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     To my near and dear 

 

 

 

Science is facts; just as houses are made of 

stone, so is science made of facts; but a pile 

of stones is not a house, and a collection of 

facts is not necessarily science. 

 

- Jules Henri Poincaré 

 



 

 

 

 



 

 

 

 

Abstract 

 

Influenza is caused by influenza A virus, a single stranded RNA virus of the 

orthomyxoviridae family. In humans, it causes yearly outbreaks with high morbidity and 

excess fatality rates as a direct effect. Placed in its ecological niche however, in dabbling 

ducks, avian influenza virus (AIV) induce quite mild disease. It is when the virus crosses the 

species barrier that pathogenic traits are attributed to infection. Also infection of close 

relatives to dabbling ducks, the domestic chicken, cause morbidity and may in some cases 

change the virus into a highly pathogenic variant with nearly 100% fatality rate. Being a very 

adaptable virus, these spill-over events are frequent, and numerous species are susceptible to 

influenza virus. When a subtype of influenza which has not previously infected humans 

crosses the species barrier, adapts to humans and spread easily, a pandemic event is imminent. 

There is no cure for influenza infection, and vaccination is a cumbersome endeavor, so 

currently the strategy when a pandemic strikes is damage control. 

In this thesis, I have been involved in a surveillance project, to increase our knowledge of 

how influenza travels across the globe with its natural host. We have also used animal models 

to investigate the pathological effects in mallard ducks and their susceptibility to re-infection. 

Furthermore, we have evaluated the effect and the potential risk of frivolous use of the anti-

viral agent oseltamivir, and also investigated a novel approach to the classic virus isolation 

method of growing virus in embryonated chicken eggs (ECE’s). 

 

Indication was found in northern Alaska that prevalence of influenza is probably not lower 

here than in other breeding areas for dabbling ducks, as has been previously suggested. As 

these birds travel over the Bering Strait, the reason for the genetic isolation of Eurasian and 

North American influenza A strains remains unclear. 

 Inoculation of mallards equipped with subcutaneous data transmitters indicated very little 

effect on the host and no stress above background level, and all birds gained weight 

throughout the trial. Only in four of six birds (65%) could a small temperature increase related 

to infection be recorded. However, more studies in a natural environment need to be 

conducted, to discern whether this variable is associated with an ecological cost as the captive 

trial ducks had access to food ad libitum. 

The most commonly used anti-viral drug, oseltamivir, is poorly degraded in sewage plants 

and surface water, where dabbling ducks forage. Extensive use of the drug thus increases 

environmental levels of the active metabolite, oseltamivir carboxylate (OC). We show that 

mallards inoculated with A/H1N1 in an OC enriched environment generates resistant virus 

sporadically at OC level found today. Higher level of OC caused the resistant subspecies to 

dominate the virus population, which is not desirable in the influenza reservoir. An 

introduction of a OC-resistant pandemic virus to the human population would render the only 

antiviral defense toothless. 

Isolation of influenza virus is traditionally performed by inoculation of infectious material 

into embryonated chicken eggs. As the chicken host is known to induce changes in AIV, we 

compared isolating and passaging two viruses both in ECE’s and embryonated mallard eggs. 

Both egg species induced mutations in the primary passage, with no furthers changes in 

subsequent passages. Only in ECE’s did one virus maintain wild-type configuration before 

one mutation was observed. Mallard eggs can based on these results not be advocated as 

preferable to ECE’s when isolating and passaging AIV. 
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1 Introduction 

 

Novel introductions of influenza viruses into the human population from the animal kingdom 

continue to be a major health problem worldwide. Historically, we have been ill-prepared for 

pandemics that strike fast and with no warning, and the notion of influenza as a disease that 

comes from animals is fairly new. During the last decade, influenza research has intensified to 

previously unseen magnitudes, and together with this, also the interest in the inclusive 

virology research that focuses on influenza not only as a human pathogen but as an entity that 

is part of an ecosystem. With an increased knowledge of the dynamics of the ecosystem, and 

the interplay of the parts therein, the goal is for human science to be able to more accurately 

predict new pandemics and take appropriate preventive countermeasures. 

 

1.1  Background 

Placed in its ecological niche, commonly in dabbling ducks, influenza A virus is a benign 

disease (Jourdain, Gunnarsson et al. 2010). However, it is a very adaptable virus and it has 

been able to infect, and adapt to, a wide range of hosts (Webster, Bean et al. 1992). The 

disease associated with infection shows a broad range of symptoms, depending in part on the 

genetic properties of the virus, but also on which species of host is infected (Horimoto and 

Kawaoka 2005; Kishida, Sakoda et al. 2005; Isoda, Sakoda et al. 2006). In the natural host, no 

signs of infection can be identified by ocular inspection, while other bird species and 

mammals are more severely affected with symptoms ranging from very mild to very severe 

and ultimately death. It was first identified as an animal disease in 1878, when Eduardo 

Perroncito described a disease affecting poultry in northern Italy. Observations from this 

study describe an easily transmitted, initially mild disease which increased in pathogenicity 

over time and in the end killed virtually all domestic fowl in the area. “Fowl plague”, as the 

disease would be called, was proved to be a viral disease in 1901 but not identified as 

influenza virus until 1955 (Capua and Mutinelli 2001). Since it was first described in 1878, 

highly pathogenic avian influenza (HPAI) virus has caused 21 documented outbreaks of fowl 

plague between 1959 and 2003 (WHO 2004).  

As a human disease, it is hard to know when it was first introduced to the human population, 

or when it became truly endemic. Epidemics that may well have been influenza have been 

described, more or less accurately, by physicians for over 2000 years. The first verifiable 

influenza pandemic however, is the Russian flu of 1889-1892 (Nicholson 1998). Since, 
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several pandemics of varying severity have struck the world, each deriving from an 

introduction of a novel virus, or parts thereof, from the animal kingdom (Kawaoka, Krauss et 

al. 1989). The most sinister example of how horrific an introduction of an easily transmitted 

virus may be to a naïve human population is the 1918 pandemic, commonly known as the 

“Spanish flu”. It swept across the world in three waves, increasing in virulence each year, and 

leaving over 20 million people dead in its tracks (Erkoreka 2010). As the world watched, 

appalled by the effects of the disease, intense research was initiated to understand the 

causative agent. It would not be until 1933, however, that a filterable substance was isolated 

which induced influenza-like symptoms in humans and was easily transmitted between ferrets 

(Smith 1933). Kochs postulate was later fulfilled after the influenza virus could be isolated 

from the throat of one of the team members after having been sneezed upon by one of the 

ferrets and subsequently developed influenza symptoms (Nicholson 1998). Despite thorough 

research where the molecular functions of the virus have been investigated in detail, influenza 

A virus continues to be a common human pathogen and each year the endemic, seasonal flu, 

results in mortality peaks and wide-spread morbidity with vast economic consequences 

(Franco-Paredes, Hernandez-Ramos et al. 2009). Rather than having been able to control this 

infection, we have adapted ourselves and our behaviour to minimize its damage when the flu 

season strikes (Robinson 1990; Webster 2002). Random introductions of novel viruses from 

the animal kingdom also continue to be a major health- and economical problem for the 

human population, and several pandemic events have occurred during the 19
th

 and 20
th

 

centuries, including the notorious “Spanish Flu” (Hope-Simpson and Golubev 1987; Del Rio 

and Hernandez-Avila 2009; Morens, Taubenberger et al. 2010). It is believed that this first 

recorded pandemic was the result of a direct transmission of a highly pathogenic avian virus 

to humans, without intermediate hosts, although this belief has recently been called to 

question (Reid, Fanning et al. 2004; Antonovics, Hood et al. 2006). Later pandemics did not 

occur in the same direct fashion but used pigs, which are permissive to both avian and human 

adapted viruses, as mixing vessels (Ito, Couceiro et al. 1998). Until 1977 and the “Russian 

flu” pandemic, each time a new subtype emerged and spread globally it replaced the 

previously circulating strain of influenza virus (Bean, Cox et al. 1980). 

 

1.1.1  Influenza A virology  

Influenza A virus belongs to the Orthomyxoviridae family together with influenza B, 

influenza C, isavirus and thogotovirus (Murray 2009). It is a pleomorphic virus containing 

eight gene segments, and the virion is made up by the interior matrix (M1) protein and the 
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nucleocapsid, consisting of viral RNA, nucleoprotein (NP) and the three polymerase proteins 

making up the transcriptase (Murray 2009). The nucleocapsid is enveloped by a host-derived 

membrane containing three viral proteins; hemagglutinin (HA), neuraminidase (NA) and 

matrix 2 (M2). Classification and the nomenclature of influenza A viruses is based on what 

type of HA and NA is present in the membrane (WHO 1980). There are to date 16 

serologically distinct HA types, and nine different NA types described (Fouchier, Munster et 

al. 2005).  

 

1.1.2 Nomenclature 

Each virus is named after its serological phenotype, starting with determining if it belongs to 

influenza A, B or C, after which place of sampling/isolation is stated, then serial number of 

the sampling protocol and year (WHO 1980). Last the subtype is stated in parenthesis. 

Example: A/Sweden/937/09 (H5N2). When a virus is isolated from a species other than 

human, it is specified between serological type and geographic location of the sampling. 

Example: A/Mallard/Sweden/937/09 (H5N2). 

 

1.1.3     Replication 

The wide range of hosts to influenza A virus and its ability to adapt to new species, may in 

part be due to the variability of its genome. The genome consists of eight single-stranded, 

negative sense RNA segments (Lamb and Choppin 1983). Single stranded genomes allow for 

high mutation rates, as there is no second strand that can otherwise be used for proof-reading 

(Webster, Shortridge et al. 1997). Errors typically occur during transcription at a rate of 1/10
3
 

to 1/10
4
 nucleotides for single stranded genome viruses versus 1/10

8
 nucleotides in double 

stranded DNA viruses (Holland, Spindler et al. 1982; Duffy, Shackelton et al. 2008). Unlike 

for complex, large genome species, this is a beneficial trait as it can help the virus to adapt 

quickly, should a new environment present a different selection pressure. Having a segmented 

genome of influenza A also allows for another way to change its composition, i.e antigenic 

shift. This may occur if one cell becomes simultaneously infected by two different influenza 

A viruses (Hinshaw, Bean et al. 1980). As many as 256 different variants may then be formed 

through reassortment of the different segments. 
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1.2 Virus structure and function 

The eight gene segments code for ten or eleven proteins, depending on the presence of an 

alternative reading frame in one of the polymerase genes. This alternative reading frame gives 

rise to the protein now known as PB1-F2, able to induce apoptosis in cells by aiding in the 

release of cytochrome C from the mitochondrial membrane (Chen, Calvo et al. 2001). 

