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ABSTRACT

AS THE VAST MAJORITY of human protein-encoding genes are now

identified, the new challenge placed before life scientists is the determi-

nation of the functions of the proteins. Traditionally, intense, directed efforts

are applied to decipher the function of a novel protein using laboratory tech-

niques. Currently, increasing efforts are directed at the generation of high-

throughput results for large numbers of genes using new technologies and the

application of robotics to established methods. These efforts can generate

large, complex, often noisy datasets, which are difficult to interpret. The ex-

traction of information from genomics data that is relevant for specific scien-

tific research efforts is required to accelerate functional characterization and

annotation of genes by the scientific community.

The research presented in this thesis highlights and addresses deficiencies

in gene/protein function annotation. The bioinformatics tools and method-

ologies presented share the common theme of facilitating research scientists

with means to understand and to interpret gene-specific data. The work,

which addresses both diverse types of genomics data and a broad set of com-

putational approaches, is united by the hypothesis that computational ap-

proaches to genomics data analysis can assist in the characterization of human

protein-encoding genes.

The initial sections of the thesis describe the identification of human pro-

tein-encoding genes for which there is little or no functional annotation. The

initial chapter presents the first bioinformatics method for quantifying the

level of annotation of individual genes and monitoring progress. We devel-

oped the first Gene Characterization Index, a computational method for

scoring the extent to which each human protein-encoding gene is function-

ally described. Inherently a reflection of human perception in a window of

time, the Gene Characterization Index serves both as a tool for assessing the

novelty of individual genes, and for the assessment of short-term annotation

progress on a genome scale. Based on the surveyed opinions of life scientists,

machine learning methods are used to identify annotation properties which

correlate with the expressed opinions. The characterization score enables re-

searchers to highlight poorly characterized genes for which focused efforts

can be made to extract information from genomics data. The procedure was

subsequently applied to study the temporal changes in gene characterization

Abstract
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over recent years, both to identify poorly and well characterized genes within

pharmaceutically relevant protein classes, and to highlight poorly character-

ized genes for which gene-specific patent applications exist, with potentially

useful annotations.

In the second paper, computational approaches are used to identify specific

protein families that share evolutionarily-conserved domains for which the

biochemical function is unknown. For the identified domains, a gene-centric

data centre, NovelFam3000, is created to facilitate shared annotation of pro-

tein function. This software system allows for communal annotation, both

experimental and computational, of individual proteins. Once a domain is

characterized in one protein, the presence of a similar sequence in an un-

characterized protein serves as a basis for inference of function. Thus, knowl-

edge of a domain’s function, or the protein within which it arises, can facili-

tate the analysis of the entire set of proteins.

The subsequent sections of the thesis focus on the creation of bio-

informatics methods to assist human interpretation of gene function. Inter-

pretation of large-scale biological data can be aided by visualization—hu-

mans can perform complex interpretation of data through visual assessment.

Heatmaps have emerged as a preferred technique for the display of genomics

data, as they provide an extra dimension of information in a two dimensional

display. However, an increasing focus on the integration of data from mul-

tiple sources has created a need for the display of additional dimensions. In

order to improve the identification of relationships between co-expressed

genes identified in microarray-based experiments, the Parallel HeatMap

viewer was developed for four-dimensional data display. The flexible data

entry structure of the Parallel HeatMap viewer facilitates the display of both

continuous and discrete data.  The Parallel HeatMap viewer enables knowl-

edgeable life science researchers to observe patterns and properties within

high-throughput genomics data in order to rapidly identify biologically logi-

cal relationships.

Researchers seeking to understand gene function often turn initially to the

scientific literature. Hindered by a historic lack of standard gene and protein-

naming conventions, they endure long, sometimes fruitless literature

searches. The final chapter of the thesis focuses on the computational identi-

fication of abstracts which may be relevant to gene function—the essential

and difficult challenge that must be overcome for computational assisted lit-

erature review. A gene symbol, such as CAT, can refer to any one of a number

of distinct genes, as well as to numerous non-gene entities, and its correct

sense cannot be easily distinguished in text without a close examination. The

final chapter introduces a computational approach, SureGene, to aid in ad-

dressing this “disambiguation problem”. The system is based on supervised

machine learning, resulting in a distinct model for the identification of rel-
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evant abstracts for each gene. The training sets for all genes are extracted au-

tomatically from functional descriptions and MEDLINE references in the

Entrez Gene and SwissProt databases. The system was able to achieve high

quality gene disambiguation using scalable automated techniques.

This thesis explores the hypothesis that computational methods can facilitate

the identification and characterization of poorly annotated genes. The

bioinformatics approaches to this problem assist researchers in advancing our

understanding of the functional of human protein encoding genes.
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Preamble

Most of what you get taught is lies. It has to be. Sometimes

if you get the truth all at once, you can’t understand it.

Terry Pratchett

Human gene annotation

THE NUMBER OF PROTEIN-ENCODING human genes identified has

reached a plateau [1], leaving researchers with the challenging

task of ascribing biochemical function(s) for each protein [2]. Broad

genome sequencing and functional genomics studies, partially mo-

tivated by the goal to discover the functions of uncharacterized pro-

teins, have provided a distributed set of data collections suitable to

catalyze the inference of the functions of proteins.

In contrast to Mendelian views of a gene as a trait carrier, a

bioinformatics perspective views a gene entity as a combination of

the DNA, RNA and protein product, with physical and biochemical

properties that can be studied for functional characterization.

