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Abstract

Alzheimer’s disease (AD) is a complex dementia disorder. It is 
characterized by the neuronal and synaptic loss, presence of 
neurofibrillary tangles and senile plaques, composed of amyloid β-
peptide (Aβ) in the brain. Biochemical and genetic studies implicate 
a central role for Aβ in the pathogenesis of AD, however how amyloid 
leads to neurodegeneration is still unknown. The present work focused 
on investigating the role of Aβ in AD and other relevant neurological 
and psychiatric disorders. The study was based on the analysis of Aβ in 
cell culture media and post-mortem brain tissue. 

In paper I, we measured Aβ in cell culture media from cells transfected 
with APP mutations causing familial AD. We could see that mutations 
in familial AD are primarily pathogenic through their effect on APP 
processing and not through altered cell signaling. 

In paper II, we compared the levels of Aβ in the brain of elderly 
schizophrenics with and without dementia versus controls. We 
demonstrated that in the brains from people with schizophrenia and 
dementia there is no increase of Aβ. Thus the pathogenic pathway of 
dementia in elderly schizophrenics is different from that seen in AD. 
Additionally, in schizophrenia cases with AD neuropathology, levels of 
brain Aβ were decreased as compared to ‘pure’ AD cases. This may be 
explained by high smoking prevalence among schizophrenics, the use 
of neuroleptic drugs or could be a result of the disease state per se. 

In paper III, we further investigated the hypothesis that stimulation 
of nicotinic receptors may diminish amyloidosis in the brain. We could 
prove that deposition of Aβ is attenuated in the cortex of normal elderly 
people that used to smoke tobacco. However, the mechanism of this 
attenuation is unknown.
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Metals have been implicated in AD pathogenesis and some metal 
chelators have shown therapeutic promise in animal and human 
studies. In paper IV, we studied the interaction of human brain Aβ with 
biometals, such as zinc, copper, aluminium, iron and manganese. We 
extracted and measured cortical Aβ in AD patients and control groups. 
The levels of the metals were assessed in a parallel set of samples. We 
found that zinc is strongly elevated in AD brains and is correlated with 
Aβ and dementia severity. 

In paper V, we focused on other important factors in AD pathogenesis, 
such as homocysteine and vitamin B status. We compared plasma 
homocysteine levels in controls, AD patients and in patients with mild 
cognitive impairment. We observed hyperhomocysteinemia in AD. We 
also confirmed that ApoE 4 allele is a risk factor in the development of 
sporadic AD. We did not find any evidence that polymorphism of the 
enzyme involved in homocysteine biogenesis, methylenetetrahydrofo-
late reductase (MTHFR), has a clinical significance in these groups.

 
In summary, these studies suggest a multifactoral pathogenesis of 

AD, where Aβ, zinc and homocysteine are important factors. They also 
give insight into targets to develop therapeutic strategies for treatment 
of dementia. Those include: substances stimulating nicotinic receptors, 
metals chelators, anti-hyperhomocysteinemia therapies, and anti-Aβ 
strategies.
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Introduction

Alzheimer’s disease

Alzheimer’s disease (AD) is the most common form of dementia. AD 
leads to cognitive impairment, decreased quality of life both for the 
affected people and theirs caregivers (Almberg et al., 1997; Grafström 
and Winblad, 1995; Jansson et al., 1997) and premature death (Tschanz 
et al., 2004). Dementia affects 8–12% of people above 65 years of age 
and nearly 50% of those over 85 (Evans et al., 1989; Fratiglioni et al., 
1991). The name for AD was given after Alois Alzheimer (1864–1915) 
by Emil Kraepelin. Alzheimer described a case study of his 51-year-old 
patient, Auguste D (Alzheimer A, 1907). The patient was suffering from 
cognitive and language deficits, auditory hallucinations, delusions, 
paranoia and aggressive behaviour. Auguste D died in 1906 and her 
brain underwent a post mortem examination. The gross pathology 
included cortical atrophy in the form of gyral shrinkage and widening 
of the sulci, especially in the temporal and frontal lobe. Microscopically, 
Alzheimer noted the occurrence of numerous neurofibrillary tangles 
and many amyloid plaques in specific brain regions, especially in the 
upper cortical layers of the brain (Graeber et al., 1998). 

The term dementia (“loss of mind” in Latin) includes a number of 
different subtypes, where AD is the most frequent. Clinical diagnosis 
of dementia can be made according to several established diagnostic 
classification systems such as the Diagnostic and Statistical Manual 
of Mental Disorders (DSM-IIIR, DSM-IV) and the International 
Classification of Disorders (ICD-10). DSM-IV criteria define dementia 
as the development of multiple cognitive deficits manifested by 
memory impairment (an impaired ability to learn new information 
or recall previous knowledge) together with one or more cognitive 
disturbances. The latter cognitive dysfunctions include aphasia 
(language disturbances), apraxia (impaired ability to carry out motor 
activities despite intact motor function), agnosia (failure to recognize 
or identify object despite the intact sensory function), and disturbance 
in executive functions such as planning, organizing, abstract thinking. 
In the ICD-10 criteria, dementia is defined as a decline in memory and 
in two other cognitive domains, and impairment in basic activities of 
daily-living that lead to dependency on the caregivers. A decline must 
be present for at least 6 months according to the ICD-10 criteria.
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Clinical diagnosis of probable and possible AD relies on the DSM-IV 
criteria for dementia and NINDS-ADRDA criteria for AD (McKhann 
et al., 1984), however a definitive diagnosis can only be obtained by 
postmortem examination of the patient’s brain. The most prominent 
and common symptoms in AD are short-term memory impairment, 
aphasia and cognitive decline. These symptoms can reflect brain regions 
affected by the disease (Haroutunian et al., 1998). Other clinical signs 
of AD, although not present in every patient, are neuropsychiatric 
symptoms, such as insomnia, aggressiveness, agitation, delusions and 
hallucinations. As the disease progresses late symptoms appear. These 
include spatial and motor disabilities and autonomic dysfunction. 
Finally, AD leads to premature death due to other causes, such as: 
cardiac infarct, hip fracture, pneumonia or other infections.

Epidemiology and risk factors

It is estimated that 25 million people worldwide suffered from AD in 
2000. Almost half of the demented people, 46%, lived in Asia, 30% 
in Europe, and 12% in North America (Wimo and Winblad, 2003). 
The worldwide direct costs for dementia in 2003 are estimated to be in 
the range of 156 billion USD based on a worldwide prevalence of 27.7 
million demented persons (Wimo et al., 2006). The direct cost for the 
Swedish society for caring and treatment of AD is 40 billion SEK (ca 
5,5 billion USD or 4,3 billion EUR) per year. Indirect costs are harder 
to estimate. In a future perspective, given a growing aged population, 
the number of worldwide demented elderly is expected to increase to 63 
million in 2030 and to 114 million in 2050 (Wimo and Winblad, 2003). 

The prevalence of AD doubles every five years after 65 up to 90, and 
then remains stable. The most important risk factor for the development 
of AD is increasing age (Qui et al., 2005). Other well established risk 
factors include family history of dementia, hyper- and hypotension, 
high cholesterol, head trauma, low physical activity, obesity, low 
education and the presence of the E4 allele of apolipoprotein E 
(Kivipelto et al., 2001; Huang et al., 2004; Kivipelto et al., 2005). The 
more recently proposed risk factors are heart failure (Qui et al., 2006) 
and anaemia (Atti et al., 2006).
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Genetics

The majority of AD patients has no obvious family history of disease 
and is therefore classified as so-called sporadic AD cases. There are 
however rare genetic forms of AD known (Tanzi et al., 1996). These 
genetic forms of AD, collectively referred to as familial Alzheimer’s 
disease (FAD), are associated with specific mutations that are inherited 
in an autosomal dominant manner. The discovery of these mutations 
has been instrumental in supplying tools for studying the molecular 
pathology of AD. The FAD-linked mutations  are located on 3 different 
genes: the amyloid precursor protein (APP) gene on chromosome 21; 
the presenilin (PS) 1 gene on chromosome 14; and the PS-2 gene on 
chromosome 1. An updated list of mutations on all three genes can be 
found at: http://molgen-www.uia.ac.be/ADMutations. One of the most 
studied FAD mutations is the so-called Swedish mutation APP 670/671 
(Citron et al., 1992; Lannfelt et al., 1993; Mullan et al., 1992). Another 
mutation discovered in a large family in the Northern part of Sweden is 
the so-called Arctic mutation (Nilsberth et al., 2001; Stenh et al., 2002). 
The discovery of such mutations leads to development of different 
transgenic animals which can aid in the study of AD pathogenesis 
(McGowan et al., 2006).

Another identified genetic risk factor for AD is the E4 allele of the 
apolipoprotein E (ApoE) gene (Corder et al., 1993). The gene for ApoE 
is located on chromosome 19 and the variant ApoE4 constitutes the 
major genetic risk factor associated with both sporadic (Saunders et al., 
1993) and familial (Strittmatter et al., 1993) late onset AD (LOAD). 
It appears that the presence of the ApoE4 allele decreases the age of 
onset of AD in a dose dependent way (Corder et al., 1993). As the 
number of ApoE4 alleles increases from 0 to 2, the risk of developing 
familial LOAD increases from 20% to 90%, and the mean age at onset 
decreases from 84 to 68 years [reviewed in (Huang, 2006)]. The 299-
residue ApoE protein plays a major role in transport and metabolism 
of cholesterol and triglycerids in humans, and is produced mainly by 
the liver and the brain. In the central nervous system (CNS), ApoE is 
synthesized by astrocytes, microglia and to a lesser extent by neurons 
(Cedazo-Minguez and Cowburn, 2001). The role of ApoE in AD 
pathogenesis is not fully resolved, but it has, among other things been 
suggested that ApoE is important in trafficking of the amyloid β-peptide 
(Aβ) (Holtzman, 2001).
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In addition, the presence of ApoE leads to increased Aβ fibril 
formation in vitro (Wisniewski et al., 1994). ApoE4 has also been 
shown to facilitate deposition of Aβ in the brain (Bogdanovic et al., 
2002; Holtzman et al., 2000a; Holtzman et al., 2000b; Schmechel et 
al., 1993) and contribute to faster brain atrophy (Wahlund et al., 
1999). ApoE4 can together with Aβ42 contribute to apoptosis and tau 
hyperphosphorylation (Cedazo-Minguez et al., 2003). ApoE4 carriers 
may potentially respond differently to AD treatment (Roses et al., 
2006) and other drugs (Cornelius et al., 2004). ApoE4 may also be 
one of the predictors of which patients with mild cognitive impairment 
(MCI) that will convert to AD (Modrego, 2006).