However, this extra reading frame is not present in all influenza A viruses, and the essential 

genes for virus infectivity and production are ten: HA, NA, matrix 1 (M1), M2, nucleoprotein 

(NP), non-structural protein 1 (NS1), nuclear export protein (NS2/NEP) and three polymerase 

subunits PA, PB1 and PB2 (Knipe 2007). 

HA and NA mediates virus entry and release respectively, and M2 is a pH dependant ion 

channel (Sugrue and Hay 1991). The M1 protein is located under the viral envelope and 

interacts with the ribonucleoprotein (RNP) complex (Murti, Brown et al. 1992). It is widely 

accepted that the function of the protein is to provide protection to the RNPs and to give the 

virus rigidity and structure. Evidence for this plausible function, however, has proven difficult 

to obtain (Knipe 2007). The non-structural proteins NS1 and NS2/NEP have dynamic 

functions for virus replication and survival post infection. NS1 is expressed abundantly in 

infected cells, and has multiple functions. It binds to double-stranded RNA to prevent 

association with cellular protein kinase R (PKR) that would otherwise recognize it as foreign 

and trigger the innate immune response, which is further discussed under 1.3.1 (Lu, Wambach 

et al. 1995; Hatada, Saito et al. 1999; Williams 1999; Kuiken, Holmes et al. 2006). It is also 

responsible for diverting cell translation and the suppression of the host cell’s post-

transcriptional processing of mRNA (Geiss, Salvatore et al. 2002; Hilleman 2002; Baigent 

and McCauley 2003). NS2/NEP plays a vital role in virus replication, regulating the export of 

RNP complexes from the nucleus and the relative transcription of the influenza gene segments 

(Robb, Smith et al. 2009).  
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Genome segment Proteins coded Main function 

1 PB2 Sub-unit of RNA-polymerase 

2 PB1 

PB1-F2 

Sub-unit of RNA-polymerase 

Function unknown, pro-apoptotic 

3 PA Sub-unit of RNA-polymerase 

4 HA Viral attachment and membrane fusion 

5 NP Major structural component 

6 NA Release of new virions by preventing aggregation 

7 M1  Facilitating migration of viral RNP in cell 

 M2 Ion channel involved in uncoating of virus 

8 NS1 Post-transcription modulation, interferon antagonist 

 NS2/NEP Mediates nuclear export of vRNAs 
 

Table 1. Influenza A virus components and their main function 
 

1.2.1  Entry 

The surface protein HA allows virus to attach to sialic acid (SA) receptors on the host cell 

surface (Knipe 2007). This event triggers a cell-mediated endocytosis, and the virus find itself 

enclosed in an endosome (Dales and Choppin 1962; Patterson, Oxford et al. 1979). 

Endocytosis is an intrinsic mechanism of eukaryotic cells used to ingest and digest material 

from its surrounding. After endocytosis, the endosome undergoes a functional transition to 

become a lysosome, which degrades and digests the material within (Alberts B 2002). Among 

other changes in this transition such as the import of digestive proteases, the interior pH is 

lowered, which is of importance for influenza virus replication. As pH decreases in this 

environment, the HA surface protein undergoes a structural change that enables interaction 

with the endosome membrane, to fuse it with the virus membrane and release the RNA-RNP 

constructs into the cytoplasm (Matlin, Reggio et al. 1981; Stegmann, Morselt et al. 1987; 

Skehel and Wiley 2000). For this critical fusion step to take place, however, the native 

structure of HA must be changed. When HA is expressed by a virus-producing cell, it is in its 

native, non-infective form, HA0. Post-translational cleavage of the protein into HA1 and HA2 

is necessary for the endocytosed virion to fuse its membrane with that of the endosome 

(Scholtissek 1986). The cleavage of HA is a controlled mechanism which can only be 

performed by a specific enzyme that is not expressed in all cell types, which limits infection 

to certain tissues, though exactly what tissue is infected varies between species (Nagai 1993; 

Nagai 1995; Kido, Murakami et al. 1999). 
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1.2.2  Translation 

Upon release of RNP complexes into the cytoplasm, the NP protein interacts with the cellular 

transport protein importin α, with the result of RNP complexes being imported into the 

nucleus (Martin and Helenius 1991; O'Neill, Jaskunas et al. 1995). Viral RNA is then 

transcribed into positive sense RNA by the virus’ own RNA-dependant polymerase. This 

positive sense RNA can then be used for transcribing new negative sense vRNA, or be 

exported as mRNA to the cytosol where it is translated into viral proteins. Viral surface 

proteins will be translated through the golgi apparatus and transported to the cell surface and 

ultimately form dense clusters in the lipid rafts of the cell membrane (Scheiffele, Roth et al. 

1997; Barman and Nayak 2000). The other proteins will be transported into the nucleus and 

form new nucleocapsids together with the new vRNA. 

 

1.2.3 Assembly and budding 

Assembled nucleocapsids containing negative sense vRNA and the core proteins are exported 

from the nucleus in a regulated manner, and transported to the membrane under the lipid rafts 

which contain clusters of viral surface proteins. Cellular exocytosis of the nucleocapsids will 

then form complete progeny virus with an envelope derived from the cellular membrane 

(Suomalainen 2002). However, as HA can bind SA receptors immediately, progeny virus will 

stick like glue to the host cell, and only when NA cleaves the SA is the virion released from 

the cell surface (Gottschalk 1957; Mitnaul, Castrucci et al. 1996). 

 

1.3 Transmission 

The influenza A virus, as other viruses, cannot replicate outside a host cell. In order to infect 

new individuals it needs to persist for some time outside a host organism. It seems that the 

influenza A virus is well adapted to persist in water. Under experimental conditions, avian 

influenza A virus strains stored in distilled water at +28 °C could remain infective for 100 

days, at 17 °C for 200 days and possibly for as long as 1000 days at +4 °C (Stallknecht, Shane 

et al. 1990). However, under natural conditions, persistence of active virus is limited by the 

effects of pH, salinity, UV-radiation and presence of biologically active material such as 

degrading enzymes, bacteria and other microorganisms. Human influenza A virus strains are 

stable at a pH from neutral to 8.5, and infectivity decreases rapidly below pH 6.0. Avian 

influenza A virus strains exhibit more stability than human influenza A virus strains and can 

persist and remain active at pH 4.0 whereas human isolates do not persist pH below 5.0 

(Webster, Yakhno et al. 1978). Infectivity is inversely related to salt content of water for 
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avian influenza A virus (Stallknecht, Kearney et al. 1990). In open air, human strains of 

influenza A virus can spread as an aerosol. The persistence and infectivity of these strains in 

open air is promoted by low humidity. Aerosols containing influenza A virus may remain 

infective for up to 24 hours or more at low humidity but only for an hour at high humidity  

(Hemmes, Winkler et al. 1960). Other limiting factors in open air are UV-radiation and wind. 

Some strains of influenza A virus can also be spread via fomites on hard surfaces such as 

stainless steel, where it can survive for up to two days (Bean, Moore et al. 1982). Thus many 

factors determine the suitability of different environments for persistence, infectivity and 

transmission of influenza A virus. 

 

1.4 Clinical picture of human infection 

Influenza A virus infection is most often a self-limiting disease with abrupt onset of high 

fever, malaise, cough and head and muscle ache. It causes symptoms for up to 2 weeks and 

requires on average 3-4 days of bed rest. The disease can be severe and sometimes lethal in 

young children, the elderly, those who are under immune suppression and people with 

underlying illnesses such as cardiac disease or asthma (Mandell, Douglas et al. 2005). A 

central question is how an infection essentially localized to the respiratory tract can produce 

such severe constitutional symptoms. As in many other infectious diseases, it is the immune 

response that contributes substantially to the clinical signs and symptoms in influenza and 

finally to the control of infection. These immune mechanisms can lead to both localized as 

well as systemic effects, i.e the local inflammation of the upper respiratory tract and the 

systemic muscle ache. However, in the case of highly pathogenic influenza viruses, the 

specific tropism for the upper respiratory tract is lost. The full mechanism for this 

characteristic remains unclear, but can in part be explained as the cleavage site of the HA 

protein is extended by several basic amino acids (Kuiken, Holmes et al. 2006). This allows for 

ubiquitous cleavage and this activation of the virus, and an unrestricted infectivity of to all 

cells to which the virus can bind. Other factor that enables the virus to enter the blood stream, 

survive, and exit at novel sites are less well known (Smith and Sweet 1988). Another factor is 

a deficiency in NS1, resulting in hyper inflammation, which is further discussed under 

subheading 1.5.3. Systemic infection and a hyper induced immune system combined can 

cause shock and multi organ failure, which defines the highly pathogenic variant of influenza. 

To date, only subtypes H5 and H7 have been able to become highly pathogenic, and trials 

have shown that only the introduction of a polybasic cleavage site may not be enough for 

other subtypes to become highly pathogenic (Steinhauer 1999; Stech, Veits et al. 2009). The 
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disease in the confirmed cases has been severe, often fatal. The most common symptoms have 

been high fever, lower respiratory tract symptoms of pneumonia progressing to acute 

respiratory distress, and leucopenia has been a common laboratory finding. Some cases have 

presented atypical symptoms such as diarrhea, vomiting, bleeding from the nose and gums 

and encephalopathologic signs.  

 

1.5 Immunity and defense 

To defend ourselves against the multifaceted fauna of microbes we are frequently assaulted 

by, we have quite impressive defense mechanism: the immune system. Parasites, bacteria and 

viruses have very different biological properties, and different strategies and targets inside the 

host organism. It is thus imperative for the immune system to be able to recognize a wide 

array of potential threats, and to adapt to the micro-fauna of our immediate surroundings. In 

general terms, the immune system can be divided into two main categories with regard to 

memory function. 1: The innate response, which is rather unspecific, but with an immediate 

reaction to the infection. 2: The adaptive immune response, which takes longer to react, but 

has the ability to remember chemical features of a pathogen and to respond more quickly and 

strongly the second time the same pathogen is encountered. These features are common to all 

vertebrates, and though there are minor differences in cell appearance and peptide sequences, 

discussions on mechanisms driving immunity can be extrapolated from human biology to any 

vertebrate (Pastoret 1998; Erf 2004).  

 

1.5.1 Innate immune responses 

As the name implies, the innate immune system are immediately ready to react to and combat 

pathogens without prior exposure. The mechanisms in the innate immune response are many 

and complex, but they all share the direct action and lack of memory. Most prominent in the 

non specific recognition of pathogens is the innate immunity’s ability to discriminate “self 

from non-self”, but apart from this, the innate immune response can react to general markers 

of many pathogens, like the cell surface lipopolysaccarides and flagellin of pathogenic 

bacteria or double stranded RNA of viruses and unmethylated bacterial and viral DNA. Cells 

of the innate immune system can quickly release pro-inflammatory cytokines like interferon 

and TNF-α to promote leukocytes to migrate to the area and stimulate pathogen clearance. 