Gene characterization approaches

Elucidation of the function(s) for each human protein-encoding

gene is a prominent challenge in biomedical research. Systematic

characterization projects are underway, ranging from the ENCODE

project for detailed genome annotation [3] to the phenome projects

to identify phenotypes generated by mutations of human gene

orthologs in model organisms [4–6]. These efforts are undertaken,

in part, to evoke new insights into the functions of uncharacterized

genes revealed through the successful sequencing of the human ge-

nome. At the level of basic human curiosity, scientists are drawn to

these uncharacterized genes, for it is the deciphering of the functions

of these genes which offers the greatest potential to gain fundamen-

tal insights into biological processes; to peer into the unknown. The

therapeutic and financial benefits associated with successful identifi-
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cation of genes that are suitable targets for pharmaceutical research

and informative biomarkers for treatment selection stands as another

strong motivator.

The arsenal of the modern molecular researcher, when directed at

specific genes, can quickly elucidate properties that offer glimpses of

underlying functions. In the laboratory we can determine where the

encoded protein localizes within the cell, the spatio-temporal coordi-

nates of gene activity, the function in cells or model organisms

through biological assays, and further techniques ad infinitum. To

unleash these expensive and time consuming studies, researchers (and

funding agencies) are often motivated by preliminary glimmers of

functional knowledge. As established by the wisdom of the interna-

tional yeast research community to systematically knock-out each

yeast gene in turn [7], and the realization that the number of un-

characterized human genes is dramatically less than anticipated [8], a

very different paradigm has emerged. Rather than focusing resources

upon genes illuminated by the sparks of preliminary research results,

those genes that have remained shrouded in darkness may be brought

forward for study. In the ENCODE project, undertaken by a por-

tion of the global research community to systematically annotate

functions for 1% of the human genome, a portion of the genome was

selected for study for the glaring absence of knowledge about the

genes in the region. The Allan Brain Atlas [9] places a premium on

the systematic study of expression in the mouse brain of uncharac-

terized genes. In the biotechnology and pharmaceutical industries,

gaining insights into the functions of uncharacterized genes can offer

a direct and meaningful path to successful patent applications. In

short, it is now acceptable to focus attention and resources on the

diminishing set of uncharacterized human genes.

Information about individual genes is available from a variety of

sources. A number of high-profile data centers such as Entrez Gene

[10], GeneCards [11] and SwissProt [12] provide curated, compre-

hensive information with links to individual information sources. A

researcher can search through these resources for genes associated

with a disease or phenotype. Discovery or prediction of functions of

uncharacterized genes is not directly possible. In order to predict the

roles of proteins with some confidence, one can study interactions or
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associations with other genes. For example, Aerts et al. [13] intro-

duced a ranked gene prioritization method which integrates multiple

genomic data sources. The Endeavour system creates a model repre-

senting the most predominant characteristics for a set of training

genes, selected by the user as positive examples of a function or pro-

cess of interest. Multiple resources are queried to derive disease or

pathway information for the training genes including literature, func-

tional annotation, microarray and EST expression, protein domains,

protein-protein interactions, pathway membership, cis-regulatory

modules, transcriptional motifs and sequence similarity. Additional

resources can be added by the user. The model is then applied to the

entire database of genes to select those most similar to the genes in

the training set. By merging heterogeneous data sources through rig-

orous statistical methods, an overall ranking of test genes is generated

relating them to the disease or biological process of interest. A num-

ber of studies have demonstrated that consistent results for interac-

tions between homologous genes in multiple organisms, so called

Interolog Analysis, can be lead to discovery of reliable characteriza-

tion information not otherwise possible [14–16]. Therefore, human

protein characterization efforts that focus on similar proteins across

multiple organisms are expected to more effectively capitalize on the

available genomics data. This powerful approach has one limitation -

sufficient information about each gene must exist to allow for the in-

ference of gene-gene association.

Genomic data visualization tools

Systems biology research generates large, complex datasets. While

clustering algorithms can identify subsets of genes that behave simi-

larly, interpretation of inter-gene relationships can be difficult. In

only a small subset of cases can a biological theme be accurately as-

cribed to a statistical grouping of genes. Interpretation is complicated

by the fact that popular clustering algorithms such as hierarchical,

K-means and self-organizing maps [17], are guaranteed to produce

clusters, even if no underlying biological process or statistical moti-

vation exists. Assessment and interpretation of clusters can be sim-
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plified when data from multiple sources is correlated. For example,

Robinson, et al. [18], combined gene expression data for 237 dis-

tinct gene knockouts [19] with information from the Munich Infor-

mation Center for Protein Sequences (MIPS) Functional Classifica-

tion database [20] to identify a 76-gene cluster involved in amino

acid biosynthesis and metabolism. A number of bioinformatics tools

that facilitate such integrative approaches exist. INCLUSive [21] is a

system analyzing gene clusters from expression microarray data for

transcription factor (TF) binding motif identification. GoMiner

[22] utilizes expression levels and Gene Ontology (GO) [23] for or-

ganization and biological interpretation of genes with respect to a

selected subset of user selected genes. EASE [24] identifies over-rep-

resented attributes for a gene list or cluster using multiple gene an-

notation data sources such as GO and MeSH [25] terminology, tran-

scription factor binding sites, protein domains, pathways and chro-

mosomal locations. FunSpec [18] identifies common attributes for a

given gene set based on information from sources such as GO, Pfam

[26], MIPS and a number of specific high-throughput data sources.

The oPOSSUM system [27] searches for evidence of co-regulation

by one or more transcription factors, combining a pre-computed

database of conserved transcription factor binding sites in human

and mouse promoters with statistical methods for identification of

sites over-represented in a set of co-expressed genes.

Methods based on comparative analysis across species (co-expres-

sion networks and interologs) are becoming common. Interolog

Analysis is based on observation of mutually consistent interactions

in multiple species (Figure 1). Such methods require a high quality

map enumerating gene homology relationships among species.