Neuropathology

The definitive diagnosis of AD requires the presence of three types of 
changes in the brain: neuronal loss, neocortical amyloid deposits, so-
called senile plaques (SP), and neurofibrillary tangles, within specific 
regions of the cerebral cortex. The macroscopic findings also include 
diffuse, most often symmetrical, brain athrophy which leads to 
shrinkage and widening of sulci. Brain weight is frequently reduced. 
Changes in brain vasculature are also observed (Buee et al., 1997). 
Although diagnosis of definitive AD is based on counting plaques in 
several brain areas [Consortium to Establish a Registry for Alzheimer’s 
disease CERAD criteria, (Mirra et al., 1991) and Khachaturian criteria 
(Khachaturian, 1985)], there is no direct correlation between number 
of plaques and cognitive status of patients. However, Näslund et al. have 
shown that there is a correlation between extractable amyloid from the 
brain and ante mortem cognitive status of the patients (Näslund et al., 
2000). The numbers of tangles in specific brain regions, assigned as 
Braak stages, correlate better than plaques with cognitive deficiency 
(Braak and Braak, 1991). The consensus description of post mortem 
AD criteria from the National Institute on Aging and Reagan Institute 
Working Group requires both tangles and plaques in defined brain 
regions in order to allow definitive diagnose of AD (Hyman and 
Trojanowski, 1997). SPs consist of a central amyloid core, which can 
be stained with the β-sheet-specific histological dye Congo red. The 
main protein component of the extracellular plaques is the Aβ peptide 
whereas the intracellular tangles are composed of the microtubule-
associated protein tau.
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Amyloid β-peptide 

In a landmark paper, Glenner and Wong described the initial 
purification and characterization of Aβ from cerebrovascular amyloid 
and SPs (Glenner and Wong, 1984). It was subsequently shown that Aβ 
is an integral part of a larger protein, the amyloid precursor protein 
(APP) (Kang et al., 1987). There are two major forms of Aβ, the 40-residue 
Aβ40 form and the 42-residue Aβ42 form, where the latter is more 
amyloidogenic. The term amyloidogenic pertains to the ability of the 
peptide or protein to form amyloid fibrils (Makin et al., 2005). It is 
well established that the amyloid protein is predominantly present in 
a β-sheet structure (Makin et al., 2005). Aβ belongs to a larger group 
of proteins that can form amyloid structures in humans. Examples of 
other amyloidogenic proteins are lung surfactant protein C (Johansson, 
2001), the prion protein (Tanaka et al., 2006) and transthyretin 
(Westermark et al., 1990).

Aβ in the brain is produced mainly by neurons. However, it has been 
difficult to directly test the role of other types of cells in the brain such 
as astrocytes, other type of glia cells, pericytes and endothelial cells 
in the production of Aβ. The shorter Aβ40 form is the major species 
secreted by cells and is mainly deposited in cerebral vessels resulting in 
congophilic amyloid angiopathy (CAA) (Gravina et al., 1995; Iwatsubo 
et al., 1994). Aβ40 is also the most common Aβ form in cerebrospinal 
fluid (CSF) and plasma (Scheuner et al. 1996). In contrast, Aβ42 is 
predominantly found in SPs and appears to be the initially deposited 
species (Iwatsubo 1994, 1996). This is in agreement with results showing 
that Aβ42 polymerizes more rapidly than Aβ40 into oligomers 
(Bitan et al., 2003) and fibrils (Jarrett et al., 1993) in vitro. There is 
growing evidence suggesting that Aβ42 is the initiating species in AD 
pathogenesis (McGowan et al., 2005). This allowed to formulate the 
leading working hypothesis in AD field, so-called “amyloid cascade 
hypothesis” (Hardy, 2006; Hardy and Selkoe, 2002). Nevertheless, it is 
still not fully known whether aggregation of Aβ is sufficient to induce 
the other neurophatological hallmarks of AD, such as, neurofibrillary 
tangles and neuronal and synaptic loss. 

   The Aβ peptide has been shown to be involved in several toxic 
processes, such as apoptosis and disrupted calcium homeostasis 
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(Small et al., 2001), however the exact and definitive mechanism by 
which Aβ causes dementia is still unknown. It has also been shown 
that Aβ is toxic in vivo when injected into the brain of animals and 
that oligomers of Aβ have a potential to inhibit hippocampal long-term 
potentiation (LTP) (Townsend et al., 2006; Walsh et al., 2002). LTP is 
a core event in memory processing in humans and other mammals 
(Maren, 2005). Aβ also has the potential to affect dendritic spine density 
and can, through this mechanism, possibly contribute to altered neural 
system function and behavioral impairments (Spires et al., 2005).

The polymerization of the Aβ into protease-resistant fibrils is an 
important step in AD pathogenesis. Models of Aβ fibril formation 
suggest that the process occur via more or less stable intermediates 
(e.g. dimers, oligomers, and protofibrils). Recently, a soluble toxic 
form of oligomeric Aβ, named “Aβ*56” was identified (Lesne et al., 
2006). Aβ*56 causes memory deficits in transgenic mice independent 
of plaque formation or neuronal loss. Oligomeric Aβ may lead to the 
cognitive deficits associated with AD by contributing to synaptic 
dysfunction. It has also been hypothesized that Aβ oligomers assemble 
into pore-like structure inside membranes. The Aβ-induced membrane 
permabilization may cause intracellular calcium dyshomeostasis, 
production of reactive oxygen species, altered signaling pathways, and 
mitochondrial dysfunction (Glabe and Kayed, 2006). Recent studies in 
transgenic mice have also indicated that intracellular Aβ oligomerization 
may play a role in the induction of tau pathology (Oddo et al., 2006). 

Amyloid Precursor Protein

Aβ peptides are proteolytic fragments of the precursor protein APP, 
a Class I transmembrane glycoprotein expressed throughout most 
tissues in the body. The APP gene maps to chromosome 21q21.3-21. 
At present, the biological function of the APP protein is unknown. 
However, it has been suggested that APP regulates trophic functions, 
cell adhesion, neurite outgrowth, neuronal migration, synaptic 
function, and the induction of apoptosis (Russo et al., 2005). All 
these functions occur via interaction with multiple components of 
the nervous system. Several proteins interact with the intracellular 
domain of APP including kinases and adaptor proteins such as Fe65, 
mDAP, JIP18 and X11 [reviewed in (Reinhard et al., 2005)]. Proteolytic 
processing of APP in vivo is a normal physiological process. There are 
two major APP processing pathways: the amyloidogenic and the non-
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amyloidogenic one. In the non-amyloidgenic pathway, the key processing 
events are carried out by the so-called α- and γ-secretases, respectively 
(Figure 1). 

Figure 1. Two pathways of APP processing: the non-amyloidogenic and the amyloidogenic. In the non- 
amyloidogenic process (left panel) APP is cleaved by α-secretase (α) and γ-secretase (γ). During these 
cleavages the p3 and sAPPα/C83 fragments are formed. Aβ40 and Aβ42 are produced in the amyloidogenic 
pathway after cleavage by β and γ secretases. The intermediate C99 fragment is the direct precursor to γ- 
secretase cleavage. Processing at the ε-site generates the AICD fragment in both the amyloidogenic and non-
amyloidogenic pathways. CTF (C-terminal fragment), AICD (APP intracellular domain), α (α-secretase), 
β (β-secretase), γ (γ-secretase).

The α-secretase cleavage is performed by the enzyme TACE (Buxbaum 
et al., 1998), a member of the ADAM metalloprotease family. Another 
ADAM family member, ADAM-10 has also been shown to act as an α-
secretase (Lammich et al., 1999). The γ-secretase cleavage is executed 
by a set of proteins including PSs, nicastrin, Pen-2 and Aph-1 (Edbauer 
et al., 2003; Francis et al., 2002; Takasugi et al., 2003). The site of γ-
secretase site of action is unusual in that it occurs within the hydrophobic 
milieu of the lipid bilayer. The end-product of non-amyloidogenic 
processing of APP is the p3 peptide, a truncated variant of Aβ that 
cannot form plaques. In contrast, the amyloidogenic pathway generates 
intact, plaque-competent Aβ. Here, the N terminus of Aβ is generated 
by the action of β-secretase. a transmembrane aspartyl protease, with 
the alternative name BACE (β-site APP cleaving enzyme) (Vassar et al., 
1999). Recently, an additional cleavage site in the APP transmembrane

non-amyloidogenic amyloidogenic
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domain was discovered. This cleavage has been named the ε-cleavage 
and occurs mainly after position 49 in C99 (Yu et al., 2001). The C-
terminal fragment formed by ε-cleavage is called the APP intracellular 
domain (AICD) (Figure 1). The temporal relationship between cleavages 
at the γ and ε sites is presently being studied.