Leukocytes are specialized in the ingestion and digestion of foreign particles, and they also 

use the degraded parts of whatever they just destroyed to stimulate the adaptive immune 

response through antigen presentation. The adaptive response is thus dependant on the innate 
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response, but not vice versa. When cells have been activated by interferon, they remain in that 

state for a period of time during which their resistance to new infections is markedly 

increased. In the case of influenza infection, it has been shown that an activated innate 

immune response can be protective for re-infection, both of homo- and heterotypic strains of 

influenza A virus (van der Goot, de Jong et al. 2003; Furuya, Chan et al. 2010).  

As a last resort, every cell in the body has the ability to kill itself in a controlled manner when 

its mechanisms become hijacked, via apoptosis. Apoptosis can be induced by extracellular 

factors, or by innate systems in the cell itself (Takizawa, Matsukawa et al. 1993; Hinshaw, 

Olsen et al. 1994).  

 

1.5.2 Adaptive immunity 

When the adaptive immune response is activated, antibodies are produced with high 

specificity and affinity to the pathogen. Often there are, during a primary infection, only a 

small number of antibody producing cells that are able to be activated to a pathogen, and this 

response is amplified by cell division. Memory is the prominent feature of adaptive immunity, 

and once sensitized to a specific peptide, or part of a protein deriving from an infectious 

agent, memory cells retain their ability to produce highly specific antibodies to the pathogen, 

but stay in a dormant state. Upon a secondary infection, the response from memory cells is 

faster and much stronger than the response from naïve cells. Thus the immune system is able 

to neutralize the assault faster and more efficiently after the first time the pathogen is 

encountered. In fact, it is so efficient that the host often doesn’t even get sick before the 

infection is cleared. The function of antibodies can vary, from directly assaulting a pathogen 

with a complement system that forms pores in the pathogen, causing water influx and lysis, to 

function as a flag for phagocytic cells or the direct neutralization of viruses by covering them 

and so physically blocking them from interacting with their potential targets (Pastoret 1998). 

 

1.5.3  Viral countermeasures 

For a virus to survive and propagate over time, it needs to overcome the immune system’s 

mechanisms of viral control and clearance. It can achieve this actively by interacting directly 

with components of the immune system and manipulate its action, or passively by preventing 

its recognition in the first place (Wang, Li et al. 2000). 
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 Innate immune manipulation 

Being a negative-stranded RNA virus, influenza A is a potent inducer of the innate immune 

response, and the symptoms from inflammation could be worse still. However, the virus has 

specific mechanisms to prevent this. One of the NS1 protein’s main features is that it inhibits 

the cell’s ability to produce interferon, a potent pro-inflammatory cytokine and one of the first 

to be released by the innate immune response upon infection (Pauli, Schmolke et al. 2008). 

Newly synthesized viral RNA is complementary to the template and forms double-stranded 

RNA, which is not a normal feature in the cell. PKR is a cellular protein able to identify and 

respond to double-stranded RNA, and trigger a cascade of anti-viral protein expression. The 

NS1 protein is specialized in sequestering the double stranded RNA, preventing recognition 

and thus limit or inhibit the response. In the case of highly pathogenic influenza viruses, a 

mutation in the NS gene may be partly responsible for the increased pathogenic properties 

(Cheung, Poon et al. 2002). By failing to repress the early cytokine expression, the virus 

triggers a strong cytokine response, and combined with a systemic infection the inflammation 

becomes much more severe than during a local infection of a human adapted influenza virus 

(de Jong, Simmons et al. 2006; Kash, Tumpey et al. 2006). NS1 also prolongs virus 

production by inhibiting apoptosis in infected cells (Zhirnov, Konakova et al. 2002). 

 

 Escape from adaptive immunity 

Where escape from innate immune responses involves association of NS1 newly produced 

double-stranded RNA, escape from the adaptive immune response is less direct. There are two 

ways for influenza A viruses to escape adaptive immunity, both of which ultimately changes 

the coating of the virion to render it unrecognizable by neutralizing antibodies, but through 

different mechanism. Primarily, and constantly ongoing, is the antigenic drift. As the single 

stranded RNA genome allows for a high mutation rate and rapid evolution, the virus will 

automatically be less recognizable by antibodies as the structure of the surface proteins 

change over time. Secondly, with instant major antigenic change is the antigenic shift. 

Antigenic shift occurs when one cell becomes infected by two different subtypes of influenza. 

The segmented genome allows for random combinations of the genetic setup as progeny virus 

is assembled, with as many as 255 new combinations as the result (Bouvier and Palese 2008). 
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1.6  Treatment strategies 

To counteract the virus’ ability to escape and repress the immune system there are two 

approaches to lessen the burden of influenza infection in humans. Primarily there is the 

preventive approach, using vaccines to prepare the body for infection and priming the 

adaptive immune system as though it had been previously infected. This is naturally the 

method of choice as it prevents an infection from taking hold. However, once infected, 

receiving vaccine does not affect the outcome of the disease and does not alleviate the 

symptoms. Should this happen, there are antiviral substances that directly hinder the viral 

replication, shorten period of morbidity and decrease mortality. 

 

1.6.1 Vaccines 

Vaccination against a disease utilizes the adaptive immune system’s ability to remember a 

pathogen. By exposing the immune system to only a part of a pathogen, along with an 

inflammatory agent called an adjuvant, the immune system is stimulated to associate the 

foreign agent to a physical assault. The body then responds as it would to a natural infection, 

producing antibodies, memory cells and thus immunity to an assault by a pathogen with the 

same recognition sites that were used in the vaccine (Goldsby 2003). In the case of influenza 

A virus, the surface protein HA is used in the vaccine, causing the body to form neutralizing 

antibodies to the protein that otherwise would adhere to the target cell surface (Ruben 1990). 

 

 

 

Fig 2. Illustration of vaccination and immunity. Injection of an antigen enables the immune system to produce 

antibodies able to recognize and neutralize a pathogen carrying the same antigen used in the vaccine. 

By permission of Mayo Foundation and Medical Research. All rights reserved. 
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1.6.2 Antiviral drugs 

Antiviral substances directly interact and inhibit specific steps in the virus’ life cycle and slow 

or completely arrest its propagation (Murray 2009). To date there are four antiviral drugs for 

influenza virus, two of which (oseltamivir and zanamivir) target the NA protein, and the other 

two (amantadine and rimantadine) the M2 protein. Amantadine and rimantadine interacts at 

an early stage of the replication by blocking the M2 ion channel, which prevents the ion influx 

and the disassembly of the nucleocapsid (Pinto and Lamb 2007). When M2 is blocked, the 

M1 protein fails to disassociate from the RNPs prior to the membrane fusion event, and M1-

associated RNPs are released into the cytosol, and transport of RNPs into the nucleus is 

blocked (Martin and Helenius 1991). In the case of NA, oseltamivir and zanamivir inhibit the 

neuraminidase enzymatic activity. It does not prevent the virus from infecting cells or its 

replication, but inhibits the release of progeny virus (He, Massarella et al. 1999). These drugs 

are more benign to the patient, and are not associated with side effects to the same extent as 

has been reported for amantadine and rimantadine (Jefferson, Demicheli et al. 2006). 

 

1.6.3 Resistance 

There is no resistance to vaccines that the virus can develop except the escape strategy from 

the natural response to secondary infections. Antivirals however, are unchanging substances 

to which resistance can be developed. Most health organizations today recommend the use of 

oseltamivir and zanamivir. Although M2 blockers are medically approved for use, the 

majority of human circulating strains of influenza have grown resistant to these drugs (CDC 

2008). A long period of generous use of influenza antiviral drugs and the adaptation of the 

viruses to cope has made the medical world more restrictive in the prescription of the more 

novel oseltamivir and zanamivir. Even so, resistance spreads rapidly in the new millennium 

(Sy, Lee et al. 2010). Media coverage of the threat of new pandemics has used the potential 

threat to create sensational and frightening news stories. This has dramatically increased the 

demand for antiviral drugs, and prophylactic use has become common. With resistance to 

oseltamivir on the rise, the interest for new targets for antiviral drugs has increased (Balannik, 

Wang et al. 2009). 
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1.7 Ecology 

All viruses have (at least) one species with which it is constantly co-evolving. The ideal 

situation for a virus is when the immune response of the host is subverted, but the host does 

not contract acute disease from infection. Viruses that are highly adapted to humans and do 

not affect our fitness, gives the virus a long lived host with the opportunity to spread the virus 

to many new carriers. Failure to maintain such a live-and-let-live relationship would result in 

adverse effects for one of the parts, and regardless of which, the event will lessen the fitness 

of the virus. Thus, in a stable system, the virus is always near-optimal in its interaction with 

the host, and few mutations are truly beneficial for virus fitness, and thus the antigenic drift 

over time is small. New subspecies variants have no survival advantage and are thus not 

successfully sustained. Upon a selection changing event such as a transfer between species, 

where the virus is in a less than optimal state in relation to the host, more mutations allow for 

more rapid growth, and the genetic drift is increased.  

Although recent studies show that the antigenic drift of influenza A viruses occur at a similar 

rate in the natural host environment as it does in temporal hosts, it is only when the virus has 

crossed the species barrier a highly pathogenic form have evolved (Chen and Holmes 2006). 

What factors in certain hosts are selective for such a trait is still unknown, but there is likely a 

specific pressure for this, as the same virulence have spawned many times from the same 

event of species transfer from dabbling ducks to chickens (Wood, McCauley et al. 1993). 

