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Abstract

Transmembrane proteins make up a large and important class of proteins. About 20% of all genes
encode transmembrane proteins. ¿ey control both substances and information going in and out
of a cell. Yet basic knowledge about membrane insertion and folding is sparse, and our ability to
identify, over-express, purify, and crystallize transmembrane proteins lags far behind the �eld of
water-soluble proteins.

It is di�cult to determine the three dimensional structures of transmembrane proteins. ¿ere-
fore, researchers normally attempt to determine their topology, i.e. which parts of the protein are
buried in the membrane, and on what side of the membrane are the other parts located.

Proteins aimed for export have an N-terminal sequence known as a signal peptide that is in-
serted into the membrane and cleaved o�. ¿e same mechanism that inserts transmembrane
proteins into their membranes also handles the export of protein with signal peptides. Trans-
membrane helices and signal peptides thus have many features in common.

In silicomethods for predicting transmembrane topology and methods for predicting signal
peptides fromamino acid sequence are a fast and relatively accurate alternative to biochemical ex-
periments. Amethodology called hiddenMarkov models (HMMs) has proved particularly useful
for these and other prediction tasks.

In this thesis, properties of transmembrane topology predictors and signal peptide predictors
are investigated. It includes three novel HMM based prediction methods.

i) A combined transmembrane topology and signal peptide predictor, Phobius. ¿e paper
shows that cross predictions, i.e. signal peptides predicted as transmembrane helices and vice
versa, are a common problem. About 10% of the genes in E.coli have overlapping signal peptide
and transmembrane helix predictions by conventional predictors. We were able to dramatically
lower these false cross predictions.

ii) Amethod for detecting remoteG protein-coupled receptor (GPCR) families, GPCRHMM.
GPCRs are a very large and divergent superfamily of transmembrane proteins. We designed a
hidden Markov model based on the topological regions of the superfamily. We searched �ve
genomes and predicted 120 previously not annotated sequences as possible GPCRs. ¿emajority
of these predictions (102) were in C. elegans, but 4 were found in human and 7 in mouse. We as
well conclude that a family of odorant receptors in Drosophila are not GPCRs.

iii) Amethod to improve predictions with HMMs of generic sequence features (such as trans-
membrane segments or signal peptides) by including homologs. We show that the performance
of Phobius using this decoder was signi�cantly better than with other decoders.

We also assessed the di�culty of benchmark sets used in transmembrane topology prediction.
By studying the level of agreement between di�erent predictors applied to typical benchmark sets
and whole proteome sets, we concluded that the benchmark sets are far easier to predict than
reality. In other words, the accuracies reported in benchmark studies are exaggerated.

¿is thesis also includes a paper presenting a hypothesis of the transmembrane topology of
presenilin, a protein involved in the development ofAlzheimer’s disease. By comparing the output
of several transmembrane topology predictors with experimental results from previous studies,
a novel nine-transmembrane topology with an extracellular C-terminus was elucidated.
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Prediction servers
¿ree of the methods developed during the Ph.D. project are available to the public through
web servers:

Phobius Prediction of transmembrane topology and signal peptides�������������	����
���������������������������� or �������������	����
� ��������� ��!�"#�$�����&%���� .

PolyPhobius Prediction of transmembrane topology and signal peptides aided by homolog
sequences�������������	����
����������������������������	��
�'()�$���	*�' .

GPCRHMM Prediction of existence and transmembrane topology of GPCRs.�������������������+��*�*,�������������������� .

So ware packages
¿e following so ware package has been designed as a result of the project:

HomologHMM An HMM decoder that can handle homolog sequences.�������������	����
�����������������������������%�-���-.�$���	*�'
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Chapter 1

Biomembranes

Life depends on both interaction and isolation1 . A cell needs to keep the integrity of its essential
processes and retain its reactants and enzymes. But at the same time it is dependent on the ability
to absorb new nutrition and deposit waste to its environment. Also, it has to gather information
about its environment. In a cell, this dilemma is solved by a surrounding semipermeable plasma
membrane.

Biological membranes consist of amphipatic molecules, i.e. molecules that contain both a
hydrophilic and a hydrophobic end, most o en phospholipids. ¿e molecules form a bilayer,
where they are aligned in such a manner that the hydrophobic tails of the molecules in each layer
are facing the other layer, and that the hydrophilic parts are facing away from the center of the
membrane. ¿e bilayer e�ectively blocks the passage of hydrophobic molecules, or molecules
larger than a couple of Ångström. However, biological membranes contain a large number of
transmembrane (TM) proteins, proteins that span the membrane, and hence are able to serve as a
bridge between the cytoplasm (the inside of the cell) and the extracellular world. Transmembrane
proteins are included in a wide variety of pathways, and serve among other things as transporters
of ions and molecules across the membrane and as chemosensors and hormone receptors. ¿ey
are of high importance for medicine due to their strategic role. More than half of the protein
targets of commercially available drugs are transmembrane proteins2, 3, even though only a � h
of all human proteins are transmembrane proteins4.

Eukaryote cells harbor organelles, compartments enclosed by a membrane, where milieus
suitable for more specialized processes are kept. In a similar manner as for the entire cell, these
compartments are shielded o� by lipid bilayers which also are bridged by transmembrane pro-
teins.

Most transmembrane proteins are α-helical, i.e. the segments of the protein crossing the
membrane form 18-35 amino acid long hydrophobic α-helices. ¿ere are also β-barrel membrane
proteins, where the segments of the protein crossing the membrane form β-sheets. However, the
�rst class is far more common5, hence I will only refer to these when describing TM proteins in
this text.

1.1 Translocon
An interesting transporter is the translocon and its core components the protein-conducting
channels (PCCs)6. Translocons are able to translocate amino acid chains across membranes, that

1
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Predicting transmembrane topology and signal peptides with hidden Markov models

Figure 1.1: ¿e secretory pathway in (A) eukaryotes and (B) bacteria are both dependent on (C)
translocon/ribosome complexes. In eukaryotes the nascent proteins are translocated from the (1)
cytosol into the (2) endoplasmic reticulum (ER).¿e proteins are then transported in (4) vesicles
through (3) the Golgi apparatus. ¿e proteins may continue to a (5) lysosome or (6) endosome,
or they are (7) secreted from the cell. Proteins targeting (8) mitochondria, (9) peroxisomes, or
the (10) nucleus are exported by other mechanisms. In bacteria nascent proteins are translocated
over the plasma membrane by the translocon. Other mechanisms handles the transport over the
bacterial cell wall (the outer membrane).

later form fully folded proteins in their new environment. ¿ey are also able to insert the TM
helices of TM proteins into membranes, and transport their translocated loops.

¿e PCC is, in all kingdoms of life, built up from three proteins. In mammalians, they are
named Sec61α/β/γ, in yeast Sec61p/Sbh1p/Sss1p, in archea SecY/β/E, and in eubacteria SecY/G/E.

¿e heterotrimeric PCCs form dimers. It is debated if the dimers in their turn form dimers7
or not8. So in each translocon there are at least two copies of the PCC. Since there is only room
for one PCC to be active at the time, the purpose of the other copies are unknown, even though
there are speculations that they are used in the insertion of transmembrane proteins8 or that they
have a structural role or that they recruit accessory factors7.

1.2 ¿e general secretory pathway
¿e translocons of the general secretory pathway are located in the plasmamembrane of prokary-
otes and in the endoplasmic reticulum (ER) of eukaryotes. ¿is implies that in prokaryotes
translocated proteins are excreted from the cell, while in eukaryotes they enter the ER. However
many proteins are moved from the ER to other organelles or excreted, by vesicular transport, a
process where a part of the membrane bud from the ER lumen to later fuse with another organelle
(See Figure 1.1). In the same manner most TM proteins in eukaryotes are inserted by translocons
into the ER membrane and transported to other membranes by vesicular transport.

All protein chains that are transported through a translocon are distinguished by a signal

2
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Chapter 1. Biomembranes

Figure 1.2: Translocon/ribosome complex inserting a transmembrane protein (a-b-c-d) and
translocating a protein with signal peptide (a-e-f-g).

sequence, a hydrophobic stretch of amino acids. ¿e signal sequence could either form a trans-
membrane helix or an signal peptide (SP). An SP is an N-terminal 15-30 amino acid long recogni-
tion sequence, the larger mid part being a hydrophilic α-helix. Unlike transmembrane segments,
SPs are normally cleaved o� from the rest of the protein, by the enzyme signal peptidase, during
translocation.

¿e translocation process9, 10, 11 follows the same pattern for TM proteins and proteins with
an SP. When a ribosome has translated a part of a mRNA coding for a hydrophobic region, it will
be caught by a signal recognition particle (SRP), a protein complex that identi�es the nascent hy-
drophobic region and mediates docking of the ribosome to the translocon. A PCC in the translo-
con will then open up and enable translocation.