The amyloid cascade hypothesis

At present the amyloid cascade hypothesis is the most prevailing 
theory to explain the pathogenesis of AD. It states that the deposition 
of Aβ is a key factor in AD and that other pathological events (NFT, 
neuronal and synaptic loss, vascular and cell dysfunction in CNS with 
attendant neurotransmitters changes) are secondary as a result of Aβ 
deposition. The following arguments are commonly used to support 
this statement: modified from (Selkoe, 2001) (i) patients with Down’s 
syndrome, that have an extra copy of chromosome 21 (and thus an 
extra copy of APP) produce more Aβ throughout life and develop AD-
like neuropathological lesions in their third or fourth decade of life; 
(ii) all known APP and PS mutations that are considered causative for 
AD increase the Aβ42 over Aβ40 ratio and (iii) transgenic mice that 
overexpress mutant APP alone or together with mutant PS recapitulate 
many of the pathological features seen in human AD. Adding to these 
arguments, it was very recently shown that APP gene duplication causes 
early-onset AD with abundant parenchymal and vascular deposition of 
Aβ (Rovelet-Lecrux et al., 2006). 

One of the clinical AD treatment approaches based on the amyloid 
cascade hypothesis is vaccination against Aβ. This protocol has shown 
promise in mice, where active immunization with Aβ reduce plaque 
burden and increase performance in memory tests (Schenk et al., 1999; 
Janus et al., 2000; Morgan et al., 2000). Naturally occurring antibodies 
directed against Aβ are present in the CSF and plasma in humans. It was 
shown that CSF anti-Aβ antibody levels are significantly lower in patients 
with AD compared to controls (Du et al., 2001). Active immunization has 
also been tested in humans, however the first trial had to be terminated 
after reports of meningoencephalitis among the patients (Orgogozo et 
al., 2003). It appears that Aβ vaccination leads to increased clearance 
of plaques in humans too (Nicoll et al., 2003), and that patients that 
produced higher titers of own antibodies against Aβ scored better in the 
cognitive tests (Hock et al., 2003). Current protocols are investigating
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the use of shorter Aβ immunogens, and the feasibility of passive instead 
of active immunization (Weiner and Frenkel, 2006).

Tau

Neurofibrillary tangles are composed of filaments of hyper-
phosphorylated tau (Delacourte and Defossez, 1986; Grundke-Iqbal 
et al., 1986), a microtubule-associated protein. The tau gene is located 
on chromosome 17 (17q21). In human brain, alternative splicing of the 
primary tau transcript can result in six different tau isoforms [rewieved 
in (Delacourte et al., 2003)]. Tau proteins belong to the microtubule-
associated proteins (MAP) family and are found mostly in neurons. 
Tau is required for initiation and stabilization of neuronal microtubules 
through binding to tubulin (Delacourte and Buee, 1997). The balance 
between tau phosphorylation and dephosphorylation modulates the 
stability of the neuronal cytoskeleton and the morphology of axons. 
There is more than 20 potential phosporylation sites described 
(Hanger et al., 1998). In AD brains, hyperphosporylated tau forms 
paired helical filaments that in turn form neurofibrillary tangles.

Mutations in the tau gene have been described in patients with 
an autosomal dominant form of fronto-temporal dementia with 
parkinsonism linked to chromosome 17 (FTDP-17) (Hutton et al., 
1998). This disease is characterized by behavioral disturbances, 
parkinsonism, dementia and amyothrophy. The characterization of 
these mutations, of which 35 are known today, demonstrated clearly 
that tau genetic dysfunction is an etiological factor in some cases of 
FTDP-17. However, the role of tau in sporadic forms of frontotemporal 
dementia is less obvious. In addition to AD and FTDP-17, tangles are 
detected in the brain of people diagnosed with other diseases where a 
massive neuronal death is evident. Among these are: Down syndrome, 
Pick’s disease, VD, stroke, CJD, progressive supranuclear palsy, 
corticobasal degeneration, myotonic dystrophy, subacute sclerosing 
panencephalitis, post-encephalic parkinsonism, dementia pugilistica, 
Niemann-Pick disease type C, and Hallenvorden-Spatz disease 
[(reviewed in (Delacourte, 2005)]. There is no good explanation as to 
why plaques and tangles simultaneously accumulate in the brain of 
patients with AD. It may occur via direct interaction between the two
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molecules, as has been recently suggested (Guo et al., 2006). However, 
there is a need for future studies explaining the possible crosstalk 
between tau and Aβ in the pathogenesis of AD.

Metals in the brain

Abnormal levels of metals (zinc, copper and iron) have been implicated 
in AD pathogenesis, where both excess and deficiency can be harmful 
to the brain (Bush, 2003; Frederickson et al., 2005). It has been shown 
that there is an interaction between Aβ and the metals (Maynard et 
al., 2005). The toxicity of Aβ in cell culture depends upon the peptide 
binding to copper, generating active radicals (Aβ42 more so than 
Aβ40) (Huang et al., 1999; Opazo et al., 2002). It has also been shown 
that zinc can induce rapid Aβ amyloid formation in vitro (Bush et al., 
1994).

In AD post-mortem studies, elevated zinc levels have been demon-
strated in several brain regions, such as: hippocampus (Cornett et al., 
1998; Danscher et al., 1997; Deibel et al., 1996) amygdala (Cornett et 
al., 1998; Danscher et al., 1997; Deibel et al., 1996; Samudralwar et al., 
1995; Thompson et al., 1988), basal nucleus of Meynert (Lovell et al., 
1998; Thompson et al., 1988), the olfactory region (Cornett et al., 1998; 
Samudralwar et al., 1995) and frontal, temporal, and parietal (inferior) 
cortices (Cornett et al., 1998; Deibel et al., 1996).

It has been reported that treatment with a copper-zinc chelator 
inhibits Aβ accumulation in AD transgenic mice (Cherny et al., 2001). 
Metal chelators have also been tested as AD drugs in clinical trials with 
a promising effect (Ritchie et al., 2003). Still, further studies exploring 
the connection between Aβ and metals in AD are required.

Nicotine and AD

The relationship between nicotine use and AD is not fully established. 
Case control and follow up epidemiological studies have indicated that 
smoking is associated with a reduced risk of developing AD and that 
smoking delays onset of familial AD (Lee, 1994), even if these findings 
are controversial. A more recent population based study demonstrated 
a significantly increased risk of developing AD in smokers (Ott et al., 
1998), although this was only evident in individuals not carrying the  
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ApoE4 allele. In ApoE4 carriers, tobacco smoking tended to reduce the 
risk of AD, consistent with a previous case control study (van Duijn et 
al., 1995). In a prospective community-based study (Merchant et al., 
1999), smoking was shown to be associated with an increased risk of AD 
though there may have been a slight risk reduction in ex-smokers. Thus, 
the data from the epidemiological studies are somewhat conflicting 
and more studies are needed to determine the effect of smoking on the 
development of AD.

Many in vivo and in vitro studies have indicated that nicotine, acting 
through neuronal nicotinic receptors, can enhance neuronal survival 
in response to a range of neurototoxic insults including exposition 
to Aβ peptides, neonatal ischaemia, and excitotoxins (Akaike et al., 
1994; Chen et al., 1995; Kaneko et al., 1997; Kihara et al., 1997; Kihara 
et al., 1998; Marin et al., 1994; Nanri et al., 1997; Nanri et al., 1998; 
Shimohama et al., 1996; Zamani et al., 1997; Zanardi et al., 2002). It has 
also been demonstrated that nicotine directly inhibits the aggregation 
of Aβ in vitro (Salomon et al., 1996) and that this effect is a result 
of nicotine stabilizing the α-helical conformation of Aβ (Zeng et al., 
2001). Nicotine can also induce the production of nerve growth factor 
(French et al., 1999), fibroblast growth factor-2 (Belluardo et al., 2000) 
and brain derived neurotrophic factor (Kenny et al., 2000), which in 
turn have been shown to modulate Aβ toxicity and accumulation.

Homocysteine and MTHFR

Epidemiological and case-controls studies have shown elevated levels 
of homocysteine in AD (Seshadri et al., 2002), stroke (Bos et al., 
2005; Brattström and Lindgren, 1992; Kelly et al., 2002; Pniewski et 
al., 2003; Sachdev et al., 2006), coronary heart disease (Chambers et 
al., 2000), silent white matter infarcts (Vermeer et al., 2002), brain 
atrophy (Sachdev et al., 2002), Parkinson’s disease (Brattström, 2001; 
Kuhn et al., 1998; Religa et al., 2006) and many other disorders. The 
supplementation of folic acid, B12 and B6 is used in the treatment of 
hyperhomocysteinemia (Bolander-Gouaille, 2002).

Homocysteine is a sulphur-containing amino acid that is formed 
during the metabolism of methionine in the so-called methionine 
cycle.  Metabolism of homocysteine occurs through two pathways: 
re-methylation (B12 dependent) or trans-sulphuration (vitamin B6 
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dependent) (reviewed in (Selhub, 1999). Hyperhomocysteinemia can 
be caused by genetic mutations or environmental factors, such as low 
levels of folic acid or vitamin B12. The other important determinants of 
plasma homocysteine concentration are age, gender, serum creatinine 
and multivitamin usage (Brattström et al., 1994). The most prevalent 
mutation leading to elevated plasma homocysteine levels is the methyle-

netetrahydrofolate reductase (MTHFR) C677T mutation (chromosome 
1p36.3), which makes the MTHFR enzyme thermolabile. The MTHRF 
enzyme influences re-methylation of homocysteine and can through 
this mechanism cause hyperhomocysteinemia.