Matthews et al. [28] investigated the extent to which a protein inter-

action map generated in one species can be used to predict interac-

tions in another species by using S. cerevisiae two-hybrid interaction

maps to predict interactions in C. elegans. A complementary study by

van Noort, et al. [29], investigated gene function prediction by con-

served co-expression in yeast and worm orthologs. In a broader study,

Stuart, et al. [30], constructed a gene co-expression network based

on gene expression data and ortholog sequence similarity among

model organisms of human, worm, fly and yeast. Uniting the Atlas
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[31] database and HomoloGene [32] with interactive visualization,

the Ulysses system [33] performs interolog analysis for the parallel

analysis and display of protein interactions detected in model organ-

isms, including human, worm, fly and yeast.

Visualization tools for assessment of correlations offer an alterna-

tive approach based on accessing the cumulative knowledge of hu-

man specialists – knowledge that can be difficult to replicate

computationally [34]. Computer-assisted data visualization has been

an active area of research since the early 1960’s. With the influx of

high-throughput data, the scientific community has recognized the

benefits of multi-dimensional visualization in data exploration and

interpretation. Numerous publications, workshops and conferences

addressing these issues can be found through the IEEE Computer

Society [35] and ACM [36] web sites. Improved coordination across

multiple views has received recent emphasis [37]. Boukhelifa and

Rodgers [38] describe a model for expressing coordination in mul-

tiple view visualization systems. Ross, et al. [39] created a set of tools

for profiling the performance of individual visualization components.

Figure 1. Interolog Analysis. Interolog mapping of conserved protein networks across four

model species: human (H.s.), fly (D.m.), worm (C.e.) and yeast (S.c.). Individual species pro-

tein interaction networks are overlaid and aligned based on orthologous genes designated by

HomoloGene Ids (Hid), producing an extrapolation of the complete interaction network. Con-

fidence in the network grows as more evidence is discovered supporting pair-wise interactions

in each species. In the above example, the interaction between Hid1 and Hid3 is supported in 3

species, while those of Hid1-Hid2 and Hid1-Hid4 have support in just 2 species each.
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Bertini, et al., [40] developed VidaMine, a data exploration and min-

ing system exploiting multiple views. Researchers at the University of

British Columbia created graphical tools for comparison of phyloge-

netic trees and multiple sequence alignments, utilizing progressive

rendering and localized zooming, including TreeJuxtaposer [41] and

SequenceJuxtaposer [42]. These tools concentrate on assessment of

only a single data source albeit, in multiple views.

There exist tools specifically designed to explore a single source of

biological information, as exemplified by Osprey [43] for navigation

of molecular interaction data, Pathway Voyager [44] for KEGG [45]

metabolic pathway visualization, and the Reactome knowledgebase

of biochemical pathways and biological processes browser [46].

Cytoscape, a continually evolving network visualization program

[47], generates an interactive graph of molecular interaction data with

the ability to assign attributes such as Gene Ontology definitions and

gene expression level information to the nodes representing indi-

vidual molecules. Likewise, graph edges can be assigned labels or nu-

merical values representing pair-wise interaction type or strength.

As the availability of complementary high-throughput data is

growing, the means to visually discover new relationships within large

and complex data has become critical. Heatmaps are well established

in genomics, provide a means to rapidly identify relationships across

large datasets, and conveniently display continuous data through

color intensity (Figure 2).  In 1997, Weinstein, et al. [48], explored

the relationship between 3989 compounds and 76 molecular targets

believed to interact in cancerous cell lines, by correlating gene expres-

sion of thriving tumor cells and the levels of growth inhibition

brought about by a potentially therapeutic compound. The results

Figure 2. Heatmap. Microarray gene expression results have been clustered hierarchically show-

ing distinct patterns of over-expression (bright) and under-expression (dark). Each row repre-

sents an individual experiment and each column an individual gene.
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Figure 3. Multi-Dimensional Data Visualization. Benefits of multi-dimensional data visual-

ization can lead to new insight into the biological process of a gene. Gene clusters from

microarray expression experiments can be characterized based on existing gene annotation

resources. A selected list of target genes is assessed against in silico information such as tran-

scription factor binding predictions. Finally, predictions for selected genes are compared

against in vitro data from protein-protein interaction experiments, strengthening confidence

in functional aspects of individual genes.

were presented as a heatmap, clearly distinguishing which com-

pounds were active in cell lines with elevated expression levels of the

target proteins. In 1998, Eisen, et al. [49], presented a system for the

analysis of genome-scale, multi-experiment, microarray expression

data. In one example, genes were clustered hierarchically based on

the expression patterns for growth response in human cells, gathered
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from 12 samples over a 24 hour period of time. Functionally related

clusters were identified including those of genes involved in choles-

terol biosynthesis, cell cycle, immediate-early response, signaling and

angiogenesis, and wound healing. They concluded that genes of simi-

lar function cluster together. Subsequently the majority of studies of

genome-sized expression data have utilized heatmaps and/or line

plots, as exemplified by Gasch [50] and Wen NAME [51].

Most gene expression analysis packages, from academic tools such

as Cluster and TreeView [49], Hierarchical Clustering Explorer

(HCE) [52, 53], GDS Browser [54] and Prism [55], to commercial

products such as ArraySCOUT [56], GeneSpring [57] and Spotfire

DecisionSite for Functional Genomics [58], provide heatmap visual-

ization tools that are linked to clustering algorithms [59]. Layering of

complementary data into the visual display, however, has been lim-

ited. The above-mentioned tools provide visualization and annota-

tion enhancements to support cluster analysis, including dendro-

grams, scatterplots, line graphs, detailed row and column descriptions

and links to external annotations. Similarities between Gene Ontol-

ogy annotations assigned to individual genes [52, 60, 61, 62] can pro-

vide a useful, albeit limited, hint at inter-gene relationships. While

multidimensional visualization tools for database exploration are long

established [63, 64], there are no established bioinformatics tools that

facilitate the visualization of functional relationships from unrelated

sources on a global scale as envisioned in Figure 3.