¿ere are so called SRP-independent pathways, where translocation is done a er translation
is completed. In eukaryotes there is the membrane bound Sec62/63 complex that form a complex
together with a translocon, which in turn binds and translocate already translated peptide chains
with SPs12. ¿e ratcheting mechanism that drives the translocation in this case consists of the
ATPase BiP binding to the translocated chain disabling any Brownian motion acting backwards.
Similarly, in eubacteria the soluble SecA can bind to SPs and dock to translocons, and aid the
translocation process by pushing the polypeptide through the translocon13 . ¿e SRP-independent
pathway is generally targeting less hydrophobic regions, mainly SPs and not TM segments, than
the SRP-dependent pathways.

It should be noted that there are other types of translocons in eukaryotes, than the ones of the
general secretory pathway. In mitochondria the TOM/GIP complex governs the import over the
two membranes to the mitochondria, as well as the TIM complex controlling the re-export from
the mitochondria to inter membrane space. Sequences destined for the mitochondria have a mi-
tochondrial transfer peptide, which is cleaved o� during translocation. ¿e re-export signals, the
inter membrane space targeting peptide, share important features with an SP, even though they
are hidden behind aN-terminal import signal in the precursor protein. Similarly, the chloroplasts

3
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Predicting transmembrane topology and signal peptides with hidden Markov models

and thylacoids of plants and algae have a Toc/Tic complex that imports sequenceswith chloroplast
transit peptides and mechanisms that might import them further into the thylacoid. In bacteria
there are also the twin arginin translocation pathway14 and Type I15 and III16 secretion, which are
using other means for translocation. In addition, in bacteria there is lipoprotein peptidase, which
targets sequences with somewhat di�erent motifs than normal signal peptidase. ¿roughout this
text, I have used the term SP for describing signal peptides cleaved by signal peptidase targeting
the general secretory pathway.

1.3 Insertion of transmembrane proteins
Depending on the orientation of the hydrophobic region either the N-terminal or C-terminal
part of the polypeptide will be translocated. In the latter case (Figure 1.2a), the further translated
peptide will be translocated until the sequence ends, and the PCCwill shut and the ribosome will
release, or if another TM helix enters the PCC the PCC will be blocked and the further translated
peptide chain will be exposed to the cytosol (Figure 1.2b). If once again a TMhelix is encountered
this will open up the PCC again (Figure 1.2c). SPs and TM segments with their N-terminal part
facing the cytosol are called start-transfer sequences, due to their property of opening up the PCC.
TM segments with their C-terminal part facing the cytosol, stopping translocation, are called
stop-transfer sequences17 . Previously translocated helices will be shunted out perpendicularly to
the PCC into the lipid bi-layer through a slit in the translocon. ¿e helices remain within the
vicinity of the translocon until the whole protein is inserted18.

Recently, it has been shown that the probability of a hydrophobic region to be inserted into
the lipid bilayer is proportional to the di�erence in free energy between the region being inserted
in the membrane or it being exposed to the cytosol19. ¿is suggests that direct protein-lipid in-
teraction plays an important role in the recognition process of TM helices.

4
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Chapter 2

Machine Learning and Biological
Sequences Analysis

¿e rate at which data is generated in genome sequencing projects is enormous. Just during the
four years ofmy Ph.D. project, both the number of known protein sequences � and known protein
structures† have roughly doubled. ¿is avalanche of data makes it impossible to characterize all
novel proteins by experimental means, and the scienti�c community is heavily relying on com-
puter based methods to characterize proteins. ¿is is o en done with machine learning, an area
of arti�cial intelligence concerned with the development of methods to make computers ”learn”
from examples. ¿e area include techniques such as: Bayesian networks20; genetic algorithms21 ;
support vector machines22; arti�cial neural networks23(ANNs); and hidden Markov models (see
Chapter 3)

We normally divide machine learning techniques into supervised learning, unsupervised
learning, and partially supervised learning. ¿e di�erence is that supervised learning requires
that we have annotated our examples with a desired prediction. In contrast, unsupervised learn-
ing techniques are able to draw conclusions from unannotated examples.

Some of the text in this chapter is generic for machine learning, but I have tried to narrow
the content to issues that are speci�c to analysis of biological sequences and not described in the
machine learning24, 25 literature.

2.1 Training and Testing sets
Machine learning methods all require representative data to learn from. In biological sequence
analysis this means that we need sets of sequences containing a feature that we would like to
predict, and sometimes a set of sequences that does not contain the feature. ¿e idea is that the
system from the given examples should be able to learn what is common for sequences having a
feature, and when presented with a new sequence, it should be able to extrapolate a prediction;
does the new sequence have the feature or not?

A common concern inmachine learning is that the systemwill ”over�t” to the examples given,
so that it will recognize all the given examples but not new sequences. To address this problem

�
194 thousand protein sequences in Swissprot ver. 48 to be compared to 102 thousand protein sequences in Swissprot

ver. 40
†35 thousand protein structures in January 2006 in PDB as compared to 17 thousand in January 2002

5
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Predicting transmembrane topology and signal peptides with hidden Markov models

one usually divides the example sequences into two sets, a training set and a testing set. If the
system would ”over�t” to the training set, this would be recognized when testing the system’s
performance on the test set.

2.2 Homology reduction
It is important that we remove sequences that are to similar from our data sets. In training we do
not want to incorporate non-generic patterns from an overrepresented group of proteins, and in
testing we worry about too high in�uence of overrepresented features, or even worse, testing on
the same sequences as we trained on.

A commonly used procedure to remove homologs, which we used in Paper II and V, is the re-
move until done or Hobohm algorithm 2 reduction26. It requires a measure of similarity between
two sequences (e.g. sequence identity as reported from Blast27), and a target maximal similarity
within the reduced set. ¿e remove until done procedure starts by calculating the similarity of
all pairs of sequences in the originating data set. For each sequence the number of sequences to
which it is too similar to are counted. ¿en the sequence with the highest number of too similar
sequences is removed. ¿e procedure is then iterated until there are no sequences le that are too
similar.

2.3 Weighting sequences
An alternative way to homology reduction is to weighting the sequences. Here we assign a weight
to each sequence depending on its similarity to other sequences, instead of removing sequences.
¿us, a sequence that is similar to other sequences gets a lower weight than unique sequences.

¿ere are many di�erent weighting schemes, for a good review see Durbin et al.’s Biological
sequence analysis book28. Since I use the Heniko� and Heniko� scheme in Paper IV, I will de-
scribe it here. ¿e scheme requires that the sequences we want to weight are aligned. Weights
are assigned for each column individually, by giving each di�erent type of residue an equal share
of the weight, and then to divide up that weight equally among the sequences sharing the same
residue29. So if we got 10 sequences with an alanine, 3 with a cysteine and 1 with a glycine, each
sequences with an alanine get a weight of 1

�
30, the ones with cysteine a get weight of 1

�
9 and

the sequence with glycine get a weight of 1
�
3. ¿e average weight over the alignment is then as-

signed as a �nal weight for the sequence. ¿e original article does not give an answer to how
inserts/deletes should be handled. Di�erent approaches have been taken including: ignoring po-
sitions in the alignment where any sequence has a gap; treating gaps as a twenty �rst amino acid;
or giving zero weight to sequences with gaps at a position, compensating for di�erent sequence
length by dividing the weight with the sequence length. In Paper IV I chose the latter.

We can use sequence weights both in training and when predicting with homologs (as in Pa-
per IV, see as well 2.6). Sequenceweighting is seldomused in testing, mainly due to the pedagogic
problem of explaining exactly what is meant by a weighted number of correct or false predictions.

In some applications one can argue that it is important to have training sets that re�ect the
true distributions of amino acids, and it might be that sequence weighting would draw attention
on less important cases. Furthermore, it makes all training and testing more sensitive to any
de�ciencies in training data, as they will get a high weight due to their deviation from the rest of
the sequences.

6
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Chapter 2. Machine Learning and Biological Sequences Analysis

2.4 Cross validation
In practicewe seldomhave enough sequences to spare some of the sequences to assemble pure test
sets. We therefore o en use a technique called cross validation. ¿e idea is to divide a combined
train and test set in toK equally sized subsets. Wewould then train on K � 1 of the subsets and test
on the Kth set. We then permute the sets and redo the procedure K times, so that all sequences
are tested. ¿is way we avoid testing on the same sequences we trained on.

It is essential that the division of the subsets is done in such a manner that the similarity
between the sequences in the di�erent subsets is kept at a low level. Otherwise we risk testing on
sequences similar to those we trained on. We therefore normally chose a lower inter-set similarity
threshold than the intra-set similarity for the cross validation subsets.

