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ABSTRACT 
The kidney is responsible for sieving the circulating blood to eliminate water-soluble 

waste products and potentially toxic substances from the body. The filtration step 

occurs in specialized filtration units called glomeruli. Some renal diseases are related to 

specific glomerular defects, but it is highly likely that the present knowledge gained 

from previous studies only represents  a small proportion of genes and proteins that 

have important roles for normal kidney function.  

To identify other genes with roles for glomerular filtration function, our group 

developed GlomBase, which is a glomerular transcript database in which over 300 

genes are highly glomerulus specific. Among those genes, several genes with highest 

glomerular expression were chosen for further analysis, but this thesis is mainly based 

on studies on three of them, dendrin, adenylate cyclase type I (Adcy1), and Crumbs 

homolog 2 (Crb2). 

Dendrin is a cytosolic protein previously identified only in the brain. However, 

we localized dendrin in the kidney specifically to the glomerular podocytes. 

Furthermore, we generated a polyclonal antibody against this novel glomerular protein. 

We detected that the earliest dendrin expression during glomerular maturation is at the 

capillary loop stage, and that it is located in the cytoplasmic face of the podocyte slit 

diaphragm. Unexpectedly, inactivation of the dendrin gene in mouse did not generate 

any obvious phenotype. Dendrin -/- mice were born at an expected Mendelian ratio and 

macroscopically all organs appeared normal. By the age of 1.2 years, no signs of renal 

impairment have been observed in the dendrin-/- mice. Under kidney challenging 

conditions, dendrin -/- mice show no difference when compared with dendrin +/+ mice. 

Even though dendrin does not seem to be crucial for the integrity of the glomerular 

filtration barrier, we do find two proteins that interact with dendrin, and their biological 

role in podocyte is still under investigation. These results are out scope of this thesis.  

Adcy1 is one out of nine members of the adenylate cyclase protein family 

which catalyze the formation of the secondary messenger cAMP. cAMP is involved in 

a wide variety of cellular signaling processes, including regulation of actin cytoskeleton 

assembly through PKA. Adcy1 has previously been thought to be expressed only by 

certain neuronal cells in the brain, but we localized Adcy1 expression to the glomerular 

podocytes as well. During glomerulogenesis, the Adcy1 expression was detected first at 

the stage when maturing podocytes develop foot processes. To study the role of Adcy1 

gene in the kidney in vivo, we analyzed the kidneys of Adcy1-/- mice (mice generated 



 

 

by other investigators, that without severe phenotype except mild behavioral 

abnormalities). We found the glomerulogenesis to proceed normally in Adcy1-/- mice, 

and in mature mouse, no signs of renal impairment was detected. However, challenging 

of the kidney with albumin overload caused severe albuminuria in Adcy1-/- mice, 

whereas wild type mice showed only moderate albumin leakage to the urine. Thus, 

Adcy1 may in fact be a susceptibility gene for proteinuria. 

Crb2 is yet another novel podocyte specific protein we identified. Its Drosophila 

homologue Crumbs is an essential component for epithelial cells organizing apical-

basal polarity and adherent junctions. In the mouse, it is expressed only in brain, kidney 

and heart. In the kidney, it is specifically located in the glomerular podocyte slit 

diaphragm. Interestingly, inactivation of this gene led to arrest the embryonic 

development after E7.75 and embryonic lethality, which demonstrates the importance 

of this gene  during early embryonic development. The Crb2-/- embryos show defects 

in neuroepithelium and epithelial mesenchymal transition (EMT) at the primitive 

streak. The function of Crb2 protein in the glomerulus will be explored later by my 

colleagues in studies of conditional knockout mice with podocyte specific inactivation 

of the Crb2 gene. 

In summary, the discovery and characterization of novel glomerular genes and 

proteins presented in this thesis has increased our knowledge of glomerular biology as 

well as on the role of a glomeral gene in early embryogenesis.  
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1 INTRODUCTION 
 
1.1 KIDNEY  
Kidneys are bean-shaped organs responsible for excretion of urine that contains waste 

products and potentially toxic substances from the circulating plasma. The urine 

excretion is performed in the basic structural and functional unit of the kidney called 

nephron. The nephron comprises two parts: the glomerulus and the tubular system. 

Normally, vertebrates have two kidneys. Each human kidney contains about one 

million glomeruli, located in the kidney cortex (Fig. 1 A, B). The glomeruli are 

filtration units that sieve circulating plasma and produce daily about 180 liters of 

primary urine, which mainly contains water and small molecules like amino acids, 

glucose, ions, and small peptides. Subsequently, the primary urine passes through the 

tubule system that is mostly located in the renal medulla (Fig. 1A), where 99 % of the 

primary urine is resorbed back into the plasma. In humans, the final daily urine 

excretion is normally 1-1.5 liters, and does not contain proteins of the size of albumin 

or larger.  

Kidney failure commonly affects human health and leads to death. It may be 

caused by mutations in the kidney protein genes, or by systemic diseases that cause 

kidney disorders, such as diabetes, hypertension and systemic lupus erythematosus. 

Around 75% of the kidney diseases may lead to end stage renal disease, which means 

permanent loss of kidney function. Kidney failure can generate various types of 

symptoms elsewhere in like swelling, while the kidney symptoms are usually 

proteinura or hematuria, which are largely caused by the failure of a specific 

glomerulus function. 

 

1.2 GLOMERULUS 
The glomerulus is a capillary tuft surrounded by the Bowman’s capsule (Fig. 1B). The 

incoming blood enters the capsule through an afferent arteriole and the unfiltered 

plasma exits through an efferent arteriole. The glomerular capillaries are supported and 

interconnected by an extracellular mesangial matrix and mesangial cells, and the 

glomerular tuft is surrounded by the urinary space. The filtration occurs in the capillary 

wall. Normally, only water and low molecular weight molecules (smaller than albumin) 

can pass through the filter. 
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Many diseases affect the kidney function by causing glomerular damage, which 

exhibits as leakage of large proteins or blood into the urine, and distortion of the 

glomerular filtration barrier.   

 

1.3 GLOMERULAR FILTRATION BARRIER 
The glomerular filtration barrier consists of three layers of the glomerular capillary 

wall: a fenestrated endothelium, the glomerular basement membrane (GBM), and the 

slit diaphragms located between the foot processes of the epithelial podocytes (Fig. 1C, 

D).  

