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ABSTRACT

Bacteria have various ways to sense environmental signals and to adapt
their behavior and physiology through different signaling systems. Sec-
ondary messenger signaling, amplified by enzymatic activity, rapidly
transmits a signal in the cell resulting in allosteric functional control.
Cyclic diguanosine monophosphate (c-di-GMP) is a novel global sec-
ondary messenger, that is found exclusively in bacteria and is involved
in fundamental bacterial behavior such as motility, sessility and viru-
lence. Regulation of virulence by c-di-GMP signaling is crucial for many
pathogens.

The aim of this thesis was to study the potential role of c-di-
GMP in bacterial-host interactions using Salmonella enterica serovar
Typhimurium as a model system. We wanted to study the effect of
c-di-GMP on virulence phenotypes and to identify the components and
mechanisms through which c-di-GMP mediates its effects.

Using the colon carcinoma cell line HT-29 we found that high
levels of intracellular c-di-GMP inhibited invasion of S. typhimurium
into epithelial cells, and induction, by S. typhimurium of production
of the proinflammatory cytokine itnerleukine-8 (IL-8) from epithelial
cells. This suggests that c-di-GMP negatively regulates acute virulence
phenotypes of S. typhimurium. Inhibition of virulence phenotypes is
partially mediated through biofilm components; the exopolysaccharides
cellulose and capsule, as well as the biofilm regulator CsgD. C-di-GMP
also interferes with the secretion of SopE2, a S. typhimurium effector
protein, as well as of flagellin, both of which are secreted by Type Three
Secretion Systems.

GGDEF and EAL domain proteins are di-guanylate cyclases and
phosphodiesterases that synthesize and degrade c-di-GMP, respectively.
These proteins amplify the primary signal through a local or global
change in the c-di-GMP concentration, and their specific activity de-
termines the phenotypic output. We did a comprehensive study of S.
typhimurium mutants of GGDEF/EAL domain proteins that revealed
distinct groups of proteins that are involved in invasion, IL-8 production
and colonization in streptomycin-treated mice. The distinct groups of
proteins suggest non-redundancy and specific, localized activity of the
secondary messenger towards regulatory targets.

C-di-GMP is involved in the regulation of biofilm formation. How-
ever, the role of biofilm formation in bacterial-host interaction of com-
mensal Escherichia coli has not been studied in detail. So, we in-
vestigated the effect of the extracellular matrix components cellulose
and curli fimbriae to bacterial adherence, internalization and induction



of the pro-inflammatory cytokine IL-8 in HT-29 cells. Cellulose and
curli had differential effects; while curli fimbriae promoted adherence,
internalization and IL-8 production, cellulose expression in the curli-
expressing background inhibited these phenotypes. Curli-bound flag-
ellin was highly immunostimulatory. In addition, our studies revealed
two highly immunostimulatory flagellin sequences from commensal E.
coli isolates. These flagellin sequences belong to the EC2 group of E.
coli flagellins, which are closely related to S. typhimurium FliC flag-
ellin, presumably already present in a common ancestor of E. coli and
S. typhimurium.
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1 INTRODUCTION

1.1 THE HOST: THE GASTROINTESTINAL TRACT

1.1.1 The gastrointestinal tract

The gastrointestinal tract (GI tract), also called the digestive tract, al-
imentary canal or gut, is the system within multicellular animals that
takes in water and food, extracts energy and nutrients from the food,
and expels the remainder as waste. Therefore, the GI tract is the major
portal of entry of foreign-to-the-body compounds and organisms and
is, on the other hand, connected to systemic sides in the human body.
Other functions of the GI tract are the elimination of toxins, hormone
metabolism and neurotransmitters production (>80%). Additionally,
the GI tract is the largest reservoir of the human normal flora, which
has numerous functions like competitive exclusion of pathogenic organ-
isms, induction of immunity, breakdown of non-digestable material and
production of vitamins. Over 60% of the immune system is in the GI
tract, which responds to the commensal flora and intruding pathogens
[1].

All the parts of the GI tract share a general structure that is referred
to as mucosa. The mucosa is the innermost layer of the GI tract, sur-
rounding the lumen, or space within the tube where digestion mainly
takes place. This layer comes in direct contact with the food and is
responsible for absorption and secretion. The mucosa is coated with
mucus (mucus layer) that acts as a lubricant for the movement of the
food through the intestinal tube. The mucosa can be divided into the
epithelium, the lamina propria (connective tissue that keeps the epithe-
lium steady) and the muscularis mucosae (thin layer of smooth muscle)
[1]. Upon infection of the gut, one of the first lines of defense is the mu-
cosal epithelium [2][3]. The mucosal cell lining of the intestine provides
the largest surface area in the adult human.

The mucosal epithelium is one-cell-thick-layer mainly composed of
columnar absorptive epithelial cells, but also of more specialized cells.
For example, goblet cells secrete mucus; Paneth cells secrete antimicro-
bial molecules, e.g. antimicrobial peptides such as α-defensins; micro-
fold (M) cells internalize microbes and deliver them to the immune cells
across the epithelial barrier, and intraepithelial lymphocytes (IELs) re-
lease cytokines after exposure to pathogenic agents [2]. Epithelial cells
in the small intestine are a type of brush border cell connected by tight
junctions to form a polymer impermeable membrane [2] while they are
are more cuboidal and compactly arranged in the large intestine.

The GI tract can be separated into upper and lower GI tract. The
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lower GI tract consists of the intestine and anus. The intestine can be
separated into the small and large intestine. The small intestine in-
corporates three features which account for its huge absorptive surface
area: Mucosal folds that are circular folds, which not only increase sur-
face area, but aid in mixing the ingesta by acting as baffles, villi that
are multitudes of projections of the mucosa which protrude into the lu-
men and are covered with epithelial cells, and densely-packed microvilli
studding the lumenal plasma membrane of absorptive epithelial cells.

The large intestine is much wider than the small and its wall is lined
with simple columnar epithelium with sacculations instead of villi [1].

Closely associated with the mucosa is the immune system of the GI
tract referred to as gut-associated lymphoid tissue (GALT). It includes
Peyers patches (PPs), intraepithelial aggregations of lymphoid tissue,
and mesenteric lymph nodes (MLN), where initial mucosal immune re-
sponses are induced [4]. In humans, Peyers patches are usually found in
the most distal part of the small intestine, the ileum. Peyers patches are
covered by an epithelium that contains the antigen-sampling M cells.
The more diffuse effector site of GALT is the intestinal lamina propria
and consists of antigen-presenting cells, including dendritic cells and
subsets of T cells. In addition, at the Peyer’s patches or isolated lym-
phoid follicles of the gut, reside B cells and plasma cells that produce
intestinal IgA. This protective humoral response is the most produc-
tive immunoglobulin producing pathway in the entire body(>90%) and
generates gram quantities of IgA every day [5].

1.1.2 Mucosal Immune Responses

The epithelial cell lining senses the presence of microorganisms in the lu-
men. When the microflora is built up after birth, intestinal homoeosta-
sis is maintained by sensing of the commensal flora by the epithelial
cell lining which generates a mild immune response preventing the over-
growth of the commensal flora. On the other hand, pathogenic bacteria
are recognized and an acute immune response is triggered, which con-
tributes to eradication of the pathogen [6]. Overgrowth of the microbial
flora is prevented in various ways. A mucus layer is located on top of
the epithelium, which provides a sticky mechanical barrier that protects
epithelial cells. Bacteria in the mucus layer have to resist to bacteri-
olytic action of e.g. enzymes like lysozyme and antimicrobial peptides
secreted from Paneth cells [7]. M cells sample bacteria and deliver them
to the dendritic-cell-rich subepithelial area of Payers Patches for elicit-
ing bacterial killing. Dendritic cells can also directly capture bacteria
by penetrating the epithelial tight junctions and protruding their pro-

2



longations between the epithelial cells of the intestinal epithelium [8].
On the surface of epithelial and immune cells, the presence of the

microorganisms is sensed by specific receptors, called pattern recog-
nition receptors (PRRs), that recognize structurally conserved micro-
bial molecules. Structurally conserved microbial structures have been
termed pathogen-associated molecular patterns (PAMPs) and include
lipid A part of the lipopolysaccharide (LPS) present in the outer mem-
brane of Gram-negative bacteria, components of the bacterial cell wall
such as peptidoglycan, microbial DNA and flagellin, the subunit of flag-
ella required for bacterial motility [6][9]. Toll-like receptors (TLRs) are
a group of important transmembrane PRRs. Until now, 15 TLRs have
been identified, from which TLR 1-10 are found in humans [10]. TLRs
recognize a broad spectrum of microbial components, e.g. TLR2 rec-
ognizes cell wall components, peptidoglycan and lipoteichoic acid [11],
TLR4 the lipid A part of LPS [9][12] and TLR5 flagellin, the monomeric
subunit of bacterial flagella [13]. TLRs have been found to reside on the
surface or within cell compartments of, not only epithelial and innate
immune cells, but also neuronal cells, endothelial cells and other cell
types. After recognition of PAMPs, TLRs trigger a signaling cascade,
which leads to e.g. the release of pro-inflammatory cytokines in order
to promote subsequent immune responses.

Flagellin as an immunogen A PAMP that plays an important
role in triggering mucosal innate immune responses, is the protein flag-
ellin. Flagellin is the monomeric subunit that builds up the polymeric
flagellar filament, which is required for swimming and swarming motil-
ity in bacteria [14][15]. Flagella are, however, also bacterial virulence
factors since they are often required for bacterial colonization and tissue
invasion [16][17][18][19]. The flagellar protofilament of Escherichia coli
and Salmonella is almost exclusively built-up from monomeric flagellin
subunits.