2.5 Signi�cance tests
¿e signi�cance of a di�erence between two machine learning algorithms can be determined by
a paired Student’s t-test25. In such tests the di�erences ∆k in the number of errors made by the
algorithms is measured for each of the cross-validation sets separately. ¿e average di�erence in
errors ∆̄ is then calculated. Under the assumption that the binomial distributions of the number of
errors made can be approximated with a normal distribution (which is a good approximation for
cross-validation sets of more than approximately 30 samples) we can calculate a Z% con�dence
interval of the di�erence in error rate between two machine learning algorithms as

∆ � ∆̄ � tZ,K � 1
���� 1
K � K � 1 �

K	
k 
 1 � ∆̄ � ∆k � (2.1)

where tZ,K � 1 is the distribution function of a t-distribution with K � 1 degrees of freedom, and K
is the number of cross validation sets.

2.6 Predictions supported by homologs
It is bene�cial to make predictions not only based on a query sequence in itself, but also include
homolog sequences in our predictions, as done in e.g. Paper IV. Proteins sequences separated
during evolution32 have o en diverged to a state where we can no longer recognize their rela-
tion by sequence alone. ¿is is generally a faster process than their divergence in function33,
structure33, 34, or their features35, 36. It follows that the reversion of this is true; if two proteins are
similar in sequence, they are likely to share function, structure and features. We therefore search
for homologs with homology searching techniques, such as Blast27, and integrate the sequences
as a part of the predictions. ¿is generally gives better performance to the predictions37, 38, 39, as
we get more information to predict from. We get a better signal to noise ratio by averaging over
more samples.
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Figure 2.1: An illustration of conserved sequence features among homologs: a cut out from an
alignment of transmembrane topology predictions of Drosophila odorant receptors. Predicted
extracellular residues have white background, cytosolic residues light gray background, and TM
regions dark gray. Even though the sequences have very low sequence similarity, the pattern of
topological regions is quite conserved. Note that two sequences have a slightly deviating pattern.
Since the deviating pattern is in minority, this is probably due to an erroneous prediction. ¿e
sequences where aligned with Kalign30 and displayed by KalignVu31. ¿eir topologies were
predicted by Phobius (See Paper II).
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Chapter 3

Designing hidden Markov models of
sequence features.

3.1 Background
3.1.1 Applications of hidden Markov models
Hidden Markov models is a framework to make discrete classi�cations of ordered series of ob-
servations. ¿e basic techniques were developed during the late 1960’s and the early 1970’s40, 41.
From the mid 1970’s and on, they where successfully applied to speech recognition, whereHMMs
are used at di�erent stages in the process of recognizing spoken language42.

¿ey were �rst employed within biological sequence analysis43 by Churchill in 1989, who in-
vestigated the heterogeneity of DNA composition44. However, the technique did not become
widespread until the introduction of pro�le HMMs45 in the mid 1990’s. A major di�erence from
classical HMM applications, such as speech recognition and motion recognition, is that in bio-
logical sequence analysis, classi�cations are based on observations separated in space (position
in a string) not in time.

HMMs can be used in two conceptually di�erent ways within biological sequence analysis.
Firstly, as in the case of detecting sequence homology, we ask how well a model could explain
a query sequence45, 46. ¿is is known as the evaluation problem. ¿e most renowned usage of
this technique is the PFAM database47 . Here a set of pre-estimated models corresponding to
di�erent protein families is curated. ¿e probability that a query sequence was generated by a
(pro�le) HMM is then calculated for each HMM in the set. If a good enough match to a HMMof
a protein domain family is found, the query protein is classed as being a member of that family.
¿is is an analog to the problem of recognizing isolated words in speech recognition42 , where a
registered speech signal is compared to a set of pre-estimated HMMs of words in a vocabulary.

Secondly, to determine the most likely state paths through the model that generated a query
sequence. ¿is is the decoding problem. We can use the path information to predict biochem-
ical properties, sequence features, to parts of a sequence, a process that o en is referred to as
sequence feature prediction. A feature is predicted if a probable path passes through a sub-
model of the feature. ¿e use of HMMs for sequence feature prediction include transmem-
brane topology predictors48, 49, 50, 38, signal peptide predictors51, coil-coil protein predictors52,
gene predictors53, 54, secondary structure predictors55. ¿e technique is used in sequence align-
ment programs as well56, 57, 58, even though this is seldom considered as a feature prediction.

9
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Figure 3.1: A simple (hidden) Markov model.

3.1.2 What is hidden in hidden Markov models?
Consider a system that at any given time, t, is in any of a set of states is σ ��� 0, . . . ,M � . At regular
points in time the system undergoes a change in state according to a set of probabilities associated
with the state. If the sequence of random variables, Π � � Πt � T � 1t 
 0 , representing the sequence of
observed states, π � � πt � T � 1t 
 0 , has the Markov property,

P � Πt
� πt �Π0

� π0, . . . ,Πt � 1 � πt � 1 � � P � Πt
� πt �Πt � 1 � πt � 1 � , (3.1)

then the sequence is a discrete �rst order Markov chain. ¿e sequence π is o en referred to as
the state path. ¿e transition probabilities between the states can then be described by a ��� aij � ,
where aij � P � Πt � 1 � j�Πt

� i � . In this text I have used the convention that state 0 is a ”start and
stop state”, i.e. the state the system is in before the observations begin and the state it returns to
when the observations end.

We can extend the concept of Markov chains to hidden Markov model by considering sys-
tems where the current state itself is not observable (is hidden), but the observation instead is
a probabilistic function of the state. So the sequence of random variables, X � � Xt � Tt 
 1, repre-
senting the observations, x � � xt � Tt 
 1, is described by the emission probabilities e � � eik � , where
exπ � P � Xt

� x �Πt
� π � when the state path is given. ¿ere is no mapping between the observ-

ables and the states in an HMM, and we can therefore not tell which state path that generated a
sequence of observables. ¿is is what the word ’hidden’ in hidden Markov model describes.

Now for biological sequences feature prediction, we regard x � � xt � Tt 
 1 as an amino acid or
DNA sequence, in which we want to predict existence and location of a set of sequence features.
We hence see the index t as a spatial position in the sequence, and T as the length of the sequence.

3.1.3 ¿e probability of an observed sequence
For a query sequence x � � xt � Tt 
 1, we can express the probability that such a sequence was gener-
ated when taking the path π � � πt � T � 1t 
 0 , where πt � σ and π0 � πT � 1 � 0 as

P � X � x,Π � π � a, e � �

� P � Π1
� π1 �Π0

� π0 � T�
t 
 1 P � Πt � 1 � πt � 1 �Πt

� πt � P � Xt
� xt �Πt

� πt � �

� aπ0π1
T�
t 
 1 aπt � 1πteπtxt (3.2)

10
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Chapter 3. Designing hidden Markov models of sequence features.

Since we seldom know which path generated the sequence we have to sum the probabilities
of all possible paths.

P � X � x � a, e � � 	
π
P � X � x,Π � π � a, e � (3.3)

However, the number of possible paths grow according to the power of the length of sequence,
so the calculation of Equation 3.3 is seldom practically feasible. We instead use a calculation
procedure known as the forward algorithm. By de�ning the forward variables αi,t � P � Πt

�
i,X1

� x1 . . .Xt
� xt � a, e � , we can formulate the recursion

αi,t �
����� ����
δi0 t � 0
eixt � j� σ αj,t � 1aji t � 1, . . . ,T
δi0 � j� σ αj,Taj0 t � T � 1

(3.4)

I have here used the Kronecker’s δij de�ned as being one when i � j, and zero otherwise. Now,
by iterating over each position in a sequence x, we can derive P � x � a, e � � α0,T � 1.

3.1.4 Posterior state probability
Similarly to the forward algorithm we can use the backward algorithm, that uses the backward
variables, βi,t � P � Πt

� i,xt � 1 . . . xT � a, e � , to calculate the probability of a sequence, by using the
recursion

βi,t �
������� ������
δi0 t � T � 1
ai0 t � T

� j� σ aijejxt � 1βj,t � 1 t � T � 1, . . . , 1
δi0 � j� σ a0jejx1βj,1 t � 0

(3.5)

By combining the forward and backward variables we can as well calculate the probability
that we are in a state, i, at position t in a sequence, given the whole observed sequence. ¿is is
the posterior state probability,

γi,t � P � Πt
� i �x,a, e � � P � Πt

� i,x � a, e �
P � x � a, e � �

� P � πt � i,x1 . . . xt � a, e � P � πt � i,xt � 1 . . . xT � a, e �
P � x � a, e � �

� αi,tβi,t
α0,T � 1 (3.6)

Variations of equation 3.6 is of high importance when calculating the estimated number of
times an event occurs, which is of high importance in parameter estimation (see next section).

