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ABSTRACT

In this thesis we are using global gene expression profiles to unravel functional gene networks
and modules. The focus is atherosclerosis, a disease with manifestations in the artery wall
where deposits of lipids accumulate and trigger immune responses causing the development of
plaques, which upon rupture can lead to a myocardial infarction or stroke. Atherosclerosis is a
complex disease influenced by energy metabolism in multiple organs and by several genetic and
environmental risk factors. To meet this complexity, we believe the most appropriate approach
is to identify gene networks and modules in patients suffering coronary artery disease as well
as a relevant mouse model with human-like dyslipidemia prone to atherosclerosis development.
First, we investigate structural properties of the regulatory gene network in yeast, integrating
protein—protein interactions with the transcription network resulting in an estimate the effective
gene network underlying gene expression data. In this effective gene network, we show evidence
of in-hubs and provide a method for predicting in-hubs directly from gene expression data.

In the second study, we used the Ldlr=/= Apobt90/100 pryppflor/flox \x1-Cre mouse model to
study atherosclerosis development and how this development is effected by plasma cholesterol-
lowering. This mouse model has a lipid profile similar to human hyperlipidemia and develops
atherosclerosis on a chow diet. Moreover, it contains a genetic switch (Mttpf lox/flox \[x]-
Cre) to turn off the VLDL synthesis in the liver and lowering plasma cholesterol by > 80%.
Atherosclerotic lesions progressed slowly at first, then expanded rapidly, and plateaued after
advanced lesions formed. Analysis of lesion expression profiles indicated lipid-poor macrophages
accumulated prior the rapid expansion of the plaques. When macrophage concentration reached
a critical point it was followed by a rapid expansion phase with accelerated foam-cell forma-
tion and inflammation, an interpretation also supported by lesion histology. A network of 8
cholesterol-responsive atherosclerosis genes was identified as central to the rapid expansion of
the plaques.

Third, in the Stockholm Atherosclerosis Gene Expression (STAGE) study, including 124
well-characterized patients undergoing coronary artery bypass surgery, we measured and ana-
lyzed 278 expression profiles from the liver, skeletal muscle, mediastinal fat, and aortic lesion
(atherosclerotic artery expression with unaffected arterial wall expression subtracted). Cluster-
ing of these gene expression profiles—performed separately in each organ—generated a total
of 60 clusters. Two clusters, in aortic lesion (n = 49) and fat (n = 59), related to degree of
atherosclerosis. Remarkably, in a validation cohort 27 genes were replicated in a cluster (n =
55) also related to the degree of atherosclerosis. In all three clusters relating to atherosclerosis
(i.e., the atherosclerosis module), genes in the transendothelial migration of leukocyte pathway
(TEML) were overrepresented and the transcription co-factor LIM-domain binding 2 (LDB2)
expressed in lesion macrophages and endothelial cells was identified as a potential regulator of
this module.

In the last study, we first identified 2457 cholesterol-responsive genes in the atherosclerotic
arterial wall by lowering plasma cholesterol at 10-weeks intervals during atherosclerosis devel-
opment using the mouse model of Study II. To prioritize the most atherosclerosis-relevant genes
among these 2457, we used a list of 1259 genes active during atherogenesis (Study II) together
with three global gene networks generated from human atherosclerosis gene expression profiles
in study III, public literature mining, and protein-protein interaction data. Using an integrative
network approach to identify genes neighboring any of 68 atherosclerosis seed genes, we identified
35 cholesterol-responsive genes that were believed to be highly relevant to atherosclerosis.

Taken together, this thesis provides evidence that systems biological analysis of global gene
expression profiles isolated from a wide range of biological specimens can be used to infer func-
tional interactions of genes in modules or networks. The content and architecture of these
modules and networks can be used to improve our understanding how complex disorders like
atherosclerosis develop.
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GENE NETWORKS AND MODULES IN ATHEROSCLEROSIS

1 INTRODUCTION

1.1 BACKGROUND

Up until recently the approach most widely used to investigate the genetic basis of dis-
ease has been the candidate gene approach, in one or a few pathway genes are selected
and studied in relation to disease. This kind of research has yielded many important
medical insights and has led to diagnostics and therapies for a wide range of diseases.
Although successful, the candidate gene approach has limitations. In particular, it is
of limited value for studying the complex molecular etiology of cancer, cardiovascular

disease, neurodegenerative disorders, and other common diseases.

In the last decade, an improved understanding of the genome and its DNA sequence
have paved the way for less biased approaches than the candidate gene approach. For in-
stance, many genetic variants that cause so-called single-gene diseases have been identified
by determining how DNA markers situated throughout the genome migrate in families
with heritable diseases [1,2]. This success has fueled efforts to use DNA markers and,
more recently, dense maps of several hundred thousand single nucleotide polymorphisms

(SNPs) to disclose the genetic variations underlying complex diseases [3,4].

However, pure DNA-based approaches to complex disease are probably not sufficient
since the development of complex diseases are reflects environmental influences such as
lifestyle choices. It is now becoming increasingly clear that to fully understand the molec-
ular causes of complex diseases, a more holistic approach must be adopted that also takes
into consideration functional aspects of the genome [5-8]. The function of the genome
is governed by the activity of all genes at a given time, which is a consequence the ge-
netic makeup as well as the environmental pressure at that moment. Thus, by measuring
genome activity it is possible to capture both environmental and genetic aspects of disease
development.

In parallel with the sequencing of several genomes, including human [9,10] and mouse
[11], new technologies have been developed to study the activity of the genome. The most
developed of these technologies is microarray analysis of mRNA concentrations [12,13].

Since mRNAs are to a large extent inactive messages to encode proteins, great effort
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GENE NETWORKS AND MODULES IN ATHEROSCLEROSIS

has been expended to develop technologies to measure concentration of proteins [14].
However, proteomic technologies are still far less robust and reliable than gene expression
analyses [15].

In this thesis, we performed expression profiling using Affymetrix GeneChips in rel-
evant tissue samples isolated from patients with severe atherosclerosis and in a mouse
models with human-like atherosclerosis. In these expression profiles we have used compu-
tational methods to identify functionally associated genes of importance to atherosclerosis.

This work has presented a number of challenges. For example, atherosclerosis is a
disease in which three major cell types dominate: endothelial cells, smooth muscle cells,
and different forms of leukocytes [16]. The relative amounts of these cell types differ from
biopsy to biopsy, and in clinical studies, the phenotype of the patients varies. These fac-
tors, together with the technical problems associated with using microarrays to generate
high-dimensional data, contribute to variation in the mRNA levels that are unrelated to
the biological phenomenon under study (i.e., atherosclerosis). We have tried to minimize
the effect of the technical noise by using normalization techniques and by choosing reliable
sequence-matching procedures [17-19].

As already alluded to, the goal of this thesis was not to isolate novel individual
atherosclerosis candidate genes. Rather, we used in-house and previously developed al-
gorithms to identify functionally associated atherosclerosis genes and their interplay in
modules and networks. To improve the reliability of this approach, we also used literature

mining and databases of gene-gene and protein-protein interactions.

1.2 CARDIOVASCULAR DISEASES AND ATHEROSCLEROSIS

Cardiovascular diseases are a collection of disorders that involve the heart or blood vessels,
including both arteries and veins. Cardiovascular diseases, the most common cause of
mortality globally, caused the death of an estimated 17.5 million people in 2005, most
often from myocardial infarction (MI) or stroke [20].

Atherosclerosis—the major cause of cardiovascular disease—can be described as de-
posits of lipids that accumulate in the intima of the artery wall. The immune response to

these lipids leads to the formation of “plaques”. Although plaques can grow large enough
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FIGURE 1: Atheroscerosis is a complex disease with manifestation in the vascular wall and
involving multiple other organs (e.g., liver, skeletal muscle and adipose tissue). Each organ
is controlled by gene networks in that modulates that organ function and indirect influences
atherosclerosis development in the vascular wall. Genes marked are modulated by genetic vari-
ation(s) in the population and their function is therefore differnt between individuals. Envi-
ronmental factors like life-style choices are filtered through this disease system causing disease
phenotypes.

to significantly reduce blood flow, the most important complication is the formation of
blood clots as a result of a plaque rupture. Such clots can completely block distal blood
flow in the coronary arteries, leading to an MI. If part of the clot breaks off, it can travel
through the circulation to the fine arteries of the brain, where it can restrict blood flow

and cause a stroke.

