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ABSTRACT 
Positron emission tomography (PET) is an imaging technology, which can be used to 

study neuroreceptors in the human brain in vivo. The technique estimates the regional 
binding of radiolabelled ligands to neuroreceptors and the data are commonly displayed as 
images showing the distribution of radioactivity in the brain volume. A traditional image 
analysis approach builds upon reduction of noise in a region of interest (ROI) by averaging 
radioactivity in the volume elements (voxels) of the ROI. This approach is efficient to 
improve the reliability of the time curves but does not allow for a detailed analysis of the 
entire brain. To obtain detailed three-dimensional maps of binding parameters in brain, 
novel approaches have been developed during recent years. 

The aim of the present thesis project is to examine and validate the repertoire of 
advanced computerised tools used to obtain parametric maps of receptor binding in basic 
and clinical neuroscience research. In addition, the increasing number of suitable PET 
radioligands, targeted for different neuroreceptor systems, calls for approaches that allow 
for a combined analysis of multiple receptor systems. 

A parametric mapping approach using wavelet filtering was evaluated in a cross-
validation design. Data from PET-studies on regional D2/D3 dopamine and 5-HT1A 
serotonin receptor binding in the human brain were used to compare the binding potential 
(BP) estimates of the wavelet-based approach and other parametric imaging approaches to 
the ROI-based graphical Logan analysis which was used as a reference. The approach 
using three-dimensional wavelet filtering was noise-tolerant and yielded BP maps with 
regional averages closely matching the reference values. Overall, the wavelet-based 
approach seemed to provide the most valid and reliable estimates across regions with a 
wide range of receptor densities. However, there was some loss of resolution, which may 
be critical for analysis of binding in small anatomical regions. 

Another set of parametric mapping approaches is similar to the ROI-based analyses in 
the sense that signal averaging is used to reduce noise. However, these approaches do not 
average the time-activity curves (TAC’s) of spatially adjacent voxels but that of voxels 
having a TAC with a similar shape. A process was developed to classify voxels into a large 
number of groups (clusters) and thus to obtain an average TAC for voxels with a similar 
TAC. The classification was performed using an artificial neural network model, called the 
“growing adaptive neural gas” (GANG), which was developed as part of the thesis. 
Parameter estimation was performed on the average TAC’s and the parameters were then 
back-projected to the original spatial locations of the voxels thereby providing 3D 
parametric maps. The approach was applied to PET images measuring D2/D3 receptor 
binding. The results indicate that the approach can be used to effectively reduce noise. The 
created parametric maps were highly detailed and the binding distribution was consistent 
with parametric images obtained with previous approaches. 

Novel technical approaches are required in combined analyses of multiple neuroreceptor 
systems. Such approaches have to be capable of operating on very large parametric image 
datasets. An initial step is the development of exploratory data-mining tools, which 
provide guidance as to the “structure” of complex multi-individual, multi-receptor 
datasets. For this task, an unsupervised and unbiased data-mining tool was developed and 
proposed. The tool includes a GANG-based clustering of multi-receptor data. The 
proposed approach was tested on a dataset containing BP maps of the serotonin 
transporter and the 5-HT1A receptors obtained in the same individuals. The outputs of the 
method were multi-receptor maps with potential to reveal complex relationships and 
tendencies in a dataset with several ligands. Such maps may have value in clinical research 
on multi-receptor interactions and pattern changes in the human brain. 

In conclusion, the present thesis has examined and extended a methodological platform 
that allows for additional gain of information from routinely generated data in PET studies 
on neuroreceptor binding. The results support application of parametric image analysis in 
basic and clinical research. 
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1 INTRODUCTION 
Positron emission tomography (PET) is an imaging modality used to study brain 
metabolism and neurotransmission systems in experimental animals and human subjects. 
Neuronal membrane bound receptor proteins and transport proteins are major biological 
targets in most such studies. Understanding the role of neuroreceptors in relation to brain 
function has proven to be of scientific as well as clinical value. However, extraction of 
reliable and anatomically detailed information on neuroreceptor binding from PET images 
poses challenges since PET measurements are sensitive to various biological and physical 
factors. The development of advanced neuroimaging analysis tools may thus provide 
added value in analyses of neuroreceptor binding in the human brain. 

The human brain contains about seven hundred different neuroreceptors of which three 
hundred belongs to the olfactory system (Siegel et al., 1999; Cooper et al., 2002). They are 
most commonly defined by the chemical composition of their specific neurotransmitter. 
Neurons expressing specific types of neuroreceptor proteins display a characteristic pattern 
of distribution both at macroscopic and microscopic level. The morphological patterns are 
thought to be a lead to understand the functional significance. Therefore the notion of 
neuroreceptor systems and subsystems referring to morpho-functional entities in the CNS 
has been introduced. A system consists of specific neural pathways and neuron 
populations expressing a given neuroreceptor type or subtype.. Neuroreceptor studies in 
basic as well as clinical research seek to explain physiological and pathological conditions in 
terms of the involvement of different neuroreceptor systems. In particular, such studies 
claim to offer the following benefits: 

• Insight into the involvement of different neuroreceptor systems in higher level 
functioning of the brain such as motor, sensory functions or cognition. 

• Understanding of the inter-individual variability of the human brain through the 
mapping of receptor distribution in relation to genetic and environmental 
factors. 

• Contribution to the understanding of neuro-psychiatric disorders by detailed 
brain mapping in relation to pathological conditions. 

• Discovery and control of pharmacological interventions, i.e. development and 
testing of drugs acting on certain neuroreceptor systems or subsystems. 

The present thesis work aimed at establishing a methodological platform to support 
neuroreceptor research in the areas listed above. Specifically, the methodologies in the 
focus of the thesis can be positioned according to the following two levels: 

• First level: calculation of images characterising ligand binding from the raw 
experimental data. 

• Second level: creation of images showing relationships between different 
neuroreceptor systems or subsystems or between neuroreceptor systems and 
various physiological or pathological conditions. 

The following discussion is structured according to these levels of neuroreceptor studies. 
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1.1 FIRST LEVEL OF NEURORECEPTOR STUDIES 

Imaging of neuroreceptors in vivo can be achieved using single-photon emission computed 
tomography (SPECT) or positron emission tomography (PET) (English and Brown, 1990; 
Verhoeff, 1993; Carson et al., 1998). Both build upon a similar approach: a solution, 
containing the radioligand, is injected intravenously and the emitted radioactivity is 
detected using rings of detectors around the head. The radioligands bind specifically to the 
target neuroreceptors. The more advanced of the two techniques is PET allowing higher 
resolution and absolute quantification. A typical camera today has an intrinsic spatial 
resolution of 3.6 mm in plain of the detector rings at the centre of the field of view and 4.0 
mm axially (e.g. Wienhard et al., 1994). PET is the technique in the focus of the thesis. 

As the name implies, PET uses radioligands labelled with positron-emitting 
radionuclides, such as 11C, 18F, 15O or 13N. The half-life of these radionuclides is relatively 
short, between 20 to 110 minutes, requiring on site radioligand production, i.e. a cyclotron 
and a radiochemistry unit. At decay, the emitted positron particle travels a few millimetres 
in the tissue, the distance depending on the energy of the particle. After that the positron 
annihilates at a collision with its anti-particle, an electron. The annihilation generates two γ-
photons travelling at about 180 degrees to each other. 

The γ-ray pairs are detected as coinciding events in the detector rings, which enables 
high precision of localisation of the annihilation and thus the positron emission event. 
Modern PET cameras detect coincidence events not only in plane of a detector ring but 
also those between two different rings. The coincidence events are registered by the PET 
computer system. After data acquisition the computer reconstructs a three-dimensional 
image of radioactivity within the volume of acquisition. Quantified radioactivity values are 
obtained with the help of an attenuation correction that is obtained for each subject by a 
transmission scan using an external source of γ-photons. A typical reconstructed 3D image 
consists of around 50 image slices with a matrix size of 128 × 128. Each volume element 
(voxel) of a PET image has a size of 2.0 × 2.0 mm in plane and 3-4 mm axially. In case of 
neuroreceptor studies several consecutive 3D images are acquired to obtain information 
on the temporal change of radioactivity, which is often referred to as time-radioactivity 
curves (TAC’s). The four-dimensional PET images of quantified radioactivity may be 
viewed as “raw data” for neuroreceptor studies. 

The goal of the first level of data processing is the creation of biologically meaningful 
parameters for receptor binding. However, such processing has to face two major 
problems: 

• PET images for neuroreceptor studies contain radioactivity from ligand 
molecules in the cerebral blood volume, those unbound and specifically or 
unspecifically bound in tissue as well as from possible radiolabelled metabolites 
of the ligand. 

• PET images have low physical signal-to-noise ratio for various reasons such as 
the use of limited amounts of radioactivity, or relatively short periods (few 
minutes) of data collection within timeframes of image acquisition for 
neuroreceptor studies. 
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To circumvent the first problem, mathematical models have been defined, which aspire 
to describe the pharmacokinetics of radioligand binding in terms of the time-course of 
blood, more precisely plasma, radioligand concentration. The most widely applied model is 
the compartmental model, which defines compartments as pools of radioligands in 
different states relative to the blood-brain barrier and various binding sites (Figure 1) 
(Carson et al., 1998). 

