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To my family 
“När jag blir stor ska jag gå på ett fnöre...” 



 

ABSTRACT 
The autoimmune disease myasthenia gravis (MG) is characterized by muscle 
weakness due to a loss of acetylcholine receptors (AChR) at the neuromuscular end 
plate. Most MG patients have pathogenic antibodies directed against the receptor. We 
provide further evidence that T cells are important for establishment and continuation 
of the disease. We have detected pathogenic antibodies capable of transferring disease 
to mice in healthy twin sisters as well as in their MG affected sisters in two 
monozygotic twin pairs discordant for MG. However, the healthy twin sisters did not 
demonstrate T cell responses against the AChR. A further support to the importance 
of T cells in maintaining the disease is shown in a successful treatment of an MG 
patient with antibodies targeting CD25. This molecule is expressed on activated cells. 
The levels of activated T cells, serum levels of IL-10 as well as the soluble 
costimulatory molecules sCD28, sCD80, sCD86 and sCD152 decreased, suggesting a 
normalization of an abnormally activated immune system.  

Costimulatory molecules are important in the activation and inhibition of an immune 
response. We demonstrated reduced expression of the costimulatory molecule CD152 
(cytotoxic T lymphocyte associated antigen 4, CTLA-4) in T cells from MG patients. 
CD152 is essential to inhibit an immune response, therefore the patients might have a 
reduced potential to down-regulate an ongoing immune reaction. We observed that 
the G allele at position +49 in coding sequence 1 of the CD152 gene was associated 
to increased immune activity, manifested as increased levels of IL-1β and 
CD3+CD28+ cells. MG patients with thymoma more frequently had the G/G genotype 
or the G allele, which could explain a more active immune response in patients with 
this genotype. 

The costimulatory factors CD28, CD80, CD86 and CD152 also exist in soluble 
forms. The concentrations of sCD28, sCD80, sCD86 and sCD152, all of which 
recently have been shown to be increased in different diseases, were not increased in 
MG patients. However, in one of our studies we detected elevated levels of sCD152 
in MG patients. The concentrations of sCD28, sCD80, sCD86 and sCD152 correlated 
to each other and to IL-6, IL-10 and IFN-γ. All four soluble costimulatory molecules 
correlated to sCD25 in healthy persons, while only sCD80 and sCD86 correlated to 
sCD25 in MG patients. In addition, we confirmed results by others demonstrating 
increased serum levels of sCD25 and sICAM-1. 

We produced a recombinant form of the naturally occurring soluble costimulatory 
factor CD80. Recombinant sCD80 demonstrated capacity to interact with its natural 
ligands CD28 and CD152. It preferentially bound to activated cells. In addition, it 
displayed immunosuppressive properties, demonstrated by inhibition of T cell 
activation, inhibition of the mixed lymphocyte reaction and the ability to alter the 
cytokine secretion balance in vitro. The effect of sCD80 in vivo has to be clarified, 
but it is tempting to speculate about a potential future use of the soluble protein in 
treatment of diseases like MG. 

In summary, we have provided further evidence that T cells are important in the 
initiation and maintenance of MG, and that the costimulatory factors could be 
involved in disease progression. 
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1 INTRODUCTION 
 
1.1 MYASTHENIA GRAVIS 
 
1.1.1 Background 

Myasthenia gravis is an autoimmune disease characterized by muscle weakness. In 
1672 Thomas Willis first described the disease, and about 300 years later the disease 
was suggested to be of autoimmune origin (1, 2). The weakness is due to a loss of 
AChRs at the neuromuscular endplate (3, 4). Upon propagation of an action potential, 
the neuron releases acetylcholine which binds to the receptor located on the muscle. 
The binding of acetylcholine to its receptor leads to contraction of the muscle. A 
reduction in the number of receptors impairs the muscle contraction, hence gives rise to 
the muscle weakness seen in the MG patients. The etiology of the disease is not known, 
although the main antigen, the AChR, to which the abnormal immune response is 
directed, is well characterized (reviewed in (5)). 
 
All skeletal muscles can be affected. MG is classified as ocular (class 1), mild 
generalized (class 2a), severe generalized (class 2b), acute (3), late severe generalized 
(4) or remission (A). The prevalence of the disease is 14/100 000 and the sex ratio 
(females/males) is 1.7/1 in Stockholm, Sweden (6). MG can debut at any age, and there 
is a predominance of women between the ages 15 to 40 (6, 7). However, the incidence 
of late-onset MG is increasing, and in these patients the sex ratio is more balanced ((6) 
and reviewed in (8)).  
 
1.1.2 Treatment  
Autoimmune diseases involve an abnormal immune reaction against a self antigen. The 
suppression of an autoimmune disease, with the ability to preserve an alert immune 
response against harmful agents is a dream scenario. MG can not be cured today and 
there is only symptomatic treatment. However, progress has been made since the 
disease caused death in many cases before modern treatment started (9). The disease is 
nowadays treated with acetylcholine esterase inhibitors, which prolong the action of 
acetylcholine in the synapse. Patients can also get additional treatment consisting of 
immunosuppressive agents, as corticosteroids, methotrexate, azathioprine and 
cyclosporine, or immunomodulators such as high dose intravenous IgG (IVIg). Patients 
are generally thymectomized, although thymectomy is not recommended in patients 
with ocular MG, unless they show signs of thymoma. Plasmapheresis to treat MG was 
more common in the 1970s and 80s (personal communication with R Pirskanen).  
 
Biological therapies for treatment of various diseases are emerging. Many patients with 
rheumatoid arthritis benefit from therapies directed against TNF-α (10, 11). A recent 
publication reported improvement in MG patients after treatment with recombinant 
soluble TNF receptor fusion protein (etanercept) (12). MG patients also benefit from 
elimination of B cells using anti-CD20 antibodies (13-16). Another antibody therapy, 
which we have used in a pilot study to treat an MG patient, is directed against the IL-2 
receptor α-chain (also known as CD25). The antibody was first intended to prolong 
survival of grafts in transplantations (17, 18). Anti-CD25 therapy is also successful in 
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the treatment of psoriasis (19-22), chronic atopic dermatitis (23), erosive lichen planus 
(24), epidermolysis bullosa acquisita (25), aplastic anemia (26), uveitis (27, 28), steroid 
resistant ulcerative colitis (29), and multiple sclerosis (30, 31). In addition, rhesus 
monkeys with collagen induced arthritis benefit from treatment with daclizumab 
(Zenapax®) – the fully humanized anti-CD25 antibody – supporting a role for anti-
CD25 therapy in an autoimmune disease like rheumatoid arthritis (32). Thus, more 
biological therapies are entering the therapeutical area, but the classical 
immunosuppressants are still in use. None of the therapies targets only those cells that 
are autoreactive, hence the treatments are not specific.  
 
1.1.3 Genetic associations  
 
Autoimmune diseases are complex disorders involving multiple genes and unknown 
environmental triggers. The fact that the familial incidence is higher compared to the 
incidence in the population in general, together with a higher concordance rate in 
monozygotic than dizygotic twins suggest a true genetic link for MG (33-36). 
Nevertheless, most autoimmune diseases including MG show a rather low concordance 
rate in monozygotic twins, who should be genetically “identical”, pointing to the 
importance of environmental factors in disease development (37). Thus, the genetic 
background of a person determines the susceptibility to disease, but this alone is not 
enough to develop the disease.  
 
Different autoimmune diseases often cluster within families, suggesting that common 
genetic factors exist for various autoimmune diseases. Indeed, one of the indicators that 
made Simpson suspect MG to be of autoimmune origin, was the clustering of the 
disease together with other known autoimmune diseases in families (1). The immune 
system assures protection to intruding pathogens, but an improper targeting of self 
structures gives rise to autoimmunity. The genes of the HLA-system are very good 
candidates as disease susceptibility genes because of their great impact on what the T 
cell will “see” and not “see” in a specific individual. The highly polymorphic HLA-
molecules preferentially bind certain kinds of peptides, and therefore could 
significantly influence the immune response. MG is linked to different HLA-types, and 
the haplotype HLA-DR3 B8 A1 is associated to MG with thymic hyperplasia as well as 
to other autoimmune diseases (SLE, celiac disease, type I diabetes and autoimmune 
thyroiditis) (reviewed in (38)). Patients with thymoma show different HLA associations 
(reviewed in (38)). Even though there are some associations to specific HLA-
haplotypes, the odds ratios are not very high. Thus, disease susceptibility involves other 
genetic factors. Each susceptibility locus might only have a minor contribution to the 
overall predisposition, and some could even protect from disease, leading to a complex 
genetic interplay. 
 