 
Fig. 1. Glomerular filtration barrier (adapted from Tryggvason and Patrakka, 2006) 

 

The glomerular filtration barrier has for long been believed to be a charge and 

size-selective filter [1-5]. How individual components of the glomerular filtration 

barrier contribute to the filtration function has been, and still is, a matter of debate. In 

the following, the role of components of the glomerular capillary wall in the filtration 

will be discussed. 
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1.3.1 Fenestrated endothelium 
The innermost layer of the glomerular capillary wall, the fenestrated endothelium has 

numerous openings of 70-100 nm in diameter. Thus, except for the blood cells, it has 

been generally considered not to hinder passage of plasma macromolecules into the 

GBM matrix. On the other hand, the glomerular endothelial cells have been shown to 

contain negatively charged sialoproteins and proteoglycans on their surface [6], which 

could potentially contribute to a primary anionic barrier that diminishes amount of 

macromolecules being passed through. However, there is no direct evidence for such a 

role of the endothelial glycocalyx. Studies have been presented showing that injection 

or perfusion of glycosaminoglycon (GAG) -degrading enzymes like hyaluronidase, 

heparanase, and chondroitinase lead to proteinuria [1, 4, 7]. However, since these 

enzyme can pass into the GBM, which also contains GAGs, it cannot, as yet, be stated 

that the negative charges of the endothelial glycocalyx have a more significant role than 

those in the GBM or on the podocyte for glomerular permselectivity [8].  

 

1.3.2 Glomerular basement membrane (GBM) 
The GBM is an amorphous extracellular sheet-like structure of about 300-350 nm in 

thickness (in humans). It is a fused basal lamina produced by both capillary endothelial 

cells and epithelial podocyte cells. It is a key structure maintaining the structural 

integrity of the filtration barrier against the considerable hydrostatic pressure that is 

generated within the glomerular capillaries [9]. The main components of the GBM are 

type IV collagen, laminins, proteoglycans (perlecan and agrin), fibronectin, and 

nidogen/entactin [10-12]. 

Type IV collagen forms a highly cross-linked three-dimensional network that 

provides structural support to the GBM. In the fetus, the trimeric type IV collagen 

molecules contain only α1 and α2 chains (α1: α1: α2), which are replaced by α3, α4 and 

α5 chains in adults. Mutations in adult type IV collagen cause Alport’s syndrome, 

which is a progressive hereditary kidney disease characterized by hematuria, 

sensorineural hearing loss, and ocular lesions with structural defects in the GBM [11, 

13]. However, the patients has only mild proteinuria, indicating that the type IV 

collagen network does not really contribute to the size and charge-selectivity of the 

filtration barrier [14]. 

All laminins are thought to exist in basement membranes as α:β:γ heterotrimers. 

In the GBM, laminin forms a network that is interconnected with the type IV collagen 
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network through interactions with nidogen/entactin [15]. As in the case of type IV 

collagen, the fetal laminin-511 (α5:β1:γ1) is replaced by adult type laminin-521 

(α5:β2:γ1) after birth. Deletion of the laminin β2 gene in mice results in massive 

proteinuria  at birth and death within a month [16]. In 2004, mutations in the human 

laminin β2 chain were shown cause Pierson’s syndrome, an early lethal autonomic 

recessive form of congenital nephrotic syndrome associated with diffuse mesangial 

sclerosis and microcoria [14, 17]. Absence of the laminin α5 chain results in breakdown 

of the glomerular basement membrane (GBM) and failed glomerular vascularization 

[18]. Podocyte-specific inactivation of the laminin α5 chain gene results in varying 

degrees of proteinuria and rates of progression to nephrotic syndrome [19]. Together, 

these data have demonstrated that laminin-521 is an important component of GBM of 

the filtration barrier. 

Proteoglycans, such as perlecan and agrin, have anionic sites on their heparan 

sulfate and chondroitin sulfate side chains [20-21], and the anionic charges have been 

thought to contribute to the filtration barrier. However, heparan sulfate -deficient 

perlecan mice do not have structural defects in the GBM nor do they have proteinuria 

[22-23]. On the other hand, the mice are prone to proteinuria when challenged with an 

albumin overload [24]. Mice deficient for agrin in the GBM do not have abnormal 

glomerular filtration function, even when challenged with albumin overload, although 

the anionic charge of GBM is severely altered in these mice [22]. Recently, these two 

mouse lines were crossed, and the offspring were shown not to develop proteinuria 

[25]. Together, these results strongly suggest that the negative charges of the GBM 

itself do not play as an important role in the filtration function as previously thought.  

 

1.3.3 Podocyte proteins and involvement in diseases 
Podocytes are unique epithelial cells. They are terminally differentiated and highly 

polarized. They look like octopuses embracing each other with their foot processes, 

practically wrapping the glomerular capillary (Fig. 1C). The podocyte cell body faces 

the urinary space, and from there it extends out primary processes, which in turn, divide 

into secondary foot processes (Fig. 1C). The interlacing foot processes are bridged by 

the final filtration barrier, the slit diaphragm (Fig. 1D), where proteins form a zipper-

like structure with a constant width of around 40 nm. This filter contains lateral pores 

that are smaller or of the size of albumin [14, 26-27]. A schematic drawing of podocyte 

foot process assembling and their components is showed below (Fig. 2). 
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Fig. 2. Schematic drawing of two podocyte foot processes located on the outside of the 

GBM. Key foot process proteins contributing to the filtration barrier and their 

interrelationship are illustrated. 

 

1.3.3.1 Transcription factors 

 
LMX1B 

Mutations in LMX1B cause Nail-patella syndrome, which is a nephrotic syndrome 

characterized by thickening and splitting of the GBM accompanied with skeletal and 

nail dysplasia [28]. LMX1B mutant mice show similar phenotype to patients of Nail-

patella syndrome [29]. In the kidney, LMX1B is specifically expressed in the 

podocytes, and regulate the expression of many genes critical for podocyte 

differentiation and function, including podocin, CD2AP, and type IV collagen [30-32]. 

