
 
From THE DEPARTMENT OF MICROBIOLOGY, TUMOR 

AND CELL BIOLOGY 
Karolinska Institutet, Stockholm, Sweden 

   

MECHANISMS OF 
MALIGNANT AND NON-

MALIGNANT 
ANGIOGENESIS USING 
ZEBRAFISH MODELS 

Lasse Dahl Ejby Jensen 

 

 
Stockholm 2010 

 
 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Publications from Karolinska Institutet

https://core.ac.uk/display/70338117?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 
  

All previously published papers were reproduced with permission from the publisher. 
 
Published by Karolinska Institutet. Printed by Larserics Digital Print AB 
 
© Lasse Dahl Ejby Jensen, 2010 
ISBN 978-91-7457-070-0 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Til minde om min afdøde morfar 
Hr. Johannes Rudolph Dahl Hansen





 

 

ABSTRACT 
Pathological angiogenesis significantly contribute to the onset, development and 
progression of most common and severe human diseases including cancer, metastatic 
disease, cardiovascular disease, age-related macular degeneration, diabetic retinopathy 
and retinopathy of prematurity.  Under these pathological conditions, tissue hypoxia 
often acts as a trigger to switch on angiogenesis.  However, there has been lacking non-
invasive and clinically relevant animal models that allow us to study mechanisms of 
human diseases. Zebrafish, as a complementary animal model to mice, is a highly 
genetically and pharmacologically tractable vertebrate which is easily visualized during 
development. Zebrafish offers a unique opportunity to study angiogenesis under 
hypoxia. This thesis describes development and characterization of four novel zebrafish 
models in relation to hypoxia-induced angiogenesis, vascular and tumor pathology. 
Using these models, we demonstrate that hypoxia plays a causal role in development of 
retinopathy and cancer cell metastasis and thus provide important insights needed for 
the development of therapeutic approaches aimed at interfering with these processes. In 
paper I, we showed that hypoxia could induce neovascular retinopathy in zebrafish and 
this model is highly relevant to clinical retinopathy caused by diabetes.  This zebrafish 
retinopathy model also allows us study the therapeutic potential of various 
antiangiogenic agents.  In paper II, we demonstrate a novel principle that regulates 
blood perfusion in lymphatics as an effective defense against tissue hypoxia in 
zebrafish and kryptopterus bicirrhis.  The arterial-lymphatic shunt is controlled by nitric 
oxide and the implication of this work is that NO-induced lymphatic perfusion might 
facilitate tumor cell spread from the blood stream into the lymphatic system.  In paper 
III, we take advantage of the transparent nature of zebrafish embryos and availability of 
the transgenic strain fli1:EGFP to develop a zebrafish metastasis model.  Using this 
model, we are the first to study the role of hypoxia in relation to angiogenesis in 
facilitating tumor cell dissemination, invasion and metastasis.  To the best of our 
knowledge, this is the first animal model that allows scientists to study the early events 
of metastasis at a single cell level. In paper IV, We show that PI3 kinase is a key 
signaling component that mediates angiogenesis in the developing embryonic retina 
and in the regenerating adult fins.  In conclusion, development of these zebrafish 
disease models have paved new avenues for studying mechanisms of pathological 
angiogenesis in malignant and non malignant diseases and offers unique opportunities 
for assessment of therapeutic potentials of known and novel drugs against these most 
common and lethal diseases. 
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1 INTRODUCTION 
 

Angiogenesis, the growth of new blood vessels from the existing vasculature, is a 

hallmark of many human diseases, and is often the driving force of pathology1-2. 

Angiogenesis has been recognized since the early 70ies, beginning with the seminal 

work by Dr. Folkman3, as the major compartment that facilitates tumor growth. Tumor 

blood and lymphatic vessels are also key players of tumor dissemination and 

metastasis4, the main cause of cancer-related morbidity.  

In addition to promoting tumor progression and spread, angiogenesis significantly 

contributes to development of retinopathy5-6. During progression of retinopathy of 

prematurity (ROP), diabetic retinopathy (DR) or age-related macular degeneration 

(AMD), excessive growth of primitive and immature blood vessels in the retina lead to 

micro-hemorrhages, edema and eventually retinal detachment and blindness6-10. Both in 

cancer and AMD, there are several FDA approved drugs on the market which target 

pathologic angiogenesis, but more effective drugs are still needed. 

 

In contrast to its detrimental roles in pathology, angiogenesis is also important for 

tissue repair1,5. In ischemic diseases such as myocardial infarction and stroke and under 

physiological conditions including wound healing, it is of pivotal importance that these 

tissues or organs are regenerated as quickly as possible in order to maintain their 

functions10-11. In these cases, it is desirable to develop pro-angiogenic, and in particular 

pro-arteriogenic therapeutic approaches11. These approaches seem to be very difficult 

to achieve, though, as functional vascular networks need extensive remodeling.  

Unfortunately, current angiogenic factor-induced blood vessels are immature and of 

poor quality. It is still an open question how best to assist the body in re-vascularizing 

injured tissues12. 

 

Hypoxia often triggers an angiogenic response in adult tissues.  As mammalian cells 

rely on oxygen-dependent metabolism for long term energy production, prolonged 

tissue hypoxia causes cell stress eventually leading to cell death. This is especially true 

for cardiac musculature and the brain, as these tissues are particularly sensitive to 

hypoxia and have reduced potential for anaerobic energy production13-14. Thus even a 

transient blockade of oxygenation in these critical organs may markedly impair their 

functions which have dire consequences for the host.  
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Hypoxia induces a complex response in a tissue, aimed at protecting the cells against 

and counteracting the loss of oxygen. Hypoxia induces angiogenesis mostly via the 

hypoxia inducible factor (HIF)1α-vascular endothelial growth factor (VEGF) 

pathway15. However, there are many aspects of both this signaling pathway and other 

hypoxia-induced pathways that are still poorly understood, especially from the 

perspective of the whole organism. 

 

Zebrafish has in the last two decades emerged as a powerful model organism to study 

developmental biology, including developmental angiogenesis. This animal model is 

widely used in biomedical research due to: 1) fast development; 2) transparent 

embryos; 3) ex-utero development; 4) large number of embryos produced in every 

breeding cycle and 5) their relatively cheap and easy maintenance and breeding 

compared to other fish strains. Furthermore, since development of the morpholino 

technology16 sequencing of the entire genome 17, and the fact that zebrafish readily take 

up small amphiphillic molecules from the water 18, zebrafish have become highly 

amenable to genetic as well as pharmacologic manipulation. An additional benefit of 

the zebrafish model is that zebrafish has a much higher capacity for tissue regeneration, 

which occurs within a relatively short time compared to rodent models19. Furthermore, 

of particular interest to the work presented in this thesis, fish can be placed in hypoxic 

water, and thus the systemic response to mild, intermediate or severe hypoxia can be 

easily studied.  

 

In this thesis, I describe zebrafish disease models developed with the aim of studying 

mechanisms of regenerative and hypoxia-induced angiogenesis, especially in the case 

of retinal angiogenesis and hypoxia-induced tumor cell dissemination.  

 

In paper I, we developed a model of hypoxia-induced retinal angiogenesis in the adult 

zebrafish, and used this model to show that hypoxia induce neovascularization 

primarily in the capillary region of the retina. This angiogenic response is dependent on 

VEGF signaling. We further found that blockade of the Notch signaling pathway 

shifted the angiogenic response from the capillary region to the arterial region, and only 

in synergy with hypoxia was able to induce a robust arteriogenic response in the retina. 

 

In paper II, we investigated the systemic effects of hypoxia on the distribution of blood 

in the fish vasculature. We found that fish lymphatic vessels connect to arteries in a 
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structure we call arterial-lymphatic conduits (ALCs). These structures are closed under 

normal physiological conditions, but open under hypoxia in response to NOS-induced 

local NO production and signaling. We hypothesize that similar conduits may be 

present in mammals, and could be important in hypoxia-induced tumor cell 

dissemination from the blood stream to the lymphatics during tumor metastasis.  

 

In paper III, we developed a tumor cell implantation protocol in zebrafish embryos, 

which allowed us to study the early events of tumor cell invasion, dissemination and 

metastasis. Next we studied mechanisms behind hypoxia-induced tumor cell 

dissemination. We found that hypoxia-induced VEGF production by the tumor cells act 

on VEGFR2 on the host blood vessels to induce tumor angiogenesis, which lead to 

tumor cell invasion into the blood stream and dissemination to distal regions. 

 

In paper IV, we developed a model of angiogenesis in the regenerating adult zebrafish 

tail fin. This model was used to show that phosphatidyl inositide 3 (PI3) kinase, which 

augment retinal angiogenesis specifically during development, is also important for 

adult regenerative angiogenesis.  

 

In order to set the stage for the four papers, I will in the following describe the scientific 

background behind these projects in detail. 

 

 

1.1 THE BIOLOGY OF BLOOD VESSELS 
 

All vertebrates have a circulatory system based on blood vessels which transport 

nutrients and oxygen to the cells and collect waste products. Blood vessels are thus 

necessary in all tissues of the body, which impose unique requirements as they needs to 

be able to adapt to very different environments such as high shear stress and complex 

composition of blood flowing on one side and all the different tissues in the body on the 

other. Therefore blood vessels are complicated structures build up of several different, 

specialized cell types. 

 

1.1.1 Vascular cell types – endothelial cells and vascular mural cells 
Blood vessels consist of several different cell types, which have different properties 

reflecting the functional requirements of different types of vessels. Endothelial cells 
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(ECs) constitute the inner lining called the endothelium, and are thus in contact with 

and specially adapted for communicating with circulating blood.  

ECs are attached to a basement membrane, consisting of extracellular matrix proteins20, 

which in turn is covered with perivascular mural cells. For capillaries and veins, these 

cells are collectively called pericytes. Pericytes provide mechanical stability and 

elasticity and are thought to be a source of vascular growth and survival factors that 

help maintain a healthy endothelium21-22.  

The pericyte coverage varies in different vascular beds - in the liver for example, the 

capillaries have few pericytes and specialized for high exchange between blood and 

tissue22, whereas in the brain, the capillaries are highly covered ensuring that 

potentially dangerous substances or cells are not permitted to cross the endothelial 

barrier22-23.  

Arteries are covered with one or several layers of a specialized type of mural cells 

called (vascular) smooth muscle cells (vSMCs). Similar to pericytes, these cells provide 

elasticity and stability to the arteries which are needed to buffer and tolerate the high 

blood pressure experienced by this particular endothelium24. In large arteries there are 

also other cells present such as axons that may provide contraction/relaxation signals to 

the vascular smooth muscle cells for regulation of vascular tone24. 

Pericytes and vSMCs are in contact with many different cells types of the surrounding 

tissue. Thus these cells may have higher capacity for adaptation to different 

environments compared to for example the endothelial cells25-26. This has led some 

researchers to propose that perivascular cells may be a reservoir for stem cells outside 

of the bone marrow25-26. 

 

In zebrafish not much is known on vascular mural cells and their functions both during 

development and in adults. It is clear that vascular mural cells are present in adult fish 

vessels27-28, and that they may be involved in regulating vascular tone29. However, it is 

difficult to stain for vascular mural cells in zebrafish, as antibodies raised against 

mouse epitopes, to a large extent does not cross-react with those in zebrafish. Both we 

and others are therefore trying to create transgenic tools to more easily study the 

biology of vascular mural cells in zebrafish30-31. 

 

Endothelial cells are in all organisms highly specialized, and can be subdivided into 

arterial, capillary and venous EC families. While all ECs share expression of certain 

genes, such as pecam (CD31) and fli1, there are other genes which have different 
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expression based on the particular EC subtype32-33. For example, arterial EC expression 

of EphrinB2 ligands and venous expression of its receptor EphB4 is important for 

normal vascular development34-35. EphrinB2 is specifically induced in arteries during 

early development due to higher VEGF and Notch signaling in these more dorsally 

located cells, which indicate that different EC subtypes may have different responses to 

signaling factors such as Notch.  

 

1.1.2 Development of the vasculature 
The vasculature is in principle formed and expanded by two processes; vasculogenesis 

and angiogenesis36. Vasculogenesis is the de novo formation of blood vessels by 

progenitors. vasculogenesis occurs when endothelial progenitor cells, specified by the 

expression of the transcription factor fli1 in the bilateral posterior lateral plate 

mesoderm, migrate towards and meet at the midline just ventral to the notochord37-38. 

Here they coalesce and lumenize to form the dorsal aorta39. From the dorsal aorta, cells 

in the ventral floor migrate ventrally, coalesce and lumenize again to form the posterior 

cardinal vein34. Circulation is established by elongation and anastomosis of these two 

tubes and by establishing a connection to the heart.  

 

The primitive blood circulation is subsequently expanded by angiogenesis, in which 

blood vessels branch off and grow out from existing vessels (see figure 1). 

Angiogenesis can be subdivided into several steps including degradation of the 

basement membrane, shedding of the perivascular cells, budding of endothelial cells (1 

in figure 1), migration of the tip cells (2 in figure 1), proliferation of stalk cells, 

anastomosis with other vessels (3 in figure 1), lumenization (4 in figure 1), and finally 

maturation by recruitment of new perivascular cells. Thus three distinctive EC 

differentiation states are involved during angiogenesis; the tip cell, which is the leading 

cell of the growing sprout, the stalk cells, which constitute the connection to the mother 

vessel40, and quiescent, differentiated cells of mature vessels. In mature vessels in fact, 

single cells in the endothelium are often difficult to distinguish as they are tightly 

connected to each other and have shared functions, dedicated to tasks such as transport, 

absorption or secretion of fluid, molecules or immune cells between blood and the 

underlying tissue41-43.  
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Figur 1: Distinct steps during angiogenesis revealed in the retina of transgenic fli1:EGFP  

zebrafish. 1: EC budding. 2: Tip cell migration. 3: Anastomosis4: Lumenization. Image provided 

by Dr. Renhai Cao 

 

All vertebrates have a remarkably similar blood circulation. It is therefore not 

surprising that developmental vasculogenesis and angiogenesis are largely regulated by 

the same pathways in zebrafish and mice. Even pathological or regenerative 

angiogenesis seems to be similarly regulated in different vertebrates44-45.  

At the core of these regulatory pathways are vascular endothelial growth factor (VEGF) 

which is important both for vasculogenesis, angiogenesis and vascular homeostasis46. 

VEGF, which is discussed in more detail in a separate section, is the strongest 

angiogenic factor in the body, and will lead to excessive angiogenesis if left unchecked. 

There are therefore several endogenous mechanisms of inhibiting VEGF actions, 

including the involvement of soluble receptors which act as decoys for their membrane 

bound, active analogues47-48, and downstream inhibitory pathways such as the recently 

identified Dll4-Notch pathway40,49-51.  

For example, during initial angiogenic expansion of the primitive zebrafish vasculature 

between 22 and 32 hours post fertilization, VEGF produced in the somites drives dorsal 

sprouting of endothelial cells to form the intersegmental vessels34. This process is 
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negatively regulated by Dll4-Notch signaling, which limit the differentiation of 

endothelial cells into tip cells and protect against hyper-vascularization40.  

 

Angiogenesis is a highly regulated and complex process which is either positively or 

negatively regulated by many different factors. Positive mediators of angiogenesis are 

referred to as angiogenic factors and include the VEGF, fibroblast growth factor (FGF), 

transforming growth factor (TGF), hepatocyte growth factor (HGF), insulin-like growth 

factor (IGF) and platelet-derived growth factor (PDGF) families among others36.  

While some factors such as VEGF are more extensively studied than others, it is likely 

that several of these factors act together during both physiological and pathological 

angiogenesis4.  

Also there are several endogenous inhibitors of angiogenesis, or anti-angiogenic 

factors, including endostatin, vasostatin, prothrombin, thrombospondin, prolactin, 

osteopontin etc52. The relative level between angiogenic and anti-angiogenic factors in 

the organism determines whether angiogenesis is induced or not.  

This balance is usually referred to as the angiogenic switch53-54, which is turned on 

during development and tissue growth by the surplus of pro-angiogenic to anti-

angiogenic factors, but turned off in quiescent, non-growing adult tissues, where there 

are an excess of angiogenesis inhibitors54.  

