0204 0.4105
16 80693755 rs1364284 HSD17B2 1686 0.0020 0.0312 0.9497
16 80700383 rs7200459 HSD17B2 1699 -0.0013 0.0373 0.9724
16 80703426 rs12597465 HSD17B2 1693 0.0152 0.0205 0.4605
17 37958089 rs2830 HSD17B1 1578 -0.0031 0.0214 0.8841
17 37964418 rs2854977 HSD17B1 1688 0.0360 0.0434 0.4076
17 37974568 rs650558 HSD17B1 1700 -0.0176 0.0231 0.4452
17 37975688 rs1474040 HSD17B1 1682 0.0039 0.0252 0.8763
17 37981755 rs878291 HSD17B1 1689 -0.0073 0.0205 0.7230
17 37988603 rs9903251 HSD17B1 1691 0.0275 0.0218 0.2070
22 18291831 rs12484658 COMT 1701 0.0322 0.0396 0.4167
22 18314051 rs174675 COMT 1674 -0.0065 0.0229 0.7766
22 18317638 rs5993883 COMT 1689 -0.0046 0.0202 0.8199
22 18329644 rs3810595 COMT 1664 0.0115 0.0209 0.5829
22 18331897 rs4646315 COMT 1701 0.0113 0.0239 0.6348
22 18332561 rs165774 COMT 1694 -0.0032 0.0220 0.8861
22 18333176 rs174696 COMT 1695 -0.0128 0.0241 0.5952
22 18335157 rs9306235 COMT 1703 -0.0084 0.0408 0.8364
22 18349075 rs2073747 COMT 1675 0.0015 0.0245 0.9525
22 18350502 rs1990277 COMT 1692 0.0017 0.0207 0.9327

Chr: chromosome; SNP: single nucleotide polymorphism rsid; N: number of subjects; SE: standard 
error; P: P-value for 1 d.f. trend test 
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Additional methods on SNP selection from: 

Low YL, Yuqing L, Humphreys K, Thalamuthu A, Li Y, Darabi H, Wedrén S, Bonnard 
C, Czene K, Iles M et al: Multi-variant Pathway Association Analysis Reveals the 
Importance of Genetic Determinants of Estrogen Metabolism in Breast and Endometrial 
Cancer Susceptibility. (submitted) 2009.

DNA Isolation 

 DNA was extracted from 4 ml of whole blood using the QIAamp DNA Blood Maxi 

Kit (Qiagen) according to manufacturer's instructions and non-malignant cells in paraffin-

embedded tissue using a standard phenol/chloroform/isoamyl alcohol protocol [1].   

Gene and SNP Selection  

We selected 35 genes that code the enzymes involved in estradiol or estrone 

metabolism and are expressed in the breast. We selected 1007 single nucleotide 

polymorphisms (SNPs) in these genes and their 30kb flanking sequences from the dbSNP 

(build 124) and Celera databases, aiming for a marker density of at least one SNP per 5kb 

(Supplement Table 1).  These SNPs were genotyped in 92 Swedish control samples to assess 

linkage disequilibrium pattern and coverage. Haplotypes were reconstructed using the PLEM 

algorithm [2] implemented in the tagSNPs program [3]. A subset of SNPs, tagSNPs, were 

selected based on the R2 coefficient, which quantifies how well the tagSNP haplotypes predict 

the genotype or the number of copies of haplotypes an individual carries.  We chose tagSNPs 

so that common SNP genotypes (minor allele frequency �0.03) and common haplotypes 

(frequency �0.03) were predicted with R2 � 0.8 [4].  To evaluate our tagSNPs’ performance in 

capturing unobserved SNPs within the genes and to assess whether we needed a denser set of 

markers, we performed a SNP-dropping analysis [5,6].  In brief, each of the genotyped SNPs 

was dropped in turn and tagSNPs were selected from the remaining SNPs so that their 

haplotypes predicted the remaining SNPs with an R2 value of 0.85.  We then estimated how 



well the tagSNP haplotypes of the remaining SNPs predicted the dropped SNP, an evaluation 

that can provide an unbiased and accurate estimate of tagSNP performance [5,6]. Overall, we 

selected and genotyped 302 tagSNPs from the 35 genes in all the Swedish cases and controls.  