Atherosclerosis is a progressive, lifelong disease that involves multiple organs and is
influenced by several genetic and environmental risk factors [21] (Figure 1). Of par-
ticular relevance to atherogenesis is the metabolism of lipids and cholesterol [22] and
glucose [23,24]. Elevated blood glucose levels and insulin resistance are dependent on
glucose uptake and metabolism, especially in the skeletal muscle and adipose tissue. In-
creased fat deposits, in particular abdominal and other visceral fat, lead to increasing
levels of circulating free fatty acids, which in turn are believed to have lipotoxic effect
on nonadipose tissues, including the pancreas, where insulin is synthesized. States of
insulin resistance and increased blood glucose, as in diabetes mellitus and the metabolic

syndrome, are associated with increased risk of atherosclerosis [24].
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Cholesterol can be synthesized in most cells, but the liver is the main source of plasma
cholesterol, which is secreted into the blood stream as very low density lipoprotein (VLDL)
particles. These particles are delipidated by lipases anchored to the endothelial surface,
leading to the generation of cholesterol-rich low density lipoprotein (LDL) particles that
can become trapped in the arterial wall, as explained below, leading to atherosclerosis de-
velopment. High density lipoprotein (HDL) particles, which are thought to be produced
and secreted mainly by the liver and intestine [25,26], work the opposite way. In a pro-
cess called reverse cholesterol transport, they unload cholesterol from the atherosclerotic
plaques and transport it back to the liver [27]). Thus, to understand the development of
atherosclerosis, it is of great interest to monitor the metabolic and regulatory states of

the liver, skeletal muscle, and adipose tissues.

The pathology of atherosclerosis progression in the vascular wall is complex, not least
because several cell types are involved. Of particular importance are inflammatory cells,
such as leukocytes (e.g., monocytes and T-cells). Early accumulation of LDL particles in
the intima of the arterial wall seems to occur as a consequence of mechanical stress to
the arterial wall mediated by blood flow, particularly at sites of bifurcations and changes
in the direction of blood flow. Within the intima, the LDL particles are modified, most
importantly by oxidation. The modified particles are pro-inflammatory and stimulate
endothelial cells to increase their expression of adhesion molecules, which induce circu-
lating monocytes and lymphocytes to migrate into the intima. The pro-inflammatory
state within the intima causes the monocytes to differentiate into macrophages, which
express surface receptors (e.g., CD30) that mediate the internalization of modified LDL.
These early events lead to the formation of fatty streaks (so named because of their
appearance by microscopic inspection of the arterial wall), consisting of so-called foam
cells—macrophages in which intracellular lipids, mainly cholesteryl-esters, have accumu-
lated. [16,28-30]

Later in atherosclerosis development, the continuing uptake of modified LDL particles
by macrophages, now at an increased rate, leads to the accumulation of foam cells, which
become necrotic and in some cases undergo apoptotic cell death, creating a necrotic core
within the plaque. The core is surrounded by a fibrotic cap consisting of smooth muscle

cells and fibrin. The smooth muscle cells are not part of the normal intima, but at this
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later stage of plaque development they migrate in from the media. Together, the necrotic
core and the fibrous cap form the mature plaque. [16,29]

From a simplistic perspective, there are three types of atherosclerosis research. The
first type, clinical studies of patients with atherosclerosis, is highly relevant because hu-
man atherosclerosis is indeed what we seek to learn more about. However, studies in
humans have limitations. The patients are often in very late stages of the disease, making
it difficult to study the early phases of atherogenesis, and in most instances, repeated
measurements (i.e., analysis over time) are not feasible. Nor is it possible to perform
genetic manipulations or other biological perturbations.

The second type of research uses animal models of atherosclerosis, which allow for
both analysis over time and genetic manipulations. However, genetic manipulations (i.e.,
conditional or permanent knockouts or transgenes) are time consuming, costly, and, in
most instances, are not cell specific. Although animal studies of atherosclerosis have been
and will continue to be important, they are limited by their lesser biological relevance
than human studies.

The third type involves in vitro studies of the cell types affected by atherosclerosis, such
as macrophages and endothelial cells. Cell model systems are important for deciphering
the true “wiring diagram” of functionally associated genes in atherosclerosis. Many forms
of perturbations can be performed much faster and at less expense in cell systems than
in animal models. However, cultured cells do not recapitulate the in vivo context of cells
active in atherosclerosis, and therefore the results need to be interpreted with caution.

To achieve a balance between disease relevance and the flexibility needed to infer
biological networks, we believe it is most appropriate to first identify networks and key
nodes in the human and animal model setting and then move to cell model systems to

infer the actual web of biological interactions in the network surrounding key nodes [5].

1.3 THE STRUCTURE OF BIOLOGICAL NETWORKS

The sequencing of the human genome revealed that humans have 20, 000 — 25,000 genes
[31]—fewer than expected from earlier estimates and comparable to the number of genes

in less complex organisms, such as rice, fruit fly, and yeast [32-35]. This would be re-
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markable if the complexity of an organism were proportional to the number of genes in
its genome. However, the complexity of an organism is probably related to the number of
states its genome can assume [36], which is determined by interaction networks of genes,
gene products (RNA, proteins), and metabolites [7,37]. Thus, to understand the func-
tions of the genetic code—including inheritable diseases in humans—we must discover the

structure and dynamics of the complex web of interactions between cellular species.

In the last decade, we have seen increased efforts to identify and understand the static
structure of cellular networks, including protein-protein interaction [38,39], transcriptional
regulation [40-42], and metabolic reaction [43,44] networks. These networks commonly
exhibit a so-called power law degree distribution, whereby most genes have low connec-
tivity, and a few genes—referred to as hubs—are highly connected [45,46]. Hub genes are
of particular importance, for example deletion of a hub gene in a protein-protein network
is more likely to be lethal than deletion of a non-hub gene [47]. Cellular networks also
exhibit a “small world” structure [48], which means the path between any two nodes is
short, even in large networks. Moreover, networks are organized in modules ordered in a
hierarchical manner [49]. Modules in networks can be loosely defined as groups of nodes
with a significantly higher interconnectivity and lower intraconnectivity than in the net-
work as a whole. Finally, some networks are enriched in certain motifs (basic building

blocks), which may have a specific function in network information processing [50].

In this thesis, we are studying the state of the cell in terms of mRNA levels a ma-
jor determinant for these levels have be attained to the transcriptional network [40-42].
However, there are other sources of regulation, including protein interactions, metabolic
states, noncoding RNA, DNA accessability (chromatin structure), and translational reg-
ulation. We believe that relating gene expression to network structure and dynamics is
a promising field, but it must be acknowledged that the underlying gene regulatory net-
work is far more complex than the transcriptional network alone [51] In Section 1.5 we
will discuss how mRNA measurements on a global scale can be used to identify structural

features, including modules, in the gene network.
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1.4 MICROARRAY TECHNOLOGY

The term gene expression is used to describe the transcriptional state of the genome in
terms of mRNA concentrations at a given time point. There are several methods for mea-
suring mRNA concentrations, including (in chronological order) northern blots, reverse
transcription—polymerase chain reaction, microarray analyses, and serial analysis of gene
expression. The first two techniques have been used mainly on a small scale to investigate
the expression of one or a couple of genes at the same time. Measurement of mRNA levels
on a chip was first done in the mid 1990’s [13], using a glass slide imprinted with cDNA for
48 genes. Rapid advances in this area have given us the ability to simultaneously measure
the expression of tens of thousand of genes simultaneously in a rapid, cost-effective, and
fairly reproducible way. There are currently several competing microarray technologies
for measuring gene expression, including bead arrays [52], oligonucleotide arrays [12], and

cDNA arrays [13].