 

WT1 

WT1 is a transcription factor encoded by the Wilms’ tumor suppressor gene WT1. It 

has an important function in kidney organogenesis and differentiation [33]. Dominant 

mutations of this gene cause Denys-Drash and Frasier’s syndromes [34]. Denys-Drash 

syndrome has renal symptoms characterized by diffuse mesangial sclerosis, usually 

before the age of one year, and patients frequently develop Wilms' tumor [35-36]. 
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Frasier syndrome displays glomerular symptoms consisting of childhood proteinuria 

and nephrotic syndrome, characterized by unspecific focal and segmental glomerular 

sclerosis, progressing to end-stage renal failure in adolescence or early adulthood [37]. 

In podocytes, WT1 has many targets, e.g. nephrin and podocalyxin [38].  

 

1.3.3.2 Foot process cytoskeleton 

The unique structure of podocyte foot processes is maintained by a cytoskeleton 

network of actin filaments. Many actin-associated proteins bind and modify the 

function of the cytoskeleton in podocyte foot process. Furthermore, the actin 

cytoskeleton is connected to different plasma membrane domains of podocytes through 

various linker proteins. α-actinin-4 and synaptopodin are the two most well known 

cytoskeletal components of podocyte foot processes act the dynamic regulation of foot 

process structure. 

 

α-Actinin-4 

α-actinin-4, encoded by ACTN4, is a cytoplasmatic actin bundling protein. It regulates 

the actin cytoskeleton and cellular motility [39]. It is highly expressed in podocytes, 

where it crosslinks with F-actin filaments in the foot processes. Mutations in ACTN4 

cause human focal segmental glomerulosclerosis (FSGS), characterized by childhood 

onset of mild proteinuria and slow progression to FSGS and end-stage renal disease 

[40]. α-actinin-4 deficient mice develop a recessive phenotype characterized by 

proteinuria, glomerulosclerosis, and retraction of podocyte foot processes [41]. 

 

Synaptopodin 

Synaptopodin is an actin binding protein highly expressed in podocytes [42]. 

Synaptopodin-deficient mice have normal glomerular filtration function, but they 

develop heavier proteinuria and delayed recovery compared with wild type mice when 

the podocytes are challenged with lipopolysaccharide (LPS). These mice also show 

impaired recovery from protamine sulfate-induced podocyte foot process effacement 

[43]. Synaptopodin is a regulator of Rho GTPases in podocytes and it induces stress 

fibers by blocking the proteasomal degradation of RhoA [44]. A recent study showed 

that dephosphorylation of synaptopodin by calcineurin (protein phosphatase) abrogates 

its interaction with 14-3-3, and promotes synaptopodin degradation; phosphorylation of 

synaptopodin by PKA or CaMKII (protein kinases) promotes protein 14-3-3 binding, 
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which protects synaptopodin degradation, thereby contributing to the intact glomerular 

filtration barrier [45]. 

 

1.3.3.3 Negatively charged surface molecules 

 

Podocalyxin 

All there layers of the glomerular filter are negatively charged. In podocytes, the charge 

is mainly provided by podocalyxin. It is a transmembrane protein located at the apical 

and lateral surface of podocyte foot processes above the slit diaphragm [46-47], and it 

is one of the major podocyte sialoproteins of the glycocalyx. By repelling adjacent foot 

process away from each other, podocalyxin helps to maintain the filtration slits open 

[48], and possibly prevent an adherence of podocytes to the Bowman’s capsule. It 

associates with the podocyte actin cytoskeleton through interaction with ezrin (an actin-

binding protein) and NHERF2 [49-51]. The importance of podocalyxin is highlighted 

by the fact that podocalyxin knockout mice develop anuric renal failure and die within 

24 hours of birth. These mice do not develop secondary foot processes, and the slit 

diaphragms are replaced by impermeable tight junctions [52]. 

 

1.3.3.4 Podocyte-GBM adhesion proteins 

For normal glomerular filtration function, it is important to keep an intact filtration 

barrier where the podocyte foot processes are anchored to the GBM. This is facilitated 

by interactions between podocyte basal surface receptors and their ligands in the GBM. 

Through this interaction, they provide physical adhesion and also mediate various 

intracellular signals associated with cytoskeletal proteins and intracellular kinases. 

 

α3β1-integrin 

Integrins are heterodimeric receptors composed of different α and β chains that bind 

various extracellular matrix components. α3β1-integrin is the most abundant integrin in 

podocytes. It binds to several components of the GBM, including type IV collagen, 

laminin, fibronection, and entactin/nidogen [53-55]. Blockage of the integrin β1-

binding domain leads to foot processes fusion, proteinuria and detachment of podocyte 

from the GBM [54, 56]. α3-integrin knock out mice die within 24 hours after birth with 

lung and kidney defects, with disorganized glomeruli and absence of foot processes 

[57].  Integrins are linked with the actin cytoskeleton through talin, paxillin, and 

vinculin (TPV) [58]. It is also bridged with a slit diaphragm signaling through integrin-
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linked kinase (ILK). Podocyte specific ablation of ILK cause aberrant distribution of 

nephrin, foot process effacement, heavy albuminuria and animal death after 10 weeks 

[59]. 

 

Dystroglycan 

Dystroglycan (DG) is another receptor on the basal surface of podoctyes that binds 

GBM ligands like laminin, agrin, and perlecan. It is connected to the podocyte 

cytoskeleton through utrophin [60-61]. The role of DGs in podocytes is unknown. 

 

1.3.3.5 Slit diaphragm  

The slit diaphragm consists of many proteins that are connected with cytoskeleton and 

also involved in signaling pathway. The importance of the slit diaphragm is highlighted 

by the fact that mutations in the genes for many of its component result in slit 

diaphragm disassembly and proteinuria. Well known slit diaphragm proteins include 

nephrin, podocin, CD2AP, Neph, FAT and ZO-1.  