Diagnostic tools and biomarkers

Depression, delirium, B12 deficiency, and hypothyroidism and other 
causes of cognitive disturbances should be ruled out and treated in 
patients with dementia.  A detailed clinical interview and examination 
should be followed by neuropsychological testing. One of the most 
frequent instruments used for testing cognition is the Mini Mental State 
Examination (MMSE) (Folstein et al., 1975). It has been translated to 
several languages and is used worldwide both by primary care doctors 
and by doctors working in the university clinics. The weakest feature 
of MMSE is that the scoring may depend on age, education and social 
class; therefore newer tests are being developed and validated. In 
advanced AD centers, a battery of detailed neuropsychological tests 
and questionnaires is commonly used to diagnose dementia (Almkvist 
et al., 1993; van Crevel et al., 1999).

Diagnosis of dementia requires one radiological examination of 
the brain to rule out other causes of cognitive impairment (e.g. brain 
tumor or hydrocephalus). It could also guide in the diagnosis by 
determining the presence of hippocampal and/or cortical atrophy and 
vascular changes. As a research tool or to specify other dementia forms, 
more advanced neuroimaging techniques can be used, such as CT with 
contrast, SPECT, fMRI, PET. The EEG examination is also a useful 
diagnostic help in differential diagnosis and contribute to classification 
accuracy (Jelic et al., 1998; Lindau et al., 2003).
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In the dementia diagnostic procedure, laboratory methods are also 

used. These consist of blood and lumbar cerebrospinal fluid (CSF) tests 
(Andreasen and Blennow, 2002). Studies on Aβ in CSF have shown that 
Aβ42 levels in CSF decreases in AD compared to controls (Andreasen 
et al., 2001; Andreasen et al., 1999; Vanmechelen et al., 2001). This test 
has good sensitivity, especially if combined with measuring the NFT-
forming protein tau, both total tau and phospho-tau in CSF (Blennow et 
al., 1995). Despite that the test has lower specificity when differentiating 
between AD and other dementias (Wallin et al., 2006). However, it 
was recently suggested that subgroups of AD could be identified based 
on CSF markers (Iqbal et al., 2005). These subgroups might benefit 
differently from different therapeutic drugs. The CSF biomarkers can 
also contribute to better characterization of MCI and prediction for the 
conversion to dementia (de Leon et al., 2006; Wahlund and Blennow, 
2003).

At present, guidelines do not require CSF analysis to diagnose AD, 
although it is a very important and a cheap diagnostic tool. In Sweden, 
CSF is taken routinely at most centers for dementia diagnosis where the 
levels of total tau, phospho-tau and Aβ42 are analyzed. In many other 
countries CSF analysis will be a standard very soon. Measurements of 
Aβ42, tau and phospho-tau may also be used in the testing and monitoring 
of new treatments of AD (Thal et al., 2006; Tucker et al., 2005). 

There is a need for developing blood-based biomarkers for AD. In most 
studies there was no difference in blood Aβ levels between sporadic 
AD cases and controls (Fukumoto et al., 2003; Tamaoka et al., 1996; 
Teunissen et al., 2002). One study showed lower levels of Aβ42 in AD as 
compared with controls and MCI (Pesaresi et al., 2006). Another group 
reported higher levels of Aβ42 in plasma in AD patients associated with 
polymorphisms in the urokinase-type plasminogen activator (Ertekin-
Taner et al., 2005). Recent study suggests that high plasma Aβ40, 
especially when combined with low concentrations of Aβ42, indicate 
an increased risk of dementia (van Oijen et al., 2006). Another recent 
work has shown that plasma Aβ40 is correlated with white matter 
changes in AD, MCI and CAA (Gurol et al., 2006). If confirmed in 
longitudinal studies, these data would implicate circulating Aβ40 as a 
potential biomarker for microvascular damage in AD. 
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Mild cognitive impairment and other forms of dementia

It is a diagnostic challenge to distinguish between normal populations, 
mild cognitive impairment (MCI) and mild/moderate AD. MCI 
frequently precedes dementia, and the MCI group is very heterogeneous. 
The prevalence of MCI in population-based epidemiological studies 
ranges from 3% to 19% in adults older than 65 years (Gauthier et al., 
2006). Individuals with the MCI diagnosis progress at different rates to 
dementia. Some individuals remain stable over the years whereas some 
experience amelioration. People with MCI have problems at work and 
when confronted with a complex task, but they do not experience any 
problems with daily life activities.

The term MCI was used for the first time in GDS 3 (Global 
Deterioration Scale) (Reisberg et al., 1988; Reisberg et al., 1986). A 
similar description was proposed by the Mayo Clinic Group (Petersen 
et al., 1997; Smith et al., 1996). The inclusion criteria for this group 
consists of memory complains from patients and/or others, good 
daily life activities, a Clinical Dementia Rating (CDR) score of 0,5, no 
diagnosis of dementia, and no cognitive impairment 1,5-2 SD less than 
expected when considering the age of the individuals (Jelic et al., 2006; 
Jelic and Winblad, 2003).

Several subgroups are included in the term MCI, such as amnestic 
MCI (aMCI) and MCI with global dysfunction, but there is no clear 
consensus on the different definitions. The aMCI group has a high 
risk of progression to AD (Gauthier et al., 2006). The neuropathologic 
features of aMCI match the clinical features and neurofibrillary changes 
intermediate between normal aging and very early AD (Petersen et 
al., 2006). MCI patients may also progress to other forms of dementia 
(Wahlund et al., 2003), and these include vascular dementia (VD), 
frontotemporal dementia (FTD), dementia with Lewy bodies, and 
Parkinson’s disease dementia (Jicha et al., 2006). In clinical practice, 
a major challenge is to differentiate between the dementia seen in 
VD and AD (Roman and Royall, 2004). In the differential diagnosis 
of AD, one also have to consider less common or rare disorders, such 
as normotensive hydrocephalus, dementia with Huntington disease, 
Fahr’s disease and many others. 
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Schizophrenia

Schizophrenia is a multiform psychiatric disorder with unknown 
etiology. The term schizophrenia literally means split mind, but  nowadays  
it includes disorders with a cluster of symptoms such as delusions, 
hallucinations, disordered thinking and emotional unresponsiveness. 
The diagnosis encompasses a pattern of so called positive and negative 
symptoms, in conjunction with impaired occupational or social 
functioning, as defined by DSM-IV criteria. Schizophrenia affects 
1% of the population worldwide and cognitive impairment is present 
in the clinical picture. Indeed, Kraepelin described schizophrenia as 
dementia praecox. Nowadays, detailed neuropsychological tests are 
used to define the cognitive deficits in schizophrenia (Goldberg TE, 
2004). Patients with schizophrenia underperform in several tests such 
as Continuous Performance Test (CPT), Wechsler Memory Scale-
Revised (WMS-R), and Wisconsin Card Sorting Test (WCST). There 
are deficits in attention, abstract thinking, solving new problems and 
many others, but they are uncharacteristic.

Memory deficits are also common in schizophrenia. However, most 
schizophrenic patients display only subtle memory deficits on clinical 
examination, unlike patients with dementia (Budson and Price, 2005). 
It is more likely that the memory deficits seen in schizophrenia are 
not widespread but limited to specific domains. Some recent studies 
have shown that relational memory, which is associated with impaired 
function of the parietal cortex and hippocampus, is particularly 
impaired in schizophrenia (Ongur et al., 2006).
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The general aim of this PhD project was to increase know-
ledge concerning Aβ deposition in human brain. The rela-
tionship between brain Aβ and biometals and nicotine in 
humans was investigated. In addition, we have also studied 
hyperhomocysteinemia in AD and MCI patients.

The specific aims include:

1. To develop specific and sensitive ELISA assays to enable 
measurement of total Aβ, Aβ40 and Aβ42 in cell culture, 
brain, plasma and CSF (paper I)

2. To determine the levels of Aβ in brains from healthy 
humans, AD patients and demented patients with schizo-
phrenia (paper II)

3. To determine the effect of smoking on brain Aβ levels 
(paper III)

4. To assess the association between biometals and Aβ in 
the brain (paper IV)

5. To compare plasma homocysteine levels, B12 and folic 
acid in AD, MCI and controls and determine ApoE and 
MTHFR status in these groups (paper V)
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Materials & methods

Cell culture experiments

Cells (CHOPro5 and HEK 293) were transfected with C99-GVP wild 
type and mutant constructs. The C99 constructs included a Gal4-
VP16 domain in order to achieve sensitive and quantitative detection 
of intramembrane proteolysis via a luciferase reporter gene. Levels of 
expression of transfected C99-GVP in cell lysates were determined by 
immunoblotting, while the levels of Aβ40 and Aβ42 in cell media were 
monitored by sandwich ELISAs. The ELISA assays were performed 
using monoclonal 4G8 as capture antibody and end-specific polyclonal 
rabbit antibodies against Aβ40 and Aβ42, respectively, as detection 
antibodies. The specificity and cross-reactivity of the end-specific anti-
bodies were determined by spot-blotting, immunoblotting and peptide 
ELISAs as presented below in Figure 2. The correct reactivity of the 
antibodies was also corroborated in neurosphere cultures incubated 
with Aβ1-40, Aβ40-1, Aβ1-42 and Aβ42-1 as shown below in Figure 3. 

Figure 2. Characterization of Aβ40– and Aβ42–specific antibodies (A and B, respectively). Spot blotting: 
Amyloid β-peptides Aβ1-40 and Aβ1-42 were spotted onto nitrocellulose membranes and probed with the 
indicated affinity-purified antibodies.

anti-A�40 anti-A�42

A�42

A�40

A B
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Sandwich ELISA assays for brain Aβ

Sandwich ELISAs were used to measure extracted brain Aβ40 and Aβ42 
using 6E10 as a capture antibody and secondary end-specific polyclonal 
antibodies. Total Aβ was measured using 6E10 as capture antibody and 
biotinylated 4G8 as detection antibody. The antibody 6E10 recognizes 
an epitope between residues 1-16 of Aβ, while the antibody 4G8 
recognizes an epitope between residues 17-24. Plates were developed 
using alkaline phosphatase-labeled antibodies (anti-rabbit or anti-
biotin) and phosphatase substrates yielding a colorimetric product.