Other genes of interest for development of MG are those important for immune cell 
function (the genes for IL-1β, IL-1 receptor antagonist, IL-10, TNF-α, CD152, Fc 
gamma receptors, the TCR, and GM allotypes of IgG), the β2-adrenergic receptor, and 
obviously the autoantigen the AChR (39-56). The CD152 gene is very interesting in 
this context since polymorphisms in the gene have been associated to many other 
autoimmune diseases including Grave’s disease, Hashimoto’s thyroiditis, type I 
diabetes, multiple sclerosis, celiac disease, and vitiligo (reviewed in (57)). Furthermore, 
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the protein has a central role in turning off the immune response, making its association 
to autoimmune diseases more relevant (see below). The gene for CD152 is located at 
chromosome 2q33 in humans (58). It contains multiple polymorphisms. The most well-
known are a C to T SNP in the promoter region at position -318 (59), an A to G 
mutation at position +49 in CDS1 (60), and an AT repeat at position +642 in the 3’-
UTR (61) (Fig 1).  
 

 
Fig 1. Schematic picture of the CD152 gene. The CD152 gene is located on chromosome 2q33 in 
human. The figure displays the best characterized polymorphisms. One polymorphism is present in the 
promoter region (-318 C/T), one CDS 1 at position +49 (A/G), and a microsatellite consisting of AT 
repeats is located in the 3’-UTR. 
 
1.1.4 The thymus  
 
The thymus is the place in which the T cell repertoire is shaped, where the positive and 
negative selection of thymocytes occurs. A majority of MG patients have thymic 
abnormalities (62). Younger females often have thymic hyperplasia, and thymoma 
occurs in about 15% of the patients, mostly in older patients (6, 7, 62, 63). Patients with 
thymoma generally have a more severe and aggressive disease (7, 64). The importance 
of the thymus for disease development was illustrated by the induction of disease after 
transfer of thymus tissue from MG patients to SCID mice (65), and the fact that many 
patients benefit from thymectomy (66, 67). The hyperplastic thymus possesses all the 
ingredients needed to start an immune response against the autoantigen; autoreactive 
TH cells, APCs, the autoantigen the AChR, as well as antibody secreting plasma cells 
(68-73). However, the cells reactive to the AChR might also have entered the thymus 
after a sensitization elsewhere (72). Since antibodies against citric acid extract of 
human skeletal muscle stained both skeletal muscle and epithelial cells in thymoma 
tissue, it was hypothesized that thymoma patients could develop the disease because of 
a cross-reactivity between a thymoma related antigen and skeletal muscle (74). Another 
model described a scenario where the thymoma produces non-tolerant naïve T cells that 
are exported and activated in the periphery (reviewed in (75)). 
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1.1.5 B cells  
 
B cells become antibody secreting plasma cells upon activation. MG is considered to be 
a B cell driven disease since about 90% of the patients have autoantibodies against the 
AChR (76, 77), and these antibodies play a major role for the reduced receptor function 
at the endplate. The antibodies have the capability to transfer disease to animals (78, 
79), and injection of AChR also causes disease with production of anti-AChR 
antibodies in animal models (80, 81). The antibodies can function via 1) inhibition of 
the binding of acetylcholine to the receptor (82), 2) increased internalization of the 
receptors (83, 84) and/or 3) activation of the complement cascade leading to destroyed 
endplates (85). However, about 10% of the patients with MG do not have antibodies 
against the AChR, but still show the symptoms of the disease, and their Ig fractions and 
plasma can transfer the disease to mice (86, 87). The presence of ocular symptoms only 
is more common in these “seronegative” patients, and the patients may be different 
from MG with anti-AChR antibodies (reviewed in (88, 89)).  
 
Other autoantibodies have also been demonstrated in MG patients, for example 
antibodies against the muscle antigens titin, MuSK (muscle-specific receptor tyrosine 
kinase), the ryanodine receptor, actin, actinin, actomyosin, myosin and the β1- and β2-
adrenergic receptors (90-96). 
 
Antibodies consist of constant and variable regions. The variable domain of the 
antibody (the idiotype) has been proposed to constitute an antigen in itself, able to 
trigger the production of anti-idiotypic antibodies. In the same way, anti-anti-idiotypic 
antibodies can arise, generating a network of antibodies able to react with each other. 
Jerne anticipated the theory about this “idiotypic network” in the 1970s (97). The anti-
idiotypic antibody could represent a mirror image of the true antigen, and anti-anti-
idiotypic antibodies may have the capacity to react with the antigen. The anti-idiotypic 
antibodies may either down-regulate the immune response, or trigger the production of 
pathogenic antibodies (97). The anti-idiotypic antibodies exist in MG patients, and they 
can be induced in experimental animals, suggesting that the idiotypic network is 
operating in MG patients (98-103) (Fig 2). An anti-idiotypic antibody was able to 
induce production of anti-AChR antibodies, and could thus lead to development of 
disease (104). The levels of the anti-idiotypic antibodies showed an inverse relationship 
with anti-AChR IgG antibodies, suggesting that they are either regulatory or involved 
in expansion of pathogenic cell clones (105). In addition, since healthy relative to MG 
patients have the anti-idiotypic antibodies, the antibodies have a potential regulatory 
role (106).  
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Fig 2. The idiotypic network in myasthenia gravis. Approximately 90% of MG patients have anti-
acetylcholine receptor (AChR) antibodies (76, 107). 75% of the patients were reported to have anti-
idiotypic (id) antibodies, directed against the variable region, and 89% had anti-anti-idiotypic antibodies 
(103).  
 
The importance of B cells in MG is further illustrated by the findings that mice lacking 
B cells did not develop EAMG upon immunization with AChR, and that patients 
treated with antibodies depleting the B cells improved in their disease (13-16, 108, 
109).  
 
1.1.6 T cells  
 
B cells need help from T cells to become plasma cells and secrete antibodies. This is 
true for most antigens, including the AChR, as shown in animal studies (110, 111). The 
T cell mediated activation of B cells is predominantly via CD4+ TH cells, both via cell 
to cell interactions and via cytokines. Therefore, the T cells have been a major focus in 
the study of MG since the AChR specific T cells were found in MG patients (112-115). 
MG can not be induced in thymectomized rats, and the disease can be transferred by 
lymphocytes (111). Transfer of cells depleted of CD4+ or CD8+ cells from MG patients 
to SCID mice demonstrated the need of CD4+ cells for development of the disease 
(116), while others showed that both CD4+ and CD8+ cells are important for the disease 
to develop in mice (117). The fact that T cells are important to maintain the disease was 
demonstrated in a successful treatment study of a patient receiving antibodies against 
CD4 (118). Furthermore, genetic studies support the significance of factors central to T 
cell function in MG, since polymorphisms in the genes for IL-1β, IL-1 receptor 
antagonist, IL-10, CD152, and TNF-α were linked to MG, or subgroups of MG (39-
43). Thus, all of the above findings support a significant role for T cells in the 
pathogenesis of MG.  
 