 

Nephrin 

In the early 1970s, the hypothesis of the slit diaphragm being the size-selective 

molecular sieve was raised (Karnovsky and Ainsworth, 1972; Rodewald and 

Karnovsky, 1974) However, the molecular composition of the slit diaphragm was 

obscure until 1998, when studies on congenital nephrotic syndrome of the Finnish type 

(CNF) revealed mutations in a novel gene NPHS1 that encodes nephrin, a specific 

component of the slit diaphragm [62-63]. Nephrin is a transmembrane protein of the Ig-

superfamily. Its extracellular domains from adjacent foot processes are believed to 

interact in the center of the slit to form the zipper-like backbone of the slit diaphragm 

[64]. Patients with nephrin mutations usually lack the podocyte slit diaphragm and 

exhibit massive proteinuira already at birth. Inactivation of Nphs1 in mice causes a 

similar phenotype and neonatal death [65]. Thus, nephrin is critical for the maintenance 

of the normal slit diaphragm structure. Nephrin is not only a structureal component of 

the silt diaphragm, but it is also involved in signaling pathways. Tyrosines in the 

intracellular part of nephrin can be phosphorylated by Fyn (a member of Src family 

kinases), and the initiated signaling seems to promote antiapoptosis [66], binding to 

Nck and oligomerization of actin filaments. This is supported by the report that Fyn 

deficient mice develop proteinuria and podocyte effacement [67]. Recent findings also 

showed the phosphorylated nephrin link to the Nck adaptor protein, and thereby 
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regulate the actin cytoskeleton formation. Selective deletion of Nck from podocytes in 

mice causes defects in the formation of foot processes and congenital nephrotic 

syndrome [68-71]. 

 

Podocin 

Podocin is an integral membrane protein of the stomatin protein family. Mutations in 

the podocin gene, NPSH2, cause corticosteroid-resistant nephrotic syndrome 

characterized by early childhood onset of proteinuria and rapid progression to end-stage 

renal disease [72-73]. Podocin-deficient mice have fused podocyte foot processes and 

lack slit diaphragms [74]. These mice develop massive proteinuria antenatally and die a 

few days after birth. Podocin is required for proper targeting of nephrin into the slit 

diaphragm, and this may have a pathogenic role in the development of NPHS2 kidney 

disease. Podocin has been shown to interact with Neph1, nephrin, and CD2AP [75]. 

Thus, podocin is critical for the glomerular filtration function.  

 

CD2AP 

CD2AP is an intracellular protein first found as an adaptor protein in T-cells [76]. 

However, CD2AP knockout mice die at 6-7 weeks of age due to a nephrotic syndrome-

like disease with podocyte abnormality [77]. CD2AP heterozygous mice develop 

glomerular changes at 9 months of age and increased susceptibility to glomerular injury 

by nephrotoxic antibodies or immune complexes (Kim et al., 2003). CD2AP mutations 

have been found in a few patients with FSGS [78]. CD2AP interacts with nephrin and 

has been shown to serve as a linker between nephrin and the podocyte cytoskeleton 

[79-82]. Furthermore, CD2AP seems to be associated with endocytosis to clean up the 

plasma proteins [78], and also involved in signaling of TGF-beta-induced apoptosis in 

podocytes [83]. 

 

Neph1, Neph2, Neph3 

Neph1, Neph2, and Neph3 are transmembrane proteins belonging to the Neph protein 

family. They are located in the slit diaphragm and interact with nephrin through their 

extracellular domains [84-87]. Neph1 and Neph2 can also form homodimers, which 

however do not interact with each other [88]. Mice lacking Neph1 show severe 

proteinuria and die within 8 weeks of birth [89] similarly to the nephrin knockout mice. 

All Neph proteins interact with Podocin and the tight junction protein ZO-1 [90-91]. 

They are also involved in the podocyte slit diaphragm signaling [91-93]. 
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FAT 

FAT proteins are very large transmembrane proteins belonging to the cadherin family. 

In mammals, there exist at least three FAT proteins, FAT1, FAT2, and FAT3. In 

glomeruli, FAT1 and FAT2 are located in the slit diaphragm [94-95]. Mice lacking 

FAT1 show glomerular, forebrain and eye defects, and they die within 48 hours 

probably due to loss of the slit diaphragms [96].  FAT1 regulate actin dynamics and 

controls cell-cell interactions through its binding to Ena/VASP proteins [97-98], which 

are regulators of the actin cytoskeleton and cell migration [99]. The function of FAT2 

is not clear yet, as FAT2 deficient mice show normal longevity and are fertile [95]. 

 

ZO-1 

ZO-1 is a member of the membrane-associated guanylate kinase (MAGUK) protein 

family. It is widely expressed and located at the cytoplasmatic face of intercellular 

junctions. In typical polarized epithelial cells, ZO-1 is located in the tight junctions that 

define the apical and basal lateral membrance. In the podocyte, ZO-1 is located at the 

cytoplasmic face of the slit diaphragms [100]. As mentioned above, ZO-1 binds to 

Neph family proteins [90]. It has also been reported that Nephrin forms a multiprotein 

complex with cadherins, p120 catenin, and three scaffolding proteins, including ZO-1, 

and possibly in that way it connects the slit diaphragm to the actin cytoskeleton and 

signaling networks [101]. However, the role of ZO-1 in podocytes is still unknown. 

 

P-cadherin 

P-cadherin is a transmembrane protein that has been reported to be located in the slit 

diaphragm and colocalized with ZO-1 [102]. P-cadherin knockout mice do not develop 

renal deficiency [103]. Thus, this protein is not considered to be important for 

glomerular filtration.  

 

VE-Cadherin 

VE-cadherin (also known as cadherin-5) belongs to the cadherin protein family. It is 

predominantly expressed in endothelial and plays an important role controlling vascular 

organization. Inactivation of VE-cadherin gene causes embryonic lethality due to the 

defects on vascular organization and remodeling [104]. However, a recent study 

showed that VE-cadherin is also expressed in the podocyte. It is identified as a slit 
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diaphragm-associated molecule, and effectively links the coexpression and coregulation 

of nephrin and ZO-1 [105].  

 

TRPC6 

TRPC6 is a member of the transient receptor potential (TRP) superfamily of non-

selective cation channels. In the glomerulus, it is expressed by capillary endothelial 

cells, mesangial cells, and podocytes. Mutations in its gene have been shown to cause 

FSGS [106-107]. TRPC6 is involved in signaling pathways and appears to be a 

receptor-operated channel leading to calcium influx, and can be activated by G protein-

coupled receptors [108] and directly by diacylglycerol [109]. In the podocyte, it has 

been speculated to be a component and downstream target of the nephrin signaling 

platform involved in monitoring the integrity of the slit diaphragm [110].  