Flagellin carries the H-antigen specificity and is recognized as a ma-
jor antigen in Crohn’s disease [20]. On the surface of host cells bac-
terial flagellin is specifically recognized by TLR5 that leads to NF-kB
activation, chemokine release, T-cell activation, and other inflamma-
tory phenotypes. For example flagellin from S. typhimurium and from
pathogenic and commensal E.coli strains, induces a proinflammatory
response in gastrointestinal epithelial cell lines [21][22][23][24] and con-
tributes to systemic inflammation in LPS-resistant mice [24]. Since
epithelial cells in the gut become tolerant to LPS just after their first
exposure to bacteria [25], flagellin is an important immunostimmula-
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tory agent of enteric bacteria Enterobacteriaceae [13][26][27][28] . In
the cytoplasm, interleukin-converting enzyme protease-activating factor
(Ipaf) is essential for recognition of flagellin, while the Nod-like receptor
apoptosis inhibitory protein-5 (Naip5) also contributes to recognition
[15][29].

TLR5, a highly conserved toll-like receptor found on different cell
types and in different tissues, is an important factor of flagellin-induced
inflammation. TLR5 recognizes and binds only to flagellin monomers
and not to polymeric flagellin, which is integral part of the flagellum
[30]. Theoretically, flagellin monomers, that bind to TLR5, can have
emerged from the flagellum depolymerizing at the distal end, or are
secreted as monomers since they have never polymerized. Evidence
so far support the latter theory, since Salmonella serovars Typhi and
Typhimurium de novo synthesize and secrete monomeric flagellin after
sensing of host-produced lysophospholipids during incubation with in-
testinal epithelial cells [31]. Synthesis and secretion of flagellin is an
integral part of the flagellar filament assembly. In fact the flagellar
apparatus resembles a type III secretion system. Flagellin monomers
are secreted through the axial channel of the filament until its distal
end, where they get polymerized in helical way [32][33][34][35]. At this
point, a capping structure puts flagellin monomers into place [34][35]
thus consuming the provided monomers to assemble the polymeric fil-
ament. However, there are additional ways that availability of flagellin
monomers for TLR5 binding van be regulated since proteases can cleave
the monomers after they are synthesized and secreted [36] while protec-
tion from this cleavage is provided by glycosylation [37]. Additionally,
several bacterial pathogens use efficient mechanisms to shut-off flagellin
expression within hosts [38][39][40].

The flagellin protein is a highly variable molecule. Therefore it has
been used to discriminate bacteria such as Salmonella enterica, below
the species level (H-antigen). Primary structure of flagellin can be di-
vided to the N-terminal, the C-terminal and the central region while
the tertiary structure is divided to three domains (D1-D3) [35] Fig. 1.
The N-terminal and the C-terminal regions are conserved and together
they form the D1 domain of the tertiary structure of flagellin [35]. Ac-
cording to the conservation of their N and C-terminal sequences, E.coli
flagellins can be classified into two majors groups EC1 and EC2; the lat-
ter may be derived from the fliC gene of the E. coli/Salmonella enterica
common ancestor, the former perhaps obtained by lateral transfer since
species divergence [41].

Coimmunoprecipitation experiments have shown that flagellin binds
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Figure 1: Flagellin monomer tertiary structure

directly to TLR5 [30]. Recognition of flagellin by TLR5 requires stretch
of amino acids located in the N-and C-terminal domain of flagellin [30].
In vivo, TLR5 is located at the surfaces of intestinal epithelial cells to-
wards the lumen as well as the lamina propria [42][21]. In unpolarized
cell cultures TLR5 is expressed anywhere at the surface of intestinal ep-
ithelial cells, while in the case of mature polarized epithelial monolayer
TLR5 resides at the basolateral side of the cells [14][43][44].The fact
that mature gastrointestinal epithelial cell lines do not express TLR4
[45][46][12] renders them an ideal model to study the effect of TLR5 in-
teractions to inflammation, where the amount of the pro-inflammatory
cytokine IL-8 or transcription factor NF-kB induction, are commonly
used as read-outs.

1.2 THE BACTERIA

1.2.1 Bacterial composition of the gastrointestinal tract

In contrast to the small intestine, which contains relatively few bacteria
(105-107 bacteria/ml of fluid at the proximal end and 108 bacteria/ml
at the distal end), the majority of the intestinal microbiota resides in
the large intestine (1011/ml feces) [47]. A huge variety of bacterial
species (∼1000) inhabits the human large intestine, constituting a com-
plex ecosystem and rendering this system a site of intense metabolic
activity [48][49]. Recent metagenome sequencing [50] as well as studies
with germ-free animals, [51][52][53] have given insight into the abun-
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dance of bacterial species in the gut and the roles of the human gut
microbial flora for human health. For example, normal flora synthe-
size and excrete Vitamin K and Vitamin B12 and inhibit or kill non-
indigenous species through the production of nonspecific fatty acids and
peroxides to highly specific bacteriocins. The normal flora also stim-
ulates the development of certain tissues, i.e., the caecum and certain
lymphatic tissues (Peyer’s patches) in the GI tract, and stimulates the
production of natural antibodies [54]. Generally, after birth, the first
colonisers of the human gastrointestinal tract are facultative anaerobes
e.g. enterococci and enterobacteria, mainly E. coli, [55][56] followed by
obligate anaerobes [57][58]. The adult flora of the small intestine con-
sists of bifidobacteria, enterococci, lactic acid bacteria and enterobac-
teria, while the flora of the colon comprises bacteroides, lactics, lactic
acid bacteria, enterobacteria clostridia and methanogens [47]. The en-
terobacterial flora is variable and consists of transient and persistent
strains; most of the strains are commensals or live in symbiotic relation
with the host, but potentially pathogenic strains also colonize. Actually,
E. coli is the predominant enterobacterial species in the gastrointestinal
tracts of mammals. It accounts for 0.1% of the total bacterial biomass,
which can reach up to 108 cells/ml [59][55][56] while the amounts of
Salmonella in the intestine are ∼100 times less than E.coli [50]. Most
E. coli strains are harmless commensals but colonization of commensal
E.coli is found to be higher when E.coli pathovars are spread to suscep-
tible sites [60][61]. It has been demonstrated that intestinal colonization
of commensal E.coli is required for chronic intestinal inflammation [62].
Commensal E.coli can also cause disease through bacterial transloca-
tion in case of bacterial overgrowth due to antibiotic treatment or due
to weakened immune defence of the host [63]. Bacterial translocation
(BT) is the passage of viable bacteria and/or their products from the gut
across the intestinal epithelium to the mesenteric lymph nodes (MLNs)
and further to normally sterile organs [64]. Certain balance and com-
position of the commensal gut flora is important for being beneficial
and health maintaining [65]. The commensal gut flora is altered under
chronic inflammation conditions that characterize irritable bowel syn-
drome and inflammatory bowel disease (IBD) [66]. For example, the
normally subordinate E.coli, is observed to be predominant in the case
of Crohn’s disease, a form of IBD [67][65]. In general, the combination of
a genetic pre-disposition of the host and specific features of the bacterial
flora disrupt the homeostasis between the commensal bacteria and the
immune system of the host to promote chronic infection. Specifically,
on the host side, epithelial barrier function, immunoregulation or bacte-
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rial killing and/or processing can be disregulated [68][69]. On the other
hand, bacterial virulence factors that promote adherence, invasion and
persistence into epithelial cells along with bacterial metabolic products
that induce epithelial injury [70] can also disrupt the homeostasis and
lead to IBD pathologies.

Bacterial biofilms in the gastrointestinal tract Persistence
of bacteria in the GI tract has been associated with the expression of
adhesins [71][72][73]. Establishment of the bacteria can potentially have
the form of a biofilm. Biofilms are matrix-enclosed bacterial populations
adherent to each other and/or to surfaces or interfaces. This definition
includes microbial aggregates and floccules [74]. Sessile bacteria forming
biofilms in the gut are likely to play a pivotal role in gut health and dis-
ease [75][67][74][76][77][78]. In the colon, the site most heavily colonized
by microorganisms, extensive biofilm formation occurs that comprises
mixtures of living and dead bacteria [78]. Bacterial biofilms can pro-
vide metabolic advantages to the host, for instance, biofilm populations
were found to be more efficient in digesting polysaccharides than the
nonadhering bacteria, while they have distinct fermentation products
[79]. Mucosal biofilms formed by commensal bacteria provide a pro-
tection barrier to the mucosal epithelium [66][80]. On the other hand,
the biofilm could promote persistent colonization by protecting encased
bacteria from host immune defences such as antimicrobial compounds
[81][74][82][83]. Expression of adhesins and eventual biofilm formation
are triggered by environmental conditions [84]. In some cases, adherence
to epithelial cells is essential for bacteria in order to colonize or invade
the host [72], [85]. In this context, biofilm formation can be a virulence
factor like in enteroaggregative E.coli (EAEC) where EAEC strains ad-
here to the small and large bowel mucosal surface in a thick aggregating
biofilm [86][87][88]. Microscopy studies have also revealed that bacte-
ria growing on the rectal mucosa are distributed throughout the mucus
layer, while most of the live cells were close to the epithelial surface [89].
This close proximity may result in localized high levels of immunogenic
and toxic substances, stimulating inflammatory processes and thus re-
sulting in disruption of the homeostasis between commensal bacteria
and host’s immune system leading in pathologies like IBD. Curli and
other fimbriae, and the exopolysaccharide cellulose, are components of
enterobacterial biofilms on epithelial cells promoting and counteracting
adherence [90][91][73][92]. Additionally, the biofilm matrix component
curli fimbriae mediates adherence and cytokine production and stimu-
late recognition of flagellin [92]. On the other hand, the switch between
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a biofilm state and planktonic lifestyle is linked to virulence for some
pathogenic bacteria. For example, Vibrio cholerae forms biofilms on
zooplankton and phytoplankton in the environment, but switches to
the planktonic lifestyle as soon as it enters the mammalian intestine
[93][94].

Enterobacteriaceae The family Enterobacteriaceae, trivially
known as enterobacteria, belongs to the phylum Proteobacteria and
consists of rod-shaped, Gram-negative, non-spore forming, facultative
anaerobes. It comprises more than 30 different genera with Escherichia,
Shigella,salmonella and Yersinia as most important representatives due
to their prevalence and pathogenic potential. Most of Enterobacte-
riaceae can be inhabitants of the intestinal tract and can also cause
various diseases. Enterobacteria are responsible for foodborne disease
outbreaks, which cause approximately 76 million illnesses and 5,000
deaths every year [95].