Microarray technology utilize the ability of an RNA (or single stranded DNA) molecule
to hybridize to specific DNA probes with complementary sequence. The microarray has
several probe areas containing DNA with specific sequences attached in an array (often a
glass or membrane slide). By labeling the sample mRNA with radioactive or fluorescent
dye, the amount of hybridized mRNA on each probe area can be detected or estimated
with a scanner. The amount of hybridized mRNA in a probe area is proportional to the
amount of the mRNA with complementary sequences (and thus gene expression) in the

sample.

In the current study, we use Affymetrix oligonucleotide GeneChips [12] to measure
global gene expression in samples originating from human and mouse tissue. Before the
biological sample is hybridized onto the array, total RNA is isolated, reverse transcribed to
c¢DNA, transcribed to cRNA, labeled with biotin, and fragmented. Finally, a hybridization
cocktail with the labeled cRNA fragments is hybridized onto the chip, excess cRNA is

washed away, and the hybridized chip is stained and scanned. [53]
The HG U133 Plus 2.0 and MG 430 2.0 GeneChips contain 1,354,896 and 1,004,004
probes, respectively. Each probe contains 25-mer oligonucleotides that match a subse-

quence of the interrogated mRNA. There are two type of probes: perfect-match probes,

JESPER LUNDSTROM 7



GENE NETWORKS AND MODULES IN ATHEROSCLEROSIS

which correspond exactly to the mRNA being interrogated, and mismatch probes, which
have an identical sequence except for a substitution at the central base. The mismatch
probes are intended to measure nonspecific binding; however, the estimates they pro-
vide are not very good [19,54] and are therefore ignored by some probe summarizing
algorithms.

Affymetrix probe sets are defined using Unigene [55] transcripts and most commonly
contain 11 probe-pairs, containing one perfect match and one mismatch probe. After the
release of Affymetrix probe sequences, researchers could start addressing problems with
probe set definitions. Surprisingly, many Affymetrix probe sets on mammalian microar-
rays did not correspond correctly to the appropriate reference sequence (RefSeq) [56-58].
Moreover, sequence-verified probes (matching RefSeq mRNA) provided more accurate
measurements than unverified probes [17,56]. Inspired by these results, we created our
own probe set maps based on RefSeq [58] and Entrez Gene [59] in Study III and IV.

Affymetrix provides a software package, Microarray Analysis Suite (MAS; currently
version 5), for preprocessing, normalizing, and summarizing probe intensity values into
probe set expression values [60]. However, several other normalization and probe-summarizing
techniques may yield “less noisy” expression values [18,19,61-64].

Measuring mRNA concentrations does not provide enough resolution to distinguish
between the individual regulatory networks (transcription, protein-protein binding, and
metabolic networks). Instead, it gives a more coarse-grained picture of an effective gene-
to-gene regulatory network. This may explain, at least in part, the problems encountered
in validating the results of microarray studies. Measurements on multicellular tissues like

vascular wall samples will further complicate the interpretation.

1.5 IDENTIFICATION OF GENES, MODULES AND NETWORKS FROM WHOLE

GENOME EXPRESSION PROFILES

As mentioned previously, whole-genome expression studies generate vast amounts of data,
and it is important to extract as much significant biological information as possible. In
this section, I will describe three approaches for analyzing gene expression data. First, I

will discuss gene-by-gene statistical tests, focusing on those used to identify differentially
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expressed genes. Second, I will review clustering approaches for identifying gene modules.
Finally, I will discuss methods for inferring and integrating gene networks from expression

data.

1.5.1 GENE-BY-GENE STATISTICAL TESTS

In many studies, the aim has been to identify differentially expressed genes—those with
different expression levels between two distinct conditions. In such studies, gene expres-
sion under each condition is measured with microarrays, and a statistical test is applied
in a gene-by-gene manner to find differentially expressed genes. The major problem in
applying standard statistical methods to the microarray setting is that performing mul-
tiple tests and controlling the false-positive rate will result significant fraction of false
predictions. The family-wise error rate, defined as the probability of having at least one
false positive in all tests, has been argued to be too strict and may miss many genes
that are, in fact, differentially expressed, resulting in a large fraction false negatives [65].
Statisticians have dealt with this problem by developing methods to control (or estimate)
the false discovery rate (FDR)—the expected fraction of false positives—in the predicted
set of differentially expressed genes [66-68].

1.5.2 GENE MODULE IDENTIFICATION

It is well known that genes and gene products do not act in isolation. Instead, cellular
functions are carried out in functional modules [69]. Modules can be identified in the
structure of cellular networks and are organized in a hierarchical manner [49,70]. More-
over, functionally related gene modules can be identified directly from gene expression
data through clustering algorithms [71,72], a process in which genes with similar gene
expression profiles are grouped together. Clustering can be applied to observational data
alone. Specific perturbations are not required, but meaningful clusters are only obtained
for genes that change expression state across the samples.

Clustering algorithms use similarity/dis-similarity measures to compare two data vec-
tors (i.e., gene expression profiles). The most popular ones are based on Euclidean dis-

tance, Manhattan distance, Pearson correlation, and Spearman rank correlation. More-

JESPER LUNDSTROM 9



GENE NETWORKS AND MODULES IN ATHEROSCLEROSIS

over, several methods for clustering gene expression data are available [72]. Two of the
most commonly used are hierarchical clustering and K-means clustering. K-means clus-
tering algorithms divide the gene profiles into k& non-overlapping groups (k is supplied
by the user). Hierarchical clustering produces a cluster tree appropriate for visualisation
purposes. Owing to the nature of gene expression data and the underlying cellular pro-
cesses, many commonly used clustering methods are not well suited for this problem [73].
Problems that the algorithms and distance measures must accommodate include noisy
data measurements with outlier data points, the presence of irrelevant genes, and genes
belonging to multiple modules [73].

Several studies have applied standard clustering algorithms to gene expression data
to identify gene modules [74-76]. More advanced clustering applications include Segal
et al. [77] introduced a gene clustering method to enable the identification of regulatory
trees that explain the regulation of each gene cluster. Application of this method to data
from 22 different tumor types identified modules generally important for most cancer
types, as well as specific modules important in one cancer type [78]. Another interesting
method [79,80] is coupled two-way clustering to identify biologically relevant submatrices

in the gene expression data matrix.

1.5.3 GENE NETWORK IDENTIFICATION

As will be argued throughout this thesis, knowledge of gene networks is instrumental to
fully understand biology, cellular function, and complex diseases. Clustering techniques
have the ability to capture the modularity in the underlying gene network. However, clus-
tering approaches cannot be used to unravel specific gene-gene edges, as these approaches
are unable to differentiate between direct and indirect interactions [81]. Nevertheless, cor-
relation measurements have been used to infer gene networks directly from gene expression
data, often using partial correlations [82] to minimize problems with indirect interactions.
Other approaches for gene network identification include systems of ordinary differential
equations [83-86], bayesian inference [87,88], and information theoretic models based on

mutual information [81,89].

Because the number of possible edges in a network grows exponentially with the num-
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ber of nodes, identifying networks that contain many nodes is not a simple task. The
problem becomes even more difficult as the desired resolution increases [37]. To overcome
these hurdles, one can limit the search space by including what is known about network
structure and individual edges, for example by limiting the in-degree of each node to a
small number [83,84], or integrating information about known network edges.

Several research groups have taken the use of prior knowledge one step further using
available network structure in the public domain and integrate it with gene expression
data to identify sub structures important to the studied biological process. Luscombe and
coworkers [42] take this approach, they use the transcription network in yeast and identify
subnetworks active during cell cycle, sporulation, diauxic shift, DNA damage and stress
response. In simular study conducted by Lichtenberg et al. [90], they integrated protein—
protein interactions and gene expression measurement at different stages of the yeast cell
cycle reslting in a dynamic map of protein complexes. In a recent study of breast cancer
they were able to identify a disease network from gene expression and various network
sources [91]. From this disease network they identified a new breast cancer suseptibility

gene HMMR, which was also functionally and genetically validated.
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2 A

The overall aim of this thesis is to use a top-down approach to uncover functional modules

and gene networks important to atherosclerosis.

SPECIFIC AIMS OF THE INDIVIDUAL PAPERS:

[. To elucidate the role and relevance of the effective regulatory gene network and

investigate whether there are genes with a high in-degree (in-hubs) in that network.

