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ABSTRACT 

Rheumatoid arthritis (RA) is a chronic inflammatory disease characterised by progressive joint 
destruction. The inflammatory and joint destructive processes in RA are mediated by resident 
synovial cells and cells recruited from the blood stream and bone marrow. A variety of cytokines, 
chemokines and proteases contribute to the cartilage and bone destruction. 

High mobility group box chromosomal protein 1 (HMGB1) was discovered over three decades ago 
as a transcription-regulating protein. In addition to its nuclear role, HMGB1 expression was 
detected at the leading edges in motile cells and its active secretion from immune cells was 
demonstrated. An excessive HMGB1 expression has been recorded in arthritic joints and in 
synovial fluid from RA patients and HMGB1-blocking therapies have been demonstrated to 
attenuate the disease course in murine arthritis models, suggesting that HMGB1 is a key player in 
arthritis. 

The focus of this thesis work has been to further the understanding of HMGB1 as an inflammatory 
mediator and its role in arthritis. More specifically, I have studied the induction of HMGB1 
secretion from a variety of inflammatory cells, how HMGB1 blockade affects the proinflammatory 
cytokine pattern in cell cultures and how HMGB1-targeting therapy affects the disease development 
in collagen-induced arthritis (CIA). Finally, I have also studied the inflammation-inducing capacity 
of HMGB1 alone and in complex with other proinflammatory molecules.  

In order to quantify HMGB1 secretion from different cell types an HMGB1-specific ELIspot 
method was developed. We could demonstrate that HMGB1 was secreted from 
macrophage/monocytic cells during inflammatory conditions and that the secretion could be 
inhibited by gold salts and oxaliplatin treatment as detected by ELIspot. We could demonstrate that 
oxaliplatin-treatment attenuated disease development in murine CIA. A rebound effect with severe 
and aggressive disease course was demonstrated after one week of treatment which correlated with 
an excessive extranuclear HMGB1 pattern in the affected joints, indicating an HMGB1-mediated 
joint inflammation. 

Furthermore, we have demonstrated in vitro that the proinflammatory activity of HMGB1 is 
dependent on complex formation between HMGB1 and other inflammation-promoting molecules, 
such as IL-1β, LPS and CpG-DNA. Studies using synovial fibroblasts obtained from arthritis 
patients demonstrated enhanced induction of TNF, IL-6 and IL-8 production and an enchased 
production of matrix metalloproteinase-1 and -3 when stimulated with HMGB1 in complex with IL-
1β or LPS as compared to either substance alone. Thus, these results suggest that HMGB1 in 
complex with IL-1β or LPS can mediate both inflammation and destruction in RA. 

In conclusion, the studies presented in this thesis strengthen the view of HMGB1 as an 
inflammation- and destruction-promoting molecule. I have demonstrated HMGB1 secretion from 
cell types present in the arthritic joint, defined two therapies in clinical use which have the potential 
to block HMGB1 secretion and verified the anti-rheumatic effect of one of these therapies in murine 
CIA. By in vitro studies, I have extended the knowledge of the proinflammatory features of 
HMGB1 and demonstrated both a proinflammatory and prodestructive effect of HMGB1 on 
synovial fibroblasts. Taken together, the studies in this thesis suggest that HMGB1 is one of the key 
mediators of arthritic inflammation and joint destruction.  
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RHEUMATOID ARTHRITIS 

 

Inflammation is a complex defence mechanism that aims to control and resolve 

infection, toxic stress or tissue damage, and which protects the integrity of human body. 

Chronic inflammation is a pathological condition which is characterised by a 

continuous inflammatory response, which is self-perpetuating, causing tissue damage 

and impairing the function of the affected organ. 

Rheumatoid arthritis (RA) is a chronic inflammatory disease characterised by swelling 

and pain in multiple joints, often initially occurring in the joints of the hands, wrists and 

feet [1]. Extra-articular manifestations such as vasculitis, respiratory and cardiac 

dysfunctions occur in patients with more severe disease [2]. The prevalence is about 

0.5-1%, with an annual incidence of 25/100 000 persons in Western countries [3], 

preferentially affecting women after menopause [4]. 

 

Etiology 

A detailed epidemiological population-based study determined that the incidence of RA 

continues to increase with age. The yearly incidence of RA around the age of 30 is 

about 10 per 100 000 individuals and this is about 10-fold higher at the age of 60 years 

[4]. Age is thus considered to be one of the strongest risk factors for RA.  

Although the etiology of RA is not known there is strong evidence that both genes and 

environmental factors play roles in its development. The genetic influence has been 

demonstrated by studies showing a greater concordance in monozygotic (12-15%) as 

compared to dizygotic twins (3-4%) [5]. The most important genetic risk factor for RA 

is linked to the human leukocyte antigen (HLA) class II genes. HLA contains three 

regions, DP, DQ and DR, and the association is particularly strong for HLA DRB1 

alleles that code for a similar amino acid sequence termed shared epitope (SE). The five 

peptides at positions 70-74 are located in the third hypervariable region within the 

peptide binding groove of HLA [6, 7], suggesting an involvement in peptide 

presentation to T cells [8]. It has been suggested that the SE determines the severity 

rather than susceptibility of RA [9, 10] and recently it was demonstrated that SE was 

only associated with individuals displaying antibodies against citrullinated peptides 

(anti-CCP) (discussed in more details in the B cell chapter) [11]. Interestingly, other 
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genes associated with RA displayed a correlation with occurrence of anti-CCP 

antibodies, implying different etiologies and pathogeneses in RA patients respectively 

seropositive or seronegative to anti-CCP antibodies [11-14]. 

Hormonal influences also contribute in development and progression of RA. As the 

disease has a three-fold predominance in women [8] and the incidence of disease 

increases through the fifth and sixth decades of life, this suggests that alternation in sex 

hormone levels plays a role in RA. It has been proposed that androgen protects younger 

men against development of RA and loss of estrogen at menopause elevates the risk for 

RA in women. Additionally, oral contraceptives confer as reduced risk of developing 

RA [15]. A decreased disease activity during pregnancy with disease flare during 

breastfeeding [16, 17] further indicate that the hormonal balance is central to the 

development of RA.  

Environmental factors are estimated to contribute to at least one-third of the risk for 

developing RA [18]. Smoking it self is a risk factor [19, 20] but the risk is further 

increased in patients with SE and anti-CCP antibodies [21] thus indicating an 

interaction between environmental and genetic factors. No specific viral or bacterial 

infection has consistently been proven to precede RA development, but Epstein-Barr 

virus (EBV) is commonly detectable in synovial membranes of RA patients but not in 

osteoarthritis patients [22] and about one-third of RA patients display occurrence of 

cytomegalovirus (CMV) in the synovial membrane [23]. Furthermore, the presence of 

retroviral particles in synovial fluid [24] and bacterial compounds such as LPS and 

bacterial DNA in the synovial membrane in RA patients [25-27] supports the idea of a 

viral and/or bacterial contribution to RA. Other environmental factors that have been 

suggested to increase the risk of RA development include exposure to silica [28] and 

mineral oils [29]. Dietary factors have also been suggested to be important in RA 

outcome [30, 31] while contradictory statements concerning obesity and RA 

development have been reported [32, 33]. Interestingly, alcohol consumption has a 

protective effect [34] and even protects mice from arthritis [35]. 

 

Clinical manifestations in RA 

The symptoms of RA vary between patients, but general disease features include 

fatigue, lack of appetite, low-grade fever, muscle and joint aches accompanied by 

stiffness. Muscle and joint stiffness are usually most notable in the morning and after 
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periods of inactivity. During disease flares joints become swollen, painful and tender, 

caused by local inflammation in the synovia with an excessive production of synovial 

fluid and an influx of inflammatory cells into the joint.  

Multiple joints are usually inflamed in RA in a symmetrical fashion beginning with the 

small joints of the hand and feet. Although RA is acute or subacute in about 25% of 

patients its onset can be palindromic or monoarticular, or it can begin with extra-

articular synovitis (tendosynovitis, bursitis) or with polymyalgia-like symptoms such as 

fever, fatigue and weight loss [36]. 

Since RA is clinically a heterogenous disease, with no single diagnostic or 

pathogonomic symptom or laboratory analysis, the diagnosis of RA is facilitated by use 

of The American College of Rheumatology (ACR) classification criteria from 1987 

[37] (Table 1). Patients fulfilling at least four of seven of these criteria are classified as 

having RA and criteria 1 through 4 must have been present for at least 6 weeks.  

 

Table 1. The 1987 ACR classification criteria for RA 

Criterion                                                               Definition 
1. Morning stiffness Morning stiffness in and around joints lasting 

at least one hour a day. 
2. Arthritis of three or more joint areas At least three joint areas simultaneously with 

soft tissue swelling or fluid. 14 possible areas: 
left and right proximal interphalangeal (PIP), 
metacarpo-phalangeal (MCP); wrist, elbow, 
knee, ankle, and metatarsophalangeal (MTP) 
joints. 

3. Arthritis of the hand joints At least one swollen area in the wrist, MCP or 
PIP joint. 

4. Symmetry of arthritis Simultaneous involvement of the same joint 
areas (defined in 2.) on both sides of the body 
PIP, MCP, or MTP joints are acceptable 
without absolute symmetry) 

5. Rheumatoid nodules Subcutaneous nodules over bony prominences, 
extensor surfaces, or juxtaarticular regions. 

6. Rheumatoid factor Detected by a method positive in less than 5% 
of normal controls. 

7. Radiographic changes Typical for rheumatoid arthritis on 
posteroanterior hand and wrist radiographs. 
Must include erosions or unequivocal bony 
decalcification adjacent to the involved joints. 
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However, the ACR 1987 classification criteria are not best adapted to diagnose early 

RA since some of the criteria are not fulfilled during the first year after onset. A recent 

study indicates that the sensitivity and specificity of the ACR 1987 criteria in early RA 

is low and should not be used as a diagnostic tool in early RA, suggesting a revision of 

the classification criterias [38]. The Leiden group recently developed new diagnostic 

criteria set for early arthritis with the ability to discriminate, at the first visit, between 

self-limiting, persistent non-erosive and persistent erosive arthritis. This set consists of 

7 criteria: symptom duration at first visit, morning stiffness of at least 1 hour, arthritis 

in ≥3 joints, bilateral compression pain in the metatarsal phalangeal joints, IgM-RF 

positivity, anti- CCP positivity, and erosions on radiographs of the hands and feet [39, 

40]. 

 

Joint anatomy 

A normal synovial joint consists of opposing bones with surfaces of unmineralised 

cartilage. Between the bone and the surface cartilage there is a mineralised cartilage 

layer. The joint is surrounded by a capsule covered with a thin layer of synovial tissue. 

Normal healthy synovial tissue consists of two anatomically distinct compartments: a 

lining layer and a sublining layer. The lining layer, which is one-to-three cell layers 

thick, is in direct contact with the intra-articular space. It is a loosely organised, 

avascular tissue not supported by a basement membrane.  Macrophage-like synovicytes 

(type A) and fibroblast-like synovicyte (type B) are the predominant cell types in 

healthy synovial membrane (reviewed in [41]). 

The sublining layer is even more loosely organised, comprising a loose fibro-adipose 

tissue, interspersed with cells and blood and lymph vessles and nerves [42]. Two-thirds 

of native synovicytes are B-type fibroblast-like synovicytes (FLS), which in contrast to 

type A cells are CD68-. FLS appear to belong to specialised fibroblast populations. 