There are several subgroups within the CD4+ TH cell population. IL-12 can induce TH1 
cells, which secrete IL-2, IFN-γ and TNF-β, leading to cell mediated immunity. IL-4 
induces TH2 cells, which secrete IL-4, IL-5, IL-6, IL-9, IL-10, and IL-13, leading to 
humoral immunity. Mouse studies pointed to the importance of IFN-γ and IL-12 in the 
development of EAMG (119, 120). Rats on the other hand did not require IFN-γ to 
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develop disease (121). However, blockade of IL-18 or CD40L in rats, as well as oral 
tolerance to a peptide of human AChR, down-regulated EAMG leading to suppression 
of TH1 cytokines (122-124). The TH2 cytokine IL-4 was not required for disease 
induction, and the authors of the article suggested that TH2 cells might even protect 
from disease (125, 126). The importance of IL-10 in the disease is obscure since this 
cytokine has multiple functions and can act both as a pro-inflammatory and an anti-
inflammatory cytokine. It seems to aggravate MG since mice transgenic for IL-10 
exhibited accelerated EAMG, recombinant IL-10 exacerbated disease, IL-10-/- mice 
demonstrated reduced disease symptoms, and MG patients had increased levels of 
AChR specific IL-10 secreting cells (127-130). Both TH1 and TH2 AChR reactive cells 
were detected in MG patients (131). Although, it is not clear what role the different 
subgroups play in human MG, since the contributions of TH1 and TH2 cytokines to the 
disease may vary in different species. 
 
In addition to the conventional CD4+ TH cells and CD8+ cytotoxic cells, there are 
regulatory subsets of T cells. The thymus derived CD4+CD25+ naturally occurring 
regulatory T cells, characterized by their ability to suppress other cells, were first 
demonstrated in mice followed by detection in humans and are since then a hot area of 
investigation (132-135). These cells are important to prevent autoimmunity since mice 
deficient of CD25 develop autoimmune diseases (136). The CD4+CD25+ regulatory T 
cells have also been explored in MG patients. The thymus in thymoma patients 
contained reduced numbers of CD4+CD25+ regulatory cells (137, 138), while another 
group has reported no difference in their number but an impaired function (139). 
Reports also diverge regarding the number of CD4+CD25+ regulatory T cells in the 
peripheral blood – some demonstrated no difference between healthy persons and 
patients (including different subgroups) (137, 139, 140). Another study showed 
decreased numbers of the cell type in thymoma patients (138). Patients with stable MG 
even had increased levels of CD4+CD25+ cells compared to “uncontrolled” MG 
patients and healthy persons (141). Thymectomized patients also exhibited increased 
levels of the regulatory cells as compared to non-thymectomized patients and healthy 
controls in the same study (141). In addition, treatment may influence the number of 
these cells since MG patients without treatment had decreased numbers of the 
CD4+CD25+ cells compared to healthy persons, and patients with immunosuppressive 
treatment had increased numbers of the regulatory cells compared to patients without 
treatment (142). There was also a tendency to similar findings in thymus tissue from 
the patients (142). The transcription factor FoxP3 is important for the function of the 
regulatory T cells, and might be a specific molecular marker for this cell type (reviewed 
in (143)). Thymocytes from MG patients in general and MG patients with thymoma, as 
well as PBMC from thymoma patients, contained reduced levels of this transcription 
factor (138, 139). Thus, the function of the CD4+CD25+ regulatory T cells seems to be 
impaired in aberrant thymi of MG patients, which in some cases is reflected in the 
peripheral blood. 
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1.2 COSTIMULATION IN THE ACTIVATION AND INHIBITION OF T CELLS 

 
1.2.1 Activation and inhibition by CD28 and CD152 

In 1970, Bretscher and Cohn proposed the theory that T cells need two signals to 
become activated (144). The first signal provides specificity, assuring stimulation only 
of those T cells specific for the antigen. MHC with a bound peptide interacting with the 
TCR delivers this signal. The second signal is transmitted via costimulatory molecules. 
CD28 is probably the most important costimulatory molecule for the start of an 
immune response, while CD152 (CTLA-4) is important for the down-regulation of the 
response. The cell activation via CD28 leads to up-regulation of survival genes (Bcl-xL) 
(145, 146), enhanced production and stabilization of IL-2 and other cytokine mRNAs 
(147, 148), as well as cell cycle progression (149, 150). CD152 ligation on the other 
hand inhibits cell cycle progression and IL-2 production, as well as blocks the 
expression of CD25 (151-153). T cells express CD28 and CD152, which both interact 
with CD80 and CD86 on the APCs. T cells and APCs constitutively express CD28 and 
CD86, respectively, while expression of CD152 and CD80 is induced upon activation 
(154-162) (Fig 3). However, T cells can also express CD80 and CD86 upon activation, 
and acquisition of CD80 from APCs occurs in both mouse and human T cells (160, 
163-166). The functional significance of the expression of CD80 and CD86 on T cells 
is not clear, but the cells have the possibility to act as APCs themselves providing 
costimulation to other T cells (163, 164). CD80 is a more potent costimulator than 
CD86, and the affinity to CD152 is higher compared to CD28 (167-170).  
 
CD152 is expressed on the surface of activated T cells, but most of the protein exists in 
intracellular stores, wherefrom it cycles to the surface (171, 172). Recently, a form of 
CD152 (CD152li) lacking the CD80/CD86 binding domain was demonstrated in mice 
(173). Even though it lacked the ligand binding part, it had the ability to deliver an 
inhibitory signal to the T cell. Similarly, human T cells express a splice variant of 
CD28 (CD28i) lacking most of the extracellular part (174). This molecule could 
amplify the costimulatory signal via CD28 (174). Thus, not only are the receptor and 
ligand interactions complicated, splice variants of the different molecules add more 
complexity to the system.  
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Fig 3. Activation and inhibition of T cells by CD28 and CD152. CD28 and CD152 on the T cell can 
both interact with CD80 and CD86 on the APC. For simplicity, the figure only illustrates one of the two 
possible interactions for each molecule. 1) The TCR on the T cell interacts with MHC with a bound 
peptide on the APC. This allows only those T cells specific for the peptide to become activated. 2) CD86 
(or CD80) on the APC interacts with CD28 on the T cell, delivering the second signal. This interaction 
leads to activation of the T cell. 3) Later on in the immune response, up-regulation of CD80 on the APC 
and CD152 on the T cell takes place. Ligation of CD152 (via CD80 or CD86) leads to inhibition of the T 
cell response. 
 
Mice deficient in specific genes can give a lot of information about the contribution of a 
gene to a specific phenotype. However, different genetic backgrounds of mice can 
influence the phenotype. Mice lacking the CD152 gene demonstrate the importance of 
CD152 for the immune system to function properly. The CD152-/- mice showed 
massive lymphoproliferation, and died within a few weeks after birth (175). CD4+ T 
cells induced this phenotype, as deletion of these cells prevented lymphoproliferation 
(176). The CD152-/- mice could be rescued by addition of CTLA4-Ig (a chimeric 
protein consisting of the extracellular part of CD152 and the Fc part of IgG) (177). On 
the other hand, normal B and T cell development does not require CD28, as 
demonstrated in the CD28-/- mouse (178, 179). Immune responses occurred in these 
mice, but they showed reduced T cell proliferation, as well as reduced TH cell activity 
and Ig switching. However, they had a normal cytotoxic T cell response against virus. 
Mice deficient in both CD80 and CD86 demonstrated that these two molecules are 
central for switching to IgG, which is dependent on T cell help (180). CD86-/- mice had 
differences in antibody switching compared to wild type mice depending on the 
immunization route (180). The effect in CD80-/- mice was not that pronounced. CD80 
and CD86 had overlapping effects on class switching and germinal center formation, 
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with CD86 having a greater effect (180). Thus, the costimulatory molecules are very 
important for a normal immune response to operate in a proper and efficient way, and 
the different “knock-out” models can be used to clarify the significance of the specific 
molecules as well as to elucidate the roles of other costimulatory pathways. Moreover, 
the CD152 gene might be a common susceptibility gene for autoimmunity (57, 181). 
Polymorphisms in the gene affecting the expression of the protein derivatives can have 
devastating effects on the outcome of an immune response, since mice lacking the 
molecule die at an early age (175). 
 