Escherichia coli E. coli is one of the best understood model
organism. E. coli can be found in a variety of environments like water,
fruits, manure-related soil and abiotic surfaces [96] as well as in a va-
riety of hosts like mammals or even fish [97].Humans and animals are
natural hosts of E.coli. Most E. coli are commensals, but pathogenic
strains cause intra- and extraintestinal infections such as various forms
of gastroenteritis, neonatal meningitis, septicemia, urinary tract infec-
tion and other severe pathologies. Distinct E. coli pathovars which
cause intestinal infections are enteropathogenic E. coli (EPEC), en-
terotoxigenic (ETEC), enterohemorrhagic (EHEC) and enteroinvasive
(EIEC). These pathovars carry distinct pathogenicity islands, which
are basically accumulation of virulence factors and adhesins integrated
into the chromosome, virulence plasmids and individual changes on the
chromosome. Additionally, E. coli is also associated with inflammatory
bowel disease that is a set of inflammatory conditions of the colon and
small intestine. Interactions of E. coli with epithelial cells are stud-
ied in vitro with use of human cell cultures, also used for the study of
Salmonella infection, and are described later in the Salmonella section
(Human cell culture models)

Salmonella The genus Salmonella consists of 2 species,
Salmonella enterica and Salmonella bongori. Salmonella enterica con-
sists of 6 subspecies (group I, II, IIIa, IIIb, IV and VI) and Salmonella
bongori is subspecies group V of Salmonellae [98]. According to separa-
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tion of Salmonellae to somatic groups (O-antigens) and flagellar types
(H-antigens) more than 2500 serological variants (serovars) have been
described [99]. Salmonellae can adapt to a variety of environments
and hosts but mostly live in the intestinal tracts of warm and cold-
blooded animals. t is estimated that Salmonellae cause globally ap-
proximately 30 million human infections every year (www.who.org), re-
sulting in 200,000 deaths [100]. The estimation results from calculation
of outbreaks and unreported cases in under-developed countries, while
in the USA 7000 cases were reported in 2007 [101]. Serovars able to
infect mammals mainly belong to subspecies I of Salmonella enterica.
Transmission is via a fecal-oral route, i.e., via ingestion of contami-
nated water or food, especially poultry and dairy products. Salmonella
is also transmitted from person to person and secondary spread can
therefore occur. Thereby, host-host restricted serovars of S. enterica
cause systemic infections (enteric fevers) like the serovar Typhi that
causes typhoid fever in humans.

Non-typhoidal Salmonella (NTS), among them S. typhimurium,
are zoonotic serovars with a broad spectrum of unrelated hosts. S.
typhimurium normally causes self-limiting gastroenteritis in immuno-
competent humans, but can also cause systemic infections leading to
death in immunocompromised individuals such as the elderly and preg-
nant women. However, S. typhimurium is evolving. In sub-Saharan
Africa there is a dramatic increase in invasive diseases caused mainly
by S. typhimurium. Novel variants of S. typhimurium arised which
cause invasive disease in HIV-infected individuals [102]. In Europe,
a multidrug-resistantS. typhimuriumphage type arised which is associ-
ated with large outbreaks and increased need for hospitalization [103].
S.typhimurium specifically has an incubation period of 6-48h and the
infectious dose is approximately 106 cells.

1.2.2 Salmonella infection

As a food-born pathogen, S.typhimurium must first survive passage
through the acidic stomach. Then the organism adheres to the intesti-
nal epithelium of the ileum to establish an invasive infection. Adhe-
sion to the epithelium is multifactoral and poorly understood. Fim-
brial and non-fimbrial adhesins as for instance the large, repetitive non-
fimbrial adhesin SiiE, mannose-sensitive type-1 fimbriae, Lpf fimbriae
and curli fimbriae have been shown to contribute to adhesion and/or
disease symptoms in vivo or in vitro [104][105][106][107][91][108]. Sub-
sequently, effector proteins of the type III secretion system-1 (TTSS-
1) located on Salmonella pathogenicity island 1 mediate invasion of
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enterocytes and M cells via an induced endocytic mechanism Fig. 2
[109][110][111][112][113][114][115][116]. Salmonella inside the eukary-
otic cell is included within a vacuole, referred as endosome, where the
bacterium multiplies. The endosome moves to the basal side of the cell,
Salmonella are released and may be phagocytosed by macrophages. Al-
ternativelly, crossing of the gastrointestinal epithelial wall through M
cells situated in the Peyer’s patches leads to penetration and distruction
of the latter Fig. 2 [117]. Alternatively the bacteria are cuptured by the
prolongations of dendritic cells which protrude between the epithelial
cells of the intestinal epithelium Fig. 2 [8][111]. Bacteria migrate to the
lamina propria of the ileocecal region where they multiply and stimulate
an inflammatory response. This inflammatory response is manifested
by production of pro-inflammatory cytokines, mainly IL-8 [118], which
leads to recruitment of neutrophils and macrophages. Macrophages and
monocytes phagocytose S. typhimurium and migrate to the lymphnodes
[119]. There is strong influx of inflammatory cells leading to the release
of prostaglandins, which activate adenylate cyclase which produces fluid
secretion to the intestinal lumen thus causing diarrhea. The inflamma-
tory response prevents the spread beyond the GI tract and eventually
kills the bacteria.

Figure 2: Salmonella crossing the epithelial barrier

Models for human gastroenteritis Direct information
aboutsalmonella infection in humans is acquired through stool sam-
ples, from intestinal biopsies or from blood analyses of patients
[120][121][122]. In humans, S. typhimurium similarly to other nonty-
phoidal Salmonella serovars, causes a localized acute gastroenteritis,
that is acute inflammation of the small intestine resulting in fever
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and diarrhea with fluid and electrolyte loss, and/or lymphadenitis,
that is inflammation and/or enlargement of mesenteric lymph nodes.
[123][122]. S. typhimurium induced acute inflammation is charac-
terized by a massive influx of neutrophils in the terminal ileum and
proximal colon as revealed from patients gut biopsies [121][122], while
neutrophils are also present in feces along with other fecal leucocytes,
as revealed from patients stool samples [120].

Use of animal models has demonstrated that there can be significant
differences between Salmonella pathogenesis in animals and in humans.
Therefore different in vivo and in vitro models offer the study of spe-
cific pathologies under specific conditions, adding to different aspects
ofSalmonella infection.

Domestic food-producing animals like calves [124], sheeps [125], pigs
[126] and poultry [127] are natural hosts of S. typhimurium causing en-
terocolitis with similar pathologies to humans. Bovine colitis is conse-
quently a good model to reflect human enterocolitis [124][128]. How-
ever, cattle are usually outbred and their size and cost restrict their use.
Rabbits, on the other hand, are well established inbred animals where
oral infection with S. typhimurium results in systemic infection [129].

Injection ofS. typhimuriuminto ligated ileal loops of animals is a
model that is used to study the early events of infection up to six hours.
S. typhimuriuminjection into ligated ileal loops of calves or rabbits re-
sults in intestinal inflammation and fluid accumulation, pathologies that
mimic infection via the natural oral route. The corresponding murine
ligated loop S. typhimurium infection model demonstrates milder in-
flammation [130], but still is a good model to study early interactions
ofS. typhimuriumwith intestinal epithelial cells in vivo and to confirm
observations from tissue culture experiments [131][128].

Inbred strains of mice vary in their sensitivity to serovar Ty-
phimurium infection, from being relatively resistant (oral LD50 ≥ 108

bacteria) to highly sensitive (oral LD50 ≥ 104 bacteria). The natural
resistance is mediated by a single locus on chromosome 1 called Nramp1
[132] that is almost exclusively expressed by macrophages. Oral infec-
tion of Salmonella-susceptible mice with serovar Typhimurium results
in a systemic disease with bacteremia and lesions in systemic organs,
mouse typhoid fever, that resembles the infection of S. typhi in hu-
mans. Consequently, this model is frequently used as an experimental
animal model to study typhoid fever [131].On the other hand, in ge-
netically resistant inbred mouse strains (e.g. 129SvEv; Nramp1+/+)S.
typhimuriumcauses chronic infection of systemic organs. Salmonella
can only poorly colonize the intestine, a fact that is referred to as “col-
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onization resistance” of the murine intestine. In germ-free or antibi-
otic treated mice, colonisation resistance is abolished. Streptomycin
treatment prior to S. typhimuriuminfection disrupts the colonization
resistance and results in acute inflammation in the intestine with neu-
trophils influx and epithelial erosions [133][134] mirroring human S.
typhimurium infections. However, Salmonella infection does not result
in diarrhea and longterm infection is accompanied by systemic spread of
bacteria; properties that are not characteristic of human S. typhimurium
infections. A functional gut flora is required for colonization resistance,
as re-association of germ-free mice with commensal bacteria restores
colonization resistance [54].

Human cell culture models are used to investigate molecular
mechanisms leading to bacterial virulence phenotypes and changes in
host cell gene expression. Human colon carcinoma cell lines such as
T84, CaCo-2 and HT29 are commonly used to study early interac-
tions of Salmonella and E.coli, with the intestinal epithelial lining such
as adherence, invasion, replication in epithelial cells, induction of pro-
inflammatory immune response and bacterial translocation by using the
transwell system. Transwell culture allow polarized growth of the cells
providing, for example, an intact apical brush border or co-culturing
with immune cells, e.g macrophages or dendritic cells [135][8]. One lim-
itation, however, of these cell lines is their cancerous nature. Normal
small intestinal cell lines are also used, such as the HIECs [136], a series
of human intestinal cell lines with typical crypt cell proliferative char-
acteristics, the tsFHIs [137], a set of conditionally immortalized fetal
human intestinal cells and the PCDEs [138], which are fully differenti-
ated enterocytes that can be maintained in primary culture for about
10–12 days.