 

In addition to inducing angiogenesis, also the paths followed by the growing vessels are 

important for normal development of the vasculature, as well as the correct 

specification of arteries and veins. 

Such path finding and specification cues are usually provided by cell membrane 

attached receptor-ligand signaling partners such as ephs and ephrins, 

uncoordinated/deleted in colorectal cancer and netins, plexins/neuropilins and 

semaphorins, roundabouts and slits and possibly others55-58. Signaling through these 

pathways often block formation of filopodial projections from the tip cells, thus 

limiting vessel growth into areas where such ligands are abundant. Intriguingly, this 

regulation is remarkably similar in growing axons, indicating that correct wiring of the 

developing nervous system and vasculature share similar regulatory pathways55. Recent 

evidence, however, indicate that these pathways may also be important for generating 

the chaotic architecture of blood vessels in tumors59, for promoting angiogenesis in 

ischemic disease60 or be an important anti-angiogenic and vascular normalization 

strategy in tumors61.     
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1.1.3 Cardiovascular biology of mammals and fish 
While most areas of angiogenesis and cardiovascular physiology and pathology are 

strikingly similar in fish and mammals, there are a few important differences, which are 

relevant to consider.  

Primarily, as fish breathe water rather than air, their respiration has to be adapted for 

handling a comparatively much more viscous medium containing much less dissolved 

oxygen. Thus while mammals have a batch-system where oxygen is extracted from a 

batch of air each time, the gill system in fish is more like a continuous process where 

water is flowing counter-current with the blood, allowing maximal efficiency of the 

oxygen uptake62. Does this influence the cardio-respiratory response to hypoxia?  

Mammalian respiration is quite inefficient compared to that in fish, so in order to 

maintain a high oxygen content of the blood leaving the lungs, humans have developed 

both cardiovascular and respiratory countermeasures to low oxygen. These include 

hyper-ventilation, increased heart rate (tachycardia) and higher pulmonary blood 

pressure and are initiated almost immediately following exposure to even slight 

hypoxia – such as a few kilometers above the sea surface63. However, if oxygen levels 

continue to drop, mammals cannot sustain life for long63.  

Fish on the other hand do not initiate such countermeasures at slightly reduced oxygen 

levels, as the oxygen uptake system is already sufficiently efficient62. Also, when 

induced, the respiratory and cardiovascular responses to hypoxia are slightly different. 

For example, most fish reduce their heart rate (bradycardia) when exposed to severe 

hypoxia, in order to increase the stroke volume64, which is in contrast to the observed 

tachycardia in humans65.  

Furthermore, in normoxia usually only a part of the gill blood vessels are perfused, in 

order to have a lower demand on the blood pressure leaving the heart. Increased stroke 

volume under hypoxia, however, leads to increased blood pressure leaving the heart64, 

which in turn leads to perfusion of more gill lamellae and thereby increasing the 

respiratory blood-water interface66.  

Also on the water side, increased frequency and amplitude of buccal (mouth) and gill 

movements leads to more water passing though these cavities increasing the uptake of 

oxygen64.  

As cardio-respiratory synchrony is of great importance in mammals, is hypothesized 

that it may also be beneficial in fish67-68. The theory is that if blood and water is 

perfusing the gills at a maximal rate at the same time, the oxygen uptake should be 
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maximized. However, it may be possible that such synchrony is only induced when fish 

are exposed to hypoxia, as lowering of the heart rate and increasing the ventilation 

frequency is required for matching of the two.  

 

Also in the periphery, the fish cardiovascular system is slightly different from the 

mammalian. For example, the blood pressure in fish is lower than in mammals and the 

transendothelial pressure observed in both arteries (positive leading to leakage) and 

lymphatics (negative leading to drainage) seems to be greatly reduced in fish69-71. The 

pathological consequences of this have however not been well studied.  

 

 

1.2 BENEFITS AND CONCERNS USING ZEBRAFISH IN MEDICAL 
RESEARCH 

 

Most human diseases arise as a consequence of malfunctioning interplay between 

different cell types and tissues, and are therefore not well studied in cell-based in vitro 

models. Recently, zebrafish has emerged as an excellent in vivo model organism for 

medical and pre-clinical research and zebrafish-based models and technologies are 

rapidly expanding44,72. 

 

1.2.1 Zebrafish in general 
Zebrafish (Danio Rerio) are small actinopterygian (ray finned) fish who measure 3-5 

cm in length and weigh approximately 200-500 mg as adults. These fish have been 

used for research in vertebrate developmental biology for decades as they compared to 

other fishes of equal size do not need environmental enrichment in the aquaria, they are 

very tolerant to pollutants, have high fecundity and overall easier to handle and work 

with73. 

 

The following features in particular make zebrafish attractive as a tool in 

developmental research.  

1) One pair of adult zebrafish can lay >200 eggs once per week.  

2) Zebrafish eggs develop at room temperature but optimally at 28,5 degrees in high 

quality tap water, alternatively distilled water with added salts such as E3 or danieus 

buffer.  

3) The embryos develop very rapidly compared to other vertebrates. For example 
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during the first 24 hours, the zebrafish embryo has developed a beating heart as well as 

a functional circulation loop containing blood cells. Correspondingly the human 

embryo has had time for one cell division in the same period of time.  

4) Zebrafish embryos and juveniles are transparent.  

5) Zebrafish are highly amenable to genetic and pharmacologic manipulations. 

 

1.2.2 Genetic models in zebrafish 
During the middle 90-ies the value of zebrafish as a model organism became further 

enhanced as two separate large-scale, un-biased ENU mutagenesis screens were carried 

out74-75. These screens identified thousands of mutants with obvious developmental 

phenotypes due to a mutation in a single gene. The resulting mutant libraries, which are 

continuously being expanded, provide researchers with new insights not only into the 

role of the mutated genes during development, but also the underlying causes of certain 

human diseases which have been found to closely resemble the phenotype of a mutant. 

One example of the latter is the mutant gridlock, which harbor a mutation in the gene 

by the same name. In this mutant, the aorta fuse with the cardinal vein just posterior to 

the gill arches, thus causing blood to be shunted into the vein before being transported 

to the periphery76. Thus, even though endothelial cell specification in the peripheral 

parts of the fish is not affected, no blood flows to these parts.  

This phenotype is also found in a congenital malformation known as aortic coarctation 

in humans77. Thus the gridlock mutant was used to identify a compound that 

normalizes the correct patterning and flow of blood, which potentially could be 

developed for use in the clinic78.  

 

Following the advent of the morpholino technology researchers may now functionally 

reduce or eliminate the expression level of any gene of interest during the first 4-6 days 

of development, and in this way study its physiological effects during development79. 

As, furthermore, the entire zebrafish genome have been sequenced, this is a powerful 

alternative to creating knock out animals, as the latter is time consuming and expensive, 

and furthermore only allow gene levels to be controlled at three levels; zero, half or full 

expression. Using morpholinos on the other hand researchers may carefully titrate the 

expression level of the target gene, potentially revealing other aspects of its function.  

An example of this is a study done on VEGF-A. In mice, even heterozygous knock outs 

of VEGF-A die during early embryonic development due to a defective and malformed 

vasculature. However injecting different concentrations of VEGF-A morpholino in the 
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zebrafish embryo the effects of slightly or more severely reduced VEGF-A levels 

during development could be separated and studied80. A severe reduction of VEGF-A 

was found to compromise early vasculogenesis leading to no vessels being formed in 

the embryo at all.  

Interestingly, a moderate reduction of VEGF-A levels, or the inhibition of downstream 

events of this pathway leads to the specific inhibition of dorsal growth of arterial 

vessels, whereas ventral growth of venous vessels was unaffected34,81. These actions of 

VEGF-A impinged on the ephrin-eph pathway, which is an example of cross-talk 

between angiogenic-factor signaling and the vascular path finding pathways. 

 

Because the zebrafish embryo is transparent and develops in water, it is particularly 

beneficial to generate transgenic reporter strains expressing a fluorescent protein such 

as GFP under specific promoters. Such transgenic lines allow researchers to study the 

origin, movements, differentiation and growth of cells and tissues in single cell detail in 

the entire organism until the zebrafish reaches adolescence (about 1 month of age) 

where the skin starts to become more densely pigmented. In respect to vascular 

biology, using such an approach to label ECs have yielded significant contributions to 

our knowledge of early vasculogenesis82-84, tube formation85-86, the formation and 

origin of the first lymphatic vessels87-90, as well as the synchronous onset of cardiac 

contractions exactly when the circulation have been completed91. 

 

1.2.3 Hypoxia and zebrafish 
Fish have the unique ability to withstand very low oxygen levels for prolonged periods 

of time. Whereas humans risk losing consciousness at just moderately diminished 

oxygen levels, such as those above 4000 meters altitude (corresponding to 

approximately 80% of the oxygen at sea-level), zebrafish can survive for a very long 

time at oxygen levels less than 10% of fully air-saturated water92-94.  

This enables studies on the effects of hypoxia in a whole living animal, without having 

to perform surgery to restrict blood flow in a particular organ or tissue. The latter, is 

furthermore non-controllable, meaning that it is practically impossible to adjust the 

oxygen levels in the tissue precisely – it is either normoxic (in sham operated controls) 

or anoxic downstream of the ligation suture.  

On the other hand, it is difficult to achieve localized hypoxia in only a particular tissue 

but not others in adult zebrafish as they do not have easily accessible, superficial blood 

vessels. In embryos, however, a method for localized laser-induced ligation of small 
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vessels was recently developed to create a small hypoxic area95.  

If such techniques can be adopted by other labs, and perhaps expanded to also covering 

ligation of vessels in adult fish, this could substantially promote studies on localized 

tissue hypoxia in zebrafish. 

  

1.2.4 Regeneration in zebrafish 
Since fish are able to regenerate cardiac muscle as well as nervous tissue19, they may 

serve as valuable tools in studying the mechanisms of recovery after cardiac infarction, 

stroke or neurodegenerative retinopathies. For example, zebrafish models of 

myocardial regeneration have been used to identify a population of cells involved in 

regeneration of ischemic cardiac tissue, as well as the mechanism by which they de-

differentiate and re-differentiate into cardiac muscle, endothelial cells of the cardiac 

vasculature etc96-97.  

The regenerating tail fin is particularly amenable to molecular studies, as it is possible 

to study the effects of pharmaceuticals simply by adding them to the water28, or 

alternatively knock down or over-express genes of interest in the regenerating tissue 

specifically by microinjection and electroporation techniques98-103. As zebrafish fin 

regeneration also require vessel growth as well as endothelial to mesenchymal 

transition (EMT) and mesenchymal to epithelial transition (MET), as do the skin 

wound healing models in mice, this assay may be used as a powerful alternative 

especially in pharmacologic or molecular studies of this process. 

 

1.2.5 Concerns using zebrafish for vascular research 
There are, however a few drawbacks which makes zebrafish unsuitable for studies in 

certain areas of human medicine.  

 

Fish have a two chambered heart compared to the double set of two chambers, 

separated by a septum in mammals. Because of this, zebrafish are not well suited for 

studies on cardiac septation. Furthermore, the cardiac electrical conduction system in 

zebrafish may be simpler than in mammals104-105.  

The heart in fish is spongiform meaning that blood flows through the cardiac 

musculature. Cardiac vascularization is crucial for oxygen delivery to the thick and 

dense mammalian cardiac musculature, and therefore for its function. The fish heart is, 

however, only sparsely vascularized, and it does not seem to be as important for the 

cardiac function as in mammals106-107. In fact, some fish can even survive and are 
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practically asymptomatic under physiological conditions with a ligated coronary artery 

and therefore complete lack of coronary blood supply106-107.  

 

Another issue is that blood pressure is lower in fish69-71,108 which means that fish 

vessels may need less mechanical support from pericytes and vSMCs than mammals. 

As mentioned, the area of pericyte biology in fish is quite under-investigated because 

better histological tools are needed before such questions can be addressed. 

 

Also the retinal vasculature of fish and mammals differ to some extent. This is a subject 

that will be treated in more detail later, so suffice to say that the fish retinal vasculature 

is much simpler than the mammalian, which facilitate the study of retinal 

neovascularization in adult zebrafish. 

 

Finally, markers specifically labeling some endothelial cell types in mammals label 

others or do not exist in zebrafish. One example of this is the VEGF receptor 3. 

VEGFR3 in mice specifically label endothelial tip cells and lymphatic endothelial cells, 

but have been reported to be a venous endothelial cell marker in zebrafish109. 

Furthermore, while VEGFR1 is expressed by all endothelial cell types in mammals, it 

specifically labels arteries in zebrafish89-90. 

 

 

1.3 HYPOXIA SIGNALING IN ANGIOGENESIS AND VASCULAR 
BIOLOGY 

 

Oxygen is the primary electron acceptor in energy production for multi cellular 

organisms. Oxygen-mediated or aerobic metabolism, through the electron transport 

chain, transform sugars and lipids into CO2 in a process that liberates close to all the 

Gibbs free energy of this reaction as high energy ATP. Thus this is the most efficient 

pathway to generate energy in the body. 

Therefore, most mammalian cells rely on aerobic metabolism for sustained energy 

production, and certain tissues such as the heart and brain rely more heavily on 

electron-transport-mediated ATP generation13-14. Oxygen availability is therefore very 

important throughout our organism at all times.  

 

However, one reason behind the high efficiency of aerobic metabolism is the reactivity 
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of oxygen, which also must be controlled. Thus an elaborate network of enzymes, 

endogenous and exogenous anti-oxidants are on constant watch for renegade oxygen 

radicals that may cause problems such as lipid (per)oxidation and DNA mutation110.  

 

1.3.1 Defining normoxic and hypoxic states to tissues 
When sufficient oxygen is present in a tissue the cells may use aerobic metabolism to 

their preferred extent. Such a state is termed normoxia. However, normoxia is not 

necessarily the same for all tissues, as some tissues are less vascularized or more 

metabolically active than others.  

For example, the spleen and brown fat has much higher blood vessel density than for 

example the thymus or white fat, and the latter tissues have much lower metabolism 

and demand less energy than the former111-112. Accordingly normoxia in the spleen 

refers to a higher oxygen concentration than normoxia in the thumus111.  

In the air we breathe, normoxia is 21 kPa (21% oxygen or 159 mmHg). However, in 

the arterial circulation normoxia has dropped to 13 kPa as the efficiency of the lungs is 

quite modest. In tissues however, normoxia can range from 0,5 to 2,5 kPa113.  

 

Normoxia in the tissue is not always maintained, as the level of available oxygen may 

change. In principle this may occur in one of three ways; the oxygen consumption in a 

tissue may increase (such as in active compared to passive muscles), the availability of 

oxygen rich arterial blood may be compromised (for example as a consequence of a 

blocked or ruptured artery) or the oxygen carried by the blood may be too low (for 

example in case of anemia). 

How do we then determine if a tissue has become hypoxic? Currently many researchers 

rely on the pimonidazole reaction, to determine hypoxic from normoxic areas. The 

change from a non-immunoreactive substrate to immunoreactive adducts of 

pimonidazole occurs at an oxygen tension of approximately 1,3 kPa (about 10 

mmHg)113-115, which we therefore define as tissue hypoxia.  

However, as mentioned above, some tissues have physiological oxygen levels at or 

even below this limit. Therefore, defining a relative hypoxic state to a particular tissue 

should be done with care, and always with knowledge of its physiological oxygen 

levels in mind.   

 

1.3.2 Cellular and systemic responses to hypoxia 
In all cases when a tissue becomes hypoxic it will signal to the host that more oxygen is 
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acutely needed. Cells are equipped with counter-measures which are aimed at 

sustaining homeostasis in low oxygen environments for as long as possible.  

These include a shift in the metabolic profile to rely more on glycolysis (which require 

less oxygen) for energy production, and stopping processes which consume a lot of 

energy, such as cell proliferation116-118.  

They also communicate with the organism on both local and systemic levels to try and 

direct more oxygenated blood to the hypoxic area. This is done in four ways.  

 

1: Tissues, such as working muscles sends signals to the brain that via sympathetic 

nerves up-regulate the cardio-respiratory rhythms, leading to hyperventilation and 

increased cardiac output65. This response is aimed at extracting more oxygen from the 

atmosphere as well as to faster exchange the blood in the tissue.  