A &B: Neurospheres were incubated with human Aβ1-40 peptide (A) and Aβ40-1 (B). Sections were stained 
with Aβ40 polyclonal antibody (green) and a neuronal marker NeuN (red). As, seen Aβ40 staining is only 
obtained from spheres incubated with Aβ1-40. C & D: The staining procedure as decribed aboved, but 
here neurospheres were incubated with human Aβ1-42 peptide (C) and Aβ42-1 (D) and stained with 
Aβ42 polyclonal antibody (green) and NeuN (red). Aβ42 staining is only obtained after incubation the 
neurospheres with Aβ1-42. [Courtesy of Johan Aarum, CMM, KI]

Human brain tissue 

In studies II and IV we have used brain material from well-characterized 
brain bank in the USA (Mount Sinai School of Medicine Department 
of Psychiatry Brain Bank). Every subject underwent evaluation for the 
extent of neuropathological lesions using the CERAD neuropathological 
battery (Mirra et al., 1991). Aβ was extracted from dorsolateral 
prefrontal cortex, Brodmann area (BA) 46 from control subjects and 
subjects with AD and schizophrenia. Some schizophrenia cases also 
had AD pathology. Metals were measured in the same hemisphere from 
the superior temporal gyrus (BA 22).

A   B   C   D

A�1-40 A�40-1 A�1-42 A�42-1

Figure 3. Further characterization of the specificity of the anti-Aβ40-  and anti-Aβ42 antibodies. 
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In paper III we have used brain samples from the Newcastle Brain 
Tissue Resource. In this study Aβ was extracted from the entorhinal 
cortex (BA 28). The smokers were defined as people that have smoked 
for the main part of their lives or within 15 years before death. Non-
smokers were defined as people that never smoked or ceased smoking 
at least 25 years before death. Pack year (PY) means the consumption 
of 20 cigarettes daily and was calculated on the basis of smoking since 
adulthood.

Aβ extraction from brain

The cortex was sub-dissected from coronal sections and frozen tissue 
stored at -80 °C.  Tissue homogenates (42-56 mg) were thawed and 
homogenized by sonication in 600 µl of phosphate-buffered saline 
solution (PBS) containing 0.05% sodium dodecyl sulfatate and a 
protease inhibitor cocktail (PIC Complete, Boehringer-Mannheim), 
supplemented with 1 µM pepstatin. The PBS homogenate was 
centrifuged at 100,000 x g for 60 min at 4 °C and the supernatant flash 
frozen (PBS-soluble Aβ). The pellet was delipidated using a protocol 
modified from Wessel et al. (Wessel and Flugge, 1984). In brief, the 
pellet was suspended in 400 µl methanol by sonication before addition 
of 300 µl CHCl3 and 500 µl H2O. The emulsion was centrifuged at 
10,000 x g for 2 min and the aqueous phase aspirated and discarded. 
The protein interphase was pelleted by addition of 400 µl MeOH 
followed by centrifugation at 10,000 x g for 5 min. The organic phase 
was aspirated and discarded. The remaining pellet was rehomogenized 
by sonication in 150 µl 70% formic acid, containing 1 µM pepstatin 
and Aβ was extracted by vortexing the homogenate for 30 min at room 
temperature. The extract was centrifuged at 100,000 x g for 60 min 
at 4 °C in a Beckman TLA110 rotor. The extracted formic acid-soluble 
Aβ was collected from the clear supernatant and the remaining pellet 
was flash frozen. The formic acid extract was neutralized by adding 18 
vol of 1 M Tris-NaOH, pH 10.6, 100 mM betaine (850 µl neutralizing 
buffer to 50 µl formic acid extract). The visible precipitate was sonicated 
until the solution appeared clear. Before sandwich ELISA analysis, the 
neutralized extract was further diluted 50 times in ELISA buffer (PBS, 
0.1% BSA, 0.05% Tween-20, 0.05% ELISA blocking reagent, 0.005% 
Thimerosal (Sigma-Aldrich Chemie GmbH, Germany).
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Metal measurements 

In paper III, Aβ was obtained from prefrontal cortex (BA 46), and 
metals were obtained from ipsilateral superior temporal gyrus (BA 
22). Neuritic plaque density was averaged across five neocortical areas 
including middle frontal gyrus to give the plaque score number used 
in analyses. Severity of cognitive impairment was assessed with the 
Clinical Dementia Rating Scale. 

The metal (zinc, copper, iron, aluminium and manganese) measure-
ments were performed according to the following protocol. To each 
lyophilized, pre-weighed tissue sample, 0.1 ml of concentrated HNO3 
(Aristar, BDH) was added and allowed to digest overnight at 4° C. 
Samples were further digested by heating them for 20 minutes at 
90°C. One hundred µl of hydrogen peroxide (Aristar, BDH) was added 
immediately to each sample for 30 minutes, before heating again for a 
further 15 min at 70 °C. Samples were diluted with a 1% HNO3 diluent 
in acid-washed 5 ml polypropylene tubes and measured in triplicate. As 
an internal control for the digestion procedure, triplicate preparations of 
NIST Bovine Liver SRM 1557B were also included. Measurements were 
made using a Varian UltraMass ICPMS instrument under operating 
conditions suitable for routine multi-element analysis. The instrument 
was calibrated using 0, 10, 50 and 100 ppb of a certified multi-element 
ICPMS standard solution (ICP-MS- CAl2-1, Accustandard). A certified 
internal standard solution containing 100 ppb of Yttrium (Y 89) was 
used as an internal control (ICP-MS- IS-MIX1-1, Accustandard).

Patients and controls characteristics

In study V, AD and MCI patients were diagnosed in a Day Clinic of 
the Department of Neurodegenerative Disorders of Medical Research 
Centre at the Polish Academy of Sciences in Warsaw. The detailed 
characteristics of study groups are given in Table 3 in Results and 
Discussion section.

ApoE genotyping

ApoE genotype determination was done using the modified method 
of restriction genotyping (Chapman et al., 1996). Briefly, after DNA 
extraction from peripheral blood, polymerase chain reaction (PCR) 
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amplification with specific primers and digestion with restriction 
enzymes were performed. 

MTHFR genotyping

The MTHFR genotype was determined using PCR performed in a 
Biometra UNO II Thermocycler with previously described primers 
(Frosst et al., 1995). The primers generated a 198-bp fragment. The 
MTHFR polymorphism, C>T, creates a HinfI restriction site. When 
a C-to-T substitution is present, HinfI digests the 198-bp fragment 
into a 175-bp and a 23-bp fragment. These fragments were detected by 
agarose gel electrophoresis.

Homocysteine, folic acid and cobalamine measurements

Total fasting homocysteine (tHcy) concentrations in plasma were 
measured with a fluorescence polarization assay (Abbott IMx 
Homocysteine Assay). Serum folate levels were determined using 
Abbott Laboratories AxSYM Folate Reagent assay, and plasma vitamin 
B12 was quantified by immunoassay. Normal ranges for these analytes 
are from 4 to 12 µmol/L for homocysteine in plasma, 5.3-14.4 ng/ml for 
folate in serum and 157-1059 pg/ml for plasma cobalamine.

Ethical considerations

For study I there was no need for a separate ethical application, 
since only cell-based approaches were used. All studies when human 
material was analyzed complied with the Declaration of Helsinki. They 
were approved by the Ethics Committee of the Karolinska Institutet 
(KI372/02, studies II and IV, KI440/02, study III, KI441/02, study 
V). Studies II and IV were also approved by Ethical Committee from 
Mount Sinai School of Medicine, NY, USA (NA083). Study III was 
approved by Newcastle and North Tyneside Local Research Ethics 
Committee (2002/295). The protocol for study V was approved by the 
Ethical Committee in Hospital MSWiA Warsaw, Poland (20/2000). 
The patients and controls for study V were recruited with their and/or 
theirs caregivers written informed consent.
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Results & discussion

Paper I

APP intracellular domain formation and unaltered signaling 

in the presence of familial Alzheimer’s disease mutations 

Aβ is a normal product of cell metabolism (Haass et al., 1992; Seubert 
et al., 1992). In FAD, there is a specific increase in the production of the 
Aβ42 variant in the body (Scheuner et al., 1996). Aβ is released from 
APP through the consecutive proteolytic actions of β- and γ-secretase. 
AICD is generated close to the cytoplasmic face of the membrane leaflet, 
via cleavage at the ε site (see Figure 1 in Introduction). AICD has been 
proposed to regulate gene transcription, and it can be hypothesized 
that altered AICD production and nuclear signaling is linked to a part 
of the phenotype seen for FAD mutations.

A sensitive ELISA assay distinguishing between Aβ40 and Aβ42 was 
developed and validated (as described in the Methods section). We 
measured Aβ and AICD generation in intact cells from a truncated 
APP construct, C99. This C99 construct had been derivatized to include 
a Gal4-VP16 domain to allow sensitive and quantitative detection of 
intramembrane proteolysis events via a luciferase reporter gene (Figure 
4). We focused the study on determining the intracellular site of AICD 
formation and the effect of FAD-associated mutations on Aβ and 
AICD production. AICD generation was PS-dependent and sensitive 
to specific γ-secretase inhibitors indicating that authentic AICD 
formation and signaling was measured in the transfected CHOPro5 
cells. The results obtained in the luciferase reporter assay could be 
verified by immunoblotting for AICD-GVP, since it was discovered that 
the introduction of the GVP domain into AICD significantly decreased 
degradation of this otherwise extremely labile molecule.
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Figure 4. The luciferase reporter assay. The C99 reporter molecule with GVP domain inserted after 
transmembrane domain is presented. The intracellular domain (AICD-GVP) is released upon transmembrane 
cleavage and actives transcription of luciferase via the upstream activating sequence (UAS-luc).