Influenza A virus has been found infectious to a wide range of species, but it is only among 

aquatic birds all 16 HA subtypes have been found (Webster, Bean et al. 1992; Fouchier, 

Munster et al. 2005). Infection of these animals result in no obvious signs of disease, and the 

infection is believed to be asymptomatic, though there is indication of ecological costs 

(Latorre-Margalef, Gunnarsson et al. 2009). Benign signs of disease, or asymptomatic 

infection points to a stable virus-host relationship, and the greater number of subtypes found 

indicates a long period of co-evolution. Although other birds are not considered as natural 

hosts, the virus crosses the species barrier relatively easy. When this has been documented, 

the event has been associated with a dramatic increase in virus mutation rate (Alexander and 

Brown 2000; Capua and Marangon 2000). These spill-over infections cause higher morbidity 

in the host, ranging from mild to severe / lethal (Banks, Speidel et al. 2001). 
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1.7.1  Host specificity 

There are many factors determining whether a species can act as a host for an influenza A 

infection, the most obvious being sufficient contact between the host and the pathogen for 

infection to occur. This behavioral barrier makes some species more likely to become infected 

than others, and can be illustrated by the fact that since transmission of influenza A viruses 

occurs primarily via water, spill-over transmission to accidental hosts is mainly to species 

who share foraging areas with the dabbling ducks, such as waders and shorebirds (Olsen, 

Munster et al. 2006). For the virus to efficiently transmit between individuals of a novel host, 

the virus may have to change its tropism. In the case of influenza A viruses adapted to human 

and birds, it has been shown that the tropism is dependent on the linkage between receptor 

terminal SA to galactose (Gal). Influenza A viruses from humans show a preference for α2,6-

linked SA and Gal, while avian isolates have a higher affinity for receptors with a α2,3-

linkage (Rogers and Paulson 1983). In a laboratory setting it has been shown that isolating 

human adapted influenza viruses with the traditional method, of inoculating embryonated 

chicken eggs with virus containing material, reverts virus to α2,3 linkage preference (Katz, 

Naeve et al. 1987; Azzi, Bartolomei-Corsi et al. 1993; Widjaja, Ilyushina et al. 2006). Before 

reaching and binding to the epithelial cells, however, there are other host barriers such as 

mucus and alveolar macrophages to pass (Kuiken, Holmes et al. 2006). For example, in the 

secretions protecting the eyes and respiratory tract, different mucins containing SA are present 

that specifically bind and clear virus before they reach the epithelial cells. These mucins 

express different SA linkages in different species and also in different organ systems of the 

same species. Humans are better at clearing avian influenza A virus from the respiratory tract 

than from the eye since the mucins of the respiratory tracts are rich in α2,3-linked SA while 

the secretions of the eye are rich in α2,6 SA linkages. The situation is reversed in 

chimpanzees since their respiratory tract secretions are rich in α2,6-linked SA that make them 

partly resistant to infection by human influenza A virus (Olofsson, Kumlin et al. 2005). On 

the cellular receptor binding level there are major differences in SA linkage content between 

species, as well as differences within organ systems, and even between cells of the same 

organ systems. Taken together these differences may determine where, if at all, infection of 

the host may occur. Ducks that express α2,3-linked SA in the intestinal system are primarily 

affected by infection of the cells lining the intestinal tract (Ito, Couceiro et al. 1998). Within 

the human body α2,3-linked SA have been found to be predominant in the eye. In the 

respiratory system, α2,6 SA linkages  are predominant in the upper part whilst α2,3 linkages 

are present in the lower part, where influenza A virus has been shown to bind preferentially to 
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pneumocytes type II (Shinya, Hatta et al. 2005; van Riel, Munster et al. 2006). Although not 

predominant, α2,3 receptors are also found on ciliated cells of the upper respiratory tract 

(Matrosovich, Matrosovich et al. 2004). Human influenza virus targets non-ciliated cells that 

express α2,6-linked SA (Matrosovich, Matrosovich et al. 2004). This information might 

explain why there is only limited transmission of AIV to humans, why conjunctivitis has been 

a common symptom, and why the respiratory infections in humans are rare but severe when 

they occur (Fouchier, Schneeberger et al. 2004; Beigel, Farrar et al. 2005). It was previously 

thought that pigs (known to express both α2,3 and α2,6-linked SA in their respiratory 

epithelium) were unique in their potential to act as a mixing vessel host species, where 

pandemic virus strains could arise by the recombination of avian and human influenza virus 

strains infecting the same cell (Scholtissek, Burger et al. 1985; Ito, Couceiro et al. 1998). 

However, the finding that both humans and chickens harbor the different receptor types in 

different cells indicates that theoretically this could happen in other animal hosts as well 

(Matrosovich, Matrosovich et al. 2004; Kim, Ryu et al. 2005). Further research has shown 

that although avian influenza A virus strains preferentially bind α2,3-linked SA, a further 

refinement of specificity exists that differs between avian species. The refinement is based on 

recognition of differences in the inner part of the oligosaccharide receptor (Gambaryan, 

Yamnikova et al. 2005). Successful attachment to a cell does not necessarily imply that 

infection can occur since the virus must also be able to enter the cell and cause it to replicate 

its genetic material. In this process the internal genes of the virus are the determinants. It has 

been shown that there are host specific lineages of all the different internal genes indicating 

species adaptation and optimization of each gene (Baigent and McCauley 2003). Some of 

these differences have been analyzed in detail and found to be important. For example the 

PB2 gene of the virus polymerase complex plays a major role. Research has shown that in 

avian influenza A viruses the amino acid residue 627 of the PB2 protein differs from 

mammalian virus strains in that; avian virus strains have a glutamic acid at this site, whereas 

mammalian strains have a lysine and that this is of major importance for host range restriction 

(Subbarao, London et al. 1993). This difference has been associated with optimal replication 

at different temperatures. Human influenza strains replicate in an environment of about  

+33 ºC in the trachea while avian strains are adapted to replication in the intestinal tracts of 

birds at a temperature close to +41 ºC (Massin, van der Werf et al. 2001).  
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Fig 3. Illustration of the host range of influenza A virus, with the natural reservoir of influenza A virus, 

accidental hosts , and the subtypes that have been identified in the different groups. 

Kindly provided by Rebecca Rönnmark and Eric Gisaeus. 

 

 

It has also been shown experimentally that a change from glutamic acid to lysine at this site 

results in increased virulence for mice. The same change has also been described in H5N1 and 

H7N7 virus strains that have caused severe disease in humans (Hatta, Gao et al. 2001; 

Fouchier, Schneeberger et al. 2004). Once successful replication has taken place, the newly 

constructed virus must be released from the surface of the infected cell to invade new cells, 

and, like the HA, the NA of avian virus strains preferentially operates by cleaving the SA that 

are α2,3- linked, while human NAs prefer α2,6-linked SA (Baigent and McCauley 2003). 

Even if replication and release of new virions has been successful, there are still factors that 

determine whether or not the infection will remain localized in the organ of entry and if it will 
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prevail. First of all, the immunity of the host must be dealt with. As previously discussed; to 

hinder the host’s innate immune response to produce interferons, that put infected cells into an 

antiviral state, the influenza A virus’ NS1 polypeptide sequesters double stranded RNA from 

PKR so that the infected cell remains undetected. It has been shown that there are host 

specific differences in the NS1 gene of different strains, and the human NS1 gene is not 

optimal when introduced into mice strains (Palese 2004).  

The factors determining the ability of influenza A virus to produce systemic rather than 

localized infection in mammals are not fully understood (Kuiken, Holmes et al. 2006). In 

poultry, however, the ability of the virus to invade other organs depends on whether or not the 

HA of the virus can be cleaved by ubiquitous extra-cellular proteases or only by specific 

proteases that are only present in the respiratory and gastrointestinal tract. 

 

1.7.2  The human host 

Only subtypes H1N1 and H3N2 of influenza A virus follow an epidemiological pattern in 

humans and are considered endemic, though a H2N2 persisted for a long time. Influenza A 

viruses can be isolated somewhere in the world every month and the infection is sustained and 

perpetuated in the human population (Cox and Subbarao 2000). The virus strains that 

circulate in humans mainly cause respiratory disease and preferably infect the epithelium 

lining the airways. Progeny virus is shed in respiratory secretions and spread effectively by 

airborne droplets through coughing and sneezing, and person-to-person contact. Influenza 

epidemics occur mainly in the winter season, from October to April in the northern 

hemisphere, and from May to September in the southern hemisphere. In tropical regions 

influenza may occur throughout the year. The seasonal fluctuations (outside of the tropics) are 

probably a result of factors promoting virus survival and spread, like the fact that people 

spend more time indoors and that the humidity is low (Nicholson 1998).  

Considering the high infection rate of influenza during a seasonal outbreak, it may have a 

huge impact on national economies worldwide, depending on the severity of the epidemic. In 

temperate climates, 2-15 percent of the population becomes infected. Even during years with 

mild influenza epidemics, a large number of people die. In Sweden it is estimated that the 

number of casualties as a consequence of infection is between 1000 and 4500 depending on 

the strain. Many more are sick, and the cost for health care and sick leave is also high 

(Läkemedelsverket 2007). A spread of a subtype of influenza A virus, which the human 

population has not experienced before, and thus has no immunity against, may be rapid and 

cause concurrent outbreaks around the globe resulting in a pandemic. The severity of a 
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pandemic may vary with depending on the strain, and pandemic strains may behave 

differently to the seasonal epidemic strains. Treatment of influenza is mainly based on 

alleviating symptoms, although the development of NA inhibitors has created a way to 

shorten and perhaps limit disease if given early in the infection. Vaccination against influenza 

has been used for many years. In Sweden, elderly and groups at risk are encouraged to be 

vaccinated. Vaccination of school children, that are the principal spreaders of infection, have 

been tested in some countries. The main problem with vaccination is that the fast antigenic 

drift of influenza A virus renders the antibodies produced in response to earlier vaccinations 

obsolete. Therefore, in order to provide protection from disease, the vaccine has to be 

modified every year to adjust to the changes in the antigenic sites. Since the development and 

production of a vaccine takes months, qualified guesswork is used to decide which strains to 

include in order to match the strains of the coming season. Experimentally, AIV strains from 

wild birds do not replicate well in humans, and human strains do not replicate well in 

waterfowl (Hinshaw, Webster et al. 1983; Beare and Webster 1991). Until the outbreak in 

Hong Kong in 1997, the occurrence of transmission of avian strains was believed to be a rare 

event only causing conjunctivitis in the few affected cases (Katz 2003). However, a 

serological survey in rural China suggests that infection with avian subtypes has not been 

uncommon in people who have had close contact with domestic ducks and poultry (Shortridge 

1992). In recent years, outbreaks of HPAI strains that have evolved in poultry have occurred 

rather frequently. The symptoms of disease and the disease pattern have been variable 

depending of strain. In some cases, the disease has only caused conjunctivitis and mild 

influenza-like illness, with no evidence of human to human spread, such as in the Canadian 

H7N3 poultry outbreak of 2003 where two people were affected (Tweed, Skowronski et al. 