DAF and VCAM-1 are expressed by activated FLS while other fibroblasts, including 

skin fibroblasts, do not express these markers [41]. Currently the best markers to 

identify FLS are vimentin, prolyl-5-hydroxylase and Thy-1 [43]. FLS play critical roles 

in normal joint homeostasis by synthesising and secreting hyaluronan, proteoglycans 

and a balanced amount of cytokines and MMPs [44]. 
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PATHOGENESIS IN RHEUMATOID ARTHRITIS 
 

Synovial pathophysiology in RA is a complex and synergistic interplay between 

different cell populations within the joint characterised by chronic inflammation and 

progressive joint destruction. Each cell type within the synovium contributes 

significantly to the initiation and perpetuation of RA. The resident cells within the 

synovia are the adipocytes, nerve cells, macrophage-like synovicytes, fibroblasts-like 

synovicytes and endothelial cells. These cells are described first, as they build up the 

“host-tissue” of RA inflammation. A schematic picture of synovial inflammation and 

pannus formation is presented in figure 1. 
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Adipocytes 

Adipocytes have the general ability to synthesise and release proinflammatory 

cytokines, complement factors, growth factors and adhesion molecules [45] thus having 

a capacity to promote inflammation. However, the biological function of articular and 

synovial adipose tissue in RA is not well characterised, and conflicting data exists 

regarding the inflammatory and anti-inflammatory function of adipocytes in RA [46, 

47]. It has been demonstrated that cytokines can regulate FLS differentiation to 

adipocyte-like cells [48] and further that adipocytes can dedifferentiate into fibroblast-

like cells in a reversible manner [49]. Thus the phenotype of adipocytes might vary 

depending on the stage of the pathological process (metabolic or inflammatory) or the 

differentiation/maturation stage. 

 

Nerve fibres 

The innervation of RA synovia is altered, with loss of sympathetic nerve fibres [50, 51] 

Instead, substance-P (SP) produced by sensory nerve fibres contributes to the severity 

of experimental arthritis [52] with activation of synovial fibroblasts [53] and enhanced 

proinflammatory cytokine secretion from different cell types [54-56]. A predominance 

of SP positive sensory nerve fibres in RA patients compared to OA patients further 

supports the importance of SP in the inflammatory process in RA [57]. 

 

Macrophage-like synoviocytes  

Macrophage-like synoviocytes or type A synoviocytes are considered to be tissue 

resident macrophages even though they are derived from blood-borne mononuclear 

cells. Type A cells have a round morphology and are located in the synovial lining 

layer with about half of the cell bodies projected over the surface line of the synovial 

membrane. These cells play an important role in maintaining normal joint homeostasis 

by absorbing and degrading extracellular constituents, cell debris and microorganisms 

in the synovial fluid and intimal matrix. Type A synoviocytes have the ability to 

phagocytose foreign substances that enters into the joint cavity, demonstrated with latex 

particles, iron dextran and colloidal gold particles (reviewed in [58]). As an antigen-

presenting cell, type A synoviocytes express MHCII and have a broad spectrum of 

lysosomal enzymes facilitating the degradation of ingested material [59]. Latex 
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particles ingested by type A cells are gathered at the synovium cartilage junction which 

is highly vascularised, suggesting that intra-articular particles are drained via blood 

circulation. However, it has   also been suggested that type A cells could remove the 

ingested material to lymphatic channels of the sublining layer (reviewed in [58]).  

 

Fibroblasts-like synoviocytes  

The most common cell type at the sites of bone and cartilage invasion is synovial 

fibroblasts that play crucial roles in both joint damage and the propagation of 

inflammation [41, 60, 61] FLS differ considerably from synovial fibroblasts from 

healthy joints. FLS in RA have been demonstrated to accumulate a number of 

mutations similar to those evident in malignancy [62] but these appear to be a 

consequence of the inflammatory environment rather than a primary cause of RA. 

However, once established these mutations facilitate FLS invasiveness, proliferation 

and resistance to apoptosis.   

The specific features of RA FLS are now described in more detail, namely their: 

invasiveness, hyperplasia and their inflammation-promoting characters.  

 

Invasiveness  

The primary mechanism by which FLS erode cartilage appears to be via the synthesis 

and secretion of matrix metalloproteinases (MMPs), including MMP 1, 3, 8, 9, 10 and 

13  (reviewed in [41]). MMP1 (collagenase-I) has the capacity to digest collagen type II 

which is an abundant cartilage compound and MMP3 (stromelysin-I) degrades matrix 

proteins [63]. Levels of MMP1 and MMP3 are elevated in synovial fluid and serum of 

RA patients [64-66] and are suggested to be useful predictive markers for an erosive 

disease [64-66]. In cell culture FLS produce MMP1 and MMP3 in response to the 

proinflammatory cytokines IL-1β and TNF, TLR ligands, direct cell-cell contact with T 

cells and under hypoxic condition [67-70]. These are all features characterising the 

arthritic joint. In addition to protease-mediated cartilage destruction, in vitro studies 

have revealed that FLS have the capacity to ingest cartilage by phagocytosis [71]. 

Studies of joints have demonstrated mineralised cartilage is rapidly resorbed by 

osteoclasts, whereas unmineralised surface cartilage remains intact for a longer time. 

Unmineralised cartilage degradation is mediated by FLS, neutrophils and chondrocytes 

themselves [72]. 
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FLSs are also important key players in bone destruction. A key factor for 

osteoclastogenesis is the production of the receptor activator of the nuclear factor κB 

ligand (RANKL), which is produced and expressed on the surface of FLS following 

stimulation with proinflammatory cytokines and TLR ligands [73-75]. Activation of 

resident osteoclast progenitors in the bone or recruited macrophages [76] or DC [77] 

are able to mature to osteoclasts through RANKL-mediated activation. Additionally, 

FLS have been demonstrated to directly invade bone and to mediate osteoclast-

independent bone resorption [78]. 

The invasive phenotype of FLS is suggested to be induced through expression of 

cellular proto-oncogenes, a feature occurring abundantly at the sites of invasion into 

cartilage and bone [79] although distinct from inflammation [80]. The inflammation-

independent activation of synovial fibroblasts was confirmed by studies performed in 

the severe combined immunodeficiency (SCID) mouse. RA synovial fibroblasts were 

co-implanted with cartilage explants from the same donor into SCID mice, and even 

after 60 days the implanted fibroblasts retained their activated appearance and grew 

into the cartilage. This feature was not detected in synovial fibroblasts obtained from 

osteoarthritis or healthy individuals [81] further underlining the activated phenotype of 

RA synovial fibroblasts.   

 

Synovial hyperplasia 

Another hallmark of RA is synovial hyperplasia. The lining layers expand  from 1-2 

cell layers to being 15 cell layers depth or even more. Despite that the sublining layer 

becomes infiltrated with a variety of inflammatory cells, the FLS population in this 

region is also expanded [82]. In addition to the inflamed environment in whic several 

growth factors from adjacent cells promote FLS proliferation, at least three different 

mechanisms in FLSs themselves can contribute to increased FLS populations in RA, 

namely: hyperproliferation, decreased apoptosis and decreased senescence (reviewed in 

[41]). 

Hyperproliferation of FLS can be driven by both over-expression of proteins and 

mutations in genes that regulate proliferation. Indeed, both pathways seem to be 

affected in RA. Excessive expression of growth factors such as platelet-derived growth 

factor (PDGF) and basic fibroblast growth factor (bFGF) is evident in FLS [83] as is 

increased expression of Erk that regulates mitosis in FLS [84]. 
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Decreased apoptosis: In the absence of apoptosis cells survive and accumulate 

abnormally.  Death signals that promote apoptosis include oxidants that damage 

mitochondria as well as specific pro-death ligands promoting cell death through 

specific receptors. Human studies indicate dysregulated CD95-receptor mediated 

apoptosis in FLS [85] and a high expression of Bcl-2  which suppress apoptosis. 

Heterogeneous mutations of the tumour suppressor gene p53 have been documented in 

RA FLS, permitting cell division in the presence of DNA damage [62, 86]. Mutations 

in p53 are suggested to be a consequence of oxidative and inflammatory stress rather 

than being the primary etiology of RA [87]. 

Decreased senescence: Senescence denotes the process by which aging cells enter a 

permanently non-proliferative state. The mitotic life of a cell is principally determined 

by telomeres, the repeating DNA sequences at the ends of chromosomes. With each 

cell division, telomere number is usually decreased while in stem cells, cancer cells and 

RA FLS the enzyme telomerase replaces lost telomeres and permits unlimited mitosis 

[88, 89]. 

 

Inflammation  

Another important feature of RA FLS is their capacity to produce and secrete a wide 

range of proinflammatory mediators including cytokines, growth factors and lipidic 

mediators of inflammation.  

Chemokines and their receptors are crucial elements in the migration of leukocytes 

during inflammation. FLS can produce chemokines constitutively due to hypoxia [90] 

or following stimulation by proinflammatory cytokines, microparticles [91] or TLR 

ligands [92] An early activation and chemokine production of FLS by exogenous and 

endogenous TLR ligands might be a crucial step in the initiation of the chronic 

inflammatory process in RA. TLR pathways can be activated by exogenous stimuli 

such as bacteria and viruses that are evident in RA joints [26, 27, 93] and endogenous 

stimuli such as mRNA and fibrin [94, 95]. 

 

Endothelial cells 

Under normal circumstances the adult vasculature is mostly quiescent, and 

angiogenesis does not take place except during wound healing and the female 
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reproductive cycle. Dysregulated angiogenesis and vasculogenesis contribute to RA 

pathology. Angiogenesis describes the formation of new vessels by activating pre-

existing mature endothelial cells (EC) [96] and vasculogenesis describes the de novo 

formation of blood vessles by recruiting circulating CD34+ endothelial progenitor cells 

(EPCs) to ischemic tissues [97]. 

Vascular endothelial growth factor (VEGF) is the key regulator of both angiogenesis 

and vasculogenesis. The expression of VEGF is induced under hypoxic conditions in 

the RA joint and induces EC proliferation, migration and survival [98, 99] thereby 

promoting EPC recruitment to the sites of vascular injury [100]. 

Endothelial activation during inflammation involves upregulation of vascular cell 

adhesion molecule-1 (VCAM-1) that together with increased angiogenesis and 

increased vascular permeability of endothelial cells facilitates the influx of 

inflammatory cells from the bloodstream into the joint [41, 101]. 

 

Cells infiltrating the sublining layer   

The specific features of the different cell populations recruited to the arthritic joint are 

further described cell-by-cell. 

 

Nurse-like cells and mesenchymal stem cells 

A specific cell population distinct from fibroblasts, called nurse-like cells [102] is 

present in the synovial tissue and bone marrow. These fibroblastic bone marrow 

stromal cells migrate into the joint cavity through bone canals and proliferate in the 

synovial tissue [103]. Nurse-like cells have the capacity to adhere and allow 

lymphocytes to crawl beneath them, a process termed pseudoemperipolesis (adhesion 

and holding beneath). These cells interact with lymphocytes and monocytes, promoting 

cytokine production, cell proliferation, IgG production [104, 105] and osteoclast 

maturation from monocytes [106]. Multipotent mesenchymal stem cells from bone 

marrow are yet another cell population present in the arthritic synovia, with the 

multipotency to develop into cartilage, bone, fat and muscle cells [107] and reviewed in 

[102]. 
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T cells 

Substantial evidence for a T cell influence in RA pathogenesis include the association 

of HLA-DR1 and HLA-DR4 alleles, the presence of activated T helper cells within 

inflamed RA synovium, the ability to actively transfer RA to immunodeficient mice 

using T cells from human RA synovium and the anti-arthritic effects of T cell-directed 

therapies (reviewed in [108].  

Of the infiltrating cells, 30-50% are T cells, predominantly of the CD4+ subtype [109]. 