3.2 Parameter estimation
To estimate the parameters of an HMM we need a set of sequences that are representative for
what we want to model. We call this our training set. If we for each of our sequences know the
state path that generated the sequence, we can simply assign probabilities according to the relative
frequencies of a certain transition or emission event. For instance we can set the probability of
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Predicting transmembrane topology and signal peptides with hidden Markov models

a certain amino acid being emitted by a state to the number of times the amino acid was found
emitted from the state divided by the number of times the state was visited in the training set.

If we do not know the state path for the training set, we can instead use the Baum-Welch
algorithm40 . ¿e algorithm uses the forward-backward algorithm to calculate the estimated
number of times a state would be reached and the estimated number of times an event occurs
in the state, given an HMM and the sequences. We can now calculate new model parameters
the same way we did in the case where we knew the state paths, but using estimated frequencies
instead of measured frequencies. It can be shown that the likelihood of the data given the new
model always will be higher than or equal to the likelihood of the data given the original model.
So if we select a randommodel we are guarantied to approach a (possibly local) maximum as we
iteratively improve our model by the algorithm. ¿e Baum-Welch algorithm is a special case of
the more general parameter estimation method, expectation-maximization59 , which is not lim-
ited to HMMs. Note though that expectation-maximization was (independently) written down
at a later point in time.

Sometimeswe do have the exact state path of the sequences in our training set, butwe still have
some knowledge limiting the number of states that could have generated a certain symbol. As an
example we could know that a certain amino acid lies in a TM helix. We can then set the forward
and backward variables of all the states not representing TM helices to zero at this position, but in
all other perspectives follow the Baum-Welch procedure to improve a model. ¿is method to put
constraints on the forward-backward procedure is easiest to implement using labels, see Section
3.3, and it is as well possible in the same manner to limit the possible paths in a constrained
decoding as described in Section 3.3.2.

We can use conditional maximum likelihood (CML) to improve a model60. Here model pa-
rameters are changed proportionally to the di�erence between constrained forward-backward
estimations and normal unconstrained forward-backward estimations. ¿e idea is to see to that
paths given by the training data should be favored over other paths. Unfortunately the tech-
nique is sensitive to annotation errors in the training data, since such regions are likely to have a
higher di�erence between constrained and unconstrained estimations than correctly annotated
sequences.

3.3 Decoding
Howdowe�nd a state path that, by some criteria, is likely to have generated an observed sequence
x? A straight forward solution is to select the Viterbi path,

πViterbi � argmaxπ P � X � x,Π � π � , (3.7)

i.e. the state path with the highest probability. By de�ning a recursion over t,28 the calculations
of this path can be done with O � MT � complexity61.

Since we seldom have enough information about a sequence to recognize the exact state path
for a sequence used for training, and as well seldom are interested in the exact path that generated
a query sequence, we instead group states together based on a feature they represent. We hence
introduce the notion of labels60, 62. ¿e label l of a state i is given by the mappingΛ � i � � l and the
set of states that have label l is called σl � σ, so i � σl ��� Λ � i � � l. O en, each di�erent label
represents a sequence feature. In this setting the decoding problem instead turns into predicting
a sequence of labels l � � lt � Tt 
 1 that by some criteria is likely to have generated a query sequence
x.

12
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Chapter 3. Designing hidden Markov models of sequence features.

Finding argmaxl P � X � x,L � l � is a NP-hard problem63, and we are in need of approxima-
tions. Easiest is to calculate the Viterbi labeling lViterbi ��� Λ � πViterbit ��� Tt 
 1. However, to pro�t
from the notion of labels we o en use the N-best algorithm62, 64 or its special case the 1-best al-
gorithm. Here we recursively for each position t calculate the probability of di�erent labelings
ending up in a certain state. To reduce the computational complexity of the problem, we limit
the number of di�erent labelings to the Nmost probable at each state for each recursive step. ¿e
algorithm guaranties us to �nd a labeling with at least as high probability as the Viterbi labeling.

An interesting observation is that unsupervised Baum-Welch procedure o en is more sensi-
tive to path information than most decoders, since it takes all possible paths in account by relying
on the forward-backward procedure. We can hence retrain our model with the query sequence
as a preparing step before decoding the query sequence with the retrained model. In Paper IV I
call this parameter re-estimation decoding. ¿e technique has been used in the transmembrane
topology predictorHMMTOP49.

3.3.1 Decoding with homologs
¿e features we want to predict are o en important for function and hence the existence of the
features themselves are more conserved through evolution than the sequence of the feature (see
Section 2.6). It is therefore o en useful to incorporate signals from homologs65 into sequence
feature predictions. Di�erent approaches for doing so with HMMs have been taken. A common
approach is to �rst build a multiple sequence alignment of the homologs (see Figure 2.1). We
may see each amino acid in a column as an independent sample from a common underlying
distribution. We can hence replace the emission probability in equation 3.2 with the product
of the emission probabilities of the residues in a column of the alignment66 . A drawback when
dealing with sequence feature prediction is that there is no clear way how to deal with the state
transitions for the homologs. One approximation that has been taken is to let the path follow the
query sequence and ignore the gaps and inserts of the homologs38. In such case the probability of
an alignment y � � x � 1 � . . .x � M � � , with coordinates according to the query sequence, and a path
π, can be expressed as

P � y,Π � π � a, e � � P � X � 1 � � x � 1 � , . . . ,X � M � � x � M � ,Π � π � a, e � � M�
m
 1P � X � m � � x � m � ,Π � π � a, e � �

� M�
m
 1

�
P � Π1

� π1 �Π0
� π0 � T�

t 
 1 P � Πt � 1 � πt � 1 �Πt
� πt � P � X � m �t

� x � m �t �Πt
� πt ��� �

� � aπ0π1 � M T�
t 
 1
�

� aπt � 1πt � M M�
m
 1 eπtx � m 	t

� (3.8)

It is in my opinion harder to probabilistically motivate approaches where single sequence
emission probability is replaced by the sum of emission probabilities of the amino acids in a
column of the multiple sequence alignment67, 68.

We can also use parameter re-estimation decoding (see previous section) to include homologs.
¿en we simply include all the homologs in the Baum-Welch estimation step, and �nally decode
the query sequence with our re-estimated model.

In Paper IV we describe an ”optimal accuracy decoder” for homologue sequences.
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3.3.2 Constrained decoding
Sometimes we do have prior knowledge about the prediction. We might have located a feature
to a certain position in the sequence by an experiment or other type of observation. ¿is can be
seen as a labeling of the position.

So could we incorporate such constraints into our decoding procedures? Yes, for all the de-
coding algorithms I have mentioned here, this can be done by assigning zero probability to the
paths passing through states with other labels than the one given for the position.

3.4 Architecture
Usually some of the transition probabilities are set to zero in advance to avoid “illegal” transi-
tions. ¿e non-zero transition probabilities de�ne the underlying graph of the model. ¿is graph
structure restricts the possible paths that could be taken through the model, and we will refer to
it as the architecture of the model.

One of the strong arguments for usingHMMs asmodels of sequence features, is the possibility
tomodel the length of a feature separate from its amino acid distribution (as opposed to using e.g.
neural networks, or support vector machines). By using the de�nition of conditional probability
we can divide the likelihood of a certain path and sequence into two parts, as

P � X � x,Π � π � � P � Π � π � P � X � x �Π � π � . (3.9)

So we can see the modeling of a path, controlled by the probability P � Π � π � , as a separate
problem from that of modeling the symbols a state path emits, controlled by the probability
P � X � x �Π � π � . ¿is notion is particularly useful when modeling sequence features that can
be approximated as having uniform amino acid distributions, e.g. TM helix cores, or repetitive
amino acid distribution, e.g. coil-coil structures or amphipatic helices, where the modeling of
path can be reduced to modeling the length of a feature. We can do this in two di�erent ways. We
can use an explicit length model for each state in what is known as a Generalized HMMs42, 54, 49.
Or we can set the same emission probabilities for a set of states in a normal HMM and connect
them in a way that they implicitly model a length distribution. ¿ere are three reasons why I here
will focus on the later alternative. Firstly there are only straight-forward solutions how to imple-
ment 1-best, CML and other training and decoding techniques for this kind of HMM. Secondly
the architectural patterns for normal HMMs are not well described elsewhere. ¿irdly this is the
chosen alternative in my publications.

3.4.1 Modeling sequence feature length distributions
Here a couple of patterns that model length distributions are listed. ¿ey are grouped according
to if they are limited in length or if they could model in�nitely long sequence features. It should
be noted that some of the patterns require that information frommore than one path is taken in
account and hence are not suitable for Viterbi decoders.