2: Arterial blood vessels in the tissue become dilated leading to higher blood 

perfusion119. This process is often carried out by eNOS-mediated NO production, as 

NO is a strong relaxing factor for vascular smooth muscle cells.  

3: The production of EPO goes up, leading to erythropoiesis and mobilization of more 

red blood cells from the bone marrow, which increases the oxygen-binding capacity of 

the blood120-121.  

4: The tissue produce angiogenic factors – primarily VEGF-A – which stimulate 

angiogenic expansion of the vasculature and thus also increase perfusion but in this 

case through newly formed blood vessels122-123. 

 

1.3.3 The HIF signaling pathway 
Most of the responses to hypoxia are mediated by the hypoxia-inducible factor (HIF) 

pathway. The HIF family of transcription factors comprise HIF1α, HIF2α, HIF3α and 

HIF1β or ARNT124. Not much is known about the actions of HIF3α, so in the 

following I will focus on HIF1- and HIF2α.  

ARNT heterodimerize to either HIF1α or HIF2α, and the resulting dimer is termed 

HIF1 or HIF2 respectively. HIF1 is important for acute responses to hypoxia, as the 

α−subunit is constantly turning over in normoxia but immediately stabilized in 

hypoxia125-126. HIF1α remain at high levels in hypoxia for at least 24 hours, and then 

decrease by an unknown mechanism.  

HIF2 on the other hand seems to be quite stable, in some tissues at least, even in 

normoxia, but is normally present at low levels127. HIF2α transcription is induced by 
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hypoxia and the levels increase over the course of 24 hours and stay high for a longer 

time128.  

The instability of the HIFα subunits in normoxia is due to oxygen-mediated tyrosine 

hydroxylation by the prolyl hydroxylase (PHD) enzymes, primarily PHD2125. 

Hydroxylated HIFα is recognized by the von Hippel Lindau (VHL) E3 ubiquitin ligase, 

which targets it for proteosomal degradation. Thus HIFα stability in hypoxia is 

primarily due to the inactivation of PHD2. 

Many genes including VEGF-A and EPO, have hypoxia-responsible elements (HRE) in 

their promoters, to which HIF1 or HIF2 can bind and thus activate transcription. 

However, HIF-1 and HIF-2 may activate slightly different sets of genes124.  

 

Most areas of clinically detectable tumors are constantly hypoxic due to poorly 

perfused and low quality blood vessels, high metabolism and sometimes genetically up- 

or down-regulated hypoxia signaling factors or inhibitors129-133. Tumor hypoxia is a 

major driving force of tumor cell dissemination and ultimately the formation of distant 

metastatic nodules134-135. In this process it is becoming increasingly clear that HIFs play 

a major role136-137. 

 

In spite of the differences in the physiological cardio-vascular responses to hypoxia 

between mammals and zebrafish, mentioned previously, the molecular pathways 

regulating these responses seem to be identical138-140.  

If activating the HIF pathway either genetically or pharmacologically, the zebrafish 

answer by up-regulating VEGF, EPO and other classical HIF-target genes140. Also 

physiological effects of hypoxia such as vascular dilation, angiogenesis and 

erythropoiesis are conserved in zebrafish140-144.  

Thus it seems that the differences in the cardiovascular response to hypoxia between 

fish and mammals are more just a variation on the same theme, which is necessary for 

living in water rather than air. Therefore, while researchers should be mindful of the 

differences, I think there is no course for alarm when it comes to using zebrafish as a 

model system of mammalian molecular or physiological responses to hypoxia. 

 

 

1.4 ANGIOGENESIS IN RETINOPATHY 
 

Retinopathies are the leading cause of vision impairment and blindness, collectively 
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affecting more than 70 million people worldwide145. Although non-fatal, they are 

considered to be major debilitating diseases, and thus people living with retinopathy 

experience reduced quality and many problems and obstacles in their everyday lives.  

Three classes of retinopathy are predominant – retinopathy of prematurity (ROP), 

diabetic retinopathy (DR) and age-related macular degeneration (AMD). These three 

diseases affect different patient groups and also different areas of the retina.  

In order to understand their pathology, one should therefore keep the anatomy of the 

eye in mind. 

 

1.4.1 Anatomy of the eye 
The anterior part of the eye is covered by the cornea; a colorless and transparent, hard, 

bone-like membrane which shields the iris, lens, vitreous and retina, from the exterior. 

The cornea has no blood or lymph vessels, and is thus a popular model for angiogenesis 

and lymphangiogenesis in itself11.  

The cornea is attached to the retina, which is a multi-layered tissue responsible for most 

of the functions of the eye including reception and conduction of visual signals through 

specialized photoreceptors.  

The retina is in turn covered by connective tissue known as the choroid and a 

pigmented epithelial cell layer know as the sclera. The space between the cornea and 

the retina is filled by a gel-like substance known as the vitreus.  

In the human retina, blood vessels are present mostly in two layers – at the inner 

surface exposed to the vitreus (retinal vessels) and in outer structures close or 

incorporated into the choroid (choroid vessels).  

The central part of the retina is called the macula, and it is usually in this area signs of 

retinopathy are most readily detected. 

 

1.4.2 Retinopathy of prematurity 
Retinopathy of prematurity is a common disorder in very early pre-term infants who 

need incubation in an oxygen enriched atmosphere after delivery in order to support 

life146.  

Their retinal blood vessels (as well as most other parts of their body) are not fully 

developed, leading to deficiency of blood in the retina. Furthermore, the hyperoxic 

environment in the incubators, may lead to further pruning and regression of thin retinal 

capillaries147. When such infants are brought out of the incubator and into normoxia, 

the lack of retinal vessels leads to retinal hypoxia and thus widespread hypoxia-induced 
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retinal angiogenesis148. These new blood vessels are of low quality, lack association 

with vascular mural cells and therefore give rise to retinal edema and hemorrhage149. 

As an ultimate consequence, the blood-retinal barrier may be compromised, the 

photoreceptors start to degenerate and accumulating edema may cause retinal 

detachment – collectively leading to blindness.  

As retinal hypoxia is the driving force behind pathological angiogenesis in this disease, 

it may be treated by targeting VEGF or VEGFR1150, which in many cases lead to 

normal development of retinal blood vessels.   

 

1.4.3 Diabetic retinopathy 
Diabetic retinopathy is a complication of diabetes mellitus, in which patients cannot 

regulate their blood sugar levels. Small capillaries, including those in the retina, seems 

to be particularly sensitive to high blood glucose levels, which lead to constant 

irritation of the endothelium. Thus after 10 years or more with the disease, 90 % of 

diabetic patients start to exhibit symptoms of DR151.  

The disease usually follows a course from a mild and non-angiogenic (or non-

proliferative) state, into a severe state, which eventually become angiogenic.  

Initially the integrity of small retinal capillaries are compromised leading to micro-

hemorrhages and leakage of fluid. Compounds such as cholesterol and triglycerides in 

the leaked plasma may be deposited in the retina and can be observed by funduscopy as 

the characteristic “cotton wool-like” spots. These compounds may also aggregate inside 

the blood vessels, leading to blockade of flow. As more and more and also larger 

vessels become affected, the area downstream of the hemorrhaging or blocked vessels 

does not receive blood and become ischemic.  

The ischemic areas start to produce VEGF, which switches on the angiogenic state of 

the disease151-152. As it was the case in ROP, the newly formed blood vessels are 

immature, of low structural integrity, and therefore leaky and prone to bursting – thus 

making matters worse.  

The disease eventually follows a course similar to that described for ROP, and patients 

with severe disease are at risk of becoming blind.  

Treatment consist of a  combination of treating the diabetes, which is the underlying 

problem, and of anti-VEGF and other treatments aimed at reducing angiogenesis and 

retinal/macular edema, restoring photoreceptor functions and improving vessel 

quality153. 
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1.4.4 Age-related macular degeneration 
Age-related macular degeneration is the major course of vision impairment in the 

elderly7,154. There are, as in diabetic retinopathy, both a non-angiogenic and angiogenic 

(aka wet, neovascular or exudative) state of the disease, the latter being the most severe.  

The initial, pre-pathologic phases include the inefficient clearing of dead cell debris 

between the retinal pigment epithelium (sclera) and the retina, associated with old age, 

which accumulate in small spots known as drusen. Drusen are typical in the elderly, 

and is as such not a problem if they are only few and small in size. However, many and 

large drusen may disrupt retinal functions and lead to loss of retinal cells including 

photoreceptors, a state which is known as geographic atrophy.  

In the dry or non-angiogenic state, geographic atrophy may expand and reach the centre 

of the macular, in which case the loss of cells my lead to severe vision impairment. 

Furthermore, many large drusen may disrupt retinal attachment to the choroid. 

However, the atrophy may also include endothelial and other cells of the blood vessels, 

which lead to a large part of the retina loosing blood flow, and thus retinal ischemia7. 

Ischemia-induced, VEGF-dependant angiogenesis ensues, similar to what was 

described in DR, and the disease progress along a similar path.  

The affected vasculature is thus the main difference between angiogenic DR and AMD 

as in the former it is the retinal vessels which are affected mostly, and in the latter it is 

mainly the choroid vessels155.  

Choroid vessels are buried deep in the retina, thus a special anti-VEGF antibody, which 

is smaller and thus has higher penetration through the retina, has been developed for the 

treatment of AMD. It seems however, that also larger and cheaper anti-VEGF 

antibodies work well156-157. 

 

1.4.5 Comparison of the retinal vasculature in zebrafish and mammals  
During development, zebrafish, as humans, have a transient hyaloid vasculature, which 

is attached to the lens. In humans this vasculature regresses in favor of the developing 

retinal vasculature, but in fish it seems instead to detach from the lens and become 

associated to the vitreal surface of the retina27.  

Zebrafish retinal blood vessels are histologically similar to human retinal blood vessels. 

They are also covered with pericytes, and irrigate the vitreal surface of the 

retina27,44,141,158-159. Zebrafish, however, does not have choroid vessels, perhaps because 

the outer retina may receive sufficient oxygen from cutaneous absorption. 
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Figure 2: Comparison of the retinal vasculature in zebrafish, mice and humans. Top: Vessels in 

adult fli1:EGFP zebrafish. Middle: Immunohistochemical staining of adult mouse retina – red 

signals: ECs, yellow signals: arteries. Bottom: Fundoscopy of the healthy retinal vasculature in 

humans. OA: optic artery, CV: circumferential vein. CRA/CRV: central retinal artery/vein. 

 
In adult zebrafish the retinal vasculature spread out from a central optic artery (OA) 

that, similar to the central retinal artery (CRA) in mice and humans, run alongside the 

optic nerve (see figure 2). 4-9 main branches (so called grade I branches) emanate from 

the OA and run toward the periphery, dividing 2-4 times in the process, in order to 

supply the entire vitreal surface of the retina27,44,141,158.  

At a region known as the capillary region, the vessels anastomose with protrusions 

from the circumferential vein (CV), and thus close the circulation. It is in this capillary 

region that blood vessels are most prone to hypoxia-induced angiogenic expansion141. 

The vitreal vasculature in the zebrafish is thus very similar both morphologically and 

histologically to that in mice and humans (see figure 2). Zebrafish may therefore serve 
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as a valuable model system for studying angiogenic retinopaties including ROP, DR 

and AMD.  
 

 

1.5 CHARACTERISTICS AND FUNCTION OF LYMPHATIC VESSELS 
 

The mammalian lymphatic vasculature lies in remarkable proximity to blood vessels160-

161, which is important for its ability to regulate tissue fluid homeostasis. Other 

important lymphatic functions include immune surveillance, lipid absorption and 

transport162.  

In both mammals and fish, the lymphatic circulation develops from the venous 

vasculature163. Initially, a subset of venous endothelial cells starts to express markers 

such as prox-1, which specify these cells as lymphatic endothelial progenitors. These 

cells can respond to VEGF-C and start to migrate away from the veins and form the 

initial lymphatic sacs160. These primitive structures later fuse and remodel to form 

vessels that are no longer physically connected to the blood vasculature164-168, except 

for where the lymph flows back into circulation at the duct of Cuvier.  

 

The fully developed lymphatic vasculature has several distinctive characteristics.  

The classical view is that lymphatic vessels originate in blind ended sacs, which 

function to absorb fluid from the tissue. This process is achieved by two sets of 

lymphatic valves169.  

Primary valves exist inside the vessels, ensuring a directed flow away from the tissue 

and towards larger collecting lymphatics (see figure 3). These collecting lymphatic 

vessels are usually covered by pericytes, and have a large lumen in order to 

accommodate efficient drainage of large amounts of fluid with minimal fluid pressure 

inside the vessel4.  

Secondary valves exists between the lymphatic endothelial cells themselves, ensuring a 

directed flow of fluid into the vascular lumen169 (see figure 3). Thus, lymphatic vessels 

are thought to exclusively exhibit unidirectional afferent flow.  

 

The lymphatic vessels of the tissue empty into regional lymph nodes, where the lymph 

is screened for the presence of non-self antigens, and thus constitute an important part 

of the adaptive immune system170.  

Fish also have structures similar to mammalian lymph nodes, called melano-
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macrophage centers or aggregates, which are handling adaptive immune functions171-

172. They are however much simpler in structure, and not as well studied as their 

mammalian counterparts.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3: Characteristics of lymphatics vessels in mice revealed by immunohistochemical staining. 

Top: Lymphatic vessels arise in blind ended bags, and exhibit unidirectional, afferent flow. 

Bottom: Directionality of flow is achieved by primary and secondary lymphatic valves. Image 

courtesy of Mrs. Sharon Lim and Dr. Renhai Cao. 

 

It has been a long standing debate whether fish have a “real” lymphatic vasculature or 

not173-174. Pioneering work done by Burne and Kampmeier showed that fish do have 

vessels with features of lymphatic vessels in mammals174, and references therein.  

However, fish anatomists and physiologists such as Vogel and Steffensen have later 

discovered that these so called lymphatic vessels are in fact physically connected to the 
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blood circulation, and fluid can be exchanged between the two compartments29,173-176. 

Thus fish lymphatics does not (at least not exclusively) originate in blind ended vessels, 

such as it is thought to be the case in mammals, and therefore it may be argued that, by 

definition, these vessels cannot be called lymphatics. Because of this, fish vascular 

physiologists have suggested that they are instead called secondary blood vessels. 

Recently the Weinstein177-180 and the Schulte-Merker87,89-90,181-184 laboratories have 

taken up this issue again, and described vessels that are histologically and functionally 

very similar to mammalian lymphatics, at least during the first two weeks of 

development. The development of this lymphatic vasculature furthermore follows the 

same molecular program as in mammals180,184.  

However, whether these vessels are identical to the secondary blood vessels in adult 

fish is still not known. 

 

 

1.6 CARCINOGENESIS, METASTASIS AND THE ROLE OF HYPOXIA 
 

Initial cell transformation into carcinogenic cells is largely a cell autonomous process, 

but in order for these cells to expand into a macroscopic cell mass – which is the 

process of tumorigenesis – the tumor requires help from the host. There are two ways in 

which the host unintentionally helps the tumor.  

First, initial attempts of the body to clear renegade, hyper-proliferating cells involve 

recruitment and activation of inflammatory cells, which non-specifically kills such 

hyper-proliferating cells before they cause problems185-186. However, if these cells are 

able to escape killing, the inflammatory cells are thought to aid in tumorigenesis by 

secreting factors, such as pro-angiogenic factors, that communicate with the host187-189.  

Second, high metabolism and growth of the pre-malignant mass beyond a size where 

all cells can be sufficiently oxygenated by pre-existing blood vessels, lead to tumor 

hypoxia. 