The vast majority of T cell clones from the human synovial membrane and synovial 

fluid represent Th1 cells producing IFNγ and IL-2. Activated CD4+ T cells are also 

present in the peripheral blood and the frequencies of IFNγ producing cells in patients 

with new-onset synovitis correlate well with disease activity, emphasizing the role of 

Th1 cells in the initiation of disease (reviewed in [108]). 

Pregnancy improves the symptoms of RA in about 75% of women, with significant 

resolution of inflammation. Interestingly, during pregnancy a marked decrease in Th1-

mediated immunity has been determined and recently, a placental-derived protein 

(placental protein 14) was determined to inhibit Th1 immune responses and to 

synergise with IL-4 promoting Th2 immunity [110]. This further strengthens the 

evidence of a Th1-mediated immune response in RA. 

It has become apparent that in RA the CD4+ T cell subsets with regulatory capacity are 

functionally impaired, thus allowing Th1-driven immunity to progress into chronic 

inflammation. A T cell subset with regulatory capacity is the CD4+CD25+ T regulatory 

cells (Tregs). Between 5% and 15% of CD4+ T cells in the peripheral blood of healthy 

individuals are Treg cells, which have the capacity to inhibit activation-induced 

proliferation of autologous Th1 cells (reviewed [108]). Despite the high levels of Tregs 

in the synovial fluid of RA patients, they are ineffective/defective in their capacity to 

control inflammatory responses. A recent study suggested that TNF inhibits the 

suppressive activity of Treg cells, as treatment with anti-TNF antibody could restore 

the suppressive function of Tregs [111, 112]. 

A second CD4+ T cell population with the potential to counteract T cell-driven 

inflammation in RA is the Th2 cell population. Th2 cells produce IL-4 and can prevent 

the generation of Th1 and Th17 cells, and downmodulate their effector functions [113]. 

However, the majority of RA patients already have an impaired Th2 cell differentiation 

at the initial phase of disease and it is demonstrated that reduced Th2 cell generation is 
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associated with persistently aggressive and erosive disease (reviewed in [114]). 

Furthermore, an association between RA severity and impaired IL-4R signalling has 

been demonstrated [115]. 

T cells are also important contributors to the pathogenesis of bone erosion in RA 

through an antigen-independent process. CD4+ Th17 cells are distinct from Th1, Th2 

and Treg cells and are present in the synovium and circulation of RA patients. Recent 

studies have identified Th17 cells as an exclusive osteoclastogenic T cell subset among 

the CD4+ T cell lineage [116, 117] and IL-17 mRNA levels in synovial membranes 

have been demonstrated to be predictive of joint damage in RA [118]. RANKL 

expression by Th17 cells is thus the key link between immune activation and bone loss.  

CD8+ T cells produce high levels of TNF and IFNγ, thereby contributing to RA 

pathogenesis. Interestingly, subgroups of CD8+ T cells recognising Cytomegalovirus, 

Epstein-Barr virus and influenza virus, respectively, are enriched in the synovial fluid 

compared to in peripheral blood, reflecting the enrichment of memory T cells specific 

for foreign antigens [119]. CD8+ T cells are also required for the formation of 

germinal–like centre structures in RA synovia [120, 121] and these structures facilitate 

the interaction between T and B cells, as well as between T cells, macrophages and 

fibroblasts [122]. Direct cell-cell interactions of FLS with T cells were demonstrated to 

prevent programmed cell death of T cells [123, 124] and induced IL-6, MMPs and 

PGE2 production in fibroblasts. T cell contact with macrophages induces IL-1, TNF 

and IL-6 production [69, 125-127], demonstrating that T cells are able to drive chronic 

inflammation through an antigen-independent mechanism.  

 

B cells 

Successful treatment of RA through B cell depletion provides evidence for the 

relevance of B cells in RA pathogenesis [128-130]. B cells are apart from being Ig 

producing cells, very efficient antigen presenting cells and contribute to T cell 

activation through expression of costimulatory molecules. B cells both respond to and 

produce chemokines and cytokines, thereby promoting synovial inflammation [131]. 

Direct cell-cell interactions of B cells with FLS were demonstrated to prevent 

programmed cell death of B cells [123, 124] and stimulation of FLS with TNF and 

IFNγ induce production of B cell activation and survival factor (BAFF) [132] thus 

increasing the longevity of plasma cells.  
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Several different autoantibodies have been detected in RA patients but only rheumatoid 

factor (RF) and anti-citrullinated protein antibodies (ACPA) have sufficient sensitivity 

and specificity to be used in clinical practice (reviewed in [133] ).  

RF is an autoantibody directed against the Fc portion of IgG and can be detected in 75-

80% of patients suffering from RA [134]. Combined elevation of IgM-RF and IgA-RF 

appears to be more specific for RA than IgM-RF alone [135] and high titer IgA-RF is 

associated with more rapid disease progression, worse outcome and extra-articular 

manifestations [136]. 

Although circulating RF has been considered as an important marker for RA, 

autoantibodies directed against citrullinated peptides have recently been identified in 

RA patients termed as anti-citrullinated protein antibodies (ACPA). Citrullination is a 

post-translational modification of arginine catalyzed by the enzyme family 

peptidylarginine deaminase (PAD) [137]. Citrullinated proteins are detectable in the 

arthritic synovium in humans [138] and in animal models of arthritis [139]. 

ACPA provide greater diagnostic specificity  than RF and have high predictive value 

for RA several years before disease onset [140] with erosive disease being more likely 

to develop in ACPA+ positive patients compared to in ACPA- patients [141]. ACPA 

producing B cells have been observed in synovial tissue and the abundance of ACPA is 

higher in synovial fluid and synovial tissue than in sera from RA patients [142, 143] 

suggesting a local antibody production against citrullinated antigen within the joint. 

This could indeed be the case, since germinal center-like structures are formed within 

the synovial tissue [144] and hypermutation and terminal B cell differentiation is 

suggested to occur within these germinal centre-like structures [145]. 

 

Macrophages 

Macrophages are important key players in the pathogenesis of rheumatoid synovitis. 

Macrophages present in the inflamed synovium have two origins: the resident synovial 

lining layer type A synovicytes, and sublining macrophages which have migrated from 

blood circulation as monocytes and become tissue macrophages [146]. The number of 

type A synovicytes is higher in the inflamed synovial lining layer than in healthy 

conditions [147] and the number of macrophages in the pannus tissue correlates well 

with both radiological joint damage [148] and with joint pain and inflammation [149]. 

Macrophages, together with fibroblasts and endothelial cells, thus promote cartilage 
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destruction [150, 151] and through stimulation by RANKL and M-CSF monocytes are 

able to differentiate to osteocasts [152] promoting bone destruction.  

In RA tissue macrophages have been demonstrated to be resistant to apoptosis [153] 

contributing to the persistent release of growth factors, cytokines, chemokines [154] 

and MMPs-1, -2 and -9 (reviewed [155]). Growth factors released by tissue 

macrophages include platelet derived growth factor (PDGF) [156] basic and acidic 

fibroblast growth factor (bFGF, aFGF), vascular endothelial growth factor (VEGF), 

hepatocyte growth factor (HGF) and transforming growth factor-β (TGF-β) [154]. 

TNF, IL-1β, IL-6, IL-12, IL-15 and IL-18 are some of the proinflammatory cytokines 

produced by tissue macrophages [154]. Interestingly, IL-10 produced by monocytes is 

no longer considered to be an anti-inflammatory cytokine in RA [157] since IL-10 was 

determined to induce TNF receptor expression on monocytes [158]) and an increased 

expression of interferon-γ-inducible genes [157]. Among chemokines, IL-8 produced 

by macrophages functions as a recruiting factor for neutrophils [154] and fractalkine, 

while promoting angiogenesis, also acts as a chemotactic agent for monocytes and 

lymphocytes [159]. 

 

Neutrophils 

Neutrophils are the most abundant cell population in the synovial fluid but are sparsely 

distributed in the synovial membrane. 

A variety of chemokines produced by FLS, among others IL-8, MCP-1 and RANTES, 

attract neutrophils to the inflamed RA joint (reviewed in [160]) and locally produced 

complement components [161] followed by complement activation generates 

anafylatoxin C5a which also functions as chemoattractant for neutrophils [162]. C5a 

further induces the expresson of FcRγIII on neutrophils [162] and facilitates Fc-

receptor mediated phagocytosis of immune complexes in the synovial fluid. 

Phagocytosis further triggers the release of hydrolytic enzymes, production of reactive 

oxygen species [163] and production of IL-1α and IL-1β thereby promoting local joint 

inflammation and tissue degradation, and as such are important mediators of surface 

cartilage degradation (reviewed in [164]). During neutrophil activation and 

degranulation nociceptin is released, which is a neuropeptide associated with pain [165] 

thus accounting for joint pain in RA.  
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NK cells  

NK cells are distributed throughout lymphoid and non-lymphoid tissues. NK cells are a 

minor cell population of human peripheral blood, conmprising 2%-18% of the total 

lymphocyte count (reviewed in [166]). NK cells mediate clearance of antibody-coated 

cells, mediate early protection against viruses and kill cancer cells (reviewed in [167]). 

In humans NK cells are divided into CD56dim NK cells which express perforin and 

produce IFNγ, and CD56bright NK cells which lack perforin and produce cytokines upon 

stimulation. NK cells are able to induce maturation and activation of DCs, 

macrophages and T cells but are also able to kill immature cells DCs, activated CD4+ T 

cells, hyperactivated macrophages and cells not expressing MHC class I molecules 

(reviewed in [166]). 

Since NK cells are able to skew the immune system towards a Th1 or Th2 response 

depending on the cytokine milieu and tissue localisation these cells can both promote or 

protect from autoimmunity [167]. The function of NK cells in RA is not fully 

elucidated but CD56bright NK cells accumulate in both lymph nodes [168] and in 

chronically inflamed RA joints [169]. CD56bright NK cells are also detected in synovial 

fluid from RA patients and they spontaneously produce IL-10 and TGFβ [170]. It has 

been demonstrated that NK cells have the ability to induce TNF production from 

monocytes [171] and can trigger CD14+ monocytes to differentiate into DCs [172].  

 

Dendritic cell 

Dendritic cells (DC) play a pivotal role in T cell immunity and tolerance due to their 

ability to stimulate naïve T cells and to direct effector cell function. Human DCs are 

divided into two different subsets: myeloid- (mDC) or plasmacytoid dendritic cells 

(pDC) and both mDCs and pDCs are present in the synovial tissue in RA patients. 

Myeloid DCs are found in peripheral blood, synovial fluid and in synovial tissue. In the 

synovial tissue they are localised in the vicinity of T cells, where they express IL-12 

and IL-23, important cytokines for the induction/expansion of Th1 and Th17 T cell 

subsets, respectively. TLR ligands induce chemotaxis and production of various 

chemokines from mDCs, in particular IL-8.  Peripheral blood CD14+ monocytes are 

able to differentiate into a specific type of myeloid DCs, designated as CD1a+ mDC 

(mo-DC). In chronically inflamed tissues or in lymph nodes NK cells trigger the 

differentiation of mo-DC into potent Th1-promoting cells. These cells are abundant in 
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the RA synovium and are primarily located in the perivascular areas and lymphoid-like 

structures (reviewed in [173]). 

Plasmacytoid DCs are found with reduced numbers in peripheral blood in RA patients 

compared with healthy donors while a higher concentration of pDC was is reported in 

synovial fluid and synovial tissue in RA patients compared in osteoarthritis patients 

[174] . Importantly, pDCs induce both T cell-dependent and –independent B cell 

differentiation into antibody-producing plasma cells. Interestingly, pDC numbers are 

especially increased in ACPA positive RA patients (reviewed in [173]). 