 The “force” driving the compartmental model is the input function, i.e. the plasma 
radioligand pool (Cp). The input compartment is communicating with the free-radioligand 
compartment in the brain tissue (CF) through the blood-brain barrier. The pool of 
radioligand bound to the target receptors (CB) defines the next compartment, which is in 
continuous exchange with the free-radioligand compartment through the reversible 
process of ligand binding. A fourth optional compartment can be identified in case of 
some radioligands. This encompasses the pool of radioligands bound to any other sites 
than the target neuroreceptors; a compartment defined as non-specific binding (CNS). The 
model describes the exchange of radioligand between the compartments in terms of 
kinetic rate constants defining the bidirectional flux of radioligand from one compartment 
to another (K1 - k6). Thus the rate constants can be assumed to have biological relevance. 
Furthermore, some derived parameters are of even greater importance for neuroreceptor 
studies. The most important of these is the ratio of k3 to k4, This parameter is referred to 
as the binding potential (BP), and is the major output parameter of first level 
neuroreceptor studies. The BP corresponds to the ratio of receptor density (Bmax) and the 
binding affinity (Kd) and is thus proportional to the concentration of neuroreceptors 
available for binding. The rate constants of the compartmental model are obtained via an 
optimisation process based on a plasma TAC as input and a total tissue TAC as the curve 
to fit. Therefore, besides acquiring the PET image, the experimental procedure has to 
include blood sampling to obtain this plasma input function. It must be noted that most 
radioligands are metabolised in vivo and thus the input function must be corrected for 
metabolites with retained radioactivity. Figure 2 displays characteristic theoretical (noise-
free) TAC’s for plasma and brain tissues with different amounts of free receptors. 

Figure 1 
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In case where blood sampling is not available, a modified version of the compartmental 
model can be used. This utilises radioactivity information from a region of the brain that is 
devoid of the target neuroreceptor known as reference region (dash-dotted line in Figure 
2). Accordingly, this is referred to as the reference tissue compartmental model. This 
model gained popularity because it is less invasive and still enables the calculation of 
important binding parameters such as BP. Further modifications have been introduced to 
facilitate convergence by reducing the number of variables to be fitted. This is the 
simplified reference tissue model (SRTM) (Lammertsma and Hume, 1996). It also has a 
linearised version (LSRTM) that is useful for the quick calculation of BP (Logan et al., 
2001). Another linear fit is Logan’s linear graphical approach that can be derived from the 
compartmental model (Logan et al., 1990; Logan et al., 1996). It has both a plasma input 
and a reference input version providing the parameters of total distribution volume (DVtot) 
or distribution volume ratio (DVR), respectively. 

Dealing with the second problem, i.e. noise in PET images, has been a major challenge 
in neuroreceptor studies in vivo. TAC’s of individual voxels of the four-dimensional PET 
image have proven to be too noisy for direct fitting of the parameters of the 
compartmental model. Figure 3 displays sample TAC’s of individual voxels in the brain 
from a PET image obtained using the radioligand [11C]FLB 457, a high affinity dopamine 
D2/D3 receptor antagonist radioligand. In contrast to the curves in Figure 2, these TAC’s 
are noisy, preventing the direct fitting of kinetic parameters. 

Figure 2 
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To deal with this problem, first level neuroreceptor studies have to be based on de-
noised TAC’s to be able to use an arbitrary parameter estimation approach. Alternatively, 
they need to use special noise-tolerant parameter estimation approaches. 

The traditional approach is to define two-dimensional or three-dimensional regions of 
interests (ROI’s) and calculate the mean radioactivity within that region for all timeframes 
of the PET measurement. This results in regional TAC’s, which are virtually noise free 
such as those in Figure 2. Hence these curves can be analysed using various parameter 
estimation methods including a full two or three tissue compartmental model fit if a 
plasma input function is available. The advantage of ROI-based approaches is that they are 
very effective in reducing or clearing noise. Moreover, only a limited number of parameter 
estimations have to be performed for a PET measurement. The disadvantage is that it is 
not possible to obtain detailed information on the subregional distribution of the various 
parameters (no image) and ROI’s placed over areas with heterogeneous tissue composition 
and parameter distribution may be designated with erroneous parameters  (user introduced 
bias). 

A more recent group of approaches produces parameter estimates for all voxels of the 
PET image. Accordingly, they are referred to as parametric mapping approaches. One type of 
receptor parametric mapping approaches couples the noise handling to the actual 
parameter estimation. An example of this type is Gunn’s basis function method (BFM) 
which is a based on and coupled to the previously developed simplified reference tissue 
model (SRTM) (Gunn et al., 1997). Another approach of this kind uses wavelet filtering 
which is tightly coupled to certain linear parameter calculations (Turkheimer, Banati et al., 

Figure 3 
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2000). The advantage of this type of parametric mapping is obviously that detailed three-
dimensional maps of parameter distribution can be generated. However, the 
computational demands are much higher than in case of the ROI-based calculations and 
the choice of parameter estimation method is limited. 

A second type of receptor parametric mapping approaches seeks to combine the 
advantages of the ROI-based approaches and the first type of parametric mapping 
approaches (Ashburner et al., 1996; Kimura et al., 1999; Kimura et al., 2002; Wong et al., 
2002; Zhou et al., 2002; Guo et al., 2003; Kimura, 2004; Liptrot et al., 2004). Firstly, it uses 
the denoising scheme employed in regional calculations in that it takes the mean or average 
radioactivity of a number of voxels. However, instead of calculating the mean TAC of 
regionally adjacent voxels it calculates of the mean for voxels with a similar shape of the 
TAC. This is based on a classification or clustering of voxels. Secondly, like in case of the 
ROI-based approaches, the choice of parameter estimation method is decoupled from the 
noise handling since the mean TAC’s of voxels in the same cluster are roughly noise free. 
Thirdly, it produces parametric maps since parameters obtained for each cluster can be 
back-projected to the locations of voxels belonging to the given cluster. 

A drawback of this second type of parametric mapping approaches is that they reduce 
the resolution in parameter value. Most approaches presented in the literature require a 
priori definition of the number of clusters and can produce a maximum of 10-20 clusters. 
Consequently, the set of values in the output parametric maps will be limited to that 
number. A more productive way of classification can be achieved through the use of 
unsupervised cluster analysis (UCA). UCA is an exploratory data analysis tool, which classifies 
the input data based on similarity between samples (Everitt et al., 2001; Romesburg, 2004). 
In contrast to supervised cluster analysis, the number of clusters does not have to be 
defined a priori. Larger number of clusters can be generated, thereby increasing the 
resolution in parameter value. UCA type of classification has been previously used for 
kinetic parameter mapping, although only for fluoro-desoxyglucose (FDG) studies and 
with the assumption that clusters have Gaussian-like distribution and that they are evenly 
dispersed (Kimura et al., 2002). 

1.2 SECOND LEVEL OF NEURORECEPTOR STUDIES 

The second level processes information produced in the previous level, which are mostly 
receptor parametric maps. Methods in this level perform a meta-analysis of maps from 
several individuals, several receptor maps and/or several experimental conditions. The goal 
of the processing is to create representations highlighting patterns in the multi-dimensional 
input data. Accordingly, the outputs of this level are referred to as multi-individual, multi-
receptor or multi-condition maps. Established previous work relevant to this level 
performed statistical parametric mapping of differences in ligand binding between groups 
of individuals with different experimental conditions, such as patients and controls (for 
some psychiatry-related examples see: Verhoeff et al., 2000; Frank et al., 2002; Moresco et 
al., 2002; von Spiczak et al., 2005). However, with the increasing radioligand repertoire an 
increasing number of investigations acquire PET images in the same individual using two 
or more ligands of different neuroreceptors. This hints the possibility of exploring patterns 
and relationships between several neuroreceptor systems beyond assessing group 
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differences. Such data mining tools were in the focus of developments in the present 
thesis. 

The challenge of multi-receptor mapping is the huge amounts of data to be processed. 
Therefore the goal of elucidating patterns and tendencies can effectively achieved only if 
the dataset is compressed in a way that the patterns remain recognisable. A similar 
requirement of data compression arises in many disciplines such as biology, physics, 
geography, literature, linguistics, sociology, or even economy, informatics, and internet-
technology. A well-known solution is to use UCA as in case of receptor parametric 
mapping. A powerful way of implementing UCA, when huge datasets of high 
dimensionality are to be analysed, is through artificial neural networks (ANN’s) (Everitt et 
al., 2001). ANN based UCA can, in principle, be applied for methodologies in both first 
and second level neuroreceptor studies. 

UCA is suitable to form the backbone of multi-receptor mapping so that through 
further processing of compressed data it is possible to generate output multi-receptor 
representations. 
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2 AIMS 
The major objective of the thesis project was to enhance our repertoire of computational 
tools to perform first and second level neuroreceptor studies. 

More specifically, the aims were to: 

• develop binding parameter, primarily BP, mapping approaches for in vivo PET 
neuroreceptor examinations. 

• evaluate such approaches to assess the validity and reliability of estimated BP 
values in relation to results obtained with the traditional ROI-based approach. 

• assess whether these BP mapping approaches qualify for heavy-duty use in 
applied studies. 

• develop UCA methodology using an ANN model that is suitable for performing 
cluster analysis on huge datasets with possibly high dimensionality within the 
context of first or second level neuroreceptor studies. 

• develop frameworks applying this ANN based clustering methodology for the 
purpose of binding parameter mapping and, separately, multi-receptor mapping. 
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3 THEORY AND METHODS 

3.1 OVERVIEW OF DEVELOPED METHODOLOGIES 

3.1.1 Wavelet-based receptor parametric mapping 

3.1.1.1 Overview of wavelet theory 
The wavelet analysis of signals resembles the better-known Fourier analysis. According to 
the Fourier theorem any signal can be made up by the superposition of a set of sinusoids 
with properly chosen amplitudes and phases (see e.g. Bracewell, 2004). To put it in a 
different way, the Fourier transform allows for the description of a given signal in the 
frequency domain by extracting the different frequency components of the signal. 
However, it is not able to detect the location of non-stationary or transient components 
within the sample. Because of this a Fourier transform of an image, which contains a great 
number of transient components such as edges or boundaries, is not easily suitable for 
localisation of spatial features. 