Sequence features with limited length

Due to their nature, some sequence features are limited in length. An example is TM segments.
We know that they must be long enough to span the phospholipid bilayer, which corresponds to
a lower limit of about 15 amino acids. ¿ey are seldom longer than about 35 amino acids.
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p5 p4 p3 p2 p1

(a) Cascade
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p p p p p p

N

(b) Binomial

Figure 3.2: Architectural pattern that model a distributions limited in length. (a) An example
that span between one to �ve amino acids is modeled. (b) Pattern modeling binomial length
distributions. Here circles drawn with dashed lines represent non-emitting states.

A straight forward way to model this �exibility in length is to use a pattern depicted in Figure
3.2(a), where an initial state is connected to all of the states in a chain of forward connected states.
We can then estimate the transition probabilities according to the observed feature lengths in the
training set. An alternative approach that was used in paper II, is to �t a discrete probability
distribution to the training data and calculate the transition probabilities. By doing so we can
normally lower the number of estimated parameters of themodel, sincewe o en �nd a probability
distribution that is controlled by lower number of parameters than the number of transitions
probabilities that should be estimated.

A binomial distribution can be generated by using the pattern in Figure 3.2(b). Two parallel
linear chains of N states, one chain emitting amino acids and one silent, are connected so that it
is possible to pass from each state to the next emitting or silent state. All transition probabilities
to an emitting state are set to p and all transition probabilities to a silent state are set to 1 � p.
¿e length of a sequence can range from 0 to N amino acids and there are � Nl � ways to produce
a sequence with length l. Hence the probability to generate a sequence of length l follows a
binomial distribution:

P � l � ��� N
l � pl � 1 � p� N � l (3.10)

Sequence features that are not limited in length

For sequence features with unlimited maximum length, the layout is shown in Figure 3.3(a). It
consists of a linear chain of N emitting states that all have self-transitions. Again, transition
probabilities are set equal throughout the structure so that there is a probability p of staying in
the current state and a probability 1 � p of continuing to the next state. ¿e emitted sequence
can be no shorter than N amino acids but there is no upper limit. ¿ere are � l � 1

N � 1 � paths through
the model with length l. If the individual amino acid emission probabilities are disregarded, the
probability to generate a sequence of length l follows a negative binomial distribution28 .

P � l � ��� l � 1
N � 1 � pN � 1 � p� l � N (3.11)

An interesting pattern that has been used in gene prediction69 is the pattern illustrated in
Figure 3.3(b). ¿e distribution belongs to the acyclic phase type distributions70 and seems to able
to take very di�erent shape, and mimic quite varying types of distributions. ¿e probability of
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(a) Negative binomial
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(b) Phase type

Figure 3.3: Architectural patterns that can model a distributions that is not limited in length. (a)
Pattern for negative binomial distribution (b) Phase type distribution.

generating a sequence of length l is:

P � l � � N	
i 
 1
� l � 1
i � 1 � pis � 1 � ps � l � ipi (3.12)

3.5 Implementation
Currently available so ware packages for modeling biological sequence features include:

ANHMM During the project I have been heavily reliant on Anders Krogh’s proprietary HMM
package, ANHMM. Even though it is most �exible and it contains many good features, it
has the disadvantage of not being publicly available.

HomologHMM As a part of the study described in Paper IV I implemented some decoders: N-
best; Viterbi; Max PLP; and optimal accuracy decoding, all the decoders have the option
to include homologs in the predictions. ¿e so ware is available under GPL � .

GHMM ¿is so ware from Max Planck Institute for Molecular Genetics in Berlin contains the
most essential algorithms needed†. It includes a graphical user interface for designing
HMM.

modhmm ¿is package, written by Håkan Viklund at Stockholm Bioinformatics Center, con-
tains all the basic HMM algorithms as well as functionality to include homologs and the
possibility of using di�erent alphabets in parallel‡.

�����������
	�	����������������������������������	��� ��! "������#�$
† ���������
	�	�����#�#%�
��&��!	
‡ ���������
	�	�'�'�'���������������������	�#�������#�#�	
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Chapter 4

Transmembrane Topology

Transmembrane proteins make up about a � h � of all protein sequences known, yet less than
one percent† of all the known structures. ¿is discrepancy is due to the fact that TM proteins
are hard to over-express and crystallize, and therefore di�cult to examine with X-ray di�raction
or NMR. In fact, when the �rst larger structure of a membrane protein was determined, the
photosynthetic reaction center, it rendered aNobel Prize‡. It is howevermuch easier to determine
the TM topology. ¿at is localizing all TM segments as well as determining which sub-cellular
compartment to which the loops between the TM segments are exposed.

Figure 4.1: Transmembrane topology is a projection or conventionalization of the protein’s struc-
ture, telling where di�erent parts of the protein are located, i.e. in the membrane; or translocated
or not translocated across the membrane. ¿e �gure is adopted from Zhang et al.’s study of the
calcium pump from sarcoplasmic reticulum71.

�
19.9% of all proteins in Swissprot release 41.0 classed as TM proteins by TMHMM.

†151 TM entries of the 21819 entries with chain size over 50 in PDB.
‡ ���������
	�	�����!��$���& �����"�
��&��!	����!� #�������&��!	�$� ���&��� ������	��	��
�
�	��!&��!�!��������#�$
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4.1 Prediction by experimental means
4.1.1 Reporter fusions
Reporter fusions are frequently used to elucidate topological information. ¿e experimenter
make use of a reporter protein with properties, e.g. enzymatic activity or �uorescence, that de-
pend on its extracellular or intracellular location. ¿e reporter protein is attached to a hydrophilic
domain of a membrane protein. Since the location of the hydrophilic region dictates the location
of the reporter, we can extract topogenic information by studying the reporter gene. By repeating
the procedure for di�erent positions in the membrane protein, the topology can be derived.

¿ere are two types of fusion studies. ¿ere are C-terminal deletion fusions, where the C-
terminal part of the membrane protein is replaced by the reporter domain, and there are inser-
tional or sandwich fusion72, where the reporter gene is fused into the middle of the membrane
protein, leaving the C-terminus intact.

A commonly used reporter protein in topological studies in bacteria is alkaline phosphatase,
encoded by the E. coli phoA gene, which only can fold correctly and form enzymatic active dimers
in the periplasm73. We can hence determine the location of the reporter gene by measuring the
enzymatic activity of the fused protein. Another reporter protein is the periplasmic active β-
lactamase, encoded by the bla gene74. When active, the enzyme gives ampicillin-resistance to its
host. Since it is only active in the periplasm, it is used as an alternative to PhoA.

A nice complement to PhoA or β-lactamase fusions are fusions of the E. coli enzyme β-
galactosidase, LacZ. Inversely to PhoA, LacZ exhibits enzymatic activity only in the cytoplasm
75. Later studies o en use the cytoplasmic active green �uorescent protein (GFP)76 as a reporter.
¿e reporter is �uorescent when properly folded, which only happens in the cytosol.

PhoA or β-lactamase and LacZ or GFP are, due to their activity in complementary location,
o en used in the same studies. Hereby mutual exclusive results can be obtained, and the experi-
menter does not have to rely on negative results.

However, con�icting results, i.e. high or low activity at the same fusion site by reporters
active on complementary sides of the membrane, have been reported in a number of membrane
topology studies. ¿is indicates that the assumption that the fusions do not a�ect the topology
of the examined protein might not always be true, and hence the accuracy of reporter fusions
has been questioned. Furthermore, when examining previously fusion-assessed topologies, that
later have been chrystalographed, there is not any signi�cant di�erence in accuracy between the
fusion studies and TM Topology predictors37.

4.1.2 Site Tagging
As an alternative to reporter fusions, membrane protein may be fused with a site. Typically we
can add a N-glycosylation site to a sequence, i.e. the amino acids N-X-S/T, where X could be any
amino acid except for proline77. N-glycosolation is an ER lumenal process, so if the protein with
a tag is larger than the wild type, we can conclude that the site was glycosylated and hence a part
of a translocated loop. Normally the di�erence between wild type and tagged protein is measured
on an SDS-PAGE gel.

4.1.3 Antibodies
We can design antibodies directed against a short stretch of a hydrophilic region of a TM protein.
If we expose an organelle where the TM protein is located to the antibodies we can see if they
attach or not to the proteins in the membrane, and from this elucidate the location of the region.
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Chapter 4. Transmembrane Topology

Figure 4.2: An illustration of why the commonly used ”inside” and ”outside” notation of loops is
unsuitable when dealing with eukaryote cells. ¿e rounded domains of the TM proteins in the
�gure are all translocated and hence located on the ”outside”. So the inside of the ER, Golgi or per-
oxisome will all be classi�ed as ”outside”. I prefer the terms ”translocated” and ”not-translocated
loops” or maybe ”cytosolic” and ”non-cytosolic” loops.

Both monoclonal and polyclonal approaches have been made. In general the problem with the
approach is to assure that the antibodies are speci�c for the region.