1.2.2 Soluble costimulatory factors and their function 

 
The finding of soluble forms of CD28, CD80, CD86 and CD152 in humans adds more 
complexity to the network of costimulation (182-185). Reports of increased levels of 
these proteins in patients compared to controls have appeared in recent years 
(summarized in Table 1). Asthmatic children and patients with primary Sjögren’s 
syndrome, SLE and systemic sclerosis showed increased levels of sCD28 (184, 186, 
187); while children and adults with asthma, patients with autoimmune thyroid disease, 
SLE and diffuse cutaneous systemic sclerosis had elevated levels of sCD152 (186-191). 
Patients with hematological malignancies and SLE demonstrated increased levels of 
CD80 and sCD86 (183, 186, 192). Adults with acute asthma and asthmatic children 
also had increased levels of sCD86 and sCD80, respectively (187, 193). Thus, the 
presence of these soluble costimulatory molecules may be used as markers of immune 
activity in different patient groups, but their functional significance has yet to be proven 
(see below). 
 
Table 1. The levels of the soluble costimulatory factors sCD28, sCD152, sCD80 and sCD86 are 
increased in various disease states. For simplicity, the group called “asthma” includes both children and 
adults with asthma. The respective references are given within brackets. 

 sCD28 sCD152 sCD80 sCD86 
Asthma 9* (187) 9*, ∇ (187, 

191) 
9 * (187) 9 ∇ (193) 

SLE 9 (184, 186) 9 (186, 189) 9 (186) 9 (186) 
Hematological 
malignancies 

  9 (183) 9 (192) 

Systemic sclerosis 9 (184)    
Diffuse cutaneous 
systemic sclerosis 

 9 (190)   

Sjögren’s syndrome 9 (184)    
Autoimmune thyroid 
disease 

 9 (188)   

* Increased in children with asthma 
∇ Increased in adults with asthma 
 
Reports on the function of the soluble costimulatory factors are not consistent. 
CD152Ig, a chimeric protein consisting of the extracellular part of CD152 and the Fc 
domain of IgG, down-modulates immune responses, shown in vitro as well as in animal 
models, and recently even in rheumatoid arthritis patients in human studies (169, 194, 
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195). Soluble CD152 lacking the transmembrane domain also demonstrated inhibitory 
activity (185). The reports of the function of soluble forms of CD28, CD80 and CD86 
are inconsistent. In vitro as well as mouse models showed augmented anti-cancer 
responses by CD80Ig and CD86Ig (196-198). On the other hand, co-delivery of a 
plasmid coding for the extracellular part of CD86 inhibited the immune response 
against DNA-vaccines in mice (199). Stimulation of T cells with CD80Ig or the 
extracellular part of CD80 in immobilized form led to proliferation, while the protein in 
soluble form did not (168, 199-202). A non-glycosylated form of extracellular CD80 
even suppressed T cell proliferation, but in another study a similar protein gave the 
opposite result (200, 203). An inhibitory effect was also observed with porcine soluble 
CD80 containing a histidine-tag (204). Soluble CD86 (lacking the transmembrane 
region) exhibited a stimulatory role in T cell activation in vitro (182). Soluble CD28, 
produced in COS cells as a protein lacking the transmembrane region, inhibited T cell 
proliferation (184). The effects of the chimeric Ig-forms of the two T cell associated 
molecules CD28 and CD152 in dendritic cells have also been investigated. CD28Ig 
stimulated dendritic cells to secrete IL-6 and to become “activated” – having the 
opposite effect as compared to CD152Ig on this cell type (205, 206). In this system, 
CD28Ig enhanced an anti-cancer response in mice (206). Hence, the function of the 
soluble costimulatory factors is not completely elucidated, and further studies are 
needed to confirm if the chimeric forms of the proteins possess the same functional 
characteristics as the natural soluble forms. It is also important to confirm the true 
effect of the naturally occurring soluble costimulatory factors in vivo. 
 
1.2.3 Other costimulatory pathways 

 
Other costimulatory pathways can operate between the T cells and the APCs, for 
example positive signals can be mediated by interactions via ICAM-1/LFA-1 
(lymphocyte function-associated antigen), ICOS/ICOS-L, OX40/OX40L, 
CD40/CD40L and 4-1BB (CD137)/4-1BBL, while negative signals can be supplied by 
PD-1 (programmed death-1) interacting with PD-L1 or PD-L2, and BTLA (B and T 
lymphocyte attenuator) interacting with B7H-4 (reviewed in (207, 208)). Thus, the 
costimulatory network is redundant assuring for activation and inhibition of the T cells, 
although CD152 is essential to prevent autoimmunity (175). 
 
1.2.4 Costimulatory molecules in myasthenia gravis 

  
The fact that CD80-/-, CD80-/-/CD86-/-, ICOS-/- and CD40L-/- mice do not develop 
EAMG, and CD28-/- mice are less susceptible to disease induction show the importance 
of the costimulatory pathway in MG (209-211). Antibodies to CD152 aggravated 
EAMG in mice (212), and CTLA4-Ig treatment of rats with EAMG improved the 
disease (213). The expression of the membrane bound costimulatory molecules in MG 
patients was different from that in healthy persons. Patients had decreased levels of 
CD8+CD28+ cells, and increased levels of CD4+, CD8+ and CD14+ cells expressing 
CD80 and CD86 (214). Together the results suggest that the costimulatory molecules 
are likely to be involved in the improper immune reactivity in MG patients. 
Manipulation with their expression or providing them as drugs could affect the disease 
outcome. 
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2 AIM OF THE STUDY 
 
The study was intended to investigate the role of T cells and costimulatory molecules in 
myasthenia, with particular emphasis on CD152. The following questions were 
addressed: 
 

• Is there any difference in the T cell or B cell responses to disease related 
antigens in two monozygotic twin pairs discordant for MG? 

• Are there associations between MG and the most well studied CD152 gene 
polymorphisms? 

• Is the expression of CD152 abnormal in MG patients? 
• Do MG patients have altered serum levels of the soluble costimulatory factors 

sCD28, sCD80, sCD86 and sCD152, and do these proteins correlate to other 
known markers of immune activation? 

• What is the function of soluble CD80? 
• Can MG patients benefit from CD25 targeting? 
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3 METHODOLOGICAL CONSIDERATIONS 
 
3.1 DNA 
 
3.1.1 Extraction of DNA 
 
DNA was extracted from whole blood using the chloroform/phenol method or the 
salting out method. The latter method is to prefer since it avoids the use of harmful 
chemicals. 
 
3.1.2 Detection of DNA variants  
 
An SNP can give rise to a change in a restriction enzyme recognition site, or such a site 
can be introduced into a sequence with the use of primers. A specific base in the SNP 
will permit digestion of the PCR-amplified product by a restriction enzyme, hence 
discrimination of different alleles can be performed after visualization of the bands on 
an agarose gel. An advantage with this method called “restriction fragment length 
polymorphism” is its simplicity and that it is not too time consuming. Sequencing is 
another method to study genomic differences. We used sequencing to calculate the 
length of a microsatellite in the CD152 gene and to obtain the sequence for splice 
variants of CD80.  
 
3.2 RNA  
 
3.2.1 Purification of RNA 
 
To prepare RNA we used Ultraspec II™, which is based on guanidine and urea as 
denaturing agents, chloroform to extract RNA and a specific RNA binding resin to 
purify the RNA. In earlier studies we used RNAzol B. A disadvantage with the two 
methods is the use of harmful chemicals as chloroform and phenol.  
 
3.2.2 RT-PCR and real time PCR 
 
RT-PCR was used to qualitatively detect RNA in different cell types. Real time PCR is 
another method to measure mRNA/cDNA amounts. Real time PCR is sensitive and 
gives a quantitative aspect of the presence of different mRNAs. A fluorescently 
labelled probe detaches from the target sequence as elongation occurs. The more cycles 
of amplification, the more fluorescence will be released and detected. The major 
difference between RT-PCR and real time PCR is that with real time PCR one can 
measure the amount of mRNA during the exponential synthesis. An alternative to the 
methods is Northern blot, where the PCR amplification step is eliminated and detection 
of different RNAs is done using radioactively labelled probes. However, with this 
method one needs more cells to start with, and the radioactive component is a 
drawback.  
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3.3 PROTEIN 
 
3.3.1 Protein expression and purification  
 
We used the Escherichia coli expression system to express recombinant soluble CD80 
containing a histidine-tag. The E. Coli system is fast and usually gives a high yield of 
the protein of interest, but it does not give the same post-translational modifications of 
the protein as mammalian cells. We purified the protein taking advantage of the high 
affinity of nickel ions for the histidine tags. To use the soluble recombinant CD80 in 
biological assays, we refolded the protein in order to obtain a more native form of it. 
Since there is no “gold standard” how to do this – different proteins need different 
buffers and agents to obtain a biological functional conformation – refolding of proteins 
can be a tedious work. 
 