2004). In the Dutch H7N7 outbreak of 2003 conjunctivitis and influenza-like illness were also 

the most common symptoms, but there was also one case of fatal pneumonia. The Dutch 

outbreak affected at least 84 people although serological evidence suggests that as many as 

1000 people were infected (Enserink 2004). During the outbreak there was also evidence of 

human to human transmission in some cases (Fouchier, Schneeberger et al. 2004; Koopmans, 

Wilbrink et al. 2004). The H5N1 outbreaks in Hong Kong in 1997 and in Eurasia and Africa 

2006-2007 have caused disease in very few confirmed cases in comparison to the number of 

persons that have been exposed to sick birds. However, an epidemiological investigation 

suggests that there may be more undiagnosed cases (Thorson, Petzold et al. 2006). Low 

pathogenic H9N2 virus has been isolated in two children (Lin, Shaw et al. 2000) with mild 

influenza symptoms. H9N2 virus strains are suggested to be even more likely than H5N1 to 
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become the cause of a pandemic since the strains that circulate in domestic chicken and ducks 

worldwide have already acquired receptor specificity to prefer α2,6-linked SA (Li, Xu et al. 

2003; Choi, Ozaki et al. 2004).  

 

1.7.3  Other mammalian hosts 

Influenza A virus is able to infect several mammalian species and in some cases create 

endemic propagation. This has been shown both experimentally and in nature as described for 

the species below (Hinshaw, Webster et al. 1981). Highly pathogenic virus strains, such as the 

currently circulating H5N1 virus that originates from South East Asia, have shown an 

increased host range, and are able to infect many species that had previously not been 

considered vulnerable. Thus, the range of species-infectivity is heavily dependent on strain 

type. Below, mammals which can be infected with, and transmit influenza to other 

individuals, will be discussed. 

 

 Suidae 

Pigs are frequently infected by influenza A viruses, and there are specific swine-adapted 

strains. However, pigs are also susceptible both to human and avian adapted virus strains, 

which can be explained by the fact that the respiratory epithelium of pigs express both α2,3 

and α2,6-linked SA (Ito, Couceiro et al. 1998). Avian virus strains of different subtypes have 

been found in pigs on a number of occasions, such as H4N6, H3N3 and a H1H1 strain in 

Canada (Karasin, Brown et al. 2000; Karasin, West et al. 2004). Avian H1N1 has also been 

isolated in China where it caused a severe outbreak in pigs 1979-1980 and has remained in the 

pig population since that time (Schultz, Fitch et al. 1991; Guan, Shortridge et al. 1996). 

Several studies have also reported human H3N2 strains in pigs after the antigenic shift in the 

human population in 1968 (Ito and Kawaoka 2000). Further evidence show that both avian-

like and swine-like H1N1 strains circulated at the same time in pigs as well as human-like 

H3N2 and avian-like H9N2 (Scholtissek, Burger et al. 1983; Peiris, Guan et al. 2001). Taken 

together, the risk of a reassortant virus in such an environment is obvious, and several 

different variants have been found including reassortants between human-like H3N2 and 

avian-like HIN1 (Castrucci, Donatelli et al. 1993; Brown, Alexander et al. 1994; Brown, 

Harris et al. 1998). Humans may be infected by strains transmitted by pigs, as has been yet 

again obvious during the outbreak of a novel H1N1 in 2009, though direct transmission of 

swine-like H1N1 to humans has occurred previously, and has in some cases been fatal (Rota, 

Rocha et al. 1989; Claas, Kawaoka et al. 1994; WHO 2010).  
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Equidae 

Influenza A virus strains in horses are thought to be of avian origin. Different subtypes have 

been found to infect horses and antigenic drift creates distinct lineages within the subtypes. At 

least two subtypes have created stable lineages; H7N7 and H3N8 (Berg, Desselberger et al. 

1990; Guo, Wang et al. 1995; Oxburgh and Klingeborn 1999; Ozaki, Shimizu-Nei et al. 

2001). Some strains have been suggested to be recent introductions from wild birds (Guo, 

Wang et al. 1992).  

 

 Canidae 

Historically, canine species have not been a significant carrier of influenza virus. However, in 

2004, an outbreak in racing greyhounds was caused by a H3N8 influenza A virus, was found 

to be an equine influenza A virus variant that had adapted to spread in canines (Yoon, Cooper 

et al. 2005). This triggered further investigation among dog breeders in the U.S and found 

serologic evidence of common influenza infection, and also virus isolates (Payungporn, 

Crawford et al. 2008). During the recent outbreak in South East Asia a surveillance 

investigation has isolated H5N1 influenza virus from dogs and has also found that antibodies 

to H5N1 are common in Thai dogs suggesting that they have previously been infected (Butler 

2006). 

 

 Felidae 

Feline species were not considered particularly susceptible to influenza virus prior to the 

recent outbreak of avian influenza H5N1 that started in South East Asia in 2003. However, 

after 50 captive tigers and leopards became ill and died after having been fed infected chicken 

carcasses several investigations were performed (Keawcharoen, Oraveerakul et al. 2004; 

Amonsin, Payungporn et al. 2006). It was shown that there was not only direct transmission 

from the contaminated food but also probable transmission between tigers 

(Thanawongnuwech, Amonsin et al. 2005). Experimental infection of domestic cats has 

shown that cats infected with the H5N1 highly pathogenic strain develop lethal systemic 

infection and excrete virus in both the respiratory and digestive tract secretions. The cats in 

the experiment could also infect each other (Kuiken, Rimmelzwaan et al. 2004; 

Rimmelzwaan, van Riel et al. 2006). In Europe, cats have also been found to be infected by 

the H5N1 virus in areas where there have been outbreaks in wild birds (ECDC 2006). 
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 Mustelidae 

Mink and ferrets have been found to be susceptible to influenza A virus and have been used in 

experiments since 1933 (Smith 1933; Okazaki, Yanagawa et al. 1983). When infected with 

human-type influenza virus, the symptoms displayed are very similar to those of humans: 

respiratory symptoms like sneezing and coughing, decreased apetite with following weight 

loss, lethargy and fever (Bodewes, Rimmelzwaan et al. 2010). As a disease model, ferrets can 

be argued to be the best to mimic human disease, though mice tend to be more commonly 

used simply because ferrets are much more difficult to handle (Maher and DeStefano 2004). 

Intranasal inoculation of the new A(H1N1)2009 from different strains induced very different 

clinical signs depending on the strain used, varying from subclinical infection to disinterest in 

food, fever, lethargy and severe weight loss. Mink have also been found to be naturally 

infected by avian influenza A virus of the subtype H10N4 during an outbreak in farmed mink 

in Blekinge, Sweden (Klingeborn, Englund et al. 1985). Further investigation revealed that 

the virus strain causing the outbreak in the Swedish mink was most likely of wild bird origin. 

Although the virus was very similar to avian virus strains, it was adapted to spread in-between 

mink (Berg, Englund et al. 1990; Englund and Hard af Segerstad 1998).  

 

 Pinnipedia and Cetacea 

Infection of seals with influenza A virus has been reported on several occasions, and there is 

good reason to believe this is not an uncommon event. In 1979-80, seals off Cape Cod in 

eastern United States died of hemorrhagic pneumonia (Geraci, St Aubin et al. 1982). The 

causative agent of disease was found to be influenza A virus of the subtype H7N7. The virus 

contained avian-like genes, but behaved as a mammalian strain (Webster, Hinshaw et al. 

1981). During the autopsies and handling of experimentally infected seals, people handling 

the animals developed conjunctivitis from influenza infection (Webster, Geraci et al. 1981). In 

a subsequent outbreak among seals during the season 1982-83, another even more avian-like 

virus was recovered from seals suffering from pneumonia. This virus belonged to the H4N5 

subtype (Hinshaw, Bean et al. 1984). Further surveys of seals in the area have also found 

H3N3 virus strains to be present in seals (Callan, Early et al. 1995; Ohishi, Kishida et al. 

2004). Seals have also been shown to be infected by influenza B virus of human origin 

(Osterhaus, Rimmelzwaan et al. 2000). 

Whales have been found infected on several occasions, but difficulties in surveillance of these 

animals and high costs has made it difficult to determine the frequency of occurrence of these  
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events, though it does not seem common (Ridgway 1979; Hinshaw, Bean et al. 1986; Nielsen, 

Clavijo et al. 2001). Analysis show the most probable route of introduction has been directly 

from birds to the aquatic mammals (Hinshaw, Bean et al. 1986; Mandler, Gorman et al. 

1990). Investigations of the receptor specificity of the SA in whale and seal lungs showed the 

presence of α2,3-linked SA and only a weak association with α2,6- linked SA (Lvov, Zdanov 

et al. 1978; Ito, Kawaoka et al. 1999; Matrosovich, Tuzikov et al. 2000). This might explain 

why these seals and whales are susceptible to infection by avian virus strains.  

 

1.7.4  Influenza A virus in domestic fowl 

As previously discussed, influenza A virus may enter into domestic bird populations as low 

pathogenic strains that only cause mild disease. Subtypes H5 and H7, however, may evolve 

into highly pathogenic strains. The fast mutation rate that is displayed in domestic fowl is 

probably due to the extremely high propagation rates in dense flocks.  

Influenza A virus causes a wide spectrum of symptoms in reared birds, from mild illness to a 

highly contagious and fatal disease resulting in severe epidemics. Highly pathogenic avian 

influenza is characterized by severe illness, rapid death and a mortality in the affected 

populations that approaches 100 percent within 72 hours. Many different species of domestic 

birds including chickens, turkeys, quail and ostriches are susceptible to epidemics of rapidly 

fatal influenza (Capua and Mutinelli 2001; Perez, Webby et al. 2003). The main difference 

between infection with highly pathogenic virus strains and low pathogenic virus strains is 

systemic contra localized infection, the cleavage of the HA by ubiquitous proteases that 

expunges the restriction to cells in the respiratory tract (Suarez and Schultz-Cherry 2000). 

Several mutations may add to the pathogenicity of strains causing HPAI but the accumulation 

of basic amino acids at the cleavage site is diagnostic for disease outbreaks.  
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Fig 4. Illustration of localized LPAI infection vs systemic HPAI infection. 

Adapted by permission from Macmillan Publishers Ltd: [Nature Reviews Microbiology] “Influenza: lessons 

from past pandemics, warnings from current incidents” copyright 2005 

 

 

Direct or indirect contact of domestic flocks with wild migratory waterfowl has been 

implicated as a cause of epizootics, but spread between farms during an outbreak is most 

likely caused by the movement of people and the transport of goods (Webster, Bean et al. 

1992; Gilbert, Chaitaweesub et al. 2006). Outbreaks of HPAI are often difficult to control 

since the virus can persist and remain active for some time in the environment, and because it 

is highly transmissible. In areas with dense poultry populations and or limited resources for 

surveillance and control, such as Mexico, South East Asia and Africa, outbreaks are even 

harder to contain.  
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1.7.5  Influenza A virus in wild birds  

It is widely accepted that all influenza virus strains infecting mammalian species originate 

from wild birds (Webster, Bean et al. 1992). All 16 HA and 9 NA subtypes been detected in 

isolates from avian species, and the evidence for the existence of a wild bird reservoir is 

strong throughout the world (Alexander 2000; Fouchier, Munster et al. 2005). It is only on 

Antarctica researchers have failed to isolate virus, even if serological evidence was found 

(Wallensten, Munster et al. 2006). On all other continents, birds have been shown to carry 

infectious AIV (Morgan and Westbury 1981; Austin and Webster 1993). However, most 

studies have taken place in developed countries and the situation in Africa, South America 

and parts of Asia is much less explored.  