 

Mast cells 

Mast cells (MCs) are multifunctional cells containing a vast numbers of preformed 

granules with proinflammatory and fibrogenic mediators. An increased number of MCs 

occurs in the synovial tissues of RA patients, especially at the sites of cartilage 

destruction [175] where the activation and degranulation of MCs are also detected 

[176]. Upon activation MCs are able to produce or release the preformed granules 

containing cytokines, chemokines and proteolytic enzymes. MCs are also a major 

source of vasoactive and chemotactic factors, facilitating the recruitment of other 

inflammatory cells into the joint (reviewed in [131]). Interestingly, a MC-membrane 

stabilising agent was shown to suppress arthritis progression in a collagen-induced 

arthritis model (reviewed in [177]).  
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ANTI-RHEUMATIC THERAPIES 

 

In the normal healthy joints there is a balance between pro- and anti-inflammatory 

cytokines, whereas in the arthritic joint an imbalance between these mediators causes 

the persistence of inflammation and joint destruction [178]. Therapy in RA aims to 

suppress chronic inflammation and structural protection of cartilage and bone. The 

available therapies for RA are directed against individual proinflammatory cytokines or 

against individual effector cells, including therapies inhibiting the Th1/Th17 cytokine-

driven disease through favouring Th2 differentiation. 

 

Cytokine-inhibiting therapy 

TNF 

TNF is a major mediator of structural damage in RA by inducing osteoclast formation. 

This is accomplished by: i) inducing the expression of RANKL on mesenchymal cells 

and lymphocytes; and ii) direct engagment of TNF receptor type I on the surface of 

osteoclast precursors. TNF has also a primary role in RA pathogenesis by inducing 

production of adhesion molecules facilitating the influx of osteoclast precursors 

(monocytes) and other inflammatory cells [179]. 

TNF additionally induces the production of MMPs, IL-1 and other proinflammatory 

cytokines, thereby sustaining both inflammation and in turn promoting cartilage and 

bone destruction (reviewed in [180]. TNF stimulates macrophages to produce reactive 

oxygen [181, 182] that induce other synovial cells to peoduce more TNF [183] creating 

an intristic loop for sustained TNF production.  

Available targeted therapies are:  Infliximab (Remicade®); a humanised chimeric 

monoclonal antibody which binds to both soluble and membrane bound TNF. 

Adalimumab (Humira®); a human monoclonal antibody (produced by phage display) 

that binds TNF. Etarnecept (Enbrel®); a soluble TNF receptor with a human IgG Fc 

that binds to TNF and lymphotoxin. 
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IL-1 

Several reports demonstrate that IL-1 (in particular IL-1β) is a key mediator of joint 

damage. Osteoclast formation is dependent on IL-1 since the abolition of IL-1 in TNF-

transgenic mice completely protected these animals from cartilage breakdown, and 

reduced bone destruction considerably despite ongoing synovitis [184]. An earlier 

study also demonstrated that therapy with IL-1RA or induced IL-R1 abolition 

completely rescued TNF-initiated bone loss [185]. In addition, mice that are IL-1RA-

deficient spontaneously develop destructive polyarthritis [186]. Furthermore, high IL-1 

levels are correlated with joint inflammation and are responsible for the articular 

destruction in RA by inhibiting proteoglycan synthesis [187] and by stimulating the 

release of MMP1 and MMP3 [188]. 

Available targeted therapy: Anakinra (Kineret®); a soluble IL-1 receptor antagonist. 

Novartis has an anti-IL-1β mAb in clinical trials. This antibody works well in IL-1β 

caused disorders like Muckle-Wells and CINCA syndromes. 

 

IL-6 

IL-6 is the major inducer of CRP synthesis in the liver and mediates systemic 

inflammation [179]. IL-6 is also one of the cytokines that induces RANKL expression 

on mesenchymal cells and T cells, which in turn can activate osteclastogenesis and 

bone degradation [189]. A recent study demonstrated that blockade of IL-6 by 

neutralising antibodies against the IL-6 receptor effectively blocked the inflammatory 

process in RA [190]. 

Available targeted therapy: Tocilizumab: an antibody directed against the IL-6 

receptor. 

 

Effector cell-directed therapy 

B cell depletion 

B cell depletion appears to inhibit inflammatory responses by: i) decreasing the amount 

antigen presenting cells; ii) impairing the formation of immune complexes; and iii) 

blockade of proinflammatory cytokine production. Activated B cells express RANKL 

and support osteoclastogenesis; thus B cell depletion could affect the structural damage 

in RA. 
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Available targeted therapy: Rituximab; CD20+ B cell depleting antibody, detects B 

cells in the periphery but does not deplete plasma cells.  

 

Costimulation blockade 

Endogenous CTLA4 expressed on Treg cells (and activated T cells) binds with high 

affinity to CD80 and CD86 expressed on the surface of antigen presenting cells, 

inhibiting the costmulatory signal for T cells. Thus recombinant soluble CTLA4 has 

anti-inflammatory properties by inhibiting T cell activation [191] but also by targeting 

CD80/CD86-bearing monocytes and thereby inhibiting the differentiation of monocytes 

into osteoclasts [192]. 

Available targeted therapy: Abatacept; recombinant CTLA4 with IgG Fc. 

 

Modulation of Th1 toward Th2 balance 

Disease-modifying anti rheumatic drugs (DMARDs)   

The majority of T cell clones from the human synovial membrane and synovial fluid 

represent CD4+ Th1 cells producing IFNγ and IL-2. (reviewed in [108]). 

It has become apparent that in RA T cell subsets with regulatory capacity, such as Th2 

cells and CD4+CD25+ Treg cells, are functionally impaired, thus allowing the 

progression of Th1- mediated inflammation (reviewed in [108, 114]) 

The concept of modulating the Th1/Th2 balance has been successful in animal models 

of arthritis [193, 194]. Several recent studies have indicated that several DMARDs and 

glucocorticoids appear to be able to modulate the Th1/Th2 balance. 

Available targeted therapies are: Methotrexate [195], Leflunomide [196], 

Sulfasalazine [197], Cyclosporine [198] and Glucocorticoids [199, 200]. 
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ANIMAL MODELS OF ARTHRITIS   

 

Experimental arthritis models are appropriate tools for the study of a complex disease 

with interactions between genetic and environmental factors. Different animal strains 

have specific genetic backgrounds, where every strain may resemble one subgroup of 

RA patients. This offers the possibility to study how different disease inducers 

influence the disease course and to evaluate the effects of different anti-rheumatic 

therapies. The advantage of using animal models includes the possibility to study the 

entire disease course, from the induction phase to the progressive erosive disease.   

 

Collagen-induced arthritis     

In this thesis work, I have used Collagen-induced arthritis (CIA) in mice as a model of 

human arthritis. CIA is the most commonly used experimental model of arthritis and 

has been used since the late seventies [201]. Injection into the tail base of heterologous 

type II collagen (CII) suspended in mineral oil together with inactivated mycobacteria 

(complete Freund´s adjuvant, CFA) induces a severe destructive arthritis in DBA/1 

mice [202, 203]. The susceptibility to CIA is related to MHC class II alleles. Mouse 

strains bearing MHC I-Aq, I-Ar or I-Ab develop arthritis following challenge with CII 

[204]. In CIA both cellular and humoral immune responses drive the inflammation, 

resulting in cartilage and bone erosion. CIA has many similarities to human RA being 

chronic, symmetric, affecting peripheral joints and inclusion of formation of synovial 

pannus tissue [203, 205].  

Although an adaptive immune response to CII is pivotal for the development of 

disease, macrophages and their products (ie TNF, IL-1, IL-6) play a major role in the 

disease pathogenesis [186, 206-208]. Blockade of these cytokines ameliorate, as in RA, 

the disease symptoms [209-211]. The differences between mouse CIA and RA are: the 

abscence of lymphoid aggregate-formation, that no difference in sex predisposition 

exists and that no RF can be demonstrated in mouse CIA [203, 205]. 
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HMGB1 

 

HMGB1 as a nuclear protein 

The human HMGB1 gene is located on chromosome 13q12 [212] and encodes a 215 

amino acid polypeptide. HMGB1 is highly conserved between species with 99% 

identity between rodent, bovine and human proteins [213]. HMGB1 has a tripartite 

domain organisation: the A- and B- HMGB boxes, each around 75 amino acids in 

length, are connected by a short linker and an acidic tail formed by 30 consecutive 

glutamate and aspartate residues. The A-box consists of 3 α-helices folded in an L-

shape and the B-box is also folded in an L-shape similar to the A-box [214-219]. The 

acidic tail modulates interaction with DNA and its helix-distorting ability [220-222] 

which modulates the interaction with nucleosomes and chromatin remodelling 

machineries [223, 224]. The acidic tail also modulates the acetylation of HMGB1 

mediated by histone acetyltransferases [225] (reviewed in [215]). 

HMGB1 is an abundant and highly conserved non-histone chromosomal protein that 

binds to the minor groove of DNA without sequence specificity. It associates with high 

affinity to DNA with highly bent structures, such as four-way junctions and cisplatin-

modified DNA [226]. HMGB1 has a functional importance as a regulator of 

transcription, either by remodelling chromatin and nucleosome structure or direct 

interaction with transcription factors such as steroid hormone receptors, p53 and NF-kB 

[227]. Furthermore, HMGB1 knockout mice die shortly after birth due to 

hypoglycemia and exhibit a defect in the transcriptional function of the glucocorticoid 

receptor [228]. HMGB1 is expressed in all nucleated cells but the expression level of 

HMGB1 is much higher in transformed cell types compared to in non-transformed cells 

[229-232]. 
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Extracellular functions of HMGB1 

The cytoplasmic occurrence of HMGB1 was already demonstrated in 1979 [233] and 

HMGB1 expression at leading edges in spreading and motile cells was demonstrated in 

1987 [229, 234]. HMGB1 binding to plasminogen and plasminogen activator [235] was 

demonstrated to play a crucial role during cell invasion and tissue remodelling by 

activating MMP2 and MMP9 that degrade the extracellular matrix [236, 237]. HMGB1 

was also found in the cytoplasm of resting platelets and to be expressed on platelet 

surface upon activation [238].  

In 1999 HMGB1 was discovered as an extracellular mediator of inflammation released 

by macrophages [239]. The cytokine activity of HMGB1 is ascribed to the B-box 

structure while the A-box behaves as a competitive inhibitor of HMGB1 [240-243]. 

The structure and the functional domains of HMGB1 are further described in Fig 2. 

During the last decade HMGB1 has been demonstrated to be secreted from various 

types of cells, promoting both inflammation and tissue regeneration [244] and to 

possess bactericidal effects [245]. 

 

Secretion of HMGB1 

Active HMGB1 secretion 

HMGB1 is an extremely mobile nuclear protein which rests at a specific DNA site for 

only fractions of a second [246] and in most cells HMGB1 shuttles between the nucleus 

and cytoplasm. The nuclear import is an active process while the cytoplasmic 

translocation may occur via passive diffusion or by CRM1-mediated active export. 

Activation of monocytes with proinflammatory agents induces hyperacetylation of 

HMGB1which inhibits the active transport of HMGB1 to the nucleus, resulting in 

cytosolic accumulation [247]. In myeloid cells HMGB1 is then accumulated in 

secretory lysosomes followed by lysophosphaditylcholine (LPC)-mediated exocytosis 

[248]. In addition, the ATP binding cassette transporter 1 inhibits both HMGB1 and IL-

1β secretion from monocytes and macrophages [249, 250] and recently a specific ABC 

transporter  (multi-drug resistant protein 1, MRP-1) was suggested to mediate active 

HMGB1 secretion from macrophages [251]. The mechanism by which cell types 

lacking the secretory lysosomal pathway, such as smooth muscle cells and endothelial 

cells [252, 253] secrete HMGB1 is not yet elucidated.  
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Passive HMGB1 release 

The other setting in which HMGB1 release occurs is during cell death. Since HMGB1 

is loosely bound to chromatin it may leave the nucleus when membrane integrity is lost. 