II. To reveal the transcription repertoire of atherosclerosis development and examine
the effect of a subacute lowering of plasma cholesterol on lesion development and

gene expression.

ITI. To reveal the transcription repertoire in multiple organs relevant to coronary artery
disease (CAD) and to identify modules of functionally associated genes important

in atherosclerosis development.

IV. To identify the full repertoire of plasma cholesterol-responsive atherosclerosis genes

and their interplay in gene networks.
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3 REsuULTS AND METHODS, STUDY I-IV

In this section, I focus on results and methods from four studies from the perspective of
my area of expertise and interest—the analysis of whole-genome expression data. Of note,
there are other results in these studies that are interesting and merit discussion. Before
surveying each study, I will describe the patient cohorts and the mouse models we used

throughout the thesis.

3.1 HUMAN COHORTS
3.1.1 THE STOCKHOLM ATHEROSCLEROSIS GENE EXPRESSION COHORT

The Stockholm Atherosclerosis Gene Expression (STAGE) cohort consists of 114 well-
characterized patients who underwent coronary artery bypass grafting (CABG) at Karolin-
ska University Hospital, Solna. In 66 of these patients, we measured whole-genome expres-
sion using HG U133 Plus 2.0 (Affymetrix Inc.) in biopsies obtained from liver, adipose
tissue, and skeletal muscle during the surgery. In 40 of these 66 patients we also measured
atherosclerotic gene expression from aortic root and the mammary artery. From these two
expression profiles we defined atherosclerotic tissue gene expression as aortic root expres-
sion with mammary artery expression subtracted. All patients were well characterized
with anthropometric and biochemical measurements, medical records and history, infor-
mation on lifestyle factors (e.g., smoking, alcohol consumption, and physical activity),
and coronary angiograms. The coronary angiograms were evaluated with quantitative
coronary angiography techniques to obtain a surrogate measure of atherosclerosis burden,

referred to as the stenosis score.

3.1.2 CAROTID COHORT

The carotid cohort consists of 42 patients who underwent carotid surgery at Stockholm
South General Hospital. In 25 of the patients, we measured whole-genome expression
using HG U133 Plus 2.0 (Affymetrix Inc.) in the carotid lesion removed during surgery.
This cohort is as well characterized as the STAGE cohort. Intima-media thickness (IMT)

was used as a surrogate measure of atherosclerosis burden.
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FIGURE 2: Estimating the effective gene network underlying gene expression (mRNA) by
integrating transcription and protein binding edges. The network of interactions between eight
hypothetical genes and their respective proteins (left) is collapsed into an effective regulatory
gene network (right).

3.2 THE ATHEROSCLEROSIS MOUSE MODEL

We are using the Ldlr—/= Apob'0%/1% Mitpfler/flor Nix1-Cre mouse model [92], which
develops atherosclerosis on a chow diet. The Ldlr~/~ and Apob'%%/*°° modifications re-
sults in a plasma lipoprotein profile similar to that of patients with familial hypercholes-
terolemia [92]. The floxed Mttp (Mttp'lo/f1or) and the inducible transgenic expression of
Cre recombinase (Mx1-Cre) together constitute a genetic switch to turn off the hepatic
synthesis of VLDL at a selected time point. This is accomplished by treating mice with
polyinosinic-polycytidylic acid (pI-pC) to activate the Mx1 promoter in the liver, leading
to Cre recombinase synthesis. Cre recombinase recognises the floxed sites and recombines,
causing an (Mttp®/2) phenotype and a rapid reduction of plasma cholesterol levels by

80% or more.

14 JESPER LUNDSTROM



GENE NETWORKS AND MODULES IN ATHEROSCLEROSIS

In-degree distribution

10001
500F 0o
g o O TF network
® =] O TF network with cofactor edges
8 100 © OOooo
(0] L
g 50 h o Py
bS] g X0 _
o ° o° FIGURE 3: Tllustrating the num-
Z 10¢ E\:'DC\: °Fooo o . . .
5 . 6 & ber of incoming regulatory edges in
o o %% yeast considering the TF network
- alone (squares) and including pro-
10 20 30 40

teins binding to TF influencing TF
In-degree

activity (circles).

3.3 IN-HUBS AND THE EFFECTIVE GENE NETWORK (STUDY I)

In this study, we integrate transcription regulation networks [45] with protein-protein
interactions from the Database of Interacting Proteins [93,94] to estimate the effective gene
network underlying gene expression data. In the effective gene network, we show evidence
of in-hubs and provide a method for predicting in-hubs directly from gene expression data.

The out-degree distribution of the transcription network, it has been suggested, is
broad and the in-degree distribution narrow [40]. While this may be true for the tran-
scription network, we are interested in the effective regulatory gene network underlying
gene expression data. This network is, as mentioned previously (Section 1.3), influenced
not only by the transcription edges but also by networks of interacting proteins, metabolic
reactions, and signaling cascades. While it is known that these processes influence gene
activity, estimation of the effective regulatory from available network-sources has, to our
knowledge, not been addressed before. In study I, we took a first step toward an improved
estimation of the effective gene regulatory network by adding transcription co-factor pro-
teins known to bind transcription factors as potential regulators (Figure 2). In this regu-
latory network underlying gene expression as measured by mRNA, we found evidence of
a broader in-degree (Figure 3) with some genes having up to 40 regulators.

In the second part of this study, we present a method that uses gene expression data
to separate genes with a high in-degree (in-hubs) from genes with a low in-degree. The
rationale behind the method is that genes with a high in-degree are more likely to be

affected by random and repeated perturbations of the network. We evaluated the method
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FIGURE 4: Prediction of genes with high indegree in two independent gene yeast expression
datasets The number of regulatory interactions as calculated from the transcription network
with co-factor proteins added, shown as a function of the HubScore. (A) 273 gene expression
profiles from nonlethal gene deletions [95] and (B) 215 expression profiles generated from yeast
cultures with titratable promoters of genes essential for cell survival.

by using computer simulations and a linear model of the regulatory gene network and
validated it in two Saccharomyces cerevisiae expression datasets [95,96] This validation
revealed a significant correlation between the method output (HubScore) and in-degree

in both datasets (Figure 4).

3.4 STUDY OF ATHEROSCLEROSIS DEVELOPMENT IN MOUSE MODEL

(Stupy 1)

In this study, we used the Ldlr—/= Apob'0/100 Mttpflor/floz Nx1- Cre mouse model (Section
3.2) to follow the development of atherosclerosis in the aorta. The mice were sacrificed at
10, 20, 30, 40, 50, and 60 weeks of age, and the extent and histological appearance of the
lesions were carefully determined at each time point. The data were combined with gene
expression profiles isolated from the atherosclerotic aortic arch in a parallel set of mice.
In this fashion, gene expression changes were coupled to plaque development.

Lesion area during atherosclerosis progression was quantitatively studied by Sudan
IV staining of whole aortas harvested from 87 mice evenly distributed over the six time
points (Figure 5). Lesion formation progressed slowly at first, reaching an average lesion
area of 5% at 30 weeks, and then expanded rapidly to an average lesion area of 12% at

40 weeks (P < 0.0001). Thereafter, lesion area reached a plateau at less than 20%.
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FIGURE 5: Lesion expansion during atherogenesis. Values are surface lesion areas assessed by
Sudan IV staining of pinned-out aortas and given as a percentage of the surface of the entire
aorta.

60

To investigate the transcriptional repertoire of atherosclerosis progression, we isolated
total RNA from the atherosclerotic aortic arch (defined as the aorta from the aortic root
to the ascending aorta at the 3rd rib) from 32 mice (47 mice per time point) and obtained
global gene expression profiles with Affymetrix GeneChips (MG 430 2.0). The data were
analyzed with an empirical Bayes test [97] (FDR < 0.05) to detect genes that were
differentially expressed between any of the time points 10, 20, 30, 40, 50, and 60 weeks.
In all, 1259 genes met this criterion and were therefore considered to be active during
atherogenesis. The expression profiles of this set of genes were clustered into four gene

groups using K-medoids clustering [98,99] (Figure 6).