Genotyping 

Genotyping was performed using the primer extension-based assay from Sequenom 

(San Diego, California) according to manufacturers’ instructions.  DNA samples were 

randomly assigned to the plates carrying positive and negative controls, and all genotyping 

results were generated and checked by laboratory staff unaware of case-control status.  SNPs 

with a call rate < 85%, minor allele frequency < 1% or out of Hardy-Weinberg Equilibrium 

(p<0.05/252) were excluded from further analysis.  Overall, 239 tagSNPs from the 34 genes 

were successfully genotyped and used in statistical analysis. The genotype concordance was 

>99%, suggesting high genotyping accuracy. 
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Research articleEffects of childhood body size on breast cancer 
tumour characteristics
Jingmei Li*1,2, Keith Humphreys1, Louise Eriksson1, Kamila Czene1, Jianjun Liu2 and Per Hall1

Abstract
Introduction: Although a role of childhood body size in postmenopausal breast cancer risk has been established, less 
is known about its influence on tumour characteristics.

Methods: We studied the relationships between childhood body size and tumour characteristics in a Swedish 
population-based case-control study consisting of 2,818 breast cancer cases and 3,111 controls. Our classification of 
childhood body size was derived from a nine-level somatotype. Relative risks were estimated by odds ratios with 95% 
confidence intervals, derived from fitting unconditional logistic regression models. Association between somatotype at 
age 7 and tumour characteristics were evaluated in a case-only analysis where P values for heterogeneity were 
obtained by performing one degree of freedom trend tests.

Results: A large somatotype at age 7 was found to be associated with decreased postmenopausal breast cancer risk. 
Although strongly associated with other risk factors such as age of menarche, adult body mass index and 
mammographic density, somatotype at age 7 remained a significant protective factor (odds ratio (OR) comparing large 
to lean somatotype at age 7 = 0.73, 95% confidence interval (CI) = 0.58-0.91, P trend = 0.004) after adjustment. The 
significant protective effect was observed within all subgroups defined by estrogen receptor (ER) and progesterone 
receptor (PR) status, with a stronger effect for ER-negative (0.40, 95% CI = 0.21-0.75, P trend = 0.002), than for ER-
positive (0.80, 95% CI = 0.62-1.05, P trend = 0.062), tumours (P heterogeneity = 0.046). Somatotype at age 7 was not 
associated with tumour size, histology, grade or the presence or absence of metastatic nodes.

Conclusions: Greater body size at age 7 is associated with a decreased risk of postmenopausal breast cancer, and the 
associated protective effect is stronger for the ER-negative breast cancer subtype than for the ER-positive subtype.

Introduction
There is considerable evidence that childhood anthropo-
metric measurements are associated with postmeno-
pausal breast cancer risk. It has been consistently shown
that variables that approximate body shape and size early
in life are inversely associated with breast cancer risk in
adulthood. For example, a study conducted in 1998 on
the same data set as used in the current study [1]
reported that a larger somatotype at age seven years was
associated with a lower postmenopausal breast cancer
risk. Likewise, Hilakivi-Clarke and colleagues [2] found
that a shorter height and higher body mass in girls from
age 7 to 15 years were associated with a decreased inci-
dence of breast cancer. Berkey and colleagues [3] also

found extremely lean body mass at age 10 years to be
associated with elevated breast cancer risk. In another
study performed in 141,393 Danish girls, a high child-
hood body mass index (BMI) at age 14 years was shown
to be protective against breast cancer later on in life [4].
In addition, a study performed on the large Nurses'
Health Study dataset concluded that average body fatness
between the ages of 5 and 10 years are inversely associ-
ated with mammographic density [5], which is generally
considered to be an intermediate phenotype of breast
cancer [6].

Although a role of childhood body size in adult breast
cancer risk has been established, less is known about its
influence on tumour characteristics. One study by Bardia
and colleagues [7] looked into the risk of developing post-
menopausal breast cancer stratified by estrogen receptor
(ER) and progesterone receptor (PR) subtypes and
reported that an increase in weight at age 12 years was

* Correspondence: jingmei.li@ki.se
1 Karolinska Institutet, Department of Medical Epidemiology and Biostatistics, 
Box 281, 171 77 Stockholm, Sweden
Full list of author information is available at the end of the article
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associated with a decrease in adult breast cancer risk,
with the most pronounced effects exhibited by ER-posi-
tive/PR-negative tumours. No significant heterogeneity,
however, was observed between the tumour subtypes
studied. To our knowledge, no other study has been con-
ducted to assess whether pre-/peri-pubertal measure-
ments of body size can also influence tumour
characteristics. We thus followed up on the work of Bar-
dia and colleagues and in the present study examined the
relations between childhood body size to address if the
far-reaching effects of childhood body size have any
influence on tumour characteristics in adult cancers.

Materials and methods
Subjects
The subjects included in the current study are drawn
from a population-based case-control study of postmeno-
pausal breast cancer in Swedish-born women aged 50 to
74 years at the time of enrolment, which was between 1
October, 1993 and 31 March, 1995. Controls were ran-
domly selected from the Swedish registry and frequency
matched to the expected age distribution of the cases.
Details on data collection and subjects have been
described previously [1]. The final study group included
2,818 cases and 3,111 controls. Approval of the study was
given by the ethical review board at the Karolinska Insti-
tutet (Stockholm, Sweden) and six other ethical review
boards in the respective regions from which the subjects
were based.