Wavelets, in essence, resemble sinusoids but restricted to a compact, bell-shaped 
envelope (Figure 4). This restricted nature of wavelets enables them, by contrast to Fourier 
sinusoids, to detect both the frequency and the location of patterns in the signal. Therefore 
a coefficient of a wavelet transform is a quantity describing the signal at a certain location 
with a certain scale (called “spatial frequency”) (Mallat, 1989; Daubechies, 1992; Meyer, 
1992; Turkheimer et al., 1999).  

Importantly because of this property, the wavelet transform is capable of separating 
signal components (lower frequency) from noise (higher frequency) as the components 
show up in different coefficients of the transform. Another property of the wavelet 
transform is that it “accumulates” the signal in a few large coefficients whereas the noise is 
spread in a large number of small coefficients. Therefore small coefficients can be safely 
disregarded without the loss of the information content of the signal. Taken together, 
these two properties mean that the “noise” coefficients are not only separate but also they 
can be identified and deleted because of their low value. 

Furthermore, the wavelet transform is a linear operator and thus, if applied spatially on 
each timeframe of a four-dimensional PET image separately, the original temporal kinetics 
of the radiotracer is left undisturbed (Turkheimer, Banati et al., 2000). In other words a 
kinetically homogenous region of the brain, such as a high receptor density structure with a 

Sine wave Wavelet (Battle-Lemarie) 

Figure 4 
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distinct TAC, will be represented with a wavelet coefficient that exhibits a TAC with the 
same characteristics. On the other hand noise “patterns” give rise to coefficients that do 
not show any comprehensible temporal relationships. Noise TAC’s can thus be identified 
when the kinetic analysis is initiated and corresponding coefficients set to zero. 

3.1.1.2 Overview of the wavelet transform and wavelet-based parametric mapping 
The wavelet transform is realized through an iterative decomposition algorithm known as 
the dyadic discrete wavelet transform (dyadic DWT) (paper I) (see also Mallat, 1989; Unser 
et al., 1995; Turkheimer et al., 1999). The algorithm for decomposing a one-dimensional 
signal has the following major steps (Figure 5a): 

1. Convolution. The data is passed through a lowand and a highpass filter (called 
wavelet filters) by convolving with the wavelet filter kernels and creating subbands 
A1 and D1. 

2. Downsampling. A downsampling is then performed on the subbands, since the 
amount of information is duplicated in the first step. 

3. Iterative repetition. The first and second steps are repeated, always using the 
downscaled output of the lowpass filter (An) as input for the next iteration or next 
level. The new outputs (An+1 and Dn+1) always replace the input from the previous 
level. The number of iterations is referred to as the depth of the decomposition. 

The reconstruction procedure is basically the inverted version of decomposition (Figure 
5b):  

1. Upsampling. The coefficients of the deepest level are upsampled. This compensates 
for the downsampling step of the decomposition.  

2. Convolution. The upsampled subbands are convolved with reconstruction low- and 
highpass filters, respectively. These reconstruction filters are close relatives of the 
decomposition filters.  

3. Summation. The output of the two filters (An and Dn) is summed to yield the input 
for the reconstruction lowpass filter on the next level (An-1). As we mentioned this 
subband was deleted during decomposition. 
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4. Iterative repetition. The procedure is repeated using the freshly reconstructed A 
subband and the corresponding stored D subband of the next level. At the coarsest 
level we end up with the reconstructed sample, which is an approximation of the 
original sample.  

The procedure can be applied to two- and higher dimensional (spatial) samples resulting 
in two- or higher-dimensional wavelet decompositions. If employed in two dimensions, i.e. 
on an image, the low- and highpass filters have to be applied sequentially. They are first 
applied on the rows of the image, resulting in two row-filtered images. Then they are 
applied on the columns of both row-filtered images, leading to four two-dimensionally 
filtered subbands or quadrants. One quadrant comes from the application of the lowpass 
filter on both the rows and the columns. Two quadrants come from the application of 
both the low- and the highpass filters but in different order. The final quadrant is the 
output of the application of the highpass filter on both the rows and the columns. The 
input of the next level is again the quadrant that was lowpass filtered along each 
dimension. 

The method can be extended to three-dimensional samples, such as a three-dimensional 
timeframe of a PET image. In this case the output at each level contains eight subbands or 
“cubes” of coefficients corresponding to the number of permutations by which the low- 
and highpass filters are applied to the three dimensions separately (Figure 6). 

The essential component of the procedure is the specific wavelet filter used for the 
transform. There are many families of wavelets, each having its own characteristics such as 
different filter lengths corresponding to different spatial (and frequency) detection 
properties. According to previous works, the wavelets best suited for analysis of emission 
tomographic images belong to the family of orthogonal spline wavelets, more precisely the 
so-called Battle–Lemarie wavelets (Figure 4b) (Battle, 1987; Lemarie, 1988; Turkheimer et 
al., 1999). 

A drawback of the traditional dyadic wavelet algorithm is that low-quality or noisy inputs 
can be distorted by the downsampling step resulting in artefacts. The presence of the 
artefact will be the result of a particular “constellation” of the underlying signal and the 
data-points that were deleted during downsampling. As a consequence if the input is 
shifted by one data-point and the decomposition is performed again then the artefacts may 
disappear in certain locations of the sample (but others could at the same time appear in 
different locations). There is a special version of the dyadic wavelet transform, which is 
free from this limitation. This is often referred to as the property of translation-invariance. In 
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case of the three-dimensional transform, however, the translation-invariant approach is not 
workable at present due to the highly increased computational and storage requirements. 
On the other hand it has been shown that the three-dimensional wavelet transform, by 
utilising information in all the three principal axes, highly compensates for the lack of 
translation-invariance with regard to the quality of the decomposition (Turkheimer, Brett 
et al., 2000). 

The estimation procedure used in the thesis is a modification of that described in the 
literature by Turkheimer (Turkheimer, Banati et al., 2000). The flowchart of the parameter 
estimation procedure is shown in Figure 7. 

The original images are transformed frame-by-frame to wavelet space using a wavelet 
transform (WT). The coefficients TAC’s of the resulting “dynamic” wavelet transform are 
analysed quantitatively using a linear binding parameter estimation approach. The end 
product is a parametric wavelet transform describing the distribution of binding 
parameters (for example DVR or BP). In the final step wavelet reconstruction is applied 
on the parametric transform to yield the 3D parametric map of binding parameter values 
in normal space. 

The parameter estimation must be combined with a thresholding of noise coefficients. 
One possibility is to use information on the statistical uncertainty of estimated parameters 
to identify “noise” coefficients (Turkheimer, Banati et al., 2000). An alternative way is to 
pre-categorise coefficient TAC’s as either valid (signal) or invalid (noise) (papers I and II) 
and then perform parameter estimation only on the valid coefficient TAC’s. 
3.1.2 Artificial neural network based methodologies 

3.1.2.1 Overview of the growing adaptive neural gas model 
A popular choice of implementing UCA is through a network model called self-organizing 
map (SOM). However, SOM’s assume a folded two-dimensional topology in the data and 
are unable to map the local density distribution of the data and thus to detect clusters 
appearing at widely different density scales. These properties are desirable when using 
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UCA for neuroreceptor studies. Therefore a novel ANN model was developed called 
growing adaptive neural gas (GANG) (paper III). 

GANG is a hybrid model, which employs two, previously proposed SOM-related 
techniques. The two base models are the growing neural gas (GNG) (Fritzke, 1994, 1995) and 
the adaptive resolution clustering (Firenze and Morasso, 1994; Firenze et al., 1994; Schenone 
et al., 1996) models. The GNG model is an incremental SOM, i.e. the network initially 
contains only a minimal number of units (usually 2) and the network undergoes a 
growing in parallel to the training of the units. The units of the network are connected 
by edges, which are introduced to map and represent the topology of the input data via a 
competitive Hebbian learning (Martinetz, 1993; Fritzke, 1995). 

The GNG network can map the dimensionality and topology of the input data and is 
able to grow to accommodate larger datasets. However, it does not have a built-in local or 
global termination criterion. A “global performance criterion” or a target network size 
must be specified to conclude the growing. This, together with the fact that it does not 
take into account the variable scales of target clusters of the input data, can lead to 
“overgrowing” in dense areas and “starvation” in sparse areas of the input space. 

The adaptive resolution clustering technique was described as an extension of existing 
SOM models with adaptively modified receptive fields (RF) (Firenze and Morasso, 1994; 
Firenze et al., 1994). The adaptive RF is able to map the radial dispersion of the data 
around the units of the network and its effect is that the network adapts to different 
scales or resolutions of different regions of the input data. However, the SOM model 
used in the proposal for the adaptive RF was a network with fixed number of units and 
no topology representation (edges) and therefore it lacked the capability of mapping 
input dimensionality and topology. GANG implements the feature of adaptive RF’s in 
the model of growing neural gas and hence joins the advantages and overcomes the 
disadvantages of these two techniques. 