 

1.6.1 Tumor hypoxia and the role of the vasculature 
Hypoxia is a major driving force of tumor progression as it promotes several of the 

hallmarks of cancer including: 

 

- Metabolic shift from aerobic metabolism to glycolysis - known as the Warburg 

effect190  
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- Genomic instability both due to increased reactive oxygen species (ROS) 

formation and metabolically-linked acidosis191  

- De-differentiation of the tumor cells through epithelial to mesenchymal 

transition (EMT)192-193  

- Turn on the angiogenic switch, and induce formation of low quality blood 

vessels122 

- Render the tumor resistant to therapy by lowering the effectiveness of radio-

therapy, which rely on the presence of oxygen to generate cytotoxic oxygen-

radicals194, and by increasing blood vessel leakiness and thus increasing 

interstitial fluid pressure in the tumor, which reduce tumor perfusion and 

therefore delivery of cytotoxic agents194  

 

These effects of tumor hypoxia have paved the way for a new way of thinking, in terms 

of targeting the tumor vasculature. Instead of eliminating tumor blood vessels, which 

would lead to extensive tumor hypoxia, many researchers now believe that reducing 

leaky tumor blood vessels by improving their pericyte coverage as well as restoring a 

normal arterial-venous identity and thereby improving perfusion of the tumor, will lead 

to better oxygenation and less pathogenic tumors195-196. 

Such changes in tumor vasculature are known as vascular normalization197, and has 

been found to not only improve the effects of therapy198, but also reduce tumor growth 

rate195 and most importantly the metastatic tendency199.  

 

1.6.2 Epithelial to mesenchymal transition and the role of hypoxia 
The majority of tumors are of epithelial origin and therefore – similar to non-

transformed epithelial cells – quite immobile. However, tumor cells may increase their 

mobility by de-differentiation into cells with characteristics of mesenchymal cells200-201.  

The process of epithelial-to-mesenchymal transition (EMT) has been studied quite 

extensively and encompass both down-regulation of epithelial cell-specific genes such 

as E-cadherin202, but also the up-regulation of mesenchymal genes such as snail202, 

twist203 and slug204, which in particular promote migration and tolerance to novel 

environments.  

The mechanism behind induction of EMT in tumor cells is still not fully understood, 

but it has been associated with tumor hypoxia either via HIFs directly205-208 or indirectly 

as certain transcription factors which can induce EMT such as Notch and TGF-β207,209-

210, are up-regulated by HIFs211-212. Furthermore, de-differentiated stem-cell-like states 
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may be stabilized by hypoxia and hypoxia-associated ROS213-215.  

Some tumors, such as many types of renal cell carcinoma and some tumors of the 

central nervous system, have deletions or mutations in genes such as VHL or PHD2 

and therefore up-regulated HIF signaling even in normoxia216-217. In these cases, 

however, it may be possible to target such tumor cells specifically by compounds that 

are non-toxic in non-malignant cells218.   

 

EMT is important for local invasion of peri-tumoral tissues, but also for the ability of 

tumor cells to penetrate the endothelium and thus disseminate via the blood stream. 

Trans-endothelial invasion of the blood or lymph vessels is used by tumors as the main 

route of seeding metastasis in distant organs4,219.  

It is therefore important also to think about the effects of tumor hypoxia on the 

vasculature, as this is important for developing the specific characteristics of tumor 

blood vessels including: poor pericyte coverage195, loss of arterio-venous identity220 

formation of vascular plexuses and poor perfusion195, high permeability leading to 

extravasation of fluid and high intratumoral fluid pressure and intravasation of tumor 

cells46,221.  

 

1.6.3 Tumor angiogenesis 
VEGF contributes to the development of many of the pathological characteristics of 

tumor blood vessels. However, late stage tumors produce a plethora of factors at high 

levels4,36, which have angiogenic potential and may be important for the above 

mentioned features of the tumor vasculature. For example PDGF221-222, HGF223, IGF224, 

FGF221 and VEGF-C225 have all been shown to play important roles in tumor induced 

angiogenesis, both alone, but in particular in combination11,221.  

Thus, it is beneficial to consider the tumor microenvironment as a complex source of 

many growth factors and cytokines, and treatments should be designed accordingly. 

Indeed, specific anti-VEGF treatment in the clinic is often associated with only 

transient improvements at best, and patients often become refractory, as the tumor 

switches to depend on other growth factors226.  

 

As an example on how other factors may act to drive tumor angiogenesis, it has 

recently been shown that a combination of FGF and PDGF expressed by tumor cells 

result in a very strong angiogenic phenotype221. Similar to vessels in highly VEGF-

expressing tumors this combination leads to formation of vascular plexuses and 
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increased metastasis by targeting both the endothelial cells and associated vascular 

mural cells simultaneously221.  

Thus while anti-VEGF therapy has proven to be an important therapeutic approach to 

target the tumor vasculature, inhibit tumor growth and prolong life expectancy in some 

malignancies, it would be interesting to see drugs which target other factors entering 

clinical evaluation as well. 

 

Angiogenic factors are also important at sites which subsequently may be seeded by 

tumor cells to provide a beneficial environment for growth of metastatic nodules227. 

Such environments are known as (pre-)metastatic niches228.  

The generation of these niches can also be influenced by tumor hypoxia-induced 

pathways, including induction of VEGF227 and lysyl oxidase (LOX)136-137,229-231.  

In fact, it is common to find tumor cells in the blood stream of most advanced cancer 

patients, even in cases where there are no signs of metastasis232, indicating that some 

tumors fail in generating pre-metastatic niches and these are of major importance for 

metastatic growth.  

 

Tumor-derived factors such as VEGF may also have detrimental effects on blood 

vessels in healthy tissues such as the liver and bone marrow46,233. This may lead to 

cancer-associated systemic syndromes, which in many cases play an important role in 

cancer morbidity.  

 

It is thus important, when evaluating the effects on new anti-angiogenic compounds, to 

look at off-tumor targets – both when screening for therapeutic effects and toxicity. 

 

1.6.4 The role of tumor stromal cells 
Tumors are complex tissues consisting of many different cell types in addition to the 

tumor cells themselves. Perhaps most studied – besides the cells of the vasculature – 

are tumor associated fibroblasts (TAFs) and macrophages (TAMs), which are thought 

to be important players in tumor progression and resistance to therapy186,189,234-236.  

Such cells would also feel the effects of tumor hypoxia, and can therefore be an 

important source of hypoxia-induced factors such as VEGF237.  

Even endothelial cells (and peri-vascular cells) of tumor blood vessels will exhibit 

enhanced hypoxia signaling, at least in the poorly perfused and venous fraction.  
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Inducing endothelial hypoxia signaling via inhibition of PHD2 has been shown to 

improve the quality of the endothelium by lowering the permeability, thus making it 

more difficult for tumor cells to enter the vasculature134. 

It has therefore been suggested that enhancing the experienced hypoxia in the 

endothelium, for example by therapeutically targeting PHD2, may lead to better tumor 

perfusion, better delivery of chemotherapeutics and less potential for metastatic 

spread134.  

However, one should be careful in pursuing such an approach, as enhanced hypoxia 

signaling in all other cells in the tumor – including TAFs, TAMs and the tumor cells 

themselves presumably would lead to a more invasive phenotype, as discussed above. 

Thus, if one seeks to enhance hypoxia signaling in the endothelium, this has to be done 

in a very targeted manner. 

 

 

1.7 VEGF AND VEGF-SIGNALING 
 

VEGF is the most studied of all angiogenic factors, and is considered one of the earliest 

and most predominant angiogenic factors in tumors4,238-241.  

The VEGF family is a subfamily of the cystein knot super-family of secreted proteins 

(which also include the PDGF and bone morphogenic protein subfamilies) and is 

comprised of 6 members; VEGF-A, B, C, D and PlGF-1 and -2242-244. All these proteins 

act exclusively as secreted dimers, but as they are also produced in VEGF-receptor 

expressing cells (ie endothelial cells), they may act in an autocrine as well as paracrine 

and endocrine fashion.  

 

VEGF-A is the most studied family member. The VEGF-A gene can give rise to 

several isoforms due to alternative splicing of the mRNA, resulting in a plethora of 

different sizes of the VEGF-A protein raging from 121 to 206 amino acids245-246.  

The larger isoforms have higher binding affinity to heparan sulfate proteoglycans 

(HSPG) and thus stay very close to, or even associated with, the plasma membrane, 

whereas the smallest have very limited HSPG-binding capacity and are more diffusible.  

 

The different VEGF members activate a subset of the 5 existing VEGF receptors and 

co-receptors VEGFR1, VEGFR2, VEGFR3, Nrp1 and Nrp2. These receptors are 

transmembrane receptor tyrosine kinases, which require homo or hetero-dimerization 
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for signaling247-251.  

In addition to the membrane bound isoforms, at least VEGFR148 and VEGFR2252 may 

also be produced in secreted forms by alternative splicing, the function of which seem 

to be to sequester VEGF and inhibit unwanted or excessive angiogenesis and 

lymphangiogenesis for example in the cornea252.  

The receptors have different binding affinity for their ligands. VEGF-A, for example, 

binds VEGFR1 with the highest affinity253 and VEGFR3 the lowest252.  

 

It is still unclear today to what extent VEGFR1 participate in active VEGF signaling244. 

It seems that in cells expressing multiple VEGFRs, R1 act mainly as a decoy receptor, 

modulating the power of the signal transduced by the other receptors. However, in cells 

only expressing R1, there may be some positive signaling transmitted by this receptor 

as well244.  

Furthermore the choice of downstream signaling pathways also seems to differ between 

the different receptors. VEGFR2 primarily signal via the MAP kinases MEK and 

ERK2/3 as well as the PLCγ/IP3 pathway, important for cytoskeletal rearrangements 

involved in migration and proliferation, whereas the other receptors mostly transduce 

signaling via the PI3 kinase and PKB pathways, used for quiescent survival254-255. 

These different choices of pathways may be one reason for the different physiologic, 

pathologic and therapeutic effects of modulating one or another receptor 

specifically46,112. 

 

As VEGF-A is the most potent inducer of VEGFR2 – the primary receptor involved in 

angiogenesis and vascular permeability – its production is also highly regulated. The 

VEGF-A promoter is large, exhibiting many activation and repression domains, 

including hypoxia-responsible elements256. Thus VEGF-A is strongly induced by 

hypoxia.  

There are indications suggesting that also VEGF-C as well as VEGFR3 may be 

induced, at least in some cell lines, in response to hypoxia257, but the roles of this 

pathway in hypoxia-induced angiogenesis or vascular biology are not well studied. 

 

VEGF signaling, and in particular VEGF-A/VEGFR2 and VEGF-C/VEGFR3 signaling 

are very important during development of the blood and lymphatic vasculatures 

respectively. In fact VEGF-A is one of few proteins which exhibit heterozygous 

embryonic lethality, indicating that the correct level of VEGF-A signaling is of crucial 
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importance for normal development and function of the embryonic vasculature80,258-259.  

 

One of the most obvious effects of VEGF-A is however not its effects on angiogenesis, 

rather on vascular permeability. VEGF-stimulated vessels are highly permeable due to 

pericyte shedding and induction of fenestrations (holes in the endothelium) which lead 

to increased extravasation of plasma, edema and in some cases hemorrhaging260-261.  

VEGF-A is, also an important endothelial proliferation and survival factor. Thus too 

low levels of VEGF lead to endothelial cell hypoplasia and apoptosis262. This also lead 

to a destabilized endothelium, edema and hemorrhaging. In adults, the physiologic 

levels of VEGF-A required for endothelial homeostasis are relatively low. Therefore 

induced VEGF-A/VEGFR2 signaling almost always leads to vascular pathologies.  

 

Two examples of this is hypoxia-induced VEGF production in the retina leading to 

angiogenic retinopathy and the role of VEGF in tumor angiogenesis and metastatic 

spread (see earlier sections for details). In these situations it would thus be beneficial to 

inhibit VEGF signaling in order to treat the pathological angiogenesis.  

In other cases such as during regeneration following ischemic insults to the 

myocardium or cerebral tissues, it would be beneficial to speed up the angiogenic 

response to hypoxia and thus potentially enhance VEGF signaling11,263-266.  

Efforts to use VEGF-A for therapeutic angiogenesis in cardiac ischemia have, however, 

not given any clinical benefits, due to the immature and poorly functional nature of 

VEGF-A-induced vessels267.  

Thus, in order to stimulate the growth of high quality arterial vessels one should adopt a 

broader view, considering the vasculature as a multi-cellular structure and thus 

targeting both endothelial and vascular mural cells263,268. 

 

 

1.8 NITRIC OXIDE BIOGENESIS AND SIGNALING 
 

Nitric oxide (NO) is one of the smallest signaling molecules in the organism. It is both 

lipid and water soluble which makes it extremely diffusible and impossible to keep 

localized as it readily crosses both intracellular and plasma membranes269.  

NO is on the other hand highly reactive and has the potential to generate mutagenic and 

lipid oxidizing peroxy-nitrite ions, so oxidases in the cells quickly metabolize NO 

leading to very local and short lived signals270.  
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NO can be produced in two ways – either passively by acid-catalyzed reduction of 

nitrite (NO2
-), which in some cases may be a physiologically relevant pool of NO271-273, 

or actively from arginine by the reductases known as nitric oxide synthase or NOS274.  

 

NOS exist in three different isoforms, which exhibit tissue specific localization. 

Neuronal NOS and endothelial NOS is expressed specifically in neurons and skeletal 

muscle (nNOS) and endothelial cells (eNOS) respectively, whereas the inducible form 

(iNOS) can be expressed by leucocytes and other cells, given the right stimulus275.   

NO acts in the central nervous system to modulate synaptic plasticity – that is in 

regulating which neurotransmitters should be released and in what amount275.  

However in the vasculature, the main function of NO is to stimulate guanylate cyclase 

activity, and thus induce cGMP formation and downstream signaling – usually leading 

to smooth muscle relaxation and vascular dilation276-277. 

 

Tissue hypoxia is known to stimulate eNOS and thus induce NO production leading to 

dilation of arteries278-279. This is believed to be the first line of defense against hypoxia 

leading to immediate increase of arterial perfusion in the hypoxic tissue.  

This regulation of arterial vessel caliper is also important for physiologic regulation of 

vascular tone by increasing blood flow to active tissues such as the intestine during 

digestion or muscles during exercise280-281.  

 

Vascular dilation by NO is exploited in the treatment of obstructed arteries in the heart 

and other organs. In these cases nitroglycerin, an NO donor, may be given to increase 

arterial perfusion and thus restore oxygenation282-283. 
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2 AIMS 
 

The overall aims of this thesis were to study malignant and non-malignant 

angiogenesis, vascular biology and tumor cell dissemination and to develop, validate 

and characterize novel zebrafish angiogenesis models that could be used to this end.  

 

The specific aims were: 

 

I     To evaluate the effects of known and previously unknown anti-angiogenic 

compounds in zebrafish models of angiogenesis (papers I, III and IV) 

 

II    To investigate effects of acute or chronic hypoxia on the zebrafish vasculature as 

well as determine the underlying mechanisms of, and find orally active molecules that 

can effectively either inhibit or increase these effects (papers I - III). 

 

III   To investigate mechanisms behind hypoxia-induced tumor cell dissemination in 

zebrafish and the role of the blood relative to the lymph circulation (papers II and III) 
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3 METHODS 
 

 

3.1 EXPOSURE TO ACUTE HYPOXIA 
 

Fish can tolerate very low oxygen tensions compared to mammals92-94, and the effects 

of environmental hypoxia – that is hypoxia in the water – can therefore be studied. As 

responses to hypoxia are complicated and include both immediate physiological 

responses, fast but transient up-regulation of some genes as well as slower but 

prolonged up or down regulation of others119-123, it is important to be able to separate 

acute hypoxic responses from chronic responses.  

 

In order to study responses to acute hypoxia, we developed a semi-closed system where 

the water was pre-calibrated to a particular oxygen level before the fish was added. 

Furthermore the fish was added to a separated region of low volume in the setup, and 

circulation between this region and a high volume reservoir was established to 

continuously recycle the water 284. These measures were taken to make sure that the 

oxygen levels were not changed noticeably by the addition or removal of fish in the 

system.  

Stressed fish tend to hyperventilate and exhibit erratic swimming, which can increase 

their oxygen consumption and render the fish hypoxic. Therefore the part of the system 

that holds the fish during experimentation was hidden from the surroundings in such a 

way that the fish could not visually perceive any startle impulses, but the researcher 

could observe the fish from the top.  

 

There are several ways to regulate the water oxygen concentration. One alternative is to 

perfuse the water with nitrogen gas, thus expelling dissolved oxygen285-287. In such a 

setup, an in-line oxygen sensor signals to a valve between the nitrogen tank and the air-

stone submerged in the water bath, such that when the desired water oxygen tension in 

the water has been achieved, the valve shuts off the flow of nitrogen.  