Induction of necrotic cell death through physical or metabolic injury leads to HMGB1 

release [246]. Late apoptotic cells undergoing secondary necrosis also release HMGB1 

[254-257]. One recent report suggests that hypoxia may even induce active HMGB1 

release, that precedes hypoxia-induced apoptosis or necrosis [257]. 

  

Exosomal HMGB1 release 

Exosomes are small, 30-100 nm membrane vesicles believed to originate from late 

endosomal compartments called multivesicular bodies (MVBs). MVBs are involved in 

transporting proteins for degradation in lysosomes. Intraluminal vesicles are formed by 

inward budding of the endosomal membrane of MVB and may be released when MVB 

fuse with the plasma membrane, these intra luminal vesicles are then called exosomes 

[258, 259]. HMGB1 has been detected in exosomal compartments and in exosome-

depleted supernatants of Caco-2 cells suggesting that HMGB1 was released by several 

routes from these cells [374]. 

 

Modifications of HMGB1 

HMGB1 is further directed to diverse post-translational modifications. ADP 

ribosylation of HMGB1 regulates gene transcription and is a cellular response to DNA 

damage [260, 261]. HMGB1-ADP ribosylation can be induced by alkylating agents and 

was shown to induce HMGB1 relocalisation from the nucleus to cytoplasm and 

subsequent release during necrotic cell death [262]. 

During apoptosis caspases 3 and 7 mediate oxidation of HMGB1 in HeLa cells [263]. 

Activation of RAW 264.7 cells induced phosphorylation of HMGB1 and inhibited the 

nuclear transport of HMGB1 by reduced binding to nuclear cargo carrier protein KAP-

α1 [264]. Furthermore, mono-methylated HMGB1 was detected in the cytoplasm but 

not in the nucleus of neutrophils [265]. 

Depending on the activation status of cells at the time point of passive HMGB1 

liberation, it is therefore likely that all these different HMGB1 isoforms may occur 

extracellularly. HMGB1 can also be cleaved by Thrombin-thrombomodulin complexes 
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[266] and extracellular HMGB1 can further make complexes with IgG [267, 268], LPS, 

CpG [269-271, paper IV] and IL-1β [272, papers IV,V]. All these modifications of 

HMGB1, (both post-translational and the binding to other molecules), influence the 

mode of receptor binding, the choice of receptor/receptors and the subsequent 

signalling cascade (Figure 3).  
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HMGB1 receptors 

HMGB1 has been demonstrated to interact with a wide range of proteins including 

proteoglycans [273, 274] lipids and carbohydrates [275] transcriptional factors [227, 

276-278] and viral proteins [279, 280]. Using a phage display approach HMGB1 was 

demonstrated to bind to more than 12 different peptide sequences, some being strictly 

associated with the A-box or B-box, respectively, while several were associated with 

both A- and B-box structures [281]. The heterogeneity of peptide and protein binding to 

HMGB1 thus implies interaction with several extracellular receptors. The suggested 

receptors for HMGB1 are summarised in Table 2 and the following receptors are 

discussed more detailed in next section: Receptor for advanced glycation end products 

(RAGE), TLR2, TLR4 and TLR9.  

 

Receptor for advanced glycation end products (RAGE) 

RAGE belongs to the immunoglobulin superfamily of cell-surface molecules and is 

composed of an extracellular region containing of one V-type and two C-type 

immunoglobulin domains [282, 283] followed by a hydrophobic transmembrane-

spanning domain and a highly charged cytoplasmic domain which is essential for 

RAGE signalling [284, 285]. RAGE has several isoforms that code for both 

transmembrane and soluble proteins (sRAGE) [286, 287]. sRAGE has been suggested 

to function as a decoy receptor since higher plasma levels of sRAGE are associated 

with a reduced risk for arthritis and many other inflammatory diseases (reviwed in 

[288]). 

HMGB1interaction with membrane-bound RAGE was originally described to promote 

neuronal outgrowth [229, 289, 290]. The A- and B-boxes can independently promote 

cell migration in rat smooth muscle cells via a RAGE-dependent manner [291] while 

the neuronal outgrowth is promoted by the C-terminal motif [217]. It is therefore likely 

that additional molecules are involved in the regulation of cell migration. It was 

recently demonstrated that both RAGE and Mac-1 β2 integrin interaction was required 

in HMGB1-mediated neutrophil recruitment in an in vivo model of peritonitis [292].  

RAGE is also described to be the major receptor for HMGB1-induced cytokine 

production and cell migration in macrophages [250, 293]. However, the cytokine-

inducing capacity of HMGB1 is ascribed to the B-box domain [240, 263, 294-296] 

whereas the interaction with RAGE is located to amino acids 150-183, just before the 
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C-terminal acidic tail [217] implying an interaction between HMGB1/RAGE and 

additional receptor/receptors. Full-length RAGE has two potential N-linked 

glycosylation sites which occur in the ligand-binding V-domain [283] and the 

subsequent glycocylation of RAGE was reported to enhance the binding to HMGB1 

[297]. 

 Interestingly, S100, which is a ligand for RAGE, has been detected as a tetrameric 

state in the human brain. Ostendorp and colleagues proposed that these S100 

complexes could trigger multimersation of RAGE and initiation of signal transduction 

[298, 299]. Since HMGB1 has a charged dipolar structure it has a strong tendency to 

form polymeric structures, which was first described for the protein isolated from brain 

tissues [234]. There are no studies addressing whether multimeric HMGB1 is needed 

for RAGE signalling and/or if a multimerisation of RAGE is needed for HMGB1-

mediated signal transduction. Conversely, it has been demonstrated that RAGE/TLR9 

associates in HMGB1/CpG-mediated signalling in pDCs [271]. 

 

Toll-like receptors 

The primary response to pathogens in the innate immune system is triggered by Pattern 

Recognition Receptors (PRRs) that bind Pathogen Associated Molecular Patterns 

(PAMPs). Toll-like receptors (TLRs) are well-characterised signal generating receptors 

among PPRs and recognise a vast number of complex PAMPs [300] and Disease 

Associated Molecular Patterns (DAMPs), thereby initiating key inflammatory 

responses [301]. All known TLRs (presently 14) known in mammals are type I integral 

membrane glycoproteins containing an extracellular domain with leucine-rich repeats 

responsible for ligand recognition [302]. Most of TLRs are cell-surface receptors but 

TLR3, TLR7, TLR8 and TLR9 reside in intracellular organelles [303]. TLRs act as 

homo- or heterodimers or together with other PPRs recognising diverse bacterial and 

viral ligands [304] and even host DNA [305, 306]. The cytoplasmic domains of TLRs 

and IL-1-receptors are homologous, thus called Toll/IL-1 receptors (TIRs) [302]. TIR is 

required for signalling pathways activating the transcription factors nuclear factor κB 

(NFκB), activator protein-1 (AP-1), which is common to all TLRs, and interferon 

regulatory factor 3 (IRF) and IRF7. NFκB and AP-1 leads to proinflammatory cytokine 

production while IRF 3 and IRF7 promote the production of IFNβ and IFNα, -type I 

interferons. 
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TLR2 and TLR4 

Both TLR2 and TLR4 are membrane-bound receptors. Among a vast number of 

ligands, TLR2 recognises lipoteichoic acid from gram-positive bacteria and TLR4 

binds LPS from gram-negative bacteria (reviewed in [307]). While both TLR2 and 

TLR 4 are membrane-bound receptors they can be expressed as soluble proteins. 

Soluble TLR2 is produced through a post-translational modification and is detectable in 

human plasma and milk, while soluble TLR4 in mice is a result of alternative splicing 

(reviewed in [300]).  

More recently a direct interaction of HMGB1 with TLR2 and TLR4 was determined 

using fluorescence resonance analysis and immunoprecipitation [308] and HMGB1-

mediated TNF release from macrophages obtained from TLR2-/- and TLR4-/- mice was 

determined to be compromised in comparison to wild-type mice [309]. 

HMGB1-mediated NFκB activation via TLR2 is dependent on Myeloid differentiation 

primary response protein 88 (MyD88) and TIR-domain containing adaptor protein 

(TIRAP) binding to TIR. Furthermore, expression of dominant-negative forms of IL-

1R associated kinase 1 (IRAK1), IRAK2, IRAK4, TGF-β activated kinase 1 (TAK1), 

Tak 1 binding protein 2 (TAB2), TNF receptor-associated factor 6 (TRAF6) or p38 

inhibited HMGB1-mediated NFκB activity in macrophages.  The signalling cascades 

initiated by TLR2 and TLR4 exhibit significant overlap but HMGB1-mediated TLR4 

signalling seem to be less dependent on TAK1 and TAB2 pathways [310]. 

A partial overlap exists between RAGE and TLR2 and TLR4 signalling pathways, as 

depicted in Fig 4 [311, 312]. This sharing of signalling components makes genetic 

studies and heterologous expression systems difficult to interpret, and has led to 

contradictory conclusions regarding the roles of TLR2, TLR4 and RAGE, respectively, 

in HMGB1 signal transduction [293, 310]. Furthermore, the signalling cascades and 

substrate specificities are also modulated by TLR homo- and hetero-oligmerisation. 

Thus the binding of HMGB1 to homo- or heterodimeric TLRs remains to be 

determined. Furthermore, the fact that HMGB1 is very prone to form complexes with 

several TLR ligands such as LPS and endogenous molecules such as IL-1β complicates 

the issue of defining HMGB1-specific receptors.  
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Apetoh and colleagues illustrated the importance of adequate interaction between 

HMGB1 released from dying tumour cells and TLR4 expressed on DCs. The cross-

presentation of tumour antigens and the promotion of tumour-specific cytotoxic T-cell 

responses required both HMGB1 and TLR4. Mutation in TLR4 (Asp299Asp to 

Asp299Gly) decreased its binding to HMGB1 and individuals bearing this mutation 

failed to cross-present antigens to CTLs from dying melanoma cells. Furthermore, 

knockdown of HMGB1 with siRNA or treatment with neutralising antibody directed 

against HMGB1 blunted antigen presentation of tumour antigens and inhibited T-cell 

priming. However, addition of recombinant HMGB1 could not restore the effects of 

HMGB1 released from Doxorubicin-treated tumour cells, indicating a requirement of 

tumour-specific HMGB1 [313, 314] (reviewed in [315]).  
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Interestingly, the way of dying and the resulting post-translational modifications of 

HMGB1 seem to be important for HMGB1-mediated DC responses. Kazama and 

colleagues demonstrated that oxidation of Cysteine 106 alone was sufficient to block 

the immunogenic activity of HMGB1. Thus DCs are activated by HMGB1 released 

from necrotic cells which is not oxidised while oxidised HMGB1 released from 

apoptotic cells induces tolerogenic signals in DCs. Oxidation of HMGB1 was reported 

to be mediated by caspase 3- and 7-induced ROS activation [263, 316]. 

ADP-ribosylation of HMGB1 occurs in cells treated with alkylating agents. How this 

affects the cross-presentation of tumour antigens is as far as I know not yet studied. It is 

interesting that cell supernatants from cells deficient in the enzyme (PPAR-1) 

responsible for polyadenylation fail to induce inflammation [262]. 