Similar to Aβ, AICD was found to be formed in compartments 
downstream of the endoplasmic reticulum (ER), a fact that was 
highlighted by the introduction of a double-lysine ER retention signal 
tag in the C99 molecule. AICD formation and signaling was completely 
abolished from this construct. Moreover, it was shown that introduction 
of FAD-associated mutations did not alter AICD signaling compared 
to the wild type molecule. To ascertain that the introduction of the 
GVP domain did not change the properties of C99, Aβ40 and Aβ42 
secreted into the medium was measured using sandwich ELISA assays. 
The FAD-associated mutants tested displayed the expected increase 
in Aβ42. Interestingly, the increase in Aβ42 production was followed 
by a simultaneous decrease in production of the more abundant Aβ40 
variant. 

In conclusion, both Aβ and AICD generation are critically dependent 
on the presence of the PS1 protein and both processes mainly occur in 
compartments downstream of the ER. No change in AICD formation 
could be seen for substrates containing FAD-associated mutations 
that increase Aβ42 production, suggesting that these mutations are 
primarily pathogenic through their effect on APP processing and not 
through altered AICD signaling. 

C99-GVP

GVP
�

AICD-GVP

UAS - luc
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Our data are consistent with other papers showing that mutations 
in APP do not lead to changes in AICD formation (Chen et al., 2002; 
Hecimovic et al., 2004). In contrast, presenilin FAD mutations have 
been demonstrated to increase Aβ42 and modulate AICD levels 
(Moehlmann et al., 2002). Our data contribute to the growing line of 
evidence suggesting differences between APP and PS mutants in terms 
of AICD generation. We speculate that the APP mutant-induced increase 
in Aβ42 is followed by a simultaneous decrease in Aβ40, thus leaving 
the formation of AICD unchanged. However, we cannot rule out that 
APP mutants also lead to a cleavage shift in AICD, as has recently been 
shown for PS1 mutants using mass spectrometry (Kakuda et al., 2006).

Paper II

Aβ pathology in AD and schizophrenia

Severe cognitive decline is a common phenomenon in elderly patients 
with schizophrenia (Purohit et al., 1998). AD patients often have 
psychiatric manifestations of the disease, such as psychosis and disruptive 
behavior, especially in the later stages of the disease. It has been shown 
that psychosis and aggression are associated with more rapid rates of 
cognitive and functional decline in AD (Stern et al., 1997). Although 
schizophrenia and AD may not share common neuropathologic 
lesions, such as neuritic plaques, the commonality of some cognitive 
and psychiatric symptoms in the two diseases suggests the potential 
existence of overlapping molecular pathogenetic pathways. We wanted 
to examine the possible involvement of Aβ in the cognitive impairment 
seen in elderly patients with schizophrenia by measuring total brain 
Aβ, Aβ40 and Aβ42. 

Total Aβ, Aβ40, and Aβ42 were extracted from the brain using an 
established protocol and quantified by sandwich ELISAs as described 
in the Methods section. The brain region investigated in this study was 
the dorsolateral prefrontal cortex (DLPC), Brodmann Area (BA) 46. The 
levels of Aβ42 were similar in demented schizophrenics without AD and 
in controls, but they were significantly higher in schizophrenics with AD 
pathology relative to controls or to schizophrenics without AD pathology 
(vs. controls, p=0.003; vs. schizophrenics without AD,  p=0.006). 
The levels of Aβ42 in schizophrenics with AD neuropathology was 
significantly lower than the Aβ42 levels in the AD cohort (p=0.0001). 
The results are shown in Figure 5.
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Figure 5. Levels of total Aβ, Aβx-40 and Aβx-42 in the DLPFC of control, Alzheimer’s disease (AD), 
schizophrenic (SZ) and schizophrenic with Alzheimer’s neuropathology (SZ+AD) subjects. Values in pmol/g 
tissue represent means + SEM. * vs. all other groups, p<0.001. ♦vs. control and vs. AD, p<0.004.

Some suggestions can be brought forward to explain why the 
schizophrenic patients with AD neuropathology had decreased levels of 
Aβ compared to AD patients: specific drug treatment, heavy smoking 
or the disease state per se. It has been shown that treatment with 
neuroleptics, such as droperidol and haloperidol, can lead to decrease 
of Aβ formation in vitro (Higaki et al., 1997). It was not possible to 
prove that the decrease of Aβ is connected with a specific drug in our 
cohort, since we did not have reliable information about drug treatment 
for all patients and the group was relatively small for creating further 
subgroups. Prevalence of smoking among patients with schizophrenia 
is high (Dalack et al., 1998). Nicotine has previously been shown to 
decrease Aβ levels both in vitro (Salomon et al., 1996; Ono et al., 2002) 
and in vivo (Hellström-Lindahl et al., 2004b; Lahiri et al., 2002; Utsuki 
et al., 2002; Zamani and Allen, 2001). The lack of detailed information 
for most of the patients regarding the smoking status throughout life 
precluded us from drawing any conclusions between smoking and brain 
Aβ levels. However, we have further explored the connection between 
smoking and Aβ production in study III.
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In contrast to elderly schizophrenia patients having AD pathology, 
those without AD pathology had Aβ levels that were not significantly 
different from those of normal subjects, hence the Aβ does not account 
for the cognitive deficits in this group. These results suggest that the 
causes of cognitive impairment in ‘pure’ schizophrenia are different 
from those in AD. It also implicates that anti- Aβ strategies, tested for 
AD would not be effective in dementia in schizophrenics. More studies 
are needed in order to explain the cause of cognitive impairment in 
this large group of patients.

Paper III

Aβ deposition attenuated in smokers

In contradictory epidemiological studies, smoking appears to be 
protective or a risk factor for developing AD (Winblad et al., 1999). It 
has been demonstrated that nicotine directly inhibits the aggregation 
of Aβ in vitro (Salomon et al., 1996, Ono et al., 2002) and it has also 
been suggested that nicotine may stabilize the β-helical structure of Aβ 
(Zeng et al., 2001).

Based on the above mentioned data and on our previous study, 
we hypothesized that nicotine may decrease Aβ production and 
accumulation in human brain. We designed a study where we focused 
on ante mortem smoking habits. Postmortem tissue samples from 
the entorhinal cortex were obtained from dementia free controls. 
According to their smoking status the individuals were subdivided into 
two groups, smoker and non-smokers. Alzheimer-type pathology, such 
as Aβ and abnormally phosphorylated tau, and vascular changes in the 
brain were evaluated immunohistochemically and quantified by image 
analysis. The characteristics of the groups and Aβ peptides levels are 
shown in the Table 1.

The total Aβ and diffuse Aβ immunoreactivity, together with formic 
acid-extractable Aβ42 but not Aβ40, was reduced in smokers compared 
with non-smokers (P<0.05). There was also a reduced percentage of 
cortical and leptomeningeal vessels associated with Aβ immunoreactivity 
in smokers compared with non-smokers. The formic acid-extractable 
Aβ42 and pack years (n=34, r=−0.389, P=0.025) were inversely correlated. 
There was a similar trend between total Aβ immunoreactivity and pack 
years which did not reach statistical significance (n=30, r=−0.323, 
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P=0.082). In contrast, there were no significant group dif-ferences for 
vascular markers, phospho-tau markers or phosphate-buffered saline 
(PBS) soluble Aβ40, Aβ42 or total Aβ.

Table 1. Extracted insoluble and soluble Aβ40 and Aβ42 from BA28 in smokers and non-smokers. Aβ levels 
in pmol/g tissue. PD (post mortem delay), PY (pack years)

 

Studies in transgenic mice have shown a similar pattern where both 
extracellular and PBS-soluble Aβ was decreased when animals were 
exposed to nicotine (Hellström-Lindahl et al., 2004a). The same group 
has also demonstrated that both soluble and insoluble Aβ42 and Aβ40 
in frontal cortex and Aβ40 in temporal cortex and hippocampus 
were significantly decreased in smoking AD patients compared to 
nonsmoking AD patients (Hellström-Lindahl et al., 2004b). In our 
study we observed a more than 60% reduction of formic-acid extracted 
Aβ42, but no change in Aβ40 levels. Different roles of Aβ40 and Aβ42 in 
relation to vascular and parenchymal pathology have been suggested on 
the basis of experiments performed in double transgenic APPdutch and 
presenilin 1 mutant mice (Herzig et al., 2004). Recently it was shown 
that Aβ42, but not Aβ40 is essential for parenchymal and vascular Aβ 
deposition in mice. When mice expressing Aβ42, were crossed with 
APPswe mice, there was a massive increase in Aβ deposition both in 
parenchyma, and in vessels (McGowan et al., 2005). This pattern was 
not seen in mice expressing Aβ40.