The two most interesting clusters in terms of what is already known about atheroscle-
rosis were cluster 1 and 3. Cluster 1 consisted of 293 genes that were expressed at a low
level at the early time points, were activated at 30 week,s and remained active throughout
the 60 week time point (Figure 6). Text mining [100] revealed that genes in cluster 1 were
associated with atherosclerosis (36%) and macrophages (44%). The latter association was
also reflected in functional analysis performed in DAVID [101], which showed enrichment
in immune and inflammatory activities.

Cluster 3 contained 331 genes, of which 27% were previously associated with atheroscle-
rosis (Figure 6). Genes in this cluster were activated at 30 weeks and were deactivated
at 40 weeks, when lesion area began to expand rapidly, as shown in Figure 5. Gene-
annotation enrichment analysis with DAVID [101] suggested that a majority of these

genes were involved in lipid metabolism.

To control for changes in cellular composition of the atherosclerotic lesion over time,
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the mRNA levels of cell-type specific markers were assessed at different time-points. By
averaging the mRNA levels of five to 11 markers per cell type (i.e., endothelial cells,
monocytes/macrophages, smooth muscle cells, and T-cells), we estimated the relative
contribution of these major atherosclerosis cell types over time (Figure 7). To our surprise,
the contributions were fairly stable over time, the exception being the relative content of
lesion macrophages, which increased significantly between 20 and 30 weeks, just before
the rapid expansion of the lesions (Figure 5).

From the combined histological and expression profile analyses, it was clear that the
30-week time point was critical for atherosclerosis development in these mice. In brief,
these analyses showed that up until 30 weeks, macrophages accumulated in the arterial
wall. At 30 weeks, this accumulation seemed to have reached a critical point, leading
to formation of small but well-defined plaques. At 30 weeks, lesion inflammation and
immune reactions were strongly activated (cluster 1, Figure 6) and remained activated
throughout the study period of 60 weeks. This inflammation may be a trigger for the
rapid increase in plaque size between 30 and 40 weeks (Figure 5). The increase in plaque
size is primarily caused by an enlargement of existing macrophages due to cholesterol-ester

accumulation.
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FIGURE 7: Relative expression levels of cell-specific markers of four atherosclerosis cell types.
The number of markers per cell type is indicated. The only statistically significant increase was
in the number of foam cells, which increased by 30% between 20 and 30 weeks (Pj0.001) and
remained elevated at 60 weeks.

We therefore chose to lower plasma cholesterol at the 30-week time point, using the
inducible transgene (Mx-1 Cre) and floxed Mttp alleles in the mouse model. Cholesterol
levels were decreased by 80% or more at 30 weeks, and this reduction completely prevented
the rapid expansion of the lesions between 30 and 40 weeks of age (see paper II). This
dramatic effect suggests that cholesterol-lowering drugs such as statins may have an even
more potent effect than has already been documented [102] if administrated early to
patients at risk for premature atherosclerosis.

Gene expression profiling of mice with high and low plasma cholesterol at 30 weeks
identified 38 genes that were responsive to cholesterol lowering. (FDR < 0.05) . Some of
these genes were perturbed—using silencing interference RNA (siRNA)—in a cell culture
of THP-1 macrophages incubated with acetylated LDL. Gene expression profiling of the
perturbed cell cultures and reverse engineering [84] resulted in a network of eight genes
important for foam cell formation and the rapid-expansion phase of lesions in these mice

(see Figure 4 in Paper II).
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FIGURE 8: A principle scheme of the analytical steps performed in Study III. (1) Sixty-six gene
profiles (15,042 RefSeq each) from the liver, skeletal muscle and mediastinal fat and 40 from
the atherosclerotic tissue were clustered with a coupled two-way approach. First, the RefSeq
expression profiles were clustered, separately in each tissue, according to pairwise Spearman
rank correlation, resulting in 11-20 gene clusters for each tissue. Each gene cluster was then
clustered dividing the patients into two groups according to mRNA levels only in the cluster
genes. (2) Two gene clusters that divided the patients according to the degree of coronary
stenosis were further analyzed. (3) To validate the atherosclerosis-related clusters identified
in the STAGE cohort, the clustering procedure was applied to a validation cohort containing
25 carotid stenosis patients with gene expression profiles of lesion gene expression. Instead of
degree of coronary stenosis, IMT was used to define clusters relevant to coronary artery disease.
(4) The first clustering step resulted in 8 gene clusters, only one divided the patient according
to IMT. (5) Bioinformatic analysis revealed a significant overlap between all three clusters and
similar functional annotation, indicating all clusters are from the same functional module. LDB2
is identified as a putative regulator. (6) Functional validation of LDB2 as a key regulator of the

module.
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3.5 IDENTIFYING A GENE-MODULE RELEVANT TO ATHEROSCLEROSIS

SEVERITY IN CABG PATIENTS (STUDY III)

In this study, we analyze whole-genome expression profiles from the STAGE study (Section
3.1.1) using a clustering approach inspired by Getz et al. [79], which identifies functional
gene modules important to disease development, in our case atherosclerosis.

The outline of the data analysis is shown in Figure 8. First, we identified corre-
lated mRNA levels by grouping genes in 11 to 20 gene-clusters per tissue with a super-
paramagnetic clustering algorithm [103,104], using the absolute value of Spearman rank
correlation as the similarity measure. Among the benefits of this method, is that it does
not assume a underlying data distribution and that it allows each data point to belong to
more than one cluster. For each gene-cluster containing up to 1000 genes, we clustered
the patients into two groups based on the mRNA levels of the genes in that cluster.

Two gene clusters divided the patients into groups with statistically significant dif-
ference in stenosis score. One cluster was identified from the expression profiles of the
atherosclerotic tissue (n = 49 genes, P = 0.008) and the other from the profiles in me-
diastinal fat (n = 59 genes, P = 0.00015 ), see Figure 9. Interestingly, seven gene were
present in both clusters, which is highly unlikely to happen by chance (P < 107?).

To validate these results, we also measured and analyzed whole-genome expression
profiles of carotid biopsies from 25 patients that underwent carotid surgery (see Section
3.1.2). Of eight gene-clusters identified, one (n = 55 genes; Figure 10) divided the patients
into two groups that differed significantly in IMT score (P = 0.04). Remarkably, the
overlap between this gene cluster and the two clusters identified in mediastinal fat and
atherosclerotic aorta in the CABG patients included 16 and 17 genes, respectively (P <
10726, P < 107%).

We believe clustering analyses have uncovered a module of 129 genes relevant to
atherosclerosis development, 28 with evidence from expression measurements in two or
three different tissues. Gene set enrichment annotation [101] suggests that this mod-
ule and its 129 genes are likely to be involved in the KEGG pathway transendothelial
migration of leukocytes (P < 1079).

The only regulatory gene present in all three clusters was the transcription co-factor
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FIGURE 9: Heat maps of two clusters related to stenosis score in coronary artery bypass graft
(CAGB) patient expression profiles. Columns represent individual patients, and rows represent
RefSeq transcripts. Levels of mRNA are represented as a color; brighter blue indicates lower
mRNA levels, and brighter red higher mRNA levels. (A) Heat map indicating the mRNA levels
of 49 genes in atherosclerotic tissue belonging to the one cluster out of 14 that related to the
stenosis score (P = 0.008). (B) Heat map indicating the mRNA levels of 59 genes in medistinal
fat belonging to the one cluster out of 20 that related to the stenosis score (P = 0.00015).
Highlighted genes were also found in the cluster shown in panel (A).

LIM-domain binding 2 (LDB2). To investigate the role of LDB2 as a potential regulator
of this module, we identified transcription factors that interact with LDB2 and matched
their binding site sequences from TRANSFAC (v11.2) [105] with the upstream sequences
of the 129 genes in the module. We found that 122 of the genes could theoretically
be regulated by LDB2. Furthermore, cell culture and immunohistochemical analyses
revealed that LDB2 is expressed in two key cell types of atherosclerosis—endothelial
cells and macrophages. Finally, we examined the mRNA levels of 10 genes central to
transendothelial migration of leukocytes in the arterial wall of Ldb2 knockout and wildtype
mice. Eight genes were differentially expressed; the difference in expression levels of five

of the genes was statistically significant (p < 0.05).
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FIGURE 10: Heat map indicating the mRNA levels of 55 atherosclerosis genes belonging to
the one cluster out of 8 that related to IMT (P = 0.038) in the validation cohort including 25
carotid plaques. Highlighted in red are genes also identified in both clusters shown in Figure 9.