Other non-intestinal immortal epithelial cell lines like HeLa or Hep-
2 cell lines have also been used to study interactions of S.typhimurium
with epithelial cells. Additionally, tissue explants are used to study the
S. typhimurium -intestine interactions [139][140].

Salmonella Pathogenicity island 1 (SPI-1) Salmonella
Pathogenicity island-1 (SPI-1) is a ∼40kb region of the Salmonella
genome that encodes the 39 proteins of a prokaryotic type three secre-
tion system (TTSS-1).Two operons srg/org and inv/spa are required to
build up a syringe-like apparatus that streches from the inner membrane
over the outer membrane into the extracellular space [141][142][143]. In
addition, SPI-1 also codes for most of the effector proteins translo-
cated into the eukaryotic target cell by TTSS-1 and SPI-1 regulatory
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proteins. SPI-1 was acquired after Salmonella separated from E. coli,
as the island is inserted between two adjacent genes from E.coli K-12
[145]. The island seems to be an ancient acquisition since is present
in all Salmonella subspecies [144]. TTSS-1 is required for the initial
steps of Salmonella pathogenesis [148][149][113]. TTSS-1 is necessary
for invasion of Salmonella in non-phagocytic epithelial cells [146][147].
Thereby, TTSS-1 is a syringe-like apparatus translocates effector pro-
teins to the host epithelial cell in order to induce host-cell membrane ruf-
fling and consequent internalization [150][151][152][141]. The concerted
action of effector proteins encoded by SPI-1 such as AvrA, SipA, SipB,
SipC, SipD, SlrP, SptP and SspH1 or outside the SPI-1 locus (SopA,
SopB, SopD, SopE and SopE2) [112][143][109][153], results in invasion of
Salmonella into non-phagocytic epithelial cells [109]. Effector proteins
are translocated in a time-depenent way. The sipABCD contributes
to invasion since SipB/SipC/SipD translocates effector proteins to the
host cell, while SipA and SipC induce host-cell actin re-arrangement
by nucleating and bundling F-actin filaments [113][110][154][115][143].
On the other hand, SopE and SopE2 activate the Rho family GT-
Pases Cdc42 and Rac1 to induce actin re-arrangement and Salmonella
uptake in the epithelial cell [155][146]. The inositol phosphate phos-
phatase SopB [156], works together with SopE and SopE2 to contribute
to membrane ruffling and bacterial uptake [110][112]. SptP, on the
other hand, inactivates Cdc42 and Rac1 thus terminating epithelial up-
take and reestablishing an intact host cell [157]. Additionally to their
requirement for the invasion process, SPI-1 TTSS secreted effector pro-
teins induce fluid accumulation, polymorphonuclear cell infiltration, and
expression of pro-inflammatory chemokines [158][159].

TTSS-1 regulation Virulence regulation is spatially and tempo-
rally highly coordinated. Optimal SPI-1 TTSS expression requires high
osmolarity, low oxygen and slightly basic pH; conditions as present in
the small intestine [160][161][149][143]. Transcriptional regulation of
SPI-1 TTSS genes involves a number of regulators encoded within the
SPI-1 or outside. hilA encoded within SPI-1, is the central transcrip-
tional activator required for the expression of SPI-1 TTSS [162][163].
hilA contains a DNA binding motif of the OmpR/ToxR family and binds
directly to promoters to activate expression of the prg/org, and inv/spa
operons. Subsequently, hilA activates the positive transcriptional acti-
vator, InvF, encoded by the first gene in the inv/spa operon, which in
turn activates, together with the chaperon SicA the SPI1 TTSS secreted
effector proteins.
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HilA expression is coordinatively regulated by the AraC-like tran-
scriptional activators HilC, HilD and RtsA, encoded outside of SPI-1
[149][164]. These regulators individually bind to the hilA promoter and
act in complex feed-forward loop with transcription of hilA as the out-
put [160][161]. They can also act independently of hilA, for example by
inducing expression of effector protein SlrP and DsbA, a protein needed
for TTSS functionality. Additionally, TTSS-1 effector genes that are not
on SPI1, SopB and SopE, are expressed from InvF-dependent promoters
[148].

Several global regulatory systems, widely distributed among
pathogenic bacteria and encoded outside SPI-1, regulate the expres-
sion of SPI-1 TTSS mainly through HilD. Such global regulatory sys-
tems include the BarA/SirA and OmpR/EnvZ two-component systems
[143][137][165][164]. The ferric uptake regulator (Fur) regulates hilA
transcription by controlling translation of the positive regulator HilD.
Furthermore, FimZ regulators of type 1 fimbriae genes and the two-
component system PhoP/PhoQ, also modulate SPI-1 expression by
modulating hilE expression which is a negative regulator of HilD.

1.3 C-DI-GMP SIGNALING

1.3.1 The second messenger c-di-GMP

A biological response to an intra- or extra-cellular signal, the first mes-
senger, is rapidly locally or generally amplified through e.g. enzymatic
metabolic changes in the concentration of the second messenger. As a
consequence, binding of the second messenger to a receptor (effector) is
altered which leads to an alteration of the target.

Cyclic-3’5’-diguanylic acid (c-di-GMP) Fig. 3 is a cyclic dinucleotide
first identified more than twenty years ago as the allosteric activator
of membrane-bound cellulose synthase in the fruit-degrading bacterium
Gluconacetobacter xylinus (previously called Acetobacter xylinum) [166].
Only recently, it has been recognised as a bacterial secondary messenger
[167][168] since it has shown to have a more global role as a signaling
molecule in bacteria. C-di-GMP is almost ubiquitous among bacte-
rial species, but is exclusively found in bacteria, not in archeae and
eukaryotes [169][170][171][172]. The change of concentration of the sec-
ond messenger c-di-GMP takes place through the action of diguanylate
cyclases (DGC) and phosphodiesterases (PDE) that are responsible for
the biosynthesis and hydrolysis of c-di-GMP. C-di-GMP has been shown
to bind to a variety of receptors (proteins and riboswitches) with the
consequence of physiological changes. C-di-GMP signaling contributes
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to the regulation of a wide spectrum of phenotypes. The most investi-
gated phenotypes are motility, sessility and virulence. These bacterial
phenotypes are often interconnected as they promote or inhibit each
other.

Figure 3: Cyclic-3’5’-diguanylic acid (c-di-GMP)

1.3.2 C-di-GMP metabolism - GGDEF and EAL domain proteins

Synthesis of c-di-GMP is catalyzed by GGDEF domain proteins acting
as di-guanylate cyclases. On the other hand, EAL or HD-GYP domain
proteins [173] act as c-di-GMP specific phosphodiesterases Fig 4 [169].
C-di-GMP is synthesized from two molecules of GTP, via the inter-
mediate substrate linear diguanylate triphosphate pppGpG, with the
concurrent release of two phosphates (PPi). Consequently two more
phosphates are released from linear pppGpG, to form c-di-GMP [174].
Degradation of c-di-GMP occurs by hydrolysis resulting in the linear
di-nucleotide pGpG in the case of hydrolysis by EAL-domain PDEs.
Hydrolysis by HD-GYP-domain PDEs results in two pGs [175].

GGDEF and EAL domain proteins are widespread in bacterial
genomes [169][170][171][172]. Very often one bacterial genome contains
more than one GGDEF and EAL domain protein raising the question of
specificity of the c-diGMP signaling pathway(s). The sequenced genome
ofS. typhimuriumcodes for 20 GGDEF/EAL domain proteins; 5 contain
a GGDEF, 8 an EAL domain and 7 contain both. On the other hand, E.
coli K-12 has 12 GGDEF, 12 EAL and 7 GGDEF-EAL domain proteins.
The first characterization of DGCs and PDEs in G.xylinus revealed two
conserved domains, GGDEF and EAL named after characteristic highly
conserved amino acid residues [169].
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Figure 4: C-di-GMP metabolism by GGDEF/EAL domain proteins.

Genetic and biochemical analysis of GGDEF domain proteins re-
vealed that the GGDEF domain is responsible for the diguanylate cy-
clase activity [176][174][177][178][179][180]. In general, GGDEF do-
mains are approximately 170 amino acids long [170]. The GG(D/E)EF
motif is an integral part of the active site and mutation of any residue of
the motif abolishes enzymatic activity [174][180]. Stand-alone GGDEF
domains are usually not enzymatically active, but require activation
through an N-terminal signaling domain for activation. Structural anal-
ysis of the GGDEF-domain protein PleD in Caulobacter crescentus,
showed that PleD dimerizes to catalyze c-di-GMP synthesis [174].

Most GGDEF domains contain an RxxD motif, named the in-
hibitory I-site, N-terminal of the active site binding dimeric c-di-GMP
allosterically inhibits DGC activity. This noncompetitive product inhi-
bition limits the concentration of c-di-GMP produced by the respective
DGC. As a physiological consequence, c-di-GMP binding to the I-site
is suggested to prevent the depletion of the GTP pool [181].

The EAL domains are approximately 250 amino acids long. The
EAL domain requires Mg2+ or Mn2+ for activity, but it is strongly
inhibited by Ca2+ or Zn2+. The glutamic acid of the EAL motif par-
ticipates in Mg2+ coordination [170]. Besides the EAL motif, there are
several other highly conserved motifs involved in catalysis, substrate
binding and di-valent ion coordination. Usually, EAL domains show
significant enzymatic activity without N-terminal allosteric activation
[183].
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When proteins contain both, a GGDEF and EAL domain, both do-
mains can be enzymatically active [171]. Alternatively, only one domain
possesses enzymatic activity, while the enzymatically inactive domain
can serve a regulatory function [182][183]. As a third alternative, there
is the possibility that none of the domains has enzymatic activity or
proteins with only one of the domains don’t work neither as cyclases or
phosphodiesterases [184].