Data collection and classification
With the exception of clinical data on tumour character-
istics and mammographic density, all other covariate data
were derived from the parent case-control study. Anthro-
pometric measurements at age seven years and one year
prior to enrolment were collected by means of a nine-
level somatotype (Figure 1) featured in the study ques-
tionnaire, and the validity of this measurement method
has been previously described [1]. These pictograms have
been validated against BMI within a cohort of 100 Cauca-
sian women from middle-class communities with an
average age of 73.1 years [8]. In a population-based vali-

dation study, 111 Swedish women aged 51 to 66 years
were found to have a correlation coefficient between BMI
from school records and adult report of somatotype at
age seven years of 0.6 [1]. The somatotypes were subse-
quently grouped as lean (S1 to S2), medium (S3 to S4) and
large (S5 to S9) prior to analysis. Other covariate data that
was collected using the self-reported study questionnaire
and examined in this study include age of menarche (con-
tinuous, in years), parity (continuous, number of live
births), history of benign breast disease (binary, never/
ever), BMI (continuous, in kg/m2), history of hormone
replacement therapy (HRT) (binary, never/ever), and
family history of breast cancer (binary, no/yes). Age at
menopause (continuous, in years) was also derived from
information collected in the study questionnaire and the
definition used in this study has been previously
described [1]. It is defined as the age at the last menstrual
period or the age at bilateral oophorectomy, if one year or
more prior to data collection. Women who have had a
hysterectomy, or who have not ceased menstruation due
to HRT, or with missing information on age at meno-
pause were considered to be postmenopausal if the age
reported at time of questionnaire was equal to or above
the 90th percentile of age at natural menopause of study
subjects (current smokers: 54 years old; nonsmokers: 55
years old, independent of case/control status). Subjects
classified as postmenopausal in this manner were
assigned an age at menopause according to their current
smoking status and the mean ages at natural menopause
in our data. Otherwise, women were considered to be
premenopausal and were excluded.

Information regarding the retrieval of tumour charac-
teristics from the medical records of all participants from
surgical and oncological units throughout Sweden have
been presented in detail elsewhere [9,10]. The tumour
characteristics in the present study included tumour size
(categorical, groups in cm), grade (categorical, classified
according to the Nottingham histological grade or
Bloom-Richardson scale), as well as ER and PR status
(binary, absent/present).

The process of collecting mammographic density data
in this study has been described previously [11]. Film
mammograms of the medio-lateral oblique view were
digitised using an Array 2905HD Laser Film Digitizer
(Array Corporation, Tokyo, Japan), which covers a range
of 0 to 4.7 optical density. For controls, breast side was
randomized. For cases, the side contralateral to the
tumour was used. The density resolution was set at 12-bit
spatial resolution. The Cumulus software used for the
computer-assisted thresholding was developed at the
University of Toronto [12]. For each image, a trained
observer (LE) set the appropriate gray-scale threshold
levels defining the edge of the breast and distinguishing
dense from non-dense tissue. The software calculated theFigure 1 Nine-level somatotype pictogram.
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total number of pixels within the entire region of interest
and within the region identified as dense. These values
were used to calculate the percentage of the breast area
that is dense. A random 10% of the images were included
as replicates to assess the intra-observer reliability, which
was high with a Spearman rank correlation coefficient of
0.95. However, as not all women attended mammo-
graphic screenings, and some mammograms were miss-
ing, such information was available for only a subset of
the subjects (n = 3232, 54.5%).

Statistical analyses
The distribution of baseline characteristics of known
breast cancer risk factors were summarised as means and
standard deviations or proportions. Odds ratio (OR) esti-
mates with corresponding 95% confidence intervals (CI)
were computed by fitting unconditional logistic regres-
sion models with breast cancer risk status as the response
variable, adjusting for age.