 

TLR9 

TLR9 is primarily confined to cells of the immune system and is highly expressed in 

plasmacytoid DCs but not in conventional DCs [317]. It is initially localised in the 

endoplasmic reticulum, but redistributes to early endosomes upon stimulation with 

CpG-DNA [318]. TLR9 recognises synthetic CpG oligonucleotides and unmethylated 

CpG motifs in bacterial and viral DNA [317] but also host DNA and RNA [305, 319]. 

While the exact mechanism leading to TLR9 activation by CpG-DNA remains unclear, 

HMGB1 was recently determined to be an important regulator in this process. It was 

demonstrated that HMGB1 interacts with TLR9 in the endoplasmic reticulum Golgi 

intermediate compartment (ERGIC) in quiescent macrophages and accelerates the 

redistribution of TLR9 to early endosomes in response to CpG-ODN stimulation. Thus 

immune cells lacking HMGB1 demonstrated a delayed redistribution of TLR9 to early 

endosomes and an impaired cytokine response to CpG-ODN. Interestingly, the 

decreased response to CpG-ODN in HMGB1-defective cells could be restored by 

addition of extracellular HMGB1, suggesting a common feedback loop in which innate 

immune cells secrete HMGB1 and HMGB1 sensitises immune cells to CpG-DNA 

through interaction with TLR9 and RAGE  [270, 271]. 
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Table 2. HMGB-1 receptors and signaling 

 

Receptor                                                Comment 
RAGE 
[217, 289, 293]  

Interactions with HMGB1 result in MAP kinase activation, 
enhanced tumor growth, metastases, and release of MMPs. 
RAGE-HMGB1 also interact with the Rho family of 
GTPases, Cdc42 and Rac to regulate cell motility. 

TLR2/TLR4 
[308] 

Interaction with HMGB1 results in activation of 
macrophages and maximal stimulation of NFκB activity in 
macrophages, along with induction of neovascularization in 
periods of innate immune system activation. 

TLR9 
[270, 271]  

Interaction with HMGB1 within the ERGIC in quiescent 
macrophages and accelerates the redistribution of TLR9 to 
early endosomes upon CpG activation. 

Syndecan 
[274] 

HMGB1 links syndecan to the extra cellular matrix 
participates in cell adhesion and migration of simple 
epithelial cells, particularly in early cell spreading. 

Phosphacan/protein-Tyr 
Phosphatase γ/β 
[273] 

This receptor participates in proteoglycan-mediated 
regulation of cell adhesion, neurite growth and cell 
migration during central nervous system development. It 
links phosphacan in the extracellular matrix or the 
transmembrane phosphatase on adjacent cells, to cell 
surface glycoproteins such as contactin to which 
phosphacan alone binds only minimally. 

Plasminogen 
[235] 

This activates plasmin via formation of ternary complexes, 
also binds tissue-type plasminogen activator. 

TREM -1 
[320, 321] 

TREM is expressed broadly on myeloid cells. Interaction 
with HMGB1 amplifies the immune response on THP-
cells. 

Modified from JE Ellerman  2007, Clin Cancer Research 

 

 

HMGB1 expression in the arthritic joint 

 

High levels of HMGB1 are present in serum and synovial fluid in rheumatoid arthritis 

patients [257, 322] with a higher concentration in synovial fluid from RA patients 

compared with osteoarthritis patients [323]. The hyperplastic synovial tissue in RA 

patients demonstrates a significant increase in extracellular HMGB1 expression [257, 

324].  
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Tissue hypoxia occurs in the inflamed RA joints due to accelerated oxygen 

consumption in accumulated inflammatory cells and due to the hyperproliferation of 

synovial cells. Hypoxia has been considered to have a pathological role in arthritis 

development through induction of cytokines, matrix-degrading enzymes and 

angiogenic factors [325]. Thus the increased number of blood vessels detected within 

the inflamed synovial tissue is suggested to be a consequence of the hypoxic 

environment. Recently, hypoxia was demonstrated to induce HMGB1 release in cell-

based in vitro experiments and HMGB1 detected in synovial fluid collected from 

patients suffering from RA correlated with lactic acid concentrations, which is a tissue 

hypoxia marker [257]. Thus HMGB1 released during hypoxia is yet a source of 

extracellular HMGB1 within RA tissue. 

 

Putative role of HMGB1 in RA 

In the collagen-induced arthritis model both the protein and mRNA levels of HMGB1 

were elevated at the areas of cartilage bone destruction [326]. 

Interestingly, FLS in the arthritic joint express RAGE [323, 327, 328] and binding of 

HMGB1 induces invasive feature of FLS. HMGB1-mediated invasiveness could be 

completely inhibited by antibody treatment targeting RAGE, suggesting that RAGE-

targeted therapy could inhibit the cartilage and bone invasion by FLS [329]. In our 

studies we have demonstrated that HMGB1 in complex with trace amounts of LPS or 

IL-1β induced TNF, IL-6 and IL-8 production from FLSs and enhanced their MMP1 

and MMP3 production, thus increasing the inflammatory and destructive phenotype of 

FLS (Paper V).  

HMGB1 promotes vasculogenesis by inducing chemotactic migration of adult human 

peripheral blood-derived endothelial progenitor cells (EPC), an important mechanism 

in rescue of ischemic tissues. The enhanced adhesion of EPCs at a site of ischemia and 

active angiogenesis is mediated by HMGB1/RAGE-induced β-integrin upregulation on 

EPCs [330]. 

The initiation of angiogenesis, the growth of new blood vessels from pre-existing ones, 

begins with the degradation of the basement membrane by activated endothelial cells. 

These proliferate and migrate, leading to the formation of solid sprouts to the stroma. 

Macrophages produce a number of potent angiogenetic cytokines and growth factors, 

e.g. TNF, IL-8 and VGEF. Recently, HMGB1 has been demonstrated to promote 
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angiogenesis in a dose-dependent manner in an in vitro angiogenesis assay [331]. 

Blocking of RAGE inhibited HMGB1-induced neovascularisation in vivo and 

endothelial cell proliferation and membrane ruffling in vitro, demonstrating HMGB1 

and RAGE dependency during blood vessel formation and in wound healing [332]. 

Interestingly, a high HMGB1 expression pattern was demonstrated in the endothelial 

cells of RA synovial tissue samples despite local glucocorticoid treatment [324], and an 

active HMGB1 release has been demonstrated from activated endothelial cells [252, 

333] and from smooth muscle cells lining the arteries [252] suggesting that local 

HMGB1 production could promote angiogenesis in RA.  

An activated endothelium is required for the transmigration and accumulation of 

immune cells to the site of inflammation. Recent publications demonstrate that 

HMGB1 possesses the capacity to both activate the endothelial cells by upregulating 

the adhesion molecules ICAM-1, VCAM-1 and E-selectin, and through attracting 

inflammatory cells to the site of inflammation by inducing IL-8 and MCP-1 production 

[242, 246, 295, 334].  Treutiger and colleagues demonstrated that neutrophil adhesion 

to activated endothelial cells was partly mediated by RAGE. Furthermore, it was 

recently demonstrated that both RAGE and Mac-1 β2 integrin interaction was required 

in HMGB1-mediated neutrophil recruitment in an in vivo model of peritonitis and for 

increased adhesion to ICAM-1 in vitro [292, 335]. Since Mac-1 expression is only 

restricted to neutrophils and macrophages it is plausible that recruitment of other 

proinflammatory cells requires interaction with other molecules together with RAGE. 

Additionally, HMGB1 activates neutrophils [336]. 

When NK cells are in physical contact with immature DCs they start to produce IL-18 

that stimulates NK cells to produce HMGB1 [337]. Extracellular HMGB1 in turn has 

been demonstrated to promote DC migration [338] and maturation [339, 340]. HMGB1 

is further secreted from stimulated DCs, creating an intrinsic loop of inflammation-

promoting events. HMGB1 secreted from DCs is crucial for T cell proliferation, 

survival and polarisation to a Th1 phenotype, and this is mediated by HMGB1/RAGE 

interaction [340, 341]. Among T cells, Th1 cells are the most prominent cell population 

in the inflamed RA synovial tissue [108, 109] mediating inflammation and bone 

destruction. 

Phagocytosing macrophages release HMGB1 [342] and extracellular HMGB1 can 

further induce monocyte migration [250] and enhance the expression and secretion of 
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other proinflammatory cytokines such as TNF, IL-1β, IL-6 and IL-8 [343, paper V]. All 

these cytokines occur in the arthritic joint, promoting inflammation and bone 

destruction. Bone destruction in RA is mainly mediated by osteoclasts and HMGB1 

and RAGE are mediators of osteoclastogenesis [344]. HMGB1 is also released by 

osteoclast precursor cells, osteoclasts and osteoblasts [345]. It is also demonstrated that 

HMGB1 promotes chemotaxis and osteoblast differentiation from mesenchymal stem 

cells [346] indicating a bone anabolic activity of HMGB1. 

Taken together, HMGB1 is an abundant molecule in the arthritic joint and different cell 

populations, namely endothelial cells, neutrophils, NK-cells, DCs, T-cells, monocytes 

and macrophages, are potent sources of secreted HMGB1. Extracellular HMGB1 is a 

potent amplifier of local inflammatory responses by enhancing the release of cytokines, 

chemokines and by promoting osteoclastogenesis and pannus invasion into the cartilage 

and bone. Modulating HMGB1 activity may provide a new strategy to block the 

intrinsic loop of inflammation and joint destruction. 

 

HMGB1 targeting therapies 

The importance of HMGB1 in arthritis has been further demonstrated by use of animal 

models, in which the blocking of HMGB1 activity using different strategies has had 

beneficial effects on arthritis development. To inhibit HMGB1-mediated activities the 

strategies which have been used include: i) targeting of extracellular HMGB1; ii) 

receptor blocking (may be different for inflammation and invasiveness); and iii) 

inhibition of HMGB1 secretion. 

 

Targeting extracellular HMGB1 

HMGB1 neutralising polyclonal antibody and the antagonistic A-box residue 

ameliorated the disease course of collagen-induced arthritis in both the mouse and rat. 

The mean arthritis score, disease-induced weight loss and histological severity of 

arthritis as well as IL-1β expression in the synovial tissue were significantly reduced in 

the treated animals [257, 347]. 

Thrombomodulin is an endogenous endothelial anticoagulant that binds to HMGB1 and 

prevents the extracellular proinflammatory activities of HMGB1 [348]. Treatment with 

truncated forms of thrombomodulin was a successful therapy in several forms of 

experimental arthritis [349]. 



 

 40

 

Receptor blocking 

Administration of sRAGE suppressed clinical and histological signs of arthritis and 

decreased the RAGE expression, TNF, IL-6, MMP-3, -9 and -13 levels in DBA/1 mice 

joints, limiting both inflammation and bone and cartilage destruction [350]. 

 

Inhibition of HMGB1 secretion 

Ghrelin (GHR) is a 28-aa polypeptide mainly produced by stomach cells and is 

involved in the control of growth hormone secretion and adiposity [351]. Collagen-

induced arthritis treated with GHR attenuated the arthritis severity, with decreased 

HMGB1 levels in serum compared with untreated animals. Translocation of HMGB1 

from the nucleus to the cytoplasm in LPS-stimulated macrophages was inhibited by 

GHR treatment, indicating a decreased secretion of HMGB1 [352]. 

Oxaliplatin a commonly used anti-cancer drug creating platinated DNA adducts where 

HMGB1 is sequestered [353]. Systemic treatment with oxaliplatin ameliorated collagen 

type-II induced arthritis in mice and blocked the nuclear translocation of HMGB1. 