GGDEF or EAL domain proteins often contain additional sensory
and signal transduction domains such as PAS, GAF, HAMP REC, and
HTH domains [170]. It has been shown that oxygen, amino acids, elec-
trons, and photons can modify the activity of DGC or PDE proteins
[168][167]. For example, PAS is a conserved protein domain involved
in sensing oxygen, redox or light and REC (or CheY) is a chemotaxis
response regulator domain that participates in signaling phosphorelays.
PleD, for example, is a GGDEF domain protein that carries also the
REC domain that gets phosphorylated of it’s conserved aspartate by
cognate histidine kinases while GGDEF is the output (effector) domain
that catalyzes c-di-GMP synthesis [170][180]

C-di-GMP metabolizing proteins have been shown to be localized
supporting the general concept of localized amplification of the c-
diGMP signal by individual GGDEF/EAL domain proteins responsible
for subsequent physiological changes. In G.xylinus the DGCs and PDEs
affecting cellulose biosynthesis, the c-di-GMP target cellulose synthase
and most of the intracellular c-di-GMP are located in the membrane
fraction [169][185] implying that c-di-GMP is concentrated in distinct
membrane signal-receiving niches. In C. crescentus, the di-guanylate cy-
clase PleD, becomes localized to one cell pole after phosphorylation and
activation [180]. FimX, a protein from the nosocomial pathogen Pseu-
domonas aeruginosa, which contains both GGDEF and EAL domains
in addition to CheY and PAS signaling domains, is found localized at
the cell pole [196].

1.3.3 C-di-GMP receptors

Several receptors for c-di-GMP are subsequently detected
[186][187][185]. Activation of cellulose biosynthesis was the first
phenotype found to be activated by c-di-GMP [166] whereby c-di-GMP
binds to the PilZ domain of the cellulose synthase BcsA in G. xylinus,
S. typhimurium and E. coli [180][181][186][187]. The PilZ domain is a
c-di-GMP binding domain, widespread in bacteria. The PilZ domain
is not only present in bacterial cellulose synthases, but in a wide
variety of proteins that regulate different phenotypes such as alginate
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production, virulence and motility.

1.3.4 C-di-GMP regulatory targets-Implication of c-di-GMP in
various phenotypes

Regulation of sessility by c-di-GMP is complex and occurs at various
levels. In general, positive regulation of exopolysaccharide production,
biosynthesis of adhesive fimbriae and biofilm formation by c-di-GMP is
a common feature of bacterial species with community behaviors and
adhering properties [188][189][190]. In S. typhimurium, for example,
c-di-GMP synthesized from di-guanylate cylcase AdrA [191] is thought
to bind to the PilZ domain of the cellulose synthase BcsA and thereby
allosterically control cellulose production and the associated pdar (pink,
dry and rough) morphotype present when agar-grown bacteria express
cellulose. Overexpression of AdrA resulted in increased c-di-GMP levels
and increased pdar morphotype. On the other hand, overexpression of
the c-di-GMP dependent phosphodiesterase YhjH, a stand-alone EAL
domain protein, resulted in decreased c-di-GMP levels and decreased
pdar phenotype. In addition to cellulose biosynthesis, c-di-GMP regu-
lates the expression of the biofilm transcriptional activator CsgD and
subsequently CsgD-controlled genes encoding biofilm matrix compo-
nents such as the csgBA gene encoding curli fimbriae [192], bapA coding
for the large surprotein BapA [193] and yih for O-antigen capsule [194].

Motility is commonly negatively regulated by c-di-GMP in various
bacteria [177][195][196][187][190]. Thereby, various types of motility,
including flagella-mediated swimming and swarming, but also type IV
pili mediated twitching motility are affected by c-di-GMP. First exper-
iments, in S.typhimurium, have shown that high levels of c-di-GMP
generated by overexpression of the DGC AdrA inhibited swarming and
swimming motility while reduction of c-di-GMP levels by overexpres-
sion of the PDE YhjH stimulated motility [177]. Recently, the molecular
basis of c-di-GMP mediated inhibition of swimming motility starts to
become resolved. C-di-GMP binds to the PilZ domain protein YcgR
leading to a conformational change in the protein [186][187]. Conse-
quently c-di-GMP loaded YcgR can for a complex with FliG and FliM
that are part of the flagella rotor. This interaction causes a back-break
and the bacterium to slow-down [?]. C-di-GMP is affecting motility
negatively also in the gastrointestinal pathogen Vibrio cholerae. In this
bacterium, overexpression of the DGC VCA0956 or mutation of the
PDE VieA, increased concentration of c-diGMP that directly binds to
CsgD-like transcriptional activator VpsT [190] and abolished swimming
motility by repression of genes involved in flagellum biosynthesis, motil-

18



ity, and chemotaxis [197].
In C. crescentus cyclic di-GMP signaling is implicated in develop-

mental transitions, since DGC activity of PleD is needed for ejection of
the flagellum, stalk formation, and synthesis of the holdfast [198]. Be-
sides sessility and motility, c-di-GMP signaling affects other pathways.
It is also involved in regulating e.g. the resistance to phage infection
and heavy metal ions in E. coli and in photosynthesis in Synechococcus
elongatus [199][200][188].

1.3.5 C-di-GMP in virulence

C-di-GMP signaling is involved in virulence of human, animal and plant
pathogens like S.Typhimurium, Vibrio cholerae, Pseudomonas aerugi-
nosa, Bordetella pertussis, Xanthomonas campestris, E.coli, Legionella
pneumophila, Brucella melitensis and Anaplasma phagocytophilum
[201][202][197][198][199][200][174][203][204][205][206][207][208]. In the
gastrointestinal pathogen V. cholerae downregulation of c-di-GMP lev-
els leads to activation of cholera toxin [202][209][210] More specifically
the phophodiesterase VieA reduces c-di-GMP concentration inducing
maximal expression of the cholera toxins through their transcriptional
activation by ToxT, a direct activator of ctxAB encoding cholera toxin.
VieA is part of the three component system VieSAB suggested be-
ing activated upon entry to the host [211][94]. CdpA GGDEF-EAL
domain protein acting as a phosphodieterase under the control of its
degenerate GGDEF domain also support the general scheme that c-di-
GMP must be down-regulated after entering the small intestine [212].
Additionally, mutation of CdgC resulted in increase of transcription
of tcpA which consequently regulates ToxT [213]. In the nosocomial
pathogen P. aeruginosa c-di-GMP signaling is required for biofilm for-
mation [189], a virulence phenotype of this bacterium in chronic infec-
tion. Acute virulence phenotypes are also affected by c-di-GMP sig-
naling in P. aeruginosa. However, the subset of GGDEF/EAL mutants
demonstrating an alteration of the cytotoxic phenotype in CHO cell line
was only partially overlapping with the subset contributing to virulence
in a burn wound mouse model. In general, the common view arised
that c-di-GMP is promoting chronic infections, while inhibiting acute
infections [214]. The plant pathogen Xanthomonas campestris pathovar
campestris (Xcc) can cause disease through expression of RpfG, a HD-
GYP domain protein that responds to diffusible signaling factor (DSF)
to control Xcc virulence traits like production of extracellular enzymes
and extracellular polysaccharide and motility. DSF signalling by in-
teraction of RpfG with two GGDEF-domain proteins, control motility
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[204][215]. In Bordetella pertussis a genetic screen had indicated the
contribution of c-di-GMP signaling proteins to virulence [216] whereas
the EAL domain protein is BvgR encoded by the gene bvgR that is
part of the bvgASR locus that controls expression of B.pertussis viru-
lence factors, found to be a repressor of gene expression. Mutation of
bvgR resulted to high expression of the bvg-repressed genes that subse-
quently resulted to attenuation of disease in the mouse aerosol model
[203].

In S. typhimurium, the EAL-domain like protein STM1344 causes
resistance to Salmonella induced oxidative stress, inhibits rapid
macrophage killing and is required for virulence in the typhoid fever
mouse model [201]. STM1344, however, does not possess phosphodi-
esterase activity and also does not bind c-di-GMP [217], therefore the
involvement of c-di-GMP signalling in these phenotypes remains elusive.
Another study did not find a role for c-di-GMP in typhoid fever viru-
lence, as the loss of virulence in aS. typhimuriumstrain, with deletion
of all the GGDEF domain proteins was recovered by a single GGDEF
domain protein independently of c-di-GMP synthesizing activity [218].
However, there are indications from other studies of a role of c-di-GMP
in S. typhimurium virulence. Survival of Salmonella in pigs required the
GGDEF-EAL domain protein STM1703 [219]. Biochemical analysis of
the STM1703 homologue of E. coli has been shown to display c-di-GMP
specific PDE activity. Additionally, flooding of the cell with c-di-GMP,
resulting from overexpression of GGDEF-domain protein AdrA, led to
loss of invasiveness and pro-inflammatory immunogenicity [220].
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2 METHODS

The general principles and experimental set-ups used in the papers and
manuscripts of this thesis are presented in this section. Detailed de-
scription of the protocols is provided in the Materials & Methods parts
of the respective papers and will not be repeated here.

2.1 MOLECULAR BIOLOGY METHODS

2.1.1 Construction of mutants

Mutations in the chromosome of S. typhimurium and E. coli were gen-
erated in order to investigate the contribution of a gene and the cor-
responding encoded protein to a certain phenotype. For deletions of
genes the Datsenko and Wanner method was used [221]. This fast and
efficient method directly replaces the bacterial gene with an antibiotic
resistance gene by means of homologous recombination using a linear
DNA fragment which carries a selective marker flanked by sequences ho-
mologous to the gene of interest. In total three proteins of the lambda
red recombinase complex allow not only the transformation of bacteria
with linear DNA, but also recombination of two DNA sequences with
sequence homology of as little as 36-50 nucleotides. The antibiotic re-
sistance cassette is flanked by flippase (Flp) recognition target (FRT)
sites allowing removal of the resistance cassette by Flp recombinase, if
required. Transfer of a mutant allele with a selectable marker into a
novel strain background was carried out using phage transduction with
bacteriophage P22 HT105/1 int-201 as the transducing agent.