Another option is to pre-mix air or oxygen with nitrogen to the desired oxygen tension 

in a gas mixer, and then constantly perfuse the water with the mixed gas288. This 

approach reduces fluctuations in oxygen levels, which can be quite high with the 

former setup in small water volumes.  
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We used both methods in our acute hypoxia setup, and found no difference between the 

stability of the oxygen levels between the two. 

 

 

3.2 EXPOSURE TO CONSTANT HYPOXIA 
 

Prolonged or chronic hypoxia is probably more important in pathology compared to 

acute hypoxia, as most hypoxia-induced responses including angiogenesis, cell 

(de)differentiation and erythropoiesis require initiation of a gene program that may take 

several days or weeks to complete14.  

Thus, in order to study this in the zebrafish, we developed a setup for chronic hypoxia 

in which fish can be incubated, in theory, indefinitely, or at least for several weeks if 

needed.  

Our setup was significantly simpler than the acute hypoxia setup mentioned above, and 

consisted of a single aquarium in which the oxygen in the water was regulated by 

controlled perfusion of nitrogen gas as mentioned above141.  

Compared to the two chamber system used in the acute hypoxia setup, which could 

only hold one fish at a time, here we focused on a system with a single larger aquarium 

in order to increase the number of fish that could be included in each experiment. This 

was important as chronic hypoxia experiments generally took at least a week to 

complete, whereas the acute hypoxia experiments could be done in less than an hour. 

 

Fish as well as humans have adaptive systems that enable them to withstand hypoxia 

better when the oxygen levels are decreased slowly92-94,289. We have found that 

hypoxia-induced retinal angiogenesis in the adult zebrafish require oxygen levels at 10 

% of fully air-saturated water or lower. However, acute exposure to such extreme 

hypoxia kills the fish within 15 min. Thus we acclimatized the fish by slowly lowering 

the oxygen levels from 20 % air-saturation, which is well tolerated, to 10 % over the 

course of not less than 36 hours141, a procedure that has also been used by others92-94,289. 

 

Hypoxia experiments on cells are usually done in incubators, where the air inside of the 

incubator is constantly being exchanged with pre-mixed air of the right oxygen 

concentration207,290. When culturing adherent cells, the medium covering the cells is 

kept to a minimum such that the oxygen levels at the cell surface can be expected to be 

close to that of the air.  
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However, zebrafish (both embryos and adults) require more water and if without 

mixing oxygen gradients may form. Especially in the case of zebrafish embryos, which 

consume very high amounts of oxygen, diffusion of oxygen from the surface is too 

slow to compensate fully, and the oxygen level at the embryos will be lower than that 

in the air. This is especially true if several embryos are clustered together.  

Therefore we used an adapted version of the chronic hypoxia setup in our experiments 

also on zebrafish embryos. 

 

 

3.3 VASCULAR PERFUSION IN ADULT ZEBRAFISH 
 

In most examinations of the vasculature, researchers perform histological techniques to 

visualize blood vessels in the tissue. However, not all blood vessels are perfused, which 

is particularly obvious in pathological and therapeutical angiogenesis195. Thus it is 

important to study perfusion of the vasculature, for example by injecting dyes such as 

fluorescently labled dextrans into the circulation.  

 

In mice such perfusion studies are usually done by tail vein injections195, alternatively 

in terminal experiments by intra-cardiac perfusion.  

Zebrafish however have no major external veins that are well suited for injection, so 

one of the only ways to introduce compounds into the blood stream is by intra-cardiac 

injection28. This is, however, a more simple process in the fish compared to mice, as 

their heart is much more tolerant to the damage caused by the injection capillary291. 

When done by experienced researchers, more than 95 % of the fish survive the 

injection and are asymptomatic. Furthermore the incision done to open the pectoral and 

cardiac cavity does not need to be closed, as the tissue is elastic and close up by itself. 

Thus, the fish can be transferred directly back to clean water following the injection 

without suturing96.  

 

As the zebrafish heart is very small, the injections are done under a dissecting 

microscope with a small glass capillary mounted on a micro-manipulator. Using such a 

setup the fish can be injected within 2 min of being transferred to the microscope from 

the anesthesia, and no obvious bleeding occurs. 
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Smaller sized dyes (ie 70 kDa or smaller) can be used to evaluate the permeability of 

the vasculature. However, in order to see if cells may move through certain vessels or 

vascular structures, researchers may instead take advantage of available transgenic fish 

strains, where erythrocytes have been fluorescently labled292.  

This is a complementary tool to injecting fluorescently labeled beads or radio-active 

iodine labeled erythrocytes, the latter being a classical method for labeling blood 

cells293. The transgenic method is comparably much cleaner and un-invasive – and 

therefore preferred when available. 

 

 

3.4 TUMOR CELL GRAFTING 
 

In order to study tumor biology, there are in principle 3 ways to consider – all of which 

are available in zebrafish45 as well as mice.  

 

1) Tumorigenesis can be induced by treating the animals with carcinogens such as 

ENU, terpenes or other small organic mutagens294.  

2) Animals can be produced that are knock out for a particular tumor suppressor such 

as TP53295,  express high levels of oncogenes such as c-MYC296-297, BRAF298 or Ras299, 

or are both deficient in tumor suppressors and express oncogenes at high levels298.  

3) Tumor cells, or pieces of tumor tissue can be grafted into the animal either in a 

similar position as where the original tumor is found (orthotopic grafting) or in a 

position where it is easily accessible, for example under the skin (xenografting)300-303.  

 

While possibly being the most artificial of these methods, tumor cell xenografting is a 

respected and widely used approach in studies on tumor biology, due to the fast assay 

time, amount of information that can be gathered from such experiments and the ease 

of either genetic or therapeutic manipulation of the tumor environment.  

In zebrafish, tumor xenografting has been done both with mammalian tumor cell lines 

and zebrafish lines300-303. In adult zebrafish, syngenic zebrafish tumor cells are required 

in order to achieve successful grafting, as cells from other species are rejected300-301. 

However mammalian, including human cancer cells can be grafted into zebrafish 

embryos and immuno-suppressed juviniles304-305 that does not yet have a fully active 

immune defense, and are still transparent219,302-303,306-308. The latter feature enables very 

detailed monitoring of the tumor microenvironment both in high spatial and temporal 
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resolution compared with mouse models, as the fish can be observed by intravital 

microscopy for several days305.  

 

When cells are grafted into zebrafish embryos, it can be done in several locations. Most 

commonly a subcutaneous-like area known as the peri-vitteline space between the 

dermis and the yolk membrane is chosen219,303. This area is preferred as grafting in the 

zebrafish brain, muscle or yolk either rarely give rise to successful grafting or cause 

severe side-effects to the developing embryo309.  

 

 

3.5 FIN REGENERATION 
 

Non-malignant angiogenesis in adults are often studied in the context of repair or 

regeneration. In mice, a much used model of angiogenesis is the wound healing model, 

where a transdermal wound is created on the back of the mice, and the healing can be 

monitored over time310-313.  

 

In zebrafish, healing or regeneration can be studied by amputating a part of the tail fin 

and allowing it to re-grow98-103. Zebrafish have several fins that can be chosen, 

including large anal and dorsal fins, in addition to the tail fin159. However as the tail fin 

has two lobes it is possible to genetically interfere with regeneration in one lobe 

without affecting the other, thus having a counter-lateral, in-built control in the 

experiment98-103. 

 

Regeneration speed seems to depend on how much of the fin is amputated. In order to 

standardize the model, we therefore amputate just below the second last branch point of 

the fin rays. This corresponds to approximately the distal half of the fin.  

 

As zebrafish are shoaling fish, it is important – especially if using males – to keep at 

least 6-8 fish together following the amputation. This will reduce aggression and avoid 

instances where one dominant fish may bite the fin of the others, thereby decreasing 

variability within the group and improving reproducibility.  
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3.6 HISTOLOGY 
 

To visualize structures such as blood vessels in tissues, or to identify the number and 

identity of certain cell types and their location relative to others, histological techniques 

are usually done on either fixed or frozen tissue sections.  

 

Histology can either be done with non-specific dyes such as hematoxilin, eosin or 

giemsa, or directed against a particular protein using antibodies raised against a specific 

epitope (immunohistochemistry, IHC).  

The techniques are identical when using mouse or zebrafish tissues, but unfortunately 

many zebrafish epitopes are not sufficiently similar to those in mice or humans to allow 

antibody cross-reaction. Currently there are a lack of available specific antibodies 

which often makes IHC difficult in zebrafish44.  

The non-specific techniques usually give a broader view of the tissues, but it can often 

be difficult to see details such as for example the structure of the blood vessels. 

Also non-specific staining is not recommended for thick, whole mounted tissue pieces 

used for 3D investigations. 

In contrast – especially if using fluorescent probes – IHC can give very detailed 

information on the structures or cells targeted for investigation but do not reveal any 

information on other parts of the tissue.  

Thus these techniques are complementary and both should be done side by side if a 

broad analysis of the tissue is needed. 

 

 

3.7 MICROSCOPIC ANALYSIS 
 

There are several types of microscopy available for studying zebrafish tissues both in 

vivo (intravital imaging) and when they have been fixed and mounted. 

Usually in situ hybridization, used to detect mRNA in specific locations, as well as 

horse radish peroxidase IHC protocols, utilize colored probes that can be detected using 

non-filtered light microscopy.  

However, using fluorescently labeled secondary antibodies in IHC or zebrafish lines 

harboring transgenically expressed fluorescent proteins, images need to be acquired 

using a fluorescent microscope.  
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In Fluorescent microscopy the exact wavelength of the light beam used to excite the 

sample is controlled, as is the detection of only one emitted wavelength. Therefore it is 

possible to distinguish signals from one fluorophore even in mixtures of several 

different ones. 

 Furthermore, light in defined wavelengths can be more highly focused meaning that 

flourescent microscopy gives higher spatial resolution or definition and very clear 

images of the labeled structures.  

 

A more advanced type of fluorescent microscopy is confocal microscopy in which the 

light beams are highly focused lasers rather than incandescent light, and above all, 

where out-of-focus emitted light is removed by filtering through a pin-hole prior to 

detection. The filtration makes it possible to exclusively detect signals from a single 

focus plane, even in a thick tissue consisting of many focus planes.  

With this technique researchers can thus obtain stacks of focused planes, which can be 

used to build 3D images of the samples.  

This type of microscopy is therefore recommended when examining thick samples, 

such as whole zebrafish embryos or manually cut, whole mounted tumor samples.  

 

 

3.8 VIDEO ANALYSIS 
 

Today most cameras used for photography can also take video sequences. However, 

cameras specialized for obtaining video usually gives higher quality images of moving 

objects such as blood cells inside blood vessels144,284.  

For examination of blood flow in the adult zebrafish we therefore used a specialized 

digital video camera mounted on a microscope. Such video sequences had sufficiently 

high quality that the center of blood cells moving at high speeds could be accurately 

determined in still frames.  

By plotting the x,y coordinates of a blood cell at different times (0.04 sec between still 

frames), this gave the opportunity of measuring the blood flow speed accurately. By 

further determining the caliber of the vessels, also flow, blood pressure, vascular 

resistance and other cardiovascular parameters can be calculated for each vessel. 

As zebrafish are too small to be equipped with telemetry probes or similar, such 

videoscopic techniques are valuable substitutes for measurements of cardiovascular 
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physiology and even for visualizing perfused blood vessels in absence of a fluorescent 

or confocal microscope. 
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4 RESULTS 
 

 

4.1 HYPOXIA-INDUCED RETINAL ANGIOGENESIS IN ADULT 
ZEBRAFISH (PAPER I) 

 

Retinopathies such as ROP, DR and AMD are seriously debilitating disorders 

collectively affecting millions of patients worldwide145. As the most advanced stages of 

retinopathies are associated with hypoxia-induced, VEGF-mediated retinal 

angiogenesis, the best therapies available are anti-VEGF antibodies145,153,314, which 

unfortunately, however, require regular delivery by invasive intra-occular injections315, 

in order to reduce the amount of drug used per treatment occasion and to eliminate the 

side effects associated with systemic anti-VEGF treatment.  

Identifying orally active pharmaceuticals which interfere with retinal angiogensis have 

been hampered by a lack of available animal models which closely recapitulate the 

clinical symptoms of neovascular retinopathy, especially retinal hypoxia44,141,159. 

 

We were interested in studying if exposure to hypoxia would result in retinal 

angiogenesis in the adult zebrafish, and if so, if this angiogenic response could be 

influenced by the addition of orally active chemical compounds to the water.  

Such a model system could then possibly be exploited to discover novel orally active 

pharmaceuticals for treatment of neovascular retinopathies. 

 

First we studied the retinal vasculature in the adult zebrafish, and found that it is quite 

similar to that of mice, although much simpler (see figure 2).  

Similar to mice, zebrafish have a vasculature lying in association with the vitreal 

surface of the retina, originating from a central optic artery (OA) which gives rise to 4-

7 primary branches which sub-divide several times to cover the entire inner surface of 

the retina.  

Whereas in mice the vessels also penetrate into the retina, in zebrafish they are only 

present in one layer on the vitreal surface.  

In mice, the capillary network is formed almost immediately after arteries have 

branched off the central optic artery, and thus capillaries are present also in the center 

of the optic disc. Veins are also present in the entire retina, collecting the post-capillary 
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blood and bringing it back to the central retinal vein (CRV) which runs alongside the 

central retinal artery (CRA) and the optic nerve233 (see figure 2).  

In zebrafish, however the capillary region is sharply defined by the area where the 

arteries anastomose with extensions of the circumferential vein at the periphery of the 

retina. All retinal blood supply is collected by this vein, which does not run back to the 

center of the retina but rather brings back the blood via another route on the outer 

surface of the retina.  

The structure of the retinal blood vasculature is thus a remarkably simple tree-like 

structure, which makes this vasculature highly amenable to investigations on 

angiogenesis, as any small difference such as emergence of small vascular sprouts are 

readily detectable. 

 

Next we developed a setup for chronic exposure of zebrafish to hypoxia, as described 

in the methods section. We found, using this setup, that zebrafish quickly became 

adapted to the hypoxic environment. Thus a hypoxic level which almost kills the 

zebrafish during initial exposure became well tolerated after several hours, and the 

oxygen level could be lowered further.  

After a period of 1½-2 days we were thus able to have zebrafish surviving at only 10 % 

air saturation (820 ppb at 28 oC, water) which would kill the fish without the gradual 

adaptation.  

Following this protocol we exposed adult fli1:EGFP transgenic zebrafish to 10 % air 

saturated water for 12 days and discovered that the retinal vasculature had undergone a 

clear angiogenic expansion, specifically in the capillary area.  

This capillary angiogenesis was readily quantifiable as an increase in the number of 

angiogenic sprouts, branch points per vessel, inter-capillary distance and vascular 

density in the capillary region. At high magnifications it was even possible to see very 

thin fibers, known as filopodia or tips, being projected from the leading cells of the 

angiogenic sprouts (see figure 1). Thus this assay could also be used in the study of 

filopodia and tip cell dynamics in vivo. 

 

In order to study the dynamics of this angiogenic response to hypoxia, we took fish 

from the hypoxic environment at different time points during the experiment.  

We found that, compared to controls in normoxia, fish exhibited significant 

angiogenesis measured by all of the above mentioned four parameters already after 

three days of exposure. However after 6 days the changes were more pronounced and 



 

42 

not significantly different from when the fish were exposed for 12 days. Thus we 

decided to continue to expose the fish for 6 days in the future experiments. 

 

We next studied what level of hypoxia is necessary for the induction of retinal 

angiogenesis. As in the clinical situation, angiogenesis – for example in angiogenic DR 

and AMD – is usually only present in advanced disease in response to retinal 

ischemia7,154, we expected that severe hypoxia was needed in order to induce retinal 

angiogenesis. Indeed we found that 20 % air saturation was not sufficient to generate 

more than a few angiogenic sprouts which did not continue to mature into lumenized 

vessels.  