A GANG network consists of a set of network units. The network is comprised of: 

• weight vectors  or the positions of the units in the input space,  
• receptive fields of the units that are described by two parameters α and r. The r 

parameter corresponds to the radius of the RF and the α parameter defines the 
“steepness” or gradient of the boundary of the RF. The α parameter can have a 
value in the range 0 to r and high values yield a sharp boundary, low values result 
in a RF that is less localised. The ratio ce=α/r is the capture effect of the unit, and 
units with a high ce and low r value have a well-localised RF, they are said to be 
captured by the input. Figure 8 illustrates the concept of RF and the capture 
effect. The curve displays the boundary of the RF, i.e. the sensitivity of a unit to 
signals acting on it from different distances; signals close to the unit can activate 
the unit completely, more distant signals can reach less activation, and those 
outside its RF fail to activate it at all. The capture effect is demonstrated by 
plotting the boundary curve for both high and low values of r with corresponding 
low and high values of ce, 

• connections between pairs of units (edges). 
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GANG networks are created via the process of growing and fine-tuning. The input for 
these training phases is a finite or infinite set of n-dimensional points that has an unknown 
probability distribution.  

The goal of the GANG training process is defined as an error limit that has to be 
reached by possibly all units of the network (Egoal). This is the ”force”, which is directly 
guiding unit insertion or network growth (see the description of the algorithm below, 
especially steps V/e and VI/a). 

The idea of the growing phase is to start with a minimal-sized network and then increase 
the size of the network through the process of adjusting the positions and RF’s of the 
units and calculating local statistical measures that enable the algorithm to introduce new 
units at appropriate locations of the network. Furthermore, the edges between the units 
are created, “aged” or deleted suitably, the latter possibly also leading to the deletion of 
some network units. 

The fine-tuning phase is analogous to the growing phase in that the positions and RF’s 
of the units are still updated. However, the magnitude of the changes made to these 
parameters is smaller and no new units are introduced to the network. 

Figure 9 presents the schematic outline of the growing phase of the GANG model. The 
following is a description of the model where major blocks of the description (listed using 
roman numbers) correspond to boxes in the flowchart: 
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I. Initialize network: 
a. Begin with two network units with random positions and a single edge 

between them. Set the r parameter of the RF to the diameter of the dataset. 
Set the α parameter to 1% of the diameter of the dataset. 

II. Produce input signal: 
a. Produce an input point according to the probability distribution of the 

data. This distribution is approximated by randomly picking one of the input 
points. 

III. Identify closest units: 
a. Find the closest (u1) and second closest (u2) units to the input point 

(measured as Euclidian distance). 
b. Set the age of the edge between u1 and u2 to zero (create an edge if there is 

none). 
IV. Maturity check: 

a. All units have a flag indicating if they are “mature”, i.e. they have reached 
the error goal. Check if u1 is mature. If u1 is mature then continue processing 
normally to step IX/a but the delete the input point from the dataset. Hence 
this input will be ignored subsequently. 

V. Update network parameters: 
a. Add the squared Euclidian distance between u1 and the input point to a 

local error measure. 
b. Increase a hit counter for unit u1 by one (see next step). 
c. Update variables of the unit that can be used later to estimate the average 

location of closest points for each unit using the hit count. 
d. Update the RF of u1 and u2. The updating scheme ensures that the r radius 

of the RF is set in accordance to the distances of all the points closest to the 
given unit and the α parameter gets close to the r parameter if the closest 
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points are mainly inside the radius and vice versa (thus capturing or “un-
capturing” the unit). 

e. Update the maturity flag by setting it for all units whose average local error 
is less than the goal error limit Egoal. 

f. Find the topological neighbours of u1 (units connected by an edge to u1). 
g. Update the weights (positions) of u1 and u2 (or alternatively u1 and all its 

topological neighbours). The updating scheme moves the closest and the 
second closest units (or the topological neighbours of u1) toward the input 
point with a fraction of the distance to that point. The scheme also utilises 
the RF of units by calculating an “activation” parameter. This parameter 
ensures that units become “insensitive” to points lying outside the radius of 
their RF. This effect was demonstrated previously in Figure 8. 

h. Increment the age of all edges originating from u1 (except for that going to 
u2). 

i. Increment the age of all edges that connect units that were never or very 
few times identified as the “closest unit” (hit counter is zero or low). This 
ensures that units, which were created or end up in empty regions of the 
input space and thus do not receive inputs, will eventually “die out”. 

j. Delete all edges that are older than the certain maximum “age”. If this step 
yields units without emanating edges then delete those units also. 

VI. Check for a candidate for growing: 
a. Find the unit with the largest average local error measure. If there are no 

such units then go to step VIII/a 
b. Find the topological neighbours of this unit. 
c. If this unit is mature or very young or all of its neighbours are very young 

then skip growing and go directly to step VIII/a. 
VII. Grow network: 

a. Estimate the average location of all points closest to the unit found in step 
VI/a. 

b. Find the topological neighbour of this unit that lies in the direction of the 
average point (maximum 90 degrees off direction). 

c. Insert a new unit. The new unit is inserted halfway between the two units 
and it is connected with an edge to both of them. The original connection 
between the two existing units is deleted. Initialise other parameters of the 
new unit appropriately. 

VIII. Update time counter: 
a. If a new unit was inserted in this iteration and it resulted in a net increase in 

the number of units (more units than any time before) then a “time” counter 
is set to zero. Otherwise this counter is increased by one. This measures the 
“time” since the last net growth of the network and it is more informative 
than simply the “time since last unit insertion” because units could have been 
deleted and added without reaching a greater size. 

IX. Termination check: 
a. Check if the growing epoch should be terminated. Possible reasons for 

termination: 
• No more input signals. 
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• All units are mature, further growing is not possible. 
• Not enough input points left for good quantization. For this, 

estimate the number of input points per unit in the growing part of 
the network by dividing the number of units that are immature with 
the number of input points left. 

• No net increase in the number of units for a predefined number of 
adaptation steps, i.e. the “time” counter is greater than a predefined 
limit. This limit can be set to the total number of input points to be 
on the safe side. This termination criterion helps to avoid possibly 
infinite iterations with no convergence toward reaching the goal. In 
other words, the growing of the network may be terminated before 
it could reach the goal set by the target error limit (Egoal). 

b. If any of these conditions is met then go to step X/a. Otherwise continue 
the growing epoch, i.e. go to step II/a. 

X. Stop: 
a. Optionally prune units with a low ce from the network. These are very 

young, non-captured units, which can be assumed to have a bad quantization 
profile. 

b. Finish. 

By the end of the growing process the network is roughly ready; the units have mapped 
the distribution and the topology of the input data. There will be many units with small 
RF’s in the dense regions of the input space and a few units with large RF’s in the sparse 
regions of the input space. 

In the second, optional training phase no new units are created but the processes of 
edge handling, RF modulation and position adjustment are still working. This leads to the 
fine-tuning of the GANG network. The individual units and their RF’s of the final GANG 
network are referred to as neighbourhoods. 

Egoal is the main parameter influencing overall network growth and thus the final number 
(and distribution) of network units. The value of Egoal must be set in accordance with the 
intentions of the application and the characteristics of the dataset. Large values result in a 
smaller GANG with possibly no units in sparse areas since neighbouring units in denser 
areas “cover” input points from sparse areas while their local error is still under Egoal. Very 
small values can result in huge GANG’s although sparse areas are guaranteed to have their 
own units. A way of finding the “best” Egoal for each dataset is to make several training 
sessions using smaller and smaller values until all regions, including sparse ones, are 
sufficiently mapped. 

3.1.2.2 GANG based receptor parametric mapping 
This approach is a novel variant of cluster analysis based parametric mapping where the 
classification of voxel TAC’s or derived variables is implemented using the GANG model 
(paper IV). Similarly to other methods in this field, parameter estimation is performed on 
average TAC’s of clusters and the estimated parameters are back-projected to the spatial 
locations of the voxels using the classification. 

Figure 10 displays the flowchart of the approach. The approach comprises the following 
steps: 
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1. Feature extraction: 
The essence of the proposed approach is the classification of voxels according to 
the similarity of their kinetic behaviour. Therefore the variables for subsequent 
processing must reflect the kinetic properties of voxels, i.e. they represent features 
of the PET image that are important for the analysis. Hence the name feature 
extraction. The most obvious set of such feature variables are the frame-by-frame 
radioactivity values of voxel TAC’s. Other such variables can be the area under the 
curve (AUC) of a given voxel’s TAC or the voxel values in the summation image, 
which are still easy to obtain. These two quantities are similar but the summation 
image is usually an integral of only some last part of the whole duration of the 
image acquisition thereby focusing more on the period of binding equilibrium.  

The number of variables selected for feature extraction defines the dimensionality 
of the input space for further processing. For example, in case of selecting the 
voxel TAC’s of a 15-frame PET image the input space will be 15-dimensional. To 
drive the sensitivity of the classification towards some of the variables they can be 
scaled or weighted. For example, weighting can be beneficial when raw voxel 
TAC’s are used as feature variables (Guo et al., 2003). The other way around, the 
variables can be normalised to have a more balanced effect on the classification. 

2. GANG training and growing: 
The distribution of data in the extracted feature space is mapped using GANG 
network grown on the dataset. As described in section 3.1.2.1, the GANG network 
model is capable of classifying the input into a large number of neighbourhoods in 
arbitrary dimensional data-space. The neighbourhoods are usually smaller than 
what is defined as a well-delineated cluster of the input in traditional cluster 
analysis. 