3.6 A DATA-INTEGRATIVE APPROACH TO UNCOVER CHOLESTEROL-

RESPONSIVE NETWORKS OF ATHEROSCLEROSIS GENES (STUDY IV)

In this study, we identified a subnetwork of cholesterol-responsive genes involved in athero-
genesis by prioritizing among genes that were differentially expressed in the atheroscle-
rotic arterial wall in response to plasma cholesterol lowering (i.e., cholesterol-responsive
atherosclerosis genes, CRAGs) using in-house gene expression datasets from human and
mouse, protein binding [106] and literature mining data.

In the first step, we lowered plasma cholesterol by 80% or more (by pI-pC injection
as described in Section 3.2) in the mice at five time points (20, 30, 40, 50, and 60 weeks)
Ldlr="= Apob'00/100 pfgtpflor/flox \[x1-Cre; saline-injected littermate mice without choles-

terol lowering served as controls. One week after plasma cholesterol lowering, the mice
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were sacrificed, and the aortic arch was isolated for subsequent RNA isolation and global
gene expression analyses with Affymetrix GeneChip MG 430 2.0. Comparison of the ex-
pression profiles in the two groups at each time point with an empirical Bayes statistical
test identified 2457 CRAGs (FDR < 0.1).

In comparing two sets of gene expression profiles (or any other genome measure), the
lowest P value is often used to identify the “most significant” genes—those most relevant
from a biological perspective. However, although the subset of differentially expressed
genes defined by a given FDR in most instances is relevant, using the individual P-values
is most likely not the optimal way to rank and prioritize biologically relevant genes.

In this study, we used another approach, which we call the integrative network ap-
proach. We prioritized CRAGs according to their position relative to atherosclerosis seed
genes (see definition below) in three global gene networks. To further prioritize these
genes, we used the set of 1259 genes found to be active during atherogenesis in Study II.

The first network, the expression network, was inferred using first order partial correla-
tions [82] from the human expression compendium of 40 samples of atherosclerotic aorta in
study III. The second network, the protein—protein interaction network, was downloaded
from the Human Protein Reference Database (HPRD) [106]. The third network, the liter-
ature network, was derived by connecting genes associated with significantly overlapping
article sets (P < 107°) in the Entrez Gene database [59)].

Atherosclerosis seed genes were identified by searching PubMed for articles associated
with the search terms “(atherosclerosis and cholesterol) OR foam cells”. This search
identified 18,002 articles, which were then linked to genes in the Entrez Gene database.
Sixty-eight genes were linked to these 18,002 articles more often than expected by chance
(P < 0.05). These genes were considered to be atherosclerosis seed genes.

Next, we identified which of the 2457 CRAGs were neighbors (not nececarily first
neighbors) to seed genes in at least two of the three global networks. Of 387 CRAGSs
that met this criterion, 35 were among the 1259 genes active during atherogenesis in
Study IT (Figure 6). These 35 CRAGs were considered the top-ranked genes based on this
integrative network approach. Seven of the top-ranked 35 CRAGs were also atherosclerosis
seed genes: CXCL16, ICAMI1, LDLRAP1, PPARA, PPARG, SCARBI, and SREBF2.
One of the top-ranked CRAGs was PECAMI1, which was not an atherosclerosis seed
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gene but is of known importance in atherosclerosis progression and endothelial activation.
Interestingly, PECAMT1 is included in the module of 129 genes related to the Kegg pathway
of transendothelial migration identified in study III (Figures 9A and 10).

To learn more about the 35 top-ranked genes, we constructed a subnetwork based
on these genes and their first neighbors, according to their edges in any of the three
global networks. This network, shown in Figure 12, contains 947 nodes, of which 26 are
atherosclerosis seed genes, 219 are CRAGs (i.e., part of the 2457 genes), and 124 are active
during atherogenesis (i.e., part of the 1259 genes). Using DAVID [101] to conduct gene-
annotation enrichment analysis, we found that this gene subnetwork is most significantly
associated with the disease class cardiovascular disease (FDR = 0,0002). The network
also included 26 of 47 genes in the notch signaling pathway (FDR < 107%) and 58 of 199
genes in the focal adhesion pathway (FDR < 107%).
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FIGURE 11: First, 2457 cholesterol-responsive atherosclerosis genes (FDR < 0.1) were identi-
fied by comparing mRNA levels in atherosclerotic aortas from saline-treated control mice with
aortas from mice sacrificed 1 week after induction of a genetic switch (Mttp®/2) to lower plasma
cholesterol by > 80%. Second, three global networks of genes were generated (see Materials and
Methods for details) from a compendium of human atherosclerosis gene expression profiels (study
III) (red), protein-protein-binding data (blue), and literature mining(green), respectively. The
global networks were then used to prioritize the 2,457 cholesterol-responsive atherosclerosis genes
by their location with respect to 68 atherosclerosis seed genes. Three-hundred and eighty-seven
genes were identified in at least two of the global networks (gray area in the first Venn diagram).
Thirty-five of these genes had previously been identified as active during atherogenesis in study
IT (second Venn diagram, pink area). These 35 genes are referred to as the top-ranked genes
from the integrative network approach (see Paper IV Table 1). A set of 35 of the statistically
most significant of 2457 differentially expressed genes was used as a reference (see PaperIV Table
2).

26 JESPER LUNDSTROM



GENE NETWORKS AND MODULES IN ATHEROSCLEROSIS

Edges from global networks: @ Atherosclerosis genes identified through integrative network approach (n=35)
Expression edge © Cholesterol-responsive atherosclerosis genes

—— Protein-protein interaction ® Genes active during atherogenesis
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FIGURE 12: A network of 35 top-ranked genes as identified by the network integrative approach
and their first neighbours are shown. This network contained 943 nodes and 1221 edges. Nodes
indicated with a triangle are atherosclerosis seed genes. The colour code of the edges indicates
which of the three global networks described in Figure 11 the edge were derived from. Two
(CA4 and ALDH4A1) of the 35 top-ranked genes were not part of the main connected network
because they were found to be more than two edges away from any other top-ranked gene.
The remaining 33 top-ranked genes were in the main connected module, and 13 were directly
connected with each other.
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3.7 METHODOLOGICAL CONSIDERATIONS

3.7.1 DATA STORAGE

Gene expression profiling on a global scale generates vast amounts of data, handling
databases is therefore a central and important task. For instance, it is necessary to
store the data in a structured way to avoid any risk of “mislabeling”. Several labora-
tory information management systems are available for this purpose. However, we chose
to design a custom database schema for storing the in-house generated gene expression
data in a MySQL database (http://www.mysql.com) using the InnoDB storage engine
(http://www.innodb.com/). In this database, we have also integrated public data sources,
for example RefSeq mRNA transcript sequences [58] and the Entrez Gene [59] and Gene
Ontology [107] databases.

3.7.2 PROBE SET DEFINITION OF AFFYMETRIX GENECHIPS

Affymetrix probe sets are defined from UniGene [108] transcripts and most commonly
contain 11 probe pairs. Inspired by [56,57], we decided to define custom probe sets based
on matching the probe sequences to high-quality RefSeq transcripts in Study III. After
removing all cross-hybridizing probes, we recovered 14,699' probe sets RefSeq probe sets
on the HG U133 Plus 2.0. Reducing the number of probe sets from 54,675 to 14,699',
may seem drastic but we are still including measurements from 33%?! of perfect-match

probes after removal of unreliable and cross-hybridizing probe sets.

Sometimes, multiple RefSeq transcripts corresponding to the same gene have a large
sequence similarity; therefore, many or all probes match both probe sets. In Study IV,
we changed the probe set definition to accommodate this. Here we define a probe set for
each gene based on all probes matching any RefSeq transcript of that gene, resulting in

17,014 probe sets utilizing 39% of the perfect-match probes on the HG U133 Plus 2.0.