 

In addition to these podocyte components, there are numerous other highly specific 

podocyte proteins the role of which in the filtration barrier is not known. In general, the 

actual glomerular filtration process is not properly understood. A popular view is that 

the GBM functions as a coarse first filter, and that the podocyte slit diaphragm is the 

second ultrafilter that hinders the passage of proteins larger than albumin [14, 111]. 

There also exists another hypothesis stating that the GBM is a gel with size-selective 

properties determined by permeation and diffusion, but not filtration. According to that 

hypothesis, the slit diaphragm is essential for normal structure and to retain water 

passage but not other molecules [112], which the author considers to explain why there 

is no clogging during filtration.  

Regardless of the debate, the importance of the podocyte cell for the filtration 

barrier is unassailable. The genes and proteins mentioned above represent only some of 

the podocyte components that have been extensively studied or which have been shown 

to be important for filtration function and directly related with deferent renal diseases. 

It is very likely that many novel as yet undiscovered podocyte components have 

important roles for the normal filtration function. Thus, it is of great interest and 

importance to explore the unknown side the kidney glomerulus, especially the 

podocyte. 

As described above, the glomerulaus is injured in many systemic renal diseases. 

The glomerulus is a unique “micro-organ” dedicated to renal ultrafiltration, therefore 

toxic or otherwise damaging extrarenal substances can cause glomerular insults. The 
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involvement of those accounts for a large proportion of kidney diseases, but that aspect 

is outside the scope of this thesis project. 
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2 AIMS OF THE STUDY 
 

The overall goals of this project are to apply a large-scale approach to characterize the 

transcriptome of mouse glomeruli in order to identify novel gene products of major 

importance for glomerular function and pathology. By finding and characterizing these 

novel proteins, this study is likely to increase our knowledge on glomerulus biology, 

and will provide new understanding of the pathogenesis of proteinuria. 

 

The specific aims of this project are to:   

1. Identify transcripts and proteins that have previously not been associated 

with glomeruli or renal disease 

2. Characterize the expression pattern of novel glomerular transcripts by using 

northern and in situ hybridization methods.   

3. Express novel glomerulus-associated proteins of interest in order to produce 

antisera for characterization of the protein expression using 

immunohistochemical methods. 

4. Determine the biological role of the proteins by studying the phenotypes of 

knockout mice. 
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3 METHODS 
 
3.1 REVERSE TRANSCRIPTION (RT) AND RT–PCR 
For generating glomerular and “rest of kidney” cDNA, mouse glomeruli and kidney 

tissue devoid of glomeruli (rest of kidney) were isolated as previously described [113]. 

Total RNA was then isolated by RNeasy mini Kit (QIAGEN) and 1 µg was reverse 

transcribed by Superscript III Reverse Transcriptase (Invitrogen). The generated cDNA 

was diluted, 10-fold with Tricine-EDTA buffer for storage. 

For studies on tissue distribution, multiple mouse tissue cDNAs were used as 

template (Mouse MTC™ Panel I; Clontech Laboratories, Palo Alto, CA), The PCR 

reaction was done by HotStarTaq DNA polymerase (QIAGEN) with gene specific 

primers described in original publication. The PCR program was: 1 cycle of 95 °C/15 

min; 30 cycles of 95°C/1 min, 55 °C/1 min, 72 °C/1 min; 1 cycle of 72 °C/10 min. The 

PCR products were analyzed in 1% TBE agarose gel and photographed. 

For confirming silence of Crb2 expression in Crb2 knock out mice, total RNA 

was extracted from littermate control and null mutant embryos at E8, followed by RT 

from 1 µg total RNA. Then, PCR reaction was done by using 1 µl of the RT product as 

template and 3'-UTR primer pair was used (see manuscript/publication) to detect gene 

expression.  

 

3.2 NORTHERN BLOT 
To study tissue distribution, a specific cDNA probe was amplified, labeled with 32P-

dCTP with the Prime-It®  RmT Random Primer Labeling Kit (Stratagene, la jolla, 

CA), and hybridized with Mouse MTN®  Blot (Clontech Laboratories, Palo Alto, CA). 

The Blots were exposed to a PhosphorImager SF screen (Molecular Dynamics) and 

analyzed with ImageQuant software (Molecular Dynamics). 

 

3.3 SOUTHERN BLOT 
To genotype Adcy1 mice, extracted genomic DNA was digested with Bgl II and 

separated in 0.8 % TBE or TAE agarose gel and transferred onto nylon membrane. The 

cDNA probe was excised from the plasmid (provided by collaboration group) with Bgl 

II and Acc65 I (Fermentas) and gel purified. The labeling and hybridizing followed the 

same procedure as for Northern Blots.  
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3.4 IN SITU HYBRIDIZATION 
To localize gene expression in the kidney, in situ hybridization experiments were 

carried out on mouse kidney cryosections. Gene specific probes were transcribed by T7 

or SP6 polymerases and labeled with 35S. The procedure has been described previously 

[114]. 

 

3.5 WHOLE MOUNT IN SITU HYBRIDIZATION EXPERIMENT 
To study Crb2 embryonic expression and analyze Crb2 null embryo with different 

marker genes, the embryos were fixed in 4 % PFA prepared in PBS and experiment 

were performed following protocols simplified from standards procedures [115]. 3'-

UTR Probe (see publication IV) was used for study Crb2 expression. Probes for marker 

genes were provided by other groups (see publication IV). Single-stranded RNA probes 

were labeled with digoxigenin-UTP according to the manufacturer's instructions 

(Roche). 

 

3.6 PRODUCTION OF POLYCLONAL ANTIBODY 
Mouse dendrin residues 1-330 were cloned into a pET-28a(+) expression vector 

separately, and the recombinant proteins were purified (see publication II) and d NZW 

rabbits were immunized for generating polyclonal antibody. 

 

3.7 IMMUNOHISTOCHEMISTRY 
For kidney analyses, samples were collected and snap-frozen in OCT. For studies on 

embryos, samples were either snap-frozen in OCT, or fixed in 4% paraformaldehyde 

(PFA) in PBS, followed by infiltration of 10 % sucrose in PBS, and embedded in OCT. 

Cryosections (8-10 µm) were postfixed with cold acetone (–20 °C) followed by 

blocking in 5 % normal goat serum. The primary antibodies were incubated overnight 

at 4 °C or 1-h at RT, followed by a one hour incubation with the secondary antibody. 