An important property of mapping data distribution using the GANG model is 
that it can detect the presence of sparse regions in the input data. This feature can 
be advantageous if sparse areas represent a distinct, important subset of the input. 
Such distribution can be expected in case of the input datasets used for binding 
parameter mapping. The reason for this is that some neuroreceptors can have very 
high concentrations in relatively small anatomical regions in the human brain, for 
example the striatum for dopamine D2 receptors. Thus the feature extraction 
performed on a PET image of such a receptor will have only a limited number of 
points in the corresponding areas of feature space. 
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3. Classification: 
After the growing and training phase, the input data is classified using the GANG 
network. This means that each input point is assigned to the closest GANG unit or 
neighbourhood. This classification thus defines a one-to-one correspondence 
between neighbourhoods and subsets of input points. Furthermore, individual 
input points also have a one-to-one correspondence to specific voxels in the space 
of the PET image. Therefore the classification also defines a mapping from 
neighbourhoods to subsets of voxels and vice versa. This mapping is referred to as a 
membership map. 

4. TAC averaging: 
The membership map allows the selection of subsets of voxel TAC’s with similar 
kinetic behaviour. Thus averaging TAC’s of the same subset results in TAC’s with 
diminished noise. 

5. Parameter estimation: 
The parameter estimation is performed on noise-attenuated TAC’s. Therefore any 
method of estimating binding parameters may be applicable that one can use in the 
classic ROI-based approach. Parameters from either reference region or blood 
input kinetic models may be estimated. 

6. Back-projection of parameters: 
The resulting binding parameters are back-projected to the space of the PET image 
using the membership map from the classification (step 3). Thus the approach 
finally yields three-dimensional maps of binding parameters. 

3.1.2.3 GANG based multi-receptor mapping 
The proposed approach of multi-receptor analysis is a data exploration tool based on 
unsupervised cluster analysis using artificial neuronal networks (paper V). The input to the 
analysis consists of 3-dimensional BP maps of different receptor systems for each subject 
included. Similarly to GANG based parametric mapping, the voxels of the anatomically 
standardized brain images can be projected to a feature space where each axis corresponds 
to a certain feature of a voxel in the input datasets. The simplest of such feature variables is 
the BP value. More complicated feature variables can be constructed from various feature-
measures such as BP ratio or local BP voxel statistics such as variance, gradient magnitude, 
etc. When the feature space has been defined, each individual’s anatomically standardized 
BP maps can be projected to that space. The task is then to extract information from this 
multi-dimensional data set with a main focus on patterns of inter-individual changes of the 
projected location of voxels. Grouping of voxels in feature space is desirable not only due 
to the huge amount of data but also in order to facilitate the emergence of more stable and 
consistent patterns. Furthermore, it brings about the possibility of quantifying the 
distribution, spread and density of data points in different areas of feature space. 

As described in the introduction section, the exploration of multi-receptor feature 
spaces should ideally be performed using a data mining tool that is (i) unsupervised, (ii) 
unbiased, (iii) requires no a priori hypothesis, and, at the same time, is (iv) data-driven, 
reduces the burden of data into manageable “piles” and identifies intra-data associations, 
patterns or tendencies. A well-known tool, which meets many of these requirements, is 
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UCA. The purpose of UCA is to classify input data based on similarity between samples. 
This is what can be referred to as transverse processing.  

A GANG based UCA is utilised in the proposed approach with the following 
considerations. The cluster structure of multi-receptor data is rather arbitrary due to the 
continuous spread of receptor density values over a certain range. Accordingly, the 
technique works on a presumably “sub-cluster” level with the entities of UCA 
corresponding to neighbourhoods of the GANG network. This lends the name 
neighbourhood analysis to the initial part of the approach. 

After the classification of multi-receptor patterns, the approach analyses the tendencies 
of inter-individual changes of these patterns. This longitudinal processing requires an extension 
of basic UCA methodology. The inter-individual changes of multi-receptor patterns are 
called trajectories. Trajectory analysis offers a composite look on the multi-individual, multi-
receptor data set at hand. 

The following is a detailed description of the process of the proposed approach for 
multi-receptor analysis (see flowchart in Figure 11). 
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1. Pre-processing: 
Three-dimensional receptor BP maps are created from the raw 4D receptor PET 
images using a wavelet-aided BP-estimation framework presented previously (paper 
I, Turkheimer al. 2000). The individual BP maps are spatially co-registered and 
normalized using the individual MR images of the subjects. 

2. Neighbourhood formation: 
The local image intensity (BP value) is extracted from the spatially normalised BP 
maps. Only those voxels are included for which there is at least one individual 
where the BP value for both receptor types is greater than zero. These feature 
variables constitute the input for the neighbourhood analysis, which is performed 
by the GANG network (paper III). The trained network subdivides the input 
space into neighbourhoods. Thus each input point in feature space can be assigned 
to one of the neighbourhoods. Each input point in feature space has a 
corresponding voxel in normalised image space. Thereby classifying the input data 
in feature space results in the creation of individual neighbourhood maps in image 
space. 

3. Trajectory analysis: 
Each voxel in standard image space has a corresponding neighbourhood in feature 
space in each individual. The collection of the centres of these neighbourhoods in 
feature space defines a trajectory. The trajectories are enumerated and sorted. The 
enumeration defines a classification (trajectory classification). In the next step different 
metrics or properties of the trajectories are calculated such as: 

• Exclusivity index: since each neighbourhood is comprised of feature 
vectors from one or more individuals, it is possible to determine 
the subject who has the most contribution to any given 
neighbourhood. This is the “owner” of the neighbourhood. 
Knowing the “owner” it is also possible to calculate an index, 
which represents how many times more contribution the “owner” 
has to the given neighbourhood than all the others. This defines 
the exclusivity index. It is a measure of the “individuality” of the 
brain with regard to the others in the study. The more 
neighbourhoods are “owned” by a given subject the more distinct 
multi-receptor patterns he or she has compared to the others. 

• Average Euclidian distance: it is calculated as the mean of the 
(Euclidian) distances between the centres of any two of the 
neighbourhoods in a given trajectory. This metric has to do with 
the expected “stability” of multi-receptor patterns. Larger values 
indicate greater inter-individual variations and vice versa. 

• Mean voxel count: it is the mean number of voxels in the 
neighbourhoods of a trajectory. This metric shows which brain 
regions contain voxels corresponding to desolate or densely 
populated neighbourhoods of the feature space.  

• Mean neighbourhood density: it is calculated via dividing the voxel 
counts with the area or volume of the neighbourhoods in a given 
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trajectory. There can be the large variations in neighbourhood 
density. 

• Average topological distance: this metric gives the average number of 
neighbourhood boundaries that have to be crossed to get from any 
one neighbourhood of a trajectory to another. 

• Total number of neighbourhoods: it is the number of neighbourhoods in 
a trajectory. Trajectories with a lower value may indicate more 
stable multi-receptor patterns and vice versa. 

• Total volume of neighbourhoods: it is the sum of the volumes of the 
neighbourhoods that make up a trajectory. 

• Correlation coefficients of trajectory: if the feature variables used to set up 
the analysis are simply the BP values then the neighbourhoods of 
the feature space offer a quantized representation of the dataset. 
Therefore they are also useful for the calculation and visualisation 
of properties that are normally calculated on the voxels themselves. 
An example for this is the analysis of correlation between feature 
variables of the neighbourhood centres in a trajectory. 

Using the trajectory classification these various trajectory metrics can be back-
projected into normalised image space resulting in “trajectory-metrics” maps. 
These maps comprise information on multiple receptor systems and individuals 
therefore they are referred to as multi-receptor maps. 

3.2 DATA COLLECTION 

3.2.1 Subjects 

The PET images used for the thesis work were from studies approved by the Ethics and 
Radiation Safety Committee of the Karolinska Hospital (papers I, II, IV and V). Healthy 
subjects were enrolled and informed consent was obtained in line with the Declaration of 
Helsinki. The subjects were healthy according to history, medical examination, blood and 
urine screening tests and magnetic resonance imaging (MRI) of the brain. None of them 
were taking medications. 
3.2.2 Magnetic resonance imaging 

The MR system used was GE Sigma, 1.5 Tesla. Proton density, T1- and T2-weighted 
images were obtained. Subjects had an individual plastic helmet that kept the head in a 
fixed position during data acquisition (Bergstrom et al., 1981). 
3.2.3 Positron emission tomography 

The PET system used was a Siemens ECAT Exact HR machine, which provides 47 slices 
with a center-to-center distance of 3.125 mm. The intrinsic spatial resolution is 3.6 mm in 
plain at the centre of the field of view and 4.0 mm full width at half maximum (FWHM) 
axially (Wienhard et al., 1994). The same head fixation system as in the MRI measurement 
was used in PET to yield the same positioning of the head in both modalities. 

The radioligand was injected as a bolus into the right cubital vein. The images were 
reconstructed using filtered back-projection with a Hanning filter with a cut-off frequency 
0.5 of maximum, providing an in-plane resolution of 5.5 mm FWHM. Image matrix size 
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was 128 × 128 and pixel size was 2.0 mm. Scatter correction was performed as described in 
the literature (Wienhard et al., 1994). Attenuation correction was performed using a 
transmission scan obtained for each individual. 

3.2.3.1 [11C]FLB 457 images 
[11C]FLB 457, a high-affinity radioligand of dopamine D2/D3 receptors, was prepared as 
previously described (Halldin et al., 1995) (papers I, II, IV). The specific radioactivity was 
1081-2086 Ci/mmol at time of injection. Total injected radioactivity was 189-299 MBq, 
which corresponds to an injected mass of 1.1 to 2.1 µg. After injection of [11C]FLB 457 
data were acquired for 63 min in consecutive time frames. The frame sequence consisted 
of three 1-minute frames, four 3-minute frames and finally eight 6-minute frames. 