The observation of correlation of tobacco smoking with decreased 
levels of Aβ42 leads to the obvious question about mechanism of action 
of nicotine on the deposition of Aβ. Nicotine may directly prevent the 
formation of amyloid fibrils (Ono et al., 2002; Salomon et al., 1996). 
This concept is consistent with our finding that we detected a reduction 
of insoluble Aβ42, but not of soluble forms of Aβ42 or Aβ40. Similar

    Smokers     Non-smokers    

    Male (10)          Female (6)     Male (6)        Female (12)  

Age (years)    78,9 (1,8)         78,8 (2)     80,4 (9,9)       79,4 (1,9)      
PD     35 (6)          17 (4)                        24 (4)         41 (8)  
PY     48 (5)          38 (7)     16 (7)         5 (4)  
Insoluble Aβ40    2440 (566)      1497 (331)                      1541 (497)       3277 (782)    
Insoluble Aβ42    3334 (674)       2892 (679)                      6753 (3876)    12909 (4236)  
Soluble Aβ40    8 (1,2)          7,1 (0,5)                      7 (0,3)         7,2 (0,7)  
Soluble Aβ42    21,1 (3,3)          26,6 (6,5)                      29,2 (4,9)         27,6 (4,2) 
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results were also reported using APPswe mice treated with nicotine 
(Hellström-Lindahl et al., 2004a; Hellström-Lindahl et al., 2004b). 
However, the concentration of nicotine in the in vitro studies where Aβ 
fibril formation was modulated much exceeded those present in blood 
of smokers. 

It may also be possible that nicotine indirectly affects Aβ production, 
for example via nicotinic receptors. Stimulation of nicotinic receptors 
may alter APP processing and thus Aβ  production (D’Andrea and 
Nagele, 2006). Alternative mechanisms of nicotine action could involve 
changes of neurotrophic factors production, such as nerve growth factor 
(Eriksdotter Jönhagen et al., 1998; French et al., 2006; Rattray, 2001), 
fibroblast growth factor (Belluardo et al., 2004) or other neurotrophic 
factors. These factors may in turn modulate Aβ  metabolism. Recently, 
it was shown that nicotine attenuated Aβ-induced neurotoxicity by 
regulating metal homeostasis, especially by decreasing the intracellular 
copper concentration (Zhang et al., 2006).

In summary, our data together with an emerging body of evidence 
from the literature encourage future trials with analogs of nicotine for 
Aβ -targeted anti-dementia treatment.

Paper IV

Association of cortical zinc with Aβ burden and clinical severity in AD

In several studies brain metals levels in AD post-mortem tissue have 
been measured and a consistent elevation of zinc (Danscher et al., 
1997) and decrease of copper has been identified (Loeffler et al., 1996). 
It can be hypothesized that a biochemical interaction between Aβ and 
biometals play a role in the pathogenesis of AD. However, to date no 
study has explored the biochemical relationship of metals with Aβ 
burden in humans.

In order to determine whether changes in biometals in the brain are 
associated with Aβ burden we examined post mortem brain tissue from 
AD, controls and patients with schizophrenia with or without mild AD 
pathology. All the subjects had been assigned CDR score between 0 
(normal cognition) and 5 (severe dementia). The characteristics of the 
study group for paper II and IV are presented in the Table 2.
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Table 2. Descriptive statistics for the study groups.

The Aβ levels were assessed from the dorsolateral prefrontal cortex (BA 
46) and metals levels from ipsilateral superior temporal gyrus (BA 22). 
There was a significant, more than twofold, increase of tissue zinc in 
patients with AD as compared to the other groups. After adjusting for 
age, this metal was positively associated with total Aβ (p= 0.03), Aβ40 
(p=0.02) and Aβ42 (p=0.02). Zinc levels were significantly (p< 0.001) 
elevated in the most severely demented cases (CDR 4-5) (Figure 6) 
and in cases that had an amyloid burden greater than 8 plaques/mm2. 
Copper showed a trend to decline with age. Levels of other metals did 
not differ between groups.

Figure 6. Zinc levels in different CDR groups. CDR 0 = non dementia, CDR 4 or 5 = severe dementia 

    Normal    Schizophrenia  Schizophrenia   AD          ANOVA    
  controls                            plus AD                 
  
  n=14     n=26                      n=8                      n=10            p-value  
        

DEMOGRAPHICS                

     Age  82.8 (11.2)     70.3 (13.1)                   76.0 (14.6)    81.6 (11.0)   0.02      

     Female/Male (n) 12/2     8/18                       5/3                               7/3     0,01                  

     PMI  479 (370)     686 (377)    735 (360)    532 (608)    0.36      

     CDR  0.25 (0.38)     1.85 (1.14)    2.25 (1.39)                   4.1 (1.2)       <0.0001  

METALS (nmol/g wet wt)                

     Zinc  11.3 (1.9)     10.7 (1.8)   10.5 (1.8)                      26.0 (13.8)   <0.0001      

     Copper  2.85 (0.9)     2.89 (0.9)   2.53 (0.5)                      2.32 (1.0)     0.33      

     Iron  34.7 (5.0)     33.3 (6.2)   36.8 (7.6)                      38.5 (13.1)    0.23      

     Manganese 0.17 (0.05)     0.14 (0.02)   0.15 (0.03)   0.15 (0.05)    0.09 

     Aluminum 0.67 (1.1)     1.01 (2.5)   0.79 (1.1)                      0.31 (0.1)      0.69 
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These findings are in concordance with previous reports of elevated 
zinc levels in several brain regions in AD including hippocampus 
(Cornett et al., 1998), amygdala (Cornett et al., 1998; Danscher et al., 
1997), basal nucleus of Meynert (Thompson et al., 1988), the olfactory 
region (Cornett et al., 1998), and frontal, temporal, and parietal 
(inferior) cortices (Cornett et al., 1998; Deibel et al., 1996). Studies 
that have not found zinc elevations in AD brain have either used small 
sample sizes or used formalin-fixed tissue which artifactually lowers 
zinc levels because of denatured zinc binding sites (Andrasi et al., 1995; 
Ward et al., 1987). 

To our knowledge, this is the first human study to report an association 
between zinc levels in cortex and Aβ burden or dementia severity (CDR). 
Previously, zinc has been shown to accumulate within Aβ plaques in 
humans (Lee et al., 1999; Lovell et al., 1998; Suh et al., 2000). Zinc 
ions are released by neurotransmission from a subset of glutamatergic 
neocortical fibers achieving concentrations of approximately 300 µM. 
Zinc is concentrated into synaptic vesicles in these fibers through the 
activity of ZnT3, found only in the synaptic vesicular membrane. This 
pool of zinc represents 15-30% of total brain zinc, and genetic ablation 
of ZnT3 abolishes amyloid plaque deposition and cerebral congophilic 
angiopathy in the APPswe mice (Lee et al., 2002). 

The elevation of zinc observed in our study is unlikely to be explained 
solely by the accumulation of zinc within Aβ deposits: while the levels 
of Aβ in the AD cases were 1.45 nmoles/g wet weight greater than 
levels in control tissue, the associated elevation in Zn was about 150-
fold greater (222 nmoles/g wet weight). Thus the elevated zinc in AD 
could reflect accumulation within cells rather than merely indicating 
zinc sequestered into solid Aβ deposits or diffuse forms of Aβ deposits. 
Supporting this possibility, chemically exchangeable Zn2+ has been 
found to accumulate within the bodies of neurons in AD-affected 
neocortex (Suh et al., 2000). As we measured total zinc in the brain, 
we cannot speculate if intra- or extracellular zinc plays a role in AD 
pathogenesis. Since the elevation in zinc correlates with Aβ levels, it 
is still possible that Aβ and Zn accumulations are causally associated 
through a mechanism that is yet unclear. There is a need to determine 
whether altered zinc levels precede or follow deposition of Aβ. 
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The limitation of our study is that the analysis of metals and Aβ were 
done in the same hemisphere, but in different cortical regions. With 
some confidence we may assume that the chosen regions are to a similar 
extent affected by Aβ pathology and have similar zinc levels. The 
choice of the distinct brain regions may have reduced the strength of 
biochemical association between Aβ and zinc (increase the probability 
of a type 2 error). Further studies on identical areas are therefore 
warranted to confirm our findings. In contrast, the zinc comparison 
between AD and controls was performed using the same regions, thus 
the previous concern does not affect our finding of increased zinc levels 
in AD patients compared to controls. 

Our results showing a correlation between zinc and dementia severity 
may suggest that zinc accumulation causes neuronal dysfunction. 
Excess of zinc is neurotoxic by several mechanisms. Abnormal elevated 
zinc inhibits mitochondrial reparation (Brown et al., 2000), proteosome 
activity (Kim et al., 2004) and induces abnormal microtubule assembly 
(Kamimura and Mandelkow, 1992). It has also been demonstrated that 
zinc induces memory impairments in rats (Flinn et al., 2005).

It is also possible that zinc indirectly or directly affect APP proceeding. 
It has been reported that zinc supplementation in combination with 
low-copper diet significantly decreased APP expression in platelet 
(Davis et al., 2000). In the same study it was confirmed that zinc tablets 
intake increase extracellular superoxide dismutase activity. There is a 
large group of patients that takes zinc supplementations daily. Elderly 
patients with inadequate dietary habits tend also to be at risk for mild 
to moderate zinc deficiency with symptoms including slow wound 
healing, increased risk of infection, and a loss of acuity in taste and smell 
(Keenan and Morris, 1993). In animal studies, chronic zinc treatment 
increases the pool of synaptic zinc in the hippocampus, a region that 
is affected early in the AD neurodegenerative process (Szewczyk et al., 
2006). 

The levels of other metals, including copper, which we measured in this 
study, remained unchanged between AD and control. Thus, our data 
do not support the hypothesis that imbalance in copper metabolism is
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associated with AD. However, a subtle difference in copper levels could 
have escaped detection since the number of the patients included in 
the study was relatively small.

In summary, these data indicate that brain zinc accumulation 
is a prominent feature of advanced AD, and suggest that brain zinc 
accumulation is biochemically associated with brain Aβ levels and 
dementia severity in AD. These results support the hypothesis that 
zinc accumulation in the brain might be causally related to Aβ 
accumulation. The implementation of our finding in the clinics should 
be followed by trials with metal chelating agents for AD treatment. One 
such drug, clioquinol, has shown promising results in Phase II clinical 
trials (Ritchie et al., 2003). It has been documented that clioquinol had 
the potential to decrease plasma Aβ42 levels and slow the progress of 
AD.