For double-labeling experiments, the incubations were performed sequentially. Some 

sections were double/triple stained with DAPI with 1:2000 diluted in PBS. 

 

3.8 IMMUNOELECTRON MICROSCOPY  
For immunoelectron microscopy, the samples from mouse renal cortexes were fixed in 

3.5 % PFA plus 0.02 % glutaraldehyde prepared in PBS. After fixation, the samples 

were embedded in 10 % gelatin, infiltrated with 2.3 M sucrose in PBS, and frozen in 

liquid nitrogen. Immunolabeling experiments were done as described previously [116]. 
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3.9 MOUSE STRAINS  
Dendrin and Crb2 mutant mice were generated by replacing their entire coding exons 

1-2 and 1-13, respectively, with eGFP lox-Ub1- EM7- Neo- lox cassette (Regeneron 

Pharmaceuticals, Inc). In each strain, heterozygous mice were mated to obtain wild-

type, heterozygous, and null mutant mice. Both dendrin and Crb2 mouse strains were 

backcrossed with C57bl/6 for more than nine generations. All mouse work was 

approved by the regional ethical committee. 

  

3.10 GENOTYPING  
Adcy1 genotyping was done by Southern blot (see above). Crb2 genotyping was done 

by PCR using genomic DNA extracted from toe samples or embryonic yolk sac 

samples. The PCR reaction was done by HotStarTaq DNA polymerase (primer pairs 

sequences see publication II and IV). 

 

3.11 WESTERN BLOTTING 
Proteins were extracted from normal mouse glomeruli and “rest of kidney” [113]. The 

Western blotting was done following standard procedures. Anti-β-actin antibody was 

used as a loading control. 

 

3.12 MOUSE CHALLENGE MODELS 
 

3.12.1 Protein overload 
Bovine serum albumin (BSA) was used as overload protein, by daily injecting of 400 µl 

(0.5 g/ml) intraperitoneally for four consecutive days. Urine samples were collected 

before each injection and every 24 hours after the last injection. Measurement of 

proteinuria was done by both ELISA and SDS-PAGE gel (Invitrogen).  

 

3.12.2 LPS- induced Proteinuria 
LPS (0.5 mg/ml) was injected once intraperitoneally (20-26 µl/g mouse body weight), 

and urine was collected at the time of LPS injection, also 12, 24, 36, 48, 60, and 72 

hours after the injection. Urine samples were analyzed by SDS-PAGE gel and PAGE-

Blue stain (Fermentas).  
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4 RESULTS AND DISCUSSION 
 

The results presented in this thesis are based on work carried out in collaboration with 

Christer Betsholtz’s group. The initial collaboration led to the development of 

GlomBase that initially contained over 6,000 glomerular genes identified by microarray 

analysis. These genes were normalized against Rest of the kidney (non-glomerular 

kidney tissue) and Brain capillary fragments, which grouped out  a category containing 

143 glomerular-upregulated genes [117].  Many of these genes were taken for further 

analysis, including dendrin, adenylate cyclase type 1 (Adcy1), and crumbs homolog 2 

(Crb2). Their positions (according to expression activity) in the category and ratios 

after normalizations are shown below [117],  together with podocyte markers podocin 

and nephrin for comparison. 

 

Table 1. Microarry analysis showed that the expression of dendrin, adcy1, and Crb2 are 

upregulated in the glomerulur versus “rest of the kidney”, and the normalization by 

comparing their glomerular expression versus brain capillary transcripts, which 

represents most of the endothelial transcripts, showed that these genes are more likely 

to be podocyte specific. Nphs1 (encode nephrin) and Nphs2 (encode podocin) are 

known important pococyte components and their top position in the list suggests that 

other top genes may also be important for the kidney filtration function. 
Position in the list Gene annotation Ratio log2(Glo/R-of-Kid) Ratio log2(Glo/Brain-Capi) 

2 Nphs2 (Podocin) 3.4 5.08 

4 Nphs1 (Nephrin) 2.97 4.2 

13 Dendrin 1.92 4.12 

47 Adcy1 1.53 2.45 

103 Crb2 1.76 1.28 

 

4.1 DENDRIN 

 
4.1.1 Identification of dendrin as a novel glomerular component 
Dendrin is a cytosolic protein that does not contain any know functional domain, and 

previously it has only been identified in the brain [118-119]. However, our microarray 

data showed that it is strongly upregulated in kidney glomeruli [117].  The tissue 

distribution was confirmed by RT-PCT and Northern blot experiments, that dendrin is 
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expressed in brain and kidney. The transcript size is approximately 3.5 kb. Further, by 

in situ hybridization of newborn mouse kidney samples, we found dendrin specifically 

located in glomerular podocytes. By generating a dendrin polyclonal antibody, we 

could confirm by immunofluorescence that dendrin is podocyte specific, and based on 

immuno-EM located in the cytoplasmic face of the slit diaphragm. Western blot result 

shown that mouse dendrin is an 81 kD protein only expressed in the glomeruli. Thus, 

dendrin was demonstrated to be a novel glomerular protein.   

 
4.1.2 Dendrin knock out mice are viable, fertile, and do not develop 

notable kidney defects (data not shown) 
The mouse dendrin gene was knocked out to further study its function in glomeruli. 

The entire coding region of two exons was replaced with eGFP lox-Ub1- EM7- Neo- 

lox cassette (Regeneron Pharmaceuticals, Inc). The elimination of dendrin in knockout 

mice was confirmed by immunohistochemistry (IHC). However, the dendrin knockout 

mice were born at expected Mendelian frequencies and macroscopically all organs 

appeared to be normal. Urine samples of littermate wild type and knockout mice were 

collected until age one year and three months, but no proteinuria was detected, or any 

morphological impairment in the kidney by light microscopy. Nephrin and 

synaptopodin are expressed normally in the knockout mice. Challenging experiments 

with LPS, BSA overload, and anti-GBM models did not reveal significant difference 

between littermate wild type and knockout mice.  

Dendrin mice were crossed with nephrin +/- mice and the dendrin-/-nephrin+/- 

mice were normal as compared to dendrin+/+nephrin+/-. Dendrin mice were also 

crossed with Fat2 mice, and the mice were followed until age of one year and 2 

months. Results showed that dendrin-/-fat2-/- did not show notable difference with 

dendrin-/-fat2 +/+ mice. 