However, the treatment effect was not persistent and a rebound effect was determined 

with an increased disease induction and severe synovial inflammation. This rebound 

effect correlated with an increased extracellular HMGB1 expression (Paper III).   
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METHODS USED IN THE PAPERS 
 
 
Cell cultures 
 
C1MC/C57.1   (I) 
HCT 116    (I) 
HMC-1.2    (I) 
PBMC    (IV) 
RAW264.7   (I, II, III) 
Synovial fibroblasts   (V) 
THP-1    (II)  
  
 
Detection of cytokines and MMPs 
 
CBA    (V) 
ELISA    (II, IV) 
TNF ELIspot    (II, IV) 
Western blotting   (II, IV) 
 
 
Detection of HMGB1   
 
ELIspot    (I, II, III) 
Immunohistochemistry   (III) 
Immunocytochemistry   (I, II, III) 
Western blotting   (III, IV) 
 
 
Induction and evaluation of arthritis 
 
CIA    (III) 
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RESULTS & DISCUSSION 

 

Development of an HMGB1-specific ELIspot assay and determination 

of HMGB1 secreting capacities of several cell lines. 

(Paper I) 

 

In the first study an HMGB1-specific ELIspot method for both adherent and non-

adherent cells was developed. Several different antibodies were screened in order to 

elucidate the optimal combination of antibodies to detect HMGB1 secretion from cells. 

The capture antibody in our HMGB1 ELIspot is a non-commercial mouse monoclonal 

antibody, 2G7 CTI (Boston, MA, USA) that recognises the amino acid sequence 53-63 

within the A-box region of the HMGB1 molecule. The detection antibody is a 

commercial affinity-purified rabbit polyclonal antibody PharMingen (San Diego, CA, 

USA) detecting amino acids 166-181 at the linker region between the B-box structure 

and the acidic tail of HMGB1. The specificity of the ELIspot assay was confirmed by 

replacing the capture or detection antibodies with isotype- or irrelevant control 

antibodies, or by omitting the detection antibody. No spots were detected with these 

control antibodies from either stimulated or unstimulated RAW246.7 cells.  

The kinetic pattern of HMGB1 release could be determined by discriminating between 

low- and high- intensity spots. Low intensity spots reflect the initial phase of HMGB1 

secretion and high intensity spots signify high output HMGB1 secretion. Stimulation 

with IFNγ alone induced a fast HMGB1 release from RAW264.7 cells detected as the 

highest amount of low intensity spots after 24h of stimulation. Conversely, TNF was a 

poor inducer of HMGB1 secretion. Stimulation with LPS alone or with IFNγ+LPS 

generated a granular HMGB1 pattern after 24h of stimulation as detected by 

immunocytochemistry, indicating that HMGB1 was secreted via secretory lysosomal 

pathway from the RAW264.7 cells. However, in IFNγ stimulated cells this pattern 

occurred after 48h of stimulation, demonstrating that HMGB1 secretion was not always 

preceded by HMGB1 granule formation, suggesting additional pathways for HMGB1 

secretion.  
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HMGB1 is known to be highly expressed in malignant cells [229, 354]. In my study I 

could demonstrate that not all transformed cell lines tested were able to actively secrete 

HMGB1. The human colon cancer cell line HCT 116 had a high spontaneous secretion 

of HMGB1, while the mast cell lines C57 and HMC-1.2 did not even release HMGB1 

following stimulation. HMGB1 release was further detected from water-disintegrated 

cells (resembling necrotic cells), but was not detected from apoptotic cells (induced by 

p53 activator PRIMA-1).  

Although we did not detect HMGB1 release from apoptotic or all transformed cell lines 

tested, we should consider the possibility that it might depend on conformational 

differences or post-translational modifications of HMGB1 [260-265]. For instance, 

PRIMA-1 induces apoptosis by activating p53 which in turn activates the caspase 

proteinases which induce oxidation of HMGB1 [263]. It is possible that oxidised 

HMGB1 is not detected by the antibody pair used in our ELIspot assay.  It is therefore 

crucial to evaluate the specificity of HMGB1 antibodies that are used in different 

bioassays.    

HMGB1 secreted by the exosomal pathway would neither be detected by ELIspot or 

ELISA, since HMGB1 is then encircled by membrane, pinpointing the necessity to 

combine different techniques when studying HMGB1 secretion.    

 

 

Inhibition of HMGB1 secretion by inducing nuclear retention of 

HMGB1 

(Paper II & III) 

 

In the second and third studies we investigated the capacity of gold sodium thiomalate 

and oxaliplatin to inhibit HMGB1 secretion.  

The first clinical trial with gold compounds was led by a French physician, Forestier in 

1929. Thirty years later (1960) gold therapy was demonstrated to be clinically efficient 

in a controlled study (reviewed in [355]). The intramuscular gold treatment in 

subgroups of patients with RA reduced both disease activity [356] and cartilage 

destruction [357]. Although the clinical efficacy of gold salts is well established in RA 

the mechanism of action is not fully understood. The so far described anti-
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inflammatory effects of gold salts include suppression of the proinflammatory 

mediators IL-1β, NO and PGE2 [358] and inhibition of NF-κB activity [359]. 

After absorption the gold complex dissociates rapidly in blood plasma, generating gold-

albumin complexes and the thiomalate moiety is converted to a free thiolate form. After 

repeated administration gold is concentrated in the kidneys, liver, spleen and synovial 

tissue. It is taken up by macrophages and the gold is almost exclusively deposited in 

lysosomes in macrophages (reviewed in [355]). 

I wanted to elucidate whether Myocrisin (GST), the most commonly used gold 

compound, could inhibit HMGB1 secretion from human THP-1 monocytes and murine 

RAW264.7 macrophage cell lines. We started to investigate whether IFNγ+LPS- or 

p(I:C)-induced-HMGB1 secretion could respectively be inhibited by GST treatment. 

THP-1 and RAW264.7 cells pretreated with GST and followed by IFNγ+LPS 

stimulation displayed a dose-dependent decrease in HMGB1 secretion determined by 

both ELIspot and Western blotting analyses. Intracellular HMGB1 staining of 

IFNγ+LPS stimulated RAW264.7 cells displayed a cytoplasmic HMGB1 pattern 

compared with GST-treated cells, which display a more nuclear HMGB1 staining 

indicating a nuclear retention and a decreased HMGB1 secretion. Similarly, GST-

mediated inhibition of HMGB1 secretion was determined by p(I:C)- or LPS-stimulated 

RAW264.7 cells (determined by Western blot). In agreement with previous data [358], 

TNF production was not affected by GST treatment.  

NO and type I IFNs have been reported to be downstream key mediators of HMGB1 

release [254]. NO production is triggered by LPS, p(I:C), IFNγ and TNF stimulation 

and IFNβ production is induced by LPS and p(I:C). We therefore further investigated 

whether GST also influenced the production of these key mediators and if GST could 

inhibit HMGB1 secretion induced by NO and IFNβ. Indeed, RAW264.7 cells 

pretreated with GST followed by stimulation with either LPS or p(I:C) demonstrated 

decreased IFNβ and NO levels as determined by ELISA and the Greiss method, 

respectively. Furthermore, the IFNβ and NO donor NOC-15-induced HMGB1 

secretion was attenuated by GST-treatment as determined by Western blotting, 

demonstrating that GST-treatment affects LPS-, p(I:C)-, IFNβ- and NO-induced 

HMGB1 release. 

We also verified that the GST-mediated inhibition of HMGB1 was related to the gold 

component itself rather than to the thiomalate moiety in the GST, since the thiomalate 
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moiety itsef did not induce HMGB1 attenuating effects. We could also demonstrate that 

AuCl3, another gold compound, attenuated both HMGB1 and NO secretion from 

RAW264.7 cells, which further strengthens the view that gold compounds in general 

function as inhibitors of HMGB1 secretion.  

We did not elucidate whether the phagocytosis of gold particles per se inhibited 

HMGB1 release from monocytes/macrophages. There is one report concerning 

increased HMGB1 release during phagocytosis of apoptotic material [342] thus 

describing a distinct event from gold particle phagocytosis. 

 

Paper III 

Oxaliplatin and other platinated anti-tumour compounds generate DNA adducts, 

leading to nuclear sequestration of HMGB1 [360]. In the third study we aimed to verify 

the oxaliplatin sequestering capacity of HMGB1 both in in vitro and in vivo models and 

to study whether that influenced the course of collagen type II-induced arthritis.  

In vitro studies using RAW264.7 cells stimulated with IFNγ+LPS demonstrated a 

nuclear retention of HMGB1 when co-cultured with oxaliplatin. In addition, the 

secretion of HMGB1 was inhibited by oxaliplatin treatment as determined by ELIspot. 

Conversely, TNF production was not affected by oxaliplatin treatment. Cultures with 

lymph node cells challenged with ovalbumin displayed an inhibited proliferative 

activity in the presence of oxaliplatin, an important finding since CIA is a T cell-

dependent arthritis model. 

DBA/1 mice were challenged with bovine collagen type II and treated with one 

intraperitoneal injection of oxaliplatin at the expected onset of CIA. Administration of 

oxaliplatin in early arthritis delayed the disease onset and ameliorated the clinical signs 

of arthritis. In an attempt to prolong the positive effect of oxaliplatin treatment the 

study was repeated and the animals were treated with an additional injection of 

oxaliplatin. The additional dose of oxaliplatin prolonged the period of reduced arthritis 

but did not affect the arthritis incidence. In both settings an aggressive disease flare was 

observed one week after the last dose of oxaliplatin was given. Analysis of articular 

tissue demonstrated a nuclear HMGB1 staining pattern which correlated well with the 

low clinical arthritis score, while an excessive cytoplasmic and extracellular HMGB1 

pattern correlated with the time point of disease flare. 
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Apetoh and colleagues reported that HMGB1 is released from oxaliplatin-treated cells 

undergoing apoptosis, thereby confirming our results [313, 314]. They further 

described that cross-presentation of tumour antigens and the promotion of tumour-

specific cytotoxic T-cell responses required tumour-derived HMGB1 to bind to TLR4 

on DCs. It is currently not known if disease flares in oxaliplatin treated CIA mice are 

dependent on such DC-mediated immune responses. Alkylating agents have been 

demonstrated to induce ADP-ribosylation of HMGB1 [262]. Oxaliplatin belongs to this 

group of drugs and it is therefore plausible that the released HMGB1 is ADP-

ribosylated. Whether ADP-ribosylated HMGB1 is more immunogenic than unmodified 

HMGB1 or if ADP-ribosylation is required for TLR4 binding is yet to be determined.  

It is also possible that the rebound effect with aggressive arthritis in oxaliplatin-treated 

CIA mice could depend on HMGB1-mediated chemoattraction of proinflammatory 

cells. 

 

 

Studies of the cytokine inducing capacity of HMGB1 alone or in 

complex with inflammation promoting molecules 

(Paper IV &V) 

 

Highly purified HMGB1 batches have been demonstrated to possess low or no 

cytokine-inducing activity [275, 361]. In these last two studies I wanted to further study 

the cytokine-inducing capacity of highly purified HMGB1. I studied HMGB1 alone or 

in complex with IL-1β, LPS, Pam3CSK4, CpG-ODN, TNF, RANKL, p(I:C) or IL-18, 

respectively.  