Paper V

Hyperhomocysteinemia, APOE4 and MTHRF polymorphism in AD

There is a need to find genetic and environmental risk factors for AD. 
Increased levels of homocysteine in the blood are associated with 
various neurological, cardiological and psychiatrics disorders (Seshadri 
and Wolf, 2003). Recent longitudinal data show an association between 
hyperhomocysteinemia and a higher risk of AD (Seshadri et al., 2002). 
However, this finding has not been confirmed in some other studies 
(Miller et al., 2002) and more research into the possible relationship 
between homocysteine and MCI and AD is needed.

The aim of this study was to analyze the levels of homocysteine, 
vitamin B12 and folic acid in the blood from patients with AD, MCI 
and a control group. Importantly, we also determined the ApoE and 
MTHFR polymorphisms in these groups. A total of 100 patients with 
AD, 99 with MCI and 100 controls were included in this cross-sectional 
study. Homocysteine, B12 and folic acid were analyzed in the blood, 
and in parallel, APOE and MTHFR genotyping were performed. The 
descriptive statistics is shown in Table 3.
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Table 3. Descriptive statistics for study groups. Results are expressed in mean (SD). The laboratory reference 
values: homocysteine = 4-12 μmol/l, folate = 5,3-14,4 ng/ml, B12 = 157-1059 pg/ml; ApoE4 and MTHFR 
T in numbers (percent). ApoE (apolipoprotein E), MTHFR (methylenetetrahydrofolate reductase). 
*p<0.05,**p<0.0001.

   Controls  AD          MCI  

     100                99          98

        Homocysteine                   14,43 (4,5)   18,03 (9,9)**          14,15 (4,1) 

         Folate  7,56 (5,4)                                       8,51 (3,4)              10,87 (3,9) 

         B12                    413,5 (241)                                       316,7 (140)*           386,3 (159)  

         ApoE4 +  21 (21%)                                       56 (56.6%)            27(27.6%) 

         ApoE4-  79 (79%)                                       43 (43.4%)            71 (72.4%) 

         MTHFR allele T fequency     0.260                                        0.273              0.291  

Plasma total homocysteine was increased in AD patients, 
compared to controls (18,0 µmol/l and 14,4 µmol/l, respectively). 
Hyperhomocysteinemia was associated with decreased blood levels of 
folic acid and B12. In contrast, patients diagnosed with MCI did not 
have hyperhomocysteinemia. The increased frequency of the ApoE4 
allele among AD patients was confirmed in our study group. The 
ApoE4 effect seen in our study was independent of homocysteine, folic 
acid and vitamin B12 levels and MTHFR status. The distribution of 
the MTHRF C677T polymorphism in the study group did not differ 
between AD, MCI and controls.

The association between total homocysteine and AD, which was 
found in our study, was consistent with results reported in the majority 
of retrospective and prospective studies (Anello et al., 2004; Guidi et 
al., 2006; Luchsinger et al., 2004; Ravaglia et al., 2005; Seshadri et al., 
2002). The design of the study was to examine homocysteine once in 
patients with different cognitive levels. We have studied patients with 
moderate to severe AD and patients with MCI, the latter which have a 
high risk of progressing to AD dementia. In our study, the MCI group 
did not have hyperhomocysteinemia, so we cannot confirm that 
hyperhomocysteinemia does occur early in AD. In addition, we cannot 
deduce that hyperhomocysteinemia is a risk factor for progressing from
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 MCI towards AD, mostly because of cross-sectional design of the study. 
The lack of association between homocysteine and the MCI group could 
also, at least in part, be due to the relatively small numbers of patients 
included and the fact that the MCI study group is very heterogeneous. 
The hypothesis that hyperhomocysteinemia may contribute as a 
risk factor for converting from MCI to AD should be addressed by 
longitudinal prospective epidemiological studies. This has been 
explored by some authors and it was shown that severe to moderate 
hyperhomocysteinemia facilitated the conversion from MCI to AD 
dementia during the 3 year observation period (Annerbo et al., 2005). 
Previously, it was observed that homocysteinemia is an independent 
risk factor for development of AD, however the MCI group was not 
included in this study (Seshadri et al., 2002). 

Homocysteine is elevated in the blood, brain and CSF also in 
many different neurological disorders (Seshadri and Wolf, 2003) and 
homocysteinemia cannot be a good biomarker for MCI or AD. Elevation 
of homocysteine in the CSF parallels that in serum; however, serum 
concentrations are 20–100-fold higher than levels in the CSF (Obeid 
and Herrmann, 2006). The mechanism of toxicity of homocysteine 
has been studied in animals, cell culture and humans, however, it still 
remains poorly understood (Jakubowski, 2006; Zieminska et al., 2006). 
Homocysteine itself or folate and vitamin B12 deficiency can cause 
disturbed methylation and/or redox potentials, thus promoting calcium 
influx, Aβ and tau protein accumulation, apoptosis, and neuronal 
death (Obeid and Herrmann, 2006). The homocysteine effect may 
also be mediated by activation of the N-methyl-D-aspartate receptor 
(Luchowska et al., 2005). Homocysteine potentiates copper- and Aβ-
mediated toxicity in primary neuronal cultures (White et al., 2001). 
Aside from the direct neurotoxic effect, hyperhomocysteinemia in AD 
may lead also to cerebrovascular damage. Hyperhomocysteinemia is 
an established risk factor for vascular disorders (Castro et al., 2006; 
McCaddon et al., 2001; Nilsson et al., 2006) and white matter changes 
in the brain (Hogervorst et al., 2002). It has been suggested that anti-
hyperhomocysteinemia therapy (vitamin B12-B6-folate combination) 
has a potential to improve the function of the blood-brain barrier in 
patients with MCI (Lehmann et al., 2003). 
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There is a need to evaluate the effectiveness of anti-hyperhomo-

cysteinemia interventions in the clinic. So far there is no evidence 
suggesting that supplementation with folic acid, B12 and B6 may repair 
the cognitive loss seen in AD (Lonn et al., 2006; Malouf et al., 2003). 
It has been reported that vitamin supplementation did not improve 
cognitive function in elderly patients with vascular lesions which may 
indicate that the neuronal and synaptic loss is difficult to restore (Stott 
et al., 2005). These data also suggest that anti-hyperhomocysteinemia 
treatment should be started early in the disease process and be 
considered as a preventive method and not as a curative one.

In summary, we have showed that hyperhomocysteinemia is present 
in AD patients but not in the MCI group. There is a need for clinical 
trials using middle-aged subjects to asses the effectiveness of anti-
hyperhomocysteinemia treatment (vitamin supplementation) as a 
preventive method for AD.
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Conclusions & future perspectives

Although the finer molecular details of dementia and AD still remain 
largely unknown, the results presented in this thesis, together with a 
body of genetic and biochemical evidence gathered throughout the 
years, points to a pivotal role for Aβ in the pathogenesis of AD. During 
the process which leads to the neuropathology seen in AD, there 
appears to be an interplay between Aβ and other elements, such as tau, 
homocysteine and metals. 

Based on the results from paper I we conclude that the pathogenic 
effect of APP mutations associated with familial AD occur through a 
subtle shift in the production of Aβ (i.e. a changed Aβ42/Aβ40 ratio), 
rather than through changes in intracellular signaling, since the AICD 
production was not affected by the mutations. Paper II demonstrates 
that Aβ is not causative agent for dementia observed in patients with 
schizophrenia. Additionally, extracted Aβ is decreased in the brains 
of schizophrenics with AD neuropathology compared to patients with 
AD. The decrease of brain Aβ in the schizophrenia patients may be due 
to treatment with neuroleptics, smoking or the pathological process 
underlying schizophrenia. Based on the results from paper III we 
conclude that smoking lead to decreased levels of Aβ in human brain, 
however the mechanism for this reduction remains to be determined. 
One possibility is that it can occur by stimulation of nicotinic 
receptors, and thus drugs that can mimic nicotine action in the brain 
are worth pursuing as potential therapeutic anti-amyloid agents. We 
also speculate that the effect of nicotine on reducing Aβ deposition can 
be partly mediated by metal homeostasis regulation. 

In paper IV we show that zinc levels are elevated in AD brain and are 
correlated with brain Aβ and severity of dementia. This is an important 
mechanistic finding in light of the positive results seen with a metal 
chelator in clinical trials. Further studies will be required to establish 
the temporal relationship between Aβ and zinc deposition in AD brain 
and the molecular mechanism whereby zinc affects plaque genesis or 
turnover. Moreover, the potential use of zinc together with Aβ in CSF 
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and/or plasma as biomarkers for AD should be explored. It might also 
prove worthwhile to investigate the metal-Aβ relationship in CSF and 
plasma and its possible impact on Aβ turnover in humans. Finally, we 
performed a cross-sectional study where we analyzed homocysteine 
and vitamin B status and genetic polymorphisms of the MTHFR and 
ApoE genes. In paper V, we confirm that homocysteine and ApoE4 
contribute to AD pathogenesis. The Aβ ELISA described in this thesis 
can also be used to measure Aβ1-40 and Aβ1-42, in plasma thus one 
apparent future study would be to explore the relationship between 
plasma Aβ and homocysteine. 

In summary, the results presented in this thesis provide information 
that can be useful in research aiming at diagnosing and treating 
AD. Potential AD therapies highlighted by the results could be 
the use of nicotinic receptor stimulators, metal chelators and anti-
hyperhomocysteinemia agents. In future studies it will be important 
to explore the mechanistic relationship between the factors, described 
here and Aβ in brain. 
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