IThis figure is recalculated using a newer version of RefSeq as compared to Study III
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3.7.3 LOW LEVEL PROCESSING OF AFFYMETRIX GENECHIP DATA

In Study II, we used the standard protocol in MAS version 5.0 [60], which includes global
scaling and probe set summarization. We then averaged probe set signals corresponding
to the same gene to give a gene signal. Before identifying differentially expressed genes
between two states, we normalized the samples with Loess [109] to remove intensity bias.

Studies like [18,19] show that their methods outperform MAS 5.0 by reducing noise
and improving specificity and sensitivity in detecting differential expression. For this
reason, we changed our preprocessing strategy by applying quantile normalization [18]

and summarizing the normalized probe signals with robust multiarray analysis [19] in the

later Study III and IV.

3.7.4 IDENTIFICATION OF DIFFERENTIALLY EXPRESSED GENES

As discussed in Section 1.5.1, normal P-values are not appropriate in a multiple testing
setting. To identify differentially expressed genes, we estimated the FDR with an empirical
Bayes method developed by [97]. We used this approach in all studies except for Study
I, where we performed differential testing without adjustments for multiple testing as a
part of the Hubdetector method. In Study IV, we tested several clusters for partitions
relevant to atherosclerosis measurement using Benjamini-Hochberg FDR correction [66]

Another important analytical issue is that genes with low variance sometimes show
strong statistical significance, which, in most instances, is rather meaningless because the
differences in mRNA levels are too small. In Study IV, we acknowledged this and used
a t-statistic modified by adding a constant “fudge factor” sy to the denominator [67,68].
The fudge factor we used was the 90th percentile of gene-specific standard deviation

distribution as suggested by [68].

3.7.5 CLUSTERING

We used clustering algorithms in study II and study III. In study II, we identified genes
responsive to a change between the time points before we clustered the genes, thereby

avoiding the problem of including a large set of uninformative and “noisy” genes into
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the clustering algorithm (see Kerr et al. [73]). The accual clustering was performed with
a k-medoid clustering algorithm [98,99], which is similar to k-means clustering faster.
In Study III, we instead used a more unbiased method, in which genes and samples are
clustered with a two-way approach [79,80] without first identifying differentially expressed
genes. The original two-way approach clusters the samples and genes iteratively; however,
we used a “light version” that includes only one iteration. In a larger cohort it could be

interesting to continue the iteration further.

3.7.6 LITERATURE MINING

The massive amount of published research makes it extremely difficult go through articles
manually to identify gene functions and relationships among genes. This problem has
prompted a new field of research—automated literature and text mining [110-113].

We used automated literature mining in both study II and IV. However, the techniques
differed. In study II, we used a text mining algorithm to search for gene names and
symbols in the article abstracts [100]. In study IV, we used the article-to-gene links in
the Entrez Gene database [59].

3.7.7 FUNCTIONAL ANALYSIS OF GENE-SETS

In all of the studies, we needed to annotate the gene-sets resulting from our analysis. For
this purpose, we commonly used gene-annotation enrichment analysis, in most cases with
the DAVID tool [101]. Gene-annotation enrichment analysis is performed by computing
the probability of drawing the observed number of genes with a specific annotation (e.g.,
a GO category or a KEGG pathway) from a set of background genes. A hypergeometric
distribution is used to make this computation. One problem with this approach is again

multiple testing, here further complicated by relatedness of functional cetegories.
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4  DISCUSSION

In this section, I decided to focus on cell-type heterogeneity, regulation of gene activity

and network—expression integration which I believe are three critical issues in the thesis.

4.1 MEASURING EXPRESSION IN HETEROGENEOUS SAMPLES

In Studies II, III and IV, we analyzing gene expression by measuring RNA levels in
tissue samples from mice and human patients. To some degree, all such samples contain
multiple cell types. Thus, it is impossible to attribute changes in mRNA expression
levels to any particular cell type on the basis of expression data alone. In fact, the
expression profiles reflect not only gene activity within the cells but also the cellular
composition of the tissues. In such cases, interpretation of the gene expression data is
more problematic than in studies of homogeneous cells (e.g., cultured cells). However,
culturing the atherosclerotic cells of interest instead causes another problem—the cultured
cells have been removed from their natural environment, which alters their transcriptional
patterns and reduces disease relevance.

To measure cell-type-specific gene expression from a heterogeneous biopsy, one could
use laser microdissection techniques [114] to collect specific cells for further analysis (e.g.,
measuring RNA levels). However, for three reasons, we elected not to use this interesting
technology. First, although several cell types are important in atherogenesis, expression
profiling of whole lesions is still useful for detecting meaningful biological processes. For
instance, with our approach, we captured cellular interplay, as reflected in the leukocyte
transendothelial migration module we identified that involves genes from both leukocytes
and endothelial cells (see Paper III, Figure 3B). Second, at least 500 cells are needed
to isolate enough RNA for microarray expression profiling—a labor-intensive task if cells
are to be isolated one by one using laser microdissection [115]. Also, one may question
the usefulness of this technique since within one atherosclerosis cell-type there are many
subtypes. For instance from histological examination, it is clear that cell-type like smooth
muscle cells come in many shapes and sizes, and those differences are most likely are
reflected in their transcriptional repertoire.

In Study III, we measured global gene expression in the aortic root, which con-
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tains both normal tissue and diseased tissue. Thus, the expression profiles also reflect
nonatherosclerotic vascular expression. To remove this vascular expression, we used the
internal mammary artery from the same patient as a control, as this vessel exhibits little
or no atherosclerosis [116].

In studying atherogenesis in the Ldlr—/= Apob'%/190 pfttplioz/flor \[x1-Cre mouse
model in Study II, we expected that the cell composition would change as atheroscle-
rosis progressed between time points, which was also confirmed by the histological in-
vestigation. However, by measuring the mRNA levels of cell-type specific markers, were
able to predict the accumulation of macrophages before the rapid expansion of plaque
area. Moreover, in Study II and IV, we studied how plasma cholesterol lowering affects
transcription, aiming to identify cholesterol-responsive genes. In these experiments, we
wanted to avoid identifying gene expression changes due to differences in cellular com-
position between the mice with low plasma cholesterol and the control mice. Therefore,
in an additional set of experiments, we looked for changes in cellular composition for 2
weeks after cholesterol levels were lowered. No changes in lesion size or cellular marker

concentrations were observed (see Paper II Figure 3).

4.2 REGULATION OF GENE ACTIVITY

In studies of gene expression, it is of key importance that mRNA levels reflect actual
functional gene activity. Several regulatory mechanisms have been proposed, for example
transcription, translation, chromatin remodeling, nuclear territories, and regulatory roles
for noncoding RNA. Although the mRNA level is clearly an important predictor of gene
activity and function, there have been some debate about the extent to which the regula-
tory processes is captured by gene expression measurements. In a study of E. Coli and S.
Cerevisiae gene expression, the correlation between transcriptional regulators and their
target genes was in many cases insignificant [117], possibly because the activity of many
transcription factors is regulated at a post-transcriptional level. Or transcription factor
concentration—both on mRNA and protein level—is stable over time, with transcription
activity being modulated through the binding of small molecules and proteins. We ar-

gued in Study I for an extended interpretation of gene regulatory networks that includes
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transcriptional co-factor proteins. Since co-factors can obviously function as active mod-
ulators of transcription factors, it would be interesting to investigate whether co-factor
proteins are co-regulated with their target genes.

The low correlation between transcription factor and target gene has another impli-
cation—that reverse engineering schemes may not be able uncover the entire physical
transcription network without the use of perturbation techniques. However, it is also
important to recognize other reasons for low correlation, including low expression of tran-
scription factors (under detection level) [118] and nonlinear regulation effects (e.g., time
delay between expression of transcription factors and effects on their target genes’” expres-
sion [119].

In contrast, target genes regulated by the same transcription factor or the same set of
transcription factors often exhibit a correlated gene expression pattern [117,119], suggest-
ing that gene expression levels predict functional activity. Thus, clustering techniques are
likely to identify target genes in a co-regulated module, while transcriptional regulators
may be missed. These possibilities are consistent with our observations in Study III, in
which cluster analysis identified the transcriptional co-factor LDB2 but not its partner

transcription factor.