To identify potential confounders of the association
between somatotype at age seven years and breast cancer
risk, linear/logistic regression models were fitted for
either continuous (age of menarche, age of menopause,
parity, BMI, and mammographic density) or binary
(benign breast disease and HRT) outcomes including
only controls in the analysis. Somatotype at age seven
years was treated as a categorical (three-level) indepen-
dent variable. Proportional odds logistic regression was
used in situations where the outcome variable was ordi-
nal (somatotypes at age seven years and one year prior to
enrolment) from which cumulative OR esimates with
corresponding 95% CIs were computed. Covariates were
considered potential confounders if there was a priori
evidence in the published literature of the factor being
associated with both childhood body size and breast can-
cer risk, or if the factor was significantly associated at the
5% level with both somatotype at age seven years and
breast cancer risk. Those covariates that, when added to
the model, changed the coefficient by more than 10%,
were considered confounders and adjusted for in the
multivariate analysis. The final variables in the multivari-
ate logistic regression model examining breast cancer risk
overall, and stratified by ER and PR tumour subtypes,
included age, age at menarche, benign breast disease, and
BMI one year prior to enrolment (recent BMI). Adjust-
ment for other variables did not influence the somatotype
risk estimates. Mammographic density was also identi-
fied as a confounder. However, as mammographic density
data are only available for a subset of the subjects, this
variable was accounted for together with the other risk
factors in a separate model. Women with and without
mammographic density information were not found to
differ significantly at the 5% level for the covariates
included in the analysis models (data not shown).

Associations between somatotype at age seven years
and tumour characteristics were evaluated in a case-only
analysis, by fitting ordinal regression models treating
tumour characteristics as dependent variables, with
somatotype at age seven years included as a covariate. P
values for heterogeneity were obtained by performing
one degree of freedom trend tests. As there exists prior
evidence that certain tumour characteristics such as ER
status are associated with age at diagnosis [13], and that
somatotype at age seven years is significantly associated
with age of diagnosis at the 5% level (regression coeffi-
cient for age in years of -0.91 with corresponding 95% CI
of -1.32 to -0.50), every model fitted in the case-only anal-
ysis was also adjusted for age at diagnosis. All analyses
were performed using the statistical software R for Win-
dows version 2.8.0 (R Development Core Team, Vienna,
Austria) [14]. The level of significance was set at 5%. All
statistical tests were two-sided.

Results
Table S1 in Additional file 1 describes the characteristics
of study subjects with respect to several breast cancer risk
factors. Age of menarche was weakly but positively asso-
ciated with the disease (OR per year increase in age of
menarche = 0.96, 95% CI = 0.93 to 1.00, P = 0.057), a
result consistent with the literature [4]. Family history,
age at menopause, parity, age of first birth, benign breast
disease, mammographic density, recent BMI and use of
HRT were strongly significant for breast cancer risk with
effects in a direction consistent with those estimated in
other epidemiological studies. The first association analy-
ses we performed between somatotypes at different ages
and breast cancer risk were adjusted for age at enrolment
only. Among the different measurements of somatotypes,
only the time point at age seven years was found to affect
breast cancer risk (OR per increase in somatotype class =
0.87, 95% CI = 0.8 to 0.95, P = 0.001). A larger proportion
of cases than controls had a leaner body shape at age
seven years. Despite somatotype one year prior to enrol-
ment having a high correlation to recent BMI (Spearman
correlation coefficient: 0.760, data not shown), it was not
found to be significantly associated with breast cancer
(OR per increase in somatotype class = 1.04, 95% CI =
0.94 to 1.15, P = 0.160).

To identify potential confounders of the association
between somatotype at age seven years and breast cancer
risk, we assessed whether other established risk factors
for breast cancer are associated with somatotype at age
seven years. An increase in childhood body size was
found to exhibit strong inverse associations with age of
menarche (OR comparing large to lean somatotype at age
seven years = 0.61, 95% CI = 0.50 to 0.76, P trend <
0.0001), benign breast disease (0.47, 95% CI = 0.25 to
0.89, P trend = 0.006), and mammographic density (0.61,
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Table 1: Associations of somatotype at age seven years with other breast cancer risk factors (controls only)

Risk factor (dependent variable) Somatotype 
(independent variable)