3.2.3.2 [11C]WAY100635 images 
[11C]WAY100635, a ligand of the post-synaptic 5HT1A receptors, was prepared as 
previously described (Andree et al., 2000) (papers II and V). The injected dose was 
260±78 MBq. The PET measurements were 69 min long, consisting of 15 time-frames: 3 
x 1 min, 3 x 4 min, 9 x 6 min. 

3.2.3.3 [11C]MADAM images 
[11C]MADAM, a ligand of the pre-synaptic serotonin transporters, was prepared as 
previously described (Chalon et al., 2003) (paper V). The injected dose was 302±11 MBq. 
The PET measurements were 93 min long, consisting of 15 time-frames: 3 x 1 min, 3 x 4 
min, 13 x 6 min. 

3.3 STUDY DESIGNS 

3.3.1 Cross validation study 

A cross validation scheme was used for the evaluation of the wavelet-based parametric 
mapping approach (papers I and II). PET images obtained using [11C]FLB 457 and 
[11C]WAY100635 were included in the analysis. 

The choice of [11C]FLB 457 for cross-validation purposes was motivated by the fact that 
the human brain displays a 100-fold range of D2 dopamine receptor densities across 
different brain regions (Kessler et al., 1993). [11C]FLB 457 is capable of producing signals 
from any area within this wide range (Halldin et al., 1995; Farde et al., 1997; Delforge et al., 
1999; Olsson et al., 1999; Suhara et al., 1999). Moreover, brain regions with different 
receptor densities display a wide range of size and shape that may present a further 
challenge to parametric mapping approaches. 

[11C]WAY100635 was selected for similar reasons as [11C]FLB 457. It also provides 
signals from a number of brain regions with different size and shape and varying receptor 
densities. However, the pattern of distribution is distinct from that of [11C]FLB 457. 
Another reason for selecting this radioligand was that [11C]WAY100635 is currently widely 
applied in clinical studies on the role of the serotoninerg system in neuropsychiatric 
diseases such as anxiety, depression, Tourette syndrome and schizophrenia (see e.g. Lam et 
al., 1996; Drevets et al., 1999; Andree et al., 2000). 

Each of the individual datasets was analysed by six approaches; the traditional ROI-
based graphical parameter estimation, voxel-wise parametric imaging using Logan’s 
original linear graphical plot (PILogan), the version using Varga’s modified version 
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(PIVarga), three-dimensional wavelet-filtering based neuroreceptor mapping approach, 
Gunn’s basis function method (BFM), and the DEPICT approach. Additionally, in case of 
[11C]FLB 457 images (in paper I), a variant of the wavelet based approach using two 
dimensional wavelet-filtering was also used. The results of the ROI-based approach served 
as a reference for the evaluation of the other approaches. The following is a short 
overview of the applied approaches. 

3.3.1.1 ROI-based analysis 
Images were transformed into standard anatomical space using the computerized human 
brain atlas (HBA) (Roland et al., 1994). ROI’s from the anatomical database of the HBA 
were positioned for a series of brain structures of interest in the dopaminergic and 
sertotoninergic systems. The cerebellar cortex was used as a reference region for free and 
non-specifically bound [11C]FLB 457 and [11C]WAY100635 in brain (Farde et al., 1998; 
Olsson et al., 1999). 

The binding potential was estimated using the reference region version of Logan’s 
graphical analysis (Logan et al., 1996). Distribution volume ratio (DVR) was determined by 
fitting a line to the linear part of the plot using traditional linear regression. This 
corresponded to 36-60 min for [11C]FLB 457 and 45-69 min for [11C]WAY100635. The 
binding potential (BP) was calculated as DVR minus one (Logan et al., 1996; Farde et al., 
1998; Olsson et al., 1999). 

3.3.1.2 PILogan and PIVarga 
PILogan uses the traditional linear regression model also applied in the ROI-based analysis 
(Logan et al., 1990), whereas the PIVarga approach minimises the sum of squared 
perpendicular distances to the fitted line, as recently suggested by Varga (Varga and Szabo, 
2002). To obtain parametric maps, the calculations are performed voxel-by-voxel. 

The anatomical standardisation procedure using HBA was performed on the parametric 
images. In this way no unnecessary sources of error were introduced before the kinetic 
calculations. For standardisation the same warping transformations were used for each 
individual as in case of the ROI-based analysis. Having the images in standard space the 
same ROI’s could be applied to determine the average binding potential of the target 
anatomical structures for cross-validation purposes. 

3.3.1.3 Wavelet based analysis 
The analysis was performed as described in the overview on wavelets (section 3.1.1.2). For 
the wavelet transform either the two-dimensional translation-invariant (2DTI) (only paper 
I) or the three-dimensional (3DWT) wavelet transform was applied. The filters for the 
transform belong to the Battle-Lemarie wavelets (Battle, 1987; Lemarie, 1988). The depth 
of the decomposition was 2 and the length of the filter kernels was 22. The parameters 
were chosen in an iterative approach, which yielded the best recovery of regional BP values 
as well as the lowest computational load. 

The coefficient TAC’s of the dynamic wavelet transform were analysed quantitatively 
using Logan’s graphical estimation. Pre-thresholding was used to identify noise coefficient 
TAC’s and thus reduce the number of calculations. A 3D mask image of the reference 
region (cerebellar cortex) was created first and transformed to wavelet space. The AUC of 
each coefficient’s TAC was calculated. This AUC “transform” was then masked with the 
previously created WT of the 3D mask to yield the AUC value of those coefficients that 
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correspond to the reference region in normal space. The average value of this pool of 
AUC values was used as the thresholding limit.  

The end product of the calculations in wavelet space was a parametric wavelet transform 
describing the distribution of DVR. After wavelet reconstruction the parametric map of 
DVR in normal space was obtained. The BP map was calculated from the DVR map by 
subtracting one from the DVR values (Logan et al., 1996). 

3.3.1.4 BFM 
The BFM approach has been described in detail in the literature (Gunn et al., 1997). It is 

based on the simplified reference region (or tissue) model (Lammertsma and Hume, 1996). 
It creates a set of basis functions. For each voxel, the basis function which yields the 
minimal residual sum of squares is chosen to determine the final parameters and hence the 
unknowns of the model (includeing BP). 

3.3.1.5 DEPICT 
The DEPICT approach has been proposed and described in detail in the literature 

(Gunn et al., 2002). The basic assumption is that the compartmental model behaves 
essentially like a linear filtering system as known from the field of signal processing. Such a 
system can be fully characterised through its impulse response function. Accordingly, DEPICT 
is a data-driven parameter estimation framework that characterises the behaviour of the 
radioligand in a biological compartmental system in terms of its impulse response function. 
It derives the compartmental model description of the data from the data itself yielding for 
each voxel the estimates of coefficients of the compartmental model as well as the number 
of compartments best describing the local kinetic behaviour of the data. 
3.3.2 Demonstration of characteristics 

3.3.2.1 Testing the GANG model 
The capabilities of the GANG model were demonstrated using different simulated input 
data (paper III). Three artificial datasets were used. 

In the first two cases, the input data was a finite set of points in three-dimensional space. 
The overall topology of distribution was similar, but the local density distribution was 
different. In particular, the sample data had three regions in terms of topological relations. 
One region had three-dimensional local topology enclosed in a box. The other regions of 
the input had only two- or one-dimensional local topology (plane and line, respectively). 
Furthermore, the region with one-dimensional local topology was separated to a linear and 
a circular sub-region. This resulted in four distinct data regions in total. 

In the first dataset, any one of these four regions had the same number of data points. 
This means that the 3D density of points was higher in the lower dimensional regions than 
in the higher dimensional ones. The input contained 200,000 points. 

In the second dataset, the 3D density of the input points was more balanced throughout 
the different regions. Therefore the number of points was orders of magnitude less in the 
lower dimensional regions than in the higher dimensional ones. For example, only 0.39‰ 
of the input points were in the 1D linear region. With having a total number of 200,000 
points in the dataset this means that there were only 78 points in this region. 

The third example used simulated brain MRI data from the BrainWeb Simulated Brain 
Database (Cocosco et al., 1997; Collins et al., 1998; Kwan et al., 1999). In detail, the input 
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for training was a multivariate dataset that was created from simulated T1-, T2-weighted 
and proton density (PD) images of an anatomical human brain model containing mild 
multiple sclerosis (MS) lesions, which served as the sparse region of interest for testing the 
network models. The input for network training was defined as 3D vectors with x, y, and z 
coordinates corresponding to T1, T2, and PD image intensities, respectively. Only voxels 
(and thus feature vectors) inside the brain or the cerebrospinal fluid (CSF) were included 
using the anatomical model for voxel selection. Thus the total number of input points in 
feature space was 1,955,621 of which only 420 points (0.21‰) corresponded to voxels 
with a fuzzy membership value of more than 50% in the class of MS lesions according to 
the anatomical phantom. 

The aim of this example was to highlight important principles of performing GANG-
based cluster analysis and image segmentation in a biomedical application. Therefore, full-
blown, optimised UCA and image segmentation was not performed nor required. 
Network units were not used directly as cluster centres for image classification and 
segmentation. Instead, as in other previous works, the trained networks were processed in 
a subsequent step to extract groups or clusters of network units (Vesanto and Alhoniemi, 
2000; Dittenbach et al., 2001; Flexer, 2001; Kiang, 2001; Daszykowski et al., 2002). This 
classification enabled the assignment of class membership values to input points via 
finding the closest network unit and hence the corresponding cluster. The grouping of 
network units was performed using standard hierarchical cluster analysis (see for e.g. 
Aldenderfer and Blashfield, 1984). The number of clusters constructed was increased step-
by-step until the segmentation gave acceptable demarcation of different healthy brain 
tissue classes (especially white and grey matter). Accordingly, the number of target clusters 
was finally fixed at 10. 