4.1.4 Mass spectrometry
Recently amethod deducing topological information by using ”shot-gun” proteomics was presented78 .
Here the TMproteins are digested by a protease while they are still embedded in their membrane.
By analyzing the resulting peptide mixture with tandem mass spectrometry, the membrane pro-
teins as well as the topological localization of the parts of the proteins that were exposed to the
digestion, may be identi�ed.

In particular, proteinase K turns out to be useful in such studies. At neutral pH this protease is
extremely robust and o en results in the complete digestion of proteins into dipeptides. However,
high pH attenuates proteinase K’s activity to levels at which 6- to 8-residue peptides are formed.
¿e procedure involves �rst exposing a cell or an organelle to proteinase K at the neutral pH
level, leading to digestion of all external domains of its membrane proteins. By then exposing the
organelle/cell to high pH the membrane disrupts, and a subsequent treatment with proteinase K
digests the interior domains into peptides suitable for identi�cation by tandemmass spectrometry
analysis. ¿is procedure enables us to identify interior loops, since exterior loops were previously
removed and membrane helices are still buried in the membrane.

¿e performance of the method has not been evaluated, but it is clear that the approach rep-
resents an attractive way to elucidate topological information in large scale.

4.2 In Silico Topology Prediction

4.2.1 Location terminology
TM topology predictors normally assume that all cellular membranes can be treated equally, re-
gardless of which organelle or cell type they surround. ¿e location of a loop can be classed as
being on the originating side – the side of a membrane from which the TM protein was inserted
(normally the cytoplasm), or the translocated side – the opposite side of themembrane. ¿e com-
monly used ”inside” and ”outside” notation is confusing and should be avoided. For instance, the
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Figure 4.3: Transmembrane protein topology predictions are based on the amino acid composi-
tion of the regions of a transmembrane protein. A prediction corresponds to the path through
the model with the highest score (probability) of having generated the query sequence.

lumenal inside of an organelle is the translocated side, which is normally considered the ”outside”
(See Figure 4.2).

4.2.2 Prediction principles
Early TM helix prediction methods were based on theoretically or experimentally determined
hydrophobicity indices of hydrophobic properties for each amino acid. For the examined pro-
tein a hydrophobicity plot was calculated by summing the hydropathy indices over a window of
a �xed length. A heuristically determined cut-o� value was then used to indicate possible TM
segments79, 80. An important improvement to this strategy came from the observation that posi-
tively charged amino acids (arginine and lysine) are overrepresented near the TM helices on the
originating side loops of TM proteins (¿e positive inside rule)81. ¿is gives an indication about
the orientation of the helices and led to the development of the �rst automated full TM topology
prediction methods e.g. TOPPred82. ¿is method �rst scans a sequence for certain and puta-
tive TM segments and then selects the putative segments that maximize the di�erence in charged
amino acids in loops, summed over each side separately. Instead of only using a hydropathy in-
dex, some methods use a combination of this and indices for amino acids known to be frequent
near the end of membrane helix ends, e.g. SOSUI83. Other methods are letting a sequence pro�le,
e.g. DAS84, or an Arti�cial Neural Network, e.g. PHDhtm85, detect potential TM segments.

Integrated predictors

Amore integrated approach could be taken to the problem. Instead of �rst scanning the sequence
for TM segments and sort out the topology as a second step, the search for TM segments can be
integrated with the evaluation of possible topologies in one step. ¿e amino acid distribution
of the investigated sequence is compared to pre-calculated expected amino acid distributions in
each type of topologically distinct region (TM helices, originating side loops, and translocated
side loops) of a TM protein (see Figure 4.3). Given correlation measurements between the amino
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Chapter 4. Transmembrane Topology

acid distributions of the examined protein and the expected amino acid distributions in di�erent
topological regions, the most likely topology can be predicted. A nice feature of this approach
is the ability to model all parts of the protein so that all topogenic signals are properly weighted,
which is preferable to giving priority to the hydrophobic signal. ¿is was �rst done by a dynamic
programming algorithm in the methodMemsat86. ¿e parameters of Memsatwhere estimated
by Expectation Maximization59 so one could say that it is highly related to hidden Markov mod-
els (HMMs, see Chapter 3). Pure HMM approaches to the problem have followed. Some popu-
lar HMM-based predictors are TMHMM 48, 50 and HMMTOP49, 87, and the recently published
PRODIV-HMM38 and TMMOD88.

β-barrel TM proteins seem to be hard to predict with the classical TM prediction meth-
ods since their TM segments generally are shorter and with a di�erent amino acid composition
than α-helical TM segments. ¿ere are dedicated predictors available for these kind of proteins;
B2TMR-HMM67 and BBF89.

Predictions supported by homologs

As mentioned in Section 2.6, a common way to improve the performance of a predictor is to not
only look at the examined sequence, but instead to �rst �nd homologs using homolog retrieval
tools like Blast27 and then predicting the topology of the whole alignment. ¿e idea is that
topology should be conserved in a family, and by looking at the entire family there is less chance
of mispredicting single atypical members. Examples of such methods are TMAP90, PHDhtm85

and PRODIV-HMM38.

Consensus prediction

A good practice when predicting TM topology is to compare the results fromdi�erent predictors.
¿is is most easily done by running a Meta server, i.e. a server that runs a number of di�erent
prediction programs. ¿e results may be delivered in the form of e-mails from the di�erent un-
derlying predictors, like forMeta-PP91, or they may be displayed side by side graphically as by
Sfinx92. ¿e results from multiple methods may also be combined by a consensus predictor93.
Such a predictor only contains a weight for each method and heuristics for combining the results.
An example is ConPred II94.

4.2.3 Benchmarking
To be able to compare di�erent TM prediction methods one normally assembles a test set with
known topologies and examines how well each prediction agrees with it. For such benchmark
experiments it is important to collect adequate test sets since a biased test set easily could favor
some of the predictors. During the years a couple of such test sets has been assembled, e.g. the
MPtopo95, Möller96, and TMPDB97 sets.

Most modern TM topology predictors are based on machine learning algorithms. When
comparing the performance of di�erent methods it is therefore essential not to include the train-
ing data of any of the compared methods in the test. ¿is is however problematic, because so few
TM topologies are known that, when removing all the training set proteins, only a few proteins
with dubious topologies are le . In addition, benchmarking sets generally seem to be easier to
predict than genomic data (See paper I).

It is thereforemaybe not surprising that di�erent benchmark studies come to di�erent conclu-
sions about which TM topology prediction method is better. Möller and colleges rate TMHMM
as the best method98, while Ikeda and colleagues rateHMMTOP best99. Chen and colleagues use
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Table 4.1: ¿e fraction of correctly predicted topologies as reported in di�erent benchmarking
studies. Values marked with asterisk (*) were measured on older versions of the method.
Method Möller98 Ikeda99 Chen high-resolution37 Chen low-resolution37

TMHMM 2.0 47% 48.4% 45%* 85%*
HMMTOP 2.1 45%* 54.1% 61% 79%
PHDhtm - single 18% - 54% 68%
PHDhtm - multiple - - 66% 67%
Memsat 1.5 41% 45.1% - -

Number of proteins 188 122 36 165

two di�erent test sets, one containing topologies with known 3D-structures (high-resolution) and
one containing topologies without known 3D structure (low-resolution)37. PHDhtm scored best
on the high resolution set while TMHMM scored best against the low-resolution set. Table 4.1
lists a few di�erent assessments of accuracy by a number of prediction methods. As the reader
can see, the reported performance di�ers substantially. Hence, reported performance �gures for
TMpredictionmethods should be interpreted with caution, both in terms of absolute and relative
accuracy.

4.2.4 Constrained Prediction
Lately an interesting type of bioinformatics and experimental hybrid technique has been used
to determine the topology of large sets of E. coli TM proteins100, 101. By fusing a set of inner
membrane proteins with with LacZ and GFP their C-terminus can be located as cytoplasmic or
periplasmic. ¿is piece of topogenic signal was used an input to a constrained prediction by
TMHMM102. Full topological models of 601 E. coli TM proteins were proposed. By imposing the
same topologies for homologs in other bacterias the �ndings were extended to models of 51208
TM proteins103.
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Chapter 5

Signal peptides

When trying to determine the function of a protein, an important question to answer is where
in the cell is it located. ¿e location of a protein governs what other types of proteins or other
molecules it will be able to interact with. A �rst step in this process is to determine if it has an
SP or not, since that will tell us if it is a cytosolic protein or not. In addition it is o en valuable to
know where the mature protein starts, so there is an interest in localizing the cleavage site of an
SP.

About 16% of the proteins in the human proteome have an SP (See Paper II).