2.1.2 Reporter Fusion protein

Fusion proteins are proteins created through the joining of two or more
genes which originally code for two proteins, the protein to be moni-
tored and the reporter protein. Translation of the gene fusion ideally
results in a single polypeptide with functional properties identical to
the individual proteins. Certain proteins are chosen as reporters be-
cause the characteristics they confer on organisms expressing them are
conveniently identified and measured and interference with other pro-
teins or pathways is low. Proteins usually used as reporters are the
β-galactosidase, the green fluorescent protein and β-lactamase. In Pa-
per I, the reporter fusion protein SopE2- β-lactamase (SopE2-TEM-1)
was created to measure the secretion of the effector protein SopE2. β-
lactamase was chosen as a reporter, as it has been demonstrated before
that GFP fusion proteins are not transported by the TTSS. In its basic
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function, the β-lactamase catalyses the hydrolysis of β-lactams, a class
of antibiotics that target cell-wall biosynthetic enzymes located in the
periplasm. Therefore, β-lactamase must be exported beyond the cyto-
plasm to be active. For this reason, β-lactamase is an export reporter
with enzymatic cleavage of β-lactam as a powerful indicator of export.
In our case, the substrate of the β-lactamase was the chromogenic β-
lactam nitrocefin. Hydrolysis of nitrocefin by the β-lactamase results
in a color change from yellow to red which is used to monitor the level
of SopE2 secretion. The blaM gene encoding the TEM-1 b-lactamase is
expressed in pCX340 plasmid under the control of the IPTG-inducible
Ptrc promoter [222]. The gene encoding the TTSS-1 effector protein
SopE2 amplified from S. typhimurium UMR1 genomic DNA was cloned
upstream of blaM to generate a SopE2-TEM-1 fusion protein (plasmid
pAPL1).

2.1.3 Sequence analysis

To investigate the molecular basis of the properties of a protein, the
corresponding gene encoding the protein to be investigated can be se-
quenced. Translation of the gene sequence provide the protein sequence.
In Paper III the molecular basis of the immunogenicity of flagellin pro-
teins was investigated by sequencing fliC, the gene encoding flagellin,
from the strains investigated. Sequencing was performed with primers
up- and down-stream of fliC as well as primers inside the gene to create
a set of overlapping DNA segments resulting to a fliC contig for each
strain investigated.

2.2 INFECTION BIOLOGY METHODS

2.2.1 Cell culture model of infection

Invasion assay The human adenocarcinoma epithelial cell line
HT-29 was used for the in vitro studies. In order to monitor the first
line of events during infection with S. typhimurium bacteria were co-
incubated with HT-29 epithelial cells for only one hour. Before co-
incubation bacteria had been grown under invasion inducing conditions
(described in Paper I and II). One hour post infection, supernatant was
removed, cells were gently washed and cell culture medium containing
gentamicin was applied to the cells for 1 h to kill extracellular bacteria.
Cells were afterwards gently washed and then disrupted to release intra-
cellular contents. The number of intracellular bacteria was determined
by cfu counts of viable bacteria.
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Stimulation of human epithelial cells In order to investigate
the immunostimulatory capability of different bacterial strains or puri-
fied flagellin, co-incubation with HT-29 cells was performed. Undiffer-
entiated HT-29 cells do not differentiate in apical and basolateral side
and express TLR-5 receptor homogenously at their cell surface being
a convenient tool to study induction of pro-inflammatory response due
to TLR-5. Bacteria or purified flagellin were applied to the cells and
supernatants were collected. Supernatants were centrifuged to avoid
interfering of cells with the measurement of interleukine, and then an-
alyzed for production of pro-inflammatory IL-8.

2.2.2 Animal models of infection

Prior to infection, bacteria were grown under invasion inducing condi-
tions.

Ileal loop infection model Invasion in vivo was examined by
using the ligated ileal loop infection model [223] that is is used to study
the first events during bacterial infection of intestinal epithelial cells.
S. typhimurium inoculum is injected directly into ligated ileal loops of
anaesthetized mice. After incubation of the loop for 90 min in mice,
extracellular bacteria is removed by washes with ( phospahte buffer
saline)PBS and adhering bacteria are killed by incubation in gentam-
icin solution for 90 min. Following, the whole tissue is mechanically dis-
rupted and appropriate dilutions of the homogenized samples are spread
on LB plates with appropriate antibiotics to determine the number of
intracellular bacteria. This models mimics the pathology seen in the
small intestine following infection via the natural oral route. In con-
trast, oral administration of S. typhimurium in mice results in typhoid
fever (typhoid fever model). So that model strictly monitors the inter-
actions of bacteria with intestinal epithelial cells and not their access
to them, neither their fate during the next steps of infection.

Streptomycin-pretreated mouse model Streptomycin-
pretreated mouse model is used in Paper II to study the ability of
S. typhimurium strains to colonize and persist in the intestinal tract.
This animal model is an established model for Salmonella-induced
colitis [133]. 129Sv/Ev mice were pre-treated by gavage with strepto-
mycin. 129Sv/Ev are naturally resistant to S.typhimurium infection
(Nramp1+/+) and they are used to be able to withstand longterm
infection. Streptomycin pretreatment clears the normal flora of the
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mice and disrupts colonization resistance resulting in acute in acute in-
flammation in the intestine (neutrophils influx, epithelials erosion) after
infection with S. typhimurium. 24 h after streptomycin pretreatment,
the mice were intragastrically inoculated with bacteria. Fresh fecal
pellets were collected from individual mice aseptically every second
day, starting on the first day after infection and for a period of 28
days. Fecal weight was determined and feces were suspended in PBS.
Serial dilutions for plating were made in PBS and plated on Salmonella
selective medium (MacConkey) agar plates as described [133] for
bacterial enumeration.Tissue samples from the mesenteric lymph node,
spleen and liver were removed aseptically and homogenized bacterial
loads were determined by plating the homogenised tissue samples on
MacConkey agar plates.

2.3 PROTEIN METHODS

2.3.1 Detection of secreted proteins

In order to investigate secreted effector proteins and secreted flagellin
proteins were precipitated from culture supernatants. Strains were
grown under invasion-inducing conditions to mimic conditions of in-
fection. Bacteria were removed by repeated centrifugation and the pro-
teins were precipitated from the supernatant with trichlooacetic acid
(TCA). Cell-associated proteins were recovered from bacterial pellets.
and analyzed along with precipitated secreted proteins by SDS-PAGE
and Western blot.

2.4 ANALYTICAL METHODS

2.4.1 HPLC

High-performance liquid chromatography (HPLC) is used for seperation
of the components of a liquid solution, passing it through a chromato-
graphic, with the assistance of high pressure pumps. In HPLC there
are two phases: a) The stationary phase that is composed (packing ma-
terial) from solid porous material , or liquid mounted on solid substrate
of very small diameter, that is in the column. b)The mobile phase that
is a solvent or mix of solvents. The transfer of the liquid mobile phase
through the stationary,is performed using high pressure pumps and thus
achieve difficult separations in minutes. It is especially useful for sepa-
ration and analysis of mixtures of molecular, or ionic compounds with
low vapor pressures and thermally unstable compounds, which can not
be purged without break and also, in contrast with gas chromatography
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(GC), is used to separate mixtures of substances with high molecular
weight and polarity. For the determination of c-di-GMP nucleotides ex-
tracts [224] were subjected to ion pair chromatography using a Hypersil
ODS C18 column as previously described [224]. C-di-GMP eluted at 21
min as determined by a spiked sample. The concentration of c-di-GMP
in the samples was estimated from the peak area using an extinction
coefficient of e = 11 800 at 254 nm.
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3 RESULTS AND DISCUSSION

3.1 PAPER I

Cyclic di-GMP signalling controls virulence properties of
Salmonella enterica serovar Typhimurium at the mucosal lin-
ing.

C-di-GMP is a global secondary messenger in bacteria that promotes
physiological changes as response to environmental cues which change
the intracellular levels of c-di-GMP. In S. typhimurium, c-di-GMP sig-
naling has been shown to regulate bacterial behavior such as motility
and sessility [171][177][168]. In pathogens, motility and sessility be-
haviour contribute to certain virulence phenotypes [214][225][226]. In
addition, c-di-GMP signaling has been demonstrated to play a role in
the regulation of virulence in various pathogens [201][202][197]. In S.
typhimurium, the EAL-like protein STM1344 has been demonstrated
to mediate resistance to hydrogen peroxide and to delay macrophage
killing [201]. However, STM1344 does not metabolize or bind c-di-
GMP [217], thus the contribution of c-di-GMP to virulence phenotypes
of S. typhimurium was not clear.

Therefore the aim of Paper I and II was to study the potential role
of c-di-GMP in bacterial-host interactions with the enteric pathogen S.
typhimurium as a model organism. To this end, we wanted to detect the
effect of c-di-GMP signalling on virulence phenotypes in vitro andin vivo
and identify which components c-di-GMP signaling affects to control
virulence.

The facultative intracellular pathogen S. typhimurium must adapt
from an extra-host life style to growth conditions in the host [227]. The
sequence of events during the infection process of S. typhimurium is
very well characterized [141][228][114][110][143], One of the first line
of defence is the intestinal epithelium, where S. typhimurium invades
the epithelial cells and causes a pro-inflammatory cytokine response
[116][228][118]. Both events contribute to acute inflammation, which
is the manifestation of S. typhimurium enterocolitis in humans. For
the in vitro studies, consequently, invasion of the gastrointestinal ep-
ithelial cell line HT-29 and induction of a pro-inflammatory response
in the gastrointestinal epithelial cell line HT-29 were chosen as repre-
sentative phenotypes to monitor virulence of S. typhimurium. These
two phenotypes are very well characterized on the molecular level
[14][43][44][112][153][229][148].