Literature searches for gene characterization information

Heatmaps and other visualization approaches are based on assessing

the specific domain knowledge of a scientist.  Ultimately much of

this knowledge is drawn from the primary scientific literature.  In

order to gain large-scale access to data in published papers, text min-

ing methods must be created to link functions/attributes with genes.

To initiate a text analysis procedure for the discovery of gene-gene

associations, the first step is to select documents which address a

given gene.

Text mining is a systematic process involving multiple steps (Fig-
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ure 4). Starting with identification and access to a collection of

sources, biological, biochemical or medical entity identification and

extraction form the text follows. Statistical content analysis provides

a landscape of information useful for over-association studies, docu-

ment, concept or entity clustering and machine learning classifiers

for automatic tagging of documents with human-generated themes

or topics. Natural Language Processing, with the aid of targeted on-

tologies is used to derive directed, factual relationships between enti-

ties. Ontologies are rich descriptions of the concepts and relation-

ships that exist within a domain. They can be used to generate con-

trolled vocabularies, thesauri and taxonomies. This information is

stored in a database repository and utilized for a number of automated

processes such as pathway or protein interaction network generation.

Finding relevant information

Text searching represents the first level of text mining. It is more for-

mally known as information retrieval (IR). The resulting output is

usually presented as ordered document lists, with documents ranked

according to a keyword-based scoring function. Because documents

are treated merely as “bags of words,” all context and semantic varia-

tion is ignored. Therefore, keyword searches tend to return a high

volume of “hits” with little ability to discriminate nuance, complex

connections, or even the relevance of the concepts communicated in

the document in which the keyword resides. On the other hand, key-

Figure 4. Text Mining Workflow. Typical text mining workflow involves identification and

subsequent collection of document sources, biological/biochemical/medical entity extraction,

statistical content analysis, including co-occurrence statistics, document clustering and classi-

fication, and natural language processing enhances by domain-specific ontologies. Compre-

hensive results are stored in databases for user queries and computational analysis.
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word-based text search is the most popular form of text mining be-

cause it is the most familiar. A researcher performs a search and then

analyzes the results manually. One can also run multiple searches

looking for intersections between literature sets using logical func-

tions [65].

The first major drawback of keyword searching is that the task of

sorting the search engine output falls on the investigator, which ex-

ploits neither the computer’s nor the human’s strengths. In addition,

keyword searches suffer from polysemy (the same word having dif-

ferent meaning in different contexts), which requires the reader to

examine documents for relevance, where a large number may be com-

pletely incorrect, and synonymy (multiple words referring to the same

concept), which requires the investigator to know (and employ) all

possible alternative synonyms to ensure a complete search. Synonymy

is a particularly difficult problem in biology literature, where proteins

routinely have many names and abbreviations often overlap common

English words.

Assuming that the gene-document mapping problem can be over-

come, numerous approaches to gene characterization become fea-

sible.   Three common approaches are (i) statistical over-representa-

tion of terms in a set of documents for a gene or gene-set; (ii) text

categorization of documents to determine if a category is over-repre-

sented in the set of gene or gene-set related documents; and (iii) docu-

ment clustering to facilitate organized review of documents for a gene

or gene-set.

Functional analysis of a gene set with a possible preexisting rela-

tionship, such as a co-expressed, microarray-derived gene cluster, can

be facilitated by statistical text mining. A literature set associated with

a gene cluster can be analyzed for statistically significant frequency

differences for annotation terms from vocabularies such as GO and

MeSH, or entity classes such as genes, diseases, biological processes,

or pathological processes. Gene co-occurring term analysis has been

integrated with a gene-expression clustering algorithm itself to assist

in the determination of gene clusters [66]. Another example is

TXTGate [67], a system using statistical analysis of MEDLINE [68]

literature with biomedical domain vocabularies for the analysis of a

group of genes. It generates a gene cluster profile consisting of statis-
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tically over-represented terms and phrases associated with the genes

under consideration.

Text categorization is a content classification method, requiring

user curation of a model. By defining the properties of a topic of in-

terest, the user enables a computational identification of documents

addressing this topic. Such an approach requires a notion of relevant

attributes to study. Automatic text categorization for text mining is

usually employed to assign documents to specified subsets. Text cat-

egorization is a supervised machine-learning technique, requiring

training data to generate the category models. It can be used to gener-

ate large taxonomic structures of documents similar to Yahoo’s [69]

classification of Web pages. On the whole, text categorization needs

to be highly focused and customized to the project. Text categoriza-

tion, more than any other area of text mining, requires very careful

thought and design. Extensive testing is required to understand the

behavior of the categorization model.

Document clustering is used for knowledge discovery and pro-

vides a hint of the diversity of themes within an otherwise uncharac-

terized document collection. In particular, clustering is used when

exploratory searches result in hundreds or thousands of documents.

Clustering can greatly improve the grouping and prioritization of a

set of documents. In the context of text analysis, document cluster-

ing arose from a desire to improve information retrieval systems [70,

71], identify similar documents [72], and better organize and browse

a group of documents [73, 74]. Document clustering is a form of

unsupervised machine learning [75]. At its simplest and purest level,

document clustering requires no prior knowledge or expectations

about the contents and provides concept extraction [76] and knowl-

edge navigation. Furthermore, concept extraction can seed an auto-

matic derivation of classifications and serve as a method of “ontology

induction” [77]. Traditional clustering methods rely less on semantic

analysis and instead utilize multivariate statistical techniques to form

clusters of similar objects in a multidimensional space [78]. In every

case, the process involves generation of characteristic document vec-

tors. Most frequently, these vectors are based on individual word fre-

quencies in the document. To reduce the significance of frequently

occurring words found in a majority of the documents, such as com-
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mon English words, normalization or weight schemes can be applied:

inverse document frequency, probabilistic weights, stoplists (a list of

specific words that will be excluded from the analysis), or domain-

specific weighted theme lists. At this stage, a method may diverge

from purely automatic clustering toward semi-supervised, partially

categorization-based cluster identification. Document vectors are

used for calculating a similarity (or distance) metric between two

documents or a document and a cluster centroid (a vector represent-

ing the center of a cluster of documents).