5.1 Characteristics of a signal peptide

Similar to the TM segment, one of the strongest indications of an SP is a hydrophobic α-helical
region. It is called the h-region of the SP. However, the hydrophobic region is generally shorter
for an SP (approximately 7-15 residues) than for a TM helix (See Figure 5.1). ¿e h-region is near
the N-terminal of the protein but it is preceded by a slightly positively charged n-region with high
variability in length (approximately 1-12 amino acids). Between the h-region and the cleavage site
a somewhat polar and uncharged 3-8 amino acid long c-region is situated. Another clear motif of
the SP is the presence of small, neutral residues at the -3 and -1 relative to the cleavage site104, 105.
We o en see helix-breaking amino acids, i.e. proline, serine, or glycine, in between the h- and
c-region104, 105.

5.1.1 Kingdom speci�c variations

SPs are generally longer in Gram-positive bacteria than in other bacteria, and SPs of eukaryotes
are on average shorter than SPs of bacteria106 . ¿e di�erence in length can most prominently be
found in the h-region51. ¿ere is as well a di�erence in the preference in amino acids, e.g. the
h-regions of eukaryotic SPs have a higher content of leucine than h-regions from bacteria107.

However, inmywork I found no di�erence in prediction performancewhen training di�erent
SP models for di�erent kingdoms of life (see Paper II).
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Figure 5.1: A comparison of a TM segment with N-terminus in the cytosol (above) and an SP
(below). Both theTMhelix and the h-region of the SP are preceded by a slightly positively charged
region and succeeded by a hydrophilic region. However the h-region is generally shorter than a
TM segment, and there are small and neutral residues at -3 and -1 position relative to the cleavage
site (o en alanine).

5.2 Predicting signal peptides by experimental means
Experimental e�orts to identify SPs are o en a reversion of the location problem. If we have seen
that the cell is exporting a protein from the cytosol, it is probably a protein with SP.¿e techniques
include:

• Fusing the 5’-end of a gene coding to a gene with a reporter protein. For example one can
use a known essential secreted protein in yeast108 . If a transfected colony survives the gene
codes for a protein with signal peptide. Alternatively, one can use �uorescent labels109.

• We can isolate organelles containing exported proteins and then separate its proteins on
e.g. 2D-gels. A subsequent Edman degradation of the N-terminal of an isolated protein
reveals if the amino acid sequence is found downstream of the translation start site. We are
then likely to have found a protein with its signal peptide cleaved o�.

5.3 In Silico prediction of signal peptides
Most available SP prediction methods use weight matrices 110, 111, Arti�cial Neural Networks (e.g.
SignalP-NN106, 112), HMMs (e.g. SignalP-HMM51, Sighmm113, and LipoP114), or Support Vec-
tor Machines115, 116. ¿e perhaps most popular method, SignalP-NN, has trained one ANN for
detection of cleavage site motifs (the C-score), and one ANN to detect the existence of an SP
(¿e S-score). ¿e prediction scores are calculated for each position in the sequence sequentially.
Finally cleavage sites are predicted by regarding a Y-score, a geometrical mean between the C-
score of the position and the di�erence in S-score before and a er the position. Existence of an
SP is predicted by the value of the average S-score from the start of the sequence till the maximal
Y-score106. An additional criteria is introduced in SignalP-NN 3.0 where the average S-score
is replaced by a D-score, that is de�ned as the average of the average S-score and the maximal
Y-score112. ¿e HMMs have, thanks to their ability to model length distributions, the advantage
of easily modeling all regions of an SP in a single model. Hence the prediction of cleavage site
is predicted at the same time as the existence of an SP, and we will get one single answer, as to
whether an SP is present or not51(See Paper II).
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5.3.1 Benchmarks
A number of independent evaluation studies of SP prediction have been published117, 118, 119. ¿e
methods of collecting test sets in the studies are either to trust the annotation given in the SWIS-
SPROTdatabase as Menne and colleagues117 and Klee & Ellis119 do, or else like Zhang &Henzel118
who use experimentally determined SPs. ¿e evaluations quite uniformly show that di�erent ver-
sions of SignalP is the most accurate method, both in predicting existence and cleavage site of
SPs. Only Menne et al. includemembrane proteins in their negative test data. Klee & Ellis bench-
mark comprises themethod described in Paper II, Phobius, and rates it as less accurate than both
SignalP 2.0 and 3.0, but more accurate than PrediSi111. ¿is stands in contrast to Paper II where
we argue that the accuracy of predictions of SPs are improved compared to SignalP since we are
able to discriminate SPs fromTM segments. So the quote ”...N-terminal transmembrane domains
were intentionally not included in the test set...” from Klee & Ellis publication might explain the
contradiction. Not including TM proteins in the test set does, in my opinion, bias the test.

5.4 Discriminating transmembrane helices and signal peptides
TMhelices and SPs tend to confuse predictors. Because they have similar composition TM topol-
ogy predictors o en classify SPs as TM helices and SP predictors o en classify N-terminal TM
helices as SPs.

Di�erent strategies for obtaining better discrimination have been tested. Lao and colleagues
investigated strategies for topology prediction ofmulti-spanningTMproteins with SP120, 121. ¿ey
propose three di�erent strategies and measure the di�erence in accuracy between them: remove
the part of the sequence in an SP before TM topology prediction; running TM topology predic-
tion �rst and remove any predicted TM segments overlapping with the SP from the �nal predic-
tion; and to ignore the problem and not to include information of SPs. ¿ey found a signi�cant
performance increase between both the strategies that removed SPs compared to not removing
the SPs, but no signi�cant di�erence between doing it before and a er prediction. In one of the
studies the existence of SP was given as a prerequisite120 while in the other study they use a SP
predictor121. But in both cases the examined proteins contained SPs. What if they do not? In
Paper II we show that this kind of combined prediction have drastically lower performance on
proteins not containing SPs, as SP predictors have tomany false positive predictions on such data.

Is this a common problem? Yes, in Paper II we report that 5% of the proteins in human and
10% of the proteins in E. coli have overlapping predictions from SignalP and TMHMM. So how
do we overcome these discrimination problems? Two of the previously mentioned SP prediction
methods SignalP-HMM51 and LipoP114 contain models of signal anchors, i.e. N-terminal TM
segments with their N-terminus located in the cytosol, to be able to discriminate such sequences.
¿is is of course useful, but to quote Henrik Nielsens Ph.D. thesis ”SignalP-HMM does a fairly
good job in discriminating between SPs and signal anchors, but this solves only a part of the problem,
since signal anchors only constitute a minor fraction of TM proteins. When scanning genome data it
would be desirable to distinguish SPs not only from signal anchors, but also from other types of TM
helices.”122. In the same section Dr. Nielsen also mentions the possibility to integrate the models
of SignalP-HMM and TMHMM, which in essence is what Paper II does.
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Chapter 6

Present investigation

In this chapter I will sketch background and summarize the results of the papers that are included
in this thesis. ¿e aims of this thesis have been to characterize TM topology and SP predictors,
and develop a methodology to obtain better predictions. In particular, the methods developed
have been shown to obtain better discrimination between the two types of predictions.

Papers II, IV and V present a new methodology for TM and SP predictions, while Paper I
discusses the accuracy of TM predictors. Paper III concerns the TM topology prediction of a
speci�c protein.

6.1 Paper I –Reliability of transmembranepredictions inwhole-
genome data

As pointed out in section 4.2.3 it is challenging to assess the accuracy of TM topology predictors
due to test data-related issues. Benchmarks su�er from their test data i) overlapping with training
data of the testedmethods to various degree, and ii) being biased towards easily predicted topolo-
gies. In this study we try to give an indication of how well TM predictors would perform when
applied to genomic data, by comparing predictions from di�erent methods. We came to the con-
clusion that accuracy is far lower when examining data in general as compared to a commonly
used test set, a conclusion that was later con�rmed in an independent study102.

6.2 Paper II –A combined transmembrane topology and signal
peptide prediction method

As pointed out previously in this thesis, a common problem for TM predictors is that they have a
tendency to falsely classify SPs as TM segments and SP predictors o en mis-classify N-terminal
TM helices as SPs. ¿is is a natural consequence of the fact that a signal peptide, as well as a TM
segment, may contain a hydrophobic α-helical region.

An illustrative example is given in this paper where we perform TM topology TMHMM and
SP predictions SignalP on the whole proteomes of human and E. coli. We �nd that there is an
overlap between the predictors of 5% of the human and 10% of the E. coli proteins. ¿e proteins
that are predicted to have both an N-terminal TM segment as well as SPs by the methods can not
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Figure 6.1: ¿e Phobius model.

be discriminated as both types of predictions, as previously pointed out, are known to have high
false positive rates.

To remedy the situation we designed an HMM, Phobius, which is a combined TM topology
and SP predictor. It can be seen essentially as an assembly of TMHMM48 and SignalP-HMM51.

¿e resulting method reduces false classi�cations of SPs from 26.1% to 3.9% and false classi-
�cations of TM helices were reduced from 19.0% to 7.7%, compared to TMHMM and SignalP-
HMM respectively.