In order to demonstrate an effect of c-di-GMP signaling to virulence
phenotypes, we saturated the cell with c-di-GMP through overexpres-
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sion of the GGDEF domain protein AdrA, an efficient di-guanylate cy-
clase. In previous studies of the Römling group, overexpression of AdrA
significantly increased the c-di-GMP levels in S. typhimurium under all
conditions studied [177][230](unpublished results). Similarily, we show
in paper I that AdrA expressed under invasion conditions produced
significant amounts of c-di-GMP. Therefore, it was possible for us to
study the change in physiology and behavior of the bacterium in the
high c-di-GMP situation under the virulence challenge.

In Paper I we demonstrated that high amounts of c-di GMP in S.
typhimurium lead to a pronounced inhibition of invasion of the bacteria
into epithelial cells and to inhibition of IL-8 production from epithe-
lial cells after infection. In fact, both virulence phenotypes of S. ty-
phimurium were set back to the level of the negative control. The effect
of c-di-GMP in S. typhimurium is consistent with findings in the gas-
trointestinal pathogen V. cholerae where high c-di-GMP levels created
by mutating the phophodiesterase VieA, inhibited transcription of the
transcriptional regulator ToxT and consequent production of cholera
toxin, thus aborting virulence of V. cholerae [202][209][210]. Subse-
quently, we analysed through which components c-di-GMP acts to cause
inhibition of invasion. Proteinaceous curli fimbriae and the exopolysac-
charide cellulose are major extracellular matrix components of S. ty-
phimurium plate-grown biofilms. The production of these extracellular
matrix components is stimulated by c-di-GMP [231][177][187][168][232].
Cellulose and curli fimbriae and other extracellular matrix components
were already shown to play a role in pathogen-host interaction in a vari-
ety of bacteria [90][91][73][92]. In addition, previous studies had shown
that S. typhimurium has the ability to form biofilms on intestinal ep-
ithelial cells, whereby, among other components, the biofilm matrix
components cellulose and curli fimbriae are required for biofilm for-
mation [90][73]. Curli fimbriae and cellulose production requires the
transcriptional activator CsgD [233][192][191]. Other extracellular ma-
trix components regulated by CsgD, which is itself activated by c-di-
GMP signaling [192],are the large surface protein BapA [193] and the
O-antigen capsule [194]. Indeed in Paper I we showed that c-di-GMP
inhibits invasion through genes required for the production of extra-
cellular matrix components cellulose (through bcsA, the cellulose syn-
thase) and capsule (through yihQ). At the same time, however, the
proteinaceous curli fimbriae enhanced invasion suggesting that not all
biofilm matrix components are functionally similar, but the effect on
invasion is dependent on the nature of the component. Generally, ex-
opolysaccharides interfere with invasion and type III secretion system
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functionality as shown for the LPS O-antigen and for the Vi-capsule in
S. typhi [234][235][236][152][237]. Probably, expopolysaccharides pro-
mote inter-bacterial adherence and counteract invasion that requires
attachment via proteinaceous matrix, and TTSS injection of effectors.
On the other hand, proteinaceous curli fimbriae mediate invasion of ep-
ithelial cells [92][85].most likely through attachment, since attachment
of the bacteria to epithelial cells mediates docking of the TTSS to the
epithelial cell and subsequent secretion of effector proteins and invasion
[238].

In Paper I, we additionally show that c-di-GMP mediates inhibi-
tion of invasion of epithelial cells through the biofilm regulator CsgD.
This effect can be attributed to the positive effect of CsgD on cellulose
and capsule production [239][194]. However, cellulose production can
occur independently of CsgD [233][240], since alternative di-guanylate
cyclases can produce the c-di-GMP that binds to the PilZ domain of
the cellulose synthase BcsA. Indeed, deletion of the cellulose synthase
had an additional effect on restauration of invasion in the csgD mutant.
Whether CsgD activated cellulose biosynthesis is involved in inhibition
of invasion could not be resolved in the experimental setting used. How-
ever, CsgD contributed to reduced secretion of the SPI-1 TTSS effector
protein SopE2 independently of production of CsgD-regulated extracel-
lular matrix components, implying that an unknown component regu-
lated by CsgD interferes with TTSS secretion of effector proteins. As
SopE2 secretion was monitored using a plasmid with an inducible pro-
moter, the effect of c-di-GMP and CsgD is most likely beyond SpoE2
transcription. In support of this hypothesis, we did not find an effect
of high c-di-GMP levels on the transcription and activity of the SPI-1
TTSS transcriptional regulator HilA [143][149].

Induction of the pro-inflammatory cytokine IL-8 in HT-29 epithe-
lial cells by S. typhimurium, is also inhibited by c-di-GMP signalling.
Cellulose partially contributed to the inhibition of the IL-8 phenotype.
The Römling group has shown previously, that in the absence of cellu-
lose, enhanced binding of bacteria to epithelial cells can occur via curli
fimbriae, which triggers an elevated immune response via curli-bound
flagellin [27][92]. Moreover, CsgD is required for inhibition of IL-8 pro-
duction from epithelial cells.

On the molecular level, secretion of monomeric flagellin was signifi-
cantly inhibited by high c-di-GMP levels, while cell-associated flagellin
was even enhanced, suggesting that non-inducible IL-8 phenotype of
S. typhimurium with high c-di-GMP is due to a reduced amount of
monomeric flagellin available to bind to TLR-5 and stimulate an im-
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mune response. Deletion of csgD restored secretion of flagellin to wild
type levels, which is sufficient to explain the stimulation of IL-8 pro-
duction in this system. Consequently, CsgD interferes with both secre-
tion of the SPI-1 TTSS effector protein SopE2 and monomeric flagellin.
Flagellin is secreted to the tip of the flagellum through the TTSS flagel-
lar apparatus for the assembly of flagellum [113][35]. Whether the same
secretion pathway is responsible for the export of monomeric flagellin
binding to TLR5 is not yet clear, but if so, CsgD expression interferes
with the function of different type III secretion systems.

The cell-associated flagellin is attributed to the assembled flagellum
and cannot be recognized by TLR-5 to induce IL-8 production [30].
Thus, when c-di-GMP is high, there might be more flagella; longer
flagella, less easily shed or flagellin is more efficiently assembled into
the flagellum [35]. In fact, stimulation of the secretion of monomeric
flagellin has been observed in response to host cells [31] suggesting that
secretion of monomeric flagellin occurs independently of the assembly
of the flagellum. Flagellin secretion is a candidate target of c-di-GMP
regulation under the environmental conditions investigated.

Overall, in Paper I we have shown that in S. typhimurium, under
conditions that are otherwise favourable for virulence, c-di-GMP sig-
nalling in conjunction with the biofilm regulator CsgD and cellulose
biosynthesis turns a highly invasive pathogen with immunostimmula-
tory properties into a non-invasive bacterium, which does not evoke
an immune response. Indeed, c-di-GMP is considered to mediate the
transition between acute and chronic infections [184][214]. In the noso-
comial pathogen P. aeruginosa that establishes chronic infection of the
lungs, c-di-GMP signaling is required for biofilm formation [189] and
colonization. In Vcholerae low levels of c-di-GMP have been demon-
strated to stimulate maximum expression of cholera toxin suggesting
that c-di-GMP can either promote or inhibit virulence depending on
the status of infection [197].

3.2 PAPER II

Contribution of GGDEF-EAL domain proteins to Salmonella
typhimurium virulence phenotypes.

In Paper I, we have shown that at least two virulence properties,
invasion and IL-8 production of HT-29 cells by S. typhimurium are
regulated by c-di-GMP signaling. As c-di-GMP-affected phenotypes
were tested by overexpression of a di-guanylate cyclase, which floaded
the cell with c-di-GMP far over physiological levels, in paper II we
investigated, which chromosomally encoded di-guanylate cyclases and
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phosphodiesterases affect invasion and IL-8 induction. As virulence
is a complex process, we also investigated the effect of the c-di-GMP
signaling network on virulence by orally infecting streptomycin-treated
mice, the mouse model of human gastroenteritis.

We used previously constructed single deletions of all identified
GGDEF/EAL domain proteins that are demonstrated or putative
di-guanylate cyclases or phosphodiesterases encoded by the S. ty-
phimurium genome and tested for a phenotype in invasion and IL-
8 production. GGDEF/EAL domain proteins are highly abundant
in the genomes of most bacterial species suggesting that the c-di-
GMP signalling network not only plays a fundamental role in bacte-
rial signaling, but also that c-di-GMP signaling affects multiple phys-
iological pathways, samonella). To recall, S.typhimurium possesses 20
GGGDEF/EAL domain proteins whereby 5 possess a GGDEF domain,
8 an EAL domain and 7 proteins consist of both, the GGDEF and EAL
domain. Also other bacteria such as Pseudomonas and V. cholerae
possess numerous GGDEF/EAL domain proteins suggesting a highly
complex and fine tuned regulation of bacterial physiology by c-di-GMP
signalling rather than an overall ON and OFF effect.

In Paper II, we demonstrate that distinct panels of individual
GGDEF/EAL domain proteins specifically modulate S. typhimurium
mediated invasion and IL-8 production of epithelial cells,in vivo colo-
nization and systemic spread of the infection. Two distinct panels con-
sisting of several GGDEF/EAL domain proteins contribute to each phe-
notype. Specifically, the mutants with deletions of the GGDEF domain
proteins STM1283, STM1987 and STM4551, the EAL domain proteins
STM0343, STM0468, STM1697, STM2215 ,STM3611 and STM4264
and the GGDEF-EAL domain protein STM2123 showed a statistically
significant invasion phenotype, although the severity of the phenotype
differed between the mutants. On the other hand, the mutants with
deletions of the GGDEF domain protein STM1283, the EAL domain
proteins STM0468 and STM4264 , the GGDEF-EAL domain STM1703
and STM2503 showed an IL-8 phenotype distinct from the wild type.
These results show that distinct functions for individual GGDEF/EAL
domain proteins in the virulence phenotypes. In addition, distinct pan-
els of GGDEF/EAL domain proteins regulate the two virulence phe-
notypes under the same growth conditions. This type of regulation, of
a phenotype by groups of GGDEF/EAL domain proteins, is consistent
with the regulatory pattern seen previously. Rdar biofilm formation
and motility are regulated by distinct panels of GGDEF/EAL domain
proteins in S. typhimurium [192][232][217][241]. For example, at least
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eight GGDEF/EAL domain proteins regulate the rdar morphotype of
bacteria grown at 28°C on agar plates [192][232][217]. In V. cholerae,
multiple GGDEF/EAL domains regulate the rugose phenotype of plate-
grown cells [242][243].