3.3.2 Detection of proteins 
 
Proteins can be detected in different ways, some more sensitive than others. I will here 
briefly summarize the protein detection methods I have used. 
 
3.3.2.1 Coomassie staining of gels 

After gel electrophoresis gels can be stained with Coomassie staining. This method 
does not discriminate between proteins – all proteins are labelled. The method can be 
used to see the purity of a sample. We have used the method to visualize protein bands 
that were cut out and further analyzed using mass spectrometry.  
 
3.3.2.2 Western blotting  

Western blotting was used to detect proteins after gel electrophoresis. The method 
relies on the equilibrium reaction between antibodies specific for certain epitopes and 
the protein of interest. The specificity of the antibody as well as the affinity of it 
determines the successfulness of the method. Some antibodies might be cross-reactive 
with epitopes present in other proteins. False positive results are therefore a drawback 
with the method. 
 
3.3.2.3 Immunoadsorption  

Human serum has very high protein content. If a protein of interest is present in a very 
low concentration, its detection can be blurred by the high concentrations of other 
proteins as antibodies or albumin. In this study we used immunoadsorption to 
concentrate soluble CD80 from serum samples.  
 
3.3.2.4 RIA 

RIA is a technique that is based on the binding of antibodies to a specific radiolabelled 
protein. The method is widely used to detect antibodies against the AChR. A 
disadvantage with the method is the use of radioactively labelled iodine. An ELISA 
based on a cell line expressing AChR is an alternative method (215). However, the use 
of human muscle extract instead of receptor from a cell line is preferred since the cell 
line does not express all forms of the receptor (216). The RIA is also more sensitive.  
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3.3.2.5 ELISA 

ELISA is based on a non-competitive antibody pair binding to a protein of interest. In 
this study, the “sandwich method” was used to detect different soluble proteins, mostly 
in serum but also from cell culture supernatants. The technique is not too sensitive; it 
can be used to discriminate positive samples from negative, but absolute concentrations 
should be regarded with caution.  
 
3.3.2.6 ELISPOT 

ELISPOT is like the ELISA based on pairs of antibodies with specificity for a given 
protein. It differs from the ELISA in the sense that a cell suspension is cultured in 
antibody coated wells. If the cells secrete the protein of interest (eg a cytokine or an 
antibody) the protein will bind to the antibodies beneath the cell, giving rise to a “spot”. 
The number of cells secreting a specific protein can then be counted in a microscope. A 
disadvantage with the method is the subjective part when the researcher has to decide 
what should be regarded as a spot or not, since artefacts are quite common and can 
interfere with the analysis.  
 
3.4 CELLS 
 
3.4.1 Thymidine incorporation 
 
A widely used method to study proliferation is based on the incorporation of tritiated 
thymidine into growing cells. The incorporation of the radioactively labelled DNA base 
analogue is measured with a beta-counter. We used this method to study proliferation 
of PBMCs in cell stimulation assays as well as in the mixed lymphocyte reaction. 
Alternative methods based on for example the incorporation of BrdU (5-bromo-2'-
deoxyuridine) or tetrazolium compounds into cells with colorimetric or 
chemiluminescent detection circumvent the use of radioactively labelled material. 
 
3.4.2 Flow cytometry 
 
Flow cytometry using a FACS is based on the specific binding of fluorescently labelled 
antibodies or chemicals to cells. Positive cells are discriminated from negative cells 
using a flow cytometer and analysis software. The technique is very fast compared to 
the cumbersome work of detecting and numbering cells in a microscope. It is used to 
detect proteins expressed at the surface as well as intracellularly after permeabilization 
of cells. The DNA content can also be detected, allowing one to compare apoptotic, 
necrotic and viable cells.  
 
3.5 MOUSE 
 
Passive transfer of human antibodies to mice can reveal if antibodies are pathogenic or 
not. C57BL/6 mice, a strain that is susceptible to EAMG can be injected with Ig 
fractions from persons. If present, pathogenic antibodies against the AChR will 
decrease the number of receptors at the endplates in the mice, and will also transfer the 
characteristic symptoms of the disease – the muscle weakness. 
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3.6 SUBJECTS 
 
All MG patients included in the study were from the Stockholm area, Sweden. Samples 
were collected at the Myasthenia Gravis Centrum at the department of Neurology, 
Karolinska hospital. An established bank with DNA and sera from MG patients has 
been collected during many years. This bank was used for the genetic studies and for 
studying soluble factors in serum.  
 
The healthy controls were from the Stockholm area, either healthy blood donors or 
persons recruited from the neighbouring laboratories.  
 
3.7 STATISTICAL METHODS 
 
Statistics were calculated with the InStat program (paper II and III) or GraphPad Prism 
version 4.00 for Windows (paper IV and V). The student’s T-test (parametric) and the 
Mann Whitney test (non-parametric) were used to compare differences between groups. 
For non-parametric correlations we used Spearman correlations (paper IV). Linear 
regression was used to correlate AChR-antibodies to sCD152 levels (paper III), and to 
correlate humoral factors to age (paper IV). For genetic comparisons we used Fisher’s 
exact test and the Chi-square test.  
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4 RESULTS AND DISCUSSION 
 
4.1 ANTIBODIES IN MONOZYGOTIC TWINS DISCORDANT FOR MG 

(PAPER I) 
 
MG, being one of the best characterized autoimmune diseases with a defined 
autoantigen, is often associated with antibodies against the autoantigen, the AChR (76, 
77). Patients can also have anti-idiotypic antibodies (100-103), although the exact 
function of these antibodies is not clear. However, only having the antibodies against 
the disease associated antigens is not enough to develop the disease. When we 
compared two MZ twin pairs who had been discordant for MG for many years, we 
found that autoantibodies against the disease related antigens existed in the healthy twin 
sisters (Fig 1, paper I). In this regard they resembled a myasthenic population since 
healthy people do not normally have these autoantibodies (76). The antibodies have 
been demonstrated in healthy relatives to MG patients, suggesting that the presence of 
the antibodies does not have to lead to disease (106). The antibodies from the healthy 
twin sisters could transfer disease to mice, indicating that the antibodies are pathogenic 
and not just directed against an irrelevant region of the receptor. Moreover, EBV-
transformation generated antibody producing cells of similar frequencies within the 
twin pairs, further supporting the fact that the antibody producing cells were present in 
the healthy twin sisters as well (Fig 2, paper I). EBV transforms cells that express CR2 
(the C3d receptor also known as CD21) (217). This marker is not present on 
proliferating cells (218, 219) or on plasma cells (220). Thus, the healthy twin sisters as 
well as the myasthenic sisters had 1) cells that were producing the pathogenic 
antibodies (Fig 1, paper I) as well as 2) cells that could be induced to produce the 
antibodies (Fig 2, paper I). Still, the healthy twin sisters had not developed MG. It is 
unlikely that they will develop the disease, since both twin pairs have been discordant 
for the disease for more than 30 years. Other possible factors that could be involved in 
causing the discordance might be differences in the autoantigen, the end plate structure 
or the complement within the pairs. The complement system is an appealing contributor 
to MG since mice depleted in C3, and mice lacking C3, C4 or C5 develop less EAMG 
(79, 221, 222), while mice lacking decay-accelerating factor (DAF or CD55) are more 
prone to develop EAMG (223). Molecular mimicry due to cross-reactivity between an 
infectious agent and the AChR might also play a role. Alternatively, epigenetic factors, 
mosaicism, chimerism or haploinsufficiency may contribute to disease discordance in 
twins (224-226). The differences seen between the twin sisters could of course also be 
due to somatic mutations. Probably other factors than the genetic background show 
their contribution to disease development. 
 