As introduced above, the capacity to perform text-based analysis

is fundamentally linked to the gene disambiguation problem – we

must be able to identify which genes are addressed in a sentence or

document.

Gene naming convention

Prior to the establishment of high-throughput gene sequencing

methodologies, new genes were discovered infrequently, after great

effort. Naming the newly discovered gene was undertaken by the dis-

covering team with little thought of the impact of the name for the

future. Fruit fly researchers are best known for extreme naming prac-

tices, with names such as ‘lot’, ‘sarah’, ’ken and barbie’, ’lost in space’,

’cheap date’, ’drop dead’ and ’swiss cheese’. Frequently, genes of un-

related function in even a single species were given identical names

by their respective discoverers. This did not pose a large problem

while isolated communities of researchers devoted themselves to

studying a small subset of genes within a single organism. With a

growing number of cross-species studies and increasing importance

of intra-species network interaction analysis, haphazard naming con-

ventions have created a significant problem for automated analysis

methodologies, especially those relying on literature analysis of un-

structured text.

In 1979, the HUGO Gene Nomenclature Committee (HGNC)

[79] became an official body for approval and implementation of

human gene names and symbols. Initial guidelines for nomenclature

of human genes were published, followed by a number of updates,

the most recent in 1997. All approved human gene symbols are ac-
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cessible from the HGNC database. As of June 2006, the database

contains 23,422 official symbols for genes. Over the history of the

project, 4457 entries have been changed at least once. At present,

14943 genes contain one or more aliases. 78 former symbols and 358

aliases are currently official gene symbols for other genes. Overall,

HUGO maintains 53906 unique gene names and aliases. In contrast,

Entrez Gene maintains 33024 human gene ids as of February 2006,

consisting of 33006 unique official symbols. There are 51121 aliases,

with 2438 shared by more than one gene. Overall, Entrez Gene main-

tains 80618 gene symbols and aliases. It is apparent that human gene

references are not always obvious or consistent or stable.

Synonym ambiguity in literature

Usage of a unique symbol for each gene facilitates electronic infor-

mation retrieval from publications and automated analysis (text min-

ing). Unfortunately, historical usage of gene symbols in published

literature is not fully captured by either HUGO or Entrez Gene. One

example is the symbol AR. The University of Texas ARGH Biomedi-

cal Acronym Resolver [80] identifies 862 known acronym definitions

in MEDLINE, while Stanford University Biomedical Abbreviation

Server [81] identifies 1291 possible interpretations. AR is the official

symbol for the androgen receptor gene (GeneID 367). A PubMed

[82] search for AR produces 54,457 results.  A search for ‘androgen

receptor’ returns 9412, of which 6215 do not use the symbol AR.

Both HUGO and Entrez Gene record the usage of the symbol

AR as an alias for one additional gene, AKR1B1 – more commonly

called aldose reductase (GeneID 231). Entrez Gene also maps the

alias AR to the AREG gene, or amphiregulin (GeneID 374). There

are 425 PubMed results for amphiregulin, of which just 9 use AREG

as a symbol, while 157 use AR. In addition, there are a number of

other genes in PubMed using AR as an alias. One example is the 18-

member adenergic receptor (adrenoceptor) gene family with 2671

PubMed results including AR as an alias. AR is often used in PubMed

abstracts without a clear reference to a full gene name, requiring a

domain expert for verification of the actual gene being described.

The absence of an automated approach for resolving ambiguity
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between gene synonyms is a key problem [83, 84]. Natural Language

Processing in particular is dependent upon term disambiguation,

which has been called the “great open problem” of natural language

lexical analysis [85]. In the biomedical domain, gene and protein

name disambiguation is essential for providing quality protein-pro-

tein interactions, disease associations, and other complex biomedical

analysis. This problem can also have a substantial impact on the effi-

ciency of information retrieval methods, such as biomedical thesauri

[86] or molecular pathway identification [87].

Resolving ambiguity

When dealing with gene name terminology, disambiguation tasks

fall into two basic categories: identification of text which likely refers

to a gene and, if so, which specific gene does the text address.  As an

example of the former, does “PI” refer to a gene (e.g. “glutathione S-

transferase pi”) or something else (e.g. “Permeability Index”).  Once

predicted as a gene name within a document, the symbol must be

associated to a specific gene (e.g. distinguish between ”glutathione

S-transferase pi” and “serpin peptidase inhibitor”). Both of these is-

sues can confound text analysis.

Automated disambiguation of gene and protein names can play a

significant role in accelerating disease research and drug develop-

ment. Natural language researchers began focusing on automated

approaches to term disambiguation in the late 1980s and early 1990s.

Yarowsky [88] used statistical models built from entries in Roget’s

thesaurus to assign sense to ambiguous words in text, using a Baye-

sian model to weight the importance of words related to the targeted

ambiguous term. Gale, Church, and Yarowsky [89] outlined an ap-

proach that used the 50 words preceding and following the target

term to define a context for that term’s sense. In developing a method

for general word sense disambiguation using unsupervised learning,

Yarowsky [90] took a document classification approach to solving the

problem of general term disambiguation. He showed in this study

that generic English language terms often have only one sense per co-

location with neighboring words.