Low pathogenic influenza A virus strains have been isolated from more than 105 species from 

26 different families of birds and almost all isolates come from the families Anseriformes and 

to a lesser extent Charadriformes and Laridae (Stallknecht and Shane 1988). These families 

include birds such as ducks, geese, swans, waders and gulls; although different species 

evolutionarily speaking, they share the trait of being adapted to life in an aquatic environment. 

Isolations of low pathogenic virus strains from pure land-dwelling birds are on the contrary 

rare.  

 

 Propagation 

Dabbling ducks are very susceptible to, and easily become infected with, avian strains of 

influenza A virus through the intake of contaminated food and water. The virus remains active 

after passing through the low pH of the duck gizzard and infects in the cells lining the 

intestinal tract as well as the cells of the pulmonary epithelium (Shortridge 1992).  

During the period of infection, large amounts of virus of up to 10
8 

EID50 is shed in the duck 

feces, usually for about seven days, but shedding has been recorded for as long as 21 days 

(Webster, Yakhno et al. 1978; Kida, Yanagawa et al. 1980). Tracheal shedding also occur, 

though this route is probably more relevant where the social behavior of certain species makes 

fecal-oral transmission difficult (Ellstrom, Latorre-Margalef et al. 2008). The fact that 

infected birds shed high amounts of influenza A virus via fecal excretions implies that birds 

living in aquatic environments will contaminate the water where they live. Influenza A virus 

of different subtypes has been isolated in concentrations of up to 10
2,8

 EID50 /ml of water 

from un-concentrated lake water in lakes where wild ducks congregate (Hinshaw, Webster et 

al. 1979; Ito, Okazaki et al. 1995). Since the virus remains viable for some time in water, it 

permits transmission to other birds in the area through ingestion of contaminated water. 
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Influenza A virus strains were even recovered from lake water for about a month after the 

birds in the lake had migrated south for the winter, indicating that lakes may be a source of 

infection for other birds for a long time. 

The species preference of influenza A virus is likely to be determined by the mode of 

transmission, i.e. by the fecal-oral route via water. Since virus is shed by infected birds in 

high quantities into an environment where it can survive for an extended time, the feeding and 

social behavior of the reservoir species makes it likely that susceptible individuals are 

exposed to the pathogen. Species that feed in shallow, calm waters, where influenza A virus is 

found in the highest concentrations, run the highest risk of becoming infected. Other species 

belonging to the Anseriformes, like swans and geese, graze to a larger extent on land on 

pastures and agricultural fields, which may lead to less efficient transmission though they are 

equally susceptible to the virus as their dabbling cousins. Scavenger species, such as raptors 

that may feed on diseased birds, are also likely to become infected, but not to take part in 

efficient transmission as they do not dwell in water.  

 

 

 

Fig 5. Overview of the major migratory flyways. Many birds who do not normally share biotope encounter one 

another during migration. Courtesy of Wetlands International, www.wetlands.org 
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The populations of Anatidae, Charadriformes and Laridae species in the world are large, the 

Mallard (Anas platyrhynchos) population by itself is estimated to 27 million birds (Kaleta, 

Hergarten et al. 2005). Many populations present in different areas are also connected, as 

these birds travel over vast distances and congregate in large numbers at staging sites during 

migrations (Arzel, Elmberg et al. 2006). Wild duck populations could therefore be 

hypothesized to support the perpetuation of even short-lived infections such as influenza, as 

there are enough susceptible individuals at any given time. The minimum population to 

support the perpetuation of the measles virus has been estimated to be 500,000 humans, and 

although the attack rate of influenza A virus in ducks might be lower, the population size of 

ducks is probably still large enough to compensate for this (Nathanson 2005). Also, certain 

aspects of duck demography and ecology might make the minimum population needed even 

smaller. First of all, the populations of ducks have high turnover rates. In Mallards about one 

third of the population is replaced each year, implying that this proportion is immunologically 

naïve (Bentz 1985; Gunnarsson, Elmberg et al. 2008). As prevalence of influenza A virus has 

been shown to be higher in juvenile than in adult birds, the input of juvenile, and thus 

immunologically naïve, birds is most likely of key importance for upholding the number of 

susceptible birds in the population.  

One of the enigmas of influenza A virus ecology is how so many subtypes can circulate in the 

wild bird populations and persist from year to year, when some of these subtypes are isolated 

rarely, and since the prevalence in the studied bird populations differ greatly between studied 

species, place, and time of year. While some subtypes are frequently isolated, others have 

been isolated only rarely in specific places or in specific species, such as the H13 and H16 

subtypes that have almost exclusively been isolated from gulls. 

A clear picture of the enzootic cycle of influenza A virus in wild birds does not exist. More 

research is needed to elucidate the different stages involved in the interaction between the 

virus, the host and the environment. Hopefully, many of these variations and peculiarities will 

be explained in the future, when more data on the prevalence of different subtypes in different 

species and at different locations is available. At the present time, however,  the explanations 

remain elusive.  

 



28 

 

 Pathogenisis and immunity 

It is commonly believed that all birds are susceptible to influenza A virus infection, although 

some species are more resistant than others. A number of variables can affect the clinical 

outcome of an infection; subtype, strain, host species and individual all play a role deciding 

the severity of the disease, which may range from non-pathogenic to lethal (Laudert, 

Sivanandan et al. 1993). Within the duck family there are many different species, and they 

may show different responses to the same infection (Suarez and Schultz-Cherry 2000).  

Infections by low pathogenic strains in ducks have traditionally been considered benign, as 

there are no evident clinical signs of disease. Though there is indication of coupling infection 

to a decreased body mass, aquatic birds do not appear to be severely affected by the disease 

and the infection does not seem to limit an infected bird’s interaction with other birds or the 

environment (Latorre-Margalef, Gunnarsson et al. 2009). Nor does infection with low 

pathogenic strains seem to limit mallard capability for migration flights that could transport 

the virus long distances to new susceptible flocks, though the contrary has been shown for 

swans (van Gils, Munster et al. 2007). However, symptoms may be hard to detect. It is 

difficult to evaluate if the birds are completely unaffected or actually become sick in a subtle 

way. Few studies have been conducted in this area, but histopathological signs of mild 

pneumonia have been shown in ducks, even though no other signs of disease were evident 

(Cooley, Van Campen et al. 1989). Highly pathogenic viruses behave differently, however, 

and strains that are highly pathogenic for chickens may cause milder disease and different 

signs of disease in other species (Perkins and Swayne 2003). They may even show no signs of 

disease in some more resistant species of ducks and gulls (Alexander, Allan et al. 1978; 

Cooley, Van Campen et al. 1989; Perkins and Swayne 2002; Kishida, Sakoda et al. 2005). 

Due to the lack of evident effects on the birds’ health status, ducks and gulls may act as 

carriers of some highly pathogenic strains. It is not known whether highly pathogenic 

influenza will revert to low pathogenicity in ducks, or whether HPAI can be perpetuated in 

nature indefinitely.  

Studies using experimental infection have also shown that ducks may be re-infected with the 

same strain after two months indicating that the protection of acquired immunity is poor 

(Kida, Yanagawa et al. 1980). Using a recapture scheme for wild ducks and sampling the 

same duck at regular intervals has shown re-infection at even shorter intervals (Latorre-

Margalef, Gunnarsson et al. 2009). Other bird species such as chicken, pheasant, turkey and 

quail mount a humoral response with high levels of IgM and IgY production (Suarez and 

Schultz-Cherry 2000). However, in large-scale studies, juvenile ducks are found to be infected 
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with influenza A virus more frequently than adult birds, indicating some sort of acquired 

immunity or improved immune response (Webster, Bean et al. 1992). Also, recent studies on 

poultry have shown a strong cross-immunity to highly pathogenic variants after vaccination 

with heterologous strains and that previous infection with a low pathogenic strain provides 

protection from disease also if the low pathogenic strain subsequently evolves into a highly 

pathogenic strain (van der Goot, de Jong et al. 2003; Fereidouni, Starick et al. 2009). 

 

 Evolution 

Further evidence that wild birds constitute a reservoir for influenza A virus comes from 

studies on viral evolution, which have shown limited evolution in wild ducks over time. It has 

therefore been suggested that influenza A virus exists in an evolutionary stasis in the reservoir 

species (Bean, Schell et al. 1992; Webster, Bean et al. 1992). This suggestion is supported by 

analysis of strains recovered from wild ducks that have been preserved in museums since the 

early 20
th

 century, which show almost no antigenic drift when compared to modern avian 

strains (Reid, Fanning et al. 2003). However, genetic studies on sequences from the 

contemporary gene pool show a mutation rate that is in contrast to the historical findings 

(Chen and Holmes 2006). It has also been found that co-infections of different influenza virus 

strains are detected less frequently in ducks than in other species, suggesting that host adapted 

strains prevent co-infection by other strains (Sharp, Kawaoka et al. 1997). The Anseriformes 

species is also very old, and have existed for millions of years, during which time influenza 

virus has obviously been able to adapt to the host in ways yet to be described (Shortridge 

1992). This situation is very different from the situation when influenza A virus is introduced 

into mammals, an evolutionarily much younger and ill-adapted host, and avian strains that are 

introduced into new host species are evolving at high rates (Zhou, Shortridge et al. 1999).  

However, even though influenza A virus in the wild bird reservoir has been said to be in 

“evolutionary stasis”, there have been slight changes over time. For one, different genetic 

lineages of influenza A virus have evolved in bird populations are distinctly geographically 

separated. Avian influenza A virus strains of the Americas can thus be separated from those in 

the rest of the world (von Hoyningen-Huene and Scholtissek 1983; Donis, Bean et al. 1989; 

Schafer, Kawaoka et al. 1993). A clear ecological answer to why it is so is not easy to 

provide, considering that summer breeding birds of Alaska spend their winters on six different 

continents and North American pintails birds along the West American flyway have been 

found to cross the strait to the Eurasian side (Miller, Takekawa et al. 2005; Winker, 

McCracken et al. 2007). Genetic exchange between the continents has also been shown to 
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occur, if at low rate (Schafer, Kawaoka et al. 1993; Makarova, Kaverin et al. 1999; Liu, 

Okazaki et al. 2004; Wallensten, Munster et al. 2005). Thus, the reason for such a limited 

exchange of AIV between the continents remains unclear. Knowledge on the interaction and 

spread of pathogens between different flyways and continents may be crucial in estimating the 

spread of AIV between different areas of the world and pre-pandemic planning.  