4.2 T CELLS ARE NEEDED TO START AND MAINTAIN MG (PAPER I 

AND VI) 
 
T cells provide help to B cells to start an antibody response against an antigen like the 
AChR, and to perform class switching (110, 111). T cells are in this regard essential in 
the development of MG, and AChR specific T cells exist in MG patients (112-115). In 
addition, the T cells are important in disease development as shown in transfer 
experiments in animal studies (116, 117). Furthermore, depletion of CD4+ cells in a 
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patient with MG had a beneficial effect on the disease outcome (118), supporting the 
fact that T cells are important for the progression and maintenance of the disease. In the 
twin study we could see that the T cell responses against the disease related antigens 
differed in the patients and their healthy sisters. The healthy twin sisters did not have 
any T cell response against the main autoantigen, the AChR (Fig 3, Table 1 and 2, 
paper I). In this regard they resembled a healthy population more than a myasthenic 
one. The T cells must have been present in the healthy twin sisters at some point in life, 
since these persons had the antibodies to the AChR. This suggests that the T cells 
specific for the AChR in the healthy sisters might have been 1) deleted, 2) rendered 
anergic or 3) suppressed.  
 
Another aspect of the importance of T cells to maintain the disease comes from our 
pilot study where a patient with severe MG was repeatedly treated with antibodies 
against CD25 during 9 months. The CD4+ activated cells decreased and the naïve cells 
increased (Fig 2 A-D, paper VI), suggesting a normalization of the immune response by 
deletion of activated T cells and/or recruitment of naïve cells. The CD8+ cells 
demonstrated similar changes (Fig 3 A-D, paper VI). We detected a decrease in the 
serum levels of the soluble costimulatory factors sCD28, sCD80, sCD86 and sCD152, 
as well as a decrease in the amount of IL-10 (Fig 6 A-D and G, paper VI). Different 
studies point to a pathogenic role of IL-10 in MG (127-130). The decrease in IL-10 in 
the patient could thus indicate an improvement in disease. In addition, the decrease in 
the levels of the soluble costimulatory factors sCD28, sCD80, sCD86 and sCD152 
suggests an improvement in the disease, as these markers are increased in various 
disease states, supporting a role for them as markers of immune activation (183, 184, 
186-193). The patient felt better during the treatment period, and therefore 
corticosteroid therapy was discontinued (Fig 1 C, paper VI). The antibody therapy is 
directed against the CD25+ cells, and we were not able to detect this cell subset with 
flow cytometry during the treatment phase. The cells could have been deleted. Previous 
studies in transplantations suggest that the antibody is only hindering the receptor from 
interacting with IL-2 (227), but also that it in addition to the previous mentioned 
masking of CD25 induces deletion of cells expressing the molecule as well as gives rise 
to shedding of CD25 (18). Even if the CD25+ cells are deleted, CD25 is masked and/or 
stripped, the function of the activated cells will be suppressed, leading to disease 
amelioration. Collectively all these results suggest an improvement in disease at the 
immune cell level with the administration of anti-CD25 antibodies. However, the 
treatment has a potential risk since it can interfere with the CD4+CD25+ regulatory T 
cells, which are important for preventing autoimmunity. This potential risk might be 
more pronounced in a healthy person, who is not suffering from an autoimmune 
disease. Patients with this kind of diseases have an improper abnormal activation of 
cells. In addition, only eliminating the CD4+CD25+ cells in mice did not induce 
autoimmunity (228). Long-term treatment of patients with uveitis using a similar 
antibody was well-tolerated (28), supporting the use of anti-CD25 antibodies to treat 
autoimmune diseases. Nevertheless, the patient in our study developed side effects due 
to the treatment, hence the therapy was ended. 
 
Together the results imply that T cells play a major role in the induction of the disease, 
as shown in the twin study, as well as in maintaining the disease, seen in the treatment 
of a patient with anti-CD25 antibodies. 
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4.3 CD152 POLYMORPHISMS IN MG (PAPER II AND III) 
 
Both genetic background and environment are important for an autoimmune disease to 
start. Multiple genetic predisposing and preventing factors provide the setting for 
susceptibility to autoimmunity, and with the interplay of environmental triggers the 
disease will take form. The small contribution of each locus leads to the need of large 
study groups, which is a limitation for most researchers. MG is linked to the HLA-
gene, the AChR gene, the β2-adrenergic receptor gene and genes important for the 
immune system (38-47). The CD152 gene is one of them. Since the protein plays a vital 
role in the down-regulation of the immune response, genetic aberrancies in the gene 
may cause general susceptibility for autoimmunity (57, 181, 229). The CD152 gene 
contains numerous polymorphic sites. Many autoimmune diseases are linked to the 
most studied polymorphisms: the -318 in the promoter region (C to T mutation), the A 
to G mutation at +49 in CDS1 and the microsatellite in the 3’-UTR ((59-61) and 
reviewed in (57, 181)). However, it is not known if they really are involved in causing 
disease or merely just linked to other truly disease causing alleles. Longer AT repeats 
are associated to MG with thymoma (40), and we have shown that the length of the AT 
repeat influences the stability of the mRNA – the longer the repeat the more unstable 
the mRNA (Fig 4 and 5, paper III). There are associations between longer AT repeats 
in the 3’-UTR of the CD152 gene and increased levels of sCD25, plus an association to 
a greater immune response upon activation with anti-CD3 and anti-CD28 in MG 
patients (230). A recent publication supported this finding, since an increased basal T 
cell proliferation was reported to be associated to longer AT repeats (231). Thus, longer 
AT repeats in the 3’-UTR of the CD152 gene could impair the expression of the 
protein, and negatively affect the abolishment of an immune response. This would lead 
to a more active immune reaction.  
 
We also wanted to investigate the other two well-known polymorphisms in the CD152 
gene. Neither the C/T SNP in the promoter nor the A/G SNP in CDS1 were associated 
to MG in general. However, grouping the MG patients based on thymic histology, 
showed a higher frequency of the G allele or the G/G genotype in patients with 
thymoma compared to patients with normal thymus or thymic hyperplasia (Table 1, 
paper II). The G allele at position +49 in CDS1 of the CD152 gene is associated to a 
decreased inhibitory function of CD152 in Grave’s disease, and suggested to be 
involved in the pathogenesis of the disease (232). In accordance with this, we detected 
a more active immune response in patients with the G/G genotype, manifested as 
elevated levels of CD3+CD28+ T cells and serum IL-1β (Fig 1a and 2a, paper II). 
Normally, almost all CD4+ cells express CD28, but its expression varies on CD8+ cells 
(233). It is therefore possible that the difference in expression lies in the CD8+ 
compartment. Non-antigen specific CD8+ regulatory cells show suppressive activity 
and originate from CD8+CD28- cells (234, 235). If these CD8+ regulatory cells are less 
frequent in persons with the G/G genotype, these persons might be more prone to 
develop autoimmune diseases. It would be interesting to repeat the experiment staining 
for more markers on T cells. It is also possible that the decreased levels of CD3+CD28+ 
cells are due to a down-regulation of the CD28 molecule, which can occur after 
repeated or continuous stimulation (reviewed in (236, 237)). In addition to the above 
described potential effects of the known CD152 polymorphisms, a T at the 
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polymorphic site at -318 in the promoter region led to increased promoter activity 
(238). Thus genetic differences in the CD152 gene can greatly influence the function of 
the protein and have devastating effects in a person who is prone to develop an 
autoimmune disease. This further suggests that the CD152 gene and its products have a 
great impact on the immune response.  
 
The presence of the G allele, in addition to a longer AT repeat, could aggravate disease 
development in thymoma patients by influencing the expression or function of the 
CD152 gene and its products. An improper function of CD152 could explain the more 
severe disease with inflammatory infiltrates in the skeletal muscles often seen in 
thymoma patients (239).  
 