Computational linguists and computational biologists have re-
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cently begun to study term disambiguation in the biomedical do-

main. A number of researchers [85, 91] have proposed solutions that

involve manually crafted rules to help natural language processing

and information retrieval systems correctly process ambiguous syn-

onyms. These rules are often combined with supervised learning

methods (in which systems are provided with human-curated train-

ing data) and in some cases unsupervised learning methods (also of-

ten referred to as “clustering’). Recent work by Yu and Agichtein [92]

compared four different approaches to solving the disambiguation

problem: manual rules, fully supervised learning, partially supervised

learning, and unsupervised. The manual method is then combined

with several of the machine learning approaches to yield a system ca-

pable of extracting synonymous genes and proteins from biomedical

literature. Liu et al. [93] also explored a partially supervised learning

approach based on disambiguation rules defined in the Unified Medi-

cal Language System. In the case of both papers, results are promis-

ing, but the systems require a pre-existing set of handcrafted litera-

ture corpora (text sources), raising questions about scaling up to a

level where a significant portion of human genes and proteins can be

covered. Hatzivassiloglou et al. [94] applied machine learning to the

problem of gene, protein and RNA molecule disambiguation in text,

showing that accuracy levels, as defined by F-measure, of nearly 85%

can be attained for classifying terms as belonging to the class of gene

or protein. Research presented in paper IV of this thesis describes

development of a large-scale human gene and protein name disam-

biguation system, seeking to correctly identify references to a specific

gene in MEDLINE abstracts.

Faced with a question of how a compound modulates a pathway,

a researcher is considering a complex problem. Issues to consider are

adverse effects, pathological processes, toxicity, etc. Solution requires

combined analysis of all available data, both literature and experimen-

tal, and a systems biology approach.
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Present investigation

Imagination is more important than knowledge

Albert Einstein

THIS THESIS PRESENTS a progression of studies related to the core

hypothesis that bioinformatics approaches can facilitate the in-

ference of functions for human protein-encoding genes.

Bioinformatics-based gene characterization, like all discovery pro-

cesses, works best when multiple approaches lead to similar conclu-

sions. The initial step is the selection of one or more genes for study.

A predetermined or preexisting functional aspect of a gene or gene

family, a gene’s commercial application potential such as patentabil-

ity, tissue specificity, subcellular location, or even the presence of a

specific structural or functional domain can influence such selections.

Second, the discovery process must be applied to a data collection or

set of collections.  Genome-scale experimental data, such as gene ex-

pression, can contain powerful clues as to the function of a protein.

These clues are often lost without examination of specific results in

light of additional, complementary information. As such, visualiza-

tion tools are critical for discovery of relationships between genes in

large-scale data. Beyond visualization, which relies on the accumu-

lated knowledge of an individual, the final step is to draw on the ac-

cumulated knowledge in primary scientific literature.  Detailed ex-

amination of scientific literature can thus link a gene with a role in a

biological process.

Bioinformatics methods can facilitate and accelerate the discov-

ery of gene characteristics. The investigation presented in this thesis

involves development of methods and bioinformatics applications

that assist in identification of poorly characterized genes and aid char-

acterization efforts to elucidate their function.

� Prediction of the level of characterization of human genes or gene

families, allowing selection of poorly understood genes for functional

studies
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� Identification of protein domains with unknown function, yet con-

served across species throughout evolution

� Exploratory visualization of complementary genomic-scale, experi-

mental and computational data with parallel heatmaps

� An automated text classification system for large-scale disambigua-

tion of human gene names in literature

These methods and tools provide essential resources for targeted or

systematic functional gene characterization efforts.
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Paper I

Gene Characterization Index: A Metric for Assessing

How Well We Understand Our Genes

IN GENOME SEQUENCING, progress can be measured simply by enu-

merating the number of sequenced base pairs. For gene annota-

tion, however, there is no quantitative measure against which the

progress of characterization efforts can be assessed.

The present paper introduces the first Gene Characterization In-

dex (GCI), a computational method for scoring the extent to which

each protein-encoding gene is functionally described. Inherently a

reflection of human perception in a window of time, GCI serves both

as a tool for identifying those genes which are least (or most) well

characterized and for the assessment of annotation progress on the

genome scale. The GCI scoring method was created based on the re-

sults from a global survey of life science researchers, who assigned

characterization scores ranging from one (poor) to ten (complete) for

a sample of genes.

Using the survey results as training data, machine learning meth-

ods were applied to develop a scoring function to assign scores to all

human protein-encoding genes. The Entrez Gene and EnsEMBL

databases were utilized to obtain quantitative gene annotation char-

acteristics for use as potential model attributes. The final set of at-

tributes from which the model could select consisted of: single nucle-

otide polymorphisms (SNPs); number of DNA sequences available

in GenBank and EnsEMBL; InterPro protein domains; Gene Ontol-

ogy annotations; KEGG metabolic pathways; OMIM disease asso-

ciations; annotations in PRINTS, PROSITE, RefSeq and SwissProt;

PDB protein structures; HomoloGene similar sequences in other spe-

cies; descriptive annotations such as HUGO gene name and symbol

and functional description from Entrez Gene; and PubMed litera-

ture references from Entrez Gene.

The performances of numerous classification algorithms were

compared, including linear models (LM), regression trees (RT), neu-

ral networks (NN), support vector machines (SVM), and multivari-
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ate additive regression splines (MARS). Most of the methods per-

formed in a comparable range, suggesting that performance is not

constrained by the statistical methodology. We selected a MARS

model, as the MARS procedure provides the greatest clarity on which

data attributes are used to optimize the fit to training data. The final

model utilized the number of GenBank DNA sequences, InterPro

domains, KEGG pathway associations, PubMed abstracts and

OMIM disease references, and number of isoforms present in the

SwissProt database.

Based on gene annotations archived in past releases of the

GeneLynx database, the GCI scoring procedure was applied to study

the temporal changes in gene characterization (Figure 5A), to iden-

tify poorly and well characterized genes within pharmaceutically rel-

evant protein classes (Figure5B), and to highlight poorly character-

ized genes for which gene-specific patent applications exist from

which potentially useful annotations could be obtained. Current GCI

scores for all human genes are available on the GCI website. GCI

scores have been provided for the human genes in the NovelFam3000

database (paper II).