For most of the mutants, we observed a phenotype consistent with
the function of c-di-GMP signaling as elucidated in Paper I. Conse-
quently, most GGDEF protein mutants showed an enhanced phenotype
as compared to the wild type, while most EAL protein mutants showed
a reduced phenotype. However, some phenotypes associated with mu-
tated GGDEF/EAL domain proteins do not correlate with the predicted
alterations in the level of this dinucleotide. For example, the mutant of
the GGDEF domain protein STM1283 showed a reduced invasion rate,
although STM1283 codes for a predicted di-guanylate cyclase. In com-
parison, the phenotype of the STM1283 mutant with respect to IL-8
production is consistent with STM1283 functioning as a di-guanylate
cyclase.

In addition, it should be emphasized that the deletion of AdrA
(STM0385) the highly active diguanylate cyclase overexpressed to cre-
ate high intracellular concentrations of c-di-GMP under invasion con-
ditions (Paper I) did not show any virulence phenotype AdrA might
not be expressed from its natural promoter under invasion conditions,
might not be active or simply might not affect virulence phenotypes,
when expressed chromosomally. The phenotype of the individual EAL
domain mutants could be complemented by YhjH, a stand-alone EAL
domain protein with demonstrated c-di-GMP specific phosphodiesterase
activity [177][244] This finding indicated, but did not entirely rigidly
prove, that c-di-GMP specific phosphodiesterase activity, is responsible
for the observed phenotypes of EAL mutants. The only exception was
the STM0468 mutant. Neither its invasion nor its IL-8 induction pheno-
type could be complemented by YhjH, although bioinformatic analysis
predicts a c-di-GMP specific phosphodiesterase activity for the EAL
domain.

The presence of several c-di-GMP synthesizing and degrading pro-
teins leads to the question whether proteins with the same enzymatic
activity have a redundant function or work in different pathways. In
Paper II, we addressed this question by the construction of double mu-
tants of GGDEF or EAL domain proteins. In particular, we found that
a double mutant of the EAL domain proteins STM3611 and STM4264
showed a significantly more reduction of invasion than the single mu-
tants. Therefore, STM3611 and STM4264, the two c-di-GMP specific
phosphodiesterases, which contribute the most to the invasion pheno-
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type, have non-redundant functions. Most likely, those proteins also
act in spatially and maybe even temporally distinct niches, to control
distinct pathways, as it has been demonstrated before [192]. Further
investigations will elucidate, which pathways are affected by STM3611
and STM4264.

Virulence is a complex process. We investigated the role of c-di-
GMP signaling on the distinct virulence phenotypes invasion and IL-8
production in vitro, however, these phenotypes do not necessarily en-
tirely correlate with thein vivo virulence as this was shown before in
other pathogens [40][204]. We chose to study the role of c-di-GMP
signaling in the streptomycin-treated mouse model [134] as this model
reflects human gastroenteritis, the most common manifestation of in-
fection of S. typhimurium in humans. Using competition experiments,
we found that mutants of the GGDEF-EAL domain proteins STM2672,
STM3615 and STM4551 were quickly outcompeted (latest at day 12)
in the gastrointestinal tract. At day 34, additional mutants showed a
milder colonization phenotype.

In conclusion, there is no overlap in the groups of mutants in
GGDEF/EAL domain proteins that show a severein vivo virulence phe-
notype and those that show in vitro phenotypes in invasion and IL-8
production. The long-term colonization phenotype is multifactorial and
certainly includes more determinants than short-term (1h) invasion of
epithelial cells.

In conclusion, in Paper II we could show that chromosoma-
lly encoded proteins involved in c-di-GMP metabolism, namely
GGDEF/EAL domain proteins, contribute toin vivo and in vitro vir-
ulence of S. typhimurium. Distinct panels of GGDEF/EAL domain
proteins influence different phenotypes showing the plasticity and flex-
ibility of the c-di-GMP signaling network.

3.3 PAPER III

Impact of biofilm matrix components on interaction of com-
mensal Escherichia coli with the gastrointestinal cell line HT-
29.

Tight interaction of commensal bacteria such as E. coli with epithe-
lial cells is considered to contribute to persistent colonization, but is
also considered to be a virulence phenotype [245][246]. In contrast to
S. typhimurium, in E. coli the biofilm components curli fimbriae and
cellulose are expressed also at 37°C in vitro [247], suggesting that they
could play a role in bacterial-host interactions. In Paper III, we inves-
tigated the effect of the expression of curli fimbriae and cellulose on the
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interaction of commensal E. coli with the colon carcinoma cell line HT-
29. In particular, we investigated adherence, invasion and induction
of production of the pro-inflammatory cytokine IL-8. In addition to
characterization of the role of curli fimbriae and cellulose to the above
mentioned phenotypes, we found a distinct contribution of different
flagellin H-serotypes to IL-8 induction.

Flagellation, motility and chemotaxis can be virulence factors in
infections required for colonization and tissue invasiveness and the re-
cruitment of host inflammatory cells [248][249][19]. On the other hand,
expression of the flagella apparatus is turned off in the majority of cells
of a commensal E. coli population upon intestinal colonization of mice
[250].

In Paper III, we demonstrate that the biofilm matrix components
curli fimbriae and cellulose expressed by the commensal E. coli strain
TOB1 have a differential effect on interaction with the gastrointesti-
nal epithelial cell line HT-29. While curli fimbriae promote adherence,
internalization and IL-8 production, cellulose expression in the curli-
expressing background inhibited these phenotypes. In other E. coli
backgrounds, slightly different results were obtained. The Römling
group found that cellulose is required for adhesion and enhanced cy-
tokine production in the probiotic E. coli Nissle 1917 [251]. Others
have found a synergistic effect of curli and cellulose on host cell ad-
herence and biofilm formation of EHEC and EPEC [252]. In addition,
we found a distinct role of different H serotypes, which reflect flagellin
proteins with different sequences, in the interaction between commensal
isolates of E. coli and HT-29 cells. Although we found in Paper III that
expression of the biofilm matrix component curli fimbriae promotes IL-
8 production in combination with flagellin, the highest IL-8 response
was elucidated by E. coli Fec10, a strain which did not express curli
fimbriae. Incubation of HT-29 cells with purified monomeric flagellin
from strain Fec10 and TOB1 showed that flagellin from strain Fec10 was
significantly more immunostimmulatory. In the HT-29 model system,
IL-8 induction occurs since monomeric flagellin is recognized by TLR5.
Residues in the N- and C-terminus of S. typhimurium flagellin FliC
required for stimulation of IL-8 production by HT-29 cells were pre-
viously characterized [30]. Sequence comparison of the flagellins from
strain Fec10 and TOB1 with flagellin from S. typhimurium showed that
residues required for TLR5 recognition of flagellin showed a higher con-
servation in the flagellin of strain Fec10. This fact might explain the
higher immunostimmulatory properties of Fec10 flagellin, which belongs
to the H27 serotype group of flagellins.
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3.4 PAPER IV

Characteristics of translocating Escherichia coli and the
interleukin-8 response to infection.

Bacterial translocation is a virulence phenotype during bacterial
overgrowth and in immunocompromised hosts [63]. In Paper IV, we
characterized E.coli isolates from humans, pigs and rats which show
a distinct translocation phenotype [253][254]. The E.coli strains were
characterized with respect to biochemical phenotypes, serotypes and
adherence and induction of a pro-inflammatory immune response in HT-
29 cells. In addition, translocation from the apical to the baso-lateral
side of an epithelial monolayer consisting of human-derived epithelial
cells was investigated.

Translocating strains isolated from human and pig translocated
most efficiently in this system. There was no correlation between the
ability of a strain to adhere and to produce IL-8 and the ability to
translocated. Previous studies have shown that internalization, but not
adherence correlated with the translocation ability of an E.coli strain
[63]. We observed, however, a significantly higher IL-8 induction in HT-
29 by E. coli strain KIC-2. Purified flagellin of strain KIC-2 showed a
similar significantly higher IL-8 induction.

The flagellin of strain KIC-2 is of serotype H21. The flagellin
molecule can be divided into three regions [41], the conserved C1 at
the N-terminus, the V variable region and the conserved C2 region at
the C-terminus. Using the conserved N- and C-terminal regions, the
H-serotypes of E. coli can be divided into two major groups EC1 and
EC2. This division correlates also with the division of E.coli strains
into different flagella morphotype groups [255]. Flagellins of the EC2
group are closely related to the FliC flagellin of S. enterica and their
fliC gene may be derived from the E. coli/Salmonella enterica common
ancestor. Members of the EC2 group comprise serotypes H2, H8, H11,
H16, H21 and H27. Indeed, the two highly immunostimmulatory flag-
ellins identified in Paper III and Paper IV, the F10 flagellin of serotype
H27 and the KIC-2 flagellin of serotype H21, both belong to the EC2
group, suggesting that the EC2 group of flagellins has a highger im-
munostimmulatory capacity than the EC1 group. It would be worth to
systematically investigate this hypothesis. In addition, the KIC-2 flag-
ellin also showed higher conservation of the immunostimulatory TLR5
recognition amino acid signatures [30] than the flagellins from the EC1
group, which can explain the higher immunostimulatory effect.

In conclusion, in Paper III and IV, we have identified two E.coli
flagellin serotypes, H21 and H27, which are more immunostimmulatory
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than other investigated flagellin molecules. These two flagellin types
belong to the EC2 subgroup of flagellins, which are closely related to
the FliC flagellin of S. typhimurium. The FliC flagellin is highly im-
munostimmulatory with respect to the TLR5 mediated IL-8 response
and the H21 and H27 flagellins seem to have retained these immunos-
timmulatory properties.
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