n OR 95% CI P trend*

Age of menarche (years) Lean 1456 1.00 reference <0.0001

Medium 669 0.72 0.64 0.82

Large 187 0.61 0.50 0.76

Age of menopause (years) Lean 1572 1.00 reference 0.697

Medium 736 1.19 0.85 1.68

Large 204 0.93 0.53 1.65

Parity (Number of live births) Lean 1578 1.00 reference 0.217

Medium 745 0.93 0.83 1.05

Large 207 0.93 0.76 1.13

Benign breast disease Lean 1578 1.00 reference 0.006

Medium 745 0.76 0.56 1.03

Large 207 0.47 0.25 0.89

Somatotype one year prior to enrolment Lean 1571 1.00 reference <0.0001

Medium 739 1.72 1.44 2.05

Large 206 2.33 1.70 3.18

BMI (kg/m2) Lean 1562 1.00 reference <0.0001

Medium 742 1.85 1.30 2.65

Large 205 2.66 1.47 4.83

Percent mammographic density (%)† Lean 862 1.00 reference 0.001

Medium 428 0.72 0.58 0.91

Large 108 0.61 0.41 0.90

HRT Lean 1569 1.00 reference 0.868

Medium 739 0.99 0.83 1.18

Large 206 0.98 0.73 1.32

Other independent variables

Birthweight (g) on somatotype at age 7 ≤2500 49 1.00 reference 0.014

2500-3000 229 1.18 0.61 2.29

3000-3500 470 1.29 0.68 2.43

3500-4000 397 1.44 0.76 2.73

>4000 135 1.89 0.95 3.76

Family history on somatotype at age 7 No 2258 1.00 reference 0.485

Yes 227 1.10 0.84 1.44

* Based on Wald tests for regression coefficients in continuous, ordinal or logistic regression models (see statistical analyses section). All 
regression models were adjusted for age at enrolment. † Subset with phenotypic data. BMI, body mass index; CI, confidence interval; HRT, 
hormone replacement therapy; OR, odds ratio.

95% CI = 0.41 to 0.90, P trend = 0.001; Table 1). Associa-
tions in the opposite direction were found for proxy mea-
sures of physique at other time points, such as birth
weight (OR comparing birthweight >4000 g to ≤2500 g =
1.89, 95% CI = 0.95 to 3.76, P trend = 0.014), somatotype

one year prior to enrolment (OR comparing large to lean
somatotype at age seven years = 2.33, 95% CI = 1.70 to
3.18, P trend < 0.0001) and recent BMI (2.66, 95% CI =
1.47 to 4.83, P trend < 0.0001). No evidence of association
was found between age of menopause and somatotype at
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age seven years or between family history and somato-
type at age seven years. Parity and HRT were found to be
independent of somatotype at age seven years (0.93, 95%
CI = 0.76 to 1.13, P trend = 0.217 and 0.98, 95% CI = 0.73
to 1.32, P trend = 0.868, respectively).

After adjustment of known breast cancer predictors
and other associated risk factors, the inverse association
of somatotype at age seven years with breast cancer
remained highly significant (Table 2; OR comparing large
to lean somatotype at age seven years = 0.73, 95% CI =
0.58 to 0.91, P trend = 0.004). The protective effect of a
larger somatotype was found to be significant (P trend <
0.05) for ER-negative, PR-positive and PR-negative sub-
types and marginally significant (P trend = 0.062) for the
ER-positive subtype. Within the group consisting of large
somatotypes, the most prominent effects were shown in
ER-negative (OR comparing large to lean somatotype at
age seven years = 0.40, 95% CI = 0.21 to 0.75, P trend =
0.002) and PR-negative (0.63, 95% CI = 0.40 to 0.99, P
trend = 0.028) tumours. The point estimates changed
very little before and after additional adjustment for
mammographic density as a continuous variable [see
Table S2 in Additional file 2], using a subset of the data
with this information available (n = 3232).

We next assessed the effects of childhood body size on
tumour characteristics (ER status, PR status, tumour size,
grade, histology, and absence/presence of metastatic
nodes) by fitting binary/ordinal logistic regression mod-
els, adjusting for age at diagnosis in years as a confounder.
We established that the protective effect of somatotype at
age seven years was significantly stronger for ER-negative
disease than for ER-positive disease (P heterogeneity =
0.046; Table 3). When comparing between two extreme
groups, women with a larger body size at age seven years
were 1.71 times (95% CI = 0.96 to 3.06) more likely to get
ER-positive than ER-negative disease after menopause.
Although the estimated trend suggests that women with
the same physique are more likely to get the PR-positive
disease in adulthood, the difference between the two
tumour subtypes was not significant (P heterogeneity =
0.283). The point estimates for tumour size, histology,
grade, or the presence or absence of metastatic nodes did
not vary much before and after adjustment for age of
diagnosis as a continuous variable.

Discussion
Our first main finding was that a large somatotype at age
seven years was associated with a decreased risk of post-
menopausal breast cancer. Although strongly associated
with other risk factors such as age of menarche, adult
BMI and mammographic density, somatotype at age
seven years remained a significant protective factor (OR
comparing large to lean somatotype at age seven years =
0.73, 95% CI = 0.58 to 0.91, P trend = 0.004) after adjust-

ment for these other risk factors. Our second and most
novel finding was of a significant protective effect of
somatotype at age seven years regardless of receptor sta-
tus, but with a stronger effect for ER-negative (0.40, 95%
CI = 0.21 to 0.75, P trend = 0.002), than for ER-positive
(0.80, 95% CI = 0.62 to 1.05, P trend = 0.062), tumours (P
heterogeneity = 0.046).