Figure 5. Histograms of GCI scores for human genes. Comparison of GCI scores for 19,377

genes with cDNA sequences from the GeneLynx database in May 2001 (light gray bars) and

23,911 genes from Entrez Gene in February 2006 (dark gray bars). A. Full genome scores show

an general increase in the level of characterization and nearly 50% reduction in the number of

completely uncharacterized genes. B. A subset of human genes representing drug target genes

from the Drug Target database include 1054 genes from May 2001 (light gray bars) and 1095

genes from February 2006 (dark gray bars). The median GCI score has increased from 6 to 8.5,

with close to 10% scored at a maximum value of 10.
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The existing GCI scores reflect the state of life scientists’ opinions

at the time of the survey. As science advances, perspectives will change

- our expectations for the depth of gene annotations will likely more

stringent. In addition, over time, the available types and sources of

data change. Therefore, the GCI scoring function must be periodi-

cally updated to reflect the available annotation resources and the

changing opinions of researchers. The GCI website facilitates com-

munity input on gene characterization scores. As this feedback is col-

lected and after the quality is evaluated, new generations of GCI scor-

ing functions can be developed.

Author Roles: Raf Podowski was involved in survey preparation

and validation, model development, testing, implementation and

validation, and preparation of all results. Danielle Kemmer assisted

in the survey development and training data preparation. Jochen

Brumm provided guidance on statistics, classification and regression

algorithms. Claes Wahlestedt assisted in the project design and appli-

cation potential. Boris Lenhard assisted in obtaining gene attributes

from historic GeneLynx databases. Wyeth Wasserman conceived the

gene characterization index, assisted in the survey development,

model attribute selection and performance validation, as well as use

case identification. Raf Podowski, Danielle Kemmer and Wyeth

Wasserman drafted the manuscript.
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Paper II

NovelFam3000 – Uncharacterized Human Protein Do-

mains Conserved Across Model Organisms

APPROACHES COMBINING BOTH EXPERIMENTAL and bioinfor-

matics methods and data may elucidate functional characteris-

tics of uncharacterized protein domains.

The foundation of this project is based on identification of

uncharacterized protein domains in human genes. Significance of a

domain is indicated by its conservation across evolution, especially if

found in model organisms such as yeast, worm or fly (Figure 6), thus

providing broader informatics and experimental resources for func-

tional studies. The final product of the project is a data centre, Novel-

Fam3000, serving as a central resource for annotation of uncharac-

terized domain-containing proteins. The system provides access to

dispersed Internet resources containing gene-specific experimental

data, and allows for addition of annotation comments and posting

relevant experimental results.

The data centre contains ap-

proximately 3000 protein do-

main families with minimal avail-

able biochemical annotation.

Analysis of the Pfam database’s

domain families from Pfam-B

and Domains of Unknown Func-

tion (DUFs) identified uncharac-

terized protein domains repre-

sented in each of three metazoan

genomes, those of human, worm

and fly (Figure 7). The selected

protein domain families were re-

quired to have multiple human

protein members.

An up-to-date GCI score (pa-

per I) is displayed for each human

Figure 6. Project Objective. The goal of the project

is the identification of uncharacterized human pro-

tein domains conserved across model organisms in-

cluding D. melanogaster and C. elegans.
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gene in the system. The characterization index allows users to observe

changes in the functional understanding of an individual gene or

whole domain family over time, or to identify uncharacterized do-

mains in well-characterized genes for further study.

Consistent experimental results between multiple members of a

domain family allow for inferences of the domain’s functional role.

We unite bioinformatics resources and experimental data in order to

accelerate the functional characterization of scarcely annotated do-

main families.

Author Roles: Danielle Kemmer participated in the design of the

study and generated experimental data. Raf Podowski participated in

the compilation of a collection of novel-domain containing proteins,

developed the Gene Characterization Index and contributed to the

database design. David Arenillas and Jonathan Lim carried out the

database development. Emily Hodges and Peggy Roth contributed

experimental data for model organisms. Christer Höög coordinated

the generation of the experimental data for the database. Erik

Sonnhammer supervised the initial compilation of a collection of

novel-domain containing proteins. Wyeth Wasserman conceived of

the NovalFam3000 database and assisted in the interface design.

Danielle Kemmer, Christer Höög, and Wyeth Wasserman drafted the

manuscript.

Figure 7. Conserved domain identification. Alignment of protein se-

quences for 3 species identifies a previously unidentified, conserved domain

with unknown function. Clues to its function may come from new informa-

tion about any single member of the group.
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Paper III

Visualization of Complementary Systems Biology Data

with Parallel Heatmaps.

INTERPRETATION OF LARGE-SCALE biological data can be aided by

the use of appropriate visualization tools. Heatmaps have emerged

as a preferred technique for the display of genomics data, as they pro-

vide an extra dimension of information in a two dimensional dis-

play. However, an increasing focus on the integration of data from

multiple sources for gene characterization (paper I and II) has cre-

ated a need for the display of additional dimensions.

The application described in the present paper was developed to

enable biologists to visually compare multiple gene-centric data

sources, facilitating the discovery of significant functional relation-

ships between genes and characteristics. Examples of such gene-cen-

tric data classes include: gene expression profiles, binding sites for

transcription factors (TFs), Gene Ontology terms, disease/pathway

annotations, literature-based associations (paper IV) and sub-cellu-

lar localization (paper II). A thorough search and examination of ex-

isting tools failed to identify a sufficiently flexible or ready solution.

In order to endow researchers with the capacity to seek correlations

between such disparate classes of data, we developed the Parallel

HeatMap (PHM) viewer for four-dimensional data display. The flex-

ible data entry structure of the Parallel HeatMap viewer facilitates the

display of both continuous and discrete data. Confidence can be built

by directly comparing computational predictions to experimental

results (Figure 8).