 

One of the aims of this study was to be able to evaluate orally active chemical 

compounds. We thus wanted to test if known anti-VEGF compounds which have 

documented anti-angiogenic effects in mice would similarly have anti-angiogenic 

effects in our assay.  

We tested two compounds with anti-VEGFR2 activity, sunitnib, which is currently 

used clinically in the treatment of certain tumors, and ZM323881 – the latter being the 

more specific. Both compounds showed strong anti-angiogenic effects at very low 

concentrations, 0.5 and 1.0 µM respectively.  

In drug treated zebrafish, hypoxia-induced retinal angiogenesis was practically non-

existing compared to fish that were exposed to vehicle alone. Both of these compounds 

furthermore showed no toxic effects in this assay. In fact less fish in the drug treatment 

groups succumbed to hypoxia during the exposure period, and the fish looked healthier 

and more active compared to the vehicle treated groups. 

 

As we found that this assay was suitable to study tip cell dynamics, we next 

investigated the role of the Notch-signaling cascade during hypoxia-induced retinal 

angiogenesis. 

Notch had previously been reported to inhibit tip cell formation in mice during 

development of the retinal vasculature49, and in tumors50-51, but it was not known how 

hypoxia influences the effects of Notch in this regard.  

We found that under normoxia, inhibition of Notch signaling by the γ-secretase 

inhibitor DAPT indeed led to marked tip cell formation in the capillary region of the 

retina. These tip cells did not go on to form mature, lumenized and functional vessels, 

which corroborated the reported effects of blocking Notch signaling in mice51. 
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However, when fish were exposed to both hypoxia and DAPT, the region of vascular 

tip cell formation changed radically. In this situation we found a profound induction of 

tip cells primarily in the arterial region which otherwise in normoxia+DAPT and 

hypoxia+vehicle had a smooth phenotype. The capillary region however looked like 

that in hypoxia+vehicle, and thus there were no extra tip cells present there. 

Interestingly the arterial sprouts induced by the combination hypoxia and DAPT 

seemed to be larger and possibly lumenized and functional (see figure 1) compared to 

the very thin fibers induced by DAPT in normoxia.  

The details behind DAPT induced arteriogenesis in hypoxia needs further examination, 

and is a subject of ongoing research in the lab.    

 

 

4.2 HYPOXIA-INDUCED NITRIC OXIDE OPENS A LYMPH-TO-BLOOD 
SWITCH IN FISH (PAPER II) 

 

Prior to our initial investigations of the existence, function and regulation of the 

lymphatic vasculature in zebrafish, biomedical researchers believed that lymphatics 

were not present in fish. However, we found reports indicating that the vasculature in 

the distal parts of the fins and possibly the skin share some of the characteristics of 

lymphatic vessels174-175,316, and references therein.  

 

As the fins of the adult zebrafish are thin and transparent, we first studied the flow in 

the fin vasculature of anaestisized zebrafish. We found that the distal fin vessels of the 

zebrafish are not perfused with blood, as it was rare to find any cells in this vasculature 

in relaxed fish.  

Furthermore when we occasionally found a cell in these vessels it was flowing very 

slowly compared to cells in the blood capillaries in the proximal parts of the fin. These 

findings indicated that these vessels may indeed be lymphatic in nature. However, in 

some cases where I had to chase the fish almost to exhaustion before I could get them 

out of the aquarium, we saw that these putative lymphatic vessels were packed with 

cells, flowing at a much higher speed.  

Such a phenomenon had not been described in the past, so we were interested in 

knowing first whether these vessels were indeed lymphatic vessels and second what 

happened in the exhausted fish that gave rise to the putative lymphatics being perfused 

with blood. 
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To study the first point, we looked for the thoracic duct in the zebrafish. This is the 

major lymphatic vessel in mammals, and it is located in association with the extended 

aorta and the cardinal vein just ventral to the spine. We did serial cross sectioning of the 

analogous region in the fish and found three vessels.  

The most dorsal vessel had a thick wall and is filled with blood cells, thus we identified 

this vessel the dorsal aorta (DA).  

Just ventral to the DA, we found a blood filled large caliber vessel with thinner walls, 

which we identified as the posterior cardinal vein (PCV).  

Finally we found a third vessel between the two with very thin walls and devoid of 

blood cells.  

Immunohistochemical staining revealed that this vessel was positive for the 

mammalian lymphatic cell marker Prox1317.  

Finally electron microscopy revealed that this vessel had a very thin, single layer 

endothelium and scarce if any basement membrane – all characteristics of lymphatic 

vessels318-319.  

We thus defined this vessel as the zebrafish homologue of the thoracic duct (TD). 

 

We were interested in investigating whether the vessels in the fins would empty into the 

thoracic duct, which would be proof that they belong to the same (lymphatic) vascular 

network. To do this, we took advantage of a different fish – the glass catfish 

(kryptopterus bicirrhis) – which has a completely transparent body320.  

Similar to the zebrafish, this fish also has a DA, PCV and TD which histologically are 

identical to the zebrafish analogues, and are located in the same region. As all vessels in 

the body of this fish can be accurately tracked, we were able to re-create a map of the 

peripheral blood and lymphatic vasculatures.  

We confirmed previous findings (John Fleng Steffensen et al. Acta Zool, 67, 193-200) 

that all vessels which extend more than half way into the fins ultimately drain into 

either the thoracic duct or a second major longitudinal lymphatic vessel called the 

collecting lymphatic vessel.  

Collectively, these studies positively identified the existence of lymphatic vessels in 

both the zebrafish and the glass catfish, and indicated that the vessels in the fins are in 

fact lymphatic in nature. 

 

In the zebrafish we further found that the vessels in the distal part of the tail fin were 
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only weakly positive for VEGFR2 and stained positive for Prox1, adding to the 

evidence that these vessels are in fact lymphatic321.  

In order to functionally identify these vessels as lymphatic, we found that  

1) There are little or no cells traveling in these vessels under normal physiological 

conditions  

2) The flow is very slow and  

3) Dye, injected into the blood stream via the heart, did not readily flow into these 

vessels.  

Thus, both histologically and functionally, these distal fin vessels are similar to 

mammalian lymphatic vessels.  

 

However, as mentioned above, in stressed fish these distal fin vessels were filled with 

fast flowing blood.  

Initial attempts to find the stressor responsible for this phenotypic change, we found 

that it was not adenosine receptor mediated, as the pan-adenosine receptor antagonist 

theophylline322 did not inhibit stress-induced lymphatic perfusion. We also found that 

neither warm nor cold water had any effect.  

We then thought that hypoxia may be a factor, and instead of stressing the fish, we 

submitted them to acute 30 min. exposure to 15 % air saturated water, which is 

considered highly hypoxic for zebrafish.  

We found that both blood cells and dye injected in the blood stream were found 

immediately in all distal fin vessels upon microscopic examination less than a minute 

after the fish was moved from the hypoxia chamber/injection sponge respectively. Thus 

hypoxia alone was able to induce the switch of lymphatic to blood-like vessels.  

 

As we were not able to positively identify the cell type present in the lymphatic vessels 

under hypoxia by the examinations done under the light microscope, we utilized 

fli1:EGFP;gata1:dsRed double transgenic fish180, where a red fluorescent protein is 

produced under the erythrocyte-specific promoter gata1, to make sure that the 

lymphatics were in fact perfused with erythrocytes.  

We found no gata1:dsRed positive erythrocytes in the distal fin vessels under 

normoxia, but many when the fish were exposed to acute hypoxia.  

Thus we identified zebrafish lymphatics as a backup circulation for blood perfusion 

under hypoxic stress. 
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Next in order to investigate the structural mechanism by which lymphatic vessels were 

allowed to be filled with blood, we again turned to the glass catfish.  

As both these and other fish have a specialized structure previously termed inter-arterial 

anastomoses, linking (primary) arteries to lymphatic (secondary) vessels (John Fleng 

Steffensen et al. Acta Zool, 67, 193-200), we thought they may be important regulators 

for the observed hypoxia-induced switch.  

We confirmed previous findings that these structures are indeed a starting point for the 

lymphatic vessels in the glass catfish (John Fleng Steffensen et al. Acta Zool, 67, 193-

200).  

Downstream of these structures the vessels ran towards the extremities, including the 

fins, divided several times and ultimately gave rise to all the vessels in this tissue. 

Furthermore, we found that under normoxia, these structures were tightly curled up in a 

cork screw like shape (see figure 4), not allowing more than an odd cell or two to enter 

through them, and drastically reducing the flow speed in the downstream lymphatics 

compared to the flow speed in the arteries from which they arise.  

Under hypoxia however, these curled structures became dramatically dilated and 

straightened and adopted a function more like that of an arterial branch, not restricting 

flow in any way. This led to the swift filling of the collecting lymphatics including the 

thoracic duct with blood cells. These vessels also became dilated, probably due to the 

increased intravascular blood pressure.  

Due to their role as gate-keepers between arteries and lymphatic vessels we coined the 

term arterial lymphatic conduits (ALC) to these structures.  

ALCs have never been described in zebrafish, so we looked for them in the region 

where they are present in the glass catfish, and found that they are in fact present in 

very high numbers sitting either on the posterior part of the dorsal aorta itself (see 

figure 4), or on primary branches in the anterior part, but close to the DA.  

Also in the zebrafish these ALCs become dilated and straightened as a response to 

acute hypoxia, indicating a similar mechanism behind lymphatic perfusion in both fish 

species. 

 

ALCs have been described to be associated with smooth muscle in the eel29, and NO is 

an important mediator of arterial smooth muscle cell relaxation323-324. We therefore 

wanted to know if NO plays a role in hypoxia-induced ALC opening and lymphatic 

perfusion.  
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Figure 4: Arterial-lymphatic conduits (ALCs) in the zebrafish, glass catfish and rat. Top: ALCs at 

the posterior dorsal aorta of fli1:EGFP adult zebrafish. Middle: ALCs in the adult glas catfish. 

Bottom: connections between LYVE-1 postive lymphatic and PECAM positive endothelial cells in 

the rat mesentery356. 

 

Initially we found indications that NO production is present at the ALC region, since 

hypoxia-exposed glass catfish, infused with the NO-reporter DAF-DA, showed positive 

signals in a location that corresponds to where ALCs are present.  

To study the role of NO, we undertook a pharmacologic test of small chemicals that 

interfere with physiological NO metabolism and signaling to probe their effects on 

lymphatic perfusion in the distal tail fin of the zebrafish.  

In normoxia, incubation with the NO-donor sodium nitroprusside (SNP) alone led to a 

similar phenotype as hypoxia, whereas the NO scavenger c-PTIO blocked lymphatic 

perfusion in hypoxia.  

This was similarly inhibited by blocking NO biogenesis via eNOS with the blockers L-

NMMA and L-NAME, whereas the inactive stereo-enantiomer D-NAME had no 

effect. Adding back NO by co-administration of SNP restored lymphatic perfusion with 
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L-NMMA under hypoxia.  

As most of the smooth muscle relaxation stem from a pathway where NO-induced 

guanylyl cyclase activity and cGMP production plays a central role276-277, we incubated 

the hypoxia exposed fish with ODQ, a guanylyl cyclase-inhibitor, and found that the 

hypoxia-induced perfusion was blocked by this compound. In this case, SNP could not 

restore the phenotype.  

Together these findings strongly argue that NO is the main mediator of hypoxia-

induced ALC opening and lymphatic perfusion in fish. 

 

 

4.3 HYPOXIA-INDUCED VEGF-VEGFR2 SIGNALING DRIVES 
METASTASIS IN A ZEBRAFISH XENOGRAFT MODEL (PAPER III) 

 

Tumor hypoxia is known to be associated with a more highly metastatic phenotype325, 

but the mechanism is not known as it is difficult to study in conventional mouse 

models. Furthermore, while tumor hypoxia can be detected as present or absent in 

murine models, it is not homogeneous in neither time nor space and not controllable326.  

Our aim was to develop a tumor xenograft model in transparent zebrafish embryos in 

which genes in either the tumor cells or the host embryo can be readily up- or down 

regulated, and which can be used to study the role of hypoxia on early stages of tumor 

cell dissemination and metastasis.   

 

Initially we developed the tumor cell implantation protocol (see figure 5 top row). 

Being inspired by other published protocols on this topic302-303,309, we chose to inject 

tumor cells into the peri-vitelline space of 2 days old fish embryos.  

The cells were prior to injection labeled in vitro with the red fluorescent dye DiI and we 

found that approximately 100 cells gave a modest size tumor in embryo, which were 

large enough to survive and communicate with the host, but not so large that it affects 

its development.  

Testing different murine tumor cell lines, we found that the fibrosarcoma cell line T-

241 gave a rise to a coherent isolated cell mass, which was non-invasive and grew 

mostly in situ. The more aggressive Lewis Lung Carcinoma (LLC) cell line, however, 

gave rise to less coherent and much more mobile and invasive tumors. These 

differences mirrored the reported differences in aggressiveness and metastatic potential 

of these cell lines in murine xenograft models195,327. 
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Figure 5: The tumor cell xenografting procedure. From Rouhi, P et al, Nat. Proc. In Press 

 

Extending the use of this model to clinical samples we found that the low metastatic 

human ovarian carcinoma cell line OVCAR 8328 led to tumors growing mostly in situ 

and send only very few cells into peripheral parts of the embryo, whereas the highly 

metastatic human MDA MB 231329 breast cancer cell line hardly form a tumor mass at 

all, but instead most of the injected cells disseminated almost immediately after 

injection to all parts of the embryo. 

 

To study the role of hypoxia in tumor cell dissemination we used the low metastatic T-

241 cell line and subjected grafted embryos to either hypoxia or normoxia, in a setup 

that were modified from what we had previously published141.  

After submitting the embryos to 7.5 % air saturation for 3 days, we observed a drastic 

increase in the number of both locally but also distally disseminating cells (see figure 5 

bottom row) indicating that the tumor cells disseminate both via local invasion of the 

surrounding tissue and by penetrating the tumor vasculature and being transported 

through the blood stream.  

Furthermore tumor angiogenesis was also more pronounced in hypoxia, indicating that 

the imposed hypoxia elevated the production of angiogenic factors by the tumor cells, 

which could functionally activate signaling by receptors on zebrafish endothelial cells. 

These results were repeated with LLC cells, which gave similar results. 

 

As VEGF is induced by hypoxia, we implanted T-241 or LLC tumor cells which have 
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been genetically engineered to express high levels of human VEGF-A46 and compared 

their metastatic properties to control cells transfected with the empty plasmid.  

We found that high expression of VEGF-A by the tumor cells phenocopied the hypoxic 

induction of both tumor angiogenesis and dissemination/metastasis.  

Furthermore, as in hypoxia, elevated expression of VEGF-A by the tumor cells also led 

to pronounced pericardial and peri-vitelline edema, indicating that human VEGF-A can 

activate signaling by zebrafish receptors to increase the permeability of the blood 

vessels. Again these effects were similar in both T-241 and LLC tumor cell lines.  

 

Looking into the dynamics of VEGF-A-induced tumor cell dissemination, we found 

that cells started to disseminate from the primary tumor after approximately 4 days post 

injection. 6 days post injection many cells had disseminated and seeded micro-

metastasis in the periphery, and after longer time the mortality of the embryos increased 

to an extent that it was not possible to continue the experiments. 

 

As we found that tumor-VEGF-A acted on the host vasculature, we took advantage of 

two unique features of the embryonic zebrafish model to further investigate the role of 

VEGF in tumor cell dissemination.  

First we added the tyrosine kinase inhibitor sunitnib to the water, to see if inhibition of 

VEGF receptors (among others) could block the tumor-VEGF-A-induced 

dissemination. Second we injected a morpholino which specifically targeted VEGF 

receptor 2, immediately after fertilization of the fish eggs, to investigate if this was the 

only receptor important for the observed dissemination.  

We found that both approaches led to a drastic reduction in the number of disseminated 

tumor foci – which almost returned to the level seen with non-transfected tumor cells. 

Also intra-tumoral blood vessels were practically ablated in the treated groups and 

pericardial edema was minimized, indicating that VEGF-A signaling via VEGFR2 was 

the primary driving force behind tumor-VEGF-A-induced tumor cell dissemination as 

well as systemic edema in the zebrafish.  