4.3 INTEGRATION OF EXPRESSION PROFILING AND GLOBAL NETWORK

STRUCTURES

In Study IV, we integrated data from global networks with microarray measurements in
atherosclerosis-prone mice during atherosclerosis development and after cholesterol lower-
ing. Rather than use P-values to prioritize differentially expressed cholesterol-responsive
genes based on their statistical significance, we utilized a list of atherosclerosis seed genes
and prioritized differentially expressed genes based on whether they are neighbors to seed
genes in three global networks. This approach resulted in a gene set that was more relevant
to our current knowledge of atherosclerosis because it had more homogeneous functions,
as judged from Gene Ontology and pathway analyses, than the differentially expressed
cholesterol-responsive genes that were most statistically significant. This approach has

two significant strengths: it expands from what is currently known about the atheroscle-
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rosis process, and it results in a set of genes that can be put into a more relevant context
(i.e., into one or several subnetworks of interactions).

However, these two strengths are related to two weaknesses of the approach. First, the
approach relies on a list of seed genes of known important in atherosclerosis. Thus, priority
is given to genes associated with pathways and processes in atherosclerosis that are already
known rather than to those previously unidentified. However, this is appropriate, since
one major task of network approaches is identify new genes playing key roles in known
atherosclerosis processes and thus completing the parts lists. Second, the approach relies
on global networks—in the current study, protein-protein binding, literature mining, and
atherosclerosis expression networks. Genes not present in these networks will obviously
not be identified, which leads to bias toward genes that have, in general, been more well
studied (not limited to known atherosclerosis genes). This bias is most pronounced in the
literature network and to some extent in the protein-protein binding network.

The integrative network approach (Study IV) raises other issues we intend to ad-
dress—for example, the extent to which the three global networks contribute to the list of
prioritized genes and how this list would be altered by excluding one or several of the global
networks from the integration process. To address this question, we could integrate com-
binations of these three global networks with comparisons of plasma cholesterol-responsive
genes (n=2457) and with the genes identified as active in atherosclerosis (n =1257, Study

IT) to generate alternative gene lists.
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5 FUTURE PERSPECTIVES

5.1 INTEGRATING GENE AND PROTEIN EXPRESSION MEASUREMENTS

In the last decade, the increasing use of global gene expression profiling (i.e., global
mRNA levels) has yielded several interesting results and insights into biological processes
and human diseases (for example [95,120-122]). However, the most important role of
an RNA molecule is to serve as a messenger for protein synthesis. Thus, one intriguing
idea is to increase network resolution generated from gene expression studies by adding

information from global measurements of protein expression.

However, protein expression measurements are not nearly as well developed as global
mRNA measurements. Multidimensional liquid chromatography combined with tandem
mass spectrometry can be used to measure the concentrations of up to 1000 proteins in a
single sample [123]. With further development, this technology might accommodate global
measurement of protein expression [15]. Another technology, protein micoarrays, can be
used to measure protein expression in a parallel fashion. However, for at least two reasons,
this technology has not matured as fast as DNA microarray technology. First, DNA
microarrays exploit the ability of single-stranded nucleic acid sequences to hybridize onto a
complementary sequence, but it is much more difficult to identify compounds that bind to
a specific protein from the sequence alone. Second, RNA samples can readily be amplified
by polymerase chain reaction (PCR), but no easy protocol for protein amplification exists,

and thus the measurement technology will have to be much more sensitive.

One common type of protein microarray is the antibody array, in which a slide is
printed with protein-specific antibodies. Moreover, there are attempts to create antibodies
for all human proteins. A recent study, for example, described a library containing 5067

“gene-centric” antibodies covering ~25% of the protein-coding human genes [124].

Although several studies have measured concentrations of multiple proteins on a chip
[125] or with tandem mass spectrometry [126], it is not currently possible to measure
protein expression on a truly global scale. However, if technical advances were to make
such measurements possible, it would definitely be highly interesting to combine global

protein expression measurement with gene expression measurements to provide a more
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detailed view of gene regulation.

Protein expression measurements could also provide new opportunities for the reverse
engineering community and enable researchers to moving beyond the effective gene net-
work (see Section 4.2). It would be very interesting to determine whether transcription
factor protein levels correlated with the mRNA expression of their target genes (see also
Section 4.2). Moreover, it would be interesting to cluster protein expression data and
compare it to cluster results from mRNA expression data. It is likely these data sources
will reveal different aspects of the investigated processes, as a consequence extending
Study IIT in this thesis with protein expression measurements may enable a more com-
plete identification of gene modules important to atherosclerosis severity.

Last, genome-wide expression studies like in this thesis and by others generate an
increasingly robust list of atherosclerosis candidate genes. In a few years from now, we
may have end up with a list in the thousands of relatively well-established atherosclerosis
genes. Clearly, developing custom made protein analysis platforms focusing on these genes

will by-pass some of the problems inherent with whole-genome proteomic approaches.

5.2 INTEGRATING GENE EXPRESSION WITH GENOTYPING

Single nucleotide polymorphisms (SNPs) are mutations in which one specific DNA base
is substituted in the genome of at least 1% of the human population. SNPs are impor-
tant in human diseases [4] and can be interrogated on a large scale by using genotyping
arrays', which currently allow the detection of up to 1,000,000 SNPs from the same sam-
ple in parallel. Copy number variation (CNV)—insertions, deletions, and multiplications
of DNA segments—are another potentially important source of genetic variability with
implications for human disease [127]. For example, having multiple copies of the CCL3L1
gene reduces susceptibility to HIV infection [128]. Luckily, copy number variation can
also be identified using commercially available SNP arrays [129].

Genetic variants, like SNPs and CNVs described above, will cause differences in reg-
ulatory properties and/or changes in actual gene sequence that are reflected in gene ex-

pression profiles and physical protein properties. In some cases, a mutation in one gene

'The two major array manufacturers are Illumina and Affymetrix
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will cause changes leading to a higher-order phenotype (e.g., sickle-cell anemia and cystic
fibrosis), while in other cases, the interplay of several genetic changes leads to a higher-
order phenotype. Traditional approaches—focusing on mapping genotypes to higher-order
phenotypes—have had trouble unraveling complex phenotypes such as atherosclerosis.
Gene expression may serve as an intermediate step between genotype and complex phe-
notype. In early studies by Brem et al. [130] and Schadt et al. [131], gene expression
patterns were shown to be highly hereditable; moreover, a large number of genetic loci
affecting gene expression—referred to as expression quantitative loci or eQTL—were iden-
tified in yeast mouse, maize, and human. Schadt and coworkers also used eQTLs and gene
expression to link five genomic regions that were important in defining the fat-pad-mass
trait in these mice, which would not have been possible using traditional techniques [131].

In more recent studies, this approach has been applied to a range of settings to iden-
tify potential susceptibility genes for several complex traits, including obesity, diabetes,
atherosclerosis, and neuronal function, in mice and in human subjects [132-136].

In the light of these results, it would be interesting to genotype patients in the STAGE
study (see section 3.1.1) using a global SNP array. The benefit of the STAGE cohort is that
we have multiple expression profiles for the same gene in up to five tissues, which would
enable us to identify similarities and differences in the genetic architecture in those tissues.
The combined expression genotype data would, for instance, give us the opportunity to
find genomic regions associated with the module shown to be related to atherosclerosis
severity in Study III. In a small-scale study involving a handful selected SNPs, we could,
using statistical and bioinformatic methods, show evidence that one of these SNPs is
responsible for regulation in this module. This SNP have also been further validated and
found to cause myocardial infarction or atherosclerosis in the Swedish population of three

independent cohorts [137-139].
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6 CONCLUDING REMARKS

This thesis provides evidence that analysis of global gene expression profiles isolated from
a wide range of biological specimens can be used to infer functional interactions of genes
in modules or networks. The content and structure of these modules and networks can be
used to improve our understanding how complex disorders like atherosclerosis develop.
It is hard to predict the most efficient path to a more complete understanding of
complex diseases. I believe in depth investigation of candidate genes will be important in
the future but only as a complement to global approaches. Many things will be learnt from
combing different genomic strategies bringing their different strengths and weaknesses to
the the same table. By doing this we can get a course grained picture of the disease process

at different levels, giving us the opportunity to find new disease relevant relationships.
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