Our findings regarding the protective effects of child-
hood body size for adult breast cancer are consistent with
previous studies [3-5]. Associations with other breast
cancer risk factors were also in the same direction as
found in other epidemiological studies. Several studies
have found birth weight and gain in BMI in early child-
hood to predict adult lean mass, while adult adiposity has
been attributed to weight gain in late childhood and ado-
lescence [15-19]. Similarly, anthropometric measure-
ments at other time points (birth weight, and somatotype
one year prior to enrolment) in our data were found to be
positively associated with somatotype at age seven years.
The adverse effects of birth weight and adult body mass
on postmenopausal breast cancer risk may be explained
by a surplus of estrogen exposure from either the uterine
environment or excess adipose tissue [4,20]. However,
studies performed on children have not consistently
found an association between obesity and circulating
estradiol levels [21,22], thus it is unclear what mecha-
nisms drive the associated decrease in risk during the
pre-/peri-puberty window.

Strong inverse relationships found between childhood
body size, age of menarche, benign breast disease, and
mammographic density were in line with other reports in
the literature. Baer and colleagues [23] found a large
childhood body size to be associated with a decrease in
risk of benign breast disease. Age of menarche is often
considered along with age of menopause and other hor-
monal risk factors for a woman's cumulative exposure to
estrogen [24,25]. An earlier age of menarche is associated
with an increased risk of breast cancer. On the other
hand, a larger childhood somatotype, which is associated
with decreased breast cancer risk, is also associated with
an earlier age of menarche. As age of menarche is an
established but weak predictor of breast cancer risk, its
pronounced inverse relationship with childhood body
size when seen in the context of breast cancer risk seems
to be counterintuitive [26,27].

Mammographic density has also been found by others
to be associated with childhood body mass [5]. Estrogen
is produced by adipose tissue in the body. A higher BMI is
thus correlated with higher endogenous estrogen levels.
In a murine study, exposure to estrogen prior to puberty
led to a decrease in radiologically dense tissue and an
increase in the number of radiolucent structures [28],
which may be analogous to a lower mammographic den-
sity in humans. In agreement, McCormack and col-
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leagues [29] showed that high childhood BMI was
associated with a lower Wolfe grade, and Samimi and col-
leagues [5] found that a rounder pre-pubertal body shape
was predictive of lower mammographic density later in
life.

The age-adjusted case-only comparison of our data
reflected a significant difference in the effects of child-
hood body size on the two ER subtypes (P trend = 0.046),
but not the PR subtypes. However, in lieu of the fact that
PR is an estrogen-induced target gene, and that its pres-
ence could serve to indicate ER functional capacity and
tumour differentiation state [30], we also conducted
stratified analyses on PR subtypes. We found that the
protective trend conferred by a larger childhood somato-
type on postmenopausal breast cancer applies to all ER
and PR tumour subtypes. Overall our results were consis-
tent with Bardia and colleagues [7], although in that study
the effects were only significant for ER-positive (0.80,
95% CI = 0.67 to 0.96) and PR-negative (0.62, 95% CI =
0.43 to 0.89) tumours (comparing women with above
average weight at age 12 years to women with average
weight at age 12 years). Although Bardia and colleagues
observed a stronger protective effect in ER-negative
tumours than in their ER-positive counterparts (in agree-
ment with our finding) when comparing women with

above average weight at age 12 years to women with aver-
age weight at age 12 years, the association they observed
in this subgroup was not statistically significant (0.77,
95% CI = 0.5 to 1.19).

Hormonal exposure and mammographic density are
established risk factors of breast cancer that have been
suggested to be independent, operating through different
pathways [31]. Adjustment for these factors and other
traditional risk factors did not attenuate the negative
association of childhood body size on breast cancer risk
(OR comparing large to lean somatotype at age seven
years = 0.73, 95% CI = 0.58 to 0.91, P trend = 0.004, for
association, after adjustment), thus suggesting an inde-
pendent underlying mechanism. We speculate that a pos-
sible mechanism driving the negative association with
breast cancer risk could be epigenetic changes that occur
during mammary development. Hilakivi-Clarke [32]
summarised in a review several perspectives on special
windows of mammary development. Mammary tissue is
postulated to undergo epigenetic extensive modelling or
re-modelling during different stages in life such as fetal
development, puberty or pregnancy. Such epigenetic
modification can persist into adulthood if taken place in
mammary stem cells, uncommitted mammary myoepi-
thelial or luminal progenitor cells and inherited by subse-

Table 2: Multivariate-adjusted OR estimates and corresponding 95% CIs of postmenopausal breast cancer for somatotype 
at age seven years, overall and stratified by breast cancer tumour subtype based on ER and PR status