The GNG model was also trained on the same datasets to enable highlighting the 
advantages of the GANG model through the comparison of results. 

3.3.2.2 Testing the GANG based receptor parametric mapping 
A PET image from the dataset also used for evaluating the wavelet-based approach 
(papers I and II) was analysed with GANG based parametric mapping approach (paper 
IV). The PET image was obtained using the radioligand [11C]FLB 457. The creation of 
“denoised” voxel TAC’s was performed twice; each time as described in the overview 
section (section 3.1.2.2) but using two different sets of feature variables. The first set of 
variables consisted of the 15 radioactivity values in the voxel TAC’s plus the AUC value of 
the TAC. This feature extraction thus yielded a 16-dimensional input dataset for GANG 
training and growing. The feature variables were normalised to have mean 0 and SD 1. 
The second analysis used another set of features. On feature variable was, again, the AUC 
value of the voxel’s TAC. The other variable was simply the voxel value in the summation 
image, which was calculated from the last 10 frames (9-63 minutes after injection). Thus 
the second extracted input dataset for GANG growing was two-dimensional. The feature 
variables were not normalised in the second case. Only voxels inside the brain were 
included in the calculations by selecting voxels with an AUC value greater than 90% of the 
reference region (cerebellum). 

The average TAC’s, which are practically noise-free, can be analysed using many 
different parameter estimation procedures to yield kinetic parameters of interest. 
Accordingly, the following techniques were applied: the reference region variant of 
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Logan’s graphical BP estimation (RLogan), linearised simplified reference tissue model fit 
(LSRTM), simplified reference tissue model fit (SRTM), Gunn’s basis function method 
(BFM), Gunn’s data-driven estimation of parametric images based on compartmental 
theory (DEPICT) (used in ROI-based mode) and full plasma-input three-compartmental 
model fit (PITCM) (Sandberg, 1978; Lammertsma and Hume, 1996; Logan et al., 1996; 
Gunn et al., 1997; Olsson et al., 1999; Gunn et al., 2002). The PITCM approach directly 
fitted the values of the k1, k2, k4 and BP parameters using a genetic algorithm optimisation 
(Goldberg, 1989; Mühlenbein et al., 1991; Georges-Schleuter, 1992). Further parameters 
(k3 and total distribution volume, DVT) were calculated from the fitted ones. Finally, the 
resulting binding parameters and, where applicable, additional output parameters were 
back-projected to the PET image space. 

3.3.2.3 Testing the GANG based multi-receptor mapping 
The analysis of two systems belonging to the same neurotransmitter can be regarded as the 
starting point of a more complex analysis into the multitude of receptor systems. 
Therefore the multi-receptor mapping approach was tested on receptors of one 
neurotransmitter: the serotoninerg system, using PET radioligand data regarding both the 
pre- and post-synaptic (5-HT1A) binding sites (paper V). In particular, the study included 
PET measurements obtained using [11C]WAY100635, a ligand of the post-synaptic 5HT1A 
receptors, and [11C]MADAM, a ligand of the pre-synaptic serotonin transporters. 

The analysis was performed as described above in the overview section (section 3.1.2.3). 
The feature space for the analysis was defined simply as a two-dimensional space with 
presynaptic BP values on the x-axis and postsynaptic BP values on the y-axis. 
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4 RESULTS 

4.1 CROSS VALIDATION STUDY OF WAVELET-BASED PARAMETRIC MAPPING 

The different approaches used in the cross validation studies yielded conspicuous 
differences between the parametric images created from both the [11C]FLB 457 (papers I 
and II) and the [11C]WAY100635 (paper II) data. The dopamine D2/D3 BP maps created 
with the PILogan and PIVarga approaches were noisy in appearance. They contained 
“holes” corresponding to missing estimated BP values. The PIVarga approach also 
contained a number of outlier values, especially in the area of the striatum a region with 
high receptor density. These BP values were extremely high such as in the range of 70 to 
90. Figure 12 displays the estimated regional D2/D3 dopamine receptor BP values of the 
tested parametric mapping approaches in percent of the corresponding value of the 
reference method and in increasing order of receptor density (n=10; mean + SD). Figure 
13 displays horizontal cross-sections through the summation image and dopamine D2/D3 
BP maps of the same individual obtained using the compared approaches (papers I and 
II). 

In case of the PILogan approach the average regional BP values were lower than the 
corresponding ROI-based values for each region (papers I and II). The PIVarga approach 
showed a similar pattern with the exception of high-density regions where the BP values 
were higher than those of PILogan but still lower than the values of the ROI-based 
approach (paper II). 

Figure 12 

0

25

50

75

100

125

150

175

200

225

Frontal
cx.

Parietal
cx.

Post.
cing.

Ant. cing. Subs.
nigr.

Temporal
cx.

Thalamus Caudate Putamen

BP
 w

ith
 e

va
lu

at
ed

 m
et

ho
ds

 in
 p

er
ce

nt
 o

f B
P 

w
ith

 R
O

I-b
as

ed
 m

et
ho

d
(m

ea
n 

+ 
SD

)

PILogan

PIVarga

Wavelet-based

BFM

DEPICT

0

25

50

75

100

125

150

175

200

225

Frontal
cx.

Parietal
cx.

Post.
cing.

Ant. cing. Subs.
nigr.

Temporal
cx.

Thalamus Caudate Putamen

BP
 w

ith
 e

va
lu

at
ed

 m
et

ho
ds

 in
 p

er
ce

nt
 o

f B
P 

w
ith

 R
O

I-b
as

ed
 m

et
ho

d
(m

ea
n 

+ 
SD

)

PILogan

PIVarga

Wavelet-based

BFM

DEPICT



Advanced Neuroimaging Analysis Tools for In Vivo Neuroreceptor Studies 

  29 

Both the 2DTI (paper I) and 3D (papers I and II) wavelet-based approach yielded 
noise-free BP maps, although the sharpness of the images was less than that of the 
summation image. The parametric maps based on the 3DWT-aided analysis showed more 
homogeneous patterns (especially in the axial direction) than those coming from 
calculations with the plane-by-plane 2DTI wavelet transform (paper I). The estimated 
regional BP values were about 78% (2DTI) and 95-100% (3D) of those with the ROI-
based approach. 

The BFM yielded a BP map with sharpness matching that of the summation image and 
the map had a noise-free appearance with smoothly varying estimated BP values (paper 
II). The BP estimated for low receptor density regions was overestimated, whereas it was 
underestimated for regions with high receptor density.  

The BP map created by DEPICT was also sharp, noise-free and without outliers (paper 
II). However, areas of the image corresponding to lower receptor-density regions had a 
striped appearance similar to that of single time-frames of a 4-D PET image. BP obtained 
using the DEPICT approach was overestimated for all regions. For regions with low 
receptor density it was overestimated as much as about 175% of the reference values. 

The 5-HT1A-receptor BP maps created by the evaluated approaches had similar 
characteristics to the D2/D3 maps with regard to noisiness-smoothness, resolution etc 
(paper II). In contrast to the case of [11C]FLB 457, the ratio of estimated BP values 
obtained with [11C]WAY 100635 were in general more “stable”, i.e. there was less 
variability across the target regions and smaller deviations from the reference values. 
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4.2 TESTING THE GANG MODEL 

The results obtained on the first simulated dataset, in paper III, indicate that both the 
GNG and GANG model were able to map the topology and distribution of the input 
data. In case of the second dataset, the GNG model produced a network with the same 
number of units as in the first test. However, it failed to correctly map the topology of the 
data in the sparse, lower dimensional regions of the input. In contrast, the GANG model 
produced a network that maps the topology correctly even in the sparse (one-dimensional) 
regions. Figure 14 displays the mature GNG (14a) and GANG (14b) networks in the 
second test. The dashed lines indicate the outlines of the input dataset. 

Training the GNG model on the simulated MR data resulted in a network with 225 
units but with no units in the sparsest areas of feature space including the one 
corresponding to mild MS lesions. Therefore, after performing hierarchical clustering and 
image segmentation, no cluster could be picked as the “cluster of mild MS lesions”, and 
input points from the MS lesion were classified to the closest clusters. Therefore, in an 
actual segmentation study this classification results in a large number of misclassified 
voxels. This is demonstrated in Figure 15d-f where all voxels belonging to the “cluster of 
MS lesions” are represented by white pixels. In short, the results of GNG-based 
multivariate segmentation cannot be easily used to detect early MS lesions. 

Figure 15 
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Training the GANG model with the multivariate MR dataset resulted in a network with 
352 units. As described, units were grouped to clusters using hierarchical clustering. The 
units in the area of MS lesion points were assigned to a separate, distinct cluster. Figures 
15g-i demonstrate the selection of this cluster as the “cluster of MS lesions”. Voxels 
classified to this cluster include all MS lesions (see ground truth MS lesion voxels from the 
brain phantom in Figures 15a-c). Additional voxels were misclassified due to the noise 
present in the MR images. However, such voxels can probably be excluded using simple 
real space checks and/or using fuzzy cluster membership values. In short, the GANG 
technique was able to detect the presence of a small, extremely sparse region of the input 
dataset that, on the other hand, could have a high importance in case of an actual research 
study. 