In study IV we used peripheral monocytes (PBMCs) to investigate the proinflammatory 

capacity of HMGB1. Native HMGB1 purified from calf thymus or recombinant 

HMGB1 purified from viral or bacterial sources were used. None of these HMGB1 

batches induced IL-6 production from freshly isolated PBMCs. In contrast, IL-6 

production was synergistically enhanced when PBMCs were stimulated with 

HMGB1/LPS complexes. These HMGB1/LPS complexes contained suboptimal 

concentration of LPS, which alone did not induce IL-6 production. HMGB1 together 

with Pam3CSK4 or CpG-ODN also displayed synergistic effects on IL-6 production in 
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PBMCs, even though the effect was not as pronounced as was the HMGB1/LPS 

complex-induced IL-6 production. Monocytes express high levels of TLR1/TLR2 that 

mediates Pam3CSK4 signalling while the TLR9 expression is very low on monocytes. 

It has been reported that the pDC-containing monocyte population is sensitive to CpG-

ODN-mediated stimulation while pure monocyte populations do not respond to 

stimulation with CpG-ODN. The authors further suggested that monocyte activation 

within human PBMCs is due to secondary effects of CpG-ODN-mediated signalling 

via pDCs [362]. It is therefore not surprising that the CpG-ODN was a weak inducer of 

IL-6 production from our PBMC cultures. 

HMGB1 together with TNF, RANKL, p(I:C) or IL-18 failed to induce IL-6 production 

from PBMCs. A recent publication reported that HMGB1 had only a weak association 

to TNF, while HMGB1 was shown to bind avidly to IL-1β [272]. In our study we did 

not investigate if these latter molecules failed to form complexes with HMGB1, but we 

clearly demonstrated that HMGB1 acts selectively together with certain molecules, and 

that the synergistic activity of HMGB1 is not only dependent on non-specific 

interaction with each and every protein. 

 

Paper V 

In study V we investigated the proinflammatory effect of HMGB1 alone or in complex 

with IL-1β or LPS on synovial fibroblasts (RASF) from RA and osteoarthritic (OASF) 

patients. Cells were stimulated for 9h and the number of TNF producing cells was 

determined by ELIspot. After 24 hours of stimulation the supernatants were collected 

and IL-1β, IL-10, IL-6 and IL-8 levels were determined using a CBA assay and MMP-

1 and MMP-3 levels were analysed by ELISA. HMGB1 alone did not induce cytokine 

or MMP production. In contrast, stimulation with HMGB1 in complex with IL-1β or 

LPS had a synergistic effect on TNF, IL-6 and IL-8 production, respectively, and 

enhanced the MMP-1 and MMP-3 production as compared with stimulation by IL-β or 

LPS alone. This is the first report to demonstrate the effects of HMGB1-complex-

mediated activation of synovial fibroblasts.  

In my study, I could not determine any difference between the HMGB1/IL-1β-induced 

cytokine and MMP production between RA and OA fibroblasts. Interestingly, high 

levels of IL-1β are evident in RA synovial tissues and to a lesser extent in OA patients. 

The quantities of HMGB1 in the synovial fluid from OA patients are much lower 
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compared to the levels in RA patients [323]. It is therefore possible that the complex 

formation between HMGB1 and IL-1β occurs more frequently in the arthritic joint, 

leading to a more pronounced inflammation with an increased bone and cartilage 

destruction in RA patients compared to in OA patients.  
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CONCLUDING REMARKS & FUTURE PERSPECTIVES 

 

The scientific messages and innovations in this thesis work can be summarised as 

follows: 

- An HMGB1-specific ELIspot assay was developed that enabled assessments of 

active and passive HMGB1 release from both adherent and non-adherent cells. 

-    Gold salt was determined to reduce HMGB1, IFNβ and NO secretion from        

macrophages, while it did not influence their TNF secretion. 

- Oxaliplatin ameliorated experimental arthritis by inducing nuclear retention of 

HMGB1. The observed disease rebound effect correlated well with increased 

amounts of extracellular HMGB1, indicating the importance of HMGB1 as a 

pro-inflammatory mediator in arthritis. 

- The inflammatory and destructive activity of HMGB1 was demonstrated to be 

mediated by complex formation of HMGB1 with other inflammation-inducing 

molecules. 

 

Rheumatoid arthritis is a chronic systemic inflammatory disease encompassing severe 

inflammation and destruction of synovial joints. An increasing body of evidence 

suggests that HMGB1 has a central role in RA pathogenesis since increased levels of 

HMGB1 are evident in the synovial fluid and an extracellular HMGB1 pattern can be 

demonstrated in the synovial tissues of RA patients. HMGB1 is released by a variety of 

cells in the inflamed RA joint and reportedly promotes a vast number of inflammation-

promoting features such as angiogenesis, endothelial activation, inflammatory cell 

recruitment and tissue destruction [363]. 

Changes that occur in the synovial lining layer during RA development resemble the 

peritoneal lining during chronic ambulatory dialysis in which epithelial cells become 

hyperplastic and exhibit a transformed mesenchymal (myofibroblast) phenotype. These 

changes are induced in a process called ‘epithelial-to-mesenchymal transition’ (EMT) 

[364]. In a recent study, Steenvoorden and colleagues demonstrated that the 

myofibroblast marker α-sma was expressed in RA FLS but not in healthy subjects, 

indicating a transformed EMT phenotype in RA FLS. Interestingly, α-sma expression 
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in heathy FLS could be induced by stimulation with synovial fluid obtained from RA 

patients [365]. TGF-β is the most well known inducer of EMT, but it can also be 

induced by the RAGE ligands S100 calgranulins and AGEs [240]. Increased levels of 

TGF-β, AGEs and S100 calgranulins are detected in synovial fluid in RA patients [366, 

367]. Several S100 proteins and AGEs are ligands to RAGE. Together with increased 

expression of RAGE in FLS the induction of the EMT phenotype may be promoted by 

RAGE/RAGE-L interaction in RA. Since it has been reported that HMGB1 competes 

with AGEs for binding to the RAGE ectodomain [284] it would be interesting to 

investigate if HMGB1 could induce EMT in healthy synovial fibroblasts and thereby 

reveal if HMGB1 may be an important molecule already at the early phase of RA.  

Pullerits and colleagues demonstrated that intra-articular HMGB1 injections did not 

induce arthritis in IL-1R gene deficient mice [243] demonstrating co-operation between 

HMGB1 and IL-1β. My results presented in this thesis demonstrate a distinct co-

operation between HMGB1 in complex with IL-1β, generating a synergistic effect on 

proinflammatory cytokine and MMP production in synovial fibroblasts (paper V). Such 

complex formation between HMGB1 and IL-1β may occur in vivo since both HMGB1 

and IL-1β are highly expressed within the arthritic joint [323]. 

Interestingly, several reports demonstrate that IL-1β is able to drive both bone and 

cartilage destruction independently of TNF [184]. TNF gene deficient animals 

displayed a similar degree of joint inflammation as the corresponding control TNF 

wildtype animals when challenged with intra-articular HMGB1 [368] thus 

demonstrating that HMGB1-mediated joint inflammation is not dependent on TNF 

induction. Furthermore, a recent study from Sundberg and colleagues demonstrated that 

the extracellular HMGB1 expression pattern did not decrease in the synovial tissues 

following anti-TNF treatment [369]. All these results thogether indicate that TNF and 

HMGB1 may act independently of each other and that HMGB1-mediated joint 

inflammation and destructive features of synovial fibroblasts may dependent on IL-1R-

mediated signalling.  

Taken together, these results suggest new approaches to treat patients who do not 

respond to anti-TNF therapy.  
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It will be a future challenge to develop drugs which specifically target the disease-

promoting HMGB1 molecule since an increasing body of evidence suggests that pure 

HMGB1 promotes tissue regeneration and cell migration [275] whereas in complex 

with inflammation-promoting agents such as CpG, IL-1β and LPS it promotes 

inflammation and tissue destruction [269-272, papers IV,V ]. 

It is also apparent that HMGB1 also undergoes diverse post-translational modifications 

[260-263, 265]. It can be cleaved by Thrombin-thrombomodulin complexes [266] and 

is also able to make complexes with IgG [267, 268]. These modifications and 

molecular interactions of HMGB1 most likely influence the wide receptor binding 

capacity and diverse functions of HMGB1.  

A recent report illustrated the importance of HMGB1 in the error-free repair of DNA 

damage. The lack of HMGB1 led to increased mutagenesis and reduced cell survival in 

mammalian cells following exposure to DNA-damaging agents [373] thus emphasising 

the importance of targeting only the disease-promoting form of HMGB1. 

Protein transduction domains which promote cargo delivery cross cell and organell 

membranes are typically rich in basic amino acids (lysine, arginine and histidine) [370]. 

HMGB1 has an exceptional dipolar structure with a highly basic amino-terminal 

structure, consisting of 184 amino acids there on an average every fourth amino acid is 

a lysine [229]. Thus, the structure of HMGB1 might influence the capacity of HMGB1 

to enter cells through non-receptor mediated mechanism. Since HMGB1 has been used 

as a nonviral gene delivery agent [371, 372] it is a possibility that therapies directed 

against HMGB1 could be delivered into cells in a cargo dependent manner.  

One potential approach to identify HMGB1 suppressive agents is to study the HMGB1-

suppressing capacity of already known drugs that have been shown to be safe in clinical 

use. In this thesis two well-known compounds were studied regarding their capacities 

to inhibit HMGB1 secretion. Both oxaliplatin and gold salt induced nuclear HMGB1 

retention and decreased HMGB1 release. From a clinical point of view regarding 

arthritis it was interesting to study gold salts which are used as efficacious anti-

rheumatic drugs in a subgroup of RA patients. Gold salt treatment of macrophages 

displayed a suppressive effect on HMGB1 release but did not suppress their TNF 

secretion. Thus patients with HMGB1- (and IL-β)-specific cytokine profiles might in 

particular benefit from therapy based on gold salt treatment.  
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SVENSK SAMMANFATTNING 

 

Reumatoid artrit eller som sjukdomen i allmänhet kallas: reumatism, är en 

inflammatorisk sjukdom som främst drabbar lederna med påföljande vävnadsskada och 

invaliditet. Forskarna och läkarna är överens om att den ihållande inflammationen drivs 

av olika proteiner bland andra TNF och IL-1β. Terapier riktade mot dessa proteiner 

hjälper många patienter, men det finns fortfarande en stor grupp av reumatiker som har 

en aktiv sjukdom med pågående inflammation som ger upphov till vävnadsskador i 

både ledbrosket och i benet. 

Färska studier visar att det finns ytterligare andra proteiner som kan vara viktiga i den 

reumatiska inflammationen. HMGB1 är ett protein som har påvisats i stora mängder i 

den artritiska leden samt i ledvätskan hos reumatiker. Djurstudier har visat att 

behandlingar riktade till att hämma HMGB1 minskar ledinflammationen och 

vävnadsskadorna hos försöksdjuren.  

Syftet med mina studier har varit att vidare studera betydelsen av HMGB1 i reumatism. 

Vi utvecklade en känslig metod för att på cellnivå kunna mäta utsöndringen av 

HMGB1 från olika celletyper. Genom att studera inflammatoriska celler och deras 

förmåga att aktivt utsöndra HMGB1 har vi kunnat med hjälp av läkemedel påverka 

utsöndringsgraden av HMGB1. Vi har kunnat visa att en hämning av HMGB1-

utsöndring resulterar i ett minskat inflammatoriskt svar från celler och i en minskning 

av ben- och brosknedbrytning. Vi har vidare kunnat visa att HMGB1 samarbetar med 

andra inflammatoriska proteiner och därmed intensifierar inflammationen och den 

vävnadsskadande förmågan hos ledspecifika celler. 

Våra studier har därmed bekräftat att HMGB1 är en central molekyl i den reumatiska 

inflammationen och därmed en potentiell målmolekyl för kommande terapier. 

Vår förhoppning är att våra studier ska leda till, att fler patienter med svår reumatism 

ska kunna få en mer effektiv behandling. 
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