Type of 
breast cancer

Somatotype All subjects

Cases OR 95% CI P trend*

All data Lean 1784 1.00 reference 0.004

Medium 757 0.90 0.79 1.02

Large 173 0.73 0.58 0.91

ER positive Lean 963 1.00 reference 0.062

Medium 408 0.91 0.78 1.06

Large 98 0.80 0.62 1.05

ER negative Lean 219 1.00 reference 0.002

Medium 81 0.77 0.58 1.03

Large 14 0.40 0.21 0.75

PR positive Lean 841 1.00 reference 0.027

Medium 354 0.89 0.75 1.04

Large 83 0.76 0.57 1.00

PR negative Lean 320 1.00 reference 0.028

Medium 126 0.86 0.68 1.08

Large 25 0.63 0.40 0.99

* Logistic regression models were used, accounting for age, age at menarche, benign breast disease and recent body mass index. CI, 
confidence interval; ER, estrogen receptor; OR, odds ratio; PR, progesterone receptor.



Li et al. Breast Cancer Research 2010, 12:R23
http://breast-cancer-research.com/2010/12/2/R23

Page 7 of 9

Table 3: Relation of somatotype at age seven years to tumour-defined characteristics of breast cancer

Tumour 
characteristics

Categories Somatotype at age seven years P heterogeneity§

S1-S2 S3-S4 S5-S9

Tumour size (cm)* <1 300 138 39

1-2 752 299 70

2-3 366 152 31

3-4 116 66 14

4-5 52 16 3

>=5 65 26 4

Cumulative OR (95% 
CI)

1.00 (ref.) 1.00 (0.85-1.17) 0.78 (0.58-1.05) 0.255

Cumulative OR (95% 
CI) §

1.00 (ref.) 1.00 (0.85-1.18) 0.78 (0.58-1.06) 0.266

Grade* Low 159 69 20

Medium 479 186 46

High 463 222 51

Cumulative OR (95% 
CI)

1.00 (ref.) 1.15 (0.94-1.41) 0.99 (0.69-1.43) 0.443

Cumulative OR (95% 
CI) §

1.00 (ref.) 1.15 (0.93-1.41) 0.99 (0.69-1.42) 0.463

Histology* Ductal 1350 570 137

Lobular 206 77 16

All other 92 37 7

Cumulative OR (95% 
CI)

1.00 (ref.) 0.91 (0.72-1.15) 0.76 (0.48-1.20) 0.192

Cumulative OR (95% 
CI) §

1.00 (ref.) 0.92 (0.73-1.17) 0.79 (0.50-1.25) 0.265

Metastatic nodes† Absent 1159 473 116

Present 513 227 46

OR (95% CI) 1.00 (ref.) 1.08 (0.90-1.31) 0.90 (0.63-1.28) 0.923

OR (95% CI) § 1.00 (ref.) 1.07 (0.88-1.29) 0.86 (0.60-1.23) 0.878

ER status† Negative 219 81 14

Positive 963 408 98

OR (95% CI) 1.00 (ref.) 1.15 (0.87-1.52) 1.59 (0.89-2.84) 0.089

OR (95% CI) § 1.00 (ref.) 1.18 (0.89-1.56) 1.71 (0.96-3.06) 0.046

PR status† Negative 320 126 25

Positive 841 354 83

OR (95% CI) 1.00 (ref.) 1.07 (0.84-1.36) 1.26 (0.79-2.01) 0.307

OR (95% CI) § 1.00 (ref.) 1.07 (0.84-1.37) 1.28 (0.80-2.03) 0.283

*Proportional odds logistic regression models were used. † Logistic regression models were used. ‡ Derived from one degree of freedom 
trend tests. § Adjusted for age at diagnosis. CI, confidence interval; ER, estrogen receptor; OR, odds ratio; PR, progesterone receptor.
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quent daughter cells [33]. Prepubertal exposure to
estrogen has been shown to upregulate the expression of
BRCA1, a well-known DNA repair gene [28]. Liu and col-
leagues [34] also demonstrated that BRCA1 is responsible
for differentiating ER-negative stem/progenitor cells into
ER-positive luminal cells. They also proposed that loss of
expression of the DNA repair gene (BRCA1) may result in
an accumulation of ER-negative stem cells with multiple
genetic defects. Incidentally, loss of BRCA1 is frequently
associated with ER-negative breast cancers [35]. The evi-
dence for altered gene expression possibly caused by
childhood body size helps to explain the general reduc-
tion in breast cancer risk overall. The apparent differen-
tial protection conferred to the ER-negative subtype
could possibly be driven by the same underlying mecha-
nism that operates through epigenetic modifications.