4.4 ABNORMAL EXPRESSION OF CD152 (PAPER III) 
 
MG is not associated with inflammation as some other autoimmune diseases like 
rheumatoid arthritis, multiple sclerosis, diabetes and SLE. However, a T cell response 
has to occur for the production of the pathogenic autoantibodies to take place. Since the 
T cell needs two signals to become activated, one via the TCR and one via 
costimulatory molecules, it is natural to investigate the costimulatory molecules and 
their expression in MG patients. We have shown that the total expression of CD152 in 
T cells (surface plus intracellular expression) was lower in MG patients compared to 
healthy controls, while no differences were seen at the mRNA level (Fig 1, paper III). 
In contrast, cells from patients with other diseases like Wegener’s granulomatosis, SLE, 
multiple myeloma, Kawasaki disease, EBV infectious mononucleosis, malaria, B cell 
chronic lymphocytic leukemia, HIV and synovial fluid T cells from rheumatoid 
arthritis patients showed increased expression of CD152 (240-247). The discrepancy in 
CD152 expression in MG and other diseases might be due to differences in disease 
characteristics, for example genetic variants. In agreement with our study, CD152 
expression was up-regulated in animal models of MG in association with different 
treatments (122, 123, 248). Thus, if the expression of CD152 could be up-regulated in 
MG patients, their condition might improve. 
 
After stimulation of cells with ConA, cells from MG patients expressed lower levels of 
CD152 than cells from healthy controls (Fig 2 A, paper III). Other studies have shown 
an impaired up-regulation of CD152 in T cells after stimulation with PHA in patients 
with Wegener’s granulomatosis and HIV, and after PMA plus ionomycin stimulation in 
SLE patients (240, 241, 246). On the other hand, cells from patients with B cell chronic 
lymphocytic leukemia demonstrated increased up-regulation of CD152 after anti-CD3 
and IL-2 stimulation (243). An impaired up-regulation of CD152 on the T cells could 
explain an aberrant T cell function with a reduced possibility to turn off an ongoing 
immune response, and an immune system more easily activated. This may affect the 
disease outcome in autoimmune diseases like MG, SLE and Wegener’s granulomatosis 
(240, 241, 246). In cancer patients on the other hand, the up-regulation of CD152 might 
lead to hyporesponsiveness or anergy as suggested in a publication (243). In addition, 
interference with the function of CD152 by anti-CD152 antibodies worsened murine 
EAMG (212), again pointing to the importance of this molecule in MG. 
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4.5 SOLUBLE COSTIMULATORY FACTORS IN MG PATIENTS (PAPER 
IV) 

 
In recent years soluble forms of the costimulatory molecules CD28, CD80, CD86 and 
CD152 have been detected in humans (182-185). These factors are increased in some 
autoimmune diseases, malignancies and asthma (183, 184, 186-193). Their function is 
not completely elucidated, and the mechanism responsible for their release 
incompletely known. Due to the potential involvement of the costimulatory factors in 
the start or propagation of the disease, we wanted to determine if MG patients have 
altered levels of the soluble forms of these costimulatory factors. MG patients had 
increased serum levels of sCD152 compared to controls, and the increase was more 
pronounced in patients with thymoma (Fig 3 A and B, paper III). The levels of sCD152 
were correlated to the levels of anti-AChR antibodies. However, in a following study in 
which we used other controls and not exactly the same patient group, there was no 
difference in the levels of sCD152 between healthy persons and MG patients, and no 
correlation to AChR antibody levels (data not shown, paper IV). This could be due to 
differences in the populations studied, or that the MG patients in the latter study were 
under better disease control. We could not detect any difference in the levels of the 
other soluble costimulatory factors sCD28, sCD80 or sCD86 between MG patients and 
controls. Some patients had lower levels of the soluble costimulatory molecules when 
they were in a “better disease stage”, for example seen in the patient treated with anti-
CD25 (Fig 6 A-D, paper VI). However, when we looked at 21 patients with MG 
sampled at different disease states, we could not demonstrate any difference (Table 3, 
paper VI). In fact, most patients seemed to have a rather constant expression of their 
soluble costimulatory factors despite changes in clinical stage. 
 
The soluble costimulatory factors were correlated to one another (Table 4 and 5, paper 
IV). We could expect this since they probably are able to bind to each other in the 
circulation, and/or their release might be triggered by the same factors. To determine 
the usefulness of these soluble costimulatory factors as markers of disease activity, we 
measured other factors of immune activation as well. The soluble costimulatory factors 
were correlated to the cytokines IFN-γ, IL-6 and IL-10 in both MG patients and healthy 
controls, and correlated to sCD25 in healthy persons (Table 4 and 5, paper IV). sCD80 
and sCD86 were correlated to sCD25 in the MG group as well, while this correlation 
was lost for sCD28 and sCD152 in the MG group (Table 4 and 5, paper IV). The lack 
of correlation of sCD28 and sCD152 to sCD25 in patients may reflect a difference in 
the release timing of the different proteins (see below). 
 
sICAM-1 and sCD25 were increased in MG patients, findings reported also by others 
(Fig 1, paper IV) (249-251). The increase in sICAM-1 and sCD25 might be late events 
in the immune response, while the soluble costimulatory factors may be released early 
upon activation. This is supported by the fact that the mRNA splice variants of soluble 
CD28 and sCD152 are present in freshly prepared T cells, but disappear or decrease 
upon activation (252, 253). The presence of sCD80 and sCD86 is more complex since 
APCs preferentially express these molecules in membrane bound form, but T cells can 
also express them upon activation (160, 165, 166). The alternatively spliced sCD86 
transcript was present in monocytes and peripheral blood dendritic cells, but not in T 
cells or NK cells (192). In the study by Hock et al. it was not elucidated if activated T 
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cells and NK cells express the mRNA for sCD86. Unstimulated B cells and monocytes, 
as well as activated T cells, express one form of sCD80 (lacking the transmembrane 
region), while unstimulated monocytes in addition to activated monocytes and activated 
T cells express a shorter form of sCD80 (lacking the IgC-like domain in addition to the 
transmembrane domain) (Fig 2, paper V) (illustrative picture, Fig 4). Thus, it is likely 
that monocytes and B cells secrete sCD80 upon activation, while T cells secrete the 
protein later after activation. This could explain the correlation of sCD80 and sCD86 to 
sCD25 in the MG patients; the T cells are constantly activated and hence secrete these 
proteins, while they only secrete sCD28 and sCD152 early in the immune response.  
 
 
 

 
Fig 4. Soluble CD80 splice variants are expressed in various cells under different culture 
conditions. A) s1CD80 is a 771 bp long splice product lacking the transmembrane region of full length 
CD80, while s2CD80 is 480 bp long and lacks both the transmembrane and the IgC like domain. B) 
s1CD80 is expressed in unstimulated monocytes and B cells, while s2CD80 is expressed in unstimulated 
monocytes, as well as in stimulated monocytes and T cells. 
  
4.6 SOLUBLE CD80 – A FUTURE DRUG CANDIDATE? 
 
As we started to investigate the soluble costimulatory molecules in MG patients, there 
were no reports about the existence of human sCD80. We wanted to elucidate the 
function of this molecule since it has a complex binding feature – it can bind to both 
CD28 and CD152 mediating a signal for activation or inhibition, respectively. 
However, a soluble form of a membrane bound protein might have a different function 
since it does not have to cross-link its ligand and transduce a signal into the cell. It 
could rather function as a blocking agent and interfere with the binding of the 
membrane proteins. We observed that special immune cells expressed soluble CD80 
splice variants under different culture conditions (Fig 2 B, paper V) (Fig 3). We 
produced one of these splice variants, s1CD80 lacking the transmembrane region (Fig 2 
A, paper V, and illustrative picture Fig 4), in E. coli as a recombinant protein with a 
histidine tag and studied its function. The recombinant protein could bind to CD28 and 
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CD152 in ELISAs (Fig 4 A, paper V). It had a potent immunoregulatory function since 
it 1) preferentially interacted with activated T cells (Fig 4 B I, paper V, and Fig 5), 2) 
inhibited the mixed lymphocyte reaction as well as T cell proliferation induced by anti-
CD3 (Fig 5 A and B, paper V), and 3) altered the cytokine secretion balance in the 
culture system (Fig 5 C-E, paper V). Additional studies support an immunoinhibitory 
role of soluble CD80 derivatives in human cells (200, 204), while one study showed the 
opposite (203). Discrepancies may be due to the different forms of the protein used, for 
example soluble derivatives consisting of the extracellular part only, or CD80Ig fusion 
proteins. A protein like soluble CD80, with a promising immunoinhibitory capacity, 
might be attractive as a potential drug candidate. However, its function in vivo has to be 
clarified. CTLA4-Ig has successfully been used to treat rheumatoid arthritis (254) and it 
is a potent inhibitor of immune activation in vitro as well as in animal studies (169, 
195). Since this molecule binds to APCs it could prevent the activation of cells during 
an infection, not only hindering the autoimmune cells from becoming activated. An 
agent that directly targets the T cells, and preferentially the activated T cells, would be 
more beneficial since it still could allow for presentation of pathogenic agents entering 
the system. 
 