Figure 8. Correlations between in vivo and in silico binding sites. There is strong agree-

ment between computational predictions generated by the MSCAN software using distinct

yeast binding profiles of the Lue3 transcription factor and microarray-assessed chromatin

immuno-precipitation results (“ChIP on Chip”).
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The Parallel HeatMap viewer enables knowledgeable life science

researchers to observe patterns and properties within high-through-

put genomics data in order to rapidly identify biologically logical re-

lationships.

Author Roles: Raf Podowski initiated the project, participated in

the development of functional requirements, design and testing of

the parallel heatmap viewer, collected and generated data sources used

in the validation, performed testing and result generation, drafted the

manuscript and prepared the project web page. Brett Miller created

the GenePilot software and multi-platform installation packages.

Wyeth Wasserman provided guidance in identifying areas which may

benefit from application of a parallel visualization approach, identi-

fied references and sources of data used in validation, ascertained re-

sults of all studies and revised the manuscript.
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Paper IV

SureGene, a Scalable System for Automated Term Dis-

ambiguation of Gene and Protein Names

TEXT MINING IS FAST becoming a key enabling technology in

drug discovery and an increasingly prominent topic at confer-

ences. Uncoordinated selection of names for genes has created a sig-

nificant problem for the automated analysis of biomedical literature.

Automated disambiguation of gene and protein names could signifi-

cantly help improve the efficiency of text analytics in the biomedical

domain, accelerating disease research and drug development. Re-

searchers are hindered by a lack of standard naming conventions for

genes and proteins and must thus endure long, and sometimes fruit-

less, literature searches. Over 20,000 human genes have been identi-

Figure 9. Effect of number of training document on gene context predictive accuracy. It

can be seen that almost all the poorer performing gene models have small numbers of training

documents. In addition, more than 84% of gene models with more than five training docu-

ments have an accuracy of greater than 70%. For models with more than 10 training docu-

ments, this increases to 91% of the models.
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fied in Entrez Gene (formerly LocusLink) and over 100,000 differ-

ent names have been used to refer to them. Automated disambigua-

tion of gene and protein names can play a significant role in identifi-

cation of articles with new or unique gene characterization informa-

tion for improved gene annotation (Paper I and II).

In this paper, we present SureGene, a system for performing auto-

mated term disambiguation that can easily scale to tens of thousands

of unique gene and protein names. SureGene uses a combination of

machine learning and natural language processing technologies to

identify abstracts relevant to specific genes and return these results as

a ranked list. The SureGene system is able to automatically assign

gene names to their Entrez Gene IDs in previously unseen MED-

LINE abstracts.

Figure 10. Validation of Gene Models Performance. F-Measure comparisons between model

predictive performance, based on a Leave-One-Out (LOO) method, and real-life predictive

performance for a set of 20 genes with highly ambiguous gene symbols and 46 genes from the

human NR gene family. Points below the diagonal indicate models where human validation

showed higher performance than that suggested by the LOO evaluation. Points above the di-

agonal reflect instances where the classification system’s LOO estimate is more optimistic than

the results obtained by human validation.
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We show that SureGene is capable of accurately distinguishing

between highly ambiguous gene terms, as well as between synony-

mous gene and non-gene terms (Figure 9). Two gene sets were se-

lected for the purpose of real-world data validation. The first set con-

sists of genes with known ambiguity in their gene names. A second

set consists of Nuclear Receptor family genes. The results agreed well

with the automated assessment. Accuracy levels for these genes, as

defined by F-measure, were mostly 90% or higher (Figure 10).

We conclude that it is possible to achieve high quality gene dis-

ambiguation using scaleable automated techniques. Such disambigu-

ation is important for searching and as a basis for other text analytics.

Natural Language Processing in particular is dependent upon gene/

protein name disambiguation to provide quality protein-protein in-

teractions, disease associations, and other complex biomedical analy-

sis.

Author Roles: Raf Podowski participated in idea development and

project planning, data acquisition, model development, testing and

validation, results generation and presentation, as well as manuscript

preparation. John Cleary assisted in methodology development and

provided guidance and practical assistance in application of the clas-

sification algorithms. Nicholas Goncharoff played a central role in

project coordination, planning, system implementation require-

ments and manuscript preparation. Gregory Amoutzias performed

validation of the system for nuclear receptor gene publications. Wil-

liam Hayes played a central role in the project conception, design of

methodologies and vision for the practical implementation of the sys-

tem.
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Concluding remarks/perspectives

The most exciting phrase to hear in science, the one that heralds

new discoveries, is not ‘Eureka!’ but ‘That’s funny...’

Isaac Asimov

A multi-front approach to gene characterization

GENE CHARACTERIZATION MOVES most rapidly when multiple

sources of information provide similar insights into the func-

tion or role of a protein. Therefore we need to draw on diverse data

sources, including text and high-throughput genomics studies such

as provided by microarrays to understand genes. The tools presented

in this thesis provide a foundation that can be built upon to con-

struct a more integrated analysis approach.

A vision for the future

A critical aspect of gene characterization for the future is selection of

candidate genes within an area of interest that require expanded

study. Eventually I envision a unified software system that takes as

input a biological or medical subject and returns a list of genes likely

to be involved.  Such a system would integrate diverse forms of gene-

centric data and would further highlight where deficiencies preclude

or hinder successful analysis.

At the center of such an integrated system will be text analysis.

The primary literature remains the fertile source of inspiration in cell

biology and medicine.  As the algorithms for text mining improve,

the vast untapped literature will become accessible for inference.

While bioinformatics is central to this vision of the future, the

fundamental discoveries remain tied to the industrious work of labo-

ratory scientists.  Bioinformatics methods should be grounded in this

reality, seeking to provide researchers with assistance in exploring di-

rections rather than stockpiling lists of predictions.
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