Recently, it is reported that dendrin contains two nuclear localization signals 

(NLS1 and NLS2) [120]. Another publication showed that the NLS1 is necessary and 

sufficient for the nuclear import of dendrin in podocytes and the relocation promotes 

podocyte apoptosis [121]. However, the mechanism behind it and the detailed 

biological role of dendrin still remain a mystery. However, the above finding, “dendrin 

relocation promotes apoptosis”, or “nuclear dendrin is harmful”, at least is consitent 

with our observation that under stress models (LPS, protein overload), deletion of 

dendrin does not lead to a more severe phenotype than wild type mice, because the 
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knockout podocyte does not have dendrin to promote the apoptosis, or further damage 

to the filtration barrier.  

Since dendrin has such a restricted expression pattern (only in the brain and 

kidney), and a specific slit diaphragm location in the kidney, we still speculate that 

dendrin has some unknown functions for the filtration barrier. But it is not possible to 

predict the compensating proteins to dendrin, because dendrin does not have any 

known domains and homologous counterparts. We, therefore, did microarray 

experiment to examine changes in gene expression profiles. The result did not bring up 

any well known podocyte genes, but revealed a 1.5-fold upregulated gene Gadd45a 

(growth arrest and DNA damage - 45a) in dendrin knockout glomeruli. This gene 

product has also been shown to interact with dendrin using the Yeast 2 hybrid system, 

and their direct interaction has been proved by co-immunoprecipitation experiments 

using transfected HEK293 cells (unpublished observations). Gadd45a encodes a protein 

involved in cell cycle regulation [122-124], DNA repair and genomic stability [125-

126]. It is usually induced under stress condition, and arrests cell cycle at G2/M 

checkpoint and promote apoptosis of damaged cells. Its function has been most studied 

in from the point of view of controlling proliferating cancer cells, while it is considered 

to be protective in normal cells [127]. Thus, the upregulation of Gadd45a in dendrin 

knockout glomeruli can be interpreted as a cell stress responce induced by dendrin 

deletion. However, the upregulated Gadd45a did not seem to promote podocyte 

apoptosis since the dendrin knockout kidney could function as normally as wild type 

ones.  Thus, the biological roles of dendrin and its interacting proteins remain unclear 

and need further studies.  

Moreover, the Yeast 2 hybrid experiment using dendrin as bait also fished out 

another dendrin interacting protein, WTIP (Wilm’s tumor interacting protein). It has 

also been shown to directly interact with dendrin by co-immunoprecipitation 

experiments using transfected HEK293 cells. Their biological role in the glomerulus is 

under investigation and these results are outside of the scope of this thesis. 

 
 
4.2 ADENYLATE CYCLASE TYPE 1 (ADCY1) 

 
4.2.1 Identification of Adcy1 as a novel glomerular component  
Adcy1 is one out of nine members of the adenylate cyclase protein family, which 

catalyze the formation of the secondary messenger cAMP. Previously, Adcy1 has been 
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reported to be neurospecific with expression solely in the brain, in an area important for 

long-term memory formation [128-129]. However, our microarray experiments 

identified Adcy1 as a highly glomerulus specific transcript in the kidney. By RT-PCR, 

we could validate that, except for the brain, Adcy1 is also expressed in the kidney, and 

Northern blot hybridization also showed its expression to be in the brain, kidney, and 

also heart. The transcription size is approximately 11.5 kb. Since Adcy1 has nine 

homologous family members, it is not possible to detect Adcy1 at the protein level due 

to a lack of isoform specific antibodies. However, the glomerular specificity was 

confirmed by an in situ hybridization experiment, where Adcy1 was mainly expressed 

in the podocytes, starting from the capillary stage of glomerular development. Thus, we 

identified Adcy1 as a novel podocyte protein. 

 

4.2.2 Inactivation of Adcy1 results in susceptibility to proteinuria 
Earlier analysis of Adcy1-/- mice revealed only a behavior phenotype in the form of 

memory defects [128, 130]. To investigate the role of Adcy1 in glomerular podocytes, 

we analyzed the potential kidney phenotype of Adcy1-/- mice. By light and electron 

microscopy, the kidney morphology of newborn, 8-week-old, and 1-year-old Adcy1-/- 

mice appeared normal without any podocyte abnormality. The expression of the 

podocyte proteins nephrin, podocin, synaptopodin, podocalyxin, wt1, and dendrin was 

unchanged in Adcy1-/- mice, as judged by intensity of immunofluorescence staining. 

Urine samples were collected from 10-week and 1-year old Adcy1-/- mice, and no 

significant proteinuria was detected in Adcy1 knockouts using albumin-ELISA or SDS-

PAGE analysis. This indicated that the kidney filtration function in Adcy1-/- mice 

remained intact under normal circumstances. 

The intact glomerular function could be due to redundancy and compensation 

by other Adcy family members expressed in the glomerular podocyte, and RT-PCR 

from glomerular cDNA did reveal expression of the other Adcy isoforms, except for 

Adcy2 and Adcy8. These Adcys are more widely expressed in the body and are not 

upregulated in the kidney glomeruli according to our microarray data. Moreover, their 

expression level did not obviously change in Adcy1-/- glomeruli. But the existence of 

these Adcy proteins, at normal expression level, might be sufficient to compensate for 

the absence of Adcy1 in the Adcy1-/- mice, and thus to preserve normal kidney 

function. 

To further study if the apparently normal kidney function of Adcy1-/- mice is as 

sturdy as in wild type mice, we did challenge experiments to Adcy1-/- mice and 
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littermate controls.  By challenging the kidney with LPS, no obvious difference was 

observed between Adcy1-/- and wild type mice. But when challenging the kidney with 

the BSA overload method, Adcy1-/- mice developed massive proteinuria within 24 

hours which lasted in a severe form for two days after the last injection. In contrast, 

wild type mice only developed slight proteinuira and then returned to baseline much 

quicker. This indicates that under pathological conditions, Adcy1 -/- mice are more 

prone to develop proteinuria, and that the Adcy1 gene may in fact be a susceptibility 

gene for proteinuria. Proteinuria is an important hallmark for podocyte injury. Many 

congenital or acquired renal diseases develop proteinuria to different extent, and 

usually there is more proteinura the more severe the podocyte injury is. Thus, the 

highly podocyte upregulated Adcy1 may have a function of protecting from podocyte 

injury, which in the absence of Adcy1 leads to frailer kidney function.   