 

 
Fig 5. Rs1CD80 interacts preferentially with activated T cells. Representative dot plots showing the 
binding of Rs1CD80 to PHA activated PBMCs. Staining was performed using a biotinylated polyclonal 
antibody against CD80 and avidin conjugated to phycoerythrin. Control staining was done using the 
biotinylated polyclonal antibody and avidin-phycoerythrin. CD25+ and CD45RO+ cells represent 
activated T cells. 
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5 HYPOTHESES 
 
5.1 THE START OF AN AUTOIMMUNE DISEASE 

A complex disease like MG will not have a simple answer to the question “why does 
the body’s immune system start an attack against a harmless self-antigen and how can 
we suppress the disease?”. Thus, the scenario presented below is a simplified view of 
how the autoimmune reaction can start, with considerations to the findings in this 
study. 
 

 
Fig 6. The start of an autoimmune disease like MG. (1) In a normal state, regulatory cells and 
inhibitory cytokines suppress the autoreactive cells. (2) However, an autoimmune disease may start if a 
genetically predisposed person is subjected to an environmental trigger, with activation of T cells pushing 
the immune system over the threshold for autoimmunity. (3) Activated autoreactive T cells will help B 
cells to produce antibodies against the autoantigen. (4) The aggressive T cells will make the disease 
progress. In MG, a decreased function of CD152 or regulatory T cells might predispose for the disease, 
while some soluble costimulatory factors if present could possibly help to prevent disease. 
 
Something occurs in a person with a genetic predisposition for the disease that makes 
the person start to develop MG (Fig 6). A decreased function or expression of CD152 
might favor disease development, although it alone does not account for the start of the 
disease. Other factors, like a reduced function of regulatory cells could have an effect. 
The activated T cells will help B cells to become plasma cells and secrete antibodies. 
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Aggressive T cells will probably also drive the disease further. Since deletion or 
abolishment of T cell function has a beneficial effect on the disease, and a loss of 
AChR specific cytokine responses is associated with lack of disease, the T cells could 
be used as drug targets. However, even though deleting all T cells or interfering with all 
cells expressing CD25 has a beneficial effect on the disease, these therapies are too 
unspecific. Interfering with the costimulatory molecules, for example by supplying 
soluble CD80 to a patient, could be a way to target only the activated T cells, and 
increase the threshold of activation. 
 
 
5.2 THE FUNCTION OF SOLUBLE CD80 AND SOLUBLE CD152 
 
As the function of the soluble costimulatory factors is not fully clear, a very speculative 
theory of their action is proposed below.  
 
The soluble forms of the costimulatory molecules could play different roles: 1) the 
soluble factors could bind to their soluble counter ligands and prevent them from 
degradation before they bind to their membrane bound receptors; 2) they could bind to 
their membrane bound counter ligands and induce a signal or 3) hinder the binding of 
the membrane bound molecules. The complexity of this network is shown by the 
diversity of the reports using the soluble proteins in experimental studies. It is possible 
that some of the soluble costimulatory factors are stimulatory while others are 
inhibitory, although they might even have the same net outcome. Since reports have 
demonstrated conflicting results on the impact of these molecules on T cell activation, I 
will simplify the scenario and suggest a hypothesis where sCD80 and sCD152 have a 
negative impact on the immune system (I will not consider sCD28 and sCD86 since the 
chimeric proteins of these molecules activate the immune response in animal studies).  
 
If the soluble costimulatory molecules are just blocking their respective receptors, a 
strong enough signal via the TCR would still lead to T cell activation (eg if an infection 
occurs). On the other hand, when no infection occurs, the molecules may just keep the 
threshold for activation at a higher level, favoring tolerance. A difference in affinity for 
the membrane bound and soluble forms could also play a role. Suppose that sCD80 is 
bound to a T cell. An APC expressing membrane bound CD80 starts to interact with 
the T cell. If soluble CD80 has a lower affinity to its ligand compared to membrane 
bound CD80, the latter will push the soluble form away from the cell.  
 
A preferential finding of the mRNA for the soluble form of CD152 in resting cells, 
indicates a release of the soluble protein upon activation. This would lead to an overall 
suppression of nearby cells in regard to the start of an immune response (Fig 7). Later 
on, when the B cells are activated, they release s1CD80, which has the potential to 
suppress activation of neighboring T cells (our in vitro experiments). Monocytes may 
also secrete s1CD80 upon activation and increase the threshold of activation for cells in 
the vicinity. Naïve and activated monocytes, in addition to activated T cells, express 
s2CD80. However, at this point we do not know what function this protein has – or if it 
has any function. To summarize, I believe that the soluble costimulatory factors sCD80 
and sCD152 are immunosuppressive, and that their up-regulation in different disease 
states is a sign that the immune system is trying to down-regulate an active response. 
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Fig 7. A hypothetical view of the function of sCD80 and sCD152. A splice form of sCD152 is 
expressed in unstimulated T cells at the mRNA level. 1) Upon activation, here illustrated by interaction 
with an APC, the cell releases sCD152. The protein might have a suppressive effect on neighboring 
APCs. 2) The activated T cell will help to activate the B cell, which will release its content of s1CD80. 3) 
s1CD80 has an inhibitory effect on T cell activation, hindering T cells in the vicinity to become activated. 
4) Activated T cells express s2CD80, although its function has not been elucidated yet. Monocytes are 
not shown in the picture. Unstimulated monocytes express both s1CD80 and s2CD80, while they upon 
activation only express the short form – s2CD80. s1CD80 secreted by monocytes may also increase the 
threshold of activation for nearby cells, assuring that only those T cells with a true specificity for the 
antigen will be activated. 
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6 CONCLUSIONS 
 

• The T cells are important in the initiation and the maintenance of the immune 
response against the AChR in MG. The healthy twins in two twin pairs 
discordant for MG did not have T cell responses against the AChR, but they had 
pathogenic antibodies normally not seen in healthy persons. A patient treated 
with antibodies targeting the CD25 protein, preferentially expressed on T cells, 
improved in the disease. The activated cells and humoral factors associated to a 
potential immune activity decreased, while naïve cells increased, indicating a 
normalization of the immune system. These results together suggest that T cells 
have a major role in MG.  

 
• Genetic aberrancies in genes important for proper T cell function can influence 

disease susceptibility. Genetic variants of the CD152 gene could influence the 
down-regulation of an immune response. MG patients with thymoma 
demonstrated genetic aberrancies in the CD152 gene, which might contribute to 
the more aggressive disease seen in this group of patients. Moreover, MG 
patients displayed reduced CD152 expression on T cells, suggesting a defective 
inhibition of T cell activation. 

 
• The regulation of costimulatory molecules and their derivatives might help to 

combat autoimmune diseases like MG. However, the levels of the soluble 
costimulatory factors were not altered in MG patients compared to healthy 
controls, and the levels seemed to be stable in individual patients independent 
of clinical presentation.  

 
• The recombinant form of naturally occurring soluble CD80 inhibited immune 

activation and preferentially interacted with activated T cells, suggesting that it 
might be used as a drug to suppress ongoing T cell activation.  
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