¿e method is publicly available through a web based prediction server � .

6.3 Paper III – Transmembrane topology of presenilin by rec-
onciling experimental and computational approaches

Presenilin is a part of the γ-secretase complex, a protease active against TM regions, involved in
the cleavage of the amyloid β precursor protein(APP). Mutations in presenilin are causing APP
to be cleaved at the wrong position, and this is believed to be one of the mechanisms involved in
the development of Alzheimer’s disease.

¿roughout the years a large number of studies have been published in which the topology of
presenilin is examined, all arriving at contradictory conclusions. Our approach to the problem
has been to reconcile the topology by studying i) TM topology predictors, ii) the experimental
results of the previous studies, and iii) predictions constrained by the functional sites in prese-
nilin.

We derive a nine TM helix topology with the N-terminus in the cytosol, a topology which
was later con�rmed by other studies123, 124.

�����������
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6.4 Paper IV – An HMM posterior decoder for sequence fea-
ture prediction that includes homology information

As mentioned in section 2.6, performance of sequence feature prediction can be increased by
including homologs in the predictions. ¿ere are di�erent ways this could be done with HMMs
as pointed out in section 3.3.1. Our approach in this studywas to apply theHMM to each sequence
individually before weighting the results together and making a �nal prediction (See Figure 6.2).
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Figure 6.2: ¿e decoder principles. First the posterior label probabilities were calculated for each
homolog independently. ¿e probabilities were then superimposed by the guidance of a multiple
sequence alignment. An average posterior probability was calculated for each position which was
then used for assigning one label to each amino acid in the query sequence.

¿emethod was aimed to be generic for sequence feature prediction, even though it was only
tested for Phobius. A er the acceptance of our paper, a part of the algorithm was published
independently, but evaluated in the context of secondary structure prediction39, where increased
performance was claimed.

We showed that we could obtain signi�cantly better accuracy in TM topology predictions
and increased performance in SP predictions compared to other decoding techniques – both
including and not including homologs. ¿e method is publicly available through a web-based
prediction server � .

�����������
	�	����������������������������������	����$ � ������#�$
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Chapter 6. Present investigation

6.5 Paper V – A general model of G protein-coupled receptor
sequences and its application to detect remote homologs

G protein-coupled receptors (GPCRs) is the largest eukaryotic protein superfamily† and it is as
well very divergent, including both odorant and hormone receptors. However all GPCRs share
the same TM topology; seven TM segments and a extracellular N-terminal.

Already in 1994Baldi&Chauvin published a study on how tomodelGPCRswith anHMM125 .
Here the authors have trained a pro�le HMM on sequences from the whole superfamily. As they
were unable to build an initial multiple alignment of the sequences they relied upon Viterbi-
training on the full length sequences. ¿e HMM is aimed at discriminating GPCRs from non-
GPCRs.

Here we examined the length distributions of the di�erent loops and TM segments of our
training data, and by combining architectural patterns, as described in Section 3.4, we constructed
anHMMsuitable of discriminatingGPCRs fromnon-GPCRs. Wenamed themethodGPCRHMM.
It was our intention to be able to detect novel GPCR subfamilies with low sequence similarity to
other GPCRs, as sequences similar to other GPCRs are easily are detected with conventional se-
quence homology detection. ¿e method is publicly available through a web-based prediction
server � .

We evaluated all the sequences in �ve proteomes with the HMM– worm, �y, �sh, mouse and
human. Even though we found previously non-GPCR annotated sequence families, most notably
in worm, perhaps our greatest �nding was that we were unable to detect a large family of odorant
receptors in �y. In the article we speculate that odorant receptors in �y are not GPCRs.

A er the acceptance of our paper, Vosshall and co-workers published an extensive analysis
of the drosophila odorant receptors126. ¿eir analysis indicated that the family does not have a
GPCR topology but rather an inverted GPCR topology, i.e. including seven TM segments but an
extracellular C-terminus. ¿e authors argue that odorant receptors in Drosophila are not GPCRs.
Hence the arthropods odorant reception is not functionally homologous tomammalian† odorant
reception.

†3.4% of the sequences in the human proteome, and 5.8% of mouse are GPCRs�����������
	�	�������&���#�#%��������������������	
† ���������
	�	�����!��$���& �����"�
��&��!	�# ��� ���!� ���	�$� ���&��� ����!��	��������!	���&!�!���"������# $
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Chapter 7

Remarks and Future Perspectives

¿is chapter contains some re�ections on the work performed for this thesis. Some of these
remarks may be seen as ideas for possible follow-up projects.

HMMs and transmembrane helices ¿e work of Hessa and colleagues19 have shown that the
probability of a potential TM helix being inserted into the membrane is proportional to the
di�erence in free energy between the helix being inserted or not. Furthermore the authors
indicate that each amino acid individually contributes to the energy , without any cross-
linking terms from neighboring amino acids. ¿e energy contribution is only dependent
upon the depth within the membrane into which it is buried. Under those assumptions we
can say that the probability of occurrence of an amino acid in one position of a TM helix
is not correlated to the presence of speci�c amino acids in neighboring positions of the
TM helix. Hence the amino acid distributions are conditionally independent, and are ideal
to model with HMMs. ¿e Phobius TM helix model currently assumes three di�erent
regions of amino acid compositions of a TM helix; one amino acid distribution for the
near the translocated end, one for the core, and one for the untranslocated end of the TM
helix. It might be that better accuracy of the predictions can be obtained by allowing a
’sliding scale’ in amino acid composition of a TM helix.

Proteomics and transmembrane predictions ¿e work of Daley and colleagues101 has shown
that it is feasible to ramp-up constrained TM predictions to proteome scale. By cloning a
large set of E. coli genes, coding for TM proteins, into phoA and GFP fusion vectors the
authors were able to determine the location of the C-terminus of the proteins. However,
the technique of cloning individual genes, is quite labor intensive. As mentioned in section
4.1.4, Wu and colleagues78 have, elucidated the locations of loops of TM proteins using
shot-gun proteomics, a comparatively easy process. It would be interesting to combine the
techniques, i.e. perform constrained TM topology predictions based on proteomics data.

Partially supervised training ¿e estimation procedure of Phobius can be described as ’super-
vised’. Except for the boundaries between the di�erent regions of the the data, e.g. TM
helices and loops, we speci�cally give the location of each amino acid in the training se-
quences. As described above, there are currently large sets of partially described topologies101, 78.
We can use such data in the parameter estimation of an HMM. Both the Baum-Welch pro-
cedure and the extended Baum-Welch of CML estimation, as described in Section 3.2, can
make use of partially annotated data. A study in an other area of bioinformatics claims
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Chapter 7. Remarks and Future Perspectives

increased performance when including completely unannotated data together with their
annotated data in the Baum-Welch estimation127 .

Data sets Since the publication of Paper II more data have been made available that probably
would be bene�cial for a re-estimation of the HMM.

SignalP 3.0 set When collecting SP data for Paper II we employed the so called Menne
procedure117. It has been pointed out by Bendtsen and colleagues in SignalP 3.0 that
this procedure has some limitations. ¿e procedure is reliant on database annota-
tions which o en have wrongly annotated cleavage sites and sometimes contains SPs
that not are cleaved by signal peptidases, such as lipoprotein and twin-arginine signal
peptides112. ¿e authors have manually curated a large set of signal peptides. If a new
version of Phobius was to be trained on this data set we would probably observe an
increase in the accuracy of SP cleavage site prediction.

3D data ¿e number of transmembrane protein structures measured by X-ray crystallog-
raphy has increased since I collected the data for Phobius.

Other types of signal sequences In Paper II we only include models for the SPs of the general
secretory pathway. It would make sense to also include models of other types of signal se-
quences in the model. Lipoprotein signal peptides and twin-arginine signal peptides both
contain hydrophobic regions and are hence sometimes predicted by TM topology predic-
tors as TM helices. It can be argued that it makes sense to include models of mitochondrial
transfer peptides and chloroplast transit peptides, as they may reveal the location on the
N-terminus of the mature protein.

Modeling transmembrane super families In our work with modeling GPCRs, we showed that
it is possible to model TM protein super families with one single HMM. GPCRs are prob-
ably an extreme but they still share their TM topology. It would probably be bene�cial
to model other TM protein families as well, such as voltage gated ion channels or ABC
transporters.

Multiple Sequence Feature Alignments In Paper IVwe show that the accuracy of sequence fea-
ture prediction is improved when taking in account multiple sequence alignments of ho-
mologs. ¿e reason why this works so well is that sequence features generally are conserved
even though the sequences have diverged. Due to the same reason it would be reasonable
to assume that multiple sequence alignment methods could increase their performance
by using information from predicted sequence features parallel with the plain amino acid
sequence.
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