Adcy1 is responsible for catalyzing cAMP that is used for intracellular signal 

transduction, largely through the activation of protein kinases A (PKA). PKA is 

involved in a variety of cellular functions, including intermediary metabolism, ion 

channel conductivity, and transcription. Growing literature also suggests that PKA 

plays a central role in cytoskeletal regulation and cell migration [131].  Podocyte injury 

usually alters the dynamics of the actin cytoskeleton, resulting in foot process 

effacement and proteinuria. Hence, the heavier proteinuria of Adcy1 -/- mice under 

challenging condition is possibly due to a lower amount of cAMP catalyzed in a stress 

situation. Less PKA is activated in the podocytes, which affects the normal 

cytoskeleton dynamics and leads to more severe podocyte injury. However, this 

hypothetical mechanism was not proved in our studies. 

 

4.3 CRUMBS HOMOLOG 2 (CRB2) 

 
4.3.1 Identification of Crb2 as a novel glomerular component 
Crumbs is essential for organizing epithelial cells apical-basal polarity and adherent 

junctions in Drosophila [132-134]. In mammals, there exist three Crumbs homologues: 

Crb1, Crb2, and Crb3. Results of microarray experiments (see above) showed that Crb2 

is the only crumbs homologue that is upregulated in glomerulur. RT-PCR and Northern 

blot analyses showed that in mouse tissue Crb2 is mainly expressed in brain and 

kidney. The transcript is approximately 7.5 kb. Furthermore, in situ hybridization 

experiments and immunofluorescence staining using polyclonal antibody against 

extracellular Crb2 protein showed that it is located in podocyte foot process where it 
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colocalizes with synaptopodin. By immuno-EM, Crb2 was specifically located in the 

podocyte slit diaphragm region. Thus, Crb2 was identified as a novel podocyte 

component. Recently, its zebrafish homologue crb2b was knocked down, and the crb2b 

morphants showed podocyte foot process disorganization and loss of slit diaphragms 

[135]. 

 

4.3.2 Inactivation of Crb2 results in early embryonic lethality 
To further study Crb2 function in the kidney glomerulur, the entire coding region of 13 

exons was replaced with an eGFP lox-Ub1- EM7- Neo- lox cassette (Regeneron 

Pharmaceuticals, Inc). Heterozygous mice were intercrossed to obtain null mutant 

mice, but no -/- offspring was detected after embryonic day (E) 14.5, indicating 

homozygous embryos die earlier. Genotyping of embryos from E7 to E12.5 showed 

that the embryos developed at Mendelian frequencies, which means that mutant 

mortality does not occur prior to these stages. However, the Crb2 -/- embryos already 

developed severe defects during this period. The loss of Crb2 transcripts in mutants 

was confirmed by RT-PCR. The heterozygous offspring were viable and fertile and did 

not reveal any differences from wild type mice. 

 

4.3.3 Crb2 -/- mice exhibit holistic defects during early embryonic 
development 

The malformation was clearly evidenced at E7.75. The Crb2-/- head fold and primitive 

streak were retarded, the notochord was discontinuous, and the somites were also 

abnormal. From E8 and onwards, Crb2-/- embryos exhibited holistic defects in head, 

heart, somites, and gut formation. The null embryo was posteriorly truncated, and failed 

in early organogenesis. The extra embryonic tissue development was also abnormal, 

namely amnion, allontois and yolk sac. The Crb2-/- embryo could grow ectopically 

until E10.5, and were completely resorbed by E12.5.  

 

4.3.4 Crb2 is necessary for normal gastrulation process 
In mammals, gastrulation occurs after implantation, followed by organogenesis. The 

gastrulation starts at the primitive streak, which morphologically is a thickening of the 

embryonic ectoderm located in the posterior margin of the embryo. The epiblast at the 

primitive streak undergoes epithelial-mesenchymal transition (EMT) to geneate 

mesoderm cells that migrate laterally and arterially in between the ectoderm and 
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endoderm. These layers later undergo organogenesis and develop into certain bodily 

systems. 

The Crb2-/- embryo could develop the primitive streak, suggesting ability to 

establish the primary axis of the embryo. The Crb2 -/- primitive streak could generate a 

thin layer of mesoderm until the late streak stage (E7.5). However, the following 

gastrulation was significantly retarded. The EMT process is disrupted without Crb2 

function, as the epithelium caretaker E-cadherin expression persisted to the new 

transited mesoderm cells, and the degraded basement membrane between the abnormal 

ectoderm and mesoderm indicated a wider transiting window of the mutant primitive 

streak. Moreover, the transited mesoderm cells attack in the posterior embryo and 

express less fibronectin, a typical extracellular matrix protein that controls cell 

migration. These findings indicate that Crb2 has an important function in EMT at the 

primitive streak during mid-gastrulation of embryonic development. 

 

4.3.5 Crb2 is crucial for maintaining normal neuroepithelium 
morphology 

Crb2-/- neuroepithelium is poorly developed and the neural tube closure did not occur. 

By E8.25, compared to controls, most of the columnar neuroepithelium cells visualized 

by Pan-cadherin were disordered in the Crb2-/- ectoderm showing a pseudostratifed 

structure. The basement membrane marker perlecan expression in the null embryo 

showed a discontinuous pattern beneath the neuroepithelium, showing parts of the 

basement membrane broke down, but not in the controls. By E9.5, the Pan-cadherin 

labeled Crb2-/- neuroepithelium partially disassembled that they lost their sheet like 

structure and mixed with mesodermal cells. The disassembled neuroepithelium does 

not show increased signal by the Tunel assay, indicating that this phenotype is not due 

to apoptosis in the end stage embryonic development of Crb2-/- embryos. 

To summarize, Crb2 was in this study identified as a novel kidney glomerular protein. 

Inactivation of the Crb2 gene in mice resulted in early embryonic lethality, indicating 

its important role during mid-gastrulation process. The function of Crb2 in the 

glomerulus will be explored by my colleagues in studies of conditional knockout mice 

with podocyte specific inactivation of the Crb2 gene.  
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