4.3 TESTING THE GANG BASED RECEPTOR PARAMETRIC MAPPING 

The error goal of GANG training was optimised to yield 40-50 units (paper IV). The first 
analysis using the 16-dimensional feature space resulted in a GANG with 43 units. The 
second analysis using the two-dimensional feature space resulted in 44 units. The input 
datasets were classified using the final, mature GANG networks. Clusters 
(neighbourhoods) corresponding to the striatum had around 100 member points or even 
fewer in case of the second analysis. Extrastriatal regions, on the other hand, corresponded 
to neighbourhoods with several thousand points. 

The voxels TAC’s corresponding to points in the same neighbourhood were averaged to 
create “denoised” TAC’s. Figures 16a and 16b display the average TAC’s for the first and 
second analysis, respectively. The curves had been sorted for display according to their 
AUC values. Both analyses resulted in average TAC’s with greatly reduced noise. The 
extrastriatal curves from the first analysis still contain some noise, mainly in the early time-
frames. Otherwise, the curves reach the smoothness of TAC’s from a ROI-based analysis. 

There was a good agreement between the estimated BP maps and between the maps 
and previous data on dopamine D2 receptor studies with regard to the overall pattern of 
receptor distribution (Olsson et al., 1999)(also papers I and II). Furthermore, BP maps 
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from the same approach in the two analyses had very similar BP values but the BP maps in 
the second analysis had a smoother appearance. The lowest extrastriatal values were 
provided by the RLogan approach, whereas the highest by the PITCM approach. The 
BFM, SRTM and DEPICT approaches provided similar extrastriatal values. The LSRTM 
approach in the second analysis yielded extrastriatal values also similar to these three 
approaches. In the first analysis, however, the values were somewhat lower though still 
surpassing the results of the RLogan approach. The estimated striatal BP values were 
highest for the BFM and SRTM approaches in both analyses, followed by the PITCM, 
LSRTM, DEPICT and RLogan approaches in decreasing rank order. 

The PICTM approach was the most complicated one in terms of using plasma TAC for 
input function and providing the broadest spectrum of parameters. The patterns of 
distribution for each parameter were similar between the corresponding maps of the two 
analyses. However, the voxel values had some discrepancies with generally higher 
estimated values in the first analysis. The most difference could be seen in the k1 and k2 
maps. The k3 and k4 maps had fewer voxels with notable difference. The DVT maps were 
different mainly in the striatal and thalamic regions. The parametric values obtained were 
in good agreement visually with previously published results, especially in the second 
analysis (Olsson et al., 1999). Figure 17 displays the parametric maps obtained using the 
PITCM approach in the second analysis. 

4.4 TESTING THE GANG BASED MULTI-RECEPTOR MAPPING 

Figure 18a displays the input data in feature space (paper V). The 5-HT1A receptor BP 
values display a greater spread, whereas 5-HT1 transporter BP values are more packed. 
Negative values are present in the plot because many voxels are devoid of receptor in one 
or more of the subjects but still have a positive BP value in at least one of them. 

The trained GANG created a total of 235 neighbourhoods in feature space, shown also 
in Figure 18a by shading input points in feature space according to their classification to 
neighbourhoods. The denser areas of the feature space have smaller neighbourhoods and 
vice versa. 
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Figure 18b presents a few of the many thousand trajectories that were enumerated in the 
analysis. As shown in the figure, some voxels have a feature vector (and thus a multi-
receptor pattern) moving intensively between individuals. On the other hand, some voxels 
display a more stable behaviour. For example the trajectory in the lower right corner is 
limited to three adjacent neighbourhoods in possibly four out of the five subjects. 

After trajectory classification various trajectory metrics were obtained. Figure 19 displays 
sagittal cross sections through the map of trajectory classification and some final multi-
receptor maps. 

Figure 18 

Figure 19 
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According to the mean voxel count and mean neighbourhood density metrics, the 
thalamus and the brain stem contained voxels in rather desolated, sparse neighbourhoods 
of the feature space. Also voxels in the frontal lobe and especially the anterior cingulate 
gyrus belonged to low-count trajectories. The average topological distance metric roughly 
and by large correlated with the average Euclidian distance. However, in some locations, 
such as in the limbic cortex or the midbrain, the neighbourhood length was high but the 
Euclidian distance was low and vice versa. The former indicated that the trajectory “crossed 
over” territories of the feature space with many small neighbourhoods and the latter the 
other way around. 

The correlation coefficient analysis of the pre- and postsynaptic BP values indicated that 
pre- and post-synaptic BP values, and possibly receptor densities also, were more tightly 
coupled in such parts of the brain as the precingulate frontal cortex (positive correlation) 
or the diamesencephalic border (negative correlation). Although on a non-significant level 
but the anterior frontal cortex seems to be more negatively correlated (or less correlated on 
the whole) than the parietooccipital cortex and the paracentral cortex. 
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5 SUMMARY OF FINDINGS 
• The combination of three-dimensional spatial wavelet filtering with existing 

parameter estimation procedures enables us to obtain detailed maps of radioligand 
binding parameters. 

• From a selection of recent parametric mapping approaches, the wavelet-based 
approach gave the most valid estimates across regions representing a wide range of 
receptor densities in case of PET measurements obtained using [11C]FLB 457 and 
[11C]WAY100635. 

• The field of parametric neuroreceptor imaging has reached a level of maturity for 
using the methods in applied studies. 

• The growing adaptive neural gas artificial neural network model is able to 
adaptively map the distribution of the input data, including both dense and sparse 
regions, while detecting its local dimensionality, topology and radial dispersion. 
Therefore it can be applied, among others, in multi-modal or multi-recording 
cluster analysis, anatomical pattern recognition, image processing frameworks (e.g. 
image segmentation), or data mining. 

• The approach of GANG based classification of voxel TAC’s is a promising way to 
create noise-reduced or even noise-free input for estimating binding parameters 
and obtaining parametric maps with an arbitrary parameter estimation method. 

• GANG based multi-receptor mapping can reveal complex relationships and inter-
individual or inter-condition tendencies related to several receptor systems. An 
existing research interest of this kind is the study of pre- and post-synaptic 
receptors or transporter–receptor systems, such as 5-HT transporters and 5-HT1A 
receptors. 
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6 FUTURE RESEARCH 
On-going work related to first level neuroreceptor studies applies the wavelet-based 
parametric mapping approach for the analysis of a large dataset obtained using dopamine 
D2/D3 radioligands [11C]FLB 457 and [11C]raclopride. The created BP maps are used in 
statistical analysis to reveal differences in dopaminergic receptor availability between 
groups of healthy and diseased subjects. This is a major step forward from performing 
group comparisons on regional averages. 

The GANG-based noise reduction and parametric mapping framework is going to be 
evaluated for validity and reliability in cross-evaluations with traditional ROI-based and 
parametric mapping approaches. In parallel to this evaluation, another study is under 
preparation on the applicability of this approach for obtaining maps of absolute quantified 
receptor density (Bmax) from several PET examinations of the same subject with different 
specific radioactivity of the radioligand. 

The first application of the GANG-based multi-receptor mapping approach is going to 
be the study of relationships between sub-systems of the same neuroreceptor type such as 
5-HT1A receptors and 5-HT transporters. This was the model system used to demonstrate 
the capabilities of the approach but the actual applied study will require larger number of 
subjects so that reliable statistics can be obtained. 

A third level and the pinnacle of neuroreceptor studies can be the construction of 
models describing physiological and/or pathological processes underpinning the patterns 
emerging from the second level of studies. This high level modelling has to encompass 
information on a broad spectrum of genetic and environmental factors. Therefore, it has 
to be based on a meta-analysis of results from several studies of different kind besides the 
results from first and second level neuroreceptor studies. The third level models, albeit 
possibly based on mathematically clear analytical models, can be expected to be 
computational models that seek to simulate certain aspects of the CNS within an artificial 
network. Such models have already been used to duplicate properties of physiological or 
pathological processes in the nervous system. 

For example a computational model of motor circuitry in the lamprey spinal chord has 
been proposed that seeks to simulate network dynamics on a biophysical level (Hellgren et 
al., 1992; Lansner et al., 1998; Grillner, 2003). The model successfully reproduced 
physiological motor phenomena such as alternating phases of activity along the simulated 
spinal chord. Other computational models have been proposed for the study of certain 
phenomena of consciousness (Dehaene et al., 1987; Changeux and Dehaene, 1989, 2000; 
Dehaene and Changeux, 2000; Gisiger et al., 2000; Dehaene et al., 2003). These models 
reproduce network structure and dynamics of thalamic nuclei and cortical columns with 
thalamo-cortical, cortico-cortical connections. The models simulate membrane potential 
dynamics based on membrane, ion-channel and ionotropic receptor conductance. 
Simulation results could reproduce such patterns of neural activity as spontaneous 
thalamo-cortical oscillations, and conscious phenomena such as varying level of 
wakefulness or attentional blink. 

Furthermore, models for CNS disease processes have also been proposed such as a 
computational model to explain different functional alterations in schizophrenia (Hoffman 
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and McGlashan, 2001; Siekmeier and Hoffman, 2002). The proposed models are based on 
observations from studies using a number of methodologies, ranging from simple 
histological staining, immunolabelling, cortical architectonics to neuroimaging methods as 
MRI diffusion tensor imaging or PET brain activation studies. In contrast to the 
biophysically detailed model used to simulate spinal chord motor circuits, these models 
capture network dynamics on a more abstract level. However, they have been successful in 
reproducing such pathological phenomena as spontaneous perception (hallucination) or 
enhanced semantic priming, or even in predicting results of functional performance tests. 

Along these lines, the long-term objective of the research efforts should be the 
integration of knowledge acquired from first and second level studies with results of other 
investigations to create third level models on neuroreceptor systems and related 
physiological and pathological processes. 
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