 

1.8 Implications for future introductions of AIV 

Low pathogenic influenza A virus strains do not seem to hinder dabbling ducks from 

migrating. Thus, these virus strains may be carried over large distances by the birds in a relay 

pattern where one bird carries the virus a short distance and another carries it further. Until the 

present outbreak of HPAI H5N1 that started in Asia it was not believed that wild birds could 

be infected with highly pathogenic virus strains and still perform long distance migrations. As 

some species of ducks have shown a high resistance to these strains this belief has had to be 

reviewed. After the HPAI H5N1 had somehow been exported to Russia, Europe and Africa in 

2006, sudden satellite outbreaks in wild birds showed that transport of highly pathogenic 

strains by wild birds is a reality. Knowledge of influenza ecology and epidemiology thus 

becomes a key factor in the pre-pandemic work.  

Elementary strategy planning in any battle has one basic goal: Do not to get caught off guard. 

The ability to foresee an outbreak allows pandemic control systems to focus containment on 

relevant areas in advance. Farm animals, for example, are the common interface between 

zoonotic diseases in the wild and humans. Primary introduction of influenza A virus into 

poultry and domestic animal holdings are likely due to fecal contamination by wild birds 

either directly by contamination of the holdings or indirectly through contaminated water 

supplies or feed. Holdings where wild birds and domestic birds share the same habitat due to 

agricultural practices are at the highest risk for outbreaks, suggesting that wild bird 

transmission is the most common route (Gilbert, Chaitaweesub et al. 2006). When a subtype 

which can be deemed a risk for humans is detected, such as the highly pathogenic H5N1, 

knowledge of how it may travel with migratory birds provides an opportunity for quick 

outbreak control. If a problematic subtype is suspected to arrive to a specific area during a 

specific period, regulatory government authorities may take preventive action, for example by 

issuing grazing restrictions for farm animals to limit their exposure to the expected pathogen. 
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2 Aims of this thesis 

 

In this thesis, I place emphasis on areas which may be of importance to influenza research and 

in the anticipation of a novel introduction to humans.  

 

- To investigate AIV ecology and epidemiology to increase our knowledge of how low 

pathogenic virus behaves in its natural setting, to facilitate the anticipation of new 

outbreaks.  

 

- To describe how the natural carriers are affected by infection and to investigate 

whether they can be expected to behave like healthy individuals. 

 

- To investigate alternative methods of virus isolation 

 

- To investigate novel factors that may affect the AIV reservoir in nature, and to provide 

information about how this may influence future human pandemics. 
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3 Methodological considerations  

 

Unfortunately, science is not perfect. Many techniques used in the laboratory are highly 

specific, where biology in general is not. It is constantly changing, and it is only after a 

change has been identified that we can adjust our methods accordingly. In this sense we will 

always be one step behind, unknowingly, until the novelty is brought to light. Some tests give 

a qualitative result which must be subjected to interpretation. Also statistical analysis of 

results can differ in quality, and the model algorithm may not be perfect even when it is the 

best available.  

 

3.1  Screening for influenza A virus: RNA-isolation and virus detection 

The screening of patient samples for the presence of influenza A virus using reverse 

transcription-polymerase chain reaction (RT-PCR) has been evaluated in many studies and 

been found to have a high specificity and sensitivity (Smith, Mock et al. 2003; Stone, 

Burrows et al. 2004; Hindiyeh, Levy et al. 2005). Some studies have also evaluated methods 

more adapted to suit the detection of AIV strains specifically (Fouchier, Bestebroer et al. 

2000; Spackman, Senne et al. 2003; Spackman, Senne et al. 2003; Cattoli, Drago et al. 2004; 

Lee and Suarez 2004; Schlingemann, Leijon et al. 2010). The fecal samples collected for 

these studies were screened using RT-PCR. In brief, RNA was isolated from the samples 

using commercially available RNA-isolation kits according to the manufacturers’ instructions, 

both manually and by the use of automated procedures. Subsequently, a reverse transcriptase 

(RT)-step creating a cDNA amplicon was carried out. Influenza A virus RNA was detected 

using primers directed at conserved regions of the M-gene of the influenza virus, and 

amplified using real time PCR technology allowing for quantification analyses and 

minimizing the risks of cross-contamination of samples caused by post amplification sample 

handling (Spackman, Senne et al. 2003). The TaqMan method uses a probe that is designed to 

bind in between the nucleotide sequence determined by two primers. When the polymerase 

replication takes place, the probe is cleaved and fluorescent light is emitted. We chose this 

method of real-time PCR before the alternative, SYBR-green, which uses a dye that binds 

unspecifically to double stranded DNA. When the PCR product determined by the primers is 

amplified and hybridized the dye binds and emits light. Both these methods can be used to 

measure the amount of the desired PCR products as the amount of light emitted is 

proportional to the PCR product. The amount of nucleotide template in the original sample 
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can also be determined, since the more template molecules present at the beginning of the 

reaction, the fewer cycles it takes to reach the point at which the fluorescent signal is first 

recorded to reach an exponential amplification phase. Using the TaqMan approach with the 

combination of specific primers and a specific probe is more specific than using SYBR-green 

technology. The SYBR-green method might have an advantage when it comes to detecting 

different variants of influenza A virus as it may allow for the amplification of strains with 

more variations in the nucleotide sequence. It is, however, less specific due to the fact that 

unspecific binding may occur to non-specific reaction products, including primer-dimers, and 

we have chosen the TaqMan technology to minimize the risk of false-positive signals. 

 

3.2  Isolation of influenza A virus 

Virus isolation was performed on all samples that were positive by RT-PCR. Egg culturing 

was used since it works better than culturing on existing cell lines (Nicholson 1998). Isolation 

of influenza viruses is traditionally performed by inoculation of ECE’s with material 

containing viral particles. This method has been widely established as the gold standard since 

it was first introduced in the 1930’s (Bull 1943). The WHO has issued guidelines for national 

surveillance programs in which embryonated chicken eggs are suggested as the preferred 

method of isolating influenza virus from animal samples (Stöhr 2002). Influenza viruses grow 

well in these vessels, but it is suspected that, like most virus isolation techniques, it introduces 

mutations and that there may be some difference between the original sample and the isolate 

on which the investigation is performed.  In these studies, 200μl of the original samples was 

inoculated into the allantoic cavities of 11 day old ECE’s. The allantoic fluid was harvested 

after 2 days and influenza A virus was detected by using hemagglutination assays with 

chicken erythrocytes. In 1951, Hirst discovered that red blood cells in suspension fail to 

sediment and instead agglutinate forming a lattice. Since then the hemagglutination 

phenomenon has been used for the detection and characterization of influenza virus 

(Nicholson 1998). If no influenza A virus was detected, the allantoic fluid was passaged once 

again in embryonated hens’ eggs for one more isolation attempt. Not all of the PCR- positive 

samples could be isolated, indicating that there are limitations of this method. These 

limitations could be due to different reasons. Virus replication might require a certain amount 

of virus in the original sample, or the virus might not be able grow in the egg, or perhaps the 

RNA fragments amplified were not part of functional viruses. Another limitation when using 

egg culturing is that it may not always propagate all strains present in a sample. Studies have 

shown that more than one influenza virus strain might be present in fecal samples (Hinshaw, 
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Bean et al. 1980). Multiple strains cannot be told apart in the initial PCR step, and when 

grown on eggs, one strain might be better suited for replication and dominate the culture, in 

which case the other strain may not be detected. 

 

 

 

 

 

 

 

 

3.3  Characterization of influenza A virus 

Two main branches of techniques have been used to characterize influenza A viruses: 

serological testing using specific antibodies that can distinguish between subtypes of 

influenza surface proteins, and molecular analysis of the genes, which is more cumbersome 

but also more specific. 

Courtesy of Dr J.Katz 

Influenza: propagation, quantification, and storage. 
Curr Protoc Microbiol. 2006 Dec;Chapter 15:Unit 15G.1. 

 

Fig 6. Virus isolation: Inoculation of sample 

material into the allantoic cavity of an 

embryonating chicken egg. 



36 

 

3.3.1  Hemagglutination inhibition and sequencing 

The virus isolates found by egg culture were characterized to HA-subtype with a 

hemagglutination inhibition assay, using chicken erythrocytes and subtype-specific 

hyperimmune rabbit antisera raised against all known HA subtypes and by RT-PCR and 

sequencing. Virus isolates were characterized to NA-subtype by using RT-PCR and 

sequencing. RT-PCR was performed using primers for conserved non-coding regions for all 

genes (Hoffmann, Stech et al. 2001). PCR products were purified from agarose gels and 

sequenced using a sequencing robot.  

 

3.3.2  Genomic analysis and phylogenetic trees 

Phylogenetic trees were constructed in paper I to show the relationship between different 

subtypes and different strains of influenza A virus. 

Alignment was performed with the Clustal W method in the Bioedit 7.0.0 software. From 

these alignments, neighbour joining trees for each gene and for each subtype of the surface 

proteins were constructed (H3, H6, H8 and N1, N3, N8, respectively) using the Mega3 

software with Kimura-2 parameter (Kumar, Tamura et al. 2004).  

When the trees were too large to overview with major clusters of sequences from one 

sampling site, representative sequences were selected from each major subclade of each tree, 

to represent the phylogenetic span. These representative American and Eurasian sequences 

were then merged and aligned with the full-length sequences from our isolates, creating 

uniform alignments containing 21 sequences each, and these alignments were then used to 

build neighbour joining trees, each tree with 500 bootstrap replicates, to illustrate the 

phylogenetic and geographic relationships. 
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4 Results and discussion 

 

Below follows, in a brief manner, the results from the original papers included in this thesis. 

They will be discussed in the context of the current knowledge of avian- pandemic- and 

human influenza. For further information regarding details and methodology, the reader is 

advised to consult the original papers. 

 

I. Reassortment between American and Eurasian Influenza Virus from waterfowl in 

Beringia. 

Eurasian and North American AIV strains are phylogenetically distinct from each other, 

indicating a geographic constraint for the virus to move freely between the continents. 

However, it is not obvious why it should be so, considering the proximity of the continents at 

Bering strait. This area is a major breeding area for dabbling ducks (Northern Pintails) and 

that birds from the Australasian flyway may breed on the Alaskan side, sharing foraging 

grounds with their north American counterparts and vice versa (Winker, McCracken et al. 