Interestingly, the levels of sunitnib and VEGFR2 morpholino used in this study were 

kept low enough not to affect developmental angiogenesis as the non-tumor vasculature 

remained unaffected in treated compared to non-treated embryos.  

Thus the tumor-induced angiogenesis seems to be more sensitive to VEGF inhibition 

than the growing vasculature in the developing embryo.   
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Finally, as hypoxia is up-regulating multiple pathways, we investigated the importance 

of VEGF for hypoxia-induced tumor cell dissemination. We used sunitnib to inhibit 

VEGF receptors under hypoxia, and found that hypoxia-induced tumor-angiogenesis, -

dissemination and -metastasis as well as pericardial edema were essentially eliminated 

by this compound.  

These results collectively indicate that hypoxia-induced VEGF-A production by tumor 

cells act on host endothelial VEGFR2 to induce tumor angiogenesis and this pathway is 

of major importance for early steps of tumor cell dissemination and metastasis. 

 

 

4.4 PI3 KINASE IS AN IMPORTANT, NOVEL TARGET FOR ANTI-
ANGIOGENIC THERAPY IN RETINOPATHY (PAPER IV) 

 

As current anti-angiogenic treatments for retinopathies require repeated, invasive and 

expensive intra-occular injections315, it would be of great benefit to the patients if 

equally potent orally active drugs could be discovered.  

However, many orally active drugs are associated with systemic side effects, as 

currently available drugs do not target the pathologically expanding retinal vasculature 

specifically158.  

 

In an attempt to find drugs that affect retinal angiogenesis specifically, we undertook a 

small screen for both small molecules and proteins that were thought to interfere with 

retinal angiogenesis during development of the fish embryo.  

Among the factors tested, we found that the PI3 kinase inhibitor LY294002 inhibited 

normal formation of the retinal vessels between 2 and 5 days of development, but did 

not have any effect on the development of the vasculature in the rest of the embryo 

during this time period.  

 

The effects of LY294002 on the developing retinal vasculature were concentration 

dependent with increasingly inhibited retinal angiogenesis between 7.5 µM and 20 µM. 

Concentrations higher than 17.5 µM, however, led to systemic toxicity, so the 

intermediate concentration 10 µM were chosen for future experiments. 

 

We found that LY294002 was effective mainly between day 2 and 3, as adding the 

drug to the water just during this period led to significant inhibition of retinal 
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angiogenesis when examining the embryos at day 5.  

Also, even though the effects were similar when the drug were added between day 3 

and 4, keeping the embryos in the drug from day 3 to the end of the experiment at day 5 

did not lead to significantly inhibited angiogenesis.  

Thus PI3 kinase activity in the retinal vessels is important during the second day of 

development, and blocking the activity only during this time window leads to inhibited 

retinal angiogenesis later during development. 

 

As a control that LY294002 in fact acted by specifically inhibiting the PI3 kinase 

pathway, we tested the effect of blocking an important downstream signaling 

component – PKB/Akt – by the structurally unrelated inhibitor SH6330. SH6 were able 

to phenocopy the morphologic alterations in the hyaloid vasculature at day 5, indicating 

that this pathway was indeed important for correct patterning.  

To further test this, ectopic hyaloid vessels which develop in the plexinD-mutant fish 

out-of-bounds57, did not develop when embryos were treated with LY294002.  

The PI3 kinase-Akt pathway is thus a general mechanism for angiogenesis in the retina, 

also in plexinD mutants. 

 

One concern using anti-VEGF therapy for treatment of retinal angiogenesis is that 

VEGF also has neuroprotective functions331 and thus blocking VEGF may lead to 

neuronal death332. To investigate if the PI3 kinase pathway also plays an important role 

in neuroprotection, we investigated the visual function of zebrafish larvae at 5 days post 

fertilization in two different ways.  

First electroretinography was done to measure the function of photoreceptors following 

stimuli with white light at different flash intensities. We found that the b-wave 

amplitude was unaffected by LY294002 treatment, indicating that photoreceptors 

function normally.  

Also, retinal histology indicated that – even though  early exposure to LY294002 did 

induce a few apoptotic nuclei and vacuoles in the retina – when the drug were added at 

day two, the retina develops normally and only the retinal vasculature is affected. 

Second we tested the response to perceived vision cues following intraocular 

administration of LY294002. Intraocular administration was chosen to eliminate weak 

edema that was present in fish treated by adding the drug to the water. Intraocular 

injection of the drug, however, did not lead to any systemic side effects, and retained its 

anti-angiogenic abilities on the retinal vasculature.  
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Following intraocular injection of LY294002, the response to vision cues in un-

anaestisized fish placed in a rotating drum with alternating white and black stripes, was 

unaffected compared to both non-injected and vehicle-injected controls. 

 

Zebrafish fins regenerate following partial amputation, in an angiogenesis-dependent 

manner28, similar to the wound healing process in mammals. Thus blocking 

angiogenesis would lead to inhibition of regeneration, which would be quantifiable as 

the length of the regenerated fin tissue28,333.  

As a test of whether LY294002 also has anti-angiogenic effects in adult animals, we 

subjected fin amputated adult zebrafish to water containing 10 µM LY294002 or 

vehicle.  

We found that in the presence of LY294002 adult zebrafish dorsal, anal or caudal fins 

did not regenerate as quickly as in the vehicle controls. Furthermore, the vasculature in 

the regenerated fin was less developed in the LY294002 group compared to controls. 

Interestingly we found more tip cells being formed during regeneration in the 

LY294002 treated group, compared to controls, but the importance and mechanism 

behind this phenomenon was not further studied.  

These findings indicate that LY294002 indeed also have anti-angiogenic potential in 

adult animals.  
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5 DISCUSSION 
 

Zebrafish hold several advantages over mice as an animal model system in 

developmental and molecular biology334-335 and pharmacology336-337. Their use as 

models to study physiology has, however, been limited338.  

We have shown in the series of papers presented in this thesis that both adult and 

embryonic zebrafish are in fact very well suited to study physiological and pathological 

aspects of tissue regeneration and responses to hypoxia44,122,141,159,219,284.  

 

Adult and embryonic zebrafish alike have been frequently used for pharmacological 

and toxicological tests of small molecular weight compounds339. One example of this is 

the so called chemical genetics models in zebrafish340-341.  

Chemical genetics is the process of screening for new pharmaceutical leads for further 

development against diseases that are closely mirrored in an available zebrafish mutant 

line78 or by injection of a morpholino against or mRNA overexpressing proteins 

important for that disease342. The benefit of using zebrafish in such studies is due to the 

ability of the fish to readily take up pharmaceuticals added to the water either 

transdermally or by via the water-blood interface in the gills343.  

While it is clear that zebrafish do have great qualities in terms of medium-high 

throughput screening in this regard344, their pharmacodynamics such as Absorption, 

Distribution, Metabolism and Elimination (ADME) probably have different kinetics 

than in mammals343,345. Thus it is likely that in many cases the IC50, maximum 

tolerated dose and other important characteristics of new pharmaceuticals are different 

in zebrafish compared to mice and humans.  

Another drawback is that some compounds with very bad solubility in water at neutral 

pH, are not taken up in zebrafish, but may never the less be very effective in mammals. 

As both we and others are using our disease models in the zebrafish to identify new 

potential drug candidates, these pharmacokinetic considerations have to be kept in 

mind, and the drugs should be validated in mouse models if available to increase the 

likelihood that they may also be active in patients. 
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5.1 BENEFITS AND DRAWBACKS OF THE HYPOXIA-INDUCED 
RETINAL ANGIOGENESIS MODEL 

 

As tissue hypoxia is a dynamic, heterogeneous and poorly controlled state, it is very 

difficult to study graded hypoxia responses in mammalian disease models326.  

We have shown that zebrafish offer unique possibilities to study the effects of hypoxia 

on vascular physiology and pathology in a controlled manner.  

Another benefit of the fish models we have presented here is the temporal control and 

continuous in vivo observations that are featured by either transparent embryos or 

transparent adult glass catfish.  

Using these model systems one can see how fast a particular tissue respond to a broad 

range of hypoxia levels, and observe this response in real time under the microscope. 

Furthermore the possibilities of using microinjection techniques in the zebrafish 

embryo to knock down or over-express genes of interest open the door to detailed 

studies on the dynamics and effects of these genes in either the host or in a tumor 

environment. Hopefully this approach could be expanded to the hypoxia-induced 

retinal angiogenesis assay in the future – in a similar way as it is currently done in the 

regenerating tail fin98-103 – also allowing the dissection of this response in molecular 

detail.  

 

There are some important differences between the zebrafish and mammalian retinal 

vasculature27,141. Zebrafish does not have choroidal blood vessels, as it seems the outer 

retina can meet its oxygen demand by direct absorption from the water, which makes 

the retinal vasculature simpler than in mammals. This simplicity does not, however, 

mean that the retinal vasculature respond differently to stimuli that trigger pathological 

events in patients.  

For example, the zebrafish retina and retinal vasculature respond to high-blood sugars 

in largely the same way as found in diabetic retinopathy158. Also our own finding is that 

hypoxia-induced retinal angiogenesis141 in the zebrafish closely mirror pathological 

hypoxia-induced angiogenesis found in patients with AMD and DR.  

 

The zebrafish retinal vessels are covered with mural cells, as they are in humans27. A 

hallmark of retinopathy, linked to mural cell coverage, is vascular leakage346. Therefore 

it is probable that the mural cell coverage of the vessels in retinopathic patients are 

impaired or disrupted.  
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As in the tumor situation, vascular pericyte re-installment may improve perfusion, 

lower hypoxia and leakage as well as the subsequent edema and hemorrhaging233,347-348. 

Such a strategy may therefore be an important step in treating retinopathy, and the 

zebrafish model of hypoxia-induced vascular retinopathy we have established would be 

well suited to study how hypoxia and hypoxia-induced signaling factors are involved in 

establishing mural cell coverage of new vessels, alternatively mural cell shedding of 

existing mature vessels prior to endothelial sprouting during retinal angiogenesis.  

 

In this regard it would be a big improvement of the model if a zebrafish strain 

containing a non-green fluorescent reporter specifically in mural cells could be 

developed. Such a strain would significantly contribute to studies not only on the role 

of mural cells in retinopathy but also the dynamics of mural-endothelial cell 

interactions during angiogenesis and in hypoxia in general. 

 

Also in the study of therapeutic angiogenesis for treatment of ischemic disease 

including myocardial and cerebral ischemia, mural cell responses in hypoxia is of great 

importance. As beneficial therapeutic outcome is dependent on inducing stable arterial 

blood vessels, mural cell and especially vascular smooth muscle cell investment of the 

therapy-induced vessels is critical263-266.  

However, as mentioned in the introduction, one of the first steps of angiogenesis is 

breakdown of the basement membrane and shedding of the mural cells before sprouting 

of the endothelium can occur349.  

It seems from our retinal angiogenesis model that hypoxia is not sufficient to shed the 

vascular smooth muscle cells from the arterial part of the vasculature, as the sprouting 

angiogenesis is only found in the less densely covered capillary region. However, 

Notch signaling may be important for endothelial-smooth muscle cell interactions, as 

blocking Notch suddenly allow massive arterial sprouting in response to hypoxia.  

This hypothesis is strengthened by the finding that Notch signaling is important in 

specifying arterial endothelial cells350. As vascular smooth muscle cells particularly 

associates with arterial endothelial cells, it seems likely that these two processes are 

intertwined.  

It will be interesting in the future to study the role of Notch in hypoxia and vascular 

smooth muscle cell biology as well as the implications for arteriogenesis in vivo.  

 



 

  57 

A potential problem with the zebrafish hypoxia-induced retinopathy model is that 

hypoxia is global and not localized to specific patches in the retina. Thus, the hypoxia-

induced angiogenic factors in the zebrafish model does probably not generate a gradient 

which implies that the angiogenesis is not directed towards an ischemic area in 

particular but instead relatively uniform in the entire retina.  

This is an important difference from the human pathology, as angiogenesis towards a 

gradient of angiogenic factors may be more efficient compared to angiogenesis when 

no such gradient exist.  

Also the disease history of retinopathy involves other steps prior to establishment of 

retinal hypoxia, which could influence hypoxia-induced signals7,151,154. These steps 

include edema, atrophy, inflammation and other types of immune system 

involvement351-352.  

Some or all of these steps are undoubtedly involved in the zebrafish model at later 

stages though, but it is not know if the pathological sequence of steps is important in 

retinopathy as it is in other pathologies such as cancer. 

 

 

5.2 TO BE OR NOT TO BE A LYMPHATIC VESSEL IN FISH 
 

The existence, anatomy, properties and function of zebrafish lymphatics is a 

controversial issue173-174. There is little doubt that fish have lymphatic-like vessels, but 

whether they are identical to lymphatic vessels in mammals seems to be a matter of a 

more or less rigorous definition of the term.  

There is scattered evidence that zebrafish lymphatics to some extent may originate in 

blind ended vessels in the skin180 (Schülte-Merker S, unpublished observations), but it 

now also seems evident that they arise from direct anastomosis, via ALCs, with the 

arterial blood supply (see figure 4)29,173-176.  

 

The lymphatic vessels we have described are morphologically, cytologically, 

anatomically and functionally (under physiological conditions at least) identical to 

those described by other groups as well as to mammalian lymphatics 88,180,182,184,353-355. 

Therefore, we believe that the term is warranted, in spite of our discovery that these 

vessels do not exclusively originate from blind ended lymphatic bags in the periphery.  

 

Whether the ALCs we have described in the adult fish also exist in embryos is still 
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unclear, but it is clear that lymphatics in the developing embryo do not receive fluid 

from the blood circulation87,180,184.  

Thus if the lymphatic vessels in the embryo are in fact identical to the adult lymphatic 

vessels, three questions needs to be addressed: When and how are ALCs established 

during embryogenesis and are there parallels to ALCs in mammals?  

Several recent publications shed light on these issues.  

 

It has recently been described that zebrafish lymphatics develop in parallel with the 

arterial blood vessels specifically90. In fact, lymphatic endothelial cells seem to crawl 

on the arterial endothelial cells and establish both transient and more long lived 

connections between the cell types.  

It may be possible that such arterial-lymphatic endothelial cell connections can mature 

and develop into the arterial-lymphatic conduits we have described in adult fish, during 

arterial coating with smooth muscle cells.  

This should be investigated later during development, as arterial coating – which 

presumably is an important step in ALC maturation – has not yet happened at the time 

points investigated by these researchers90.  

 

There are also indications that blood-lymphatic connections may exist in mammals. It 

was recently described that there are direct contact points between blood and lymphatic 

vessels in the rat mesentery (see figure 4), which however did not seem to transport 

blood into the lymphatics356.  

This is in line with our observations that ALCs are closed under normal physiological 

conditions. It would be interesting to see if such contacts are also present in other 

tissues, and perhaps in particular in tumors, and if they – as in fish – can “open up” 

under hypoxia. 

 

Other researchers have also found “lymphatic-like” vessels, which seems to be in 

contact with blood vessels357-358. These vessels were slowly collecting dye injected in 

the blood stream, but much slower than it was distributed in the blood circulation. 

They coined the term primo vessels to this subset of the vasculature, as they did not 

believe that they would fall under a strict definition of the term lymphatics.  

However, given the growing body of evidence mentioned here, perhaps it is time to 

reconsider the stern definition of the lymphatic vasculature and acknowledge that 

lymphatic vessels may have direct connections to blood vessels in mammals as well. 
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As this is a young area of research, much of the recent results both in fish and rats will 

have to suffer the test of time and reproduction, but if the results prove to be solid, it 

seems like the lymphatic vessels in fish, are indeed very similar to those in mammals.  

If so there may be arterial-lymphatic conduits which serve as gatekeepers for transport 

of cells and large macromolecules from the blood into the lymphatics even in 

mammals357 – at least in hypoxic tissues. If such connections are present in or close to 

tumors for example, it is likely that this may be a mechanism of hypoxia induced 

transport of tumor cells from the blood to the lymph.  

Such a mechanism would explain why lymph node metastases are often observed prior 

to metastases in blood-filled organs such as the liver, lungs or bone marrow – even in 

cases where intra-tumoral lymphatics have not been found359.  