The strengths of our study include it being a popula-
tion-based study, its large sample size and detailed infor-
mation on many variables: anthropometric measures at
different time points throughout life, mammographic
density, reproductive and hormonal risk factors, and
tumour characteristics. To our knowledge, this is the first
study to consider the effects of somatotype at age seven
years on adult breast cancer with the consideration of
mammographic density, and also the first to examine its
effects on tumour characteristics other than ER status.

A limitation of our study is that risk factor data were
self-reported, and could thus be measured with error.
Although two studies have demonstrated the validity of
using the nine-level somatotype diagram for the long-
term recall of childhood body size via high correlations
with BMI at the same ages [8,36], it is noteworthy that in
those studies no woman recalled their figure as larger
than level seven in these studies, and that women with
large body size were more likely to misreport their child-
hood somatotypes than women who were lean. However,
any such measurement error is most likely to attenuate
any association between childhood body size and breast
cancer risk [37]. In addition, as the questionnaire study
was conducted post-diagnosis of breast cancer, recall bias
could have been introduced. Although the nine-level
somatotype measure has not been validated specifically
in a group of breast cancer cases, it is unlikely that child-
hood body size was differentially recalled by breast can-
cer cases and by controls.

Conclusions
Our findings may have important implications. The
effects of childhood body size on the different breast can-
cer subtypes are independent of other breast cancer risk
factors, such as mammographic density and estrogen
exposure. Given the strength of the associations, and the
ease of retrieval of information on childhood somato-
types retrospectively from pictures early in life, childhood

body size is potentially useful for building breast cancer
risk or prognosis prediction models. It appears counter-
intuitive that a large body size during childhood can
reduce breast cancer risk or alter one's prognosis, because
a large birth weight and a high adult BMI have been
shown to otherwise elevate breast cancer risk. There
remain unanswered questions on mechanisms driving
this protective effect. Because body size and related hor-
monal exposures are modifiable risk factors, women
might substantially decrease their risk of breast cancer, in
particular the more aggressive ER-negative disease, by
monitoring their nutrition and exogenous hormone
intake at different points in life.
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ABSTRACT 
 

The main purpose of this thesis was to identify genetic risk factors using both hypothesis-based and 
hypothesis-free approaches.  
 
In an attempt to identify common disease susceptibility alleles for breast cancer, we started off with 
a hypothesis-free approach, and performed a combined analysis of three genome-wide association 
studies (GWAS), involving 2,702 women of European ancestry with invasive breast cancer and 
5,726 controls.  
 
As GWAS has been said to underperform for studying complex diseases such as breast cancer, we 
investigated to see if the variance explained by common variants could be increased by studying 
specific disease subtypes. Breast cancer may be characterized on the basis of whether estrogen 
receptors (ER) are expressed in the tumour cells. The two breast cancer tumour subtypes (ER-
positive and ER-negative) are generally considered as biologically distinct diseases and have been 
associated with remarkably different gene expression profiles. ER status is important clinically, and 
is used both as a prognosticator and treatment predictor since it determines if a patient may benefit 
from anti-estrogen therapy. We thus performed an independent GWAS using a subset of ER-
negative breast cancer cases and all of the controls from the initial genome-wide study, and, in 
addition, also evaluated whether the two cancer subtypes are fundamentally different on a germline 
level. 
 
Besides hypothesis-free GWAS, we also conducted hypothesis-based analyses based on candidate 
pathways to identify common variants associated with breast cancer. Several studies have examined 
the effect of genetic variants in genes involved in the estrogen metabolic pathway on 
mammographic density, but the number of loci studied and the sample sizes evaluated have been 
small and pathways have not been evaluated comprehensively. We evaluated a total of 239 SNPs in 
34 genes in the estrogen metabolic pathway in 1,731 Swedish women who participated in a breast 
cancer case-control study.  
 
Slightly venturing outside the genetic scope of this thesis, we looked at a breast cancer risk factor - 
body size - that is associated with very different postmenopausal breast cancer risks at different time 
points in a woman’s lifetime, namely, birth, childhood, and postmenopausal adult.  
 
The significance of these studies will be apparent when, using the new genetic and epidemiological 
knowledge found, we are able to classify women according to high or low risk of breast cancer on 
the basis of genetic disposition or other breast cancer risk factors, so that appropriate interventions 
and disease management decisions may be made, to ultimately reduce incidence and mortality of 
breast cancer. 
 
Keywords: Breast Neoplasms, Genetic Epidemiology, Genetic Susceptibility, Genetic Predisposition to 
Disease/genetics*, Case-Control Studies, Genetic Association Studies, Candidate Gene Analysis, Gene Discovery, 
Single Nucleotide Polymorphism, Risk Factors,, Estrogen Receptors, Mammography, Body Size  
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