2007). In paper I, it is refuted that AIV prevalence is lower in the Beringia region than other 

breeding areas for dabbling ducks, though also in this study, as in several previous ones in the 

same area, there is no evidence of any virus spreading from one continent to the other (Liu, 

Okazaki et al. 2004; Glaser, Zamarin et al. 2006). The only genes clustering with sequences 

from the other side of the strait were Eurasian derived genes on the Alaskan side, but which 

have been recorded previously several times along the North American flyway. Though this 

may be due to a genetic spill-over over the strait which has established itself along the west 

coast of North America or an introduction from another source cannot be concluded from this 

study alone. Prevalence, however, is similar to what has been found in previous studies in 

other parts of the world, provided the focus is being put on the relevant species. Other studies 

have shown a much lower prevalence in this area, which may be due to several factors. In 

some cases, different species of birds were pooled in the calculations, allowing non-carrier 

species to dilute the actual prevalence in the relevant species, and many studies were 

conducted with crude field technology without the possibility to store samples frozen or treat 

them with RNA-stabilizing agents (Winker, McCracken et al. 2007). During the collection of 

the samples for this study, travelling with a large ship off-coast allowed the privilege of a lab 

and an ultrafreeze holding -80ºC where all samples were treated and stored within 2 hours of 

being collected.  
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In conclusion, the reason for the genetic separation of AIV in North America and Eurasia 

remains unclear. How stable this separation is also unknown, as is any potential factor that 

could potentially disrupt this balance. It would be prudent to remain active with the AIV 

surveillance of the Beringia region and investigate the movement of AIV along the migratory 

flyways also in the future. Knowledge of AIV ecology and its epidemiological patterns in the 

natural host may be key factors in the anticipation of future pandemics and pre-pandemic 

planning. 

 

II. Mallard or chicken? A comparative study of influenza isolation on embryonated eggs 

from different species. 

This article addresses the issue of mutations being introduced during virus isolation. The fact 

that human influenza needs to adapt to grow well in chicken eggs is widely known. Using 

chicken eggs for isolation of influenza has become commonplace since its first introduction in 

the 1930’s, and the selection process for human influenza has been well described. Foremost, 

the virus needs to switch from its original preference for α2,6-linked SA to α2,3-linkage 

specificity. However, though this is the most well described difference between two species, 

there are others that have yet to be described. There is little known about the difference in 

selection pressure between different bird species, though its existence is undeniable and the 

effects are obvious. On numerous occasions have LPAI infected poultry farms in which the 

virus has undergone a dramatic phenotypic change to HPAI. As this is no single-event 

phenomenon, but rather quite common, at least when it comes to subtypes H5 and H7, there is 

obviously a specific pressure for the virus to change also after spread within the avian 

kingdom. 

In this project, it was hypothesized that if this pressure on the virus is not of immunological 

origin it may still exist in the most common isolation vessel for AIV; the embryonated 

chicken egg. Though it was found that mallard eggs consistently yielded higher titres of virus 

than the chicken eggs, the mutation rate was similar, if not higher, than that found when 

passaging the same virus in chicken eggs. In the mallard eggs, the two viruses changed one 

and two aa in the primary isolation respectively, and no further mutations could be detected in 

the subsequent 7 passages. The same viruses behaved slightly different in chicken eggs. Both 

viruses changed one aa each, but one of the viruses maintained wild-type configuration for 

two passages before switching one aa in passage 3. Despite the fact that the material in this 

project is too small to conclude differences in the evolutionary rate depending on which 
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species of egg is used for propagation, there is no indication that mallard eggs would produce 

progeny virus that is more similar to the wild-type than chicken eggs.  

 

III. Influenza Virus in a Natural Host, the Mallard: Experimental Infection Data 

Discerning the virus-host interaction in the reservoir species is key information in the 

understanding of AIV ecology. The distinction “low pathogenic” or “highly pathogenic” are 

terms derived from the response to infection in chickens, where low pathogenic virus induce 

easilt detectable symptoms like depression, ruffled feathers, conjunctivitis, swelling and 

clotting of infraorbital sinuses, and subcutaneous emphysema. An autopsy of LPAI infected 

chickens will find pathologic signs in almost every organ. Highly pathogenic is commonly 

fatal with a mortality rate in chickens close to 100%. Survivability is very low. In contrast, 

mallards infected with LPAI show no obvious physical sign of disease and have been 

considered subclinical carriers of AIV. Whether they feel ill or not is hard to discern however, 

though feeling “under the weather” may well affect behavior and migration pattern. In this 

article, we address two questions highly important for the field of influenza virus ecology, i.e. 

(1) “Are the natural hosts of low-pathogenic avian influenza (LPAI) viruses affected by 

infection?” and (2) “Can the natural hosts of LPAI viruses be immune to re-infections?”. To 

this purpose, we experimentally inoculated “wild-type” mallards (Anas platyrhynchos) with 

LPAI isolates from wild congeners. Inoculation was performed in the esophagus to mimic the 

natural oro-fecal cycle known to occur in this species. The novelty of our approach was to use 

telemetry to evaluate the effects of infection. Six juvenile mallards kept in individual cages 

and equipped with subcutaneous transponders and temperature loggers were monitored for 

body temperature, heart rate and activity before and after challenge with a LPAI H7N7 virus. 

Although the ducks remained alert with no modification of heart rate and activity, we 

recorded a moderate temperature increase in four ducks on the day they started shedding 

virus. This result suggests that LPAI strains may have a sub-clinical impact on their natural 

waterbird hosts, which may be of particular importance in the wild when these costs have to 

be balanced against other expenses such as growth, molt, or migration. The second originality 

of our study was to re-inoculate the ducks, first with a homologous subtype (the same H7N7 

isolate) and then with a heterologous subtype (H5N2 isolate), to compare the successive viral 

shedding patterns and detect any immunity to re-infection. We found that mallards re-

inoculated with a homologous LPAI subtype three weeks after primo-infection were immune 

to re-infection. Interestingly, immunity to re-infection by a heterologous subtype was also 

observed in five of the six studied birds, indicating that, in the wild, the transmission 
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dynamics of the different virus subtypes are not independent. Inter-individual variability was 

illustrated by the fact that the re-infection with H5 generated virus replicated in one duck.  

Our findings that LPAI viruses may have ecological costs for their natural hosts and that 

immunity to heterologous re-infection exists in wild birds are of significant importance. 

Indeed, LPAI transmission dynamics in water birds may be modified if infected birds change 

their behavior and if herd immunity exists in the population. Transmission models should 

therefore include these factors, and more studies in a natural environment conducted to 

discern whether this variable is associated with an ecological cost. On a broader scale, our 

study demonstrates the utility of using telemetry to study diseases in animals.  

 

IV. Environmental levels of the antiviral drug oseltamivir induce development of   

resistance mutation H274Y in influenza A(H1N1) virus. 

Antiviral drugs and passive immunization are the only options available to reduce an 

influenza infection once it has taken hold. Where logistical problems hinder an effective use 

of passive immunization, only antiviral drugs, which are not subtype specific, can be 

realistically used. Oseltamivir is currently the most effective agent against influenza A, and as 

it sterically blocks the active site of the NA protein, it is insensitive to the HA subtype of the 

virus. It is a cornerstone in the defense against new pandemics, to which the human 

population has poor resistance. However, as the active metabolite oseltamivir carboxylate 

(OC) is highly stable and is not degraded in purification plants for sewage water, low levels of 

OC can be detected in surface water where dabbling ducks forage. In this paper, we show how 

an OC-sensitive virus mutates under the pressure of a low level OC environment and becomes 

resistant. OC-sensitive virus was inoculated in mallards negative in AIV screening both in 

PCR and ELISA tests. The only water source was spiked with OC, and the trial was run in 

three sets, with different OC levels. Virus propagation to downstream generations was 

allowed through contact after introducing naïve mallard to the infected ones, to mimic natural 

transmission. Virus samples were collected on a daily basis, and known resistance mutations 

were detected through sequencing of the NA-gene. Resistance was verified by phenotypical 

analysis of NA activity over an OC gradient parallel with wild-type virus. 

It could be concluded that levels of OC that can be detected in surface water today give rise to 

sporadic resistant strains, and at increased OC levels the resistant sub-species quickly 

becomes dominant. When exposing the mallards to dabbling water containing 100µg/L OC, 

only resistant virus could be detected after two passages. 
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Spread of OC resistant strains in nature increases the threat to human health from influenza A 

viruses. If the next pandemic is derived from a virus already resistant to OC, a significant part 

of the pandemic countermeasures of many countries worldwide will be rendered useless. In 

the past decade, the use of OC has increased steadily, and the effects on the environment and 

the influenza reservoir are still unknown. Continued surveillance in wild birds as a measure to 

understand the resistance situation in nature, and its development over time is thus of great 

importance. It would also be prudent to, in the light of these results, implement strategies to 

lower environmental levels of OC.  
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Concluding remarks  

 

Future introductions of influenza viruses to humans may present us with other types of 

problems than what we have been forced to deal with previously. All the answers to how to 

act in the future may not lie in the past. Nature changes constantly, with or without our help. 

No matter the cause, they are all variables needed to be taken into account when planning for 

future outbreak control measures. In preparation for the next pandemic, it is of vital 

importance to understand the ecology and epidemiology of avian influenza. As previously 

described in the introduction, it is in the avian kingdom the pool of influenza viruses is 

perpetuated. The discovery of a novel subtype that may have an impact on human health or 

our economic system will need to be tracked and new outbreaks anticipated. Further 

knowledge about the epidemiology of AIV in the natural carriers can facilitate this work, 

knowing from the geographic location of the outbreak, and the temporal movements of 

carriers through this area, the direction and mannerism the infection will take, provided a 

spill-over back to the natural carriers occur. Keeping in mind that this mode of transport is not 

the only mechanism by which a pandemic may incite, it is a factor that is of vital importance 

to take into account for outbreak management. It is also important to increase our 

understanding of how influenza A virus interacts with its many different hosts, and what 

mechanisms exert pressure on the virus to change its characteristics.  

The stability of OC is something that may become a rising problem with the increased use of 

oseltamivir worldwide. As the possible severity of influenza pandemics become more 

publicly known, the demand for prophylactic use of oseltamivir increases. If there is not a 

clearly stated guideline to be restrictive with the prescription of oseltamivir-containing drugs, 

and the threshold for the use of such drugs in lowered, increased environmental level of OC 

can be excepted. As shown in paper IV, low levels of OC may induce resistance in avian 

viruses. Even levels found today can sporadically induce resistance, and if OC levels 

increases further, there is indication of resistant strains becoming dominant. Considering that 

most plans constructed to minimize the impact of future pandemics of highly pathogenic 

influenza rely heavily on Tamiflu, the introduction of a highly pathogenic virus which is 

already resistant to OC effectively circumvents the in many cases primary defense to acutely 

infected patients. 
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