As we have found that NO is the major driving force of these hypoxia-induced 

movements of blood cells into the lymphatic circulation, this may raise the possibility 

that anti-NO treatment such as c-PTIO or ODQ could be used as an anti-metastatic 

agent in combination with traditional therapeutics. 

 

One matter of particular importance related to hypoxia and lymphatics from the fish 

perspective is their ability to absorb oxygen directly through the skin360-364. In 

zebrafish, this mechanism seems to contribute most of the consumed oxygen during 

embryogenesis362-364, which is illustrated by zebrafish mutants such as cloche365. In 

homozygous cloche mutant embryos hemangioblast differentiation is blocked and thus 

neither blood nor blood vessels are formed during development. 

Such a severe phenotype should result in early embryonic lethality in mice, but the fish 

embryos survive until day 4-5. As the larvae hatch from the egg at around day 2-3, this 

would correspond to post partum stages in mouse development. The oxygen needed for 

tissue development in this period thus have to come from cutaneous absorption. 

It seems that in adult fish, the cutaneous route of oxygen uptake may primarily be 

important for supplying the skin and fins with oxygen, but probably not muscles or 

other tissues under normal physiological conditions366.  

However, our finding that the lymphatic vessels, which are the main vessel type in skin 

and fins, may be perfused with blood under hypoxia specifically, points to this system 

as an important backup or reserve for extra oxygen extraction from the water during 

hypoxia. Blood flowing though skin lymphatics may thus increase the cutaneous 
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oxygen uptake significantly thereby improving oxygenation of critical tissues such as 

the brain and heart under hypoxia.  

 

 

5.3 HYPOXIA-INDUCED METASTATIC BEHAVIOR STUDIED IN 
ZEBRAFISH EMBRYOS 

 

In mice, current metastasis models do not allow detection of tumor micro-metastatic 

lesions smaller than several thousand cells, which are already established and growing 

in the metastatic niches. Such micro-metastases thus represent the ultimate 

consequence of the metastatic cascade122,219. Investigating such late-stage metastatic 

clusters may not give insight into signaling factors and cell processes which are 

important earlier during the metastatic cascade, but at the time of settlement and growth 

in the new location are no longer are evident.  

For example the early events of tumor-cell transformation to an invasive phenotype as 

well as the invasion of the peritumoral tissue and intratumoral vasculature are difficult 

to study in traditional mouse xenograft models.  

Furthermore, while most researchers today accept that tumor hypoxia plays a role in the 

pathogenesis of the disease; several important issues regarding hypoxia and tumor cell 

invasiveness are still not well addressed.  

 

Does hypoxia lead to tumor cell EMT?  

Are the effects of hypoxia exclusively derived from effects on the host cells such as the 

vasculature?  

What are the most important molecular pathways, and what levels of hypoxia are 

needed?  

Many so called cancer stem cells are cells which have undergone EMT and have 

acquired an invasive phenotype367-368. These cells are often found in the vascular niche 

in tumors369-372. As the vascular niche may be presumed to be the best oxygenated 

region in the tumor, how does this add up with the evidence supporting a role of 

hypoxia in the induction and maintenance of such cells?  

What are the factors involved in the dynamics of the induction and turnover of 

invasive, cancer stem cells?  

 

These questions are very difficult to answer using traditional mouse models.  
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Mouse models are also not well suited for discovery of compounds that may interfere 

with the actual process of tumor cell invasion and metastasis – especially in hypoxia. 

 

Our tumor dissemination and metastasis model in zebrafish embryos offers the 

possibility to investigate what happens during EMT, induction of stem-like 

characteristics and transformation from a non-invasive to an invasive tumor cell 

phenotype.  

A particular strength of the model is the possibility to study the role of hypoxia and the 

vascular niche – as well as how to interfere either genetically or pharmacologically 

with this process. 

 

In mouse tumor xenograft models, researchers usually use fast growing tumor cell lines 

that give rise to a large tumor within 3-4 weeks. In this short time, however, micro-

metastases have not had time to develop, and this model is therefore rarely chosen for 

studies on the metastatic process46,195,221.  

Instead, tumor cells are injected into the blood stream, thereby circumventing the first 

critical steps of tumor cell invasion into the vasculature, which greatly speeds up the 

studies on metastatic settlement and growth373-374.  

However, as these studies are done in a situation where there is no primary tumor at all, 

the organism may respond differently to the circulating tumor cells.  

For example, the presence of a primary tumor is probably important for development of 

the pre-metastatic nieces137,227, which are therefore not present in these metastasis 

models.  

Also, it has been reported that primary tumors may activate the growth of otherwise 

dormant metastatic lesions373.  

The metastasis protocol of injecting tumor cells in the blood stream directly thus seems 

to have several important biological drawbacks.  

The zebrafish embryonic metastasis model always starts with a primary tumor in which 

the most aggressive cells are allowed to invade the blood stream, thus more closely 

resembling the clinical process of metastasis.  

 

However, not everything that shines is gold, and there are a few points of concern with 

the zebrafish tumor invasion and metastasis assay, which should be taken into account. 

Zebrafish embryos do not develop well at 37oC, so in our assay the embryos are 

incubated at their optimal temperature, 28.5 oC. This is a very hypothermic environment 
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for the implanted tumor cells, and it is not known how the cells respond to this. We 

have noticed that most implanted tumor cells grow very slowly in the zebrafish, which 

– at least in part – may be because of hypothermia.  

Also, while the zebrafish embryos do not reject the tumor cells, the mammalian tumor 

cells may have a different growth profile in a zebrafish environment, consisting of 

zebrafish serum and growth factors, compared to a native environment in a syngenic 

animal.  

Finally, the fish generally succumb to the effects of their tumors after about 1-2 weeks, 

which are too short a time to study later stages of the metastatic cascade. Because of 

these concerns we do not recommend to use this assay for evaluation of tumor growth 

characteristics nor later stages of the metastatic progression.  

The existing murine models are probably better suited for such studies. Thus, to get a 

full view of the metastatic process – especially during hypoxia – I propose that 

investigations should include both our zebrafish model, and the existing mouse models. 

 

Little is known regarding to what degree hypoxia induces expression of angiogenic 

factors other than VEGF. There are reports that PDGF375, Lysyl oxidase136-137,229 and 

Osteopontin373,376 may also be induced by hypoxia signaling in tumor cells.  

We found that the tyrosine kinase inhibitor sunitnib, which blocks VEGF receptors, 

blocked hypoxia-induced tumor angiogenesis and tumor cell dissemination, adding to 

the evidence that VEGF is important for this process.  

However, sunitnib is a non-specific drug, blocking many tyrosine kinases, including 

PDGF receptors and c-Kit377, which may also be important for tumor cell dissemination 

and metastasis222,378-380, thus we cannot be sure that the hypoxia-induced tumor cell 

dissemination we have found are entirely due to hypoxia-induced VEGF-VEGFR2 

signaling.  

To confirm that this is the major pathway, a more targeted approach should be taken, 

such as knocking down zebrafish VEGFR2 prior to tumor cell grafting and incubation 

in hypoxia. 

 

 

5.4 IS FIN REGENERATION RELEVANT IN MEDICAL RESEARCH? 
 

Regeneration in fish and mammals are quite different. Zebrafish have much stronger 

regenerative capabilities compared to mice and humans19.  
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The reasons for this are not fully understood, but could be because fish have a more 

prominent stem/progenitor cell population in their tissues which can quickly be 

mobilized to rebuild damaged organs such as the heart96-97.  

Also it may be because fish cells more readily dedifferentiate into multi-potent 

progenitor cells, which seems to be the case in the regenerating tail fin381.  

 

In either case, however, regeneration is dependent on angiogenesis, which makes the 

regenerating tail fin model suitable for screening of anti-angiogenic compounds32.  

An example of this is that the zebrafish tail fin does not regenerate – or regenerate 

slower – if angiogenesis is inhibited for example by sunitnib28.  

While this assay has been widely used as an adult zebrafish model of angiogenesis, one 

should be cautious in drawing conclusions from such experiments, as regenerative 

angiogenesis may progress via a different angiogenic-factor profile compared to 

angiogenesis in pathologies such as cancer and retinopathy.  

 

For example, in the zebrafish tail fin, regenerative angiogenesis seems not to be 

hypoxia-dependent as the fin is so thin that it receives sufficient oxygen from passive 

cutaneous uptake by the water.  

In most cases of pathological angiogenesis, hypoxia is a major driving factor. Therefore 

compounds under investigation as modulators of angiogenesis in adult zebrafish should 

be tested in both hypoxia-dependent and independent models such as the hypoxia-

induced retinal angiogenesis and hypoxia-independent tail fin regeneration to elucidate 

whether the compounds would target hypoxia dependent pathways or not. 
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6 CONCLUSIONS AND PERSPECTIVES 
 

Hypoxia is a major driving force of pathology – especially pathological angiogenesis, 

vascular permeability, reduced vascular maturation and quality195,325 as well as tumor 

cell invasion and metastasis134-135. Hypoxia is however difficult to study in traditional 

mouse or rat disease models as it is very difficult to control.  

 

We have shown that zebrafish – both adults and embryos – constitute a practical model 

system for the studies of hypoxia-induced angiogenesis, vascular and tumor biology in 

vertebrates.  

 

 

6.1 FURTHER DEVELOPMENT OF THE RETINAL ANGIOGENESIS 
ASSAY 

 

In adult zebrafish gradual reduction of the oxygen levels allow fish to survive in as little 

as 10 % air saturated water. Prolonged exposure to this level of hypoxia leads to 

pronounced retinal angiogenesis within 6 days. This angiogenic response is VEGF 

dependent and requires severe hypoxia. Furthermore blockade of Notch signaling 

changed the hypoxia-induced angiogenesis from the capillary region to the arterial 

region, raising expectations that such an approach might be valid for hypoxia-induced 

arteriogenesis also in other tissues.  

 

Further studies are needed to evaluate whether the hypoxia and anti-Notch induced 

arterial neovasculature consist of well perfused, non-leaky, mature and persistent 

vessels, and if so, if this is a valid strategy for treatment of myocardial and cerebral 

ischemia. 

 

In order to exploit the retinal angiogenesis model to its full potential, it will be desirable 

to develop methods for in situ knock down or expression of genes by intra-ocular 

injection of morpholinos or capped-mRNA respectively, as it has been described in the 

regenerating tail fin98-103.  

Currently we are testing if available reagents for transfection of cells in vitro are 

functional in the zebrafish retina.  
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As electroporation seems to be a good strategy in the tail fin, it may be required also for 

in situ transfection in the retina. There are methods available for inserting electrodes 

into the zebrafish retina159, so such an approach would be possible.  

 

Also, we are developing procedures for injecting non-orally active pharmaceuticals 

such as antibodies or growth factors into the vitreus, which can then be used to study 

the mechanisms of angiogenesis induced by particular growth factors, in a similar way 

as the corneal micro pocket model is used today223,382-383.  

However, initial studies show that not all mammalian growth factors and/or antibodies 

may work in zebrafish, so perhaps the genetic methods described above are preferred 

for molecular studies in this model system. 

 

 

6.2 FURTHER STUDIES ON FISH LYMPHATICS AND MAMMALIAN 
ALC’S 

 

The existence and function of lymphatic vessels in fish have been a controversial issue 

for many years173-174. We have shown that fish do have lymphatic vessels, that these 

vessels are present in adult zebrafish and glass catfish, and that they under normal 

physiologic conditions do not contain blood.  

Interestingly we found that fish lymphatic vessels are the predominant vessel type in 

the skin and fins – which lack blood circulation. These tissues rather rely on cutaneous 

oxygen uptake for satisfying their demands.  

We further found that fish lymphatics do not exclusively begin in blind ended 

lymphatic bags, but also have direct connections to large arterial vessels. These 

connections, which are highly curled during normoxia, does not allow blood cells to 

enter into the lymphatic circulation, and mediate a slow flow of plasma through these 

vessels.  

The slow plasma perfusion of these vessels may be needed to keep them from 

collapsing, as interstitial fluid pressure and therefore drainage is minimal in fish69-71. 

We have found that these connections dilate and unwind in response to hypoxia in an 

NO-dependent manner, allowing the lymphatics to be perfused with blood. 

We believe this may be an important backup system for increasing the respiratory 

surface area of the fish, such that cutaneous oxygen uptake can be increased leading to 

better oxygenation of critical organs.  
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We also hypothesize that this system may be hijacked in pathological settings such as 

cancer, to mediate the flow of cancer cells into lymphatics and further to regional 

lymph nodes.  

Further work needs to be done to identify and characterize these connections in 

mammals and to elucidate whether such arterial-lymphatic conduits could be important 

for tumor cell spreading through lymphatics. 

 

 

6.3 PERSPECTIVES AND FURTHER DEVELOPMENT OF THE 
ZEBRAFISH XENOGRAFT ASSAY 

 

Hypoxia is believed to change tumors to a more invasive phenotype325, but initial stages 

of tumor dissemination and metastasis cannot be studied using current tumor models in 

mice or rats.  

We have developed a tumor xenograft model in zebrafish, in which the tumors change 

their invasive profile when they are exposed to hypoxia. This method provides a great 

resource to study early events of hypoxia-induced transformation of tumors from a 

benign to an invasive phenotype.  

 

We have used this model to show that hypoxia-induced tumor derived VEGF is of 

major importance in mediating their invasive phenotype. This is not via a direct effect 

of VEGF on the tumor cells, rather on VEGFR2-expressing cells in the host – probably 

the vascular endothelial cells, as these undergo drastic remodeling when the VEGF-

VEGFR2 pathway is inhibited with either specific morpholinos against VEGFR2 or the 

broadly acting anti-tyrosine kinase inhibitor sunitnib.  

Even under hypoxia, tumor invasion and metastasis was essentially blocked by 

sunitnib, indicating that the VEGF-VEGFR2 signaling by the vasculature plays a major 

role in this process.  

 

This hypoxia-induced tumor invasion and metastasis model has broad applications for 

the study of hypoxia and malignancy, and will probably prove to be a valuable tool in 

the future.  

 

The assay may also have potential as a diagnostic tool, as primary tumor samples from 

patients may be injected into the zebrafish embryo and screened both for their invasive 
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properties in vivo, their response to hypoxia and to different types of chemotherapy. 

Results from such screening could then be used in the choice of therapeutic 

intervention best suited for that particular patient.  

Such a screening is also possible in SCID mice, but this is very expensive, and tumor 

growth and metastasis of primary cells is very slow in this system.  

The zebrafish model takes less than a week to complete, and thus would return results 

back to the clinic much faster. 

 

The assay could be developed further, however, by modifying the hypoxia setup to 

include more single chambers separated from each other such that different 

compounds, morpholino-injected embryos or tumor cell lines/samples can be tested in 

parallel.  

This improvement would facilitate screening of novel compounds or genes that 

interfere with hypoxia-mediated processes, including invasion and metastasis.  

Such screening is otherwise impossible today, and could potentially lead to the 

discovery of very interesting novel leads for development of anti-metastatic 

pharmaceuticals, or pharmaceuticals that interact with hypoxia signaling, in the future. 

 

 

6.4 USING ZEBRAFISH TO FIND HIGHLY TARGETED DRUGS AGAINST 
RETINAL NEOVASCULARIZATION 

 

Anti-VEGF therapies for retinopathy pose several problems and unnecessary 

discomforts for the patients including high cost, invasive delivery methods and 

potentially blocking the neurotrophic effects of VEGF315.  

Small molecules which may be taken orally targeting either VEGF or other pathways, 

and which have no or only very slight side effects are needed to combat these common, 

debilitating disorders.  

 

We have found that zebrafish embryos show great potential in screening for 

compounds which effectively block retinal angiogenesis during development. Such a 

screen led us to identify an inhibitor of retinal angiogenesis, which did not affect 

angiogenesis in other parts of the fish, including the intestinal regions where the 

vasculature is also under development during the window this drug was active in the 

retinal vasculature384.  
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This drug did not lead to impaired vision, indicating that neuroprotective effects of 

VEGF or other factors are not inhibited. The drug is furthermore effective in adult 

zebrafish, at the same concentration as in embryos.  

It would be interesting to see if this drug interferes with hypoxia-induced or diabetic 

retinopathy in zebrafish and if it is active also in mouse models of retinopathy. 
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